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Abstract 

Infants’ speech perception adapts to the phonemic categories 
of their native language, a process assumed to be driven by 
the distributional properties of speech. This study investigates 
whether deep neural networks (DNNs), the current state-of-
the-art in distributional feature learning, are capable of 
learning phoneme-like representations of speech in an 
unsupervised manner. We trained DNNs with unlabeled and 
labeled speech and analyzed the activations of each layer with 
respect to the phones in the input segments. The analyses 
reveal that the emergence of phonemic invariance in DNNs is 
dependent on the availability of phonemic labeling of the 
input during the training. No increased phonemic selectivity 
of the hidden layers was observed in the purely unsupervised 
networks despite successful learning of low-dimensional 
representations for speech. This suggests that additional 
learning constraints or more sophisticated models are needed 
to account for the emergence of phone-like categories in 
distributional learning operating on natural speech.  

Keywords: statistical learning; distributional learning; 
language acquisition; phonemic categories; speech 
perception; categorical perception; connectionism 

Introduction 
Acquisition of the native language phonemic system is an 
important step in early language acquisition, enabling a 
transition from generic auditory perception towards 
symbolic and generative representation of words and 
subword units. Although it is known that infants adapt to the 
distributional characteristics of their native language sound 
system during their first year of life (Werker & Tees, 1984), 
it is less obvious whether early perceptual representations of 
speech actually consist of sequential invariant atomic units 
such as phones or phonemes before lexical learning, or 
whether adult-like phonemic system emerges only through 
extensive experience and learning at multiple levels of 
language representations (c.f., Werker & Curtin, 2005; see 
also Räsänen & Rasilo, 2015, for a recent overview).  

Since distributional learning can be framed as 
unsupervised machine learning from speech data, a number 
of computational studies have investigated how phone 
categories could be clustered from acoustic speech input 
only and how selective these automatically discovered 
sound categories are (e.g., de Boer & Kuhl, 2003; Vallabha, 
McLelland, Pons, Werker, & Amano, 2007; Kouki, Kikuchi 

& Mazuka, 2010). These studies have typically limited their 
analysis to pre-segmented or otherwise carefully selected 
subsets of speech tokens and/or phone categories. In 
addition, they have enforced an explicit clustering procedure 
of potentially infinitely many different acoustic tokens into 
a finite number of discrete and disjoint phone classes. The 
general finding has been that these acoustic clusters tend to 
be selective towards specific phones but are far from a 
representational system that would be invariant to non-
phonological acoustic variability across talkers, speaking 
styles, and other factors. Due to the challenges in bottom-up 
clustering speech directly into phonemic categories, a 
number of computational models (e.g., Feldman et al. 2013; 
Elsner et al., 2012) and theoretical frameworks (e.g., Werker 
& Curtin, 2005; Räsänen & Rasilo, 2015) propose that 
phonemic learning is inherently tied to concurrently 
emerging lexical knowledge and should not be considered 
as an isolated process strictly preceding word learning.     

Despite the emerging view that phonemic learning cannot 
be addressed in isolation from lexical learning, it is still 
important to understand how different aspects of language 
experience affect the development of speech perception 
capabilities. One of these aspects is the question of how 
much of early adaptation to one’s native language can still 
be driven by purely auditory statistics. In the present study, 
we investigated whether deep neural networks (DNNs), a set 
of powerful machine learning techniques for feature 
learning, are capable of extracting phoneme-like 
representations from continuous speech similarly to their 
capability of learning mammalian-like visual receptive 
fields from image data. More specifically, we asked whether 
the representations resulting from unsupervised 
distributional learning of speech reflect phonemic contrasts 
of the language when the network is forced to discover low-
dimensional re-presentations of the initially high-
dimensional acoustic space, i.e., whether phonemic 
variation dominates other distributional properties of natural 
continuous speech.  

Deep neural networks and phonemic learning  
Deep neural networks, which are artificial neural networks 
with two or more hidden layers, are the current state-of-the-
art in the discovery of non-linear structure (or features) from 

1757



stochastic data (Hinton, 2014). They have also been shown 
to provide good approximations for the emergence of 
increasingly abstract visual features in mammalian visual 
pathway (e.g., Cichy et al., 2016). In the context of speech, 
DNNs have become the state-of-the-art acoustic models in 
standard automatic speech recognition (ASR) systems due 
to their scalability and representational power in comparison 
to the previously used shallow models such as Gaussian-
mixture models. In addition, purely unsupervised deep 
autoencoder networks (see Methods) have been shown to be 
effective for learning low-dimensional representations from 
high-dimensional acoustic input in the absence of any 
supporting linguistic information (e.g., Deng et al., 2010).  

In the previous work, Nagamine, Seltzer, and Mesgarani 
(2015) showed that hidden layers of a feedforward neural 
network become increasingly selective to phone categories 
and phonetic features when trained on continuous speech. 
The selectivity observed in the DNN was also found to be 
similar to the phonemic selectivity observed in the human 
superior temporal gyrus (Mesgarani et al., 2014). However, 
Nagamine et al. trained their network in a supervised 
manner using phonetic labels of the input acoustic vectors as 
targets for the DNN output layer. This means that the entire 
network was optimized to perform discrimination of the 
acoustic input in terms of the given phonetic categories–the 
standard approach taken in ASR. 

In contrast to supervised learning, concurrent phonetic 
labeling of speech input is not available to infants learning 
their native language. The previous study therefore leaves 
open whether similar increasingly abstract phonemic 
structure can also emerge from purely auditory learning 
when the neural network attempts to find a low-dimensional 
but high-fidelity code for the incoming acoustic input. If so, 
this would provide evidence for how much of the native 
phonemic invariance properties can be acquired simply by 
listening to speech in the absence of any further constraints 
and give insight to the type of “receptive fields” that 
become responsible for phonemic perception. On the other 
hand, a failure to learn increasingly invariant phonemic 
representations from acoustic input would suggest that local 
short-term dependencies of speech, as captured by the 
feedforward networks, would be insufficient for the 
emergence of phonemic categories and that additional 
constraints from concurrently emerging knowledge at 
different levels (e.g., Feldman et al., 2013; Räsänen & 
Rasilo, 2015) or different network topologies are needed in 
the learning process (see, e.g., Synnaeve et al., 2014).   

In order to investigate whether DNNs as hierarchical 
generative models of speech are capable of acquiring some 
type of invariance properties with respect to phonetic or 
phonemic representations of the input speech, we conducted 
a number of learning simulations using the existing standard 
unsupervised DNN architectures.  

Methods 
Speech input to the DNNs was represented using 
logarithmic Mel-spectral features similarly to the earlier 

work (Nagamine et al., 2015). The input signal was 
converted to 10-ms feature frames xt using a sliding 25-ms 
window and computing 24-band log-Mel-spectrum from 
each window. The features were Z-score normalized across 
each utterance to ensure proper scaling for neural network 
input. The final inputs to the networks were formed by 
concatenating 11 subsequent Mel-spectrum frames xt to a 
single input vector ft = [xt-5, xt-4, …, xt+5]T. Unlike Nagamine 
et al. (2015), we decided to leave out the first and second 
derivatives of the Mel-spectra since the resulting time-
frequency patches already contain local temporal dynamics 
of the input (as confirmed by the replication of the earlier 
findings; see the Experiments section).  

Three standard DNN architectures were investigated in 
the present work: 1) a supervised deep multilayer perceptron 
(MLP) for classification of speech to phone labels 
(replication of the previous work by Nagamine et al., 2015), 
2) a stack of unsupervised restricted Boltzmann-machines 
(RBMs) that learn a generative model over the input data, 
the entire stack referred to as a deep belief network (DBN), 
and 3) an unsupervised deep feed-forward autoencoder 
network (AEN) that learns to map input speech into a low-
dimensional bottleneck-layer and then expand (decode) that 
representation back to a reconstruction of the original input.  

The use of DBNs and AENs to study distributional 
phonetic learning was motivated by the finding that DBNs 
are capable of learning increasingly abstract visual features 
from image data (Hinton & Salakhutdinov, 2006) and 
achieve superior dimensionality reduction performance in 
comparison to linear models such as PCA in many tasks. 
The assumption in the present study is that the phonemic 
identity of the speech segments might require fewer bits to 
encode than the details of the acoustic input itself, and 
therefore a generative network with a decreasing number of 
nodes in the higher and narrower layers should become 
more “phonemic” in its representation when dimensionality 
reduction is imposed on the data. This is, of course, only if 
the variance in the acoustic input is best explained across 
dimensions correlated with phonemic identities instead of 
some other low-dimensional description of the input, and 
that the learning algorithms used to estimate DNN 
parameters are capable of finding this manifold. 

In our experiments, the MLP was trained in the standard 
way using acoustic feature vectors ft as input to the network 
with H hidden layers, computing the activation of the output 
layer hout,t given the input, and then calculating the error of 
the activation with respect to a target vector gt denoting the 
phonemic identity of the input vector. The weights of the 
network were then tuned using backpropagation (BP) 
algorithm in order to minimize the error of the output layer 
(Rumelhart, Hinton & Williams, 1986). 

DBNs were obtained by first training a three-layered stack 
of RBMs incrementally layer-by-layer, always fully training 
the parameters of an RBM with one hidden layer at a time 
(Fig. 1), then freezing those parameters and using the 
probabilities of the hidden unit activations given the training 
data as the “visible layer” input to the next hidden layer. As  
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Figure 1: A schematic description of how pre-trained RBMs 
are “unrolled” to five-layer feedforward DBN and AEN 
networks used in the present study. Weights after layer-by-
layer RBM pre-training are shown with black W and 
weights after error backpropagation (BP) are shown with 
blue W. The baseline supervised MLP topology is shown on 
the right  (adapted from Hinton & Salakhutdinov, 2006).  

 
a result, the stack becomes a hierarchical generative model 
P(f | h) over the training data with higher hidden layer 
activations h representing increasingly complex features of 
the input data (see Hinton & Salakhutdinov, 2006).    

In order to obtain five-layered DBNs (as defined in the 
present study), the stack of RBMs was “unrolled” (Fig. 1) to 
a feed-forward network by mirroring the structure of the 
network on top of the low-dimensional bottleneck-layer with 
the output layer corresponding to a reconstruction of the 
input speech (see Hinton & Salakhutdinov, 2006). In this 
case, the three first layers correspond to the standard feed-
forward activations of the original stacked RBM while the 
last two layers are identical to the top-down reconstructions 
of the same model. 

Finally, AENs were obtained by fine-tuning the DBN 
weights using BP in order to minimize the Mel-spectrogram 
reconstruction error at the output of the network, therefore 
breaking the weight symmetry of the DBN.  

All networks used sigmoid activation functions except for 
the output layer, which was always linear. In the case of 
MLP, instead of using the typical softmax output layer with 
multinomial labels, we experimented with distributed target 
representation by first assigning each of the unique phones c 
with a random vector sampled uniformly from vc ~[0,1] ∈ 
Rd (d = 40). Then the distribution of phones within the input 
time window (W = 11 frames) was encoded to a target 
vector gt as a weighted mean of the random vectors 
corresponding to the phone labels of the frames within the 
window: 

  gt =
1
K

vt+ii=t−(W−1)/2

t+(W−1)/2
∑   (1) 

Since this type of random mapping preserves the 
approximate mutual distances between representations 
(Johnson & Lindenstrauss theorem) while the sum of high 
dimensional random vectors preserves information 
regarding the individual components (e.g., Kanerva, 2009), 
the approach enables creation of fully dense target vectors 

that represent arbitrary distributions of phones, and, in 
general, provides opportunities to incorporate structured 
target representations using fixed-dimensional outputs (see 
Gallant & Okaywe, 2013). DBNs always utilized a Gaussian 
input layer to accommodate the z-score-normalized input.   

For the baseline MLPs, we used the same network 
configuration as in Nagamine et al. (2015) by using five 
hidden layers, each consisting of 256 nodes (Fig. 1, right). 
As for the DBNs and AENs, we initially experimented with 
a number of different network layouts and layer sizes using 
a subset of the training data, including bottleneck-
architectures with gradually decreasing number of nodes in 
deeper layers, bottlenecks with different numbers of nodes, 
and even expanding networks with an increasingly many 
nodes at higher layers (see Table 1 for a summary). Since 
there were no major qualitative differences in the findings, 
one basic bottleneck layout of d = [256, 128, 32, 128, 256] 
nodes per layer for the DBN and AEN was chosen for more 
detailed analysis.  

The dimension of the input layer for all networks and of 
the output layer for the AENs and DBNs was always 264 
(11 frames x 24 frequency bands). In order to ensure that the 
training of the networks was successful, we always 
manually verified that the reconstruction or classification 
error decreased monotonically as a function of the epoch 
number during BP, and that the generative networks were 
capable of performing sensible reconstructions from the 
input Mel-spectrograms.  

Data 
Two qualitatively different corpora were used in the 
experiments in order to get a comprehensive picture of the 
learning process. The TIMIT corpus of American English 
read speech (Garofolo et al., 1993) was used as the primary 
dataset since the earlier work was evaluated on the same 
data and since TIMIT represents natural variation of speech 
across multiple talkers and dialects. The full training set of 
4620 sentences was used to train the DNNs and the test set 
of 1620 sentences was used in the phonemic invariance 
analyses. Both sections contain speech from male and 
female talkers and the data is hand-labeled for phone 
segments.  

In addition, we used enacted child-directed speech from 
the Caregiver (CG) Y2 UK corpus (Altosaar et al., 2010) to 
investigate whether results differ for limited-variability 
speech from a small vocabulary of approx. 80 words, each 
word repeated multiple times in the training set, and when 
all speech comes from a single talker (“a caregiver”). For 
this purpose, 1600 utterances from Talker-01 of the corpus 
were used to train the DNNs and a remaining set of 797 
utterances were used to probe the phonemic selectivity of 
different layers. The CG UK Y2 corpus comes with a phone 
annotation created by forced-alignment from text to speech 
using an automatic speech recognizer. Due to the simplicity 
of the material, this reference can also be considered as 
highly reliable at the level of individual phones.  
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The data were randomly divided into a set of minibatches 
for training, each minibatch consisting of 100 samples for 
each RBM parameter update and 1000 samples for each BP 
update. In all simulations, BP was always run for 25 epochs 
similarly to Nagamine et al. (2015) whereas DBN-
pretraining consisted of 15 epochs per layer.  

Methods for network selectivity analysis 
Activations of the networks were analyzed in the context of 
the underlying phone annotation. Original 61 phone classes 
of TIMIT annotation were first mapped to the reduced set of 
39 phones and with silences and closures excluded (Lee & 
Hon, 1989). The set of 38 unique phones in the original CG 
annotation was used in its original form. In order to study 
phone-specific activations of the networks, only the test data 
input frames consisting of at least 90.9% of a single phone 
segment were included in the analysis, corresponding to 
19706 samples on TIMIT test set and 4749 samples on the 
CG Talker-01 data.  

Similarly to Nagamine et al. (2015), the activation of each 
layer in the context of different phone classes was analyzed 
using the F-ratio. First, the activation vectors consisting of 
all nodes within a layer of interest were grouped according 
to the phone labels associated with the inputs. The cross-
phone variance of the node activations was then compared 
to the intra-phone variance, revealing whether the node 
activations for different realizations of the same phone are 
more similar than activations for two any arbitrary phone 
segments. By measuring the average F-ratio across layers, 
we can probe whether the activations for different 
allophones of the same phone class are more consistent in 
some layers than others. In addition to the F-ratio, we 
measured the mean mutual information (MI) between node 
activations and corresponding phone labels to see how many 
bits of information does each individual node, on average, 
contain regarding the phone classes of the input vectors.  

Finally, k-Nearest Neighbor (KNN) classification of the 
layer-specific activations into phone categories was 
performed in order to evaluate how well the full pattern of 
activation in a layer discriminates between phone classes. 
More specifically, every activation hi,t of layer i for input ft 
was used as a single feature vector for classification (e.g., 
dim(hi) = 256 in all hidden layers i of the MLP). Four-fold 
cross-validation performance with 75% of the vectors as 
training data and 25% of vectors as testing data was then 
computed. The parameter k was always varied between [1, 
10] and the best result across this range was chosen as the 
classification accuracy for each fold before averaging the 
results across all folds. In addition to analyzing phone 
selectivity, we also included analyses of selectivity towards 
manner of articulation (MOA) and talker gender using the 
TIMIT data and the same set of measures.   

Results 
Fig. 2 shows the overall analysis results from the three 
different networks (supervised MLP, unsupervised DBN 
and AEN) for the TIMIT data with multiple talkers. Fig. 3 

shows the corresponding results for the single-talker IDS 
speech from the CG corpus. Table 1 shows a summary of 
KNN-based phonetic discriminability of layer activations 
for alternative network topologies tested on TIMIT.   

The first finding is that the supervised MLP replicates the 
earlier results of Nagamine et al. (2015) with increasing 
network layers showing higher selectivity towards phone 
classes (max. improvement of 11%) and less sensitivity to 
talker identity (gender), as measured by F-ratio or KNN 
classification performance. In contrast, no such invariance 
properties are observed for the unsupervised networks. 
Although F-ratio of the bottleneck-versions of the AEN and 
DBN increases during the reconstruction of the input, the 
activations are not more informative regarding the 
corresponding phone identity as revealed by decreasing 
KNN performance. With a fixed or expanding number of 
nodes in the hidden layers (Table 1), very minor 
improvements in phone selectivity (max. 2.7%) are 
observed in comparison to input features but without any 
abstraction from gender-specific patterns.  

In addition, the MI between individual node activations 
and phone labels is not positively correlated with the 
discriminability of the overall pattern of activation across all 
nodes–not even in the supervised case (Figs. 2 and 3). A 
closer analysis of the distributions of node-specific MI-
values in case of the MLP revealed that the MIs become 
more tightly concentrated towards small values with an 
increasing layer number. Simultaneously, the number of 
highly informative individual nodes decreases. This 
suggests that the representations at higher layers are 
inherently distributed and the same nodes contribute to 
encoding of multiple different phone classes. When 
analyzed individually, each node will naturally show 
increased selectivity towards an internally coherent subset 
of all possible speech inputs, but this should not be confused 
with overall capability of the individual nodes to represent 
abstracted categorical knowledge.  

In order to ensure that the results were not affected by 
overfitting of the model to the data, we also conducted the 
same set of analyses for the activations on the training data. 
No qualitative differences were observed in the results in 
this case. In addition, we re-ran the experiments using a 
shorter input window length (5 frames ≈ 50 ms) to ensure 
that the phonemic structure was not lost due to the inclusion 
of the neighboring temporal context in the acoustic 
representations during the training stage. Again, the results 
were qualitatively similar to those reported with a longer 
input window. 

Finally, since the KNN performance was always higher 
for a BP-fine-tuned autoencoder in comparison to the pre-
training only, we also ran further 100 iterations of the BP-
algorithm to see whether the KNN performance of the AEN 
layers would increase above the original input Mel-spectrum 
selectivity with the help of extra training. However, the 
KNN-based selectivity measure flattened out around the 
level observed in Figs. 2 and 3 and then started to decrease 
with more training epochs, likely due to overfitting. 
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Figure 2: Network invariance with respect to phones, manner of articulation (MOA), and speaker gender for multi-talker 
training. The supervised MLP network is shown on left, followed by the unsupervised pre-trained DBN (center), and the fine-
tuned autoencoder (right). Top: KNN classification performance using layer activations as features. Middle: F-ratio of node 
activations w.r.t. sample classes of interest. Bottom: mutual information (MI) between classes and node activations. DBN and 
AEN shown for d = [256, 128, 64, 128, 256]. 
 
Table 1: KNN performance (% correct) for phone and 
gender classification in TIMIT data for different hidden 
layers (L) in other tested unsupervised network topologies.  

topology L1 L2 L3 L4 L5 
	  DBN [256 256 256 256 256] 62.0 59.0 56.7 55.2 54.6 

phones 
AEN [256 256 256 256 256] 64.0 59.9 64.2 65.0 64.6 

DBN [256 512 1024 512 256] 61.4 60.2 58.2 57.0 56.0 
AEN [256 512 1024 512 256] 62.4 61.5 64.9 65.7 65.5 

DBN [128 64 8 64 128] 59.4 56.8 38.5 38.5 38.2 
AEN [128 64 8 64 128] 60.6 57.4 55.6 55.5 55.5 

AEN [256 256 256 256 256] 84.7 82.2 84.7 84.9 84.9 

gender 

AEN [256 512 1024 512 256] 84.6 83.7 85.5 86.5 86.0 
AEN [128 64 8 64 128] 79.0 75.5 71.4 71.2 70.7 

 

 
Figure 3: DNN phone invariance measures for the CG 
single-talker data for different network types and layers. 
DBN and AEN shown for d = [256, 128, 64, 128, 256]. 
 

Overall, it seems that the DBN is simply smoothing the 
input data (lower KNN-performance and more uniform 
activations in terms of F-ratio at deeper layers) whereas 
fine-tuning of the AEN leads to low-dimensional but 
detailed representations that encode both suprasegmental 
and segmental acoustic details. Unlike the supervised MLP, 
neither the DBN nor AEN exhibit increased phonemic 
invariance in comparison to the original input features.  

Discussion and conclusions 
The present experiments investigated the emergence of 
phonemic representations in unsupervised deep neural 
networks using adult-directed speech from multiple talkers 
similarly to the supervised counterpart performed earlier 
(Nagamine et al., 2015) and on single-talker data of child-
directed speech. The central finding is that the studied deep 
feedforward networks did not show similar increased 
selectivity towards phonemic structure that was observed in 
the networks trained in a supervised manner (Nagamine et 
al., 2015) or in the auditory neurons of the superior temporal 
gyrus as analyzed by Mesgarani et al. (2014).  

The results are also qualitatively different from the earlier 
clustering studies that have reported above-chance grouping 
of acoustic spectra or formants frequencies to disjoint 
phone-like categories (e.g., de Boer & Kuhl, 2003; Vallabha 
et al., 2007; Kouki et al., 2010). However, a major 
difference to the earlier clustering studies is that the DNNs 

do not force division of the data samples into a finite 
number of categories similarly to standard clustering 
algorithms, but learn distributed representations of the 
statistical structure of the data. In addition, our input data to 
the learning process was not carefully chosen to represent 
stable parts of vowel sounds but contained continuously 
extracted slices of the speech input  – a situation that the 
auditory system has to also face unless further temporal 
constraints such as syllabic (Räsänen, Frank & Doyle, 2015) 
or phonetic (e.g., Räsänen, 2014) boundary cues are 
included in the process. This leaves open whether the 
phonemic structure in DNNs would become more explicit 
under more constrained but ecologically plausible learning 
settings. Another possibility is that the use of recurrent 
neural network architectures could learn better context-
dependent models for speech patterns as they do not assume 
independence of the neighboring speech frames similarly to 
the currently studied networks. Although such units would 
conflict with the idea of a phone or phoneme as a context-
independent cluster of spectral properties, a simplification 
often assumed in early language acquisition research, it is 
well known that human speech perception also operates on 
longer time-spans than individual segments.   

Results from the supervised paradigm clearly indicate that 
the selectivity of the internal representations become more 
phonemic when the target output is also phonemic in nature. 
In the context of modeling early language acquisition, the 
targets cannot be discrete phone labels as such. However, 
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the precise labels could be substituted to other available and 
correlating information such as larger structural units the 
input frames belong to (e.g., Elsner et al., 2012; Feldman et 
al., 2013; Synnaeve et al., 2014) or even the cross-
situational referential context in which the speech is 
observed (Räsänen & Rasilo, 2015). This could lead to 
similar, albeit slower, learning of representations showing 
phonemic invariance.   

Interestingly, despite the absence of increased phonemic 
invariance in the unsupervised networks, the findings should 
still be compatible with the basic idea of distributional 
adaptation to the native language phonetic system (e.g., 
Kuhl et al., 2008) since the studied networks learn a 
generative statistical model over the training input. The 
input speech reconstructions from the network will depend 
on the familiarity with the input and are biased towards the 
statistical patterns of the training data. As long as the 
perceptual representations for speech input are assumed to 
correspond to the activations of the hidden layers or the 
reconstruction itself, the system is less sensitive to phonetic 
details of “non-native” speech patterns the more it is trained 
with one language only. This provides an analogy between 
human distributional learning and overfitting of statistical 
models to a certain set of training data. However, 
computational verification and implications of this idea are 
out of the scope of the present study and should be 
addressed in the future work.   
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