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Abstract

Learning-Based Characterization and Control of Colloidal Self-Assembly Systems

by

Jared O’Leary

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Ali Mesbah, Co-chair

Professor Clayton Radke, Co-chair

Colloidal self-assembly (colloidal SA) is the process by which particles in solution sponta-
neously organize into an ordered structure. The spontaneous self-organization central to
colloidal SA enables “bottom-up” materials synthesis, which would allow for manufactur-
ing advanced, highly ordered crystalline structures in an inherently parallelizable and cost-
effective manner. Thus, colloidal SA can create new avenues for highly scalable, economical
manufacturing of novel metamaterials with unique optical, electrical, or mechanical proper-
ties. Colloidal SA is an inherently stochastic (i.e., random) process prone to kinetic arrest
due to particle Brownian motion. This leads to variability in materials synthesis and possibly
high defect rates, which can severely compromise the viability of using SA to manufacture
advanced materials reproducibly. Successful implementation of colloidal SA thus critically
hinges on the ability to avoid defective, kinetically arrested configurations and consistently
reach highly-ordered, often defect-free states that tend to exist within global minima on the
free energy landscape.

The thermodynamic and kinetic driving forces that govern colloidal SA thus need to be pre-
cisely modulated – by actively exploiting intermolecular forces, selective template or surface
geometries, and/or external fields such as temperature and pressure – to direct colloidal SA
systems consistently and efficiently towards mass-producible structures and materials. Two
major strategies for this precise modulation are particle design, which involves designing
the colloidal SA system such that specific inter-particle interactions ensure the high proba-
bility realization of a desired configuration, and control, which seeks to modulate external
actuators systematically based on real-time measurements in order to induce global colloidal
SA configuration changes. The primary objective of this thesis is to enable more effective
particle design and control of colloidal SA systems. To this end, this thesis investigates
strategies based on machine learning and optimal control for quantifying and classifying
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colloidal SA system states, learning tractable stochastic dynamical models of colloidal SA
dynamics, and learning control policies that dynamically change external actuators to guide
colloidal SA. The insights gained from these methods provide a deeper mechanistic under-
standing of colloidal SA and contribute to an ever-developing archive of methods that can
be used or expanded upon to achieve reproducible colloidal SA.
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To the Las Vegas Raiders of Oakland and the Black Hole – the first group of people to
show me the power of irrational hope. Throw deep, baby!
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List of Figures

1.1 Cartoon free energy and diffusivity landscapes (FEL, DL). The x-axis is the self-
assembly coordinate. The y-axes are the Gibbs free energy (G/kT) and the diffu-
sion coefficient (D). Each (x,y) position a specific colloidal self-assembly system
configuration to its corresponding Gibbs free energy or diffusivity. Numbers 1-5
denote various colloidal self-assembly system configurations that correspond to
minima in the FEL. Position 3 refers to the global free energy minimum (e.g., the
most thermodynamically favored colloidal state). The local minima at positions
1 and 5 both have relatively small activation barriers, but position 5 is severely
diffusion-limited. As a result, the system is more likely to escape position 1 than
position 5. Positions 2 and 4 are slightly more thermodynamically favorable than
positions 1 and 5. The activation barriers surrounding position 2 are both rel-
atively high and position 2 is severely diffusion-limited. Position 4 on the other
hand, has both lower activation barriers and a much higher diffusivity, indicating
the system is much more likely to become kinetically trapped in position 2. . . . 4

2.1 Colloidal self-assembly state characterization framework summary. The parti-
cle positions are recorded and translated into neighborhood graphs. The di-
mensionality of the neighborhood graphs is next reduced using deep learning
techniques. Agglomerative hierarchical clustering is finally used to partition the
low-dimensional space and assign discrete classifications to each particle. . . . . 13

2.2 Autoencoder architecture. The encoder, e, compresses the neighborhood graph
of a given particle (a 73 × 1 vector, x) into a low-dimensional representation
e(x). The decoder, d, reconstructs the given neighborhood graph from the low-
dimensional representation. In this chapter, the encoder and decoder are deep
neural networks with nonlinear activation functions that learn the encoding/decoding
scheme that minimizes the reconstruction error of the decoder. This “optimal” en-
coder/decoder pairing is determined through an iterative training process, where
the weights and biases within these neural networks are updated through gradi-
ent descent methods. Each circle represents a node within the neural network
and the arrows represent the connections between these nodes. The autoencoder
input layer nodes are green, the autoencoder output layer nodes are blue, the
hidden layer nodes are grey, and the bottleneck layer nodes are red. . . . . . . 17
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2.3 Schematic representation of multi-flavored DFPs and their effective pair potential
model. Each of the pairwise interaction strengths EAA, EBB, and EAB can be
manipulated experimentally by controlling the blending ratio of two different
types of DNA sequences. These interaction strengths be adjusted in simulations
by changing the parameters of implicit Fermi-Jagla potential in Eq. (2.3). . . . 22

2.4 Autoencoder architecture optimization. The autoencoder MSE is plotted against
the number of nodes in the bottleneck layer (i.e., the length of the low-dimensional
representation vector) for various network sizes. “Elbows” in these plots occur
between 2 and 4 order parameters, indicating that 3 order parameters are likely
sufficient to capture the essential information from the neighborhood graphs. The
autoencoder with 2 hidden layers and 1000 nodes per hidden layer displays the
(albeit marginally) lowest MSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Relative importance analysis. Input perturbation and improved stepwise methods
are used to assess the relative importance of the 73 entries within the neighbor-
hood graph. Although neighborhood graph entries 22 and 23 account for the
largest percentage of MSE variation, these results demonstrate that no single
graph entry, or even relatively minor groups of graph entries can be used to
quantify the system state. Moreover, the large MSE variation caused by nodes
22 and 23 is a function of certain outliers found at solid-vapor interfaces. . . . . 24

2.6 Analysis to determine number of clusters. Agglomerative hierarchical clustering
(using Ward’s linkage) is used to cluster the low-dimensional representations of
the 4153 unique neighborhood graphs taken from the 11 isothermal colloidal self-
assembly trajectories that were used to train the autoencoder (see Section 2.5).
The number of unique neighborhood graphs corresponding to FCC, BCC, and
HCP structures is plotted against the number of clusters in each branch of the
resulting cluster tree. At 12 total clusters, the low-dimensional representations of
FCC, HCP, and BCC neighborhood graphs are separated into different clusters. 25

2.7 Agglomerative hierarchical clustering summary. Agglomerative hierarchical clus-
tering (using Ward’s linkage) was used to cluster the low-dimensional represen-
tations of 4153 unique neighborhood graphs (from the 11 isothermal colloidal
self-assembly trajectories that were used to train the autoencoder described in
Section 2.5) into 12 clusters. These clusters are labeled C1-C12. (a) The low-
dimensional representation of each unique neighborhood graph is plotted and
colored according to its labeled cluster. Points corresponding to bulk FCC, HCP,
and BCC lattices exist within clusters C9, C8, and C12, respectively. (b) The
Ward’s distance between each cluster is plotted against each cluster’s placement
within the cluster tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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2.8 Four classified colloidal self-assembly lattices. The figure shows 4 lattices from the
final time steps of 4 of the 11 isothermal colloidal self-assembly trajectories used
to train the autoencoder. Each particle in each lattice is colored according to its
classification in Fig. 2.7. The term “full lattice” indicates that every particle in
the snapshot is shown while the term “bulk lattice” indicates that the top layer of
particles has been removed. The structure in (a) is primarily BCC, the structures
in (b) and (c) are mixed FCC and HCP, and the structure in (d) contains FCC,
HCP, and BCC particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Example colloidal self-assembly trajectories. Each figure shows the time evolu-
tion of the number of particles classified as FCC (cluster C9, green), HCP (cluster
C8, brown), and BCC (cluster C12, purple) for a separate in-silico colloidal self-
assembly trajectory. Note that Frame # refers to the (chronologically ordered)
recorded simulation frame. The time evolution plots are accompanied by snap-
shots of certain chosen simulation frames within these trajectories. In each case,
the dimensionality of the neighborhood graphs is reduced with the encoder trained
using 11 isothermal trajectories of a system of 500 multi-flavored colloidal parti-
cles (see Section 2.5). Each particle in each snapshot is classified according to the
proximity of its low-dimensional representation to points in Fig. 2.7a. (a) The
figure shows the time evolution of an isothermal trajectory of the self-assembly
of 500 multi-flavored colloids that creates the lattice in Fig. 2.8d. The trajectory
shows that a polymorphic lattice containing FCC, HCP, and BCC particles forms
from a primarily BCC structure merging with a structure that contains FCC and
HCP particles (b) The figure shows the time evolution of an isothermal trajectory
of the self-assembly of 1000 multi-flavored colloids. The trajectory shows that the
system initially self-assembles into a BCC structure before undergoing a phase
transition into an FCC structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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2.10 Evaporation-induced colloidal self-assembly. The figure shows 3 snapshots of
the in-silico evaporation-induced self-assembly of 2052 colloidal particles that
are classified using two different schemes. Note that the data used to create
these snapshots was borrowed from reference [78] and that 6 total snapshots were
provided. (a) The dimensionality of the neighborhoood graphs is reduced with
an encoder trained using 11 isothermal trajectories of an in-silico system of 500
multi-flavored colloidal particles (see Section 2.5) Each particle in each snapshot
is classified according to the proximity of its low-dimensional representation to
points in Fig. 2.7a (b) The entire characterization framework is performed on the
six provided snapshots of the evaporation-induced colloidal self-assembly data.
Each unique neighborhood graph is used to train a second autoencoder. The
newly-formed encoder is used to reduce the dimensionality of the neighborhood
graphs and agglomerative hierarchical clustering (via Ward’s linkage) is used to
partition the low-dimensional space. In both (a) and (b), FCC particles are green,
HCP particles are brown, BCC particles are purple, and surface FCC particles are
yellow. The teal particles in (b) correspond to defective FCC structures that were
not found by the classification scheme in (a). Overall, the two characterization
procedures yielded nearly identical results. . . . . . . . . . . . . . . . . . . . . . 31

3.1 Colloidal self-assembly state characterization framework summary. Branched
graphlet decomposition translates particle positions into one structural neigh-
borhood graph and two compositional neighborhood graphs for each particle in
the two-component lattice. The structural neighborhood graph evaluates the
structure to which all particles contribute while the compositional neighborhood
graphs evaluate each component’s contribution to that structure. The dimension-
ality of the neighborhood graphs is next reduced using deep neural networks called
autoencoders to create structural and compositional low-dimensional spaces. Ag-
glomerative hierarchical clustering is finally used to partition the low-dimensional
spaces and assign discrete classifications to each particle. . . . . . . . . . . . . . 36
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3.2 Classified colloidal binary superlattices. The A- and B-type particles within a
perfect spherical FCC-CuAu lattice are manually swapped over time (i.e., sim-
ulation frames). Swap attempts are only accepted if the potential energy of
the new configuration is higher than that of the current configuration. (a) The
number of like (A-A, B-B) and unlike (A-B) nearest neighbors (#Nij) is plotted
against the simulation frame number. (b) The presented characterization frame-
work identifies the number of structurally and compositionally ordered (CO) and
structurally ordered, yet compositionally disordered (CD) particles in each frame.
Note that both the number of CO particles and A-B nearest neighbors NAB de-
crease over time. (c) Snapshots of lattices where A-type particles are colored blue
and B-type particles are colored orange sit above snapshots of lattices that are
classified by the characterization framework. In the latter case, CO particles are
colored dark red, CD particles are colored light red, and particles that are not
structurally ordered are transparent. Frame 0 contains the perfect FCC-CuAu
configuration. Frames 20 and 100 contain lattices that have gone through several
swapping attempts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 (a) Example pair potentials with independent and tunable pairwise interactions
EAA, EBB, and EAB for identically sized particles at σ = 1.0. The red, blue, and
green curves represent EAA = −0.3ϵ, EBB = −0.5ϵ, and EAB = −ϵ. These epsilon
values are achieved by tuning B0 to values of 0.56, 0.8, and 1.32 respectively. (b)
Example pair potential with different particle sizes. Red, blue, and green curves
represent particle sizes of rA = 0.9, rAB = 0.95 and rB = 1.0. These sizes are
achieved by tuning values of σ to 0.9, 0.95, and 1.0 respectively. All parameter
values used to create these plots are provided in SI Table S3. . . . . . . . . . . . 42



ix

3.4 (a) Crystallization order diagram as a function of particle size ratio, r∗ = rA/rB,
and relative like interaction strength, E∗

AA = EAA/EAB (E∗
BB = E∗

AA). MD
simulations (see Methods section) are performed at a variety of size ratios and
interaction strengths that are indicated by the gray dots. The characterization
framework classifies each particle in the final snapshot of each simulation accord-
ing to SI Table S1. The color bar represents the fraction of structurally ordered
(SO) particles in these final snapshots; the fraction calculation is normalized
by the number of SO particles in a perfect FCC spherical lattice. Each region
within the order diagram is labeled based on the specific classifications of the
SO particles. In the compositionally disordered close-packed (CD-CP) region,
structurally ordered, yet compositionally disordered (CD) FCC and HCP parti-
cles are observed, which form polymorphic and randomly packed lattices. In the
FCC-CuAu and HCP-straight region, structurally and compositionally ordered
(CO) FCC and HCP particles are observed, which form FCC-CuAu lattices and
polymorphic HCP-straight/FCC-CuAu lattices. CO BCC particles are observed
in the BCC-CsCl region. In the IrV and DCsCl regions, CD and CO IrVA, IrVB,
DCsClA, and DCsClB particles are observed, which form CD/CO and CO IrV
and DCsCl lattices. The data for conditions favoring different BSLs is provided
in Fig. 3.9. (b) Snapshots of characterized BSLs obtained from the simulations in
(a) and their crystal unit cells. Note that IrV and DCsCl classifications are based
on two types of SO particles since the structural graphlet for A-type and B-type
particles is different for these two crystals. The transparent particles represent
surface or amorphous particles that are not explicitly identified by the character-
ization framework. (c) The ratio of the total number of CO particles (NCO) to
the total number of SO particles (NSO) is plotted for different size ratios rA/rB
at EAA/EAB = 0.3. The red, green, pink, and orange bars quantify FCC-CuAu,
HCP-straight, and CO IrVA/B and DCsClA/B, respectively. NCO/NSO = 1.0
suggests that all particles within BSLs are structurally and compositionally or-
dered particles (i.e., defect-free). . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Anti-site formation energy is plotted against E*AA at different size ratios starting
from (a) BCC-CsCl configuration and b) FCC-CuAu configurations. . . . . . . 46
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3.6 (a) Schematic illustration of self-assembly pathways for forming BSLs. The SA of
BSLs can either occur via a one-step or two-step nucleation process. (b) Example
of a one-step nucleation pathway observed at E∗

AA=0.3 and r∗=0.95. (c) Example
of a two-step nucleation pathway (amorphous-crystal) observed at E∗

AA=0.6 and
r∗=0.95. The self-assembly process is quantified by plotting the fraction of iden-
tified structurally ordered (SO) particles (blue curves), structurally and composi-
tionally ordered (CO) particles (red curves), and largest cluster size (dashed gray
curves) as a function of time. The inset snapshots show identified crystalline par-
ticles at the single-particle level at different times. The particle coloring scheme
is same as that of Fig. 3.4b. (d) Quantification of self-assembly pathways for size-
disparate systems at size ratio rA/rB=0.95. (e) Quantification of self-assembly
pathways for identically sized systems at size ratio rA/rB=1.0. The plots (d) and
(e) show the fraction of SO particles within the largest cluster for different E∗

AA

(color bar), while the insets show the fraction of SO particles (XSO) as a function
of the fraction of CO particles (XCO). . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Temperature-dependent self-assembly behavior for size-disparate particles at r∗

=0.95 and E∗
AA=0.7. The figure plots the fraction of structurally ordered (SO)

particles within the largest cluster against the largest cluster fraction at different
degrees of supercooling T ∗/Tm (color bar). Tm is the pre-estimated temperature
suitable for crystallization obtained from cooling simulations (see Fig. 3.12 in
Section 3.9). The inset shows the fraction of SO particles (XSO) as a function of
compositionally and structurally ordered (CO) particles (XCO). . . . . . . . . . 48

3.8 The above snapshots show crystal structures obtained from simulation trajec-
tories of (a) IrV at E∗

AA = E∗
BB = 0.4 and r∗ = 0.85, (b) distorted CsCl at

E∗
AA = E∗

BB = 0.4 and r∗ = 0.8, and (c) BCC-CsCl at E∗
AA = E∗

BB = 0.4 and
r∗ = 1.0. The figures on the left show the snapshots obtained from simulations
and the figures on the right show bonds between all particles for better illustra-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 (a) Structural crystallization order diagram as a function of particle size ratio
r∗ = rA/rB, and relative like interaction strength E∗

AA = EAA/EAB. The symbols
showing the predominant crystal structures obtained from simulation trajecto-
ries. The red colormap shows the fraction of structurally ordered particles (i.e.,
BCC, FCC, HCP, IrV, distorted BCC). (b) Compositional crystallization order
diagram as a function of particle size ratio r∗ = rA/rB, and relative like in-
teraction strength E∗

AA = EAA/EAB. The blue colormap shows the fraction of
the number of compositionally ordered particles (i.e., BCC-CsCL, FCC-CuAu,
HCP-straight,IrV-CO, DCsCl) over structurally ordered particles (NCO/NSO). . 53

3.10 The fraction of identified crystals is plotted against E∗
AA for systems of identically

sized particles. The structurally and compositionally ordered BSLs are plotted
as solid color bars while the structurally ordered yet compositionally disordered
particles are plotted as lighter color bars. . . . . . . . . . . . . . . . . . . . . . 54



xi

3.11 Quantification of self-assembly pathways for size ratios (a) rA/rB = 0.9, (b)
rA/rB = 0.85, and (c) rA/rB = 0.8. The plot shows the fraction of structurally
ordered (SO) particles within the largest cluster for different E∗

AA (color bar),
while the inset shows the fraction of SO particles (XSO) as a function fraction of
compositionally ordered (CO) particles (XCO). . . . . . . . . . . . . . . . . . . 54

3.12 Example plot for estimating suitable crystallization temperature Tm at a given
size ratio r∗ = 0.95. The Tm is obtained from fitting curves to a sigmoidal form
PE(T ) = PEmin + (PEmax − PEmin)/(1 + exp(a(T − Tm)) . . . . . . . . . . . . 55

3.13 Temperature-dependent self-assembly behavior at r∗ = 1.0 and E∗
AA = 0.7. (a)

The fraction of structurally ordered (SO) particles is plotted against the largest
cluster fraction under different degrees of supercooling T*/Tm. The inset shows
the fraction of SO particles (XSO)as a function fraction of compositionally ordered
(CO) particles (XCO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.14 Autoencoder architecture optimization. For both the structural and composi-
tional autoencoders, the autoencoder MSE is plotted against the number of nodes
in the bottleneck layer (i.e., the length of the low-dimensional representation vec-
tor) for various network sizes). “Elbows” in these plots occur around a bottleneck
size of 3 nodes, indicating a low-dimensional size of 3 is likely sufficient to capture
the essential information from the neighborhood graphs. For both the structural
and compositional cases, autoencoders with two hidden layers, 100 hidden nodes,
and 3 bottleneck nodes show the lowest MSE. These models are used throughout
the main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Analysis to determine number of clusters. Agglomerative hierarchical clustering
(using Ward’s linkage) is used to cluster the structural and compositional low-
dimensional representations the unique neighborhood graphs identified from the
55 colloidal self-assembly trajectories that were used to train, validate, and test
the autoencoder (see main text). The number of unique neighborhood graphs
corresponding to FCC, BCC, HCP, IrVA, IrVB, DCsClA, and DCsClB struc-
tures is plotted against the number of clusters in each branch of the resulting
cluster tree for both low-dimensional spaces. In the structural low-dimensional
space, the target structure cluster size stabilizes around 410 total clusters. For
the compositional low-dimensional space, the target structure cluster size stabi-
lizes around 290 total clusters. Both low-dimensional spaces are then partitioned
accordingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.16 .Structural and compositional cluster trees. The structural cluster tree (with 410
clusters, see Fig. 3.15) and the compositional cluster tree (with 290 clusters, see
Fig. 3.15) are show above. The branches corresponding to target clusters are
labeled accordingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.17 Various classified lattices. The figure shows several binary colloidal lattices that
are classified by the deep learning-based characterization framework. These lat-
tices are selected from the 55 isothermal self-assembly trajectories used to train,
validate, and test the characterization framework (see main text). Table S1 pairs
the colors with their physical classifications. Overall, the framework is capa-
ble of distinguishing various types of structurally and compositionally ordered,
structurally ordered yet compositionally disordered, and fully defective particles
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Chapter 1

Introduction

This chapter first introduces colloidal self-assembly as a promising route for cost-effective and
scalable manufacturing of advanced, highly-ordered materials. This chapter next explains
how the Brownian particle motion that governs colloidal self-assembly renders the process
intrinsically stochastic and prone to kinetic arrest at defective configurations. This chapter
then introduces two potentially viable routes towards reproducible colloidal self-assembly –
particle design and control. The chapter is closed with an outline and discussion on the
overarching objective and novel contributions of this dissertation.

1.1 The Promise of and Challenges Towards

Reproducible Colloidal Self-Assembly

Colloidal self-assembly (colloidal SA) is the process by which particles in solution sponta-
neously organize into an ordered structure [1]. Colloidal SA is primarily facilitated by specific
interactions among particles, their surrounding medium, and surfaces (whose geometry can
selectively induce particle deposition). Some of these interactions can be manipulated during
assembly by applying and/or dynamically modifying external fields, such as electric fields,
magnetic fields, temperature, and pressure [1–3].

Widespread interest in the practical implementation of colloidal SA first arose from the
semiconductor and microelectronics industries, whose desire to scale microelectronic devices
past the sub-50 nm node began to challenge the viability of conventional solid-state nanofab-
rication technologies to mass produce devices and integrated circuits cost-effectively [4–7]. In
conventional, “top-down” manufacturing processes, lithography and mechanically-directed
processing techniques are used to “carve” a final structure from a larger block of matter.
These nanofabrication technologies can be limited by insufficient resolution, serial processing,
planar fabrication restrictions, environmental regulations to avoid particulate contamination
(e.g., clean room requirements for certain steps), nano-structure distortion, and/or high ma-
terial, equipment, and operating costs [8–11]. The spontaneous self-organization central to
colloidal SA, on the other hand, enables “bottom-up” materials synthesis that in princi-
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ple is capable of creating three-dimensional structures with sub-nanometer precision. The
inherently parallel nature of colloidal SA can also improve process speed by allowing for
the simultaneous production of separate structures and their components. Because colloidal
SA is governed by tailorable entropic and enthalpic forces, an industrially viable version of
colloidal SA can potentially incur lower operating and equipment costs than those required
by conventional “top-down” techniques that tend to depend on complex, environmentally-
sensitive machinery. Finally, these tailorable enthalpic and entropic forces can be employed
to initiate the assembly and disassembly of structures to remove structure defects [1, 4–7,
12].

The fact that colloidal SA can begin with micro- and/or nanoscale building blocks of
varying complexity indicates that this bottom-up engineering approach can be used to syn-
thesize novel metamaterials with unique optical, electrical, or mechanical properties [13,
14]. For perspective, a sample of potential applications of colloidal SA systems includes:
ever-shrinking semiconductor dielectrics [5, 7], optical circuits [15], super-lenses (i.e., lenses
capable of microscopy beyond the diffraction limit) [16], cloaking materials (i.e., materials
that can direct the flow of light smoothly around an object to render the object effectively
invisible) [17], photocatalytic materials (e.g., materials that harness sunlight to produce hy-
drogen fuel from water) [18], various magnetic nano-structures for high-density data storage
and sensing applications [12], and reconfigurable devices (e.g., antennas that can dynami-
cally modify frequency and radiation properties in a reversible, controlled manner) [13, 17].
An industrially viable materials synthesis strategy must produce materials with commer-
cially competitive defect rates (e.g., 100 ppm in semiconductors [19]), as defects can severely
compromise the utility of the above materials, especially those used for optical and electrical
applications [5, 12]. Low (ideally non-existent) defect rates are imperative to the real-world
implementation of colloidal SA.

Brownian particle motion (i.e., random particle motion that results from random col-
lisions between solvent and solute molecules) renders colloidal SA an inherently stochastic
process – repeated experiments yield different results even in the absence of exogenous noise
or disturbances [14, 20, 21]. An additional source of systemic stochasticity is the lack of me-
chanical isolation of colloidal SA systems (e.g., a system may be in contact with a heat bath,
whose random perturbations keep the system in thermal equilibrium at some temperature)
[20]. Colloidal SA systems can also become kinetically “trapped” at certain meta-stable
configurations with large activation barriers (e.g., glasses, gels, and defect-containing crys-
tals) [14, 22]. Here, the most thermodynamically stable (and often highest-value) system
configuration is not observed experimentally, as high energy or diffusive barriers prevent
systems from reaching equilibrium in a reasonable amount of time. Brownian particle mo-
tion, environmental perturbations, and kinetic arrest thus lead to variability in materials
manufacturing and possibly high defect rates, which can severely compromise the viability
of using colloidal SA to manufacture reproducibly the advanced materials listed earlier. This
lack of reproducibility in turn prevents colloidal SA from achieving cost-effective and scalable
manufacturing of such materials [14, 22, 23].
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1.2 Colloidal Self-Assembly and the Free Energy and

Diffusivity Landscapes

The free energy landscape (FEL) and the diffusivity landscape (DL) can be used to provide
insights into the intrinsic system stochasticity, thermodynamic and kinetic driving forces,
and tendencies towards kinetic arrest and run-to-run variability within colloidal SA systems.
Cartoon diagrams of the FEL and DL for a fictional colloidal SA system are shown in
Fig. 1.1. The x-axis is the self-assembly coordinate. It is an abstraction with no relation
to time that measures the progress of bond-breaking and bond-forming colloidal SA steps.
Each (x,y) position in Fig. 1.1 maps a specific colloidal SA system configuration to its
corresponding Gibbs free energy (Fig. 1.1a) or its diffusivity (Fig. 1.1b). The FEL of a
colloidal SA system will generally contain one global free energy minimum, which corresponds
to the most thermodynamically favored (and often most highly-ordered) configuration of the
system. Additional local free energy minima corresponding to defective configurations will
also generally exist within the FEL, some of which may be more kinetically favored than the
global free energy minimum [24–27].

The heights of activation energy barriers between and diffusivities near different configu-
rations of colloidal SA systems are closely related to the kinetic favorability of each configu-
ration, with smaller energy barriers and larger diffusivities corresponding to more kinetically
favored configurations. More specifically, the constituents of colloidal SA systems constantly
re-arrange themselves due to their kinetic (thermal) energy (e.g., molecular vibration, ro-
tation, and translation). This large amount of particle motion allows colloidal SA systems
to explore many configurations. Such behavior facilitates spontaneous self-organization into
structures that are favored by statistical probability [20, 22]. Thus, the transition of a col-
loidal SA system from one configuration to another (e.g., movement along the self-assembly
coordinate) is associated with a transition probability that is governed by both the inherent
system stochasticity and the accessibility of a system configuration. Note that the transition
probabilities are heavily influenced by the kinetic (especially diffusive) properties of the sys-
tem. For colloidal SA systems with FEL activation energy barriers significantly larger than
kT (e.g., Positions 2 and 4 in Fig. 1.1), inter-configuration transition probabilities can be
predicted based on the activation energy barrier height and the diffusion coefficient at the
activation energy barrier [28–30]. For systems with activation energy barriers in the range
of kT (e.g., Positions 1 and 5 in Fig. 1.1), the diffusivity along the entire self-assembly
coordinate determines the inter-configuration transition rates [28–31].

The thermodynamic favorability of different colloidal SA configurations (i.e., the free en-
ergy values of these configurations) is determined from the competition between enthalpic
and entropic driving forces. For example, double-tail lipids in solution are thermodynam-
ically favored to self-assemble to form a lipid bilayer. When individual double-tail lipid
molecules are dissolved in solution, hydrogen bonds from distorted water molecules sur-
round individual lipid molecules to create “clathrate cages” and significantly reduce system
entropy (while system enthalpy is changed negligibly) [1, 32, 33]. The hydrophobic heads
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Figure 1.1: Cartoon free energy and diffusivity landscapes (FEL, DL). The x-axis is the self-assembly
coordinate. The y-axes are the Gibbs free energy (G/kT) and the diffusion coefficient (D). Each (x,y)
position a specific colloidal self-assembly system configuration to its corresponding Gibbs free energy or
diffusivity. Numbers 1-5 denote various colloidal self-assembly system configurations that correspond to
minima in the FEL. Position 3 refers to the global free energy minimum (e.g., the most thermodynamically
favored colloidal state). The local minima at positions 1 and 5 both have relatively small activation barriers,
but position 5 is severely diffusion-limited. As a result, the system is more likely to escape position 1 than
position 5. Positions 2 and 4 are slightly more thermodynamically favorable than positions 1 and 5. The
activation barriers surrounding position 2 are both relatively high and position 2 is severely diffusion-limited.
Position 4 on the other hand, has both lower activation barriers and a much higher diffusivity, indicating
the system is much more likely to become kinetically trapped in position 2.

of double-tail lipid molecules then interact and amalgamate to reduce their surface expo-
sure to water. This reduced water exposure partially breaks the clathrate cage to increase
the overall system entropy (and decrease the system free energy). On the other hand,
tris (melamine) derivative molecules dissolved in chloroform are designed to self-assemble
preferentially into discrete supramolecular assemblies over hydrogen-bonded oligomers and
polymers [34]. In this colloidal SA system, the enthalpic gains from hydrogen bonding,
which are specific towards discrete assembly structures, must outweigh the entropic losses
from the restricted-bond rotation and enthalpic losses from steric restriction that the discrete
assemblies provide. Systems with electrically or magnetically polarizable solute particles can
experience induced dipoles from external (sometimes nonuniform) electric or magnetic fields
[2, 35, 36]. Here, inter-particle bonding becomes thermodynamically favored if enthalpic
gains from dipole-dipole interactions can overcome particle thermal energy and entropically
favorable Brownian motion. In other colloidal SA systems, entropic gains from depletant
particle positioning [37], enthalpic gains from Van der Waal’s bonding, or enthalpic losses
from electrostatic repulsion [2, 3] may also contribute to the positions of local and global
free energy minima.

The kinetics of colloidal SA not only can influence but can prevent the practical forma-
tion of thermodynamically favored configurations [2, 14, 22]. The thermodynamic driving
forces that favor colloidal SA may enable the formation of diffusion-limited configurations
that are vulnerable to kinetic arrest within locally deep free energy minima [2, 14, 22] (e.g.,
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Position 2 in Fig. 1.1). Large free energy barriers and significantly reduced particle dif-
fusivity due to solvent-mediated friction and hydrodynamic interactions (e.g., see [31, 38])
can prevent systems from moving past kinetically arrested configurations on time scales
that that are compatible with practical manufacturing needs. In this case, the colloidal
SA system effectively becomes “stuck” at one of the local minima, which often correspond
to meta-stable configurations with undesirable properties. For example, kinetic arrest at a
local minimum of the FEL may lead to the formation of glasses, gels, disordered arrays, or
defect-containing crystals instead of the desired, lowest energy structure found at the global
minimum. In extreme cases, kinetic bottlenecks trap systems in local minima that are very
far from the desired equilibrium phase or in severely diffusion-limited configurations that do
not correspond to any local or global minimum (e.g., a configuration near Position 5 in Fig.
1.1).

The shape, concentration, size, and functional group chemistry of micro- and nano-scale
particles contribute to the susceptibility of colloidal SA systems to kinetic arrest (e.g., the
heights of energy barriers and particle diffusivity). For example, non-spherical dicolloids
are more susceptible to kinetic arrest than spherical colloids because, in the former case,
solvent cage escape trajectories require a combination of rotation and center-of-mass trans-
lation [39]. This extra movement caused by particle shape differences increases diffusive
barriers to crystal nucleation, which is facilitated by mutual particle alignment. Another
example is colloidal SA systems consisting of only hard nano-particle spheres that expe-
rience spontaneous crystal formation in a specific, narrow concentration range [2, 22, 40].
Concentrations below this range show multiple equilibrium phases and concentrations above
this range lead to kinetic arrest via glassy suspension formation. DNA-coated micro-scale
colloids show a higher likelihood of forming kinetically arrested, amorphous configurations
than their nanoscale counterparts do, as the larger particles show stronger inter-molecular
interactions and sharper activation barriers [41].

1.3 Particle Design and Control for Reproducible

Colloidal Self-Assembly

The FEL and DL provide a unique roadmap to the global free energy minimum of a given
colloidal SA system. Competing thermodynamic and kinetic driving forces and Brownian
motion affect the relative free energies and inter-configuration transition probabilities of
different configurations during colloidal SA. The thermodynamic and kinetic driving forces
that govern SA will need to be precisely modulated – by actively exploiting intermolecular
forces, selective template or surface geometries, and/or external fields – to direct SA systems
consistently and efficiently towards mass-producible structures and materials [2, 3, 22]. Two
major strategies for improving the reproducibility of colloidal SA – particle design and control
– are introduced below.

Particles in a given colloidal SA system can be designed such that specific inter-particle
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interactions ensure the high probability realization of a desired configuration [2, 14, 42]. For
example, the SA of “patchy” particles exploits sticky patches coated onto small particles
(e.g., complementary DNA strands on gold nano-particles [43]) to confine particle interac-
tions along certain directions (similar to atomic bonding mechanisms). Analogously, Janus
particles, whose surfaces combine incompatible elements within the same surface structure
(e.g., hydrophilicity/hydrophobicity, anisotropy), have shown the potential to create more
persistent macro-scale structures with fewer defects [44]. Patchiness has mostly been imple-
mented on micrometer (and larger) sized objects, however, while SA of patchy particles in
the sub-100 nm range remains challenging [2, 45]. Despite improved specificity and direc-
tional control, particle design alone does not guarantee a colloidal SA system protection from
kinetic trapping or system-dependent, stochastic variations (e.g., delayed nucleation or relax-
ation times in crystalline systems) – all of which hinder the achievement of the high-quality,
defect-free structures required for manufacturing advanced materials.

Control approaches can be designed to actuate external fields systematically to induce
global colloidal SA configuration changes (e.g., turning magnetic fields on/off [46] or increas-
ing/decreasing temperature to induce general particle crystallization/relaxation [47]). The
resulting “input profiles” serve to modulate the thermodynamic and kinetic driving forces
in order to guide SA systems past kinetic traps and towards desired configurations. Input
profiles can be determined either heuristically or via stochastic optimization [14, 46]. In
the case of open-loop control, input profiles are purely time-dependent and are determined
off-line. Various studies report open-loop control (greatly) improving probabilities of achiev-
ing and stabilizing desired configurations over uncontrolled assemblies [46–54]. Although
open-loop input profiles can account for general system stochasticity (e.g., via stochastic
dynamical models), a lack of real-time measurements will always prevent the systems from
adjusting to unmeasured and unknown stochasticity. This may prevent open-loop systems
from achieving desired lowest-energy structures. Closed-loop control, on the other hand, uses
input profiles that change according to real-time measurements of the system configuration.
This real-time feedback gives closed-loop control methods the unique ability to account for
unknown or unmeasured system uncertainties and disturbances. Closed-loop control is thus
the only strategy that has the potential to account for both the inherent stochasticity (via
system models or other “off-line” investigations) and unknown stochasticity (via real-time
feedback) of SA systems [14, 55]. It is therefore the only strategy that has the potential to
reliably guide SA systems towards configurations with defect-free structures. In fact, even
simple closed-loop control systems with proportional control algorithms have shown signif-
icant improvements in initial nucleation time and desired configuration convergence speed
over their open-loop and uncontrolled counterparts [13, 56, 57]. More involved model-based
optimal control methods [38, 58, 59] or methods based on reinforcement learning [47, 52, 60]
have similarly demonstrated promise for more complex systems.

The real-world implementation of particle design and control approaches for reproducible
colloidal SA has been limited largely due to challenges in creating tractable strategies for (i)
characterizing colloidal SA structural states and their free energies and diffusivities, and/or
(ii) learning control policies that guide colloidal SA towards certain target structural states.
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For example, throughout this chapter “defective,” kinetically arrested structures and target
structures have been described conceptually in the context of local and global minima in the
FEL, respectively. Fig. 1.1 even assigns these states“positions” within the SA coordinate.
The process of determining which states are in fact “defective” and their relative level of
defectiveness is not straightforward, however. Although theoretically perfect lattices (e.g.,
theoretically perfect FCC, BCC, HCP lattices) have defined topologies, particles’ movement
due to their thermal energy prevents the realization of such perfectly defined structures. The
most rigorous way to quantify the SA system structural state is by recording the 3D spatial
coordinates and momenta of every particle – such a description cannot be easily interpreted
by humans [20, 61]. The most common methods to characterize the colloidal SA state
(e.g., Steinhardt bond-order parameters) create a handful of averaged, “collective” order
parameters to which physical meaning can be more easily assigned. However, such methods
can be sensitive to thermal and density fluctuations, the coexistence of various phases, and
spatial inhomogeneity, all of which can interfere with the ability to resolve various defective,
semi-defective, and near-perfect lattice types [62, 63].

Moreover, estimating the free energies and diffusivities of different colloidal SA structural
states (which may already be imprecisely quantified by Steinhardt bond-order parameters,
for example) is not a trivial process. The state-of-the-art methods for learning FELs and DLs
generally require massive amounts of data collection and system-specific sampling techniques
that may not be realizable for practically-sized experimental systems [64]. As a result, the
majority of these methods have only been demonstrated in-silico via molecular dynamics
simulations (e.g., weighted histogram analysis [65, 66], adaptively biased molecular dynam-
ics [67], adaptive biasing force [68]). Importantly, the nonlinear and stochastic dynamics of
colloidal SA systems can be described by the stochastic Langevin equation [31, 37, 38, 69].
Because the FEL and DL of a given system can alone naturally yield a stochastic Langevin
model, the problem of learning free energies and diffusivities of colloidal SA structural states
can alternatively be viewed as the problem of learning a stochastic Langevin model. Al-
though many reported methods for learning Langevin models for systems with stochastic
and nonlinear dynamics have been reported in the literature, the majority of these meth-
ods are extremely sensitive to the frequency at which system measurements can occur, rely
on inflexible, system-specific sampling techniques, have been shown to be non-viable when
short-time linear regions do not exist in the trajectory data, and/or are not well-suited
for systems that contain state-dependent noise [64]. Methods based on Bayesian Inference
have been shown to learn FELs and DLs for systems with nonlinear dynamics and state-
dependent noise [69, 70] – but these methods can become computationally intractable for
practically-sized systems.

Further, limited actuation and real-time sensing pose serious challenges to the practical
application of both open- and closed-loop control policies to SA systems. The implemen-
tation of control via localized actuators is constrained [14]. Instead, control typically relies
on manipulating certain macroscopic variables (e.g., temperature, pressure, external field
strength). But, these global actuators are often limited in number and specificity. Diffi-
culties in measuring and quantifying system configurations hamper real-time sensing of SA
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systems [14, 55]. Small length scales inhibit conventional probing methods, whereas most
other methods tend to be slow and invasive. It is further difficult to translate the information
that can be collected (e.g., fluorescent imaging techniques that monitor real-time movements
of Janus particles [71]) into quantitative variables.

The challenges described above answer to the questions: how can one design particles
such that a colloidal SA system avoids kinetic traps and achieves target structures if one
does not even know which configurations are in fact kinetically arrested and which ones
are in fact target structures? How can one design particles or control approaches if it is
impractical to predict how a system will evolve or even accurately measure how that system
evolves over time tractably? How can one effectively control a system with limited actuation?
Most importantly, how can one even begin to address the above questions when mechanistic
understanding of colloidal SA systems’ high-dimensional, highly nonlinear, and intrinsically
stochastic dynamics is still fairly limited? The broader purpose of this thesis is to address
these challenges.

1.4 Thesis Objectives and Outline

The primary objective of this thesis is to enable more effective particle design and control of
colloidal SA systems. To this end, this thesis investigates strategies based on machine learn-
ing and optimal control for quantifying and classifying colloidal SA system states, learning
tractable stochastic dynamical models of colloidal SA dynamics (and thus FELs and DLs),
and learning control policies to guide colloidal SA. Each chapter in this thesis introduces
a new learning-based strategy for “characterization” or “control” of colloidal SA and then
demonstrates that strategy on in-silico colloidal SA systems with experimentally represen-
tative pair potentials. In particular, the characterization and control strategies of Chapters
2-4 are demonstrated on an in-silico colloidal SA system that has been used to represent the
SA of DNA-functionalized particles effectively in two and three dimensions [72, 73]. Each
chapter finally analyzes the efficacy of its presented characterization or control strategy in
the context of improving particle design or control of colloidal SA.

Chapter 2 introduces a novel framework for colloidal structure characterization that sys-
tematically and quantitatively describes the self-assembly of colloidal lattices at the single-
particle level. The framework first quantifies local structure via neighborhood graphs that
are constructed from a precise methodology that has been shown to be robust to thermal
fluctuations and capable of describing complex topologies [63, 74–77]. The high-dimensional,
discrete nature of these neighborhood graphs prevents intuitive understanding of how these
graphs are related. The framework uses deep neural networks to reduce the dimensionality
of the neighborhood graphs and produce a low-dimensional manifold from which relation-
ships among neighborhood graphs can be more easily inferred. The framework next uses
agglomerative hierarchical clustering techniques to partition the low-dimensional space and
assign physically meaningful classifications to the resulting partitions. The framework is
demonstrated on several benchmark three-dimensional in-silico systems of colloids, includ-
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ing a benchmark problem from reference [78]. The contributions of Chapter 2 have been
published in reference [79].

Chapter 3 extends the framework developed in Chapter 2 to account explicitly for particle
species. This extended framework quantifies both structural order (i.e., the unit cells within
colloidal lattices such as FCC, BCC, and HCP, etc.) and compositional order (i.e., how A-
and B-type particles are distributed among these unit cell sites). The framework is then
used to investigate the role of particle size ratio and interparticle potential well depth in
influencing the three-dimensional self-assembly of in-silico binary colloidal mixtures. The
framework reveals that binary colloidal mixtures with small interparticle size disparities (i.e.,
A- and B-type particle radius ratios of rA/rB = 0.8 to rA/rB = 0.95) can promote the self-
assembly of defect-free binary superlattices much more effectively than systems of identically
sized particles at certain interparticle potential well depths, as nearly defect-free BCC-CsCl,
FCC-CuAu, and IrV crystals are observed in the former case. The framework additionally
reveals that size-disparate colloidal mixtures can undergo non-classical nucleation pathways
where binary colloidal lattices evolve from dense amorphous precursors, instead of directly
nucleating from dilute solution. The contributions of Chapter 3 have been published in
reference [80].

The contributions of Chapters 2 and 3 demonstrate how improving colloidal SA struc-
tural characterization can aid in colloidal SA particle design. A key aspect of the presented
characterization framework is that the framework can simultaneously and tractably char-
acterize multiple colloidal SA trajectories (as opposed to merely characterizing individual
lattices). This tractable characterization strategy allows for an in-depth analysis of two
well-recognized colloidal SA particle design parameters, particle size ratio and interparticle
potential well depth. The analysis yielded two key findings, which were that (i) small inter-
particle size disparities (i.e., rA/rB = 0.8 to rA/rB = 0.95) at certain interparticle potential
well depths can drastically reduce the number of defects in self-assembled binary lattices and
(ii) size-disparate systems can undergo non-classical nucleation. Colloidal SA practitioners
can in turn use these insights to help design or synthesize particles meant for colloidal SA
in the future.

Chapter 4 proposes a neural network-based strategy for model-based feedback control of
colloidal SA systems. The framework uses a deep neural network to characterize colloidal
self-assembly at the lattice level. The framework next uses a second deep neural network
to create a discrete, deterministic model of the colloidal SA dynamics. Finally, the lattice
characterization and modeling strategies are integrated into a model-based feedback control
framework. The framework is demonstrated by manipulating temperature to guide the two-
dimensional SA of an in-silico system of colloids. Chapter 4 shows that a model-based
feedback control strategy can in principle be used to design a controller that can reliably
guide colloidal SA. This work reveals the potential importance of incorporating a stochastic
model and information from the FEL and DL into the design of control strategies. The focus
of Chapter 5 is thus to develop a tractable framework for learning Langevin models (which
naturally yield FELs and DLs) for systems with stochastic and nonlinear dynamics.

Chapter 5 proposes a novel framework to train deep neural networks that represent hidden



CHAPTER 1. INTRODUCTION 10

physics terms (e.g., FELs and DLs) within stochastic dynamical systems. These hidden
physics terms in turn comprise a tractable stochastic dynamical model (e.g., a Langevin
equation). The work in particular focuses on systems with multivariable and nonlinear
dynamics with multiplicative noise (e.g., colloidal SA systems). The framework addresses
several key shortcomings for existing methods for learning hidden physics/stochastic models,
with a particular focus on the proposed framework’s increased flexiblity and scalability. The
framework may be prohibitively data-intensive for colloidal SA experimentalists, however.
The contributions of Chapter 5 have been published in reference [64].

Due to the potential challenges in learning stochastic models and FELs and DLs in an
experimental context, Chapter 6 proposes two model-free feedback control strategies for
colloidal SA based on evolutionary reinforcement learning. These strategies learn control
policies by iteratively updating the policies based on progress towards a pre-defined goal
(i.e., through “objective search”) or by searching for behavior novelty (i.e., “novelty search”),
respectively. The strategies yield control policies that manipulate temperature and pressure
to guide the three-dimensional SA of a benchmark in-silico system of colloids. This work is
in its infancy and much of the chapter is devoted to discussing the conceptual advantages
and disadvantages of employing objective search and novelty search for controlling colloidal
SA.

Chapter 7 concisely summarizes the key findings within this thesis and lays out per-
spectives on future work that can be performed in the field. I believe the insights gained
from this thesis provide a deeper mechanistic understanding of colloidal SA and contribute
to an ever-developing archive of methods that can be used or expanded upon to achieve
reproducible colloidal SA.
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Chapter 2

A Deep Learning Framework for
Characterizing Colloidal
Self-Assembly

Creating a systematic framework to characterize the structural states of colloidal self-assembly
systems is crucial for unraveling the fundamental understanding of these systems’ stochastic
and non-linear behaviors. The most accurate characterization methods create high-dimensional
neighborhood graphs that may not provide useful information about structures unless these
are well-defined reference crystalline structures. Dimensionality reduction methods are thus
required to translate the neighborhood graphs into a low-dimensional space that can be easily
interpreted and used to characterize non-reference structures. This chapter investigates a
framework for colloidal system state characterization that employs deep learning methods to
reduce the dimensionality of neighborhood graphs. The framework next uses agglomerative hi-
erarchical clustering techniques to partition the low-dimensional space and assign physically
meaningful classifications to the resulting partitions. The proposed colloidal self-assembly
state characterization framework is first demonstrated on an in-silico system of 500 DNA-
functionalized particles that self-assemble in three-dimensions under isothermal conditions.
To investigate generalizability, the characterization framework is applied to several inde-
pendent self-assembly trajectories, including a benchmark in-silico system of 2052 colloidal
particles that undergo three-dimensional evaporation-induced self-assembly.

2.1 Introduction

The most common method to characterize the colloidal SA system state is Steinhardt bond-
order parameters [81, 82], which provide information about local particle environments by
defining certain rotationally invariant combinations of spherical harmonics calculated be-
tween particles and their nearest neighbors. Steinhardt bond-order parameters can be ex-
tremely sensitive to thermal fluctuations that smear local bond-order into broad overlapping
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distributions and interfere with the ability to resolve the character of small domains. Other
commonly used methods include Common Neighbor Analysis (CNA) [83, 84], Polyhedral
Template Matching (PTM) [85], and Bond Angle Analysis (BAA) [86]. CNA and PTM
evaluate the topology of each particle’s nearest neighbors to generate neighborhood graphs
that describe a given particle’s local structure, whereas BAA evaluates the symmetry of each
particle’s nearest neighbors to create neighborhood graphs. These methods, however, fail to
provide quantitative information about particles whose topologies or symmetries do not cor-
respond to well-defined reference crystalline structures [62]. The high-dimensional, discrete
nature of these neighborhood graphs prevents intuitive understanding of how these graphs
are related; dimensionality reduction methods are thus required to translate the neighbor-
hood graphs into a (continuous) low-dimensional space that can be easily interpreted and
used to characterize non-reference structures.

At the time this project began, the state-of-the-art method for colloidal system state
characterization accomplished dimensionality reduction by implementing diffusion maps [31,
38, 62, 63, 78, 87–92]. However, diffusion maps are computationally expensive to imple-
ment. In fact, the most recent implementations of diffusion maps require the choice of
(arbitrarily chosen) “landmark points” to reduce the size of the high-dimensional space be-
fore dimensionality reduction takes place [90]. Diffusion maps further do not provide an
explicit functional mapping between the high and low-dimensional spaces, thereby, limiting
physical interpretation of the low-dimensional space.

Several other researchers have implemented different varieties of “machine learning” for
dimensionality reduction and/or classification of colloidal structures [93–98]. For example,
refs. [94, 95] implement principal component analysis (PCA) to detect phase transitions in
off-lattice systems. PCA, however, is not designed to reduce the dimensionality of variables
with highly nonlinear relationships among one another [99]. On the other hand, reference
[96] uses a combination of Gaussian Mixture Models and shallow artificial neural networks
to identify the overall crystal structures of bulk self-assembled systems. However, this work
does not explicitly employ machine learning techniques for dimensionality reduction and in-
stead investigates the learning techniques’ ability to create and interpret large neighborhood
graphs.

The overarching goal of this chapter is to develop a characterization framework for inves-
tigating the stochastic and nonlinear dynamics of entire colloidal SA trajectories (as opposed
to merely characterizing individual lattices). This chapter thus proposes an alternative ap-
proach to dimensionality reduction based on a deep neural network called an autoencoder
[100, 101]. Autoencoders are easy to implement with available tools and cheap to evaluate.
This computational efficiency allows autoencoders to reduce simultaneously the dimension-
ality of the thousands of neighborhood graphs that can appear during SA, an operation
which would likely be intractable for diffusion maps. The nonlinear activation functions
within deep neural networks also allow the autoencoder to account explicitly for the non-
linear relationships among the diverse neighborhood graphs that may appear during SA.
Autoencoders further provide an explicit mapping between the low- and high-dimensional
spaces, elucidating which of the high-dimensional inputs are the most “important” for the
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Figure 2.1: Colloidal self-assembly state characterization framework summary. The particle positions are
recorded and translated into neighborhood graphs. The dimensionality of the neighborhood graphs is next
reduced using deep learning techniques. Agglomerative hierarchical clustering is finally used to partition the
low-dimensional space and assign discrete classifications to each particle.

system under analysis.
Note that the authors in reference [102] previously applied autoencoders based on shal-

low neural networks for dimensionality reduction and subsequent classification of colloidal
systems. However, their approach creates neighborhood graphs using a vector of only 8
Steinhardt order parameters. In this project, neighborhood graphs are instead created via a
well-established methodology based on Delaunay triangulation and graphlet decomposition
[63, 74–77]. This methodology is much less sensitive to thermal fluctuations and has also
been shown to quantify detailed colloidal lattice configurations by the authors in reference
[63]. Deep neural network-based autoencoders further employ dropout regularization to pre-



CHAPTER 2. A DEEP LEARNING FRAMEWORK FOR CHARACTERIZING
COLLOIDAL SELF-ASSEMBLY 14

vent model overfitting and achieve continuity in the low-dimensional space. Finally note that
the authors in reference [102] primarily focused on classifying individual lattices, whereas
the focus of the work in this chapter is to study entire colloidal SA trajectories.

This chapter proposes a three-step framework for colloidal SA system state characteriza-
tion (see Fig. 2.1). The first step establishes neighborhood graphs with a precise method-
ology that has been shown to be robust to thermal fluctuations and capable of describing
complex topologies [63, 74–77]. The second step uses deep learning techniques to reduce
the dimensionality of the neighborhood graphs. The third step employs agglomerative hier-
archical clustering to partition the low-dimensional space and assign physically meaningful
classifications to the resulting partitions.

The proposed three-step colloidal system state classification framework is demonstrated
on a three-dimensional in-silico system of 500 DNA-functionalized particles (i.e., silica col-
loids that are coated with blends of complementary single strands of DNA) [72, 73, 103,
104] that self-assemble into a variety of FCC, HCP, and BCC-like lattices. The generaliz-
ability of the characterization framework is examined by applying the framework to several
independent colloidal SA trajectories (i.e., trajectories that were not used to train the au-
toencoder), including a system consisting of 2052 in-silico colloidal particles that undergo
three-dimensional evaporation-induced SA [78]. The characterization framework exists in
an easily accessible GitHub format that is explicitly designed for people to use and modify
[105]. More in-depth descriptions of the “DNA-functionalized” and ”evaporation-induced”
in-silico self-assembly systems can be found in subsequent sections.

2.2 Neighborhood Graph Construction

The first step in classifying the structure of a given colloidal SA particle is to generate
a “neighbor list” that consists of a list of particles that are considered topologically or
symmetrically adjacent to the particle of interest. This neighbor list is then used to construct
a neighborhood graph that quantifies the local structure of the given particle. Two of the
most common local structure classification methods, Common Neighbor Analysis (CNA)
[83, 84] and Steinhardt order parameters [81, 82], heavily rely on the concept of particles
being “bonded” to establish neighbor lists. These methods thus require a strict definition
of a bond, where two particles are considered bonded if they fall within a predefined cutoff
radius. However, such a cut-off radius is, by necessity, somewhat arbitrary. In addition,
thermal vibrations, the coexistence of various phases, and fluctuations in the local density
will introduce noise into the analysis and can even make finding a suitable cut-off radius
impossible. This problem is partially mitigated by adaptive CNA [106], where the cutoff
radius is determined by the average distance to a heuristically chosen number of particles.
Despite the use of averaging, radii for low-density and vapor phase particles can be extremely
large and inhibit classification accuracy. In addition, a geometric pre-factor is often required
to separate first and second-nearest neighbors in close-packed lattices [62, 63]. The approach
further assumes that a given particle’s neighborhood is isotropic, which is often not the case
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for open lattices [107].
This chapter employs the methodology described in refs. [63, 74] to obtain the neigh-

bor list of topologically adjacent particles and subsequent neighborhood graph. The gist of
the method is that the convex hull formed by the set of neighboring atoms describes the
local structure around an atom. The convex hull, which is represented as a Voronoi cell,
is determined from a Delaunay triangulation of the particle of interest and its 18 nearest
neighbors (or half the inner shell atoms in FCC and HCP lattices). Because this method
avoids the concept of bonds between particles and instead uses a geometry-based, fixed
number of particles to establish the neighborhood, it is less sensitive to thermal fluctua-
tions, density gradients, and anisotropy mentioned above. Finally, this method includes
the central particle in the neighborhood graph, which provides greater connectivity between
neighbors and therefore greater distinction between structures in comparison to CNA and
Steinhardt classification methods. Delaunay triangulation does yield inconsistent results at
solid-vapor interfaces, however, as the method tends to connect far-away particles to create
three-dimensional convex hulls. The authors in reference [63] use outlier detection tech-
niques to filter these spurious results. As will be discussed in later sections, our proposed
dimensionality reduction/classification techniques naturally filter such outliers effectively.

The neighborhood graphs are evaluated using the graphlet decomposition-based method-
ology of refs. [63, 74–77], which has been successfully implemented for analyzing local
structure in a variety of colloidal and biological networks. Graphlets are small, connected,
non-isomorphic induced subgraphs of a larger network that contain some number of nodes, k
[63, 74–77]. The k nodes in each graphlet are topologically distinguished by their individual
automorphism orbits that account for the symmetries among the nodes in said graphlet.
Each graphlet thus contains 1 to k-1 distinct automorphism orbits. The neighborhood
graph is evaluated by computing the frequency of these orbits for a given neighborhood. For
the purposes of this paper, each node is a particle within the neighborhood graph estab-
lished by the Delaunay triangulation described above. The neighborhood graph is evaluated
using graphlets with 2-5 nodes, as calculations involving larger graphlets quickly become
intractable. Graphlets with 2-5 nodes display 73 different automorphism orbits. As a result,
the local structure of each particle is quantified by a 73 × 1 vector (i.e., the neighborhood
graph), where each entry in the vector refers to the frequency of an automorphism orbit.
Following the procedure of refs. [63, 74] the frequencies are weighed to account for the fact
that the appearance of more complex automorphism orbits correlates with the appearance
of simpler ones. Finally, each neighborhood graph is normalized such that its sum is unity.

2.3 Dimensionality Reduction via Autoencoders

The previous section described an established methodology for quantifying the local structure
of colloidal particles. However, the primary objective of this chapter is not merely to quantify
local structure, but to interpret the local structure in a physically-meaningful and intuitive
way that helps elucidate understanding of the colloidal SA system of interest. The high
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dimensionality of the neighborhood graphs and non-uniformity in the distances among them
indicate that dimensionality reduction must be performed to produce a low-dimensional
manifold from which relationships among neighborhood graphs can be more easily inferred.
The dimensionality of the neighborhood graphs is reduced using a deep artificial neural
network called an autoencoder.

An autoencoder is comprised of an encoder that constructs a low-dimensional represen-
tation of its input (i.e., the neighborhood graph in this case) and a decoder that reconstructs
the input from the low-dimensional representation [100, 101]. The encoding process is often
lossy, meaning that part of the information is lost during the encoding process and cannot
be recovered during decoding. Dimensionality reduction is thus accomplished by finding the
encoder/decoder pair that keeps the maximum information when encoding and correspond-
ingly has the minimum reconstruction error when decoding. Note that only the encoder is
used to reduce dimensionality, whereas the decoder is used to find the encoder model that
creates the best low-dimensional representation of the input data.

The encoder and decoder are deep feed-forward artificial neural networks (see Fig. 2.2).
These neural networks consist of multiple fully-connected layers that contain various numbers
of nodes. Each node multiplies its input by a weight vector and feeds that product into a
(generally nonlinear) activation function (e.g., hyperbolic tangent, sigmoid, rectified linear
unit). Each neural network has an input layer, some number of middle or hidden layers, and
an output layer. In this chapter, the input layer to the encoder is the neighborhood graph
while its output is the low-dimensional representation of the neighborhood graph (also called
the bottleneck layer). On the other hand, the input to the decoder is the bottleneck layer
and the output is the reconstructed neighborhood graph.

For a given autoencoder architecture (i.e., number of nodes and layers with chosen ac-
tivation functions), the “optimal” encoder/decoder scheme is found through an iterative
training process. Here, a set of training data is fed to the autoencoder and gradient descent
methods are used to update the encoder/decoder weights until the reconstruction loss is
sufficiently minimized. Denote E and D as all possible encoder/decoder combinations (i.e.,
all possible values of the autoencoder weights), x as the neighborhood graph, e(x;λe) as the
encoder where λe denotes all encoder weights, d(e(x;λe);λd) as the decoder where λd de-
notes all decoder weights, and J(x, (d(e(x;λe);λd)) as the decoder’s reconstruction loss. The
reconstruction loss is often formulated as the mean squared error (MSE) of the original and
reconstructed neighborhood graphs. The process of finding the optimal encoder/decoder pair
is mathematically represented below. Note that training the autoencoder can be thought of
as a “self-supervised” learning process, as training determines a (nonlinear) function that
maps the neural network’s inputs (i.e., the neighborhood graphs) to themselves (i.e., neigh-
borhood graphs that are reconstructed from their low-dimensional representation).

(e∗, d∗) = argmin
(e,d)∈E×D

{J(x, (d(e(x;λe);λd))} (2.1)

Larger (autoencoder) neural networks (i.e., those with more nodes and/or layers) can
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find more complex relationships between their inputs and outputs, leading to a lower re-
construction loss [108]. Larger autoencoders are especially prone to overfitting, however, as
the autoencoder is solely trained to encode and decode with as little reconstruction loss as
possible, no matter how the low-dimensional space is organized. This can manifest itself in
the low-dimensional space lacking continuity (i.e., two close points in the latent space give
two completely different decoded contents) and lacking completeness (i.e., certain points
within the latent space provide non-physical responses once decoded). One way to overcome
this problem is to introduce dropout regularization [109, 110], which omits certain nodes
at random gradient descent iterations to reduce the size of neuron weights and prevent
co-adaptations of the training data.

Figure 2.2: Autoencoder architecture. The encoder, e, compresses the neighborhood graph of a given
particle (a 73 × 1 vector, x) into a low-dimensional representation e(x). The decoder, d, reconstructs the
given neighborhood graph from the low-dimensional representation. In this chapter, the encoder and decoder
are deep neural networks with nonlinear activation functions that learn the encoding/decoding scheme that
minimizes the reconstruction error of the decoder. This “optimal” encoder/decoder pairing is determined
through an iterative training process, where the weights and biases within these neural networks are updated
through gradient descent methods. Each circle represents a node within the neural network and the arrows
represent the connections between these nodes. The autoencoder input layer nodes are green, the autoencoder
output layer nodes are blue, the hidden layer nodes are grey, and the bottleneck layer nodes are red.

To train the autoencoder, particle position data for 11 different isothermal trajectories
of an in-silico three-dimensional system of 500 multi-flavored colloidal particles [72, 73, 103,
104] was first collected. The inter-particle interactions in each trajectory were varied such
that a variety of vapor, low-density, defective, and FCC, HCP, and BCC-like lattices appear
during assembly. The particle position data was used to evaluate the neighborhood graph for
each particle in each simulation frame according to the Delaunay triangulation and graphlet
decomposition methodology of Section 2.2 (527,500 total neighborhood graphs). Only the
unique neighborhood graphs (4153 unique neighborhood graphs) were used to train the
autoencoder.

Neural networks are generally trained using a 5-fold cross-validation methodology in
which 60% of the sample data is used to train the model, 20% is used to validate model
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accuracy (i.e., test for model over-fitting), and 20% is used to evaluate model performance
[108, 111]. This approach to model training implicitly assumes that the sections of sample
data chosen to train, validate, and test the model are fairly representative of the remain-
ing sections (i.e., the data is fairly normally or evenly distributed with minimal outliers).
However, the natural non-uniformity in the distances among neighborhood graphs and the
fact the Delaunay triangulation creates inconsistent neighbor lists at solid-vapor interfaces
render such assumptions invalid. As a result, the autoencoder was trained with all of the
4153 unique neighborhood graphs from the sample set. Dropout regularization was then
introduced during training to prevent over-fitting. The objective of training the autoencoder
is to tune the model weights to achieve the most accurate reconstruction of the neighborhood
graphs for a given number of nodes and layers. The performance of the encoder is evaluated
by classifying lattice structures in the low-dimensional space and visualizing the resulting
classification (see Section 2.7).

Autoencoder performance greatly depends on certain architectural choices, namely net-
work size (i.e., number of nodes in each hidden layer and the bottleneck layer, and the total
number of hidden layers), activation function choice (e.g., hyperbolic tangent, linear, rec-
tified linear unit), batch size (i.e., the number of sample data points used for each weight
update), and regularization strategy (e.g., norm on the cost function that regulates weight
size, dropout regularization) [108, 111, 112]. Certain architectural choices are fairly standard
or are informed by the training data. For example, choosing hyperbolic tangent activation
functions for the hidden layers is a standard choice given the irregularity of the neighborhood
graph data [113]. For the same reason,a batch size equal to the size of the training data
set was chosen. Linear activation functions in the encoder/decoder output layers are stan-
dard choices regardless of the sample data properties [100–102]. Dropout regularization is a
standard technique to prevent the model from over-fitting the training data and MSE is a
standard choice of loss function [108–110]. The optimal network size is found by plotting au-
toencoder training loss as a function of network size and implementing the “elbow method”
[102, 114, 115] to choose the network architecture with the best balance of computational
cost and performance. Finally, the autoencoder was implemented using the Python library
Keras (a TensoFlow API) [116, 117]

One of the main advantages of autoencoders over diffusion maps is that autoencoders
provide an exact analytical mapping from the high to low-dimensional spaces. This map-
ping allows the relative importance of each entry in the neighborhood graph to be assessed
(e.g., via input perturbation and stepwise methods [102, 118–121]). Relative importance is
measured by the variation in neural network loss (which in this case is the MSE) caused
by perturbing samples in the training data set. Input perturbation methods add Gaussian
white noise to neighborhood graph entries whereas stepwise methods replace all graph entry
values with their mean. Graph entries that show the largest MSE variation are deemed
the “most important”. A mathematical representation of relative importance can be found
below. Here, ∆Ek is the variation in MSE caused by the change applied to the kth neighbor-
hood graph entry and the sum in the denominator runs over all entries from a neighborhood



CHAPTER 2. A DEEP LEARNING FRAMEWORK FOR CHARACTERIZING
COLLOIDAL SELF-ASSEMBLY 19

graph of dimension N × 1.

RIk =
∆Ek∑N
j=1∆Ej

(2.2)

The relative importance analysis reveals the influence each graph entry has on the quantifi-
cation of local structure and can even validate (or invalidate) the need for dimensionality
reduction.

2.4 Partitioning the Low-Dimensional Space for

Classification

The first component of classifying local structure is using the encoder model to compute
the low-dimensional coordinates of each unique neighborhood graph. The key challenge of
colloidal SA state classification is then partitioning this low-dimensional space into discrete
regions to make final decisions regarding structural identity. Although 4153 unique neigh-
borhood graphs were identified, many of those will correspond to either nearly identical
structures or structures that are not conceptually relevant for us to distinguish. For exam-
ple, various particles at solid/vapor interfaces may display very different topologies and thus
very distant neighborhood graphs. However, it is not important to distinguish these topolo-
gies from a self-assembly point of view. On the other hand, it is extremely important to
distinguish topologies with fairly similar neighborhood graphs (e.g., BCC and FCC lattices).
As a result, this chapter investigates clustering strategies to assign each neighborhood graph
a discrete classification according to the cluster to which its low-dimensional representation
belongs.

This chapter implements agglomerative hierarchical clustering with a Ward’s minimum
variance linkage metric to partition the low-dimensional space [122, 123]. Initially, each clus-
ter is a single point (e.g., 4153 total clusters). In each iteration, two clusters are combined
into one by finding the pair of clusters that leads to the minimum increase in total intra-
cluster variance after merging. This variance increase is a weighted squared distance between
cluster centers and these iterations continue until all data points are grouped into one clus-
ter. The method creates clusters of various shapes, sizes, intra-cluster variances, and mem-
bership populations. By iteratively minimizing the increase in total intra-cluster variance,
the method can naturally discover both clusters that are adjacent in the low-dimensional
manifold with small intra-cluster variances (e.g., the topologically similar BCC and FCC
structures) and clusters with high intra-cluster variances that span larger, less-populated
sections of the coordinate space (e.g., various weakly crystalline structures). Moreover, the
clustering strategy makes no assumptions regarding the distribution of the low-dimensional
space as it only assesses similarities between pairs of objects. Agglomerative hierarchical
clustering establishes a “cluster tree” that reveals the underlying hierarchical structure of
the data. The branches within this tree can be used to determine informed descriptions of
the discrete regions of the low-dimensional space and choose a number of clusters that is
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appropriate for the application of interest. The justification behind the choice of the number
of clusters used in this chapter can be found in Section 2.7.

Once the low-dimensional space has been partitioned into the chosen number of clusters,
classification has occurred in the sense that each section of the low-dimensional manifold has
been assigned to a class. The results of the classification are next visualized by assigning a
unique color to each identified class and using Open Visualization Tool (OVITO) software
[124] to create a color-coordinated image of each simulation frame. Qualitative analysis of
these simulation frames provides a general idea of what each class physically represents.
For example, a simulation frame that contains a perfect FCC lattice reveals which clusters
roughly correspond to bulk FCC or surface FCC particles, while a simulation frame that
contains primarily disperse particles reveals which classes correspond to vapor particles, etc.
The hierarchical structure provided by the cluster tree can then be used to make more refined
analyses (e.g., defective HCP vs HCP). The analysis is further enhanced by the fact that
perfect crystalline lattices have known topologies, and thus known neighborhood graphs and
low-dimensional coordinates.

2.5 Colloidal Self-Assembly System Descriptions

Three separate three-dimensional in-silico colloidal SA systems are used to demonstrate
the proposed characterization framework. The first two consist of a systems of 500 and
1000 DNA-functionalized particles that self-assemble under isothermal conditions. The third
consists of a system 2052 silica colloids that undergo evaporation-induced self-assembly [78].
These systems are described in more detail below.

Self-Assembly of Multi-Flavored Colloids

One way to promote the SA of colloidal particles is through functionalizing their surfaces with
DNA. DNA-functionalized particles (DFPs) interact with each other through complementary
Watson–Crick base-pairing interactions and have been used to assemble many superlattice
structures [72, 125]. As a means of achieving selective binding among DFPs, it has recently
been suggested that particles can be functionalized with a blend of two types of DNA strands
with complementary concentrations on each particle. These “multi-flavored” particles can
exhibit a tunable attraction between the like particles while maintaining interactions between
unlike pairs. This approach has been shown to induce the crystallization of equally sized
particles into BCC, HCP, and FCC structures [103, 126, 127]. Fig. 2.3 shows a schematic
representation of the multi-flavored DFPs.

In this chapter, colloidal SA trajectories are obtained from in-silico binary colloidal mix-
tures that represent multi-flavored DFPs. The pairwise interaction model used in molecular
dynamics (MD) simulations for obtaining these trajectories is provided in Eq. (2.3). This
pair interaction model is of a Fermi-Jagla type, which has previously been successfully used
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to study the self-assembly process of DFPs both in two [72, 73] and three dimensions [103]:

U(r/σ)

ϵ
=

ϵc
ϵ

( σc/σ

r/σ −Rs/σ

)n

+
A0/ϵ

1 + exp[A1(r/σ − A2)]
− B0/ϵ

1 + exp[B1(r/σ −B2)]
(2.3)

The first term in Eq. (2.3) represents the particle-particle core repulsion, where ϵc represents
the energy scale of the repulsion, σc represents the length scale of repulsion and Rs is a
shifting factor related to particle size. The second and third terms capture the soft repulsion
and attraction from DNA sequences, respectively. A0 and B0 control the strength of these
interactions, while A1 and B1 control the interaction range. A2 and B2 control the separation
distance.

To tune interparticle potentials, unlike pair interaction EAB are kept fixed and like in-
teractions EAA and EBB are varied independently. The relative like interaction strength
E∗

AA = EAA/EAB and E∗
BB = EBB/EAB can thus be adjusted independently from 0.0 to 1.0.

Note that E∗
AA = E∗

BB throughout all simulations unless otherwise noted. Further note that
setting E∗

AA = E∗
BB= 1.0 reduces the multi-flavoring to single flavoring, where all particles

are identical. Setting E∗
AA = E∗

BB = 0.0 makes the system a conventional binary mixture,
where A-A and B-B interactions are purely repulsive and only A-B interactions are attrac-
tive. All particles in all simulations are the same size, so rA/rB = 1.0 in all simulations. The
11 colloidal SA trajectories used to train the characterization framework had interparticle
interaction strength ratios of E∗

AA = E∗
BB= 0.0 to 1.0 at intervals of 0.1.

Molecular dynamic (MD) simulations are performed using LAMMPS [128] in the canon-
ical ensemble. The system used to train the characterization framework contains 500 total
particles with a 1:1 mixture ratio of A-type and B-type particles. The interaction strength
and size ratio are varied using the pair potential model discussed above. Simulations are
performed in a cubic box with periodic conditions applied to all three dimensions, under
dilute conditions with number density ρ = 0.02σ−3, and using a Langevin thermostat with
a time constant τ = 2σm1/2ϵ−1/2. Each simulation involves 1 × 109 total time steps where
each time step is ∆t = 10−3σm1/2ϵ−1/2. Each MD simulation is performed at a constant,
pre-determined temperature suitable for crystallization starting from a random dilute liquid
phase, where particles are allowed to evolve spontaneously to form crystals. The trajectories
generated from these simulations are visualized using OVITO [124]. Note that a version of
this system that contains 1000 total particles was used to test the characterization frame-
work (see Section 2.7). Finally, the parameter values used in Eq. 2.3 are: ϵc = 10ϵ, n = 36,
A0 = 11.035ϵ, A1 = 404.4/σ, A2 = 1.0174σ, σ0 = 0.2σ, s = 0.8σ, B0 = [−1.3219ϵ, 0,
B1 = 1044, 5/σ, and B2 = 1.0306σ.

Evaporation-Induced Self-Assembly

One common high-throughput method for fabricating colloidal crystals involves dispersing
colloids in a volatile solvent followed by evaporation of the solvent to deposit a crystalline
solid onto a substrate (i.e., “evaporation-induced self-assembly”) [78]. The authors in refer-
ence [78] performed massive-scale non-equilibrium MD simulations with an explicit-solvent
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Figure 2.3: Schematic representation of multi-flavored DFPs and their effective pair potential model. Each
of the pairwise interaction strengths EAA, EBB , and EAB can be manipulated experimentally by controlling
the blending ratio of two different types of DNA sequences. These interaction strengths be adjusted in
simulations by changing the parameters of implicit Fermi-Jagla potential in Eq. (2.3).

model to study the evaporation-induced assembly of colloidal crystals from solution onto
a horizontal substrate. Six snapshots from an MD simulation consisting of 2052 (initially
disperse) silica colloids were used in Section 2.7 to examine the generalizabilty of the char-
acterization framework. Note that this data was provided by the authors of reference [78].

2.6 Autoencoder Architecture and Relative

Importance Analysis

The key autoencoder architectural choices are the batch size, activation function, regular-
ization strategy, and network size. Justifications for each of the former three choices are
described earlier in Section 2.3, while the latter choice is informed by implementation of
the elbow method [102, 114, 115]. The elbow method (which is widely used throughout the
self-supervised and unsupervised learning communities [102, 114, 115]) plots some measure
of neural network performance (e.g., MSE) against some neural network hyper-parameter
(e.g., the number of nodes in a given neural network layer). The method involves visually
detecting a “slope change” where the performance of the neural network begins to improve
more slowly with the change in the hyper-parameter. The beginning of this slope change is
called the “elbow”.

Here, several autoencoder models with different network sizes are trained with the sam-
ple data (i.e., the 4153 unique neighborhood graphs found from the 11 isothermal in-silico
trajectories described in Section 2.2 and 2.5). The autoencoder MSE is plotted against the
number of nodes in the bottleneck layer (i.e., the size the low-dimensional space found by the
encoder) for candidate models that only differ by the number of hidden layers and number
of nodes per hidden layer (see Fig.2.4). Elbows in this plot occur between 2 and 4 bottleneck
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nodes, indicating that a bottleneck layer size of 3 nodes is likely sufficient to capture the
essential information from the neighborhood graphs. Moreover, the corresponding size of
the 3× 1 low-dimensional representation is convenient from a visualization standpoint. The
autoencoders with 2 hidden layers and 500 and 1000 nodes per hidden layer display nearly
identical performance, with the latter model showing a marginally lower MSE. Models with
larger network sizes do not display any performance improvements. As a result, the chosen
autoencoder model contains 2 hidden layers, 1000 nodes per hidden layer, and 3 bottleneck
nodes (which creates a low-dimensional space of dimension 3× 1).

Figure 2.4: Autoencoder architecture optimization. The autoencoder MSE is plotted against the number
of nodes in the bottleneck layer (i.e., the length of the low-dimensional representation vector) for various
network sizes. “Elbows” in these plots occur between 2 and 4 order parameters, indicating that 3 order
parameters are likely sufficient to capture the essential information from the neighborhood graphs. The
autoencoder with 2 hidden layers and 1000 nodes per hidden layer displays the (albeit marginally) lowest
MSE.

This chapter implements input perturbation (with 10% Gaussian white noise) and step-
wise relative importance analyses on the chosen autoencoder [102, 118–121] (see Fig. 2.5).
The analysis shows that nearly all neighborhood graph entries (with the exception of graph
entries 22 and 23) are equally important and indicates that no single graph entry, or even
small group of graph entries can be used to quantify the colloidal SA system state. This
validates the need for implementing dimensionality reduction. The 22nd and 23rd neighbor-
hood graph entries do account for nearly 25% of the MSE variation, however. This spike in
variation is due to the fact that the neighborhood graph construction methodology can yield
extremely large outlier values at solid-vapor interfaces. Translating the neighborhood graphs
into a low-dimensional space significantly reduces the effects of these outliers and does not
inhibit local structure characterization and classification (see Section 2.7 for more details).

Fig 2.5 further shows spikes in relative importance at neighborhood graph entries 0-1 and
30-36. Entries 0-1 refer to two and three-component linear orbits that are common in newly
formed, small crystallites. These spikes indicate that many of the unique signatures used
to train the autoencoder correspond to very weakly crystalline particles on the precipice of
crystallization. Meanwhile, entries 30-36 refer to square and pentagonal-like shapes that are
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common in (defective) FCC, HCP, and BCC structures. Again, these spikes demonstrate
the frequency of FCC, HCP, and BCC-like structures in the training data. The above points
show that the relative importance analysis can not only point out unexpected behavior in
the characterization framework (e.g., the erratic neighborhood graph values for particles at
solid/vapor interfaces) but also can demonstrate to which types of data the autoencoder
model is more sensitive (e.g., the very weakly crystalline and FCC/BCC/HCP-like particles
mentioned a few lines above).

Figure 2.5: Relative importance analysis. Input perturbation and improved stepwise methods are used
to assess the relative importance of the 73 entries within the neighborhood graph. Although neighborhood
graph entries 22 and 23 account for the largest percentage of MSE variation, these results demonstrate that
no single graph entry, or even relatively minor groups of graph entries can be used to quantify the system
state. Moreover, the large MSE variation caused by nodes 22 and 23 is a function of certain outliers found
at solid-vapor interfaces.

2.7 Classification, Visualization, and Analysis

The chosen encoder model was used to translate the entire training data set (4153 unique
neighborhood graphs) into a three-dimensional low-dimensional space. Agglomerative hi-
erarchical clustering (with Ward’s linkage) was then implemented to partition the low-
dimensional space. Although the strategy produces a cluster tree that shows the hierarchical
structure of all 1 to 4153 possible cluster distributions, the process of choosing the “best”
number of clusters is somewhat subjective [122, 123]. In fact, a key advantage of agglomera-
tive hierarchical clustering is that the strategy allows the number of clusters for classification
to be chosen based on specific application-based needs.

This chapter focuses on the SA of FCC, HCP, and BCC-like structures from a system of
multi-flavored DFPs [72, 73, 103, 104]. The topologies of theoretically perfect FCC, HCP,
and BCC lattices are known. This information was used to calculate neighborhood graphs
and the corresponding low-dimensional points of these three theoretically perfect lattices.
However, “perfect” or at least “not meaningfully defective” FCC, HCP, or BCC lattices may
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Figure 2.6: Analysis to determine number of clusters. Agglomerative hierarchical clustering (using Ward’s
linkage) is used to cluster the low-dimensional representations of the 4153 unique neighborhood graphs
taken from the 11 isothermal colloidal self-assembly trajectories that were used to train the autoencoder (see
Section 2.5). The number of unique neighborhood graphs corresponding to FCC, BCC, and HCP structures
is plotted against the number of clusters in each branch of the resulting cluster tree. At 12 total clusters, the
low-dimensional representations of FCC, HCP, and BCC neighborhood graphs are separated into different
clusters.

have neighborhood graphs that correspond to a number of different low-dimensional points.
As a result, any cluster that contains one of these three theoretically perfect lattice points
can be analogously labeled.

Fig. 2.6 shows the number of low-dimensional points (that represent neighborhood
graphs) corresponding to FCC, BCC, and HCP structures plotted against the number of
total clusters in each branch of the cluster tree. At the branch corresponding to 12 total
clusters, the FCC, HCP, and BCC perfect lattice points are first separated into different
clusters. The number of points assigned to each of the three lattice types decreases with the
total number of clusters as the points that are further from the theoretically perfect lattices
are placed into other clusters. The choice in the number of clusters is thus a balance between
the desired classification precision (i.e., the strictness of the definition of an FCC, HCP, or
BCC lattice) and the analytical burden of interpreting potentially hundreds of clusters. In
this chapter, the minimum number of clusters required to separate the theoretically perfect
FCC, BCC, and HCP lattices (i.e., 12 total clusters) was chosen. Subsequent visual analyses
of SA simulation trajectories show this choice to be reasonable (see Section 2.7).

Fig. 2.7a shows the the colored low-dimensional representations of all 4153 unique neigh-
borhood graphs. A distinct color was assigned to each of the 12 clusters. The FCC, HCP,
and BCC clusters correspond to clusters C9 (green), C8 (brown), and C12 (purple), respec-
tively, while vapor particles correspond to cluster C1 (red). Note that vapor particles tend
to display very small neighborhood graph entries and thus contain predictable neighborhood
graphs/low-dimensional coordinates. Particles at solid-vapor interfaces exist in clusters C3
and C5. The neighborhood graphs of these particles tend to contain extremely high neigh-
borhood graph entries (particularly at entries 22 and 23). Although it is not immediately
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Figure 2.7: Agglomerative hierarchical clustering summary. Agglomerative hierarchical clustering (using
Ward’s linkage) was used to cluster the low-dimensional representations of 4153 unique neighborhood graphs
(from the 11 isothermal colloidal self-assembly trajectories that were used to train the autoencoder described
in Section 2.5) into 12 clusters. These clusters are labeled C1-C12. (a) The low-dimensional representation of
each unique neighborhood graph is plotted and colored according to its labeled cluster. Points corresponding
to bulk FCC, HCP, and BCC lattices exist within clusters C9, C8, and C12, respectively. (b) The Ward’s
distance between each cluster is plotted against each cluster’s placement within the cluster tree.

clear to which types of structures the remaining clusters correspond, their close proximity
to one another and distance from the vapor states suggest that they are likely surface or
defective crystalline structures.

The structure of the cluster tree (Fig. 2.7b) provides important insights regarding the
physical characteristics of the remaining clusters. First, clusters C1, C3, and C5 fall under
the same branch while the remaining clusters (which include the FCC, HCP, and BCC
clusters) fall under a second branch. This suggests that the first level of the cluster tree
likely separates “crystalline” and “vapor/near-vapor” particles. Clusters C4, C6, C9 (FCC),
C10, and C12 (BCC) all fall under the second level middle branch, suggesting that C4, C6,
and C10 correspond to some types of surface or defective FCC/BCC structures. The fact
that C4 belongs to the same parent branch as C9 and C12 indicates that C4 is likely more
topologically similar to C9 and C12 than it is to C6 and C10. The right second level branch
contains clusters C2, C7, C8 (HCP), and C11. The distances separating the C7, C8 (HCP),
and C11 leaves are very small, also indicating that C7 and C11 could correspond to slightly
defective HCP structures while C2 could correspond to either highly defective or surface
HCP particles.

The low-dimensional space appears to have achieved continuity (i.e., similar structures
have similar low-dimensional coordinates). For example, clusters C1, C3, and C5 all corre-
spond to either vapor particles or vapor particles at solid-vapor interfaces. Although these
clusters contain both extremely small and large neighborhood graph entries, the clusters
have low intra-cluster variances and are adjacent in the low-dimensional space. The pre-
sented dimensionality reduction strategy thus effectively handles the massive outliers the
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Figure 2.8: Four classified colloidal self-assembly lattices. The figure shows 4 lattices from the final time
steps of 4 of the 11 isothermal colloidal self-assembly trajectories used to train the autoencoder. Each particle
in each lattice is colored according to its classification in Fig. 2.7. The term “full lattice” indicates that
every particle in the snapshot is shown while the term “bulk lattice” indicates that the top layer of particles
has been removed. The structure in (a) is primarily BCC, the structures in (b) and (c) are mixed FCC and
HCP, and the structure in (d) contains FCC, HCP, and BCC particles.

neighborhood graph construction methodology occasionally produces at solid-vapor inter-
faces. The FCC, HCP, and BCC clusters are close to one another, yet far apart from the
vapor clusters. Meanwhile the remaining clusters (which likely correspond to defective and
surface particles) are not only close to one another but also take up a large percentage of
the low-dimensional space to reflect their large topological range.

Note that some of the boundaries among clusters appear exceedingly complex, suggesting
that some of the data points are misclassified. The boundary complexity is a function of
both the (unavoidable) noise in the neighborhood graph construction and the choice of
a small number of clusters. This problem could potentially be addressed by increasing
the number of clusters. However, the objective of the characterization framework is to
elucidate understanding of colloidal SA processes as a whole and not to perfectly characterize
each individual particle (otherwise one would avoid dimensionality reduction altogether).
Overall, the colloidal SA state characterization framework appears to reduce effectively the
dimensionality of neighborhood graphs and sensibly partition the low-dimensional space.

The characterization framework is first demonstrated by using OVITO to visualize 4
different lattices found from 4 of the 11 different isothermal colloidal SA trajectories used to
train the autoencoder (see Fig. 2.8). The particles in each lattice are colored according to
their classifications in Fig. 2.7. Each of the 4 lattices is shown in full (labeled “Full Lattice”)
and with its top layer removed (labeled “Bulk Lattice”).

The OVITO visualizations were used to assign brief, physically meaningful descriptions
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to each cluster (see Table 2.1 for a summary of these descriptions). The bulk particles
in 2.8a (purple) almost all belong to cluster C12 and correspond to BCC structures. The
surface particles primarily belong to clusters C6 (light blue) and C10 (dark blue), with
scattered particles belonging to clusters C4 (yellow) and and C2 (light green). The C6 (light
blue) particles clearly correspond to surface BCC (100)-(111) particles. The C10 (dark blue)
particles only exist at the interface between two surface planes and likely correspond to BCC
surface stacking faults.

Table 2.1: Cluster structural classifications. Each cluster identification (C1-C12) is matched with a brief
physical description.

Cluster Label Structure Description

C1 Vapor
C2 Defective FCC surface particle
C3 Vapor at Solid-Vapor Interface
C4 Surface FCC
C5 Vapor at Solid-Vapor Interface
C6 Surface BCC
C7 Weakly bound HCP-like particle
C8 HCP
C9 FCC
C10 BCC Stacking Fault
C11 Defective Bulk HCP
C12 BCC

Meanwhile, the bulk particles in Fig. 2.8b-7c are primarily from clusters C9 (Green, FCC)
and C8 (Brown, HCP). Another bulk particle classification is C11 (beige), which primarily
appears on FCC/HCP interfaces. The cluster’s placement in the same parent branch as
cluster C8 (Brown, HCP) indicates that C11 is likely a defective HCP structure. Structures
2.8b-c show many surface particles belonging to clusters C4 (yellow) and C2 (light green).
Note that Fig. 2.8b appears to show C4 (yellow) particles in the bulk, however, these are
actually surface particles on an adjacent plane. Based on their placement in the cluster tree
and proximity to FCC particles in the Fig. 2.8b-c, cluster C4 corresponds to FCC (100)-(111)
surface particles. The C2 (light green) and C7 (black) particles are less commonly observed
throughout the SA trajectory data but often appear as defective surface particles on lattices
containing HCP and FCC particles. The C2 (light green) particles even occasionally appear
as stacking faults (see Fig. 2.9)a, while the C7 (black) particles tend to appear as weakly-
bound particles. Despite C2’s placement within the cluster branch corresponding to HCP
particles, C2 particles often appear above FCC bulk particles. This suggests that C2 refers
to defective FCC surface particles that show some HCP-like characteristics. Each of the
above classifications remain consistent in Fig. 2.8d, which shows a polymorphic FCC, HCP,
and BCC lattice.
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It is important to note that rigorous, direct comparisons to other dimensionality reduction-
based characterization frameworks are not necessarily appropriate in this chapter. For ex-
ample, the most recent implementations of diffusion maps require the choice of “landmark
points” to reduce the size of the high-dimensional space before dimensionality reduction
takes place [90]. As a result, diffusion maps cannot reduce the same high-dimensional space
that the autoencoders can and thus cannot be applied (in the same way) to the colloidal
SA trajectories discussed above. This is because analysis of these trajectories requires com-
puting distance matrices between thousands of neighborhood graphs – and diffusion maps
can become intractable for such large analyses. This chapter could have directly applied the
approach of the authors of [102] to the 11 SA trajectories used to train the characterization
framework. However, the elbow plot analysis (Fig. S4.2 in the SI) demonstrates that the
single hidden layer autoencoder architecture employed by the authors of [102] does not en-
code as much information in the low-dimensional space as the proposed multiple hidden layer
approach. Moreover, their use of Steinhardt bond-order parameters to create neighborhood
graphs (which are much more prone to thermal fluctuations and density gradients than the
proposed Delaunay triangulation-based method) indicates that the method of [102] would
lead to less general classification. In fact, the work in [102] classifies each particle within a
lattice as either FCC, HCP, or “fluid”. Meanwhile, the presented approach classifies each
particle in one of 12 different categories, which include BCC, FCC, HCP, fluid (which this
chapter labels as “vapor”), and several surface and defective states.

The characterization framework is next used to analyze the time evolution of entire
colloidal SA trajectories, as opposed to singular colloidal SA system states. Fig. 2.9a shows
the time evolution of the colloidal SA trajectory that leads to the lattice in Fig. 2.8d. Here,
the number of total particles classified as FCC (cluster C9, green), HCP (cluster C8, brown),
and BCC (cluster C12, purple) is plotted against the simulation frame index. Snapshots of
four key simulation frames whose particles are classified according to their positions in Fig.
2.7 are also provided. Frame #1 shows several small nuclei beginning to form. Clearly,
many particles are still in the vapor phase, as clusters C1 (red) and C3 (blue) are highly
prevalent. The bottom right crystallite is forming a BCC structure as evidenced by the C6
(light blue), C10 (dark blue), and C12 (purple) colored particles. Meanwhile the top right
cluster primarily contains FCC/HCP particles due to its plethora of C4 (yellow), C8 (HCP),
and C9 (FCC) particles. However, this crystallite also contains some BCC-like particles
such as C12 (purple) and C6 (light blue). By Frame #2, the two remaining clusters are
almost entirely BCC (top left) and almost entirely FCC/HCP (bottom right). The crystals’
continued nucleation uncovers a few interesting trends.

First, the characterization framework reveals that a polymorphic lattice is formed by
a primarily BCC structure merging with a primarily FCC/HCP structure. This indicates
that the assembly conditions are likely favorable to both BCC and HCP/FCC structures.
Comparing Frames #2 and #8 shows the merging of the BCC and HCP/FCC structures as
part of the growth process. Frame #2 also shows that the FCC/HCP structure is initially
covered with surface particles from cluster C6 (light blue), which represent BCC surface
particles. However, these light blue particles nearly only exist as FCC particles by the end
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(a) Example colloidal self-assembly trajectory with polymorphic lat-
tice.

(b) Example colloidal self-assembly trajectory with phase transition.

Figure 2.9: Example colloidal self-assembly trajectories. Each figure shows the time evolution of the number
of particles classified as FCC (cluster C9, green), HCP (cluster C8, brown), and BCC (cluster C12, purple)
for a separate in-silico colloidal self-assembly trajectory. Note that Frame # refers to the (chronologically
ordered) recorded simulation frame. The time evolution plots are accompanied by snapshots of certain
chosen simulation frames within these trajectories. In each case, the dimensionality of the neighborhood
graphs is reduced with the encoder trained using 11 isothermal trajectories of a system of 500 multi-flavored
colloidal particles (see Section 2.5). Each particle in each snapshot is classified according to the proximity
of its low-dimensional representation to points in Fig. 2.7a. (a) The figure shows the time evolution of an
isothermal trajectory of the self-assembly of 500 multi-flavored colloids that creates the lattice in Fig. 2.8d.
The trajectory shows that a polymorphic lattice containing FCC, HCP, and BCC particles forms from a
primarily BCC structure merging with a structure that contains FCC and HCP particles (b) The figure
shows the time evolution of an isothermal trajectory of the self-assembly of 1000 multi-flavored colloids. The
trajectory shows that the system initially self-assembles into a BCC structure before undergoing a phase
transition into an FCC structure.

of the trajectory. This could suggest that FCC particles take on a structure similar to that
of surface BCC before finding their final state (e.g. Frame #20 and Fig. 2.8d). In fact,
the idea that the interfaces of FCC crystallites retain BCC-like ordering during nucleation
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Figure 2.10: Evaporation-induced colloidal self-assembly. The figure shows 3 snapshots of the in-silico
evaporation-induced self-assembly of 2052 colloidal particles that are classified using two different schemes.
Note that the data used to create these snapshots was borrowed from reference [78] and that 6 total snapshots
were provided. (a) The dimensionality of the neighborhoood graphs is reduced with an encoder trained using
11 isothermal trajectories of an in-silico system of 500 multi-flavored colloidal particles (see Section 2.5)
Each particle in each snapshot is classified according to the proximity of its low-dimensional representation
to points in Fig. 2.7a (b) The entire characterization framework is performed on the six provided snapshots
of the evaporation-induced colloidal self-assembly data. Each unique neighborhood graph is used to train a
second autoencoder. The newly-formed encoder is used to reduce the dimensionality of the neighborhood
graphs and agglomerative hierarchical clustering (via Ward’s linkage) is used to partition the low-dimensional
space. In both (a) and (b), FCC particles are green, HCP particles are brown, BCC particles are purple, and
surface FCC particles are yellow. The teal particles in (b) correspond to defective FCC structures that were
not found by the classification scheme in (a). Overall, the two characterization procedures yielded nearly
identical results.

is frequently explored [27, 129, 130]. As an aside, the characterization framework was used
to carry out similar analyses for the remaining colloidal SA trajectories used to train the
autoencoder, but these analyses were not included in this thesis for brevity.

The characterization framework was next applied to an independent test data set that
consists of 1000 in-silico multi-flavored colloids undergoing SA in isothermal conditions.
Here, the neighborhood graphs of each particle in each simulation frame were calculated.
The chosen encoder from Section 2.6 was then used to reduce the dimensionality of the
neighborhood graphs. Note that the autoencoder was not retrained and the encoder was
used with the same weights and biases as determined in Section 2.6. The points in Fig. 2.7a
that were closest to those corresponding to the independent data set were next identified and
the particles were classified accordingly. For example, if the low-dimensional representation
of a neighborhood graph from the independent data set is [15.17, 3.50, 18.23]⊤ and the closest
point in Fig. 2.7a is classified as C2, then the particle from the independent data set adopts
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this class. Fig. 2.9b shows the time evolution of the total number of particles classified as
FCC, HCP, and BCC throughout this trajectory and the classification of 4 example snapshots
of simulation frames.

The characterization of this independent trajectory reveals how a primarily disperse col-
loidal system state initially forms a cluster that almost entirely consists of BCC particles
(e.g., purple bulk particles corresponding to cluster C12 and light blue and dark blue sur-
face particles corresponding to clusters C6 and C10 respectively). A sudden, drastic phase
transition occurs at Frame #18 as the system state transitions from a BCC structure to an
almost entirely FCC structure. Over time, the remaining BCC particles transition slowly to
FCC particles. By Frame #99, the system state is an entirely FCC structure. The fact that
the characterization framework can identify a BCC/FCC phase transition in an independent
data set demonstrates the framework’s generalizability.

The characterization framework was finally applied to another independent data set from
reference [78] that consists of 6 snapshots of 2052 in-silico colloids undergoing evaporation-
induced SA (see Fig. 2.10). The particles were first characterized using the same methodol-
ogy that was used to characterize the previous independent data set (i.e., the isothermal SA
of 1000 multiflavored colloids). Fig. 2.10a shows the classification results for the final three
snapshots.

The entire characterization framework was next re-performed on the evaporation-induced
colloidal SA data alone. In other words, all unique neighborhood graphs from the 6 provided
snapshots (4462 total unique neighborhood graphs) were collected. Autoencoders were re-
trained using these 4462 unique neighborhood graphs and the elbow method analysis was
re-performed. The dimensionality of the neighborhood graphs was reduced using the newly
formed encoder and agglomerative hierarchical clustering using Ward’s linkage was used to
partition the low-dimensional space. Finally, the minimum number of clusters required to
separate theoretically perfect FCC, HCP, and BCC lattices into separate clusters (11 total
clusters) was chosen.

Distinct colors were assigned to each of the separate clusters and the resulting color-
coordinated lattices were visualized using OVITO (see Fig. 2.10b). Note that identical
colors were assigned to important classes in both Figs. 2.10a-b. For example, green is FCC,
brown is HCP, purple is BCC, and surface FCC is yellow in Figs. 2.10a-b. The evaporation-
induced colloidal SA data set shows significantly fewer disperse and weakly crystalline states
and more defective crystalline states than the multi-flavored colloidal SA data set does. The
evaporation-induced low-dimensional space is thus biased towards such crystalline structures.
As a result, the classifications in Figs. 2.10a-b show some important differences. For example,
Fig. 2.10b shows teal particles that clearly correspond to defective FCC particles, yet such a
class was not recovered from clustering the multi-flavored data. With the exception of these
small numbers of particles, however, Figs. 2.10a-b do show almost identical colloidal SA state
classifications. These results not only validate the generalizability of the characterization
framework (as nearly identical results were seen by training the autoencoder on different
systems with vastly different particle numbers) but also highlights how larger, more diverse
training data sets can further improve the characterization framework.
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2.8 Conclusions and Next Steps

This chapter first demonstrated the proposed colloidal self-assembly state characterization
framework on an in-silico system of 500 multi-flavored colloids that self-assemble under
isothermal conditions. The framework not only characterized the target FCC, BCC, and
HCP structures but also “discovered” several relevant defective and surface structures that
allowed for greater understanding of example colloidal self-assembly trajectories. The gener-
alizability of the characterization framework was next analyzed by applying the framework to
two independent systems, one that consists of 1000 in-silico multi-flavored colloidal particles
and self-assembles under isothermal conditions and another that consists of 2052 in-silico
colloidal particles and undergoes evaporation-induced self-assembly. Despite successful char-
acterization of the independent data sets, the framework can be sensitive to the nature of the
data on which the autoencoder is trained (e.g., number of crystalline vs. weakly crystalline
states).

Although the presented framework successfully characterized “structural” order – the
framework identified which particles were apart comprised unit cells such as FCC, BCC, HCP
etc. – the framework did not take particle species into account. The next chapter focuses
on extending the presented characterization framework to account explicitly for particle
species. More importantly, the next chapter uses this extended characterization framework
to investigate the role of particle size ratio and interparticle potential well depth in influencing
the three-dimensional self-assembly of binary colloidal mixtures. The chapter pays special
attention to “compositional’ order (i.e., how A- and B-type particles are distributed among
FCC, BCC¡ HCP unit cell sites).
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Chapter 3

Discovery of Compositional Order
and Self-Assembly Pathways in
Binary Colloidal Mixtures

Binary colloidal superlattices (BSLs) have demonstrated enormous potential for the design of
advanced multi-functional materials that can be synthesized via colloidal self-assembly. How-
ever, mechanistic understanding of the three-dimensional self-assembly of BSLs is largely lim-
ited due to a lack of tractable strategies for characterizing the many two-component structures
that can appear during the self-assembly process. To address this gap, this chapter presents a
framework for colloidal crystal structure characterization that uses branched graphlet decom-
position with deep learning to systematically and quantitatively describe the self-assembly of
BSLs at the single-particle level. Branched graphlet decomposition is used to evaluate local
structure via high-dimensional neighborhood graphs that quantify both structural order (e.g.,
body-centered-cubic vs. face-centered-cubic) and compositional order (e.g., substitutional de-
fects) of each individual particle. Deep autoencoders are then used to efficiently translate these
neighborhood graphs into low-dimensional manifolds from which relationships among neigh-
borhood graphs can be more easily inferred. This chapter demonstrates the characterization
framework on in-silico systems of DNA-functionalized particles, in which two well-recognized
design parameters, particle size ratio and interparticle potential well depth, can be adjusted
independently. The framework reveals that binary colloidal mixtures with small interparticle
size disparities (i.e., A- and B-type particle radius ratios of rA/rB = 0.8 to rA/rB = 0.95)
can promote the self-assembly of defect-free BSLs much more effectively than systems of
identically sized particles, as nearly defect-free BCC-CsCl, FCC-CuAu, and IrV crystals
are observed in the former case. The framework additionally reveals that size-disparate col-
loidal mixtures can undergo non-classical nucleation pathways where BSLs evolve from dense
amorphous precursors, instead of directly nucleating from dilute solution. These findings
illustrate that the presented characterization framework can assist in enhancing mechanistic
understanding of the self-assembly of binary colloidal mixtures, which in turn can pave the
way for engineering the growth of defect-free BSLs.
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3.1 Introduction

Binary colloidal superlattices (BSLs) – highly ordered crystalline structures that consist of
two sublattices formed by two types of particles – have demonstrated significant potential
for the design of multi-functional materials with applications in photonics [131], optical
absorption [132], sensing [4, 133], and catalysis [134, 135]. Many studies have demonstrated
colloidal SA as a viable synthetic route to achieve BSLs [136–141]. However, colloidal SA
is prone to form defective structures that can impact the functional properties of BSLs
[142] Some of the most commonly observed defective structures include kinetically trapped
amorphous aggregates and crystals that contain substitutional defects (i.e., lattices in which
A- and B-type particles occupy inconsistent lattice sites) [136, 143].

Particle size ratio and interparticle potential well depth have been postulated as two
of the most important design parameters for influencing the SA of BSLs [136–138, 143]. A
natural question is whether these design parameters can promote the SA of defect-free BSLs.
The answer to this question has not been systematically explored, however, as creating a
tractable framework for accurately characterizing the many complex and possibly defective
two-component structures that can appear during colloidal SA remains an open challenge.
Although many methods for characterizing self-assembled colloidal structures exist in the
literature [62, 63, 79, 81, 82, 85, 86, 88–93, 102, 106], the most common methods either
(i) heavily rely on the concept of “cut-off” radii to determine local structure and are thus
sensitive to thermal fluctuations, (ii) fail to provide quantitative information about particles
whose local structure does not correspond to well-defined reference structures or templates,
and/or (iii) rely on diffusion mapping methods that can become intractable for systems with
large configurational phase spaces. Most importantly, only three reported characterization
methods explicitly account for particle type and, thus, can identify substitutional defects in
BSLs [87, 102, 144]. These three methods depend on cut-off radii, diffusion maps, and/or
have only been shown to characterize either two-dimensional or very simple three-dimensional
lattices.

This chapter presents a framework that employs branched graphlet decomposition with
deep learning to address the above challenges for characterizing the SA of three-dimensional
BSLs. Branched graphlet decomposition evaluates local structure via “structural” and “com-
positional” neighborhood graphs that are robust to thermal fluctuations, provide quantita-
tive information about particles whose local structure does not correspond to well-defined
reference structures, and explicitly account for particle type. These neighborhood graphs
quantify both structural order (i.e., the unit cells within BSLs such as FCC, BCC, and HCP)
and compositional order (i.e., how A- and B-type particles are distributed among these unit
cell sites). Deep autoencoders [100, 101] are next used to efficiently translate the high-
dimensional structural and compositional neighborhood graphs into low-dimensional struc-
tural and compositional spaces where it is easier to infer relationships among neighborhood
graphs. As such, the presented framework can simultaneously characterize the thousands
of unique and defective structures that can appear during SA. The framework can distin-
guish defective, nearly defective, and ordered lattices and can thus precisely elucidate entire
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complex nucleation pathways. The framework is summarized in Fig. 3.1.

Figure 3.1: Colloidal self-assembly state characterization framework summary. Branched graphlet de-
composition translates particle positions into one structural neighborhood graph and two compositional
neighborhood graphs for each particle in the two-component lattice. The structural neighborhood graph
evaluates the structure to which all particles contribute while the compositional neighborhood graphs eval-
uate each component’s contribution to that structure. The dimensionality of the neighborhood graphs is
next reduced using deep neural networks called autoencoders to create structural and compositional low-
dimensional spaces. Agglomerative hierarchical clustering is finally used to partition the low-dimensional
spaces and assign discrete classifications to each particle.

The characterization framework is demonstrated through the systematic investigation of
the SA of an in-silico system of 500 DNA-functionalized particles (DFPs) in which particle
size ratios and attractive interactions between A-type and B-type particles can be varied
independently. The framework reveals that small increases in particle size disparity can
drastically reduce the number of substitutional defects in FCC and HCP lattices, while
further increasing the size disparity leads to the formation of (nearly) defect-free BCC-CsCl,
FCC-CuAu, and IrV crystals. The framework further reveals that mixtures of size-disparate
colloids that form nearly defect-free BSLs can undergo non-classical nucleation pathways in
which a dense amorphous precursor is formed prior to the final binary crystalline phase. The
fine control of colloidal SA using (small) size disparity suggests a promising future research
direction for synthesizing defect-free BSLs and the transformation pathway analysis provides
a deeper mechanistic understanding of the SA of binary colloidal mixtures.
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3.2 Neighborhood Graph Construction via Branched

Graphlet Decomposition

The first step in characterizing the structure of a given colloidal particle is to establish that
particle’s “neighborhood.” This neighborhood is established using the exact methodology
described in Section 2.2. Importantly, this method avoids the concept of bonds or “cut-
off radii” among particles and instead uses a geometry-based, fixed number of particles
to establish the neighborhood. This method is thus less sensitive to thermal fluctuations,
density gradients, and structural anisotropy than many common structural characterization
methods [63, 79] (e.g., Steinhardt bond order parameters [81], common neighbor analysis
[106]).

The neighborhood is then used to construct one structural neighborhood graph and two
compositional neighborhood graphs that quantify the structural and compositional local
topology of the particle of interest. The structural neighborhood graph is composed of all
particles in the neighborhood, while the compositional neighborhood graphs are composed
of (i) all particles that are of the same species of the particle of interest and (ii) all parti-
cles that are of a different species than the particle of interest. Note that the work in this
chapter is tailored towards binary lattices in which only two types of particles exist (e.g.,
A- and B-type particles). The work described in Section 2.2 used Delaunay triangulation to
construct structural neighborhood graphs [63, 79] for colloidal characterization. A key con-
tribution here is thus “branching” the structural neighborhood graphs created by Delaunay
triangulation to create and evaluate additional compositional neighborhood graphs.

The structural neighborhood graph alone can be used to identify unit cells within a lattice
as FCC, BCC, HCP, etc. The compositional neighborhood graphs, however, can be used to
quantify how A- and B-type particles are distributed among the FCC, HCP, and BCC unit
cell sites. The compositional neighborhood graphs can thus be used to identify substitutional
defects within BSLs. To my knowledge, only three reported characterization methods can
explicitly account for particle types within lattice sites [87, 102, 144]. In addition to using
cut-off radii, these methods did not explicitly identify substitutional defects.

The structural and compositional neighborhood graphs are evaluated using the graphlet
decomposition method described in Section 2.2. Remember that this methodology evaluated
neighborhood graphs through the use of graphlets with 2-5 nodes that display 73 different
automorphism orbits [74]. As a result, each particle’s structural and compositional neigh-
borhood graphs is quantified by a 73 × 1 vector, where each entry in the vector refers to
the weighted frequency of an automorphism orbit. The structural neighborhood graph thus
becomes a 73×1 vector, while the two compositional neighborhood graphs are concatenated
to form one 146 × 1 vector. From this point forward the term “structural neighborhood
graph” will refer to the 73×1 vector and the term “compositional neighborhood graph” will
refer to the 146× 1 vector.

Note that heterogeneous graphlet decomposition methods have also been reported in the
literature.[145, 146] Although these methods explicitly take node type (or in this case, par-
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ticle type) into account, they can be difficult to implement and computationally expensive,
thus requiring several simplifying assumptions to become tractable. The branched graphlet
decomposition strategy outlined above is simple, tractable, and does not require any (extra)
simplifying assumptions.

3.3 Dimensionality Reduction via Deep Autoencoders

The high dimensionality of the neighborhood graphs and non-uniformity in the distances
among their discrete entries indicate that dimensionality reduction must be performed to
produce a continuous, low-dimensional manifold where relationships among neighborhood
graphs can be more intuitively analyzed. The dimensionality of the structural and compo-
sitional neighborhood graphs is reduced using a self-supervised deep neural network called
an autoencoder [79, 100, 101], which is conceptually explained and justified in more detail
Section 2.3. Specifically, two separate autoencoders are trained to create one structural
and one compositional low-dimensional space that are subsequently used for structural and
compositional classification.

This chapter focuses on how the size ratio and interparticle potential well depth be-
tween A- and B-type particles affect the SA of FCC, HCP, BCC, IrVA, IrVB, DCsClA,
and DCsClB-like BSLs from an in-silico system of binary DFPs, with particular attention
to the substitutional defects within these target lattices. This chapter seeks to use the
presented characterization framework to identify substitutionally defective (i.e., structurally
ordered, yet compositionally disordered) and defect-free (i.e., structurally and composition-
ally ordered) versions of these lattices. That is, this chapter looks to identify particles
whose local environments conform to target structures with and without substitutional de-
fects. To this end, particle position data for isothermal in-silico SA trajectories of DFPs
over a range of size ratios and interaction potential well depths was collected. Structural
and compositional neighborhood graphs for each particle in each simulation frame were
recorded according to the branched graphlet decomposition method. The unique neighbor-
hood graphs (45,032 unique structural neighborhood graphs and 4,814 unique compositional
neighborhood graphs) were then used to train the structural and compositional autoencoders
respectively. The structural and compositional autoencoders then translated all unique struc-
tural and compositional neighborhood graphs from all recorded trajectories into two separate
three-dimensional spaces (see Fig. 3.14 in Section 3.9 for the justification of the size of the
low-dimensional spaces). More details describing the pair potential and system simulations
can be found later in Section 3.5, while more details describing the autoencoder training can
be found in Section 3.9.
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3.4 Partitioning the Low-Dimensional Spaces for

Structural and Compositional Classification

Similar to Section 2.4, this chapter implements agglomerative hierarchical clustering (with
Ward’s linkage) on the low-dimensional data in order to partition the structural and compo-
sitional low-dimensional spaces. Although the strategy produces a cluster tree (known as a
dendrogram) that shows the hierarchical structure of all 1 to N possible cluster distributions,
the process of choosing the “best” number of clusters is somewhat subjective [79, 122, 123];
see Section 3.9 and Fig. 3.15 for the justification of the choice of the number of clusters
in each low-dimensional space. Since the topologies of the theoretically perfect versions of
FCC, HCP, BCC, IrVA, IrVB, DCsClA, and DCsClB lattices are known, this information
was used to calculate structural and compositional neighborhood graphs and the correspond-
ing low-dimensional points of these theoretically perfect lattices. However, “defect-free” or
“ordered” lattices may have neighborhood graphs that correspond to a number of different
low-dimensional points. As a result, any cluster that contains one of these theoretically
perfect lattice points can be analogously labeled.

Using this strategy, 14 discrete classifications were identified (see Table 3.1 in Section
3.9), with 7 structurally and compositionally ordered (CO) target lattice groups and 7 struc-
turally ordered, yet compositionally disordered (CD) target lattice groups. For example, if
a given particle’s structural and compositional low-dimensional representations fall under
“FCC” identified clusters in those respective low-dimensional spaces, the particle will be
labeled as a “structurally and compositionally ordered FCC particle” (i.e., “CO-FCC”). If
only the particle’s structural low-dimensional representation falls under an FCC cluster, the
particle will be labeled as “structurally ordered, yet compositionally disordered FCC” (i.e.,
“CD-FCC”). Note that “CO-FCC”, “CO-BCC”, and “CO-HCP” are referred to as “FCC-
CuAu”, ”BCC-CsCl”, and “HCP-straight” throughout the paper. The remaining groups are
exclusively described using “CD” and ”CO” labels (e.g., CO-IrVA, CD-DCsClB, CD-FCC).
If the particle’s low-dimensional representation does not fall under any target lattice cluster,
the particle is left unlabeled. These “unlabeled” particles can correspond to vapor particles,
structurally defective particles, surface particles, non-target lattice groups, etc. Note that in
principle labels could be assigned to the clusters that correspond to many of the unlabeled
particles, but this was not viewed as necessary for investigating the SA of our binary sys-
tems of DFPs. Finally note that the term “structurally ordered” (SO) is used throughout
the paper to refer to a particle that belongs to any CD or CO group (i.e., a particle that is
not unlabeled).

Fig. 3.2 shows an example of how the characterization framework can classify CD and
CO particles within BSLs. Here, A- and B-type particles within a perfect spherical FCC-
CuAu lattice are manually swapped over time. Swap attempts are only accepted if the
potential energy of the new configuration is higher than that of the current configuration
(see Fig. 3.18 for a plot of lattice potential energy versus swap moves/frames). This en-
sures that progressively more energetically unfavorable lattices are created (i.e., that A-type
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particles are only swapped for B-type particles and vice-versa). The (trained) framework
then identifies the number of CO and CD FCC particles in each corresponding simulation
frame. Figs. 3.2a-b show that both the number of CO particles and A-B nearest neighbors
decrease with the number of manual swaps. This agrees with the fact that BSLs become
progressively more compositionally disordered as A- and B-type particles swap positions.
Fig. 3.2c shows visualizations of classified and unclassified lattices. The open-source codes
of the characterization framework are available on GitHub [105].

Note that the characterization framework classifies ≈10 near-surface particles in the
defect-free lattice in Frame 0 in Fig. 3.2b as compositionally disordered. This “mis-
classification” is a reflection of the fact that the 14 discrete classes used in this chapter
are defined based on the bulk structures. This choice in turn can lead the framework to oc-
casionally mis-classify particles near the surface (as these particles can have different neigh-
borhood topologies than bulk particles). To reduce this imprecision, more classes (i.e., label
more clusters) can be defined that identify surface or near-surface ordered and disordered
particles. In fact, such near-surface order was identified in the work in Chapter 2 that only
focused on structural order [79]. Identifying near-surface structural and compositional order
was not viewed as necessary for the work in this chapter; see Section 3.9 for more details.

3.5 Colloidal Self-Assembly System Descriptions

The purpose of this chapter is to use the presented characterization framework to investigate
the SA of an in-silico system of binary DFPs under various interparticle size ratios and
interaction potential well depths. The pair potential model and resulting molecular dynamics
simulations used throughout this chapter are described in more detail below. The exact
same pair potential model was actually used in Chapter 2. However, the work in Chapter 2
focused exclusively on systems in which A- and B-type particles were identically sized. The
work in this chapter additionally involves systems with different A- and B-type particle size
ratios. Most of the writing below is identical to that in Chapter 2 but is repeated here for
convenience.

Pair potential model

DFPs interact with each other through complementary Watson–Crick base-pairing interac-
tions. As a means of achieving selective binding among DFPs, particles can be functionalized
with a blend of two types of DNA strands with complementary concentrations on each parti-
cle. By changing the blending ratio of these two types of DNA strands, these “multi-flavored”
particles can exhibit a tunable attraction between the like particles while maintaining inter-
actions between unlike pairs. This approach has been shown to induce the crystallization of
equally sized particles into BCC, HCP, and FCC structures [72, 125–127].

The tunable and independent pairwise interactions of DFP colloidal mixtures in this
chapter are modeled using the Fermi-Jagla pair potential (see Eq. (3.1)), which previously
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Figure 3.2: Classified colloidal binary superlattices. The A- and B-type particles within a perfect spher-
ical FCC-CuAu lattice are manually swapped over time (i.e., simulation frames). Swap attempts are only
accepted if the potential energy of the new configuration is higher than that of the current configuration.
(a) The number of like (A-A, B-B) and unlike (A-B) nearest neighbors (#Nij) is plotted against the sim-
ulation frame number. (b) The presented characterization framework identifies the number of structurally
and compositionally ordered (CO) and structurally ordered, yet compositionally disordered (CD) particles in
each frame. Note that both the number of CO particles and A-B nearest neighbors NAB decrease over time.
(c) Snapshots of lattices where A-type particles are colored blue and B-type particles are colored orange
sit above snapshots of lattices that are classified by the characterization framework. In the latter case, CO
particles are colored dark red, CD particles are colored light red, and particles that are not structurally
ordered are transparent. Frame 0 contains the perfect FCC-CuAu configuration. Frames 20 and 100 contain
lattices that have gone through several swapping attempts.

has been used to represent binary DFPs effectively in both two and three dimensions [72,
73]. The first term in Eq. (3.1) represents the particle-particle core repulsion, where ϵc
represents the energy scale of the repulsion, σc represents the length scale of repulsion and
Rs is a shifting factor related to particle size. The second and third terms capture the soft
repulsion and attraction from DNA sequences, respectively. A0 and B0 control the strength
of these interactions, while A1 and B1 control the interaction range. A2 and B2 control the
separation distance.
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U(r/σ)
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To tune interparticle potentials, unlike pair interaction EAB are kept fixed and like inter-
actions EAA and EBB are varied independently. The relative like interaction strength E∗

AA =
EAA/EAB and E∗

BB = EBB/EAB can thus be adjusted independently from 0.0 to 1.0. E∗
AA is

set to equal E∗
BB throughout all simulations unless otherwise noted. Note that setting E∗

AA=
E∗

BB= 1.0 reduces the multi-flavoring to single flavoring, where all particles are identical.
Setting E∗

AA = E∗
BB = 0.0 makes the system a conventional binary mixture, where A-A and

B-B interactions are purely repulsive and only A-B interactions are attractive. On the other
hand, the particle size ratio rA/rB is tuned by varying the size of A-type particles within
a range of σ = 0.8 to 1.0 while maintaining the size of B-type particles at σ = 1.0. Set-
ting rA/rB = 1.0 makes all particles the same size. Setting rA/rB = 0.8 means B particles
are 20% larger than A particles. Fig. 3.3 shows the pair potentials of multi-flavored, binary
micron-sized DFPs with parameter choices similar to those used in this chapter. These DFPs
interact with each other via tunable and independent pairwise interactions EAA, EBB, and
EAB.

Figure 3.3: (a) Example pair potentials with independent and tunable pairwise interactions EAA, EBB ,
and EAB for identically sized particles at σ = 1.0. The red, blue, and green curves represent EAA = −0.3ϵ,
EBB = −0.5ϵ, and EAB = −ϵ. These epsilon values are achieved by tuning B0 to values of 0.56, 0.8, and 1.32
respectively. (b) Example pair potential with different particle sizes. Red, blue, and green curves represent
particle sizes of rA = 0.9, rAB = 0.95 and rB = 1.0. These sizes are achieved by tuning values of σ to 0.9,
0.95, and 1.0 respectively. All parameter values used to create these plots are provided in SI Table S3.
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Simulation details

Molecular dynamic (MD) simulations are performed using LAMMPS [128] in the canonical
ensemble. The system contains 500 total particles with a 1:1 mixture ratio of A-type and
B-type particles. The interaction strength and size ratio are varied using the pair potential
model discussed above. Simulations are performed in a cubic box with periodic conditions
applied to all three dimensions, under dilute conditions with number density ρ = 0.02σ−3,
and using a Langevin thermostat with a time constant τ = 2σm1/2ϵ−1/2. Each simula-
tion involves 1 × 109 total time steps where each time step is ∆t = 10−3σm1/2ϵ−1/2. Each
MD simulation is performed at a constant, pre-determined temperature suitable for crystal-
lization starting from a random dilute liquid phase, where particles are allowed to evolve
spontaneously to form crystals. The entire SA process can be tracked and quantified by
the characterization framework demonstrated above. The trajectories generated from these
simulations are visualized using Open Visualization Tool (OVITO) [124]. The parameter
values used in Eq. 3.1 are: ϵc = 10ϵ, n = 36, A0 = 11.035ϵ, A1 = 404.4/σ, A2 = 1.0174σ,
σ0 = 0.2σ, s = 0.8σ, B0 = [−1.3219ϵ, 0, B1 = 1044, 5/σ, and B2 = 1.0306σ.

3.6 Small Size Disparity Promotes Compositional

order of Binary Superlattices

This section illustrates that slightly tuning particle size ratio and attractive interaction
strength can change the structural order of self-assembled BSLs and can promote the forma-
tion of structurally and compositionally ordered (defect-free) BSLs. The effects of small size
disparity and interaction strength on mediating the SA of BSLs are demonstrated with the
binary in-silico system of 500 DFPs discussed in Section 3.5. In this system, particle size
(i.e., rA and rB) and inter-particle interaction strengths (i.e., EAA, EBB and EAB) can be
tuned independently, which provides additional flexibility and control over the SA process
in comparison to standard binary colloidal systems.

The presented characterization framework is used to classify each particle within self-
assembled BSLs over a range of relative attractive interaction strengths E∗

AA = EAA/EAB

(E∗
BB = E∗

AA) and size ratios r∗ = rA/rB. Fig. 3.4a shows how size ratio can change the
structural order of self-assembled BSLs. At size ratio r∗ = 1.0, the formed BSLs are poly-
morphic, primarily CD, randomly close-packed FCC/HCP structures. Slightly increasing
the size disparity results in the formation of FCC-CuAu or polymorphic FCC-CuAu/HCP-
straight BSLs. More interestingly, further increasing the size disparity leads to the formation
of two more different BSL structures, IrV and distorted CsCl (DCsCl). These two structures
can be viewed as deformed versions of BCC-CsCl, in which the increasing size difference and
interaction strength of the two species forces some particles to lie either too far apart or too
close to one another (see Fig. 3.8). The impact of interaction strength on the formation of
IrV or DCsCl structures suggests that the presence of enthalpic driving forces from pairwise
interactions adds a degree of freedom (in addition to size ratio) for mediating the SA of BSLs.
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Note that the self-assembled BSLs listed here are much richer than systems of hard spheres
[147, 148] as well as sticky spheres [126, 149] at similar size ranges, where substitutionally
disordered FCC is the most dominant structure.

Fig. 3.4a also shows that an amorphous zone, where particles are trapped in disordered
amorphous states, exists for systems of size-disparate particles. Note that poly-dispersity/bi-
dispersity are two commonly used parameters for inhibiting crystallization. Crystallization
is usually suppressed for systems above 5% poly-dispersity (or 15% bi-dispersity) [150, 151].
As shown in Fig. 3.4a, crystallization suppression is widely observed at extremely high E∗

AA

and becomes more pronounced for colloidal mixtures with larger size-disparities. However,
well-ordered BSLs can still be assembled at relatively weak E∗

AA. These observations rein-
force the importance of proper selection of E∗

AA for adopting different structural ordering of
BSLs and demonstrate E∗

AA as an important design parameter for promoting or inhibiting
crystallization.

More importantly, the characterization framework and simulations reveal that a slight
increase in size disparity can change the compositional order of formed BSLs. For example,
in the case of identically sized particles, substitutionally defective CD-CP lattices are formed
over nearly the entire parameter space (E∗

AA > 0.2). As E∗
AA increases, the fraction of CO

particles within BSLs further decreases (see Fig. 3.10). This suggests that the bulk crystals
become more and more substitutionally defective, despite the fact that the primary crystals
remain structurally ordered. These observations agree well with previous simulation and
experimental work that shows that FCC-CuAu crystals change to substitutionally defective
FCCs with increasing like-particle interaction strength [126]. Although colloidal mixtures
with identically sized particles are prone to form CD BSLs, the presented simulation results
reveal size disparity as an exclusive design parameter that can promote the formation of
defect-free BSLs. For mixtures with small size disparity, the CO BSL structure FCC-CuAu
can be formed within a much larger parameter space of E∗

AA, extended from E∗
AA = 0.2

to E∗
AA = 0.7. Fig. 3.4c quantifies the fraction of identified CO particles within different

types of BSLs as a function of size ratio. Defect-free FCC-CuAu BSLs form at a size ratio
of r∗ = 0.95 and E∗

AA = 0.3, whereas substitutionally defective CD-CP lattices form at size
ratio r∗ = 1.0. As the size disparity further increases, IrV and DCsCl — two BSLs that
are structurally different than the BCC/FCC/HCP-like lattices — are formed. However,
the particles within these lattices are usually CO particles, illustrating the universality of
the impact of size disparity for reducing the number of CD particles within BSLs. All
of these observations indicate the importance of size disparity, and how small changes in
this parameter (at certain interaction strengths) can radically change the structural and
compositional ordering of self-assembled BSLs.

Anti-site formation penalties provide a plausible explanation for slight size disparity lead-
ing to a reduced number of substitutional defects in self-assembled BSLs. It has been pre-
viously reported that the anti-site formation penalty decreases as E∗

AA increases for systems
of identically sized sticky colloidal particles [126]. In these systems, the relative interaction
strength is the main parameter that drives the SA of BSLs. As E∗

AA increases, less enthalpic
penalty is introduced when an A-type particle occupies a site where a B-type particle should
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Figure 3.4: (a) Crystallization order diagram as a function of particle size ratio, r∗ = rA/rB , and relative
like interaction strength, E∗

AA = EAA/EAB (E∗
BB = E∗

AA). MD simulations (see Methods section) are
performed at a variety of size ratios and interaction strengths that are indicated by the gray dots. The
characterization framework classifies each particle in the final snapshot of each simulation according to SI
Table S1. The color bar represents the fraction of structurally ordered (SO) particles in these final snapshots;
the fraction calculation is normalized by the number of SO particles in a perfect FCC spherical lattice.
Each region within the order diagram is labeled based on the specific classifications of the SO particles.
In the compositionally disordered close-packed (CD-CP) region, structurally ordered, yet compositionally
disordered (CD) FCC and HCP particles are observed, which form polymorphic and randomly packed lattices.
In the FCC-CuAu and HCP-straight region, structurally and compositionally ordered (CO) FCC and HCP
particles are observed, which form FCC-CuAu lattices and polymorphic HCP-straight/FCC-CuAu lattices.
CO BCC particles are observed in the BCC-CsCl region. In the IrV and DCsCl regions, CD and CO IrVA,
IrVB, DCsClA, and DCsClB particles are observed, which form CD/CO and CO IrV and DCsCl lattices.
The data for conditions favoring different BSLs is provided in Fig. 3.9. (b) Snapshots of characterized BSLs
obtained from the simulations in (a) and their crystal unit cells. Note that IrV and DCsCl classifications are
based on two types of SO particles since the structural graphlet for A-type and B-type particles is different for
these two crystals. The transparent particles represent surface or amorphous particles that are not explicitly
identified by the characterization framework. (c) The ratio of the total number of CO particles (NCO) to
the total number of SO particles (NSO) is plotted for different size ratios rA/rB at EAA/EAB = 0.3. The
red, green, pink, and orange bars quantify FCC-CuAu, HCP-straight, and CO IrVA/B and DCsClA/B,
respectively. NCO/NSO = 1.0 suggests that all particles within BSLs are structurally and compositionally
ordered particles (i.e., defect-free).
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be present. Fig. 3.5 shows the calculated anti-site formation penalties for both identically
sized and size-disparate particles. This figure shows that a slight size disparity significantly
raises the anti-site formation penalty. It is thus reasonable to hypothesize that particle size
disparity could guide the formation of BSLs at the early stage of nucleation. The next section
uses the presented characterization framweork to investigate this hypothesis. This section
shows that size disparity can assist in promoting the formation of defect-free BSLs through
unique pathways, such as non-classical transformations during colloidal SA.

Figure 3.5: Anti-site formation energy is plotted against E*AA at different size ratios starting from (a)
BCC-CsCl configuration and b) FCC-CuAu configurations.

3.7 Probing Self-Assembly and Structural Evolution

Processes

The presented characterization framework demonstrates the mechanistic details of how BSLs
evolve (or nucleate) from dilute solutions. The characterization framework reveals that BSL
nucleation pathways either occur via one-step (classical) or two-step (non-classical) processes
(Figs. 3.6a-c). Fig. 3.6b demonstrates how BSLs can self-assemble by classical one-step
nucleation. Here, the fraction of identified SO crystalline particles, the fraction of identified
CO particles, and the total largest cluster size are plotted over time. First, a small crystalline
nucleus with an FCC-CuAu (CO) structure is formed. This small crystal nucleus then grows
into a larger size, and the final stabilized crystal is identical in structure with the initially
formed nuclei. Fig. 3.6c shows how the nucleation of BSLs can also proceed by non-classical
two-step nucleation. Here, instead of forming a small crystal nuclei, the particles rapidly
form large disordered amorphous aggregates with very few crystalline particles within these
clusters. Subsequently, these disordered amorphous clusters evolve into an ordered BSL, as
indicated by the continuous growth of identified SO particles.

Figs. 3.6d-e further demonstrate the differences between the nucleation processes of size-
disparate and identically sized particles over a broader parameter space of E∗

AA. For colloidal
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Figure 3.6: (a) Schematic illustration of self-assembly pathways for forming BSLs. The SA of BSLs can
either occur via a one-step or two-step nucleation process. (b) Example of a one-step nucleation pathway
observed at E∗

AA=0.3 and r∗=0.95. (c) Example of a two-step nucleation pathway (amorphous-crystal)
observed at E∗

AA=0.6 and r∗=0.95. The self-assembly process is quantified by plotting the fraction of
identified structurally ordered (SO) particles (blue curves), structurally and compositionally ordered (CO)
particles (red curves), and largest cluster size (dashed gray curves) as a function of time. The inset snapshots
show identified crystalline particles at the single-particle level at different times. The particle coloring scheme
is same as that of Fig. 3.4b. (d) Quantification of self-assembly pathways for size-disparate systems at size
ratio rA/rB=0.95. (e) Quantification of self-assembly pathways for identically sized systems at size ratio
rA/rB=1.0. The plots (d) and (e) show the fraction of SO particles within the largest cluster for different
E∗

AA (color bar), while the insets show the fraction of SO particles (XSO) as a function of the fraction of
CO particles (XCO).

mixtures in which one-step nucleation occurs, the SO crystal fraction grows linearly with the
size of the largest cluster. In contrast, for colloidal mixtures in which two-step (amorphous-
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Figure 3.7: Temperature-dependent self-assembly behavior for size-disparate particles at r∗ =0.95 and
E∗

AA=0.7. The figure plots the fraction of structurally ordered (SO) particles within the largest cluster
against the largest cluster fraction at different degrees of supercooling T ∗/Tm (color bar). Tm is the pre-
estimated temperature suitable for crystallization obtained from cooling simulations (see Fig. 3.12 in Section
3.9). The inset shows the fraction of SO particles (XSO) as a function of compositionally and structurally
ordered (CO) particles (XCO).

solid) nucleation occurs, no crystal is identified until the largest cluster size reaches about
80% of the total system size. An abrupt increase in crystal fraction is then observed after
this initial amorphous state. Interestingly, the two-step nucleation usually occurs for size-
disparate particles and relatively high E∗

AA close to the boundary of amorphous states (other
size ratios are provided in Fig. 3.11). For this relatively high interaction range (E∗

AA = 0.3 to
E∗

AA = 0.7), however, identically sized particles usually nucleate via a one-step process and
form highly CD crystals. Unlike size-disparate particles that can transform from disordered
amorphous clusters into BSLs via a diffusionless process, the identically sized particles usually
form CD crystalline nuclei quickly at the initial nucleation stage. Such CD nuclei then
continuously grow larger in size and remain trapped in substitutionally disordered crystalline
phases.

These results illustrate that size-disparate particles can form BSLs via a two-step pro-
cess: particles first aggregate into disordered amorphous clusters and then rearrange into
crystalline BSL structures. Note that the observation of two-step nucleation pathways di-
rectly contradicts the well-recognized classical nucleation theory (CNT) [152, 153], suggest-
ing a more complex picture of the transformation mechanism for BSLs. While CNT is a
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widely used rule for characterizing nucleation of particles from the solution phase, more
and more evidence now supports two-step nucleation’s occurrence in nature [154–158]. One
commonly believed reason for the emergence of two-step nucleation pathways is the su-
percooling/supersaturation that can occur within colloidal SA systems. In colloidal SA,
two-step nucleation has been reported once the liquid is deeply quenched [159]. In such
cases, amorphous aggregates are formed initially before they sluggishly transform into crys-
tals depending on the temperature and cooling rate. Previous work has also suggested that
slow particle mobility brought on by supercooling can inhibit crystallization and promote the
formation of amorphous aggregates [160]. The successful transformation from amorphous
to crystalline phases is assumed to be caused by an interplay between thermodynamics and
kinetics. Although the full picture of the emergence of two-step nucleation requires more
theoretical calculations, the presented characterization framework provides a way to quantify
efficiently the emergence of well-ordered crystalline nuclei from many defective crystalline
nuclei or amorphous aggregates at the particle level. This capability allows users to probe
into the SA details of BSLs at early nucleation stages under supercooling. Such probing is
otherwise not achievable in experiments, as nucleation is usually a rare event that is generally
difficult to capture and quantify.

This chapter next investigates further BSL nucleation to determine the role of super-
cooling in influencing the observed nucleation pathways. Simulation results show that, for
size-disparate systems that previously underwent two-step nucleation, raising temperature
causes a tendency towards the observation of one-step nucleation pathways that result in
well-defined CO crystals (Fig. 3.7). Two-step nucleation usually occurs under moderate
supercooling. Under deeper supercooling, more amorphous particles were identified during
the SA process. However, even under these highly undercooled conditions, size-disparate
particles within dense amorphous aggregates still tend to rearrange into more ordered (but
not “well-ordered”) BSL structures – despite the process becoming slower with further low-
ering temperatures. The reduced mobility of the particles in the clusters must significantly
impact the kinetics and inhibit the transformation from amorphous to well-defined binary
crystalline structures. A similar tendency of suppression of crystallization is observed for
identically sized particles (see Fig. 3.13 in Section 3.9). However, neither raising nor lowering
temperature improves the formation of defect-free BSLs. Mixtures of identically sized parti-
cles rather tend to be kinetically trapped in structures that are formed early on during SA,
either in highly compositionally disordered BSLs or more structurally disordered amorphous
aggregates at lower temperatures.

The above analysis has shown that particle size disparity can assist in the formation of
defect-free BSLs through two unique nucleation pathways: particles can either rearrange
from amorphous aggregates into BSLs under moderate supercooling or can directly nucleate
and grow into larger BSLs at higher temperatures. Note that raising the temperature can
drive crystallization mechanisms from two-step (non-classical) to one-step (classical). The
observation of such transitions is similar to those previously observed in an NaCl solution
[161] or a Lennard-Jones fluid system [162]. In the NaCl solution, single-step nucleation is
observed before the solution reaches the spinodal regime and two-step nucleation is observed
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after the solution reaches the spinodal regime. Similarly, in the Lennard-Jones fluid system,
a cross-over from a classical nucleation regime to a more collective mechanism of freezing
is observed, influenced by the existence of a spinodal singularity at higher supercooling.
Experimentally, it is also reported that two-step nucleation is widely observed, especially in
DFP systems [158, 163]. Nonetheless, the cooling rate, quench temperature window as well
as the details of particles can all impact the SA pathways. For instance, the presence of
DNA molecules around particles could result in dramatic sluggishness of rearrangement of
amorphous aggregates into crystalline structures due to the presence of hybridization kinetics
[163]. Accordingly, it may be valuable to investigate further the relationship between these
parameters and crystallization transition mechanisms to build a proper interpretation of the
nucleation of BSLs.

3.8 Conclusions and Next Steps

This chapter presented a framework for characterizing the self-assembly of binary colloidal
mixtures based on branched graphlet decomposition and deep learning. The characterization
framework was demonstrated by investigating the self-assembly of binary mixtures of DNA-
functionalized particles while varying two well-recognized design parameters, i.e., particle
size ratio and pairwise interaction potential. The investigation revealed that size disparity
at certain interaction potentials can improve the structural diversity of self-assembled BSLs,
leading to the formation of BCC-CsCl, FCC-CuAu, IrV, DCsCl and CD-CP lattices. As
a comparison, systems of hard spheres (without presence of pairwise interactions) assemble
a limited range of rFCC-like structures. The presented framework also revealed that small
A/B particle size ratios can drastically reduce the number of substitutional defects within
BSLs and, thus, promote the formation of defect-free BSLs.

The proposed characterization framework can pave the way for systematic and compu-
tationally efficient investigation of the underlying mechanisms of the self-assembly of BSLs.
The above analysis showed that size-disparate colloidal mixtures can undergo two-step, non-
classical nucleation pathways where BSLs evolve from dense amorphous precursors, instead
of directly nucleating from dilute solution in one step. Interestingly, size-disparate mixtures
tend to form (nearly) defect-free BSLs, regardless of their adopted nucleation pathway. On
the other hand, systems of identically sized particles always follow one-step classical nucle-
ation pathways, but often become kinetically trapped in substitutionally defective structures
in the early stage of nucleation. Thus, the fine control of self-assembly of defect-free BSLs
using size-disparate particles under given conditions can facilitate potential approaches to
engineer defect-free BSLs. The proposed framework can be easily adapted to investigate the
underpinning mechanisms of other colloidal self-assembly systems.

The next chapter begins by using autoencoders for full lattice characterization of colloidal
SA systems (as opposed to single particle characterization). In other words, autoencoders
are used to discover a handful of order parameters that can describe the topology of the
entire lattice. Next, deep neural networks are used to create a dynamic model that predicts
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the time evolution of the reduced-order system state as a function of previous states and the
change in temperature. This dynamic model is then integrated into a model-based feedback
control framework in order to guide the two-dimensional SA of an in-silico system of colloids.
The efficacy of the framework is then analyzed and used to determine next steps.

3.9 Supplementary Information

Autoencoder Training

The structural and compositional autoencoders are trained using the unique structural and
compositional neighborhood graphs mentioned in Section 3.3 (45,032 unique structural neigh-
borhood graphs and 4,814 unique compositional neighborhood graphs). For each type of
autoencoder, the unique neighborhood graphs are split into training/validation/testing data
sets at 60%/20%/20% ratio. For each autoencoder, hyperbolic tangent activation functions
are chosen in the hidden layers while linear activation functions are chosen for the output
layer. Dropout regularization is used to prevent overfitting [109], a batch size of 32 is used
during training, and an MSE loss function is used. The optimal network size (i.e., number
of nodes and layers) for reach autoencoder is found by plotting autoencoder training loss
as a function of network size and implementing the “elbow method”. This method selects
the network architecture with the best balance of computational cost and performance (see
Fig. 3.14) [114, 115]. Note that the number of nodes in the bottleneck layer corresponds
to the size of the low-dimensional space (i.e., the number of “order parameters”). Finally,
the autoencoder was implemented using the Python library Keras (a TensorFlow API) [116,
117].

Note that this autoencoder training strategy differs slighlty from the autoencoder train-
ing strategy described in Section 2.3. In Section 2.3, the data was not split into train-
ing/validation/testing data sets due to the fact that inconsistent neighbor lists at solid-vapor
interfaces yielded a large number of “outlier” neighborhood graphs (i.e., the 73 × 1 entry
neighborhood graph vectors). In this chapter, neighborhood graphs were not recorded for
particles in which the inter-particle distance exceeded the distance at which the inter-particle
potential is zero. This distance is obviously known a priori for in-silico systems.

Partitioning the low-dimensional spaces for structural and
compositional classification

Once the autoencoder models are chosen and the (unique) structural and compositional
neighborhood graphs have been translated to their low-dimensional analogs, the next step
is to partition these low-dimensional spaces into discrete regions to make final decisions
regarding structural identity. The main text mentions that:

1. Agglomerative hierarchical clustering with Ward’s linkage is implemented to partition
the low-dimensional spaces
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2. The agglomerative hierarchical clustering procedure creates a cluster tree that shows
the hierarchical structure of all 1 to N possible cluster distributions for the structural
and compositional low-dimensional spaces

3. The choice of the “best” number of clusters for analysis is somewhat subjective

4. Clusters are labeled based on the low-dimensional coordinates of theoretically perfect
versions of certain structures of interest

5. The structures of interest are FCC, HCP, BCC, IrVA, IrVB, DCsClA, and DCsClB

This section is meant to provide more details about the clustering/labeling process.
For the structural and compositional low-dimensional spaces, Fig. 3.15 plots the number

of low-dimensional points (that represent neighborhood graphs) corresponding to FCC, HCP,
BCC, IrVA, IrVB, DCsClA, and DCsClB structures against the number of total clusters in
each branch of the cluster tree. For the structural low-dimensional space, the cluster size
for all 7 relevant groups stabilizes around 410 clusters. The structural low-dimensional
space is then partitioned with 410 clusters, 7 of which correspond to the target structures.
The compositional dimensionality reduction reveals that the (compositional) low-dimensional
representations of several theoretically perfect lattices are nearly identical. As a result, three
different clusters represent 7 target structures. These clusters are (i) FCC-HCP-IrVB, (ii)
BCC-DCsClB, and (iii) IrVA-DCsClA. Fig. 3.15 shows that the cluster size for these three
groups stabilizes around 290 total clusters. The compositional low-dimensional space is then
partitioned accordingly.

The cluster trees for the structural and compositional low-dimensional spaces at 410 and
290 clusters are shown in Fig. 3.16 with target structures labeled. Table S1 summarizes the
14 target groups used in the analysis in the main text along with their cluster IDs. Remember
that “compositionally ordered” and “compositionally disordered” labels refer to particles
whose local environments conform to a target structure without and with substitutional
defects, respectively. Fig. 3.17 shows visual examples of some select lattices that are classified
according to the descriptors in Table 3.1. These lattices are selected from the 55 isothermal
self-assembly trajectories used to train, validate, and test the characterization framework
mentioned in the main text. Fig. 3.15 is meant to give the reader a flavor of the types of
polymorphic and defective crystals that the framework is capable of classifying.
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Supplementary Figures

Figure 3.8: The above snapshots show crystal structures obtained from simulation trajectories of (a) IrV at
E∗

AA = E∗
BB = 0.4 and r∗ = 0.85, (b) distorted CsCl at E∗

AA = E∗
BB = 0.4 and r∗ = 0.8, and (c) BCC-CsCl

at E∗
AA = E∗

BB = 0.4 and r∗ = 1.0. The figures on the left show the snapshots obtained from simulations
and the figures on the right show bonds between all particles for better illustration.

Figure 3.9: (a) Structural crystallization order diagram as a function of particle size ratio r∗ = rA/rB , and
relative like interaction strength E∗

AA = EAA/EAB . The symbols showing the predominant crystal structures
obtained from simulation trajectories. The red colormap shows the fraction of structurally ordered particles
(i.e., BCC, FCC, HCP, IrV, distorted BCC). (b) Compositional crystallization order diagram as a function
of particle size ratio r∗ = rA/rB , and relative like interaction strength E∗

AA = EAA/EAB . The blue colormap
shows the fraction of the number of compositionally ordered particles (i.e., BCC-CsCL, FCC-CuAu, HCP-
straight,IrV-CO, DCsCl) over structurally ordered particles (NCO/NSO).



CHAPTER 3. DISCOVERY OF COMPOSITIONAL ORDER AND SELF-ASSEMBLY
PATHWAYS IN BINARY COLLOIDAL MIXTURES 54

Figure 3.10: The fraction of identified crystals is plotted against E∗
AA for systems of identically sized

particles. The structurally and compositionally ordered BSLs are plotted as solid color bars while the
structurally ordered yet compositionally disordered particles are plotted as lighter color bars.

Figure 3.11: Quantification of self-assembly pathways for size ratios (a) rA/rB = 0.9, (b) rA/rB = 0.85,
and (c) rA/rB = 0.8. The plot shows the fraction of structurally ordered (SO) particles within the largest
cluster for different E∗

AA (color bar), while the inset shows the fraction of SO particles (XSO) as a function
fraction of compositionally ordered (CO) particles (XCO).



CHAPTER 3. DISCOVERY OF COMPOSITIONAL ORDER AND SELF-ASSEMBLY
PATHWAYS IN BINARY COLLOIDAL MIXTURES 55

Figure 3.12: Example plot for estimating suitable crystallization temperature Tm at a given size ratio
r∗ = 0.95. The Tm is obtained from fitting curves to a sigmoidal form PE(T ) = PEmin + (PEmax −
PEmin)/(1 + exp(a(T − Tm))

Figure 3.13: Temperature-dependent self-assembly behavior at r∗ = 1.0 and E∗
AA = 0.7. (a) The fraction

of structurally ordered (SO) particles is plotted against the largest cluster fraction under different degrees
of supercooling T*/Tm. The inset shows the fraction of SO particles (XSO)as a function fraction of compo-
sitionally ordered (CO) particles (XCO).
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Figure 3.14: Autoencoder architecture optimization. For both the structural and compositional autoen-
coders, the autoencoder MSE is plotted against the number of nodes in the bottleneck layer (i.e., the length of
the low-dimensional representation vector) for various network sizes). “Elbows” in these plots occur around
a bottleneck size of 3 nodes, indicating a low-dimensional size of 3 is likely sufficient to capture the essential
information from the neighborhood graphs. For both the structural and compositional cases, autoencoders
with two hidden layers, 100 hidden nodes, and 3 bottleneck nodes show the lowest MSE. These models are
used throughout the main text.

Figure 3.15: Analysis to determine number of clusters. Agglomerative hierarchical clustering (using Ward’s
linkage) is used to cluster the structural and compositional low-dimensional representations the unique
neighborhood graphs identified from the 55 colloidal self-assembly trajectories that were used to train,
validate, and test the autoencoder (see main text). The number of unique neighborhood graphs corresponding
to FCC, BCC, HCP, IrVA, IrVB, DCsClA, and DCsClB structures is plotted against the number of clusters in
each branch of the resulting cluster tree for both low-dimensional spaces. In the structural low-dimensional
space, the target structure cluster size stabilizes around 410 total clusters. For the compositional low-
dimensional space, the target structure cluster size stabilizes around 290 total clusters. Both low-dimensional
spaces are then partitioned accordingly.
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Figure 3.16: .Structural and compositional cluster trees. The structural cluster tree (with 410 clusters,
see Fig. 3.15) and the compositional cluster tree (with 290 clusters, see Fig. 3.15) are show above. The
branches corresponding to target clusters are labeled accordingly.

Figure 3.17: Various classified lattices. The figure shows several binary colloidal lattices that are classified
by the deep learning-based characterization framework. These lattices are selected from the 55 isothermal
self-assembly trajectories used to train, validate, and test the characterization framework (see main text).
Table S1 pairs the colors with their physical classifications. Overall, the framework is capable of distin-
guishing various types of structurally and compositionally ordered, structurally ordered yet compositionally
disordered, and fully defective particles within (polymorphic) lattices.
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Figure 3.18: Potential energy over time in swapping procedure. In Fig 2 in the main text, the A- and B-
type particles within a perfect spherical FCC-CuAu lattice are manually swapped over time (i.e., simulation
frames). Swap attempts are only accepted if the potential energy of the new configuration is higher than
that of the current configuration. This figure measures the potential energy as more swap moves occur.
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Supplementary Tables

Table 3.1: Lattice classifications. This table summarizes the labels and cluster IDs associated with the
target structures of interest. “CO” stands for “structurally and compositionally ordered” while “CD” stands
for “structurally ordered but compositionally disordered”. The colors in the last column are used in Fig. 3.17
and Fig. 3.2-3.4. Note that throughout this chapter, FCC-CO, BCC-CO, and HCP-CO are often referred
to as FCC-CuAu, BCC-CsCl, and HCP-straight. All other groups are referred to exactly as they are listed
above.

Label Structural Cluster ID Compositional Cluster ID Color

FCC-CO C276 C183 Red
FCC-CD C276 Any except C183 Light Red
HCP-CO C265 C183 Green
HCP-CD C265 Any except C183 Light Green
BCC-CO C183 C177 Blue
BCC-CD C183 Any except C177 Light Blue
IrVA-CO C268 C197 Brown
IrVA-CO C268 Any except C197 Light Brown
IrVB-CO C275 C183 Violet
IrVB-CD C275 Any except C183 Light Violet
DCsClA-CO C330 C197 Orange
DCsClA-CD C330 Any except C197 Light Orange
DCsClB-CO C206 C177 Gray
DCsClB-CD C206 Any except C177 Light Gray
Other None of the Above Any Transparent
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Chapter 4

Model-Based Feedback Control of
Colloidal Self-Assembly Systems

This work proposes a model-based feedback control framework to modulate systematically tem-
perature to guide the two-dimensional self-assembly of an in-silico system of DNA-functionalized
particles towards a defect-free crystal. This work first uses deep autoencoders to discover or-
der parameters that can quantify the system state. A deep neural network is then used to
model the colloidal self-assembly dynamics in terms of these order parameters. The model-
based feedback control framework then manipulates the system temperature based on the cur-
rent system state and predictions from the dynamic model. The approach can reliably guide
the test system towards desired structures.

4.1 Introduction

To drive SA systems towards desired structures more reproducibly, it has been proposed to
design a feedback control policy wherein a global actuator is manipulated based on currently
available information on the system state [13, 37, 38, 47]. Although such strategies provide
an added level of robustness to both intrinsic and extrinsic system disturbances (and thus
kinetic arrest), the existing approaches have relied on control strategies that are either not
scalable for practically-sized systems (e.g., use dynamic programming) [37, 38], are too simple
to handle complex dynamics (e.g., use PID control) [13], cannot quantify the state of complex
lattice structures [47], or employ models that rely on Bayesian estimation techniques whose
computational cost scales exponentially with the number of states [37, 38, 59]. For these
reasons, such techniques have only been applied to small systems whose dynamics are nearly
solely governed by repulsive forces.

Systematic modulation of the global manipulated variables of colloidal SA systems to
manufacture reproducibly highly-ordered crystalline materials thus remains an open grand
challenge. The key objective of this work is to investigate a model-based feedback control
strategy for systematically modulating the inherently stochastic and nonlinear dynamics of
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colloidal SA systems via a global actuator (e.g., temperature). The control strategy is devel-
oped and tested on an in-silico system of DNA-functionalized particles (DFPs). The system
state is quantified using order parameters that are discovered from a deep neural network
called an autoencoder [100, 101]. The system dynamics are modeled by a second deep neural
network whose architecture can be easily adapted to multivariate systems. The model-based
feedback control strategy avoids the curse of dimensionality and can handle state and input
constraints to more effectively guide the colloidal SA. The effects of modeling strategies, state
constraints, and controller tuning on the control strategy’s efficacy are explicitly analyzed,
and suggestions for improved controller performance are provided.

4.2 Colloidal Self-Assembly System Description

The test system, originally presented in [164], is a two-dimensional in-silico system that is
comprised of 500 “multi-flavored” DFPs. These multi-flavored DFPs are functionalized with
identical blends of complementary, single-stranded DNA (ssDNA) and ideally self-assemble
into a perfect, two-dimensional hexagonal crystal. The reader can refer to Section 2.5 for
more details on multi-flavored DFPs.

Uncontrolled SA of this system has been often observed to lead to defective, semi-
crystalline structures [164]. Particle interaction potentials are primarily determined by re-
pulsive interactions between the underlying silica particles, repulsive interactions due to
ssDNA chain overlap, and attractive interactions due to ssDNA hybridization [73, 164]. The
primary energetic driving force for particle assembly is ssDNA hybridization. Since changes
in temperature can be used to turn ssDNA bonds “on” or “off” (i.e., can cause ssDNA an-
nealing or melting), SA for this system can be actuated by changing the temperature (i.e.,
the “global manipulated variable” or “system input”). The overarching purpose of this work
is to investigate a model-based feedback control strategy for systematically guiding SA sys-
tems towards desired structures. The purpose of developing this control strategy on a test
system is to demonstrate the “proof of concept” of the strategy. The model-based feedback
control strategy was developed and tested using molecular dynamics (MD) simulations that
represent the key components of the system dynamics. The use of an MD representation of
the process allowed for efficient collection of large data sets that are then used to estimate
and evaluate the control strategy. The essential physics of the multi-flavored motif are cap-
tured by a modified Lennard-Jones (LJ) potential used in previous works that investigated
the dynamics of the test system [73, 164]. The MD simulations were performed using the
software package LAMMPS [128] with a canonical ensemble at a low packing fraction of 8%.
All pairwise interactions are truncated at r = 3ij , where ij represents the distance between
particles i and j. The simulations were performed in a square, periodic box with an edge
length of 71σ. The Verlet algorithm [165] was used to integrate the equations of motion using
a time step of t = 0.01σ

√
m/ϵij, where m represents particle mass and ϵ the interparticle

potential. A Langevin thermostat was used with a damping constant of σij

√
m/ϵij.
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4.3 Colloidal State Characterization

Although the time-scales for certain systems vary, the time-scale for most colloidal SA sys-
tems (including the test system) is on the order of seconds [14, 23]. The first step in
developing a system model amenable to online control is then to quantify the system state
accurately with limited computational cost. Common Neighbor Analysis (CNA) is a com-
putationally cheap yet reasonably accurate technique to classify configurations of complex
crystal structures [62, 83, 84, 87, 106]. The technique identifies local structure by construct-
ing a characteristic signature from the connectivity of particles’ nearest neighbors (where
“nearest” is defined as particles within a pre-determined cut-off radius). This signature is a
vector of variable-length discrete integer values that can uniquely identify to which lattice
structure an individual particle belongs. A complex system configuration can thus be deter-
mined by computing the CNA signature of each individual particle within that system. The
method can explicitly identify a number of defective, quasi-crystalline, or perfect unary or
binary crystal lattices (as opposed to merely assessing general order). CNA can also adapt
the length of the cut-off radius to account for thermal fluctuations. Even observing SA
trajectories in terms of CNA signatures allows for a simple visualization of common defects,
correlated lattice structures, and common assembly/disassembly pathways. Chapters. 2-3
chose not to employ CNA in favor of methods based on Delaunay Triangulation and graphlet
decomposition. This decision was primarily motivated by the fact that CNA depends on cut-
off radiuses, which are inherently somewhat arbitrary [79]. However, the characterization
methods of Chapters 2-3 are meant for investigating colloidal SA trajectories off-line and are
prohibitively expensive for the online control applications on which this chapter focuses.

CNA yields discrete signatures that represent local particle structure at the single particle
level. Online control applications, however, require low-dimensional, continuous descriptions
of the entire system state. This work first quantifies the entire system state based on the
fraction of particles with certain CNA signatures. Given that hundreds (or even thousands)
of unique CNA signatures can appear during SA, this chapter uses a deep autoencoder to
reduce these CNA signature fractions to a handful of order parameters.

The autoencoder was trained, validated, and tested with 5 time series, each of which has
a length of 4000 sampling times. Each time series began at a separate starting configuration,
ranging from dispersed to a perfect crystal. A sampling time of 500 time-steps was used,
where a time-step is defined as the dimensionless characteristic time of the system (i.e.,
t∗/t =

√
(ϵ/mσ2), [164]). At each sampling time, an input (i.e., temperature ramp rate)

is chosen from a random, uniform distribution. The bounds of this distribution at each
sampling time are dictated by the physical limits in maximum and minimum temperature
and temperature ramp rates for the system. The temperature ramp rates are assumed to
be achievable and the temperature over the system at any given sampling time is assumed
to be uniform. These temperature assumptions are used throughout the remainder of this
chapter. The time series were divided into three different data sets: 60% for training the
model, 20% for validating the model, and 20% for testing model.

Over this dataset, 193 unique CNA signatures were detected and each simulation frame
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was thus quantified by a 193 × 1, where each entry in the vector represents the fraction of
a different CNA signature. Following the procedure discussed in Section 3.9, the “elbow”
method was employed to choose a final autoencoder architecture and subsequent order pa-
rameters (see Fig. 4.1. In all, a bottleneck layer size of three nodes was chosen, yielding
a low-dimensional space of size 3 × 1. the autoencoder was implemented using the Python
library Keras (a TensorFlow API) [116, 117].

Figure 4.1: Autoencoder architecture optimization. The autoencoder mean-squared error (MSE) is plotted
against the number of nodes in the bottleneck layer (i.e., the length of the low-dimensional representation
vector) for various network sizes). “Elbows” in these plots occur around a bottleneck size of 3 nodes,
indicating a low-dimensional size of 3 is likely sufficient to capture the essential information from the CNA
signatures. At a bottleneck size of three nodes, the autoencoder with two hidden layers and 1000 hidden
nodes shows the lowest MSE. This model is used throughout the main text. Note that each autoencoder
used tanh activation functions in the hidden layers.

4.4 Colloidal Self-Assembly Dynamical Model

Deep neural networks (DNNs) have shown great promise for modeling the complex dynamics
of systems with multiple states [166]. Unlike the physics-based modeling approaches in
[37, 38, 59], DNNs can tractably model systems with 3 or more states. As a result, this
chapter models the system dynamics with a DNN. The time evolution of the order parameters
derived from teh autoencoder in the previos section, y(t + 1), is a function of the previous
autoencoder-based order parameter values, z(t), the previous temperature value, T (t), and
the input temperature ramp rate, u(t). Thus the model takes the form:

z(t+ 1) = f(z(t), T (t)u(t)). (4.1)

Note that this is a discrete-time dynamic model and the sampling time for this model is
500 time steps, where a time-step is defined as the dimensionless characteristic time of the
system (i.e., t∗/t =

√
(ϵ/mσ2), [164]).
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The model was trained, validated, and tested using the exact same data set that was
used to train the autoencoder in the previous section. A hyper-parameter optimization
based on the elbow method was implemented. The final DNN contained 2 hidden layers
and 100 hidden nodes and tanh activation functions on the hidden layers. The DNN was
implemented using the Python library Keras (a TensorFlow API) [116, 117].

The mean validation mean-squared error (MSE) for a 1-step prediction horizon is 0.00020.
The test MSE for the same 1-step predictions is 0.00021. The similar performance between
the mean validation and test errors suggest that the DNN is neither underfit nor overfit
[166]. Fig. 4.2 compares an example test trajectory of the MD simulations under varied
temperature ramp rates to 1-step predictions of the DNN. The figure shows excellent agree-
ment between the example realization and the 1-step predictions. Note, however, that the
DNN does not account for system stochasticity. As a result, the prediction MSE increases
rapidly (in fact, nearly logarithmically) with the number of prediction steps.

Figure 4.2: Example MD trajectory with DNN predictions. One-step predictions from the DNN (colored
in blue) are compared to “true” state trajectories from MD simulations (colored in red). Every unit on the
x-axis is one sampling time. The DNN predicts the colloidal SA dynamics with high accuracy.

4.5 Model Predictive Control Formulation

The goal of this chapter is to develop a model-based control framework that uses temperature
to guide reliably the colloidal SA of the test system past kinetically arrested states and
towards a desired, lowest-energy state at the free energy global minimum (e.g., a “defect-
free” 2D hexagonal crystal). Although at least 193 unique CNA signatures can describe
various colloidal SA states for the test system, the target, “defect-free” 2D hexagonal crystal
is fully described by 4 CNA signatures. In this target state, between 82-84% of particles have
one CNA signature, which will be labeled the ”crystalline CNA” signature going forward.
The remaining three signatures describe particles on the edge of the lattice, as particles on
the edge of a perfect lattice will have a different number of neighbors than those in the bulk.
Note that these CNA fraction values were verified to indicate a perfect hexagonal crystal
from a visual inspection of the lattice geometry.

Interestingly, outside of the target state, larger fractions of these three remaining CNA
signatures are commonly observed within defective and kinetically arrested states. For ex-
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ample, several clearly visually defective states can be seen with crystalline CNA fractions
of 0.6-0.75 and the sum of the 3 CNA fractions total 0.35 to 0.20. These fractions are thus
labeled “defective” CNA fractions moving forward. The specific goal of the model-based
feedback control strategy is thus to guide the SA test system to a target state of crystalline
CNA fraction 0.82 to 0.84 and limit the sum of the defective CNA fractions to below 0.18.
The idea of limiting the appearance of certain CNA signature fractions can be viewed as
incorporating a “state constraint” within the control strategy. By incorporating state con-
straints, the control strategy can explicitly seek to avoid colloidal SA states that contain
defective CNA fractions above 0.18 while actively seeking to achieve states that contain a
crystalline CNA fraction between 0.82 to 0.84.

An SA system may contain competing “control objectives” with respect to product qual-
ity and manufacturing time. The ultimate goal of the SA of a colloidal crystallization system
is to achieve defect-free crystals, which may involve guiding the colloidal SA system out of
essentially unavoidable kinetically arrested states. For example, it may take many more
assembly/disassembly cycles (and thus much more manufacturing time) to reach the global
free energy minimum at a crystalline CNA fraction of 0.84 than it may take to reach a local
free energy minimum at the marginally less crystalline state at a crystalline CNA fraction
of 0.76. Control objectives in SA systems may also include economic factors. For example,
implementing a series of very fast temperature ramps may guide the system to its global free
energy minimum more quickly, but the cost of implementing these quick ramps may make
the strategy economically impractical.

The previous paragraphs indicate that an effective model-based control strategy for col-
loidal SA must be able to handle nonlinear dynamics, state constraints, and competing
control objectives. Model predictive control (MPC) methods have previously demonstrated
the ability to account effectively for these considerations in other complex systems [167, 168].
MPC involves solving the following optimal control problem (OCP) to determine a future
sequence of temperature changes u(t) that guide the system towards the order parameter
values that correspond to the target state. The OCP that is solved at each sampling time k
is formulated as:

min
u

N−1∑
i=0

∥(y(i)− ytarget)∥2Q + ∥(u(i)− utarget)∥2R

s.t. z(k + i+ 1|k) = f
(
z(k + i|k)), T (k + i|k), u(k + i|k)

)
T (k + i+ 1|k) = T (k + i|k) + u(k + i|k)∆t

Du(k + i|k) ≤ d

Fy(k + i|k) ≤ f

GT (k + i|k) ≤ g

y(k|k) = g(z(k))

T (k|k) = T (k)

i = 0, ..., N − 1.
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The decision variables are u := u(k|k, u(k + 1|k, ..., u(k + N − 1|k). The cost function is
designed to follow a set-point for only the crystalline order parameter (i.e., ytarget = 0.84).
The target input value (i.e., temperature ramp rate) is set to utarget = 0 temperature units
per time in order to penalize the controller for making rapid control moves that can lead
to unstable behavior. Q, R, D, F , and G are weight matrices, while d, f , and g represent
the upper limits of the state and input constraints. The temperature state constraint and
input constraint reflect the physical limitations of the system. The state constraint on the
defective CNA fractions is set to prevent the system from reaching highly defective states
during assembly. As a result, the constraint attempts to ensure that system exists in a state
where ydefect ≤ 0.16, which is the maximum defect order parameter value in the “most”
perfect crystal. The crystalline CNA fraction is not constrained. The dynamic model f(·)
takes order parameters derived from the autoencoder, z(k+i|k), the temperature (T (k+i|k),
and the temperature ramp rate, u(k + i|k) as input and outputs order parameter values at
the next time step z(k + i + 1|k). The function g then converts these order parameters to
the crystalline and defective CNA fractions that are explicitly placed in the OCP. Using a
low-dimensional dynamic model (instead of a high-dimensional dynamic model in terms of
all 193 unique CNA signatures) allows the OCP to be solved on the order of seconds and
thus allows the proposed control strategy to be computationally tractable.

The OCP is implemented in receding horizon mode in order to provide feedback, where
only the first element of the optimal control sequence u∗(0) is applied to the SA system at
each sampling instant k. The optimal control sequence is then re-calculated at the next
sampling time. The OCP was solved using an IPOPT solver [169] from the Casadi Python
library. The state constraint on the defect order parameter was formulated as a “soft”
constraint [170].

4.6 Closed-Loop Implementation

The MPC strategy was first tuned by selecting the prediction horizon and the ratio of the cost
function weights (i.e., Q/R). A prediction horizon of N = 10 was chosen. The ability of the
deterministic data-driven model (Eq. (4.1)) to predict accurately the inherently stochastic
SA system dynamics degrades with prediction horizon. Although shorter horizons lead to
more accurate system dynamics predictions, these horizons are not long enough to predict
multiple assembly/disassembly cycles in the future. Ratios smaller than Q/R = 10 prevented
the controller from choosing input ramp rates that were large enough to break the system
out of kinetic traps, while ratios larger than Q/R = 10 encouraged the controller to choose
overly aggressive input profiles that sometimes led to unstable behavior.

The MPC strategy was applied to the test system under 50 different realizations of MD
simulations of the system. The mean and range of variation of the closed-loop simulations
are shown in Fig. 4.3, which shows that the system consistently reaches a final state value
that corresponds to the system’s global free energy minimum (and thus a “defect-free” two-
dimensional hexagonal lattice). However, the large range of variation bars in Fig. 4.3 indicate
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that the time to reach that target value varies significantly from run to run. Fig. Fig. 4.4
depicts three example closed-loop realizations with vastly different times to the final state.
Fig. 4.4 shows that generally the controller chooses a fast cooling rate to drive quickly the
system towards its target state, followed by a large heating rate to pull the system out of
a kinetic trap (indicated by a large defect order parameter value). Then, the controller
implements a series of relatively fast cooling and heating rates to jostle the system out of
various kinetic traps until the system reaches a pathway in which slow cooling can allow the
target state to be reached.

Figure 4.3: Closed-loop profiles of the defective and crystalline CNA fractions. The MPC strategy was
applied to 50 different realizations of MD simulations of the test system. The mean order parameter time
evolution is shown along with bars indicating the minimum and maximum observed state values (i.e., the
range of observed CNA fractions). Every unit on the x-axis is one sampling time.

One reason for the variation in the time to reach the final state is that the system often
violates the defect order parameter constraint (i.e., ydefect > 0.16) during assembly. This
causes the controller to heat the system up to cause crystal disassembly, and thus decrease
both the crystalline and defective CNA fractions. This heating is often followed by cooling,
which only sometimes increases the crystalline CNA fraction without significantly increasing
the defect CNA fraction. The variability in the effects of these heating/cooling sequences
(due to intrinsic system stochasticity) leads to the variation in the time to reach the final
state seen in Figs. 4.3-4.4.

Fig. 4.5 demonstrates the effects of the identity of the defective CNA constraint on the
time it takes for the system to reach its final state (i.e., final CNA fractions) and the average
final state values. Here, 50 closed-loop runs are implemented with defect constraint values
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Figure 4.4: Three sample closed-loop runs of the MPC strategy on MD simulations. Every unit on the
x-axis is one sampling time and the temperature is scaled from 0 to 1 for visibility purposes. Each color
refers to a separate trajectory.
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ranging from ydefect ≤ 0.16 to 0.25. After ydefect = 0.16, higher defect CNA fractions allow the
system to reach its final state more quickly. However, this final state is a kinetically-favored
local free energy minimum, which is less crystalline than the ytarget = 0.82 − 0.84 perfect
crystal. This trade-off clearly demonstrates the previously mentioned competing control
objectives of product quality and assembly time. Finally, note that the mean time to the
final state scales with the variance in the time it takes the system to reach that final state.
This information was not explicitly shown in Fig. 4.5 for brevity purposes.

Figure 4.5: Comparison of the effect of the defect constraint on controller performance. The MPC strategy
was applied to 50 different realizations of MD simulations of the test system for different values of the defect
state constraint. The average time to the final state and average final state value are shown for each defect
constraint. Each unit on the x-axis is 1 sampling time.

4.7 Conclusions and Next Steps

This chapter presents a model predictive control approach for controlling colloidal SA sys-
tems that involves quantifying the system state with order parameters discovered by an
autoencoder and modeling system dynamics with a deep neural network. The model pre-
dictive control strategy was able to guide reliably a two-dimensional in-silico system of
DNA-functionalized silica colloids towards its global free energy minimum (i.e., a perfect
2D hexagonal lattice). Despite consistently reaching the target state, the time to reach the
target state was largely variable from run-to-run. This variance could likely be reduced
by explicitly accounting for system stochasticity in the formulation of the optimal control
problem [14].
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The most obvious way to account explicitly for system stochasticity in the optimal control
problem is to replace the deterministic, deep neural network-based model with a stochastic
dynamical model. Moreover, in practice, the temperature may not be uniformly distributed
over the system (i.e., large temperature gradients may exist). The existence of these gradi-
ents introduces another source of stochasticity into the system, which further justifies the
need for a stochastic dynamical model. As a result, the next section investigates methods for
learning low-dimensional stochastic dynamical models of multi-variate, intrinsically stochas-
tic systems with nonlinear dynamics. Although the original motivation for the work in the
next chapter was modeling colloidal SA dynamics, the framework in principle be applied to
any stochastic dynamical system. As a result, the next chapter deviates from previous ones
in its generalizability past colloidal SA systems.
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Chapter 5

Stochastic Physics-Informed Neural
Ordinary Differential Equations

Stochastic differential equations (SDEs) are used to describe a wide variety of complex
stochastic dynamical systems. Learning the hidden physics within SDEs is crucial for unrav-
eling fundamental understanding of these systems’ stochastic and nonlinear behavior. This
chapter proposes a flexible and scalable framework for training artificial neural networks to
learn constitutive equations that represent hidden physics within SDEs. The proposed stochas-
tic physics-informed neural ordinary differential equation framework (SPINODE) propagates
stochasticity through the known structure of the SDE (i.e., the known physics) to yield a set of
deterministic ODEs that describe the time evolution of statistical moments of the stochastic
states. SPINODE then uses ODE solvers to predict moment trajectories. SPINODE learns
neural network representations of the hidden physics by matching the predicted moments to
those estimated from data. Recent advances in automatic differentiation and mini-batch gra-
dient descent with adjoint sensitivity are leveraged to establish the unknown parameters of
the neural networks. This chapter demonstrates SPINODE on three benchmark in-silico case
studies and analyzes the framework’s numerical robustness and stability. SPINODE provides
a promising new direction for systematically unraveling the hidden physics of multivariate
stochastic dynamical systems with multiplicative noise.

5.1 Introduction

Stochastic dynamical systems are ubiquitous in a wide range of science and engineering
problems, such as dynamical systems governed by Brownian motion or those that experience
random perturbations from their surrounding environment [171–175]. Stochastic differential
equations (SDEs) are used to describe the complex behavior of a wide variety of stochastic
dynamical systems, including those involving electrical and cell signal processing [176–178],
colloidal/molecular self-assembly [37, 38], nucleation processes [179, 180], and predator-prey
dynamics [181, 182]. An important challenge in constructing and studying SDEs is that
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they often contain physics that are either unknown or cannot be directly measured (e.g., free
energy and diffusion landscapes [31, 69], transmission functions in models of disease spread
[183, 184], etc.). Creating a systematic framework to learn the hidden physics within SDEs
is thus crucial for unraveling fundamental understanding of stochastic dynamical systems.

A fairly general representation of SDEs is given by:

dx = f(x, g(x))dt+ h(x, g(x))dw, (5.1)

where x is the system state that is generally vector-valued, t is the time, and w is generally a
multivariable Gaussian white noise process. The “modeled” or “known” physics is comprised
of f(·), h(·), and the structure of the SDE (i.e., the additive relationship between f(·) and
h(·) and the multiplicative relationship between h and w). This chapter considers g(x) to
be the “unmodeled” or “unknown” hidden physics. This chapter thus seeks to investigate
strategies to create a flexible and scalable framework for systematically learning the hidden
physics g(x) within SDEs of form Eq. (5.1) from stochastic trajectory data.

The most commonly reported methods for learning g(x) from stochastic trajectory data
involve evaluating the time limits of the first and second conditional moments [185–196]:

f(x, g(x)) = lim
τ→0

1

τ

〈
(ξ(t+ τ)− ξ(t))|ξ(t) = x

〉
, (5.2a)

h(x, g(x)) = lim
τ→0

1

2τ

〈
(ξ(t+ τ)− ξ(t))2|ξ(t) = x

〉
, (5.2b)

where ξ denotes a realization of the stochastic process with a δ-function distribution at
the starting point t, ξ(t) = x, τ is the sampling time, and the angular brackets denote
ensemble averaging. In practice, τ → 0 must be extrapolated or τ must be chosen to be
sufficiently small to represent the limit. As the lower bound of τ is often determined by
experimental limitations, the primary challenge facing works [188–196] is how to determine
a robust way to extrapolate τ → 0. Common approaches to address this challenge involve
adding correction terms to Eq. (5.2b) [188], using autocorrelation functions to simplify Eq.
(5.2b) [197], employing kernel-based regressions over τ [189], and iteratively updating the
limit evaluations based on computed probability distributions [191]. However, such methods
generally rely on inflexible, data-intensive, and system-specific sampling techniques and/or
have been shown to be non-viable when short-time linear regions do not exist in the trajectory
data [31, 69, 189].

Alternative approaches for learning g(x) leverage Bayesian inference to estimate transi-
tion rates along adjacent intervals of x, e.g., [28, 31, 37, 69, 70, 198–200]. The hidden physics
g(x) can then be recovered by exploiting relationships derived from the Fokker-Planck equa-
tion [201]. Although Bayesian inference approaches have been shown to be less sensitive to
the sampling time than those that depend on extrapolating τ → 0 [31, 69], these approaches
either (i) learn g(x) at discrete values of x and then fit analytic functions to these discrete
values [28, 31, 37, 69, 198, 199], or (ii) represent the unknown g(x) using basis functions and
learn the coefficients of those basis functions [70, 200]. The former approach can become in-
tractable when the dimension of x is large, or when g(x) is highly nonlinear and thus requires
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x to be finely discretized. The latter approach can be highly sensitive to the choice of basis
functions and can exhibit other numerical issues. As such, this latter approach often requires
a priori knowledge about the stochastic system to inform the choice of basis functions [70].

To address the shortcomings described above, this chapter proposes a new framework
for learning the hidden physics g(x) in Eq. (5.1), which this chapter refers to as stochas-
tic physics-informed neural ordinary differential equations (SPINODE). SPINODE approx-
imates g(x) as an artificial neural network, where the weights and biases within the neural
network represent the SDE hidden physics. Artificial neural networks provide a scalable and
flexible way of approximating the potentially highly nonlinear relationship between g(x) and
continuous values of x without the need for a priori assumptions about the form of that
relationship [202–204]. SPINODE then combines the notions of neural ordinary differential
equations (neural ODEs) [205, 206] and physics-informed neural networks (PINN) [207–211]
to learn the weights and biases within the neural network that approximates g(x) from state
trajectory data. If one had access to the true state distribution at particular time points
(which is generally non-Gaussian due to the nonlinear terms appearing in Eq. (5.1)), one
could attempt to identify the neural network parameters that minimize a distributional loss
function (e.g., the sum of the Kullback–Leibler divergence between the true and predicted
distribution). However, not only would this loss function be more complicated to evaluate,
direct access to exact state distributions is often unavailable since these distributions must
be estimated from a finite set of state trajectories collected from simulations or experiments.
Therefore, this chapter opts for a more tractable moment-matching framework [212–214],
which is an established method in statistics for simplifying the distribution-matching prob-
lem. There are two key advantages to the moment-matching approach in the context of
partially known SDEs:

• The moment-matching approach only requires moments of the state to be measured at
discrete time points (with potentially varying sample times) from some known initial
state distribution, which are easier to estimate than the full probability distribution or
conditional moments.

• The predicted moments of the state based on Eq. (5.1) can be estimated using es-
tablished uncertainty propagation techniques. As long as the uncertainty propagation
method is differentiable, concepts from the neural ODE framework can be used to
compute derivatives needed for efficient training while preserving important features
from the underlying SDE.

Although SPINODE can be adapted to handle a variety of different uncertainty propagation
methods, this chapter mostly focuses on the unscented transform (UT) method [215–217]
due to its ability to tradeoff gracefully between accuracy and computational efficiency. The
UT method, when applied to Eq. (5.1), yields simple analytic expressions for the mean
and covariance of the states in terms of the solution to a relatively small set of ODEs. By
defining and evaluating the model in terms of ODE solvers, one immediately gains the well-
known benefits of such solvers including: (i) memory efficiency, (ii) adaptive computation



CHAPTER 5. STOCHASTIC PHYSICS-INFORMED NEURAL ORDINARY
DIFFERENTIAL EQUATIONS 74

with error control, and (iii) prediction at arbitrary sets of non-uniform time points [205].
All of these benefits are important when developing an efficient training algorithm for the
neural network representation of g(x) for which the loss gradient with respect to the neural
network parameters can be computed using adjoint sensitivity methods [205, 206, 218].

To highlight the differences between SPINODE and previous methods, let us turn back to
Eq. (5.2), which essentially computes the time derivative of the mean and covariance of x at
some time t by some limit approximation. Previous works [185–196] have proposed many dif-
ferent strategies for interpolating measured state data from a finite set of discrete time points
to estimate this limit; however, these strategies are largely system-specific. SPINODE, on
the other hand, uses advanced uncertainty propagation and ODE solvers to predict directly
state moment data at any set of time points. Since these underlying methods have been de-
veloped to apply to a diverse set of systems, including those that involve high-dimensional,
nonlinear, and stiff dynamics, SPINODE can be flexibly applied to systems arising from
all different types of applications, which this chapter demonstrates by applying SPINODE
to the aforementioned case study systems. Further note that although SPINODE is only
described in the context of the first two moments in this paper for simplicity, it can nat-
urally incorporate any number of moments (e.g., skew and kurtosis) when learning g(x).
This suggests that SPINODE has the potential to better handle highly non-Gaussian state
distributions, which may arise when f(·), h(·), or g(·) are highly nonlinear.

This chapter demonstrates the efficacy, flexibility, and scalability of SPINODE on three
benchmark in-silico case studies. The dynamics of each system are described by SDEs of
form Eq. (5.1) that contain nonlinear and state-dependent hidden physics terms. The first
case study is a two-state model for directed colloidal self-assembly with an exogenous input
[59], the second is a four-state competitive Lotka-Volterra model with a coexistence equilib-
rium [219], and the third is a six-state susceptible-infectious-recovered (SIR) epidemic model
for disease spread [220]. This chapter shows that SPINODE is able to learn efficiently the
hidden physics within these SDEs with high accuracy. This chapter analyzes the numerical
robustness and stability of SPINODE and provide suggestions for future research. Finally, a
fully open-source version of SPINODE has been released on GitHub with end-to-end exam-
ples [221], so that interested readers can easily reproduce and extend the results described
in this chapter.

5.2 Method Overview

A schematic overview of the proposed SPINODE method is shown in Fig. 5.1. Repeated
stochastic dynamical system trajectories are recorded to estimate the time evolution of sta-
tistical moments of the stochastic state, m

(i)
x (tk) for all i = 1, . . . , Nm where Nm denotes the

total number of moments considered (left). The hidden physics g(x; θ) are represented by a
(deep) neural network that is parameterized by unknown weights and biases denoted by θ
(center). Established uncertainty propagation methods are used to propagate stochasticity
through Eq. (5.1) and ODE solvers within the neural ODE framework are used to predict
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the time evolution of the moments for fixed neural network parameters, m̂
(i)
x (tk; θ) (left to

center). A loss function is constructed using the predicted and data-estimated moments
(center). Mini-batch gradient descent with adjoint sensitivity is used to update the param-
eters θ by minimizing the loss function (right). The hidden physics, g(x; θ), are considered
“learned” once the mini-batch gradient descent algorithm converges. The subsequent sub-
sections describe in more detail how data is collected and how SPINODE uses uncertainty
propagation, neural ODEs, moment-matching, and mini-batch gradient descent to learn the
weights and biases within the neural networks that approximate the unknown hidden physics
within SDEs.

Figure 5.1: Stochastic physics-informed neural ordinary differential equations framework (SPINODE). The

key steps include (i) estimating the time evolution of statistical moments m
(i)
x (tk) from repeated stochastic

dynamical system trajectories, (ii) approximating the hidden physics as a neural network (e.g., g(x; θ) =
[g1(x; θ), g2(x; θ)]

⊤, where the unknown weights and biases are θ), (iii) using uncertainty propagation to
propagate stochasticity through the known structure of the stochastic differential equation, (iv) using ODE

solvers within the neural ODE framework to predict the time evolution of statistical moments m̂
(i)
x (tk),

and (v) using moment-matching and mini-batch gradient descent with adjoint sensitivity to learn “optimal”
weights and biases θ∗.
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5.3 Data Collection

Data collection is accomplished by repeating stochastic dynamical system trajectories start-
ing from identical initial conditions. Here, N trajectories start from some initial condition
x0. During each trajectory, state values x are recorded at time points tk for K + 1 total
time steps. The N recorded values of each x(tk) are used to estimate moments m

(i)
x (tk).

For simplicity, this chapter primarily focuses on the first two moments, the state mean and
covariance, which are calculated as follows:

µx(tk) =
1

N

N∑
n=1

xn(tk),

Σx(tk) =
1

N

N∑
n=1

(xn(tk)− µx(tk))(xn(tk)− µx(tk))
⊤, (5.3)

where n ∈ {1, . . . , N} denotes the trajectory index.
Repeated stochastic trajectories from only one initial condition may not explore a large

percentage of the state space. To compensate for this, the stochastic trajectories can be
collected from multiple unique initial conditions. This chapter chooses initial conditions by
performing a grid search within a specified range of state values of interest. Note, however,
that more efficient sampling techniques, e.g., [222–226] can also be used, which will be
explored in future work.

Although this chapter estimates moments of the stochastic states from repeated stochas-
tic trajectories from identical initial conditions, it is clear that this strategy is not applicable
for systems in which one does not have control over initial conditions, number of replica
runs, or consistent measurement times. In such cases, probability distributions of state
trajectories can be learned using methods that may not necessarily require such fine con-
trol over the observed trajectory data. Potentially suitable distribution estimation methods
include variational autoencoders [227–229], generative adversarial networks [209, 230–232],
and/or energy-based models [233–235]. SPINODE is able to accommodate any data collec-
tion method from which the shape of the probability distribution (and thus the moments)
can be estimated at discrete time points from observed trajectory data.

5.4 Moment Prediction

As motivated in the introduction, an important advantage of the moment-matching frame-
work is that the framework can use efficient uncertainty propagation methods that do not
require access to the full distribution of the states. Unscented transform (UT) [215, 216,
236–238] is one such example of an efficient uncertainty propagation method that estimates
moments from a set of well-placed samples (known as sigma points) that can be efficiently
evaluated using a neural ODE solver.
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Before applying UT to SDEs, let us first summarize the UT method for estimating
the moments of a random variable y = F (z) that is some static nonlinear transformation
F : Rn → Rm of a random input z ∈ Rn. This chapter assumes knowledge of the mean
m ∈ Rn and covariance P ∈ Rn×n of z. Given this information, UT involves the following 3
steps:

1. Form the set of 2n+ 1 sigma points from the columns of the matrix A =
√

(n+ λP ),
which denotes the Cholesky decomposition, as follows

z(0) = m, (5.4)

z(i) = m+ [A]i , i = 1, . . . , n,

z(i) = m− [A]n−i , i = n+ 1, . . . , 2n,

where [A]i denotes the ith column of the matrix A. Then, compute the associated
weights of each of these sigma points

W
(m)
0 =

λ

n+ λ
, (5.5)

W
(c)
0 =

λ

(n+ λ)− (1− α2 + β)
,

W
(m)
i =

1

2(n+ λ)
, i = 1, . . . , 2n,

W
(c)
i =

1

2(n+ λ)
, i = 1, . . . , 2n,

where λ is a scaling factor defined by

λ = α2(n+ κ)− n, (5.6)

and α, β, and κ are positive constants. Typically, one should set α to be small (e.g.,
10−3), β = 2, and κ = 0 based on observations from [216].

2. Transform each of the sigma points as follows

y(i) = F (z(i)), i = 0, . . . , 2n. (5.7)

3. Compute estimates for the mean and covariance of y

µ̂y =
2n∑
i=0

W
(m)
i y(i), (5.8)

Σ̂y =
2n∑
i=0

W
(c)
i

(
y(i) − µ̂y

) (
y(i) − µ̂y

)⊤
,
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As shown in X, UT can be compactly represented in matrix form as follows

Z =
[
m · · · m

]
+
√

α2(n+ κ)
[
0

√
P −

√
P
]
, (5.9)

Y = F (Z),

µ̂y = Y wm,

Σ̂y = YWY ⊤,

where Z denotes the matrix of sigma points and wm ∈ R2n+1 and W ∈ R2n+1×2n+1 are a
vector and matrix defined in terms of the mean and covariance weight factors

wm = [W
(m)
0 , . . . ,W

(m)
2n ]⊤, (5.10)

W =
(
I −

[
wm · · · wm

])
diag(W

(c)
0 , . . . ,W

(c)
2n )

(
I −

[
wm · · · wm

])⊤
and I denotes the identity matrix of appropriate size. This representation will be helpful
when applying UT to SDEs of the form Eq. (5.1). Since both x and w are random quantities,
it is more convenient to write the SDE in the following form

dz(t)

dt
= F (z(t); θ) +De(t), (5.11)

where e(t) is a zero-mean white noise process with covariance Qc(t) and D is a dispersion
matrix. Eq. (5.1) can be expressed in this form by defining an augmented state z(t) =
[x(t), w(t)]⊤ and defining F (·) and D as follows

F (z(t); θ) =

[
f(x(t), g(x(t); θ)) + h(x(t), g(x(t); θ))w(t)

0

]
, D =

[
0 0
0 I

]
.

As shown in [217] (Algorithm 4.4), the predicted mean and covariance for any time t ≥
tk can be computed from the initial mean m(tk) = [µx(tk), 0]

⊤ and covariance P (tk) =
diag(Σx(tk), I) (estimated from data as discussed in the previous section) by integrating the
following differential equations

dm(t)

dt
= F (Z(t); θ)wm, (5.12)

dP (t)

dt
= Z(t)F⊤(Z(t); θ) + F (Z(t); θ)WZ⊤(t) +DQc(t)D

⊤,

where the sigma points Z(t) are defined similarly to that in Eq. (5.9), with m(t) and P (t)
now being functions of time. The original state mean and covariance can then be recovered
by a simple transformation of the augmented state

µ̂x(t|tk; θ) =
[
I 0

]
m(t; θ), Σ̂x(t|tk; θ) =

[
I 0
0 0

]
P (t; θ), (5.13)
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where the notation t|tk denotes predicted quantities given initial information at time tk.
This chapter uses ODE solvers within the neural ODE framework [205, 206] to integrate

Eq. (5.12) since F (·) is defined in terms of an embedded neural network used to represent the
unknown/hidden physics g(·). The flexible choice of ODE solver provides SPINODE with the
ability to handle accurately systems with high-dimensional, stiff, and/or nonlinear dynamics.
Another advantage of explicitly integrating the SDE (as opposed to applying a fixed time
step discretization) is that the framework can handle potentially sparse, non-uniform time
grids {t0, t1, . . . , tK}. Although the work in this chapter only exploits information provided
by the first two moments of the state distribution, UT can also straightforwardly incorporate
higher-order moment data, as described in [237, 238]. As shown in Section 5.10, incorporating
higher-order moments into the prediction scheme can lead to improved performance when
learning g(·) due to better placement of the sigma points.

5.5 Moment Matching

Since this chapter represents the hidden physics g(x; θ) with a neural network, a proper loss
function needs to be defined in order to estimate θ. In other words, given a loss function
L(θ), the goal of “learning the hidden physics” can be translated into solving the following
optimization problem:

θ⋆ = argminθ L(θ). (5.14)

A natural loss function for the moment-matching problem is the reconstruction error of the
moments, which can be defined as follows

L(θ) =
K∑
k=1

Nm∑
i=1

∥m(i)
x (tk)− m̂(i)

x (tk|tk−1; θ)∥2, (5.15)

which simplifies to the following expression when only the first two moments are considered

L(θ) =
K∑
k=1

∥µx(tk)− µ̂x(tk|tk−1; θ)∥2 + ∥Σx(tk)− Σ̂x(tk|tk−1; θ)∥2, (5.16)

where ∥ · ∥2 denotes the sum of squared values of all elements in the vector/matrix. Eq.
(5.14) is then solved via mini-batch gradient descent, which estimates the gradient of the
loss function as follows

∇θL(θ) ≈
1

B

∑
k∈B

∇θLk(θ), (5.17)

where Lk(θ) = ∥µx(tk) − µ̂x(tk|tk−1; θ)∥2 + ∥Σx(tk) − Σ̂x(tk|tk−1; θ)∥2 is the error in the kth

data point, B is the number of “mini-batch” samples, and B ⊂ {1, . . . , K} is a set of B
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randomly drawn indices. The gradient estimate in Eq. (5.17) can be efficiently evaluated
using the adjoint sensitivity method described in [205, 218]. Therefore, SPINODE can be
easily implemented using open-source deep learning software such as PyTorch [239] – an
implementation for the case studies considered in this chapter has been provided on GitHub
[221].

5.6 Simplified Training Procedure with Approximate

Unscented Transform

Based on the UT-based ODEs in Eq. (5.12) and the structure of F (·), the evaluation of
the mean and covariance are fully coupled, that is, m(t) and P (t) must be simultaneously
integrated to evaluate the loss function and its gradient. Since this procedure can be com-
putationally expensive, it is useful to derive alternative approximations that can lead to a
simplified training procedure. A particularly important special case of Eq. (5.1) is when the
hidden physics g(·) is fully separable, i.e.,

dx = f(x, g1(x; θ1)) + h(x, g2(x; θ2))dw, (5.18)

where g1(x; θ1) and g2(x; θ2) denote two completely independent neural networks (each with
their own set of local parameters). According to Eq. (5.12), θ = {θ1, θ2} must still be trained
simultaneously since the sigma points depend on both the mean and covariance.

To simplify the training process, this chapter presents an approximate UT that formulates
independent ODEs that describe the time evolution of the transformed sigma points Y =
F (Z), where Z = [Zx, Zw]⊤:

dY

dt
= f(Zx(t), g1(Z

x(t); θ)) + h(Zx(t), g(Zx(t); θ))Zw(t). (5.19)

The predictions of Y combined with Eq. (5.9) can be used to predict the mean and covari-
ance. More importantly, since Zw(t) has a mean of zero and appears in an additive fashion,
as long as the weights are chosen in a symmetric fashion, the h(Zx(t), g(Zx(t); θ))Zw(t) term
will cancel when evaluating the mean of the state. Therefore, in this case, the predicted state
mean only depends on θ1, i.e., µ̂x(t|tk; θ1). By assuming that the predicted state covariance
depends weakly on θ1, θ1 and θ2 can be separately trained. In particular, the following two
smaller optimization problems are solved sequentially:

θ⋆1 = argminθ1

K∑
k=0

∥µx(tk)− µ̂x(tk|tk−1; θ1)∥2, (5.20)

θ⋆2 = argminθ2

K∑
k=0

∥Σx(tk)− Σ̂x(tk|tk−1; θ
⋆
1, θ2)∥2.
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Note that the second optimization problem above is solved using a fixed functional form
for the drift term g1(x; θ

⋆
1). Although heuristic in nature, this decomposed training strategy

greatly reduces the number of parameters that need to be simultaneously considered when
evaluating the loss function gradients. Not only does this significantly reduce computational
cost, it also limits the search space such that it is less likely to find solutions that result in
overfitting.

5.7 Validation Criteria using Predicted State

Distribution

It is important to note that there can be many values for parameters θ that result in small
or even zero loss function values since moments only provide limited information about the
underlying distributions. In other words, even though two different sets of neural network
parameters produce the same loss function value, they may result in substantially different
predicted state distributions. A validation test can be developed to determine whether
or not a given set of optimal parameter values θ⋆ results in accurate state distributions.
In particular, the sum of the Kullback–Leibler (KL) divergence [240] between the measured
state distributions pxk

and predicted p̂xk
(θ⋆) state distributions from a given initial condition

over time can be evaluated, i.e.,

Validation Error =

KV∑
k=0

∫
X
pxk

(x) log

(
pxk

(x)

p̂xk
(x; θ⋆)

)
dx, (5.21)

where KV denotes the number of validation time steps. Note that one can easily modify
this definition to include multiple initial conditions and other controlled input values. Since
neither of these distributions can be evaluated exactly, it is reasonable to employ established
sample-based probability density function estimation techniques such as kernel density esti-
mation [241]. This chapter recommends using this validation error criteria to decide if the
hidden physics has been learned accurately enough to make reasonable predictions. When-
ever the validation error is large, there may be a need to either modify the training strategy,
increase the number of moments considered in the loss function, or collect additional data.
Due to its simplicity, it is useful to start with the training procedure described in Section
5.6 and, if it does not pass the validation error test described in this section, apply the more
detailed coupled training strategy.

5.8 Case Study System Descriptions

This chapter demonstrates SPINODE on three benchmark in-silico case studies from the
literature: (i) a two-state model for directed colloidal self-assembly with an exogenous input
[59], (ii) a four-state competitive Lotka-Volterra model with a coexistence equilibrium [219],
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and (iii) a six-state SIR epidemic model for disease spread [220]. Each of these stochastic
dynamical systems can be modeled by Eq. (5.1), and, since the hidden physics is fully
separable in each case, Eq. (5.18).

State trajectory data is collected by discretizing Eq. (5.1) according to an Euler-Maruyama
discretization scheme [242, 243]. These discretized SDEs are meant to represent the “real”

system dynamics. Data-estimated moments m
(i)
x (tk) are then collected according to the ap-

proach described in Section 5.3 and the SPINODE framework outlined in Sections 2.2–2.4 is
used to learn (or reconstruct) the hidden physics g(x) from the collected stochastic trajectory
data. SPINODE’s performance is evaluated by assessing the accuracy of the reconstructed
hidden physics. In each case study, moments m

(i)
x (tk) are calculated from 105 replicates of

50 time-step state trajectories from 2000 unique initial conditions (which leads to 105 to-

tal moments m
(i)
x (tk)). As mentioned in Section 5.3, the number of initial conditions could

very likely be decreased by employing more advanced sampling strategies, but exploring
such strategies is beyond the scope of this work. Section 5.10 examines the relationship
between the total number of data points and trajectory replicates and the hidden physics
reconstruction accuracy.

Case Study 1: Directed Colloidal Self-Assembly with an
Exogenous Input

The first case study is a two-state model for directed colloidal self-assembly with an exoge-
nous input [59]. Here, the voltage of an external electric field is adjusted to mediate the
two-dimensional self-assembly of silica micro-particles. The system dynamics are modeled
according to Eq. (5.1). Denote x as an order parameter that represents crystal structure
(i.e., the system state), u as the electric field voltage (i.e., the exogenous input), Kb as
Boltzmann’s constant, and T as the temperature:

dx = g1(x, u)dt+
√

2g2(x, u)dw,

g1(x, u) =
d

dx

(
g2(x, u)

)
− d

dx

(
F (x, u)

)g2(x, u)
KbT

,

g2(x, u) = 4.5× 10−3e−(x−2.1−0.75u)2 + 0.5× 10−3,

F (x, u) = 10KbT (x− 2.1− 0.75u)2. (5.22)

The hidden physics is comprised of the drift coefficient, g1(x, u), and the diffusion coefficient,
g2(x, u). Note that g1(x, u) is a function of a g2(x, u) and the free energy landscape F (x, u).
This relationship provides an example of how drift and diffusion coefficients can be used to
derive other hidden system physics.

This case study was chosen because the hidden physics terms are highly nonlinear and
depend on an exogenous input. To our knowledge, no previously reported approach for
learning SDE hidden physics has explicitly learned g(x, u). Instead, existing approaches
typically seek to learn g(x) at discrete values of u and interpolate [28, 31, 37, 38, 59]. This
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requires repeating the entire hidden physics learning procedure for many discrete values of
u and, thus, demands a trade-off between computational cost and accuracy. SPINODE, on
the other hand, directly learns g(x, u) over the entire (x, u) state space.

Case Study 2: Competitive Lotka-Volterra with a Coexistence
Equilibrium

The second case study is a four-state competitive Lotka-Volterra model with a coexistence
equilibrium [219]. The stochastic dynamics are modeled according to Eq. (5.1). Note that
x = [x1, x2]

⊤ and xeq
i are the coexistence equilibrium points:

dx1 = g1(x)1dt+
√

2g2(x)1dw1,

dx2 = g1(x)2dt+
√

2g2(x)2dw2,

g1(x)1 = x1(1− x1 − k1x2),

g1(x)2 = x2(1− x2 − k2x1),

g2(x)1 = x1(x2 − xeq
2 ),

g2(x)2 = x2(x1 − xeq
1 ),

xeq
1 =

1− k1
1− k1k2

, xeq
2 =

1− k2
1− k1k2

,

k1 = 0.4, k2 = 0.5. (5.23)

The hidden physics is comprised of the two-dimensional drift and diffusion coefficients,
g1(x1, x2) and g2(x1, x2). As a result, this chapter seeks to train two multi-input, multi-
output neural networks that approximate the hidden physics. The drift coefficient neural
network takes x1 and x2 as input and outputs g1(x1, x2)1 and g1(x1, x2)2. The diffusion
coefficient neural network takes x1 and x2 as input and outputs g2(x1, x2)1 and g2(x1, x2)2.

This case study was chosen because both the drift and diffusion coefficients are multi-
dimensional and nonlinear. SPINODE is applied to this “more complex” SDE to demonstrate
the framework’s scalability. Note that no aspect of the framework was altered from its
implementation for the previous case study.
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Case Study 3: Susceptible-Infectious-Recovered Epidemic Model

The third case study is a six-state SIR epidemic model for disease spread [220]. The stochastic
dynamics are modeled according to Eq. (5.1):

dS = (b− dS − g(S, I) + γR)dt+ σ1Sdw1,

dI = (g(S, I)− (d+ µ+ δ)I)dt+ σ2Idw2,

dR = (µI − (d+ γ)R)dt+ σ3Rdw3,

g(S, I) =
kShI

Sh + αIh
,

b = 1, d = 0.1, k = 0.2, α = 0.5, γ = 0.01, µ = 0.05,

δ = 0.01, h = 2, σ1 = 0.2, σ2 = 0.2, σ3 = 0.1. (5.24)

The hidden physics is the infection transmission rate, g(S, I), which plays a key role in
determining disease spread dynamics in many epidemic models [183, 184, 220, 226, 244–
247]. The form of g(S, I) is widely considered to be unknown, and each of the above-listed
references propose different versions of this function. SPINODE is applied to Eq. (5.24)
to learn g(S, I). This case study was chosen to demonstrate that SPINODE can not only
broadly learn drift and diffusion coefficients but also can learn specific unknown physics
terms within complex SDEs.

The hidden physics g(S, I) primarily contribute to the deterministic dynamics (i.e.,
f(x, g(x) in Eq. (5.1)) and appears in the time evolution equations for both S and I in
Eq. (5.24). The resulting loss function used to train g(S, I; θ) is then given by:

min
θ

K∑
k=0

∥∥µ̂S(tk)− µS(tk))
∥∥2

+
∥∥µ̂I(tk)− µI(tk))

∥∥2
, (5.25)

while the loss functions used to train g1(x, u) and g1(x1, x2) in the previous two case studies
were given by Eq. (5.20).

5.9 Learning Hidden Physics

This chapter demonstrates SPINODE on the case studies outlined in Section 5.8. In each
case study, moments m

(i)
x (tk) (e.g., means and covariances) are estimated from stochastic

trajectory data. The approximate UT method described in Section 5.6 is then used to yield
deterministic ODEs that describe the time evolution of the sigma points. An Euler ODE
scheme is used to solve these ODEs and thus predict the time evolution of the means and
covariances. Mini-batch gradient descent with adjoint sensitivity is then used to (i) match
the predicted means and covariances to the data-estimated means and covariances and (ii)
train the neural networks g(x; θ) that approximate the true hidden physics g(x). Note that
the time intervals over which the means and covariances are predicted (i.e., the sampling
times) are approximately 1/50th of the time it takes each system to reach steady state.
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Figure 5.2: Learned hidden physics of directed colloidal self-assembly system with an exogenous input.
SPINODE learns the drift and diffusion coefficients g1(x, u) and g2(x, u) of the stochastic dynamical system
described by Eq. (5.22) with high accuracy.

In principle, SPINODE’s performance can vary from run-to-run due to the randomness in-
volved in neural network weight initialization and assigning data-estimated momentsm

(i)
x (tk)

to training, validation, and test sets. SPINODE’s performance is then assessed by calculat-
ing the root mean squared errors (RMSE) between the learned hidden physics g(x; θ∗) and
the actual system hidden physics g(x) over 30 SPINODE runs with randomly selected initial
weight values and training/validation/test set data assignments. Table 1 shows the mean and
standard deviations of these RMSEs while Figs. 5.2 – 5.4 show a visual comparison of g(x; θ∗)
and g(x) for representative runs. In each case, SPINODE learns the hidden physics g(x; θ∗)
with high accuracy and low run-to-run variation. Note that in the real-world, the actual val-
ues of the hidden physics g(x) will be unavailable. In these cases, SPINODE’s performance
should be validated via the methodology described in Section 5.7., i.e., by comparing the
data-estimated moments of trajectories from the real dynamics m

(i)
x (tk) to those generated

from the learned dynamics involving f(·), h(·), and g(x, θ∗). Visual representations of the
time-evolution of the probability distributions of the states from randomly selected initial
conditions and exogenous input values for the colloidal self-assembly and Lotka-Volterra case
studies are shown in Figs. 5.5 – 5.6.

Further note that the hidden physics reconstructions shown in Figs. 5.2 – 5.4 and Table
1 essentially occur under “ideal” conditions – as g(x; θ) is trained using a large number of

moments m
(ij)
x (tk) that are estimated from a large number of repeated trajectories from a

large number of initial conditions (see Section 5.3 and Section 5.8 for details). In addition,
the sampling times are identical to the discretization times used in the Euler-Maruyama
simulations that represent the “true” system dynamics. This last point motivated the use
of an Euler ODE solver to predict the moment time-evolution. In the next section, The
performance of SPINODE is then assessed after decreasing the number of repeated tra-
jectories used to estimate the moments m

(ij)
x (tk), decreasing the total number of moments
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Figure 5.3: Learned hidden physics of competitive Lotka-Volterra with a coexistence equilibrium. SPIN-
ODE learns the drift and diffusion coefficients g1(x1, x2)1,2 and g2(x1, x2)1,2 of the stochastic dynamical
system described by Eq. (5.23) with high accuracy.

m
(ij)
x (tk) used to train g(x; θ), altering the uncertainty propagation strategy, and adjusting

the sampling time.

5.10 Numerical Robustness

Figs. 5.7-5.8 show RMSEs between the learned hidden physics g(x; θ∗) and the actual system
hidden physics g(x) for the Lotka-Volterra and SIR epidemic case studies as a function of the

total number of repeated trajectories used to calculate the data-estimated moments m
(i)
x (tk).

As can be seen, the RMSEs converge between 103 and 104 total repeats in both case studies
and the RMSEs grow very quickly under 102 total repeats. Figs. 5.7-5.8 highlight that
SPINODE’s ability to the learn the hidden physics g(x) critically hinges on how accurately

moments m
(ij)
x (tk) can be estimated from data. In this work, moments are estimated from
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Figure 5.4: Learned hidden physics of susceptible-infectious-recovered (SIR) epidemic model. SPINODE
learns g(S, I) from Eq. (5.24) with high accuracy.

Case Study RMSE Mean RMSE Std

Colloidal Self-Assembly, g1(x, u) 1.33× 10−4 2.77× 10−5

Colloidal Self-Assembly, g2(x, u) 4.97× 10−5 4.67× 10−6

Lotka-Volterra , g1(x1, x2)1 9.20× 10−4 1.24× 10−4

Lotka-Volterra , g1(x1, x2)2 7.91× 10−4 7.59× 10−5

Lotka-Volterra , g2(x1, x2)1 3.93× 10−3 5.97× 10−5

Lotka-Volterra , g2(x1, x2)2 4.88× 10−3 7.15× 10−5

Susceptible-Infectious-Recovered , g(S, I) 2.62× 10−3 1.89× 10−4

Table 5.1: Reconstruction root mean square errors of learned hidden physics. SPINODE is used to learn
the hidden physics of the case studies in Sections 5.8 – directed colloidal self-assembly with an exogenous
input, competitive Lotka-Volterra with a coexistence equilibrium, and the susceptible-infectious-recovered
epidemic model. The root mean square error (RMSE) between the learned hidden physics g(x; θ∗) and
actual hidden physics g(x) is then calculated. This process is repeated 30 times with randomly selected
initial weight values and training/validation/test set data assignments. The means and standard deviations
(std) of the calculated RMSEs are shown. For each case study, SPINODE learns the hidden physics g(x; θ∗)
with high accuracy and low run-to-run variation.

data by repeating (many) stochastic trajectories from identical initial conditions. Section 5.3
discusses how this strategy is not appropriate for systems in which one does not have control
over initial conditions, number of replica runs, consistent measurement times, etc. Section
5.3 also suggests potential methods for learning data-estimated moments in such cases.

Figs. 5.9-5.10 plot the RMSEs between the learned hidden physics g(x; θ∗) and the
actual system hidden physics g(x) for the Lotka-Volterra and SIR epidemic case studies as

a function of the total number of data-estimated moments m
(i)
x (tk) used to train g(x; θ). In
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Figure 5.5: Time evolution of kernel density estimates for directed colloidal self-assembly system with
an exogenous input. Trained neural networks g1(x, u; θ

⋆
1) and g2(x, u; θ

⋆
2) are used to simulate the system

dynamics from a randomly selected initial condition with a randomly selected exogenous input. The true dy-
namics are then simulated using the same initial condition and exogenous input. In each case, the stochastic
trajectory is repeated 105 times and kernel density functions are calculated at each sampling time. Estimates
of the kernel density function for the “true” and “learned” dynamics at select sampling times are plotted
against one another. SPINODE reproduces the kernel density function with high accuracy.

Figure 5.6: Time evolution of kernel density estimates for Lotka-Volterra with a coexistence equilibrium.
Trained neural networks g1(x1, x2; θ

⋆
1) and g2(x1, x2; θ

⋆
1) are used to simulate the system dynamics from a

randomly selected initial condition. The true dynamics are then simulated using the same initial condition.
In each case, the stochastic trajectory is repeated 105 times and kernel density functions are calculated at
each sampling time. Estimates of the kernel density function for the “true” and “learned” dynamics at select
sampling times are plotted against one another. SPINODE reproduces the kernel density function with high
accuracy.
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Figure 5.7: Sampling sensitivity analysis: competitive Lotka-Volterra with a coexistence equilibrium.
SPINODE trains the neural networks that approximate g1(x1, x2)1,2 and g2(x1, x2)1,2 after decreasing the

total number of repeated stochastic trajectories used to estimate the moments m
(i)
x (tk) from data. The

root mean square errors (RMSEs) between the learned and actual hidden physics are then calculated. The
RMSEs converge around 103 total repeats for g1(x1, x2)1,2 and 102 total repeats for g2(x1, x2)1,2.

Figure 5.8: Sampling sensitivity analysis: susceptible-infectious-recovered (SIR) epidemic model. SPIN-
ODE trains the neural network that approximates g(S, I) after decreasing the total number of repeated

stochastic trajectories used to estimate the moments m
(i)
x (tk) from data. The root mean square error

(RMSE) between the learned and actual hidden physics is then calculated. The RMSE converges around
104 total repeats.

this case, each moment m
(i)
x (tk) is estimated using 105 total repeated trajectories – only the

total number of moments used to train g(x; θ) is varied. Both figures show that more training
data can lead to a more accurate recovery of the hidden physics. The amount of training
data required for the RMSEs to converge depends on a combination of the complexity of
g(x) and the “informativeness” of the loss function used to train g(x; θ). For example, the
behavior of g(S, I) in SIR epidemic case study can be considered more nonlinear than that
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of g1(x1, x2)1 and g1(x1, x2)2 in the Lotka-Volterra case study, which is more nonlinear still
than that of g2(x1, x2)1 and g2(x1, x2)2 in the Lotka-Volterra case study, Correspondingly,
the RMSEs of g2(x1, x2)1 and g2(x1, x2)2 converge after fewer total data points than the
other hidden physics terms. Despite the more nonlinear behavior of g(S, I), however, its
RMSE converges earlier than the RMSEs of g1(x1, x2)1 and g1(x1, x2)2. Note that the cost
function used to train g(S, I) is more “informative” than the cost functions used to train
g1(x1, x2) and g2(x1, x2) – compare Eq. (5.20) to Eq. (5.25)) – as Eq. (5.25) contains added
information from multiple known “physical” terms in Eq. (5.24). Overall, the general notion
that more training data can lead to higher-performing neural network models is expected
[248]. However, the fact that g(S, I)’s RMSE seems to converge at fewer total data points
suggests the previously reported observation [207] that incorporating more physics into the
cost function can reduce data requirements for training neural networks.

Figure 5.9: Training data size sensitivity analysis: competitive Lotka-Volterra with a coexistence equilib-
rium. SPINODE trains the neural networks that approximate g1(x1, x2)1,2 and g2(x1, x2)1,2 after decreasing

the size of the training data (i.e., the total number of data-estimated moments m
(i)
x (tk)). The root mean

square error (RMSE) between the learned and actual hidden physics is then calculated. The RMSEs con-
verge around 2.5× 104 total moments for g1(x1, x2)1,2 and 5× 103 total moments for g2(x1, x2)1,2.

The colloidal self-assembly case study is next used to investigate SPINODE’s sensitivity
to the chosen uncertainty propagation method. Fig. 5.11 shows SPINODE’s reconstruction
of the hidden physics g1(x, u) and g2(x, u) when propagating stochasticity via linearization
[236] and two methods based on unscented transform: UT-2M and UT-4M. UT-2M, which
is explained in detail in Sections 5.4 and 5.6, describes the time evolution of the mean and
covariance based on the data-estimated mean and covariance at previous time points. UT-
4M, which can be viewed as an extension of UT-2M based on the work in reference [237],
describes the time evolution of the mean and covariance based on the data-estimated means,
covariance, skew, and kurtosis at previous time points. SPINODE with both UT meth-
ods significantly outperforms SPINODE with linearization. This performance discrepancy
indicates that the UT methods propagate stochasticity through Eq. (5.22) much more ac-
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Figure 5.10: Training data size sensitivity analysis: susceptible-infectious-recovered (SIR) epidemic model.
SPINODE trains the neural networks that approximate g(S, I) after decreasing the size of the training data

(i.e., the total number of data-estimated moments m
(i)
x (tk)). The root mean square error (RMSE) between

the learned and actual hidden physics is then calculated. The RMSE converges slightly before 104 total
moments.

curately than does the linearization method. Although SPINODE with UT-2M and UT-4M
learn g1(x, u) with near identical accuracy, the RMSE of SPINODE with UT-4M’s recov-
ery of g2(x, u) is marginally lower than the RMSE of SPINODE with UT-2M’s recovery of
g2(x, u) (i.e., 8.64×10−5 vs. 4.67×10−5). UT-4M thus leads to a more accurate prediction of
the time evolution of the covariance than UT-2M does, as only the covariance is used to train
g2(x, u) (see Eq. (5.20)). The latter point supports our earlier remark that SPINODE’s abil-
ity to incorporate higher moments can make SPINODE well-suited for learning g(x) when
f(x, (g(x)) and h(x, (g(x)) are highly nonlinear and the distribution of x is non-Gaussian as
a result. Note that although kernel density estimations in Fig. 5.5 appear fairly Gaussian,
the relatively minor skews and kurtoses of the distributions of x(t) are still large enough to
affect the uncertainty propagation.

This chapter further investigates SPINODE’s sensitivity to uncertainty propagation by
extending the sampling times at which data-estimated moments are collected. All previous
results for the colloidal self-assembly case study used a sampling time of 1 second. Fig.
5.12a plots the RMSEs of g1(x, u) and g2(x, u) (when UT-4M is implemented for uncertainty
propagation) as a function of sampling time. The RMSE increases nearly linearly with
sampling time. Fig 5.12b shows that the prediction errors for the mean and covariance also
increase nearly linearly with sampling time. It is thus reasonable to suggest that SPINODE’s
sensitivity to sampling time in the colloidal self-assembly case study can be attributed to
the sensitivity of the uncertainty propagation method to the sampling time.

Above all else, Figs. 5.11–5.12 demonstrate SPINODE’s sensitivity to the choice of
uncertainty propagation method. Section 5.1 discusses how SPINODE can in principle ac-
commodate any uncertainty propagation method. As a result, the uncertainty propagation
method should be viewed as a “hyper-parameter” within SPINODE. The choice of the ODE



CHAPTER 5. STOCHASTIC PHYSICS-INFORMED NEURAL ORDINARY
DIFFERENTIAL EQUATIONS 92

Figure 5.11: Uncertainty propagation sensitivity analysis: directed colloidal self-assembly with an exoge-
nous input. SPINODE trains neural networks that approximate g1(x, u) and g2(x, u) using three different
uncertainty propagation methods: linearization (Lin), unscented transform with two moments (UT-2M) and
unscented transform with four moments (UT-4M). UT-2M describes the time evolution of the mean and
covariance based on the data-estimated mean and covariance at previous time points while UT-4M describes
the time evolution of the mean and covariance based on the data-estimated means, covariance, skew, and
kurtosis at previous time points. SPINODE with UT-2M and UT-4M significantly outperforms SPINODE
with linearization, while SPINODE with UT-4M slightly outperforms SPINODE with UT-2M for learning
g2(x, u).

Figure 5.12: Sampling time sensitivity analysis: directed colloidal self-assembly with an exogenous input.
(a) SPINODE trains neural networks that approximate g1(x, u) and g2(x, u) using the UT-4M uncertainty
propagation method with different sampling times. The root mean square error (RMSE) between the learned
and actual hidden physics is then calculated. (b) UT-4M is used to propagate stochasticity through the true
dynamics (i.e., Eq. (5.22)) for each of the data-estimated moments in the training data set at different
sampling times. The RMSEs between the predicted and the data-estimated means and covariances at the
next sampling time are then calculated. The errors in reconstructing the hidden physics and predicting the
mean and covariance grow nearly linearly with the sampling time.
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solver within SPINODE must also be discussed. Because the case study simulation data was
generated via an Euler-Maruyama discretization, an Euler ODE solver within SPINODE
yielded the most accurate reconstructions of the hidden physics. The current implementa-
tion of SPINODE [221], however, includes other advanced, even adaptive time-step solvers
that have been shown to integrate accurately high-dimensional, stiff, and nonlinear ODEs
[205]. The choice of ODE solver should thus also be viewed as a “hyper-parameter” within
SPINODE. In fact, known hyper-parameter optimization strategies such as Bayesian Opti-
mization [249] can be used to determine the “best” ODE solver to use during training.

5.11 Conclusions and Next Steps

This chapter proposed a flexible and scalable framework based on the notions of neural or-
dinary differential equations, physics-informed neural networks, and moment-matching for
training deep neural networks to learn constitutive equations that represent hidden physics
within stochastic differential equations. This chapter demonstrated the proposed stochas-
tic physics-informed neural ordinary differential equation framework on three benchmark
in-silico case studies from the literature. This chapter analyzed the performance of the pro-
posed framework in terms of its repeatability, sensitivity to weight initialization and train-
ing/validation/testing set allocation, total number of data points, total number of repeated
trajectories, uncertainty propagation method, and sampling time. This chapter showed the
framework’s scalability by learning highly nonlinear hidden physics within multidimensional
stochastic differential equations with multiplicative noise. This chapter illustrated the frame-
work’s flexibility by (i) learning both general drift and diffusion coefficients (with or without
an exogenous input) and specific unknown functions within stochastic differential equations
for different systems and (ii) demonstrating that key aspects of the framework (e.g., the
choice of uncertainty propagation method) can be easily and independently adjusted. An
open challenge is that a large number of repeated state trajectories are required to learn ac-
curately hidden physics. Future work will focus on learning probability distributions directly
from data instead of estimating moments from repeated stochastic trajectories from identical
initial conditions. To this end, future work will explore variational autoencoders [227–229],
generative adversarial networks [209, 230–232], and energy-based models [233–235]. Other
open challenges include optimizing the uncertainty propagation method and choice of ODE
solver during neural network training. Future work will also explore optimizing these “hyper-
parameter” choices using methods based on Bayesian optimization [249]. Finally, the current
implementation of the neural ODE framework based on [205] should be updated with more
recent and advanced neural ODE framework implementations (e.g., [206]).

Despite the flexiblity and scalability of SPINODE, SPINODE is fairly data-intensive.
Moreover, these data requirements may increase with limited precision in the measurement
of the system state – it is reasonable to assume that imprecise system state measurements can
require large number of repeated trajectories. It is known that system state measurements
of experimental colloidal self-assembly systems can be imprecise [14, 55]. Moreover, the data



CHAPTER 5. STOCHASTIC PHYSICS-INFORMED NEURAL ORDINARY
DIFFERENTIAL EQUATIONS 94

collection required to build accurate low-dimensional stochastic models may be unrealistic
for such systems.

It is important to note that an initial motivation for this work was to investigate methods
for developing accurate, low-dimensional stochastic models for feedback control. Chapter
4 clearly shows, however, that guiding colloidal SA may not require excessively complex
input profiles. For example, the temperature (i.e., global manipulated variable) profiles
in Fig. 4.4 are fairly simple – they consist of a series of quenches and holds. This begs
the question: Is a complex model-based feedback control approach really needed to control
colloidal self-assembly effectively? Recent work by the authors of [47, 52] indicates just the
opposite. These authors use model-free approaches to feedback control based on evolutionary
reinforcement learning [250, 251] to control very effectively the two-dimensional colloidal SA
of an in-silico system of patchy disks. The next chapter investigates model-free methods for
feedback control of the three-dimensional SA of a benchmark in-silico system of colloids.
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Chapter 6

Model-Free Feedback Control of
Colloidal Self-Assembly Systems

This chapter investigates a model-free feedback control framework based on evolutionary rein-
forcement learning for achieving reproducible colloidal self-assembly. The framework learns
a neural network representation of a control policy that maps colloidal self-assembly state
information to the values of global self-assembly actuators such as temperature and pressure
ramp rates. In particular, this chapter compares the efficacy of “objective search,” where
progress towards a pre-defined goal is measured and control policies are iteratively updated
according to this progress, and “novelty search,” where behavioral novelty alone is used to
learn control policies. The model-free feedback control framework is demonstrated on a bench-
mark in-silico colloidal self-assembly system that consists of 2048 colloids that interact via
Lennard-Jones interparticle potentials within an NPT ensemble. Closed-loop control policies
are learned using objective search and novelty search and their performance is analyzed and
compared.

6.1 Introduction

Absent a (stochastic) model for predicting colloidal SA dynamics, recent work [47, 52, 60]
has proposed the use of reinforcement learning (RL) to learn control policies that directly
map colloidal SA state information (e.g., quantifications of colloidal structure) to values of
global SA actuators (e.g., temperature ramp rates, changes in electric field voltage). These
control policies in turn have been shown to guide consistently colloidal SA systems towards
desired structures. RL is a branch of machine learning concerned with learning to perform
actions so as to achieve an objective (i.e., maximize an objective function), and has been used
extensively to outperform humans in video games, manipulate robotics, and enhance natural
language processing algorithms, among many other applications [252–254]. Broadly, there
exist two classes of RL algorithms – those that explicitly evaluate gradients of the objective
function and those that do not [255]. Evolutionary RL methods fall under the latter class,
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as these methods propose and probabilistically accept changes to candidate control policies
[250, 251]. Although evolutionary RL is much less widely applied than gradient-based RL,
evolutionary RL is naturally suited to “sparse-reward” problems such as colloidal SA, where
the outcome of assembly (i.e., whether or not a desired structure forms) is not apparent
until the later stages of the assembly process [47, 250, 256]. The authors in [47] implement
evolutionary RL to learn control policies that guide the two-dimensional colloidal SA of
an in-silico system of patchy discs towards desired structures. The learned control policies
avoid kinetically arrested states and can even control the polymorph into which certain sets
of patchy discs assemble.

The control policies in [47] are represented as artificial neural networks that contain
thousands of parameters. Despite the complexity in model structure, the control policies
yield fairly simple (e.g., quadratic) relationships between colloidal SA state information and
the system’s global SA actuators. It may thus be reasonable to conclude that a simpler
model architecture with fewer parameters could have yielded similar control performance.
The simpler model architecture may in turn converge with less data and be more robust to
overfitting. Given the well-documented relationship between model architecture and perfor-
mance [252–254], it may be beneficial to explore RL algorithms that learn model architecture
and parameters simultaneously.

Most RL strategies (including that of [47]) learn feedback control policies through objec-
tive search, where progress towards a pre-defined goal is measured and the control policies
are iteratively updated according to this progress. Objective search RL strategies, however,
are prone to learning poor-performing control policies for “deceptive” systems that must first
be guided further away from their pre-defined goals before ever achieving them [257, 258].
Complex colloidal SA systems are inherently deceptive, as successful control policies must
be able to initiate disassembly (and late re-assembly) of unavoidable kinetically arrested
structures to smooth out defects and achieve desired structures [38, 55]. Although explored
significantly less than objective search, RL methods based on novelty search have learned
superior control laws for many deceptive systems [257, 258]. These RL approaches search
for behavioral novelty alone and create a cache of the learned control policies that cause the
“most novel” system behaviors. The cached policy that best accomplishes a pre-defined goal
is then selected.

The purpose of this chapter is not merely to use established evolutionary RL algorithms
to learn control policies that guide the SA of a given colloidal system, rather the goal is to
perform a proof-of-concept study that investigates the the viability of (i) learning network
parameters and architecture simultaneously and (ii) searching for behavioral novelty to learn
such policies. More specifically, this chapter uses a class of evolutionary RL algorithms called
NEAT, or NeuroEvolution of Augmenting Topologies [259], to learn colloidal SA control
policies via objective search and novelty search. NEAT evolves the neural network weights
and architecture simultaneously with the goal of discovering the smallest neural network
architecture required to solve a given problem. NEAT is initialized with artificial neural
networks that only contain input and output nodes and discovers progressively more complex
behavior over time. As a result, when paired with novelty search, the order in which new
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behaviors are discovered is principled (from less complex to more complex) and not random
[258]. In fact, NEAT with objective search and novelty search has been shown to learn
effective control policies for a number of complex problems [257, 258, 260].

This chapter uses NEAT with objective search and novelty search to learn closed-loop
control policies that manipulate the temperature and pressure of a benchmark in-silico sys-
tem of 2048 colloids with Lennard-Jones interparticle potentials to create high-quality FCC
crystals. Section 6.2 describes the colloidal SA benchmark test system in more detail. Sec-
tion 6.3 describes the chosen colloidal state characterization method. Section 6.4 more for-
mally describes the colloidal SA control objectives. Sections 6.5-6 describe NEAT, objective
search, and novelty search in more detail and further justify their application towards control
of colloidal SA. Section 6.7 analyzes the results of the learned closed-loop control policies.
Section 6.8 discusses potential strategies to use novelty search in the design of future control
approaches and suggests future experiments.

6.2 Colloidal Self-Assembly System Description

The test system is a three-dimensional in-silico system of 2048 colloids in an NPT ensemble
with Lennard-Jones potentials of form:

V (r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
, (6.1)

where σ = ϵ = 1.0 and r is the inter-particle distance. All simulations were performed in
HOOMD-blue [261] and all parameter values can be found in [261] (e.g., buffer is 0.4, the
coupling constant for the thermostat is 1.0, the coupling constant for the barostat is 1.2, the
integrator time step is 0.005). All simulations are initialized from a high “temperature” and
low “pressure” (i.e., kT = 3.0 and S = 0.25). Each simulation is run for 105 time steps (i.e.,
the batch time is 105 time steps). The control policies in this chapter predict changes in the
temperature and pressure (i.e., ∆kT and ∆S) every 500 time steps (i.e., the sampling time
is 500 time steps). As a result, each simulation of 105 time steps will contain 200 changes to
the temperature and pressure.

The goal of this chapter is to implement evolutionary RL algorithms based on NEAT
with objective and novelty search to manipulate the temperature and pressure of the test
system to assemble high-quality FCC crystals. Although linear temperature and pressure
ramps from the given initial condition of kT = 3.0 and S = 0.25 can create high-quality
FCC crystals after 106 time steps, this chapter only focuses on batch times of 105 time steps,
where linear ramps and cools exclusively form extremely defective, low-quality crystals (see
Fig. 6.1).
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6.3 Colloidal State Characterization

The model-based feedback control framework in Chapter 4 relied on a novel state character-
ization strategy based on autoencoders and common neighbor analysis (CNA) [83, 84, 106].
A key motivation for using CNA was that CNA is particularly well-suited for identifying
hexagonal topologies in two-dimensional lattices. CNA had also been shown to characterize
effectively the test system’s colloidal SA structures in previous works [62, 87, 164]. A primary
motivation for the use of an autoencoder (which translated the CNA-based characterization
to a lower-dimensional space) was that the model-based feedback control framework would
become intractable with more than a few state variables. For the test system in this work,
Steinhardt bond-order parameters q4, q6, q8, q10, and q12 have been shown to characterize
effectively and distinguish FCC, BCC, SC, and a variety of defective states that can appear
during SA at the single particle level [81, 96]. Moreover, at the lattice level, the averages
of q4, q6, q8, q10, and q12 over all particles have been shown to distinguish lattices that are
primarily FCC, BCC, SC, defective, etc. [81, 96]. From now on, the Steinhardt bond-order
parameters that refer to this averaged, lattice-level characterization will be denoted as q̄i
Note that Steinhardt bond-order parameters’ sensitivity to thermal fluctuations, density
gradients, and anisotropy due to the use of a cut-off radius is well documented [79, 80]. The
work in this chapter and the work of [96] mitigates some of this sensitivity by avoiding the
use of a cut-off radius and instead establishing local structure via Voronoi cells. Moreover,
there is no need to reduce the dimensionality of the Steinhardt bond-order parameters as
evolutionary RL algorithms can tractably learn control policies with upwards of 5 state vari-
ables [258–260]. To summarize, each particle in the colloidal SA lattice can be characterized
by a vector of Steinhardt bond-order parameters, each entry of which is between 0 and 1
(i.e., [q4, q6, q8, q10, q12]

⊤) and the entire lattice can be characterized by the averages of these
Steinhardt bond-order parameters over all particles (i.e., [q̄4, q̄6, q̄8, q̄10, q̄12]

⊤).

6.4 Problem Formulation

The objective of this chapter is to learn a control policy that manipulates temperature and
pressure to create high-quality FCC crystals at the end of the given batch time (e.g., 105

time steps). Given that the Steinhardt bond-order parameters of the particles within a
theoretically perfect FCC lattice are known (i.e., [q∗4, q

∗
6, q

∗
8, q

∗
10, q

∗
12]

⊤, the “control objective”
is to learn a control policy that minimizes the distance between the Steinhardt bond-order
parameters of the individual particles in the colloidal SA system at the end of the batch
time [q4, q6, q8, q10, q12]

⊤ and the theoretically perfect FCC values [q∗4, q
∗
6, q

∗
8, q

∗
10, q

∗
12]

⊤. This
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goal can be mathematically formulated as follows:

max
x

K −
N∑
i=0

(qj,i − q∗j,i)
2

s.t. x ∈ X

j = 4, 6, 8, 10, 12 (6.2)

where K is a large constant, N is the number of particles in the colloidal SA system j is
the Steinhardt bond-order parameter index,

∑N
i=0(qj,i − q∗j,i)

2 is the objective function, and
x ∈ X represents the space of all possible control policies. To summarize, this chapter uses
evolutionary RL algorithms based on NEAT with objective search and novelty search to
find the control policy x that maximizes Eq. (6.2). The next section discusses the NEAT
algorithm in more detail.

6.5 Neuroevolution of Augmenting Topologies

(NEAT)

NEAT, like most evolutionary RL algorithms, is initialized by creating a population of
genomes [259]. At this stage, each genome is a candidate control policy that is represented
by an artificial neural network with randomly selected weights and biases and the simplest
possible architecture (e.g., no hidden nodes). During each generation, each genome’s fitness
is calculated. In this chapter, fitness is calculated by a genome guiding the colloidal SA of
the test system. The genomes with the largest fitnesses are then chosen to be the “par-
ents” of the next generation. These parents are probabilistically mutated, and the process
repeats itself for a pre-determined number of generations or until a pre-determined control
performance is reached. Mutations can add nodes and node-to-node connections, disable
node-to-node connections, and change activation functions, and/or change weight and bias
values.

NEAT is unique in that it begins evolution with a population of small, simple networks
and complexifies the network topology into diverse species over generations, leading to the
potential for increasingly sophisticated behavior; although complexifying the structure of an
artificial neural network does not always increase the complexity of the behavior of the neu-
ral network, it does increase the upper bound of possible behavioral complexity by adding
more parameters. Simpler behaviors must thus be encountered before more complex behav-
iors. Encountering simple behaviors first is significant because the most complex behaviors
are often associated with irregularity and chaos. A key feature distinguishing NEAT from
prior work in complexification is its unique approach to maintaining a healthy diversity of
complexifying structures simultaneously. For example, to keep track of which gene is which
while new genes are added, a historical marking is uniquely assigned to each new struc-
tural component. During crossover (i.e., two parent genomes “combining” to create a new
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genome), genes with the same historical markings are aligned to produce meaningful off-
spring efficiently. NEAT also employs speciation – where only fitnesses among sufficiently
similar structures are compared during each generation. Speciation protects new structural
innovations by reducing competition among differing structures, thereby giving newer, more
complex structures room to adjust. Networks are assigned to species based on the extent to
which they share historical markings. Complexification is thus supported by both historical
marking and speciation, allowing NEAT to establish high-level features early in evolution
and then elaborate on them later. In effect, then, NEAT searches for a compact, appropriate
network topology by incrementally complexifying existing structure.

6.6 Objective Search and Novelty Search

The previous section mentions that genome fitness is evaluated by using a genome (and its
corresponding control policy) to guide the colloidal SA of the test system. When NEAT
is implemented with objective search, the fitness is calculated by evaluating the objective
function in Eq. (6.2). The goal of objective search is thus to find genomes that progressively
yield larger objective function values. Objective search evolutionary RL algorithms, however,
are prone to local optima and have performed poorly when applied to deceptive systems that
must first be guided further away from their pre-defined goals before ever achieving them
[257, 258, 260]. One reasonable explanation for this problem is that the objective function
does not necessarily reward the stepping stones in the search space that ultimately lead to
the control objective (i.e., a high-quality FCC crystal in this case). Novelty search, on the
other hand, proposes an alternative fitness criteria based on behavioral novelty alone. That
is, instead of searching to maximize continuously the objective function, the evolutionary RL
algorithm rewards genomes whose functionality is significantly different than what has been
discovered before. Instead of a traditional objective function, the evolution employs a novelty
metric that in no way measures overall progress. For example, when trying to learn a control
policy that achieves biped locomotion, initial candidate genomes may lead the biped simply
to fall down. The novelty metric would reward falling down in a different way, regardless of
whether it is closer to the objective behavior or not. In contrast, an objective function may
explicitly reward falling the farthest, which likely does not lead to the ultimate objective of
walking and thus exemplifies a deceptive local optimum. In contrast, in the search for novelty,
a set of instances are maintained that represent the most novel discoveries. Further search
then jumps from these representative behaviors. After a few ways to fall are discovered, the
only way to be rewarded is to find a behavior that does not fall right away. In this way,
behavioral complexity rises from the bottom up. Eventually, to do something new, the biped
would have to walk successfully for some distance even though successfully walking is in no
way explicitly included in the fitness calculation.

A natural question about novelty search is whether it follows any principle beyond naively
enumerating all possible behaviors. The answer is that although it does attempt to find all
possible behaviors over time, when combined with a complexifying algorithm like NEAT, the
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order in which they are discovered is principled and not random. Recall that NEAT evolves
increasingly complex neural networks. That way, the number of nodes and connections and
thus the maximal complexity of neural networks discovered by novelty search increases over
time, ensuring that simple behaviors must be discovered before more complex behaviors.
Regardless of the particular encoding, this ordering from simple to complex is generally
beneficial due to the minimum description-length principle in machine learning i.e., the idea
that the simplest satisfying description is usually the best [262].

A second natural question is whether novelty search is essentially identical to exhaustive
search – of course a search that enumerates all possible solutions will eventually find the
solution, but at enormous computational cost. Many environments provide sufficient con-
straints on the types behaviors that can actually be observed, without the need for further
constraint from an objective function. For example, it is known that colloidal SA systems
are prone to kinetic traps. Although the control policy search space is effectively infinite,
the behavior space into which points in the search space collapse is limited, as systems often
tend to become trapped in a handful of relatively similar configurations. In cases such as
this, the search space can collapse into a manageable number of novelty points, significantly
differentiating novelty search from exhaustive search.

The novelty of a newly generated genome is computed with respect to the behaviors (i.e.
not the genomes) of an archive of past genomes whose behaviors were highly novel when
they originated. An archive that is smaller than the total number of observed behaviors
represents the most recently visited points. The aim is to characterize how far away the
new individual is from the rest of the population and its predecessors in behavior space, i.e.
the space of unique behaviors. A good metric should thus compute the sparseness at any
point in the behavior space. Areas with denser clusters of visited points are less novel and
therefore rewarded less. A simple measure of sparseness at a point is the average distance
to the k-nearest neighbors of that point, where k is a fixed parameter that is determined
experimentally [263]. Intuitively, if the average distance to a given point’s nearest neighbors
is large then it is in a sparse area; it is in a dense region if the average distance is small. In
this chapter, and many others [257, 258], the sparseness ρ(y) at point y is given by:

ρ(y) =
1

k

k∑
i=0

dist(y, µi), (6.3)

where µi is i-th nearest neighbor of y with respect to the distance metric, dist. In this
chapter, dist is the l2 norm. In this chapter’s colloidal SA test system, the “behavior” is
the averaged order parameter values at the final state (i.e., [q̄4, q̄6, q̄8, q̄10, q̄12]

⊤). Note that
this quantification is separate from that in the objective function, which looks at distances
between observed and theoretically perfect order parameter values at the single particle level
(i.e., [q4, q6, q8, q10, q12]

⊤ and [q∗4, q
∗
6, q

∗
8, q

∗
10, q

∗
12]

⊤).
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6.7 Closed-Loop Implementation

NEAT with objective and novelty search was implemented on the test system to learn closed-
loop control policies that manipulate temperature and pressure to guide the test system
towards high-quality FCC crystals. NEAT was implemented using an open-source Python
package [264]. The inputs to the control policy are the time step, temperature, pressure,
and the 5 averaged order parameter values [q̄4, q̄6, q̄8, q̄10, q̄12]

⊤. The outputs are temperature
and pressure ramp rates. Each evolutionary RL trial used populations of 25 genomes with
50 generations (leading to 1250 total evaluations). Both objective search and novelty search-
based protocols learned control policies that guide consistentlyd the test system towards
fairly high-quality crystals. Fig. 6.1 uses OVITO [124] to visualize example lattices produced
by these control policies.

Although the example lattices in Fig. 6.1 produced by both objective search and novelty
search seem visually comparable, the novelty search control policy produced a more highly-
ordered crystal. In fact, on average, the novelty search control policy produced more highly-
ordered crystals more consistently than did the objective search policy (see Fig. 6.2). Fig. 6.3
shows the average input profiles for each control policy over 50 runs. Both temperature (i.e.,
kT ) profiles are similar in that they contain a a large number of heating and cooling ramps
(which correspond to initiating assembly and disassembly). Despite these frequent ramps,
the overall shape of the objective search profile is a nonlinear cool. Meanwhile, the novelty
search profile involves a fast cool, followed by a slow heating, and an even slower cooling.
The objective search pressure (i.e., S) profile essentially only involves a fast pressure increase
and hold. The novelty search pressure profile, on the other hand, involves a fast quench and
mild oscillations before a linear pressure decrease. This pressure profile demonstrates the
benefits of novelty search over objective search – the novelty search profile was able to
recognize that oscillating the pressure, and in some form initiating assembly/disassembly
and temporarily creating a lower-order crystal structure, was beneficial for achieving higher
order in the long term. Objective search, on the other hand, opted for a fast pressure
increase and the immediate increase order that comes with it. A reasonable question is
why the objective search policy found a complex temperature profile, or at least one with
multiple assembly/disassembly cycles. This chapter does not claim that objective search will
never find control policies that sacrifice short term rewards for long term ones (i.e., overcome
deception). Instead, this chapter and previous literature [257, 258, 260] claim that novelty
search is potentially more likely to overcome deception. Fittingly, the novelty search neural
network contains more node-to-node connections than the objective search network, which
possibly allows the novelty search network to display more complex input profiles (see Fig.
6.4). Note that the architecture of these networks is not standard, however, as input nodes
are connected to both hidden and output nodes. In adding more connections with fewer
nodes, NEAT can encode reasonably complex behavior with extremely small architectures
[259].

It is important to remember that this case study is by no means comprehensive. The
evolutionary RL trials involved an extremely small number of evaluations and any difference
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Figure 6.1: Example self-assembled lattices. Each row shows the initial and final assembled state for
representative colloidal SA trajectories that are guided towards FCC crystals with (i) linear ramp control
policy, (ii) a control policy learned using NEAT with objective search, and (iii) a control policy learned using
NEAT with novelty search. Each initial state has a temperature of kT = 3.0 and a pressure of S = 0.25.
To choose the linear ramp, a grid search was performed with final temperatures and pressures set between
kT = 0.1 and kT = 3.0 and S = 0.25 and S = 6.0. Fifty trajectories were then repeated with the highest
performing setting (i.e., kT = 0.1 and S = 6.0). The final state for the median performance run is shown
here. The control policies learned with NEAT with objective search and novelty search were also repeated 50
times and the final states for their median performance runs are shown here. Although not visually obvious,
the novelty search final lattice is more highly-ordered than the objective search lattice (see Fig. 6.2) for a
more detailed comparison of the two control policies’ behaviors.

between the performance of the novelty search and objective search protocols may not be
meaningful. The purpose of this chapter was merely to demonstrate a proof-of-concept of
NEAT with novelty search. The results shown above provide justification of further extensive
testing of NEAT with novelty search on this test system and other similar ones.

6.8 Conclusions and Future Work

The goal of the research presented in this chapter was to investigate the viability of NEAT
with objective search and novelty search for evolutionary RL of colloidal SA systems. This
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Figure 6.2: Closed-loop control policy comparison. The control policies learned from NEAT with objective
search and NEAT with novelty search are each applied to the test system 50 times. Eq. (6.2) is then used to
calculate the fitness of the final assembled state (e.g., a higher fitness correlates to a higher-quality crystal.
The novelty search control policies yield higher-quality crystals more consistently.

Figure 6.3: Example closed-loop control policy input profiles. The control policies learned from NEAT
with objective search and NEAT with novelty search are each applied to the test system 50 times. The
average temperature and pressure (e.g., kT and S profiles are plotted versus the time step. Note the fast
oscillations in the temperature profiles between time steps 5 and 75 correspond to a series of heating and
cooling ramps (which correspond to initiating assembly and disassembly).

chapter used NEAT with objective and novelty search to manipulate the temperature and
pressure of the test system to assemble high-quality FCC crystals. Importantly, this chapter
provided a proof-of-concept demonstration that learning control policies with very few model
parameters can lead to effective control of colloidal SA and that novelty search may in fact
lead to improved control performance over objective search.
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Figure 6.4: Example closed-loop control policy neural network representations. The artificial neural net-
works that represent the control policies learned from NEAT with objective search and NEAT with novelty
search are shown above.The inputs to the control policy are the time step, temperature, pressure, and the 5
averaged, lattice-level order parameter values [q̄4, q̄6, q̄8, q̄10, q̄12]

⊤. The outputs are temperature and pressure
ramp rates, ∆S and ∆kT . The policy learned with novelty search has 5 more node-to-node connections and
is thus slightly more complex than the objective search policy. Further note that the objective search policy
eliminated the pressure (S) input.

The next immediate step in this project is to run much longer trials to see if (i) more
effective open- and closed-loop control policies can be learned and (ii) if novelty search
continues to outperform objective search or vice versa. A sensitivity analysis of the various
parameters within NEAT (e.g., the genome mutation probability) should also be performed.
NEAT with novelty search will then be applied to in-silico systems with more complex
dynamics (e.g., the systems of DNA-functionalized particles mentioned in Chapters 2-3). It
is possible that such complex dynamics may require learning larger model architectures, and
that NEAT may need to be abandoned as a result.

The primary objective of future work will be to understand better the role of novelty
search in learning control policies for colloidal SA. Future work will investigate topics such
as how and whether novelty search and objective search could be combined into one cohesive
framework. For example, minimum criteria novelty search [265], which only rewards novel
behavior if that novel behavior has some minimum goal-oriented performance, has been
shown to learn efficiently control policies of systems with stochastic, nonlinear dynamics.
Future work will also explore how novelty search can be used in another evolutionary RL
algorithmic frameworks outside of NEAT, as the small architectures that NEAT evolves
may in fact be too simple to control many colloidal SA systems. However, applying novelty
search outside of NEAT, or outside of a complexifying framework may be challenging, as
it has been shown that the complexifying aspect of NEAT principles the novelty search
[260]. Frameworks such as HyperNEAT and ES-HyperNEAT claim to evolve more complex
architectures, but often require extensive a-priori knowledge of the test system [266, 267].

It is further reasonable to consider how physics can be directly incorporated into the
learning algorithms. For example, the novelty criteria in Eq. (6.3) is extremely simple and
may not be complex enough to reflect the inconsistency between inter-structural distance
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and material “value” (i.e., it is important to distinguish perfect and slightly defective lat-
tices while it may not be as critical to distinguish various amorphous and semi-crystalline
structures). A more “physics-informed” novelty criteria could reduce the search space and
lead to more efficient learning. It is possible that this same physical knowledge could be in-
corporated into HyperNEAT and ES-HyperNEAT frameworks or could be used to constrain
the fitness function, as physics has in fact been used to constrain similar functions in the
past [207, 208].
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Chapter 7

Conclusions and Perspectives

The primary objective of this thesis was to enable more effective particle design and con-
trol of colloidal SA by investigating learning-based strategies for quantifying and classifying
colloidal SA system states, learning tractable stochastic dynamical models of colloidal SA
dynamics, and learning control policies that dynamically change certain global external actu-
ators. Chapters 2 and 3 focus on a novel framework for quantifying and classifying colloidal
SA structure at the single particle level. The key steps of the framework are (i) establishing
a high-dimensional, yet precise characterization of local structure, (ii) using a deep autoen-
coder to translate that high-dimensional representation into a low-dimensional space that is
more easily interpretable, and (iii) using unsupervised learning techniques to partition that
low-dimensional space to assign physically meaningful classifications of structure. Although
previous work followed this same general approach (i.e., dimensionality reduction of a pre-
cise characterization followed by partitioning the low-dimensional space), this previous work
could not tractably characterize entire colloidal SA trajectories. The methods of Chapters
2-3 allowed us to not only compare and contrast thousands of structures within one contin-
uous low-dimensional space, but also to elucidate entire colloidal SA pathways. This extra
information in turn allowed us to glean two key insights from trajectory data that other-
wise would have been unattainable: (i) binary colloidal mixtures with small interparticle
size disparities (i.e., A- and B-type particle radius ratios of rA/rB = 0.8 to rA/rB = 0.95)
can promote the SA of defect-free binary colloidal lattices much more effectively than SA
systems of identically sized particles and (ii) binary colloidal mixtures of size disparate par-
ticles can undergo non-classical nucleation pathways. Although these insights by themselves
are useful for designing particles in future colloidal SA systems, the work more broadly
serves to show how advanced characterization methods can pave the way for systematic and
computationally efficient investigation of the underlying mechanisms of colloidal SA.

Despite the utility of the presented characterization framework, certain aspects of the
framework can be viewed as “ad-hoc.” For example, a key advantage of the framework is that
it avoids the concept of “cut-off radii” among particles and instead uses a geometry-based,
fixed number of particles to describe local particle structure in the form of neighborhood
graphs. However, this particle number is based on the geometry of FCC and HCP unit
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cells and may not be appropriate for more complex structures. Moreover, the framework
evaluates these neighborhood graphs using graphlets with 2-5 nodes. Larger graphlets are
not used due to computational cost, not due to some physical aspect of colloidal SA. It is
possible that a more natural, physics-informed approach to colloidal characterization could
increase the precision and generalizability of the characterization.

A promising strategy can be discovering physics-informed strategies for determining par-
ticle neighborhoods. For example, it may be reasonable to define a physics-informed cut-off
radius (as opposed to the ad-hoc approach described above) based on the estimated distance
at which interparticle potentials become zero. Testing the viability of such a framework on
in-silico systems would in turn be straightforward because the distance at which inter-particle
potentials become zero is known. The resulting size of this neighborhood, however, could
be too large for the graphlet decomposition methods of chapters 2-3 to evaluate tractably.
Graph neural networks, on the other hand, could in principle evaluate such large neighbor-
hoods [268–270] naturally and tractably. Here, colloids themselves could be “nodes,” all
particles within a neighborhood could be considered “bonded,” and their inter-particle dis-
tances (i.e., bond lengths) could be considered “edges.” In fact, the work in reference [271]
successfully uses a similar graph neural network-based strategy to model glassy dynamics.
One known challenge with graph neural networks is that they are not necessarily permu-
tation or rotation-invariant [268–270]. As a result, directly incorporating permutation- and
rotation-invariant features (such as those in reference [144]) could mitigate such an issue.
In summary, an exploration of how physical knowledge, graph-based machine learning, and
rotation- and permutation-invariance can be combined provides exciting opportunities for
improving colloidal characterization.

Chapter 4 investigates the utility of a model-based feedback control strategy for colloidal
SA. The strategy manipulates temperature based on structural state information to cre-
ate defect-free crystals in an in-silico test system of DNA-functionalized particles. Despite
the fact that the strategy consistently guides the test system towards a defect-free struc-
ture, the time to reach that structure varies significantly run-to-run. One potential way to
improve control performance is to account explicitly for the intrinsic stochasticity present
in colloidal SA dynamics, which in turn requires learning a tractable stochastic dynamical
model. Chapter 5 presents a novel framework for learning tractable stochastic dynamical
models along with free energy and diffusion landscapes from stochastic trajectory data. The
framework, referred to as stochastic physics-informed neural ordinary differential equations,
or SPINODE, accurately recovered stochastic dynamics and energy and diffusion landscapes
for a handful of benchmark in-silico case studies. SPINODE was shown to be a flexible
and scalable framework for learning nonlinear stochastic dynamical models, as SPINODE
does not depend on system-specific sampling techniques or extremely small sampling times.
SPINODE also tractably learned nonlinear, multivariate, stochastic dynamical models for
systems with multiplicative noise [64]. An open challenge with SPINODE is the fact that
a large number of repeated state trajectories from identical initial conditions are required
to learn these dynamical models accurately. Thus, SPINODE may not be appropriate for
experimental colloidal SA, where structural characterization can be imprecise and poten-
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tially lead to even larger data requirements. The primary focus of future work should be to
learn probability distributions directly from data, especially in scenarios in which one does
not have control over initial conditions, number of replica runs, or consistent measurement
times. Once these probability distributions are learned, the remaining machinery within
SPINODE (e.g., moment matching and gradient descent) can in principle be used to learn
stochastic dynamical models efficidently. Variational autoencoders [227–229], generative ad-
versarial networks [209, 230–232], and energy-based models [233–235] can all possibly be
used to learn probability distributions under such scenarios and thus should be explored. A
successful combination of one of these methods with SPINODE could lead to an efficient
“dynamical” characterization of colloidal SA and could enhance analysis from the colloidal
state characterization from Chapters 2 and 3. For example, a learned energy landscape could
allow for one to not only quantify how structurally defective but also how energetically or
kinetically favorable that lattice may be. Moreover, the corresponding dynamical model can
predict how a given external actuator (e.g., temperature) could break a system out of that
defective state and guide it towards a more highly-ordered state.

Given the challenges with constructing stochastic dynamical models, Chapter 6 explores
model-free approaches to feedback control of colloidal SA. The work uses evolutionary RL to
learn a neural network representation of a control policy that manipulates temperature and
pressure to guide the colloidal SA of a benchmark in-silico test system. In particular, this
chapter compares the efficacy of “objective search,” where progress towards a pre-defined
goal is measured and control policies are iteratively updated according to this progress, and
“novelty search,” where behavioral novelty alone is used to learn control policies. The work
demonstrated that evolutionary RL algorithms in principle can be used to guide colloidal
SA effectively. However, much more work is required to elucidate properly the roles of
objective and novelty search in learning control policies. One promising direction for future
work is to incorporate physics into evolutionary RL algorithms to shrink the search space
and lead to more efficient learning. For example, novelty search depends on novelty criteria
(see Eq. (6.3). The novelty criteria used in Chapter 6 is essentially a k-nearest neighbors
algorithm that doesn’t account for the fact that it may be more important to distinguish
certain structurally similar structures (e.g., a defect-free and nearly defect-free crystal) than
to distinguish structures that are fairly structurally dissimilar but not necessarily relevant to
colloidal SA (e.g., many amorphous or weakly crystalline structures). Incorporating physical
knowledge directly into the novel criteria could thus possibly lead to more efficient learning.

Overall, the research presented in this thesis provides a deeper mechanistic understanding
of colloidal SA and contributes to an ever-developing archive of methods that can be used
or expanded upon to achieve reproducible colloidal SA. Although each chapter focuses on
in-silico colloidal SA systems, each of these in-silico systems is either a benchmark problem
(e.g., a classic Lennard-Jones system from [261] or the well-characterized two-dimensional
colloidal SA problem in [59]) or uses experimentally-validated pair potentials (see Chap-
ters 2-4). As such, the insights gained from this research can be useful for informing ex-
periments and future computational studies with high-fidelity models. For example, the
insight from Chapter 3 that small size disparity in binary colloidal mixtures can drasti-
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cally affect the compositional order of self-assembled lattices could (and should) encourage
colloidal SA experimentalists to synthesize such binary colloidal mixtures in their laborato-
ries. More broadly, the findings in thesis are relevant to many systems outside of colloidal
SA. For example, Chapter 5 investigated SPINODE for learning stochastic dynamical mod-
els of systems with nonlinear dynamics and multiplicative noise. In addition to colloidal
SA, Chapter 5 demonstrated SPINODE on systems with Lotka-Volterra and susceptible-
infectious-recovered epidemic model dynamics. In fact, a major contribution of Chapter 5
was that SPINODE can be easily generalized to many different system types. Although
Chapter 6 could be interpreted as a mere proof-of-concept study for model-free feedback
control of colloidal SA, the work can also be considered as an investigation of the viability
of objective search and novelty search to learn control policies for deceptive systems with
stochastic and nonlinear dynamics. Chapter 4 could similarly be regarded as a proof-of-
concept study for model-based feedback control of colloidal SA. However, certain aspects of
that work, such as the use of autoencoders to reduce the state dimension in order to create
a model that is tractable for online control, can be applicable to a wide range of systems
with high-dimensional, nonlinear dynamics. The characterization framework presented in
Chapters 2-3 can in principle be applied to any system that can be described with some
graph-based structure (e.g., proteins, social media relationships). In fact, the graphlet de-
composition method used in Chapters 2-3 was first developed to determine protein function
in protein-protein interaction networks [74]. I hope that future members of the Mesbah lab
can continue exploring how learning-based strategies for colloidal SA characterization and
control can not only lead to the achievement of reproducible colloidal SA but also can lead
to insights in a variety of societally impactful systems.
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(77) Hočevar, T.; Demšar, J. Bioinformatics 2014, 30, 559–565.

(78) Howard, M. P.; Reinhart, W. F.; Sanyal, T.; Shell, M. S.; Nikoubashman, A.; Pana-
giotopoulos, A. Z. The Journal of chemical physics 2018, 149, 094901.

(79) O’Leary, J.; Mao, R.; Pretti, E. J.; Paulson, J. A.; Mittal, J.; Mesbah, A. Soft Matter
2021, 17, 989–999.

(80) Mao, R.; O’Leary, J.; Mesbah, A.; Mittal, J. JACS Au 2022.

(81) Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Physical Review B 1983, 28, 784.

(82) Lechner, W.; Dellago, C. The Journal of chemical physics 2008, 129, 114707.

(83) Honeycutt, J. D.; Andersen, H. C. Journal of Physical Chemistry 1987, 91, 4950–
4963.



BIBLIOGRAPHY 115

(84) Faken, D.; Jónsson, H. Comput. Mater. Sci 1994, 2, 279–286.

(85) Larsen, P. M.; Schmidt, S.; Schiøtz, J. Modelling and Simulation in Materials Science
and Engineering 2016, 24, 055007.

(86) Ackland, G.; Jones, A. Physical Review B 2006, 73, 054104.

(87) Reinhart, W. F.; Panagiotopoulos, A. Z. Soft matter 2017, 13, 6803–6809.

(88) Long, A. W.; Ferguson, A. L. The Journal of Physical Chemistry B 2014, 118, 4228–
4244.

(89) Long, A. W.; Zhang, J.; Granick, S.; Ferguson, A. L. Soft Matter 2015, 11, 8141–
8153.

(90) Long, A. W.; Ferguson, A. L. Applied and Computational Harmonic Analysis 2019,
47, 190–211.

(91) Ferguson, A. L.; Panagiotopoulos, A. Z.; Kevrekidis, I. G.; Debenedetti, P. G. Chem-
ical Physics Letters 2011, 509, 1–11.

(92) Ferguson, A. L. Journal of Physics: Condensed Matter 2017, 30, 043002.

(93) DeFever, R. S.; Targonski, C.; Hall, S. W.; Smith, M. C.; Sarupria, S. Chemical
science 2019, 10, 7503–7515.

(94) Jadrich, R.; Lindquist, B.; Truskett, T. The Journal of chemical physics 2018, 149,
194109.
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