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Abstract

On March 1 and 2, 2018, the National Institutes of Health 2018 Progenitor Cell Translational 

Consortium (PCTC) and Cardiovascular Bioengineering Symposium (CVBE) was held at the 

University of Alabama at Birmingham. Convergence of life sciences and engineering to advance 

the understanding and treatment of heart failure was the theme of the meeting. Over 150 attendees 

were present for more than 40 scientists presenting their latest works on engineering human 

functional myocardium for disease modeling, drug development, and heart failure research. The 

scientists, engineers and physicians in the field of cardiovascular sciences, met and discussed on 

the most recent advances in their works and propose future strategies in overcoming the major 

roadblocks of cardiovascular bioengineering and therapy. Particular emphasis was given for 

manipulation and using of stem/progenitor cells, biomaterials, and methods to provide molecular, 

chemical and mechanical cues to cells in order to influence their identity and fate in vitro and in 
vivo. Collectively, these works are profoundly impacting and progressing toward deciphering the 

mechanisms and developing novel treatments for left ventricular dysfunction of failing hearts. 

Here we present some important perspectives that emerged from this meeting.
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The convergence of life sciences and engineering continues to offer hope for revolutionary 

treatments for some of the most devastating diseases. Illuminating the path forward are 

advances in the manipulation and use of stem/progenitor cells and the scaffolds supporting 

their viability, differentiation, and function. Methods to provide chemical and mechanical 

cues to cells and control their fate in vitro and in vivo are profoundly impacting the progress 

in disease modeling, drug development, and cell therapy. In particular, addressing the 

daunting challenge of heart disease will require collective engagement of scientists, 

engineers, and clinicians. In a recent meeting of the National Institutes of Health 2018 

Progenitor Cell Translational Consortium (PCTC) and Cardiovascular Tissue Engineering 

Symposium (CVBE) at the University of Alabama, Birmingham, on March 1, 2018, 

scientists, engineers and physicians have met and discussed the most recent advances in their 

work and to propose future strategies in cardiovascular bioengineering and therapy. Here we 

present some important perspectives that emerged from this meeting.

Disorders of ventricular function and structure, including ischemic injury, valvular disease, 

hypertrophy, congenital abnormalities or cardiomyopathies reduce cardiac output and/or 

impair diastolic relaxation of the heart, and eventually lead to heart failure (HF). A common 

cause of systolic dysfunction is ischemic injury to the heart. Whereas percutaneous 

revascularization and coronary artery bypass surgery have transformed treatment of coronary 

disease, these therapies do not address the root cause of HF due to ischemic injury, i.e., the 

loss of cardiomyocytes and their replacement by a noncontractile fibrous scar. Regenerative 

medicine approaches aim to address this loss of functional tissue.

While the first era of cardiac “regenerative” medicine has focused on the exclusive use of 

cells (from various origins), it soon became evident that clinically relevant benefits were 

unlikely to be achieved without the restoration of an appropriate cell-matrix cross-talk. The 

recognition of the importance of this cross-talk has accelerated the development of 

cardiovascular bioengineering strategies with the goal to regenerate the damaged 

myocardium by providing both cellular and extracellular cues. While cell- and biomaterial-

based therapies for ischemic cardiomyopathy are still in their infancy, results from 

laboratory studies and clinical trials have yielded hugely valuable information. The 

challenge of complete myocardial regeneration will require our ability to control the 

reparative processes at various spatial scales from molecule to organ 1. The journey to meet 

this challenge may be long, yet the knowledge gained along the way will not only improve 

modeling and understanding of the disease, but also foster the discovery of new and more 

efficient therapies 2. Recently, a common denominator for many of these efforts has been the 

utilization of human pluripotent stem cells (hPSC) and their derivatives.

Disease Modeling

Cell and tissue-level models of cardiac disease

Cardiovascular disease (CVD) modeling at the cellular level can reveal much about the 

mechanisms of the disease. Whether the obtained knowledge can be clinically translated is 

highly dependent on how well the models recapitulate human CVD and mimic patients’ 

responses to therapy 3. More than 20 years ago, the first human “disease gene” for familial 

hypertrophic cardiomyopathy was identified. However, in the following 2 decades, it has 
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been difficult to study human CVD, and HF in particular, due to the limited ability to culture 

human cardiomyocytes. With the generation of human induced pluripotent stem cells (iPSC) 

in 2007 by Dr. Shinya Yamanaka (2012 Nobel Prize winner in Medicine & Physiology) 4 

and the increased efficiency of differentiating iPSC into cardiomyocytes (iPSC-CMs) and 

endothelial cells (iPSC-ECs) 5, this landscape has now changed dramatically. For the first 

time, it is now possible to create patient- and disease-specific cells to improve our 

understanding of the molecular mechanisms underlying many CVDs.

Dilated cardiomyopathy (DCM) 6, hypertrophic cardiomyopathy (HCM) 7, long QT 

syndrome (LQTS) 8, and congenital heart disease (CHD) have been the subject of 

impressive modeling studies using human iPSC technology 9. Collectively, they suggest that 

iPSC can provide new opportunities for studying the molecular mechanisms of cardiac 

diseases in humans. By obtaining the genetic (e.g., DNA-seq) and phenotypic (e.g., clinical 

history) profiles of large populations of CVD patients and normal controls, we start to 

understand the differential responses of common CVD drugs in these populations. A recent 

example is provided by the finding that the response of iPSC-derived cardiomyocytes to 

anthracyclines was different in patients who developed a chemotherapy-induced clinical 

cardiotoxicity versus those who did not, thereby supporting the interest of these cells as a 

prediction tool in cardio-oncology 10. Other multi-disciplinary approaches seek to 

demonstrate that a diverse biobank of patient- and disease-specific iPSC can be used for 

implementing “precision medicine” and “clinical trial in a dish” concepts 11. These studies 

will likely have broad scientific and clinical impact toward understanding the molecular 

basis of CVD and design of better drugs.

At the tissue level, hiPSCs-derived cardiovascular cells can be used within engineered 

microphysiological systems for modeling of disease, testing drug therapies, and 

development of new regenerative strategies. As with single cell systems, fateful emulation of 

human physiology and pathology using “organs on a chip” microtissue systems is dependent 

upon their structural and functional maturity. Recent studies show that adult-like human 

heart muscle micro-tissues can be grown from early-stage iPSC-derived cardiomyocytes if 

cells are encapsulated in fibrin gel and subjected to physical conditioning of an increasing 

intensity (Figure 1). After only 4 weeks of culture, these tissues display adult-like gene 

expression profiles, remarkably organized ultrastructure with physiologic sarcomere length 

and density of mitochondria, and a dense network of transverse tubules (t-tubules). The 

training regimen causes switch to oxidative metabolism and results in positive force-

frequency relationship and functional calcium handling. While this approach did not result 

in adult levels of functionality, it enabled physiologic responses to drugs and recapitulating 

disease phenotypes 12.

One important consideration for development of improved disease models pertains to the 

role of the extracellular matrix (ECM) in spurring cardiomyocyte maturation and cardiac 

tissue organization 13. Although the soluble factors necessary for differentiation of stem and 

progenitor cells to cardiac cell types are well-studied, our understanding of how the cells 

interpret signals from the insoluble substrate – mainly composed of extracellular ECM 

proteins – is incomplete. Knowing the mechanistic contribution of the ECM to the dynamics 

of stem cell state is relevant for in vitro platforms for drug screening, toxicity testing, and 
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disease modeling and is critical for in vivo therapeutic strategies involving tissue and whole 

organ regeneration where ECM exposure is inevitable. Characterizing the pathways linking 

integrin engagement and activation of transcription factors associated with different stages of 

cardiac development, from fetal to adult, should enable better control of engineered tissues 

containing ECM to enhance functional maturation and augment tissue repair.

Another important consideration that is often forgotten by cardiovascular bioengineers is 

that the heart is not merely a collection of cardiomyocytes, but contains other cell types that 

are important for proper cardiac function. Chief among these are the vascular cells that 

compose the coronary arteries and microvasculature. In addition to providing the nutrition 

and oxygenation for cardiac function and cardiac repair, the vasculature communicates 

directly with cardiomyocytes to affect their function. For example, endothelial-derived nitric 

oxide reduces cardiac contractility by affecting cardiac metabolism and actin-myosin 

coupling 14. Improved models of organs-on-a-chip should incorporate endothelial cells, 

which may also be derived from iPSCs 15.

In the post-genomic era, proteomics is the next frontier allowing an in-depth understanding 

and modeling of the function of cellular systems in HF and the development of personalized 

treatments. A comprehensive analysis of all “proteoforms” that arise from genetic variations 

and post-translational modifications (PTMs) is essential for gaining a transformative 

understanding of disease mechanisms, validating modeled disease phenotypes, and 

identifying new therapeutic targets. Top-down mass spectrometry (MS)-based proteomics is 

arguably the most powerful method to comprehensively characterize proteoforms for better 

understanding the underlying causes of cardiac diseases. It directly analyzes intact proteins 

providing a “bird’s eye view” to observe all types of modifications including PTMs 

(phosphorylation, acetylation, etc.) and sequence variants (mutants, alternatively spliced 

isoforms, amino acid polymorphisms) simultaneously in one spectrum 16, 17. This approach 

has been utilized to link HF contractile dysfunction to altered sarcomeric PTMs in animal 

models and human clinical samples as well as to perform comprehensive assessment of 

hiPSC-CM maturation in vitro and reveal the molecular mechanism of improved cardiac 

function from transplanted hiPSC-CM tissue patches in vivo. For example, cardiac 

transplantation of hiPSC-derived cardiomyocytes, endothelial cells and smooth muscle cells 

successfully reversed the up-regulation of proteins related to fibrosis and apoptosis occurring 

after a myocardial infarction, thereby providing mechanistic insights into the effects of this 

trilineage cell transplantation 17, 18. Parallel to the recent advancement in omics data 

acquisition technologies, major efforts have been made to develop computational strategies 

for deep-mining omics datasets. For example, a biotin switch-based proteomics approach 

enabled the identification of 1,655 cardiac proteins carrying oxidative stress sensitive PTMs 

on 3,324 Cysteine residues in a mouse model of cardiac hypertrophy 19; moreover, 

computational algorithms (e.g., cubic spline-based temporal clustering) were implemented 

to decipher complex datasets on layers of PTM features. This approach revealed insights on 

how global oxidative proteomic signatures are correlated with the progression of cardiac 

hypertrophy. These platforms (e.g., Reactome pathway database) and workflows (e.g., 

machine-learning-empowered molecular signature extraction) offer supports on omics 

phenotyping to better understand cardiovascular disease, including iPSC biology and 

pathology.
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Challenges to iPSC applications

The use of iPSC in disease modeling and drug development still faces important challenges. 

First, iPSC generation remains technically demanding, and requires the activation of an 

entire network of pluripotency genes, and the parallel suppression of genes enforcing the 

lineage of the somatic cell that is being reprogrammed. Global changes in the transcriptional 

profile occur in parallel with genome-wide alterations in histone proteins, noncoding RNAs, 

and DNA methylation. These genome wide alterations are associated with profound changes 

in signaling pathways, nuclear structure, metabolism and morphology of the cell that are 

incompletely characterized 20. New insights into the mechanisms of nuclear reprogramming 

to pluripotency may enhance the efficiency and fidelity of the generation of iPSC. Recent 

work has shown that cell-autonomous innate immune signaling is required for nuclear 

reprogramming to pluripotency, for complete reprogramming of a somatic cell to another 

lineage, or for transformation of cell to a substantively new phenotype (e.g. senescent to 

juvenile state) 21. When pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs) are detected by pattern recognition receptors 

(PRRs), an inflammatory signaling cascade is set into motion that results in the generation of 

inflammatory cytokines. This same signaling cascade, mediated by transcriptional factors, 

such as NFKb, IRF3 and IRF7, also sets in motion a series of events that increase epigenetic 

plasticity including altered expression and activity of key epigenetic enzymes and 

complexes, in part stimulated by a switch from oxidative to glycolytic metabolism. The 

result defined three major epigenetic processes that are activated by innate immune 

signaling, which include changes in the expression of key epigenetic enzymes are observed 

including an increase in the expression of histone acetyltransferases (HATs), and a reduction 

in histone deacetylases (HDACs). Importantly, there is a “Goldilock’s zone” for innate 

immune signaling whereby too little, or too much, activation of innate immunity, reduces 

DNA accessibility and impairs cellular reprogramming. These findings provide a 

mechanistic foundation for therapeutic manipulation of innate immune signaling toward 

improved reprogramming and regenerative therapies 22.

A second challenge, specific for human PSC-derived cardiomyocytes (hPSC-CMs), is that 

they do not faithfully recapitulate all the structural and functional attributes of their native 

adult counterparts. While new small molecules, identified by high-throughput screening, and 

mechanical/electrical stimulation and 3D cell culture can enhance maturation of the 

differentiated cardiomyocytes, the efficiency of this process would likely benefit from a 

better understanding of early fetal and neonatal human heart development. In this regard, 

some important areas of research involve understanding of: (1) Stress-kinase signaling in left 

vs. right ventricle asymmetric remodeling in neonatal heart, (2) RNA processing, including 

targeted alternative splicing and degradation in acquiring morphological and functional 

maturation, and (3) The potentially important roles of long non coding (lnc) RNAs in 

neonatal cardiomyocyte maturation exemplified by the finding that transcriptomic analyses 

of neonatal hearts have identified the ratio between one of these lncRNA and its partner gene 

as a marker for segregating distinct phenotypes of congenital heart defects 23. Furthermore, 

studying transcriptional regulation pathways that orchestrate heart development and 

cardiomyocyte maturation can also yield unanticipated links with some of the key processes 

which underlie HF, such as neurohormonal signaling. This is illustrated by the finding that 
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G-protein receptor kinases (GRKs) which mediate desensitization and downregulation of β-

adrenergic receptors implicated in adult HF, also redundantly modulate Smoothened-GATA 

transcriptional crosstalk in fetal mouse hearts with a relationship between GRK gene 

ablation and atrio-ventricular canal abnormalities 24, 25.

Thus far, much has been already learned about cells intended for cardiac repair. However, to 

promote clinical applications of hPSCs, additional studies are required to (1) Fully 

characterize the phenotype and secretome of derived cells and establish appropriate quality 

controls, and (2) Understand the precise mechanisms underlying the therapeutic effects of 

hPSC derivatives and their secretome. Furthermore, animal studies are still necessary prior 

to clinical evaluation of cardiovascular cell therapies. Small animal models are commonly 

used in cardiovascular research because of their many advantages over large animal models 

including a short life span that allows the investigators to follow the natural history of the 

disease at an accelerated pace. Also, the use of genetically modified animals allows for 

rigorous mechanistic studies that can be further validated in larger animal models 26. These 

in vivo studies are not only mandatory to test the safety and efficacy of stem cells but also to 

assess how bioengineering can optimize outcomes through improvement of cell survival and 

engraftment and/or long-lasting release of cell-secreted factors (e.g. exosomes).

Cell Therapy of Ischemic Heart Disease

One advantage of using human pluripotent stem cells for cardiac repair is the ability to 

produce theoretically unlimited quantities of cells (of any lineage) and generate both 

cardiovascular progenitor cells (hPSC-CVPC) and more mature cardiomyocytes. Other cell 

sources for cardiac repair, derived from adult tissues, are also being explored in addition to 

hPSC. Among them, human mesenchymal stem cells (hMSCs) from the bone marrow and 

adipose tissue are the most commonly studied. However, despite intensive research, 

supplying therapeutically competent hMSCs for clinical applications remains a challenge. 

Originally isolated and expanded as plastic adherent cells, hMSCs can undergo in vitro self-

assembly into three-dimensional (3D) aggregates. Recent studies have shown that hMSC 3D 

aggregation improves a range of biological properties, including stemness and multilineage 

potential, secretion of therapeutic factors, and resistance against ischemic condition 27. The 

metabolic reconfiguration towards aerobic glycolysis underpins 3D aggregation-mediated 

hMSC functional activation 28. When transplanted in vivo, aggregate-derived hMSC have 

extended survival that is accompanied by improvement of LV function 29–31.

As with hPSC-CVPC, key attribute of the hMSC regenerative potential is their secretion of 

trophic factors (including extracellular vesicles, EV) that forms a pro-regenerative “milieu” 

through modulation of immune responses and promotion of angiogenesis and tissue 

regeneration. Potential use of MSC- or CVPC-derived EV in clinics will require their 

characterization for the most functionally effective fraction (exosomes, microparticles), if 

any; the best method for purifying this fraction under Good Manufacturing Production 

(GMP) conditions; the development of potency assays usable as quality controls for ensuring 

the reproducibility of batches and last, but not least, the optimal modality for vesicle 

delivery. It is unlikely that a “flush-and-go” type of approach can achieve sustained 

therapeutic benefits because of leakage of the injectate through the venous and lymphatic 
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systems and/or the pericardial cavity (in case of direct intramyocardial administrations). 

Here again, tissue engineering merges with cell biology in that biomaterials could be used as 

effective controlled-release carriers. The concept is illustrated by the capacity of an 

engineered hydrogel patch to slowly release EV secreted by hiPSC-CMs in a rat model of 

acute MI, resulting in reduced infarct size, cardiomyocyte apoptosis and hypertrophy, 

arrhythmic burden, and improved cardiac function 4 weeks post-infarction 32. The hiPSC-

CM secreted EVs were shown to be enriched with cardiac-specific miRNAs, which might 

account for these beneficial outcomes.

Interestingly, the first cell type which has entered the clinical arena, i.e., skeletal myoblast, is 

also currently the only one which has gained approval from the Japanese regulatory 

authorities for marketing under the form of the Heartsheet® product and this treatment is 

now covered by Japanese health insurance. The product is made of autologous myoblasts 

cultured onto temperature-sensitive polymers which, upon lowering of the temperature, 

detach as a scaffold-free sheet of cells whose cohesiveness is ensured by their self-secreted 

matrix and which can then be delivered (eventually after stacking several sheets one on top 

of the other) onto the epicardium. The approval was based on the results of a phase I clinical 

trial entailing implantation of myoblast cell sheets in HF patients with ischemic or idiopathic 

dilated cardiomyopathy. This prospective, single arm and non-randomized study 

demonstrated that, in the patients with ischemic cardiomyopathy, their cardiac function, 

symptoms and tolerance for exercise were significantly improved 33. Several preclinical 

studies have shown that the mechanism and advantages of this treatment are to maximize 

paracrine effects such as cytokine-mediated angiogenesis and anti-fibrosis. Interestingly, 

while the early myoblast experience had been clouded by the occurrence of arrhythmias, 

such was not the case in the above mentioned clinical trial, possibly because intramyocardial 

injections were replaced by the cell sheet delivery mode. Nevertheless, the arrhythmic risk 

remains as an ongoing concern for cardiac cell therapies 34. As a final glimpse into a near 

future, the cell-sheet technique has also been utilized for regenerative therapy with iPS-

derived cardiomyocytes in a porcine heart failure model 35, thereby laying the grounds for an 

upcoming clinical trial.

The persisting challenge of low cell engraftment

A major roadblock that still hampers the efficacy of cell therapies is the low rate of cell 

retention which occurs with virtually all types of cells studied heretofore 36–38. Such an 

engraftment, however, is mandatory even if one assumes a predominant paracrine 

mechanism of action since cells have at least to be transiently present to have enough time 

for releasing the factors underpinning their benefits. This issue has been tackled for a long 

time 39 and, broadly speaking, cell survival and retention enhancing strategies have primarily 

involved cell preconditioning, genetic cell engineering, and cell scaffolding. Several recent 

approaches to address this challenge are outlined below.

Enhanced proliferation of transplanted cells

Lentiviral overexpression of human CCND2 (gene encoding Cyclin D2, a cell-cycle 

activator that regulates G1-S transition) in hiPSC-CMs, was recently shown 40 to increase 

the graft size and improve myocardial recovery in a mouse model of myocardial infarction 

Berry et al. Page 8

Circ Res. Author manuscript; available in PMC 2020 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by increasing the proliferation of grafted cells (Figure 2A). In vitro, markers for cell-cycle 

activation and proliferation were ~3–7 fold higher in CCND2-overexpressing hiPSC-CMs 

(hiPSC-CCND2OECMs) than in hiPSC-CMs with normal levels of CCND2 (hiPSC-

CCND2WTCMs). In the mouse MI model, cardiac function, infarct size, and the number of 

engrafted hiPSC-CCND2OECMs and hiPSC-CCND2WTCMs were similar one week after 

treatment; however, at 4 weeks of treatment, CCD2 overexpression yielded a three-fold 

increase in cell engraftment and enhanced improvement in cardiac function and infarct size. 

No tumor formation was observed in any hearts. Thus, CCND2 overexpression prevented 

the cell-cycle exit in implanted hiPSC-CMs leading to a more efficient myocardial repair as 

evidenced by enhanced remuscularization of injured myocardium, increased angiogenesis in 

border zone, and improved LV chamber function. This proof-of-concept study warrants 

future developments to precisely control the increase in graft size and mitigate potential 

arrhythmogenic risks.

Manipulation of the immune system

The harsh inflammatory milieu intrinsic to acutely infarcted or chronically failing hearts 

may present a formidable roadblock to cell-based cardiac repair. Fundamentally, the tissue 

immune cell profile is a prime determinant of the local inflammatory response. Hence, a 

better understanding of the immune cell activity in the infarcted and failing heart is of 

critical importance for understanding whether and how immunomodulatory strategies can 

promote cardiac repair. Murine hearts with ischemic cardiomyopathy 8 weeks after large 

myocardial infarction exhibit robust expansion of: 1) Pro-inflammatory ‘M1’ type 

macrophages, 2) Classical and plasmacytoid dendritic cells (DCs), and 3) CD8+ and CD4+ 

T-cells. In addition, mice with ischemic HF exhibit increased circulating pro-inflammatory 

monocytes, classical DCs, and CD8+ and CD4+ T-cells; profound splenic remodeling 

indicative of heightened antigen processing; and expanded splenic antigen-experienced 

effector and memory CD4+ T cells. A series of studies in HF mice, incorporating 

splenectomy, adoptive transfer of unselected splenocytes and splenic CD4+ T-cells, and 

antibody-mediated CD4+ T-cell depletion, indicated that splenic immune cells: 1) Underlie 

the chronic inflammatory response in HF, 2) Traffic and home to the failing heart, and 3) 

Exhibit immune memory and are primed to induce tissue injury that promotes pathological 

cardiac remodeling. These findings suggest that ischemic cardiomyopathy is in part an 

immune-mediated disease, with a central role for the spleen. Furthermore, recent work has 

suggested that the reparative effects of intravenously administered hMSC were related 

primarily to immunomodulatory effects, independent of cell engraftment in the heart 41. 

Hence, targeting immune cell populations, particularly in the spleen, may allow 

immunomodulation in HF to aid the effectiveness of cardiac cell therapies 42.

Control of cell rejection

In addition to inflammation, another contributor to low cell survival and graft attrition is 

immune rejection when transplanted cells are of an allogeneic origin, an increasing trend 

given their advantages regarding product consistency and streamlining of transplantation 

logistics. Immune rejection of transplanted cells could be addressed using 

immunosuppressive drugs, the side effects of which are well documented, and possibly, in 

the future, the use of Human Leukocyte Antigen (HLA)-haplotyped iPSC lines or even 
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universal iPSC lines43 where the side-effect of β2-globulin knock-down to eliminate surface 

expression of class I antigens (Figure 2B43), i.e., an increased susceptibility to damage by 

Natural Killer cells, is handled by a forced expression of HLA-E 44. There are some 

significant progress recently in efforts to engineer “universal” hiPSC cell lines43 to avoid the 

need for concomitant immunosuppressive therapy. In line with the idea of inducing a state of 

immune tolerance, an alternative strategy to allogeneic human cell transplantation is 

xenotransplantation. The general objective is to humanize the organ of interest in pig so it 

will be an acceptable donor graft for the patient 45. As one of the challenges associated with 

xenotransplantation is organ rejection triggered by donor endothelial cells, a novel strategy 

is being pursued to generate pigs with humanized vascular cells. This approach could be 

used as a universal platform for exogenic organ production by reducing immunological 

rejection 46. So far, the only clinical application of xenotransplantation in the field of cardiac 

repair is the endoventricular injection of a decellularized extracellular porcine myocardial 

matrix. The outcomes of this trial (NCT02305602) will reveal if this strategy is worth a 

further pursuit considering that decellularized porcine pulmonary arteries were previously 

shown to induce a strong immune cell response in vitro 47.

Modulating Cardiac Metabolism

Recent advances in metabolomics have provided evidence for accumulation of cardiac 

metabolites that may activate signal transduction pathways that impact cellular proliferation 

and survival 48, 49. Many of these metabolites can be released from the failing myocardium 

and could potentially impact the viability of implanted cells or the extracellular matrix. 

Although some studies have examined the potential effects of metabolic modulation on the 

recovery of the failing myocardium, analysis of the relationship between metabolic 

modulation and engraftment of cardiac progenitor cells remains an important future 

direction.

Tackling the “reductive stress”

Over the last 6 decades, numerous studies have reported that enhanced oxygen-derived free 

radicals trigger injury in several human diseases, including cardiovascular complications 

supporting the theory of oxidative stress. However, this view may have to be somewhat 

revisited in light of the discovery of the role of “Reductive Stress (RS)” 50 whereby 

sustained activation of pathways that facilitate the constant generation of reducing 

equivalents (i.e. GSH, NADPH), hence resulting in RS, impair the basal cellular signaling 

mechanisms operating through harmless pro-oxidative events. This, in turn, may disrupt 

single and/or a combination of key processes such as cell growth, maturation, differentiation, 

and survival. While the possible clinical relevance of these findings is suggested by the fact 

that RS may be implicated in the pathogenesis of HF in a subset of cardiac patients 51, 

manipulation of the RS for improving survival of transplanted cells still remains elusive at 

this stage.

Use of biomaterials for cell delivery

Biomaterials have also been used to overcome the low engraftment of injected cells by 

addressing physical damage to cells during injections, lack of cell-matrix attachment, and 

hypovascularization of the target areas. For example, cell encapsulation in an injectable 
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thermoresponsive hydrogel served to boost cell retention and attenuate immune reaction 52. 

Platelet binding molecules or whole platelet membranes have been used to enhance 

adherence of vascularly injected cells to the injured endothelium 53. Furthermore, cell 

mimicking microparticles or synthetic stem cells have been developed to overcome some of 

the drawbacks associated with natural stem cells, including poor storage/shipping stability 
54. To address hypovascularization at the site of cell transplantation, human iPSCs were 

differentiated into endothelial cells (ECs) within a three-dimensional (3D) fibrin scaffold 54. 

By modulating both p38MAPK and MEKERK1/2 signaling, EC differentiation efficiency 

could be dramatically increased to >85%. Similarly, Etv2 has been identified as a master 

regulator of the endothelial lineage 55 with Etv2-miR130a-Jarid2 cascade regulating 

vasculogenesis and vascular patterning without impacting the hematopoietic lineages 56. 

Forced overexpression of Etv2 promoted reprogramming of differentiated cell populations to 

an endothelial fate yielding the functional improvement of injured organs. Notably, the use 

of biomaterials to organize and deliver cells in a form of an in vitro engineered cardiac tissue 

patch holds promise to further localize delivered cells and concentrate their paracrine action 

to the site of injury. Recent studies have demonstrated generation of highly functional 

hiPSC-derived cardiac tissue patches with a clinically relevant size (up to 4cmx4cm). With 

absolute and specific forces of ~20mN and ~25mN/mm2, respectively, and velocity of action 

potential propagation of ~30cm/s, these tissues have started to approach functional metrics 

of the native human heart muscle 57. In an independent study, paracrine actions of large 

patches implanted in a porcine MI model yielded improved left ventricular function, wall 

stress, and infarct size by reducing apoptosis and normalizing phosphorylation of sarcomeric 

regulatory proteins in host cardiomyocytes. Still, the lack of electromechanical integration 

between the patch and recipient heart remains an important challenge to overcome in the 

field 57, 58.

Repeated cell delivery

While the single administration of any drug is unlikely to achieve sustained therapeutic 

benefits, cell therapies have been performed as a one-shot delivery modality in almost all 

preclinical and clinical studies heretofore. It is thus reasonable to assume that the therapeutic 

benefit of transplanted cells could be optimized by repeated cell administrations. Indeed, 

using a rat 59 and a mouse 60 model of chronic ischemic cardiomyopathy and two different 

cell types (c-kit+ cardiac progenitor cells and cardiac mesenchymal cells (MSCs), it has been 

found that repeated cell doses are markedly more effective than a single dose. The 

mechanisms involved are again thought to be paracrine, potentially including anti-fibrotic 

and anti-inflammatory actions of transplanted cells 59, 60. It could be argued that the 

superiority of multiple doses 59, 60 was due to the greater total number of cells given rather 

than repeated treatments. However, the cumulative effects of repeated cell doses on LV 

function, myocardial fibrosis, and myocardial infiltration by inflammatory cells were not 

recapitulated by a single equivalent dose 61, suggesting that the duration of myocardial 

exposure to the transplanted cells is more important than the intensity of such exposure. This 

concept of repeated dosing should likely be considered in the design of future clinical 

protocols.
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In conclusion, the field of cardiovascular bioengineering has made great strides in use of 

iPSC technology for modeling congenital heart disease and transplanting functional cardiac 

muscle to the injured heart. A recurrent question posed at the symposium was, “What next?” 

and presentations from attendees suggested development of in vitro methodologies to: 1) 

accelerate functional maturation of iPSC-derived cardiomyocytes, 2) design realistic heart 

microtissues containing most, if not all, cells present in the native myocardium, including a 

functional vasculature, and 3) mimic cardiac injury and scarring, as the important next steps 

to enable in vitro modeling of acquired adult heart diseases such as MI and HF. Furthermore, 

increase in transplanted tissue volume, functional integration with recipient heart, and 

minimally invasive methods to deliver engineered tissues on the heart surface were 

considered to be critical future steps in making cardiac patch therapies a clinical reality. 

Importantly, symposium attendees agreed that understanding the effects of transplanted cells 

or cell derivatives on the host immune system and the possibility to manipulate immune cells 

to enhance regenerative, cardioprotective, and functional benefits of therapy has the potential 

to improve all cell-based strategies for treatment of ischemic heart disease. Finally, moving 

products of cardiovascular bioengineering to the clinical and commercial sector will require 

the development of scientifically robust, reproducible, and cost effective technologies, a feat 

that is only achievable through organic collaboration of basic scientists, engineers, and 

clinicians.
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HF Heart failure

hPSCs Human pluripotent stem cells

hiPSCs Human induced pluripotent stem cells

hPSC-CMs Human pluripotent stem cells-derived cardiomyocytes

hPSC-ECs Human pluripotent stem cells-derived endothelial cells

hPSC-SMCs Human pluripotent stem cells-derived smooth muscle cells

hPSC-CVPCs Human pluripotent stem cells-derived cardiovascular 

progenitor cells

hMSCs Human mesenchymal stem cells

CVD Cardiovascular disease

ECM Extracellular matrix

MS Mass spectrometry
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Figure 1. Adult-like human heart muscle formed from iPS cells.
(A) Transmission electron microscopy shows registers of sarcomeres and abundant 

mitochondria (measured to be present at physiologic density). (B) Muscle cross-section 

shows dense networks of transverse tubules (T-tubules, green, WGA; red, cardiac troponin 

T; blue, nuclei). (C) T-tubules (measured using WGA and di-8-ANEPPS were co-localized 

with the bridging integrator 1 (BIN1), ryanodine receptor 2 (RYR2), and L-type calcium 

channels (CaV1.2, encoded by CACNA1C) with spacing optimized for calcium handling. 

The presence of ultrastructural machinery for contraction–relaxation was confirmed by the 

positioning of T-tubules in proximity to the cardiac calcium pump SERCA2A and the 

sodium–calcium exchanger NCX1.
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Figure 2. Novel strategies to enhance graft size.
(A) Recent experiments in a mouse MI model indicate that both graft sizes and the 

reparative potency of transplanted human iPSC-CMs can be significantly improved via the 

lentiviral overexpression of α-MHC driven human CCND2. Although the initial engraftment 

of CCND2-overexpressing iPSC-CMs may have been low, the surviving cells proliferated 

and likely replaced at least some of the lost myocardial tissue. These observations support 

the feasibility of this strategy for remuscularizing infarcted hearts and the development of 

techniques for controlling graft size and mitigating the potential risk of arrhythmia. (B) 
Efforts to engineer “universal” hiPSC cell lines43, and to avoid the need for concomitant 

immunosuppressive therapy include the development of human leukocyte antigen (HLA)-

haplotyped iPSCs or universal iPSC lines coupled with the forced expression of HLA-E, 

which reduces susceptibility to natural killer cells by overcoming the “missing self” 

response (a side-effect of β2-globulin knock-down).
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