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Abstract

Rationale: Corticosteroids (CSs) are the most effective asthma
therapy, but responses are heterogeneous and systemic CSs lead to
long-term side effects. Therefore, an improved understanding of the
contributing factors in CS responses could enhance precision
management. Although several factors have been associated with
CS responsiveness, no integrated/cluster approach has yet been
undertaken to identify differential CS responses.

Objectives: To identify asthma subphenotypes with differential
responses to CS treatment using an unsupervised multiview learning
approach.

Methods:Multiple-kernel k-means clustering was applied to 100
clinical, physiological, inflammatory, and demographic variables
from 346 adult participants with asthma in the Severe Asthma
Research Program with paired (before and 2–3 weeks after
triamcinolone administration) sputum data. Machine-learning
techniques were used to select the top baseline variables that
predicted cluster assignment for a new patient.

Measurements and Main Results:Multiple-kernel clustering
revealed four clusters of individuals with asthma and different
CS responses. Clusters 1 and 2 consisted of young, modestly
CS-responsive individuals with allergic asthma and relatively
normal lung function, separated by contrasting sputum
neutrophil and macrophage percentages after CS treatment.
The subjects in cluster 3 had late-onset asthma and low lung
function, high baseline eosinophilia, and the greatest CS
responsiveness. Cluster 4 consisted primarily of young,
obese females with severe airflow limitation, little eosinophilic
inflammation, and the least CS responsiveness. The top
12 baseline variables were identified, and the clusters were
validated using an independent Severe Asthma Research
Program test set.

Conclusions: Our machine learning–based approaches provide
new insights into the mechanisms of CS responsiveness in asthma,
with the potential to improve disease treatment.

Keywords: asthma phenotype; corticosteroids; severe asthma;
eosinophils

(Received in original form August 20, 2018; accepted in final form January 23, 2019 )

*Co–first authors.
‡Co–senior authors.

Supported by grants from the NIH (P30DA035778 and R01GM114311 to W.W. [co–principal investigator (co-PI)]) and grants that were awarded by the NHLBI
to the Severe Asthma Research Program PIs, Clinical Centers, and Data Coordinating Center as follows: Wake Forest University (E.R.B. and D.A.M.) and
Emory University (U10 HL109164, A.M.F. subaward PI); Washington University (U10 HL109257, M.C.); University of California San Francisco (U10 HL109146,
J.V.F.); Case Western Reserve University (U10 HL109250, B.M.G.); Cleveland Clinic (U10 HL109250, S.C.E. co-PI, Virginia-Cleveland Consortium); Brigham
and Women’s Hospital, Harvard Medical School (E.I. and B.D.L.) and Boston Children’s Hospital, Harvard Medical School (U10 HL109172, W.P. subaward
PI); University of Wisconsin (U10 HL109168, N.N.J.); University of Pittsburgh (U10 HL109152, S.E.W.); and Penn State University (U10 HL109086, Data
Coordinating Center, D.T.M.). In addition, this program is supported through the following NIH National Center for Advancing Translational Sciences awards:
UL1 TR001420 to Wake Forest University, UL1 TR000427 to the University of Wisconsin, UL1 TR001102 to Harvard University, UL1 TR000454 to Emory
University.

Author Contributions: Conception and design: W.W. and S.E.W. Data analysis: W.W., S.B., and S.E.W. Data collection: E.R.B., M.C., L.D., S.C.E., J.V.F.,
A.M.F., B.M.G., A.T.H., E.I., N.N.J., B.D.L., D.T.M., D.A.M., W.C.M., M.P., W.P., R.L.S., and S.E.W. Manuscript writing committee: W.W., S.B., and S.E.W.
Manuscript review and editing: W.W., S.B., E.R.B., M.C., L.D., S.C.E., J.V.F., A.M.F., B.M.G., A.T.H., E.I., N.N.J., B.D.L., D.T.M., D.A.M., W.C.M., M.P.,
B.R.P., W.P., R.L.S., and S.E.W.

Am J Respir Crit Care Med Vol 199, Iss 11, pp 1358–1367, Jun 1, 2019

Copyright © 2019 by the American Thoracic Society

Originally Published in Press as DOI: 10.1164/rccm.201808-1543OC on January 25, 2019

Internet address: www.atsjournals.org

1358 American Journal of Respiratory and Critical Care Medicine Volume 199 Number 11 | June 1 2019

http://dx.doi.org/10.1164/rccm.201808-1543OC
http://www.atsjournals.org


Asthma is a heterogeneous chronic airway
disorder that consists of multiple
phenotypes with diverse clinical
characteristics (1, 2). Corticosteroids (CSs),
particularly systemic ones, are the most
effective asthma controller therapy, but
they have numerous harmful side effects
(3–6) and the responses are heterogeneous
and difficult to predict (1, 7). Previous
works investigated a small number of
targeted predictors of CS responses (8);
however, no large-scale, multivisit analyses

have been performed using machine-
learning approaches.

Cluster analysis has identified
subphenotypes of asthma using large clinical
data sets (9–11). However, no unsupervised
learning approach has been undertaken to
identify differential CS response patterns
among subjects with asthma by integrating
dynamic variables measured before and 2–3
weeks after CS treatment. Unfortunately,
unsupervised learning approaches that are
commonly used to identify asthma
subphenotypes, such as k-means and
hierarchical clustering, are insufficient for
dealing with a complex mix of clinical and
biological data containing both static and
changing/dynamic variables. In addition,
traditional clustering gives equal weights to
all variables (10, 11), when, in fact, prior
knowledge supports a stronger relationship
between some variables and asthma and its
outcomes than others (for instance, age at
onset vs. family history of asthma-allergies).

Multiview learning methods have been
developed to classify or cluster samples by
integrating different types of data in the
biological field (12, 13). Multiple-kernel
k-means clustering (MKKC)-based methods
(Figure E1 in the online supplement) (14,
15), which are classified as unsupervised
multiview learning methods, have
demonstrated advantages over traditional
single-view clustering approaches, such as
k-means and hierarchical clustering, in that
they find clusters by using information
collected from different types or sources of
data. For example, they have been used to
identify cancer subtypes using different
omics data, including DNA copy number
profiling, mRNA gene expression, and
DNA methylation data (14).

To help understand differential CS
responsiveness among subjects with asthma,
we developed a novel multiview learning
strategy that allows us to identify clusters of
subjects with asthma subjects and
differential patterns of response to CS by 1)
incorporating different types of variables,
including both baseline and change
variables, into the cluster analysis; and 2)
assigning variables to different views based
on their clinical importance. Toward
that end, we recently developed a new
multiple-kernel clustering approach, called

MML-MKKC, which finds clusters by
using a minimax formulation and l2
regularization (15). This MML-MKKC
approach was applied to a rigorously
characterized cohort of adults with asthma
from the NIH NHLBI’s Severe Asthma
Research Program (SARP) who were
studied before and after a standardized
systemic CS treatment to characterize their
responses (8). Seventy static baseline
variables, as well as 15 “dynamic” baseline
variables and their “changes” in response to
CS treatment, were included. Top relevant
and nonredundant variables were then
selected from the 85 baseline variables
using feature selection techniques, to enable
clinicians to eventually predict patient
responses using a support vector machine
(SVM). Our results provide new insights
into CS response patterns in asthma.

Methods

Participants
All of the participants were from the
SARP cohort. Severe asthma was defined
according to criteria established by the
European Respiratory Society (ERS) and
American Thoracic Society (ATS) (16). All
other subjects were considered to have
nonsevere asthma. The subjects in this
work were limited to 346 adults with paired
(before and 2–3 wk after intramuscular
triamcinolone 40 mg) sputum cell counts.

Cluster Analysis Using MKKC
Variables with >10% of missing values
were excluded. Others were imputed as
described in Reference 11. A total of
100 variables measured from the 346
participants (also called the discovery set)
were used in the cluster analysis (Table E1);
85 of these were baseline variables (70
“static” baseline variables whose values
were measured only before CS [baseline]
and 15 “dynamic” variables whose values
were measured both before [baseline] and
after CS). Fifteen “change” variables
were created by subtracting the baseline
values of the dynamic variables from the
values of the corresponding variables after
CS, and were also included in the cluster
analysis.

Correspondence and requests for reprints should be addressed to Wei Wu, Ph.D., Computational Biology Department, School of Computer Science, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213. E-mail: weiwu2@cs.cmu.edu

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.

At a Glance Commentary

Scientific Knowledge on the
Subject: Corticosteroids (CSs) are the
most effective therapy for asthma.
However, heterogeneity in CS
responsiveness and long-term side
effects make it more difficult to control.
Although few predictors of response
have been identified, no cluster analysis
has been performed to identify
differential response patterns.

What This Study Adds to the
Field: Multiple-kernel clustering
analysis was used to cluster 346 adult
subjects with asthma and paired
(before and after CS) sputum data
using 100 variables, including both
baseline and “changes” of dynamic
variables. We identified four clusters
with differential CS response patterns
and baseline characteristics, among
which cluster 3 was the most
responsive and cluster 4 was the least
responsive. We also identified 12
predictive baseline variables that
predicted cluster assignment with high
accuracy. These findings suggest
that CS responses follow clinical,
inflammatory, and physiological
patterns. The 12 predictive variables
we identified suggest that software can
be developed to predict responses to
CSs, which would help make precision
medicine possible. These machine-
learning approaches provide novel
insights into CS response patterns that
could improve asthma management.
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MKKC. To identify clusters of subjects
with asthma who showed differential
responses to CS, we clustered 346 subjects
using our recently developed MKKC
methodology, MML-MKKC (15). We
assigned variables to three different groups
(also called “views” in the machine-learning
literature) based on their clinical
importance according to prior knowledge
and our previous cluster analysis (11)
(Table E1).

Assigning variables to three different
views. View 1 included 27 static baseline
variables, which have looser ties to asthma
pathobiology, including household
socioeconomic information, as well as
comorbid conditions such as diabetes and
depression. View 2 was composed of 53
baseline variables containing 38 “more
important” static variables, including
asthma clinical questionnaires, vital signs,
Asthma Quality of Life Questionnaire
(AQLQ), family history of allergy, IgE, and
biological features such as inflammatory
cell counts, which our previous study
suggested were discriminatory in asthma
clusters (11), as well as 15 dynamic
variables, including Asthma Control
Questionnaire (ACQ) scores, fractional
exhaled nitric oxide (FENO), and sputum
cell counts/differentials. View 3 contained
the “changes” of the 15 dynamic variables
(from view 2) after CS treatment, as well as
five demographic variables with importance
for asthma, including age of onset, age at
baseline, sex, race, and body mass index
(BMI) (9, 11, 17, 18).

Because the variables in views 1–3 had
increasing clinical importance, constraints
on the weights of the views in the cluster
analysis were set so that the least weight
was put on view 1, and the most was put on
view 3. An optimal number of the clusters k
was determined using the elbow method
(Figure E2). A principal component
analysis was performed to illustrate the
identified clusters (15).

Stability analysis. A stability analysis
was performed to determine the stability of
the identified clusters when variables were
assigned to different views.

Statistical Tests
To examine significant differences of the
variables among the identified clusters,
we performed one-way ANOVAs (19)
for continuous variables, Kruskal-Wallis
rank-sum tests (20) for ordinal variables,
and Pearson’s chi-squared tests (21) for

nominal variables. To examine whether a
variable was significantly different between
any pairs of the clusters, we performed two-
sample pairwise t tests for continuous
variables, Wilcoxon rank-sum tests (22) for
ordinal variables, and Pearson’s chi-
squared tests (21) for nominal variables.
P values were adjusted to control the false
discovery rate using the Benjamini-
Hochberg procedure (23). P values , 0.05
were considered significant.

Predicting Clustered Subjects Using
the Most Informative Baseline
Variables
The top predictive baseline variables were
selected for prediction using a two-step
feature selectionmachine-learning procedure
(11). To classify the subjects whose cluster
labels were identified by MML-MKKC, we
used a multiclass SVM algorithm with a 10-
fold cross-validation strategy to determine
the top relevant nonredundant baseline
variables. Then, SVM classification and a 10-
fold cross-validation with different splits of
the samples were used to evaluate how well
these variables predicted cluster labels of the
test samples.

Validation of the Newly Identified
Clusters Using an Independent SARP
Test Set
An independent test set of 182 adult SARP
participants without sputum data was used to
validate/replicate the clusters identified by
MML-MKKC. First, a multiclass SVM
classifier was trained using the 346 patients in
the discovery set with the 12 predictive
baseline variables, of which two were
surrogate variables [blood neutrophil and
eosinophil counts]) to replace sputum
macrophage and eosinophil percentages
because the test samples had no available
sputum data. Cluster labels of the participants
in the test set were predicted using the trained
SVM classifier. Finally, the clusters of the
patients in the test data were characterized
using the statistical tests described above.

Details regarding the methods used in
this work are provided in the online
supplement.

Results

Demographics of the Participants
Used in the Cluster Analysis
A total of 346 participants (>18 yr old) with
asthma and paired sputum data were

analyzed. Of these 346, 204 met the
ERS/ATS criteria for severe asthma (16).
The demographics of the 346 participants
did not differ from those of the complete
cohort of 528 adult participants with
asthma (Table 1).

Identification of CS Response
Patterns Using a Novel Multiview
Learning Strategy
One hundred clinical, physiological,
inflammatory, and demographic variables
were included in the cluster analysis. To
identify CS response patterns, we developed a
novel multiview learning strategy that allows
clustering of participants using our recently
developedMKKC algorithm (15), taking into
account the “change” values of the dynamic
variables as well as the baseline values of
both the static and dynamic variables.

Clustering Results from a Multiple-
Kernel k-Means Approach
Clustering 346 participants with 100
variables using our MKKC algorithm
revealed four distinct asthma clusters with
differing CS responses (Table 2), as the
elbow method determined four clusters as
the optimal cluster number identified by
MML-MKKC (Figure E2). The clusters
were well separated from one another, as
shown by a multiple-kernel principal
component analysis plots (Figure E3). The
four participant clusters had distinct
baseline and patterns of response to the
CS treatments, as detailed in Figure 1.
Summaries of the variables that differed
significantly among the clusters, as
measured by traditional statistical tests, can
be found in Tables E2 and E3.

Cluster 1. At baseline, cluster 1
participants (n = 81) were relatively
asymptomatic but highly allergic, with the
earliest age at onset, and evenly mixed
between males and females (Figures 2 and
3). They had normal lung function and the
highest sputum neutrophil percentages, but
low neutrophil and eosinophil numbers in
blood, and the lowest medication use and
urgent healthcare use (Figures 3–5, E5, and
E6). Despite this being the healthiest
cluster, 38% of the participants had severe
asthma as defined by the ERS/ATS
(Table 2).

After triamcinolone treatment, given
their relatively normal baselines, the subjects
in this cluster showed only small
improvements in FEV1, FVC, or FENO
(Figures 4D and 4F, and Table E2). After
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CS treatment, this cluster had the largest
increase in macrophage percentages
(Figure 3D).

Cluster 2. The patients in cluster 2 (n =
73) were also young, mostly women, and
allergic, but they had a slightly older age at
onset than those in cluster 1 (Figures 2 and
3). Their lung function was modestly lower
and more reversible compared with the
patients in cluster 1 (Figure 4), but a larger
percentage of these patients were on
high-dose inhaled CS (ICS) and other
controllers. Perhaps because they had
received more treatment, they had low
baseline T2 biomarkers (second lowest

blood eosinophil counts, and lowest
sputum eosinophil and neutrophil
percentages), low symptoms, and a
relatively good quality of life, with low
urgent healthcare use (Figures 4 and 5).
Thus, the participants in this cluster, 55% of
whom met the ERS/ATS definition of
severe asthma, generally had severe but
well-controlled asthma (Table 2). They also
had the lowest sputum neutrophil and
highest sputum macrophage percentages
(Figures 3A and 3C).

Similar to what was observed in cluster
1, there was little change in sputum
eosinophil percentages or lung function

after triamcinolone treatment, probably
because the subjects had relatively normal
baseline values (Figures 4C–4F). However,
in contrast to cluster 1, this cluster was
characterized by the highest decrease in
sputum macrophage percentages (and
reciprocal increase in neutrophil
percentages) after triamcinolone treatment
(Figures 3A–3D).

Cluster 3. Patients in cluster 3 (n = 96)
were the oldest and least allergic, with the
latest age at onset (Figures 2 and 3). They
were generally better educated and had the
lowest lung function and low reversibility
(Figures 4C, 4E, and E5E). The participants

Table 1. Demographics of the Adult Subjects with Asthma in the Entire SARP Cohort and the Subjects with Paired Sputum Samples
Used in this Analysis

Subjects in the SARP Cohort Subjects for Cluster Analysis P Value (FDR)*

Sample size 528 346
Age 49.4 (37.1–57.9) 49.3 (37.0–57.9) 0.73
Sex, %, F/M 67/33 67/33 0.99
BMI 30.9 (26.5–36.9) 30.9 (26.5–37.0) 0.91
Black/African American, % 27 24 0.88
Age at onset 12.0 (5.0–28.0) 12 (5.0–27.0) 0.91
Baseline pre-BD FVC% predicted 83.7 (73.1–97.7) 84.1 (74.7–97.3) 0.47
Maximal FEV1% predicted 84.8 (71.5–97.8) 85.5 (72.9–97.6) 0.35
Baseline pre-BD FEV1/FVC% predicted 85.8 (75.8–93.5) 86 (77.1–92.9) 0.67
Severe asthma, % 64 64 1.00

Definition of abbreviations: BD = bronchodilator; BMI = body mass index; FDR = false discovery rate; SARP = Severe Asthma Research Program.
Numerical data are presented as median (first–third quartiles).
*FDR-adjusted P value from Welch’s t test or chi-square test among the 528 subjects in the entire SARP cohort and the 346 subjects used for the cluster
analysis.

Table 2. Demographic Data of the Subjects in the Clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P Value (FDR)*

Sample size 81 73 96 96
Age 42.3 (32.1 to 50.5) 42.1 (33.9 to 52.3) 60.5 (54.3 to 66.0) 45.1 (33.7 to 52.2) ,0.0001
Sex, %, F/M 48/52 70/30 67/33 82/18 ,0.0001
BMI 29.2 (25.8 to 32.2) 30.6 (26.5 to 35.3) 28.1 (25.6 to 33.6) 37.7 (31.6 to 44.9) ,0.0001
Black/African American, % 20 25 7 45 ,0.0001
Age at onset 8.0 (3.0 to 16.0) 11.1 (5.0 to 22.0) 30.0 (14.9 to 40.1) 8.5 (3.0 to 19.0) ,0.0001
Baseline pre-BD FVC%
predicted

95.9 (87.7 to 104.7) 86.9 (79.5 to 101.0) 78.2 (70.9 to 85.2) 79.8 (72.0 to 91.1) ,0.0001

Maximal FEV1%
predicted

91.7 (83.0 to 101.4) 89.6 (79.2 to 105.7) 75.8 (63.6 to 86.2) 84.9 (73.6 to 94.8) ,0.0001

Baseline pre-BD FEV1/FVC%
predicted

86.9 (80.2 to 94.0) 86.5 (77.8 to 92.4) 83.7 (73.5 to 91.0) 86.5 (76.3 to 92.4) 1.703 1021

Change in pre-BD FVC%
predicted

20.5 (23.3 to 3.8) 1 (22.6 to 5.3) 3.6 (20.6 to 7.6) 1.5 (21.5 to 5.4) 4.733 1024

Change in maximal FEV1%
predicted

0.4 (22.3 to 3.1) 0 (22.8 to 3.5) 3.7 (21.0 to 8.1) 20.7 (23.6 to 3.5) ,0.0001

Change in pre-BD FEV1/FVC%
predicted

1.3 (21.7 to 3.1) 0.5 (21.2 to 3.3) 1.4 (21.3 to 4.7) 1.1 (22.1 to 4.8) 3.893 1021

Severe asthma, % 38 55 77 79 ,0.0001

Definition of abbreviations: BD = bronchodilator; BMI = body mass index; FDR = false discovery rate.
Numerical data are presented as median (first to third quartiles).
*FDR-adjusted P value from the ANOVA or chi-square test among the 528 subjects of the total Severe Asthma Research Program cohort and the 346
subjects used for the cluster analysis.
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in cluster 3 were characterized by high
lung and blood T2 biomarkers (highest
sputum and blood eosinophil percentages/
counts and FENO), the most gastroesophageal
reflux disease, high blood pressure, and the
highest percentage of nasal polyps (33%)
and sinus disease (Figure 4A and Table E2).
Although they reported low asthma
symptoms, they had the second highest
exacerbations and oral CS use, and 77% had
severe asthma (Table 2). To support the
relationship with T2 inflammation, we
compared T2 gene mean (T2GM) RNA
levels in a post hoc analysis (see Figure E7).
In support of these higher eosinophil levels,
the post hoc analysis of a subgroup with
RNA from sputum showed that patients in
this cluster had the highest baseline T2GM
(Figure E7A).

Perhaps related to their lower lung
function and high T2 biomarkers, the
participants in this cluster had the biggest
improvements in lung function and sputum
eosinophils, accompanied by the second
biggest improvement in symptoms (Figures
4B, 4D, and 4F). Additional small
improvements in FEV1 and FVC after
albuterol after triamcinolone (Table E4)
suggest that triamcinolone did not
completely correct the airflow limitation.
Despite these improvements, T2 biomarker

levels were still higher than in other clusters
after the CS injection.

Cluster 4. Cluster 4 participants (n =
96) were primarily young, obese females
with early-onset asthma, 45% of whom
were black/African Americans (Figure 2).
They reported the worst asthma control,
with the most symptoms and severe
exacerbations, and low but highly
reversible lung function (Figures 5A and
5E). They had low T2 biomarkers (the
lowest FENO, low sputum eosinophils, and
moderate elevations in blood eosinophils)
but more comorbidities, including
diabetes, anxiety, depression, and sleep
disorders than all other clusters (Figure 4A
and Table E2). These patients reported the
highest use of biologics and oral CSs, and
had high blood neutrophils; 79% of the
participants in this cluster had severe
asthma (Table 2).

After triamcinolone treatment, these
patients had only a small decrease in sputum
eosinophil percentages (Figure 4B). These
improvements were not accompanied by
improvements in ACQ scores, FEV1, or
FVC. In fact, after triamcinolone treatment,
the bronchodilator (BD) response (percent
change) in both FEV1 and FVC decreased
compared with the pretriamcinolone
baseline (Figure 5F and Table E4). This

decrease in BD response occurred
even in the absence of any CS-induced
improvement in pre-BD FEV1 or FVC
(Table E4). This suggests that high-dose
systemic CSs may have contributed to
worsening the BD response.

Prediction of the Identified Clusters
Using Baseline Variables
We developed a classification strategy with
SVM that enables prediction of the
cluster label (and subsequent CS response)
for a given patient using only the
baseline variables. Using a 10-fold cross-
validation, we identified the top 12 baseline
variables with an INFOGAIN filter and the
Markov blanket algorithm (Table E5).
These top 12 variables included (in order)
age, activity limitation AQLQ, age at onset,
BMI, baseline pre-BD FVC% predicted,
sputum macrophage percentages, number
of specific IgE, FVC albuterol response,
baseline pulse, total white blood cell
count, black/African American racial
background, and sputum eosinophil
percentages.

Using these 12 baseline variables and
SVM with 10-fold cross-validation, we
predicted the cluster labels of the test
samples (10% of the participants in the
discovery set) with 81% overall accuracy,

VIEW 1 VIEW 2 VIEW 3

Static and Dynamic Baseline Variables (80, excluding demographics) 
Change (15) +

Demographics (5) 

Cl1
(81)

Cl2
(73)

Cl3
(96)

Cl4
(96)

3

0

–3

Figure 1. Heatmap of the four clusters identified among 346 patients by the multiple-kernel k-means clustering method. Rows represent the patients, and
columns represent the variables in each view (for an ordered list of variables, see Table E1).
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62% sensitivity, and 87% specificity (see
the online supplement). For individual
clusters, the respective sensitivity for
clusters 1–4 was 64%, 32%, 77%, and
70%, and specificity was 87%, 89%, 90%,
and 84%.

Validation of the Newly Identified
Clusters Using an Independent SARP
Test Set
The 12 slightly modified baseline variables
were used to predict cluster labels of the 182
SARP participants in the test set with SVM

(see the online supplement). The
demographics of the 182 participants did
not differ from those of the participants
in the discovery set (Table E6). The
participants clustered similarly to those in
the discovery set. Clusters 1 (n = 52) and 2
(n = 35) included subjects with mild allergic
asthma and early age at onset. Patients in
cluster 3 (n = 57) were older, with the latest
age at onset, the most nasal polyps, and
high blood eosinophils, and after CS
treatment, their lung function increased the
most. In addition, the small subsequent
increases in FEV1 and FVC after albuterol
after CS treatment were also observed in
this test set (Table E4).

Cluster 4 (n = 38) included primarily
obese females with early-onset asthma,
about half of whom were black/African
Americans. After CS treatment, there was
minimal improvement in lung function,
with no incremental benefit of triamcinolone
on maximal lung function compared with
that of albuterol alone (Table E4).

Together, these results suggest that the
top 12 baseline variables and an SVM
classifier trained using patients with known
cluster labels could eventually allow clinical
prediction of cluster assignment and
response to systemic CSs.

Discussion

To investigate differential CS responses
among participants with asthma, and the
various factors that contribute to them,
we analyzed 70 demographic, clinical,
physiological, and inflammatory variables at
baseline, as well as an additional 15 variables
both before and 2–3 weeks after an injection
of triamcinolone. For this purpose, we
used our newly developed multiple-kernel
k-means approach, MML-MKKC (15), which
integrates data with distinct features and
allows for evaluation of changes over time
or with treatment. This approach identified
four distinct patient clusters with variable
CS responsiveness. Using feature selection
techniques, we identified the top 12
predictive baseline variables, including
easily identifiable variables such as age and
age at disease onset, BMI, and baseline lung
function. Using SVM and the 12 variables
with the two surrogate variables, mandated
by the absence of sputum data, the test set
clusters replicated the discovery set clusters.

Our study has similarities and
differences in comparison with an earlier,
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Figure 2. Five demographic variables differed by cluster. (A and E) Cluster 3 had the oldest subjects
(A) with the latest age at onset (E). (B) Cluster 1 had the largest percentage of males, and cluster 4 had
the lowest. (C) Cluster 4 had the highest body mass index (BMI). (D) Cluster 4 had the highest
percentage of black/African Americans, and cluster 3 had the lowest percentage.
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more directed study of CS responses in these
patients from the SARP cohort (8). In that
study, responses to triamcinolone were
assessed with traditional generalized linear
mixed effects models followed by receiver
operating characteristic curve analyses to
identify the best predictors of CS response

(specifically defined as a 10% improvement
in FEV1 after triamcinolone). Using the
much smaller number of variables in the
models, baseline BD response and FENO
were identified as predictors of response.
Blood and sputum eosinophils were only
slightly worse predictors, but BMI and race

were identified as poor predictors. Rather
than focusing on a limited number of
baseline variables, in the current study we
identified subphenotypes of asthma
encompassing many baseline variables and,
for a large number of variables, their
change over time. Thus, these results
integrate both types of variables, greatly
expand on the original analysis, and reveal
novel new relationships.

There were two major challenges to our
approach. The first was to incorporate both
baseline and “change” variables in one
analysis, and the second was to combine
different types of baseline variables that
affect asthma in a single analysis. To
address these issues, we used our multiple-
kernel k-means approach, MML-MKKC, to
1) incorporate both static and dynamic
baseline variables, as well as the dynamic
“change” variables, into a single cluster
analysis, and 2) assign variables to different
views based on their clinical importance for
asthma according to general prior
knowledge and our previous cluster
analysis. This MML-MKKC approach
identified four clusters of patients who
exhibited not only distinct CS response
patterns but also distinct baseline
characteristics.

Of the four clusters identified, only
one cluster, cluster 3 (28% of the overall
population), would be widely recognized as
highly CS responsive. Not surprisingly, the
patients in this cluster had the highest
baseline eosinophilia, markedly obstructed
lung function, and the most nasal polyps.
They also had the highest values of T2GM
by post hoc analysis. Despite their
significantly older age and later age at
onset, they had the greatest improvements
in obstruction and inflammation.
Although they had small improvements in
lung function after albuterol treatment,
their ACQ6 scores did not improve with
triamcinolone. This cluster was previously
identified in our cross-sectional cluster
analysis (in a different population) and is
well recognized clinically (11, 24, 25). In
contrast, clusters 1 and 2 were only
modestly CS responsive and showed no
improvement in ACQ6 scores, most likely
because the subjects in these clusters had
near-normal baselines. It is impossible to
predict how responsive these patients
might be during an acute episode of
worsening, when their lung function
would likely be lower. On the other hand,
this analysis identified the participants in
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Figure 3. Distinguishing features of clusters 1 and 2. (A–D) At baseline, clusters 1 and 2 had opposite
sputum neutrophil (A) and macrophage (C) percentages and reciprocal changes after triamcinolone
treatment (B and D). (E and F) They also had the highest number of specific IgE (E) and the highest
percentage of patients with perennial allergy (F).
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cluster 4 as the least CS responsive, even
though they had rather severe baseline
airflow limitations. After CS treatment,
they were still worse than the subjects in
the other clusters, with almost no change

in lung function, and even a small decrease
in maximal (after albuterol) lung function,
particularly in the change in FVC.
Although the explanation for this is
uncertain, this finding was consistent in

cluster 4 for both the discovery and
test sets. Thus, the CS responses in
cluster 4 are likely complex. In these
patients, CS could detrimentally “stiffen
the lungs/airways” to decrease BD
responses. Although it is not typically
thought of in relation to asthma, CSs can
increase the stiffness of the extracellular
matrix, particularly in the eye in relation
to CS-induced glaucoma (26–28). A
similar effect could occur in the airway
matrix, which could decrease BD
responses in susceptible patients. Although
further confirmation is needed, the
implications of this finding could be
important.

The most striking differences between
clusters 1 and 2 were the nearly opposite and
marked differences in macrophage and
neutrophil percentages in sputum at
baseline and their reciprocal changes after
CS treatment. Cluster 1, with low starting
sputum macrophage percentages, had
a large increase after CS treatment, and
cluster 2, with low neutrophil percentages,
had the largest macrophage increase
after CS treatment. In each case, and
not surprisingly, as neutrophils and
macrophages make up the vast majority of
sputum cell types, there were decreases in
the “other” cell type. In the INFOGAIN
approach, these changes in sputum
neutrophil percentages and macrophage
percentages had the highest and third
highest INFOGAIN values, suggesting that
these two variables are highly
discriminatory in cluster separation.
Despite these marked changes, clinically
and physiologically perceivable changes did
not occur in response to CSs. Thus, the
actual biological importance associated
with this “yin-yang” response is unknown.
Longer-term studies of chronic CS dosing
are necessary to better determine the
relevance (or mechanisms) of these
differences.

These results also have implications
for treatment in line with the recent
guidelines (29, 30). Clusters 1 and 2 can
likely be well controlled with low to high
doses of ICS. Cluster 3 may require higher
doses of ICS and even systemic CSs, but is
likely an excellent group in which to
consider the use of targeted T2 biologic
therapy. Finally, cluster 4, the poorly CS
responsive group, may require novel
approaches, perhaps with lesser benefit
(and even detriment) from escalating
doses of CSs.
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Figure 4. Distinguishing features of cluster 3. (A, C, and E) At baseline, cluster 3 had the
highest sputum eosinophil percentages (A) and lowest lung function (C and E). (B, D, and F) After
triamcinolone treatment, cluster 3 had the greatest decrease in sputum eosinophil percentages
(B) and the largest improvement in lung function (D and F). The box plots in this figure are shown
without outliers. See Figure E5 for box plots showing all data points for the same variables. BD =
bronchodilator.
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With the concept that a tool could be
developed to help physicians determine
which cluster a new patient belongs to, we
identified the top 12 predictive baseline
variables using feature selection techniques.
With the use of SVM and a cross-validation

strategy, these variables predicted subjects in
all clusters in the discovery set with high
accuracy. Given the very distinct baseline
characteristics of cluster 3, it is not surprising
that the highest prediction sensitivity and
specificity were achieved for cluster 3.

The identified clusters were
validated/replicated using an independent
SARP test set without sputum data.
Using the 12 predictive baseline variables
with the two surrogate variables (blood
neutrophil and eosinophil counts) for the
unavailable sputum variables, the cluster
labels of the patients in the test set were
replicated with SVM and showed
characteristics remarkably similar to those
in the discovery set, confirming our results.
The development of publicly available
software would enable clinicians to
input these variables, manually or (more
likely) in an automated format direct from
the electronic medical record, to help them
determine the likelihood of a response to
systemic CSs.

Our study was limited to a single dose
of systemic CSs (without placebo) and a
single point in time. As shown previously
(31, 32), physiological markers can be
highly dynamic and change over time;
hence, a robust longitudinal study
design is required to assess the stability of
these clusters. These patterns cannot
be extrapolated to longer-term effects
of chronic CS use, or the use of higher
doses.

In summary, we identified four
asthma clusters with differential CS
responses using a multiview learning
approach. These findings give insight
into clinical, biological, and physiological
determinants of CS response patterns
that could be used mechanistically to
better link molecular responses to
clinical responses. The identification
of small numbers of highly predictive
nonredundant variables (using feature
selection techniques) suggests that software
could be developed to predict responses not
only to CSs but also to expensive biologic
therapies, which would help to improve
the application of precision medicine.
These machine-learning approaches are
providing new insights into CS
responsiveness in asthma and could
ultimately lead to improved asthma
management. n
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Figure 5. Distinguishing features of cluster 4. (A–E) At baseline, cluster 4 had the worst activity
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