
UC San Diego
UC San Diego Previously Published Works

Title
Optimization of nonlinear, non-Gaussian Bayesian filtering for diagnosis and prognosis of 
monotonic degradation processes

Permalink
https://escholarship.org/uc/item/60f6941x

Authors
Corbetta, Matteo
Sbarufatti, Claudio
Giglio, Marco
et al.

Publication Date
2018-05-01

DOI
10.1016/j.ymssp.2017.11.012
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60f6941x
https://escholarship.org/uc/item/60f6941x#author
https://escholarship.org
http://www.cdlib.org/


Optimization of nonlinear, non-Gaussian Bayesian

filtering for diagnosis and prognosis of monotonic

degradation processes
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aPolitecnico di Milano, Dipartimento di Meccanica, Milan, Italy
bUniversity of California San Diego, Department of Structural Engineering,
San Diego, CA

Abstract
The present work critically analyzes the probabilistic definition of dynamic
state-space models subject to Bayesian filters used for monitoring and pre-
dicting monotonic degradation processes. The study focuses on the selection
of the random process, often called process noise, which is a key perturba-
tion source in the evolution equation of particle filtering. Despite the large
number of applications of particle filtering predicting structural degradation,
the adequacy of the picked process noise has not been investigated. This
paper reviews existing process noise models that are typically embedded in
particle filters dedicated to monitoring and predicting structural damage
caused by fatigue, which is monotonic in nature. The analysis emphasizes
that existing formulations of the process noise can jeopardize the perfor-
mance of the filter in terms of state estimation and remaining life prediction
(i.e., damage prognosis). This paper subsequently proposes an optimal and
unbiased process noise model and a list of requirements that the stochas-
tic model must satisfy to guarantee high prognostic performance. These
requirements are useful for future and further implementations of particle
filtering for monotonic system dynamics. The validity of the new process
noise formulation is assessed against experimental fatigue crack growth data
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from a full-scale aeronautical structure using dedicated performance metrics.

Keywords: Bayesian filtering; Monte Carlo; diagnostics; prognostics;
damage prognosis; life prediction; fatigue crack growth; structural health
monitoring

1 Introduction

Bayesian filtering algorithms are gaining popularity in many engineering ap-
plications and they are emerging as a state-of-the-art technique in the fields
of probabilistic life prediction, structural health monitoring (SHM), and
prognostics and health management (PHM), especially when the diagnostic-
prognostic process requires real-time execution. Among the different classes
of Bayesian filters, particle filtering, a sequential Monte Carlo method devel-
oped by Gordon, Salmond and Smith [1], is of great interest because of its
ability to deal with nonlinear systems characterized by non-Gaussian vari-
ables [1, 2, 3, 4, 5, 6]. Recent applications of particle filtering have been
presented in literature in a number of diagnostic and prognostic scenarios:
fault detection in structural components [7, 8], prediction of turbine blade
creep [9], prediction of lithium-ion battery degradation [10, 11] and asymp-
totic process prediction in composite materials [12]. Literature also provides
examples of particle filtering applied in the field of nonlinear structural dy-
namics and structural parameter identification [13, 14]. Other works related
to particle filtering are analyzed throughout the paper.

The design of the filter includes a random process introduced in the
model equation describing the system dynamics. This random process works
as a perturbation source describing the inherent, un-modeled uncertainty of
the system and is inherent in defining the probability density function (pdf)
of the system state variables. Such process noise aims at describing, for
example, micro-scale dynamics of the damaging process, which is not ac-
counted for in macro-scale engineering models. In the fields of SHM and
PHM, such a random process is often called process noise, where the term
’process’ indicates the system evolution process, and ’noise’ emphasizes its
stochastic, perturbative nature. The definition of the process noise is typi-
cally made by the algorithm designer, but none of the applications of particle
filtering for diagnostic and prognostic of structures presented in literature
discusses the efficiency and effectiveness of the chosen random process. This
paper will clearly show that this selection does, in fact, have implications
on the filter’s predictive performance.
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In addition to the above-cited papers [7, 8, 9, 10, 11], the works in
[15, 16, 17, 18, 19, 20] are remarkable examples of real-time fatigue crack
growth (FCG) prognosis in metallic structures based on particle filtering.
Recent works investigating different aspects of particle filtering-based FCG
prognosis are also available in [21, 22, 23]. Applications of particle filtering
for life prediction of composite materials subject to matrix micro-cracking
are available in [12, 24, 25]. All those papers defined the process noise in dif-
ferent ways (some of them using nonlinear non-Gaussian random processes),
but none of them discussed the selected process critically.

The analysis presented in this paper shows that if the process noise is not
carefully tuned, the algorithm may encounter computational inefficiencies or
it might fail the prognostic goal, defined here to be the accurate prediction
of the remaining useful life (RUL) of the structure. Indeed, this analysis
shows the drawbacks of process noises adopted in previous papers. Then,
the paper proposes a process noise to improve the efficiency and effective-
ness of particle filtering for monitoring and prognosis of monotonic degrada-
tion phenomena. Cracks in metallic alloys, delamination and matrix crack
density evolution in composite laminates, and creep-induced plasticity are
typical cases of monotonic degradation where particle filtering (if properly
tuned) can help in monitoring the damage severity and predicting the RUL.
It should be noted that the proposed process noise was already used by the
authors in an application of particle filtering for composite materials suffer-
ing concurrent damage mechanisms [26]. Nevertheless, a critical analysis of
the process noise was not presented in that work. Also, this paper proposes
three requirements that the evolution equation, which strongly depends on
the process noise, has to satisfy in order to build an efficient Bayesian filter-
ing framework. Eventually, the designed filter is applied to FCG observed
in a real helicopter tail and the results are compared with older algorithm
formulations available in literature based on well-known evaluation metrics.
This application is a relevant example of particle filtering-based damage
prognosis applied to a real aeronautical structure.

The remainder of the paper organizes as follows: Section 2 summarizes
particle filtering, the system state refinement and the prognostic step to
predict the evolution of the (monotonic) degradation process. Section 3
analyzes the evolution equation tailored for monotonic processes and the
effect of the process noise. This section discusses also the requirements of
the evolution equation to design an effective particle filter. Section 4 shows
the application to FCG data obtained in a lab environment and Section 5
concludes the paper.
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2 Summary of particle filtering for nonlinear non-
Gaussian system tracking

Particle filtering is a Bayesian filtering technique relying upon Monte Carlo
importance sampling to approximate the conditional pdf of the system state
[2, 3]. The recursive filtering of the system state acts upon a dynamic state-
space model, which is composed of an evolution equation describing the
system dynamics and an observation equation that links the observables,
i.e., what is measured, with the true (unknown, and possibly hidden) system
state. The dynamic state-space model is described by a first-order Markov
assumption (1):

xk = fk,θ(xk−1,uk−1,ωk−1)

zk = gk(xk,ηk),
(1)

where the vector x = [x1, x2, . . . , xn]T ⊆ X ∈ IRn×1 contains the n state
variables, while the vector z = [z1, z2, . . . , zm]T ⊆ Z ∈ IRm×1 contains the
m observations. The evolution equation is defined by fk,θ(·), which is an
n-dimensional state mapping function parametrized by the model parame-
ter vector θ = [θ1, θ2, . . . , θq]

T ⊆ Θ ∈ IRq×1, while gk(·) is a m-dimensional
mapping function defining the observation equation. Both fk,θ(·) and gk(·)
are nonlinear and potentially time-varying. The two random processes
ωk−1 ⊆ Ω ∈ IRn×1 and ηk ⊆ H ∈ IRm×1 are the process and measure-
ment noise, respectively. They contribute to the evolution and observation
equations by adding random perturbations. As explained in the introduc-
tion, the process noise introduces a disturbance to account for the inherent,
unpredictable variability in the system dynamics, and is the core of the dis-
cussion in Section 3. The measurement noise describes the uncertainty of
the measurement system, and can be easily quantified when a series of re-
peatable observations is available. Although some authors defined them as
white noise processes [27], they can be general first-order random processes
with time-varying moments.

A common assumption is that the input of the system u = [u1, u2, . . . , up]
T ∈

U ⊆ IRp×1 is observable, and its observability is not further discussed hence-
forth. Unless otherwise specified, the model parameter vector and the input
vector are supposed to be deterministic and known. Thus, the dependence
from the input vector is not underlined in the following equations. Also,
dissertations on the observation equation, including frequency of observa-
tions and observation uncertainty, are not provided, since the paper focuses
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on the noise affecting the evolution equation only. With an abuse of nota-
tion, the distinction between random variables or random vectors and their
realizations is also neglected. Since detailed discussions on particle filtering
are not the aim of the paper, however, the interested reader may refer to
[1, 2, 3, 4, 5, 6] for more details.

2.1 Filtering of the dynamic state-space model

The filtering problem aims at estimating the conditional pdf of the system
state upon the observation sequence z0:k, and its closed form solution con-
sists of the Chapman-Kolmogorov equation (prediction) and the Bayesian
updating (2)

p(xk|z0:k−1) =

∫
X
p(xk|xk−1)p(xk−1|z0:k−1)dxk−1,

p(xk|z0:k) =
p(xk|z0:k−1)p(zk|xk)

p(zk|z0:k−1)
.

(2)

Since the evolution of x undergoes to the assumption of first-order
Markov processes (first row of (1)), the prediction equation has made use of
the fact that p(xk|xk−1, z0:k−1) = p(xk|xk−1), [3]. The analytical solution
of (2) exists for linear-Gaussian systems only. On the other hand, particle
filter enables the approximation of the posterior pdf of a nonlinear non-
Gaussian system state given a series of observations, p(xk|z0:k), by means

of Ns samples x
(i)
k , i = 1, . . . , Ns. These samples are often called particles,

weighted using the importance sampling approach (3), [3]. The weights are
normalized to sum up to 1 (4) before computing the posterior distribution
(5),

w̃
(i)
k = w

(i)
k−1

p(zk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, z0:k)

, (3)

w
(i)
k =

w̃
(i)
k∑Ns

j=1 w̃
(j)
k

, (4)

p̂(xk|z0:k) =

Ns∑
i=1

w
(i)
k δx(i)

k ,xk
(5)
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The functions in (3) are the transition density function (tdf), p(xk|xk−1),
the likelihood function, p(zk|xk) and the importance density function, q(xk|xk−1, z0:k).
The choice of the importance density function is arbitrary, and a common
practice is to use the tdf as the importance density function, thus simplifying
the weight formulation (6),

w̃
(i)
k = w

(i)
k−1p(zk|x

(i)
k ). (6)

The evolution equation fk,θ(·) is the core of the tdf and is analyzed in
Section 3. The algorithm based on equations (4)-(6) is called bootstrap se-
quential importance sampling or bootstrap particle filter and is the most
common algorithm adopted in real-time diagnostic and prognostic applica-
tions, although some applications of auxiliary particle filter for structural
state diagnosis can be found in literature [7].

2.2 Prognostics: from the state refinement to the p-step
ahead prediction

Particle filtering approximates the posterior distribution of the system state,
which is a state estimation-refinement rather than a prognosis [27]. The
prognostic stage is carried out by projecting the samples ahead into the fu-
ture, at time step p, using the evolution equation fk,θ(·), (i.e., p(xk|xk−1)).
The prognostic step makes use of the pdfs defined in Subsection 2.1 and
approximates the p-step ahead prediction distribution (7), as defined by
Doucet, Godsill and Andrieu [2],

p̂(xk+p|z0:k) =

Ns∑
i=1

w
(i)
k

∫
X
p
(
xk+1|x

(i)
k

) k+p∏
j=k+2

p(xj |xj−1) dxk+1:k+p−1.

(7)
The estimation of the end-of-life or the RUL of systems subject to pro-

gressive degradation involves the step-by-step propagation of the samples

x
(i)
k using the tdf. Once all the samples have crossed a predefined threshold
xth defining a critical or limit degradation, the RUL pdf may be computed
using (8),

p̂(RULk|z0:k) =

Ns∑
i=1

w
(i)
k δRUL

(i)
k ,RULk

. (8)

The term RUL
(i)
k is the remaining life of the i-th sample, i.e., the time
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required by x
(i)
k to reach xth, evaluated with the information up to time step

k.

3 On the probabilistic transition using the process
noise ω

This section analyzes the tdf p(xk|xk−1) and the effect of the selected process
noise to the transition of the samples. Assuming that fk,θ(·) is not time-
varying (i.e., fk,θ(·) ≡ fθ(·)), the process noise ω is the only source of
uncertainty affecting the transition of the i-th sample. In addition, the
features of the process noise have been assumed as stationary; ω loses indeed
the dependence from the time step k (9):

fθ(xk−1,ω)→ p(xk|xk−1). (9)

Each sample of the system state must perform a ’plausible’ transition

from x
(i)
k−1 to x

(i)
k in the state-space, in agreement with the true, physical

phenomenon. The requirements to generate likely transitions to monitor
monotonic degradation processes are discussed below, including: (i) the use
of additive Gaussian or non-Gaussian and (ii) multiplicative log-normal pro-
cess noises adopted in the literature1. Then, a process noise definition and a
list of requirements necessary to implement an efficient filter are discussed.
Without loss of generality, the system’s state has been considered unidimen-
sional, xk ⊆ X ∈ IR, and the analysis of the evolution equation has made
use of the algebra of random variables.

3.1 Additive Gaussian/non-Gaussian process noises

The works in [12, 15, 18, 24, 25], concerning fatigue-induced damage prog-
nosis, proposed an additive noise altering the evolution equation, (10),

xk = f ′θ(xk−1) + ω. (10)

The nonlinear function f ′θ is the deterministic evolution equation, which
describes the system state dynamics without any perturbation source. The
superscript ′ is used to differ the deterministic model and the stochastic
evolution function fθ(xk−1, ω). A simple analysis of the evolution equation

1The notation of the original papers has been modified to make it consistent with the
notation used in this work.
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in (10) can be carried out by using the conditional expectation of the system
state (11):

E[xk|xk−1] = f ′θ(xk−1) + E[ω]. (11)

Assuming a Gaussian process noise, the tdf describing the probability of

x
(i)
k given x

(i)
k−1 is a Gaussian distribution (12):

p(xk|xk−1) =
1√

2πσω
exp

(
−(xk − E[xk|xk−1])2

σ2ω

)
. (12)

Clearly, the expected value of the system state is unbiased only if E[ω] =
0. The work in [15] assumes ω as a non-Gaussian random process, but further
details were not provided. In [18], the authors used two types of process
noise in an illustrative example: a Gamma distribution, ω ∼ Γ(0.15, 0.3),
and a Normal distribution ω ∼ N (0.045, 0.1162). Later in their paper,
they applied the filter to experimental data using a ’non-Gaussian white
noise’, without further information. Instead, the authors in [12, 24, 25] used
equation (10) with a zero-mean Gaussian random process.

If the one-step ahead prediction is biased (E[xk|xk−1] 6= f ′θ(xk−1)), the
discrepancy between the deterministic evolution equation and the prediction
made by the filter increases with the horizon of the prediction, altering the
trend of the particles. The bias becomes larger and larger when projecting
the samples several steps ahead in the future, so it could produce notable
effects in the prognostic stage. Some authors adopted a non-zero-mean noise
to adjust the evolution equation using historical data. However, such data
may not be available for the system or structure that has to be monitored.
Also, if historical damage propagation data suggest that there is a bias with
respect to the models available in literature, such data could be efficiently
used to modify the model parameters, so that the model would fit those
historical data correctly. Table 1 summarizes the additive process noises for
structural degradation found in the literature.

Even though zero-mean Gaussian random processes will not introduce
biases in to the evolution equation, they may let the samples fall outside
the domain support of the system state, i.e., a domain support mismatch.
Let us assume an additive Gaussian process noise and consider the system
state xk as the size of a fatigue-induced damage: crack length, delamination
extent, etc. The domain of existence of the state vector is the positive sub-
set of real numbers, X ∈ IR[0,∞]. The use of a Gaussian process noise allows

the sample x
(i)
k to be smaller that x

(i)
k−1, because of the symmetry of the
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Table 1: Additive noise already used in particle filters for prognosis. The
last column is the bias introduced in a single step: from k-1 to k. (σ2ω
indicates that the original papers did not provide the value of the process
noise variance).

Paper System state Random process ω E[ω]

[18]
crack length ∼ Γ(0.15, 0.3) 0.045, mm
crack length ∼ N (0.045, 0.1162) 0.045, mm

[24] matrix crack density ∼ N (0, σ2ω) 0, #/m
[25] matrix crack density,

stiffness
∼ N (0, 4) 0, #/m

[12] matrix crack density,
stiffness, reliability

∼ N (0, σ2ω) 0, #/m

Gaussian distribution. If the sample decreases for a relatively large number
of steps, it might become less than zero, and the algorithm fails, without
providing any RUL estimation. As a matter of fact, a decreasing system
state is not consistent with damage progression phenomena, since aging or
fatigue damage accumulates as time passes by, i.e., monotonically increases.

In order to give a clear, graphical explanation of the effect of the process
noise on the particles’ propagation, Ns = 100 samples of FCG have been
propagated for N = 150000 load cycles using (10) and process noises similar
to the one found in literature (table 1). This simulation refers to a virtual
aluminum plate with a central crack, and the simulation features are avail-
able in table 2. A linear damage accumulation model based on Paris’ law
simulates the step-by-step damage progression (13):

xk = xk−1 + C∗ (∆K(xk−1))
m∗ ∆N + ω. (13)

The stress intensity factor range is the difference between the maximum
and minimum stress intensity factors within a single load cycle, ∆K =
K(Smax) −K(Smin), and ∆N = 200. The samples, each of them referring
to a specific crack length, are projected in the future for several time steps
(or load cycles) using (13). This simulation is representative of the particle
filtering-based prognostic stage, when the posterior pdf of the system state
has been already computed and there is no additional information regarding
the true damage progression.

Figure 1 shows the Monte Carlo simulation compared with a Paris’ law-
based deterministic model. The noise generated from a zero-mean Gaus-
sian distribution (figure 1a) keeps the samples centered on the deterministic
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Table 2: FCG simulation features.

Virtual structure infinite Aluminum plate Al2024
Damage central, through-the-thickness crack
Crack shape function F = 1
Applied fatigue stress ∆S = 60 MPa
Damage feature Stress intensity factor K = FS

√
xπ

FCG model Paris’ law C∗(∆K)m
∗

Paris’ law parameters C∗ = 1.1994e− 14, m∗ = 3.79
Initial semi-crack length pdf N (25, 0.5)

model, i.e., E[xk|xk−1] = f ′θ(xk−1), ∀ k ∈ IN. However, if the process noise
variance was too large, a sample propagation would unlikely represent a
FCG progression. The samples in figure 1a make large jumps at every step,

and some of them become negative (x
(i)
k < 0). It is difficult to identify a

crack growth path because of the large perturbation caused by the noise.
The reduction of the process noise variance would solve the problem, but
two main issues arise. Firstly, the closeness of the damage size to zero would
affect the selection of σ2ω. As a matter of fact, the closer the damage is to
zero, the higher the probability of the samples that will fall below zero,
because of the symmetric nature of the Gaussian distribution. As a conse-
quence, the choice of σ2ω would change on a case-by-case basis. Secondly, a
too small of a process noise variance would neglect the randomization effect
caused by ω. Particle filters may still work with null process noise, though
the algorithm would neglect the presence of non-modeled phenomena of the
damage progression, assuming that the model underneath the filter is ’cor-
rect’. The other process noises introduce a bias in the evolution equation,
and this bias increases with the number of simulation steps (Figures 1b-1c).
The additive Gaussian noise in 1b seems to keep the particles in the cor-
rect region (positive domain), thanks also to the bias. However, the initial
crack length (∼ 25mm) is relatively large, and a smaller initial crack size
might generate the same problem seen in Figure 1a. The bias introduced
by the Gamma process noise is very large; all of the samples have a trend
that is significantly different from the deterministic equation. As a conse-
quence, the use of an additive Gaussian (or non-Gaussian) process noise is
not considered optimal for monotonic degradation processes.
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(a) (b)

(c)

Figure 1: Monte Carlo samples of FCG starting from a known initial distri-
bution. The different process noises can generate unlikely damage progres-
sion paths (a), or biases of the sample swarm (b-c) that can jeopardize the
efficiency of the algorithm.

3.2 Multiplicative log-normal process noises

Another process noise formulation for FCG prognosis was proposed by Ca-
dini, Zio, Avram [19] by referring to [28]. They used a log-normal random
process eω, ω ∼ N (µω = 0, σ2ω) multiplied to the deterministic FCG rate
(14), assuming ∆N = 1,

xk = xk−1 + C∗(∆K(xk−1))
m∗ eω. (14)

The same noise was used in [20, 21, 29]. It was also used in [30] to estimate
FCG using relevance vector machines. The multiplicative log-normal noise
keeps the particles in the correct region of the state-space, because the log-
normal distribution is defined in the positive region of real numbers. Then,

it ensures that x
(i)
k ≥ x

(i)
k−1 ∀ i = 1, . . . , Ns. The tdf becomes a log-normal
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distribution with shift parameter xk−1, (15),

p(xk|xk−1) =
1

(xk − xk−1)σω
√

2π
exp

(
− [log(xk − xk−1)− µ̃]2

2σ2ω

)
, (15)

where µ̃ = µω + log
(

dx
dN

∣∣
k−1

)
. Nonetheless, the zero-mean ω introduces a

bias in the evolution equation and such a bias might generate an inefficient
filter. The next paragraph explains why the log-normal distribution is a
good choice for monotonic degradation processes, but also why the features
of the log-normal distribution chosen in [19, 20, 21, 29, 30, 31] introduced a
bias that can be removed by the selection of a proper µω.

Most of the structural damage progression models for aging or fatigue
are based on power laws because of the (always) positive value of the dam-
age growth rate, usually described by a nonlinear function similar to the
one presented in Figure 2. Crack length, delamination area (or length),
and plastic deformation caused by creep are typical examples of damages
undergoing to always-positive growth rate curves, so their severity can only
increase as time passes by.

Common damage growth modeling approaches use the log-linear region
(region II) to model the damage growth rate. By so doing, the estimation
of the empirical model parameters requires only a simple linear regression,
as shown in (16) for the estimation of C∗ and m∗ of the well-known Paris’
law, in (17) for the estimation of A,B, α, β for composite damage modeling
[26] and in (18) for the estimation of α and n of the Norton law for creep
modeling, adopted in [32]2:

log
dx

dN
= logC∗ +m∗ log ∆K + ω, (16)

log
dx

dN
= logA+ α log ∆G+ ω,

log
dx

dN
= logB + β log ∆G+ ω,

(17)

log
dx

dt
= logα− Φ

RT
+ n log s+ ω. (18)

The variable x above refers, generally, to some measure or feature of the
damage extent. The term ω is the linear regression error, which is theoret-
ically a zero-mean Gaussian variable, ω ∼ N (0, σ2ω). The damage growth

2The interested reader is referred to the original papers for details on the damage
growth rate models presented here
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Figure 2: Typical damage growth rate curve observed in structural degrada-
tion phenomena, in logarithmic scale. The first region is also called threshold
or initiation region, the second region is the log-linear or stable propagation
region and the third region is the critical or unstable propagation region.

rates may be expressed by returning to the exponential form of the models
reported in (19), (20) and (21):

dx

dN
= C∗(∆K)m

∗
eω, (19)

dx

dN
= A(∆G)α eω,

dx

dN
= B(∆G)β eω,

(20)

dx

dt
= α exp

(
− Φ

RT

)
sn eω. (21)

As visible from (19)-(21), all the damage growth rate models have a multi-
plicative stochastic term eω, which is, by definition, log-normally distributed
eω ∼ logN (0, σ2ω), [33]. However, a null mean value would introduce a bias

13



in the conditional expectation of the damage growth rate, as proved here-
after.

Let us consider the conditional expected value of the evolution equation
expressed through (22),

E[xk|xk−1] = xk−1 + E

[
dx

dN

∣∣∣∣
k−1

eω
]
. (22)

Since eω is the only source of uncertainty, the product dx/dN |k−1 eω is log-
normally distributed as well, (23),

dx

dN

∣∣∣∣
k−1

eωk−1 ∼ logN
(
µω + log

dx

dN

∣∣∣∣
k−1

, σ2ω

)
. (23)

Using the properties of the log-normal distribution [33], the expected value
of the stochastic FCG rate can be written as in (24),

E

[
dx

dN

∣∣∣∣
k−1

eω
]

= eµωe
σ2ω
2 exp

(
log

dx

dN

∣∣∣∣
k−1

)
= e

(
µω+

σ2ω
2

)
dx

dN

∣∣∣∣
k−1

. (24)

The expected value of the stochastic damage growth rate is the product
of the mean of the log-normal term, exp (µω + σ2ω/2), and the determin-
istic damage growth rate dx/dN |k−1. Thus, the selection of µω and σ2ω
drives the expected value of the evolution equation. The random process
ω ∼ N (0, σ2ω) used in [19, 20, 21, 29, 30, 31] produces a biased estimation
of xk, since eσ

2
ω/2 6= 1∀σ2ω ∈ IR[0,∞]. It introduces a one-step prediction

bias εxk between the stochastic and deterministic equation, quantifiable as
the difference between the conditional expected value of the system state
E[xk|xk−1] and the deterministic evolution equation, (25):

εxk = E [xk|xk−1]− f ′θ(xk−1)

= E

[
dx

dN

∣∣∣∣
k−1

eωk−1

]
− dx

dN

∣∣∣∣
k−1

=
dx

dN

∣∣∣∣
k−1

(
e

(
σ2ω
2

)
− 1

)
.

(25)

Intuitively, this bias increases when the prediction involves multiple steps
(k + 1, k + 2, ...). Also, the error is proportional to the noise variance σ2ω.
This result is particularly important for the prognostic stage: if µω = 0, the
difference between the deterministic equation and the stochastic equation is
directly proportional to both the length of the prediction and the variance
σ2ω. A FCG simulation using the same mechanical properties reported in
table 2 and the process noise eω, ω ∼ N (0, σ2ω) produced the propagations
in figure 3. Therefore, the log-normal process noise with µω = 0 has not
been considered as a good perturbation source for particle filtering.
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Figure 3: Monte Carlo simulation of FCG using the biased evolution equa-
tion and three values of σ2ω: 0.1, 1 and 10. The bias increases with the
perturbation introduced by the process noise.

3.3 Definition of an optimal ω

The unbiased formulation of the evolution equation based on the multiplica-
tive log-normal process noise may be easily obtained by selecting a mean
value µω that satisfies (26). Equation (27) undergoes to such condition for
any σ2ω ∈ IR[0,∞],

E [eω] = 1, (26)

µω = −σ
2
ω

2
. (27)

Figure 4 shows the simulation of Ns = 100 FCGs, similar to the one
presented in figure 1 and 3, using the process noise eω, ω ∼ N (−σ2ω/2, σ2ω).
Figures 4a, 4b, 4c and 4d refers to four different values of σ2ω. The swarm
of particles in Figure 4a, 4b and 4c appears always centered on the de-
terministic FCG simulation, without any effect on the mean value of the
samples. The increasing variance introduces more and more perturbation
in a single time step. If the variance becomes too large (figure 4d), most
of the particles remain below the deterministic path (predicting a slower
crack growth), and few particles remain above (predicting a faster and un-
likely crack growth path), even if the expected value remains always equal
to the deterministic model. The reason of this uneven distribution of the
samples in the state-space is the asymmetry of the log-normal pdf, and can
be avoided by selecting a reasonable σ2ω. Despite the drawback caused by
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the asymmetry of the distribution at relatively high σ2ω, the selection of the
noise variance still remains independent on the closeness of the damage size
to zero (a drawback affecting additive Gaussian noises), and a wide range of
σ2ω values can still provide satisfactory propagation of the particles. Such an
unbiased evolution equation may also introduce further advantages on the
selection of the sample size Ns. Since all the samples remain in the correct
region of the state-space and they concentrate around plausible damage pro-
gression trajectories, a satisfactory approximation of the pdfs can be carried
out with a reduced number of samples Ns, if compared with the sample size
needed by other filters adopting a biased process noise.

(a) (b)

(c) (d)

Figure 4: FCG simulation using the unbiased evolution equation with log-
Normal process noise using σ2ω = 0.1 (a), σ2ω = 1 (b), σ2ω = 3 (c) and σ2ω = 10
(d).

3.4 Requirements for an unbiased and efficient evolution equa-
tion

The analysis of existing works has shown how additive Gaussian or mul-
tiplicative zero-mean log-normal distributions may cause systemic inaccu-
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racies and computational difficulties for monotonic degradation monitoring.
Therefore, a definition of some requirements that the evolution equation has
to satisfy may help in designing an efficient algorithm:

• support: the random perturbation should not make the particles fall
outside the domain support, otherwise the algorithm would waist com-
putational power in propagating samples with null probability. Thus,
the perturbation source has to guarantee that equation (28) holds.

x
(i)
k ⊆ X , ∀ k ∈ IN, i = 1, . . . , Ns (28)

In the case of damage progression monitoring, the domain becomes
X ∈ IRn×1

[0,∞].
• monotonicity: damage accumulation caused by fatigue or aging is in-

herently monotonic. The efficiency of the prognostic stage depends on
the capability of the tdf to generate likely damage progression paths.
Therefore, the tdf of the system state must guarantee that the samples
increase during the one-step ahead transition, (29).

x
(i)
k ≥ x

(i)
k−1, ∀ k ∈ IN, i = 1, . . . , Ns (29)

• bias: The random perturbation should not modify the particle trend,
so it should not introduce biases in the evolution equation. Otherwise,
to change the amount of noise in the filter would mean to change the
trend of the particles. This is in contrast with the authors’ belief
that long-term drifts should be driven by the updating of the model
parameters rather than by a bias induced by the process noise. The
process noise should be the source of short-term random perturbations
only, i.e. it should model the intra-specimen variability [34]. Thus, the
tdf of the system state must satisfy (30),

E[xk|xk−1] = f ′θ(xk−1), ∀ k ∈ IN. (30)

The log-normal process noise that has been proposed here satisfies the
three requirements discussed above. Then, the simulation of the damage
progression may be easily addressed by using equation (31), where r is a
sample from N (0, 1),

xk = xk−1 +
dx

dN

∣∣∣∣
xk−1

exp

(
−σ

2
ω

2
+ σω r

)
. (31)
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Table 3: full-scale FCG test features.

Load shape Sinusoidal
Load frequency 1 Hz
Maximum load 8 kN
Load ratio (R) 0.1
Damage type Skin crack
Damage location Rivet hole
Damage initiation Artificial notch, 15 mm
Skin material (driving FCG) D-16 (equivalent to Al2024-T4)

4 Application to fatigue crack growth prediction

FCG data coming from a full-scale test of an aeronautical structure are
used to validate the proposed algorithm against the existing formulations.
The relevant features of the full-scale test are provided hereafter. Then,
the section discusses the algorithm prognostic performances using dedicated
metrics.

4.1 Full-scale FCG test on a helicopter tail

The tail of a retired Mi-8/17 helicopter is used as case-study. The full-scale
FCG test was conducted in a lab environment as part of a European research
project on SHM systems. A fatigue load was applied at the end of the tail
to generate cyclic stresses in the material and induce crack initiation and
propagation. The root of the tail was clamped to a rigid structure through
a fiber-reinforced polymer component designed to simulate the stiffness of
the central fuselage. The structure carrying the tail rotor was removed and
the tail free-end was rigidly connected to an actuator. The applied force was
perpendicular to the tail axis, and an offset between the force application
point and the tail axis guaranteed the generation of both bending and torsion
in the structure. Several local sensors and sensor networks were installed
on the structure to monitor the overall integrity of the tail and the crack
progression as well. Though, data from the sensors have not been used here.
The test required dedicated studies with finite element models for the test
rig design and to evaluate the stress field of the tail during damage evolution
[35]. The test rig is visible in figure 5, while the features of the FCG test
are reported in table 3.

An artificial notch was generated at a rivet hole in the region subject to
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(a) (b)

Figure 5: Full-scale FCG test on the Mi-8/17 helicopter tail (a) and most
stressed region with a FBG-based sensor network on the inner stringers (b).
The thick arrow on bottom-right of (a) shows the load direction, applied
through a hydraulic actuator, while the circle in (b) shows the crack nucle-
ation point from a rivet hole.

positive normal stresses. The crack nucleated from the notch and propagated
until the semi-crack length was around 35 mm, when the test was stopped.
Figure 6 shows a picture of the crack nucleation point, on the tip of the
artificial notch. Once the crack was detected, it was repeatedly measured
with a caliper during its propagation, and the measured semi-crack length
has been used as input of the prognostic unit based on a particle filter. The
resulting FCG is reported in figure 7. The crack nucleation needed around
400000 load cycles, and then the crack propagated in 1 ·106 load cycles from
7.5 mm (the semi-length of the notch) up to 35 mm.

4.2 Remaining life prediction using particle filtering

A particle filtering-based prognostic unit has been developed to monitor the
crack growth evolution and predict when the semi-crack length x reached
the final size, which is xf = 36.2 mm, after Nf = 1.385 · 106 load cycles.
After the first measure of the semi-crack length, the other measures were
provided to the algorithm sequentially, thus simulating a real time condi-
tion. The measurement system has been modeled as unbiased and Gaussian,
with fixed variance σ2η = 1 mm2. The model underneath the filter is Paris’
law with the analytical formulation of the stress intensity factor as done
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Figure 6: Crack nucleation from the notch at the rivet hole.

Figure 7: Semi-crack length against fatigue load cycles.

for the simulation in Section 3. The remote stress S was estimated by a
finite element model of the structure, [35]. The particle filtering algorithm
is a sequential importance resampling with systematic resampling [3], and
a kernel smoothing sub-algorithm [36] has been used to update the model
parameters during run-time. Such updating of the model parameters, which
has not been discussed herein, improves the prediction capability of the filter
without affecting the process noise selection. Model parameter updating and
process noise should be treated separately as their objective is, as a matter
of fact, decoupled. The goal of real-time parameter updating is to refine the
underneath model conditional on the observed data, thus aiming at improv-
ing the prediction of future trends. On the other hand, the process noise
is instead a representation of non-modelled phenomena and variabilities of
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true dynamic processes that are not accounted for in typical engineering
models. The random perturbation introduced by the process noise should
not significantly modify the trend of the particle swarm, the latter being the
goal of the model parameter updating procedure, while it should enlarge
or shrink the particle dispersion. In this application, the model parameter
vector composes of the two Paris’ law parameters, θ = [logC∗, m∗]T . The
logarithmic form of C∗ should be noted, since it is log-normally distributed
[37, 34]. The initialization of the model parameters follows the historical
data of the Al2024-T3 aluminum alloy studied by Virkler, Hillberry and
Goel, [38]

θ0 ∼ N (µθ,0,Σθ,0),

µθ,0 = [log(1.994 · 10−14), 3.79]T ,

Σθ,0 =

[
0.9966 −0.1764
−0.1764 0.0346

]
.

(32)

Equations (33) and (34) represent the evolution equation for the i-th
sample using the multiplicative log-normal and the additive process noise,
respectively.

x
(i)
k = x

(i)
k−1 +

dx

dN

∣∣∣∣
µ
(i)
θ,k

∆Neω
(i)
,

θ
(i)
k = µ̃

(i)
θ,k +N (0, h2 V[θ]k−1),

(33)

x
(i)
k = x

(i)
k−1 +

dx

dN

∣∣∣∣
µ
(i)
θ,k

∆N + ω(i),

θ
(i)
k = µ̃

(i)
θ,k +N (0, h2 V[θ]k−1).

(34)

The evolution equation (eq. (33) or (34)) and the observation equation in
(35) form the dynamic state-space model of the system,

zk ∼ N (xk, σ
2
η). (35)

The term µ̃
(i)
θ,k is the i-th kernel location evaluated with the shrinkage

rule from West [39, 40], and follows (36),

µ̃
(i)
θ,k = bθ

(i)
k−1 + (1− b) E[θ]k−1, (36)
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Table 4: Initial noise pdf parameters. The mean value µω = 0 for the normal
and log-normal process noises, except for the unbiased log-normal.

Noise type noise pdf parameters

additive, Gamma k∗0 = 1.5 · 10−3, θ∗0 = 3 · 10−3

additive, normal σ2ω,0 = 1 · 10−4

multiplicative, log-normal σ2ω,0 = 0.1

unbiased, log-normal σ2ω,0 = 0.1

where b =
√

1− h2 and h ∈ [0, 1] is the smoothing parameter, a choice
of the algorithm designer [36]. In this application, the smoothing parameter
has been kept equal to h = 0.1 for all the simulations, and ∆N = 500. The
two moments E[θ]k−1 and V[θ]k−1 are the Monte Carlo-mean and -variance
of the model parameters at the previous time step, respectively.

4.3 Analysis of prediction results

A RUL prediction is made for every measure of the semi-crack length. The
predictions made with different algorithms (i.e., particle filters with different
process noises) are compared below. The initial distributions of the process
noise have been selected empirically to guarantee satisfactory results, and
their values are available in table 4. Then, they have been increased at
each run to assess the robustness of the algorithms. All the runs presented
below have a sample size of Ns = 600, which has been considered enough to
correctly represent the pdfs involved in the filtering process.

The performance of the algorithm has been validated using the per-
centage error and dedicated prognostic metrics proposed in [41]: prognostic
horizon (PH), αλ accuracy (AL), cumulative relative accuracy (CRA) and
convergence (CN) have been selected to compare the results of the algorithm
against increasing values of the noise pdf parameters. The definition of such
metrics has been slightly modified from [41] and adapted to this specific
application.

• Prognostic horizon ’is the difference between the current time index
k and the end-of-prediction utilizing data accumulated up to the time
index, provided the prediction meets desired specifications [41]. In this
application, the end-of-prediction is the end of the test, so the number
of load cycles Nf , and the PH is the number of load cycles when 60% of
the RUL distribution first falls within the range RUL± 10%Nf . Also,
the PH has been divided by the time of prediction: Nf −Nk,0, where
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Nk,0 is the number of load cycles at the first prediction. By doing so,
the PH can be compared with PH values obtained from other data or
runs, characterized by a different time of prediction.
• αλ accuracy ’is the prediction accuracy at specific time instances,

usually defined as the demand accuracy of prediction to be within
α 100% after a specific time instant’, [41]. In this application, the αλ
accuracy is the number of times that 60% of the RUL distribution
falls within a region that shrinks as time passes by. This region begins
when the PH requirement has first been met, and has the shape of a
triangle that shrinks with the load cycles in the RUL plot.
• Cumulative relative accuracy ’is the normalized sum of relative

accuracy (RA) at specific time instances’ [41], (37),

CRA =

k′∑
j=1

γjRAj . (37)

The term k′ is the number of predictions (corresponding to the number
of observations of the semi-crack length) during the entire time of
prediction (i.e., k = 0, . . . , k′). The terms γj are weights, which can
be arbitrarily selected. Here, They linearly increase from 0 to 1 with
j, so a prediction error in the final stage of the prognosis (i.e., when
the system is approaching its end-of-life) is penalized with respect to
a prediction error in the early stage (i.e., when the prognostic process
is just started and the algorithm has collected a few data). It should
be noticed that

∑
j γj = 1. The RA is defined as the reciprocal of the

relative error, (38),

RAk = 1− |RULk − E[RUL|z0:k]k|
RULk

. (38)

• Convergence ’is defined to quantify the manner in which any metric
improves with time’, [41]. The CN is estimated as the center of mass of
the area under the metric curve. In this application, the CN has been
evaluated using the relative error, which is the second addendum of the
right hand-side of (38). As already made for the PH, the convergence
has been divided by the time of prediction. The interested reader is
referred to [41] for the estimation of the CN.

Figure 8 shows some relevant features of the RUL estimation plot. In
this application, the RUL is the number of load cycles to reach the final
crack length xth = xf . Besides PH and αλ accuracy, figure 8 shows the
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Figure 8: Example of RUL plot emphasizing relevant features for the prog-
nostic performance assessment.

features to estimate the most relevant prognostic metrics as highlighted by
the work of Saxena et al. [41]. The time of prediction is defined as the time
between the first RUL prediction, defined as first prediction in the figure,
and the end of life. The constant confidence band around the true RUL is
used to define the other prognostic metrics, i.e., PH and αλ accuracy. Since
such a confidence band is defined here as a function of the end of life, it can
be evaluated after the end of test, once the true Nf is available. The grey
triangles are the expected values of the RUL conditioned on the observed
measurements, and the dashed vertical grey lines represent the σ-band of the
predicted RUL. The lower and upper limits of the sigma-band are estimated
from the cumulative distribution function of the RUL, approximated by the
particle set, by respectively finding RUL∗k : Pr{RULk ≤ RUL∗k} = α and
RUL∗∗k : Pr{RULk ≤ RUL∗∗k } = 1 − α, with α = 0.025 to obtain a 95%σ-
band. Those features and the other metrics presented above have been used
to evaluate the performance of the prognostic algorithm.

Each algorithm has been run using the process noise models in table
4, and the results are summarized in Figure 9. As seen in Figure 9a, the
additive Gamma process noise introduces a large bias in the particle swarm,
insomuch as the RUL prediction capabilities are strongly reduced. This
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(a) (b)

(c) (d)

Figure 9: RUL predictions using different process noises with features pre-
sented in table 4. Additive Gamma process (a), additive Gaussian (b), mul-
tiplicative, biased log-normal (c) and multiplicative, unbiased (’optimal’)
log-normal (d). The thick arrows indicate the instant when the PH require-
ment has first been met.

result could be improved by adopting much smaller values of the Gamma
pdf moments, so much smaller k∗ and θ∗. However, such choice would be,
as thoroughly discussed in Section 3, strongly case-sensitive. Also, a too
small of value for the Gamma pdf parameters may vanish the perturbation
effect of the process noise. The other formulations produce much better
results, and their predictions are comparable to one another (Figures 9b-
9d). However, these results change with the process noise pdf parameters,
as is shown below.

The performance of the prediction has been evaluated using a differ-
ent amount of process noise, which has been increased using the following
sequence: 1, 2, 5, 10, 20, 50, 80 and 100 times the original value. This
means that the process noise parameters have been multiplied by 1, 2, 5,
etc. and the RUL prediction performance has been evaluated for each run.
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The percentage error of the RUL prediction is presented in Figure 10. The
algorithm using the Gamma process noise model fails when the Gamma pdf
parameters are larger that 2 times the initial k∗0, θ∗0. Then, only two curves
are visible in Figure 10a. The percentage error remains high during the
entire simulation, and the additional information on the semi-crack length
does not help in increasing the accuracy of the prediction. The error even-
tually decreases during the last part of the test. The normal process noise
model shows a smaller percentage error, which appear insensitive to σ2ω (fig-
ure 10b). The percentage error remain slightly below 50% up to 8 · 105 load
cycles, independently from the process noise variance. Also, the algorithm
is not able to converge at all when the process noise variance becomes too
large, because some (or, at least, one) particles fall below zero, thus never
reaching xf . Therefore, the curves refer to variances σ2ω,0, . . . , 50 · σ2ω,0. The
biased log-normal process noise model (Figure 10c) shows a percentage er-
ror that increases with the amount of variance σ2ω, and the algorithm does
not converge when such variance enlarges (σ2ω > 20 · σ2ω,0). The failure of

this algorithm is caused by the fast propagation of the particles. When σ2ω
becomes too large, many particles fail in a single propagation step, thus not
providing any RUL prediction. On the contrary, the algorithm based on
the unbiased log-normal process noise model converges for all of the tested
variances, σ2ω,0, . . . , 100 · σ2ω,0. The percentage error is slightly different at

each run (i.e., with different σ2ω), but is not proportional to σ2ω.
Figure 11 shows the four metrics assessed against the process noise pdfs.

These metrics confirm the robustness indicated by the percentage error. The
PHs of the algorithm with ω ∼ Γ(k∗, θ∗) are significantly lower than the
PHs observed with other algorithms and, as remarked above, the algorithm
converges only when k∗ ≤ 2 ·k0, θ∗ ≤ 2 ·θ0. Except for the case σ2ω = 5 ·σω,0,
the algorithms with Normal and log-Normal process noises show similar
prognostic horizons. Nevertheless, the unbiased log-normal model always
converges, even when the variance σ2ω is two orders of magnitude larger
than the initial one. The analysis of the AL, CRA and CN yields similar
conclusions. It is worth noting that the high AL values obtained with the
Gamma process noise have been caused by the very short PH and the narrow
RUL pdf. As a matter of fact, AL and PH discussed here are strongly
correlated, so high AL does not guarantee good prognostic capabilities. AL
and PH should be analyzed together. All the plots in figure 11 shows that the
performance of the unbiased log-Normal slightly decrease when σ2ω becomes
very large with respect to the initial value (σ2ω ≥ 80 · σ2ω,0). This small
drop in the performance may be caused by the asymmetry of the log-normal
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(a) (b)

(c) (d)

Figure 10: Percentage error of of the RUL prediction using increasing process
noise moments: Gamma pdf (a), Gaussian pdf (b), log-normal pdf, biased
noise (c) and log-normal pdf, unbiased (’optimal’) noise (d).

distribution, as presented in Section 3, Figure 4d. According to the results
discussed above, the algorithm based on the unbiased log-normal process
noise can be considered more robust with respect to other formulations
presented in literature. The selection of a very large variance σ2ω could affect
the algorithm performance, but the prognostic unit will always converge
regardless to the entity of the perturbation introduced with the random
process.

5 Conclusions

The work reported herein has analyzed the process noise adopted in a typ-
ical Bayesian filtering algorithm for nonlinear, non-Gaussian systems. The
paper discussed the particle filtering capabilities to predict the evolution of
monotonic degradation processes with respect to the type of process noise,
specifically analyzing the case of structural damage progressions caused by
aging or fatigue. The conditional expectation of the system state has shown
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(a) (b)

(c) (d)

Figure 11: Prognostic horizon (a), αλ accuracy (b), cumulative relative
accuracy (c) and convergence (d) of the four algorithms as a function of the
process noise parameters.

that some process noise formulations, already adopted in literature, might
cause inefficiency in the algorithm. Also, the algorithm might not even con-
verge if the samples fall outside of the state-space or the bias between the
stochastic and deterministic equation becomes too large. This analysis has
brought to an unbiased evolution equation grounding on a log-normal pro-
cess noise with a specific constraint imposed between its mean and variance,
and also to three requirements that the design of the filter has to meet to
guarantee the efficiency and effectiveness of the diagnostic/prognostic pro-
cess.

The proposed particle filtering and the other existing formulations from
literature have been tested on FCG observed in a full-scale helicopter tail
subject to tension-tension fatigue loads. The results have been compared in
terms of RUL prediction error and four performance metrics: PH, AL, CRA
and CN. The results emphasized the robustness of the proposed algorithm
against the other formulations. Furthermore, the results suggest that the
additive Gaussian (with zero mean) and the proposed unbiased log-normal
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process noise have comparable performance, but the filter based on the ad-
ditive Gaussian noise may fail when the variance becomes too large. The
variance selection problem of the additive Gaussian noise can be easily ad-
dressed when the system state is unidimensional like the semi-crack length
discussed in this paper, but could become non-trivial for multidimensional
system states or more complex system dynamics. Therefore, the unbiased
log-normal process noise proposed here has been considered the best choice
to monitor and predict monotonic degradation processes.

The selection of the process noise variance magnitude has not been ad-
dressed in this paper. Its optimal value depends, among other factors, from
the uncertainty of the observations, and how widespread they are in the
state-space. Therefore, a discussion on the process noise variance magni-
tude would involve the uncertainty characterizing the observation equation.
Future research should target the identification of quantitative probabilis-
tic methods to select this fundamental particle filtering parameter. Also,
further research on the topic may discuss optimal process noise models to
monitor and predict the evolution of other types of degradation phenomena
at component- or system-level.

Nomenclature
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C∗ Paris’ law parameter
F Crack shape function
K stress intensity factor
k discrete time step
k∗ Gamma distribution parameter
N load cycle
Ns number of samples
n system state vector dimension
m measurement vector dimension
m∗ Paris’ law parameter
p input vector dimension
q model parameter vector dimension
S remote stress
U input vector support
u input vector
X system state vector support
x system state vector
Z measurement vector support
z observation vector
δ·,· Kronecker delta
H measurement noise vector support
η measurement noise
Θ model parameter vector support
θ∗ Gamma distribution parameter
θ model parameter vector
µ mean
Σ covariance matrix
σ standard deviation
σ2 variance
Ω process noise vector support
ω process noise vector
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