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ABSTRACT 

Building electrical load profiles can improve understanding of building energy efficiency, demand 

flexibility, and building-grid interactions. Current approaches to generating load profiles are time-

consuming and not capable of reflecting the dynamic and stochastic behaviors of real buildings; some 

approaches also trigger data privacy concerns. In this study, we proposed a novel approach for 

generating realistic electrical load profiles of buildings through the Generative Adversarial Network 

(GAN), a machine learning technique that is capable of revealing an unknown probability distribution 

purely from data. The proposed approach has three main steps: (1) normalizing the daily 24-hour load 

profiles, (2) clustering the daily load profiles with the k-means algorithm, and (3) using GAN to 

generate daily load profiles for each cluster. The approach was tested with an open-source database – 

the Building Data Genome Project. We validated the proposed method by comparing the mean, standard 

deviation, and distribution of key parameters of the generated load profiles with those of the real ones. 

The KL divergence of the generated and real load profiles are within 0.3 for majority of parameters and 

clusters. Additionally, results showed the load profiles generated by GAN can capture not only the 

general trend but also the random variations of the actual electrical loads in buildings. The proposed 

GAN approach can be used to generate building electrical load profiles, verify other load profile 

generation models, detect changes to load profiles, and more importantly, anonymize smart meter data 

for sharing, to support research and applications of grid-interactive efficient buildings. 
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Nomenclature 

Abbreviations  

Adam Adaptive moment estimation 

CBECS Commercial Building Energy Consumption Survey 

D Discriminator 

DOE Department of Energy 

DBI Davies-Bouldin Index 

GAN Generative Adversarial Network 

G Generator 

KL Divergence Kullback–Leibler divergence 

LeakyReLU Leaky version of a Rectified Linear Unit 

NREL National Renewable Energy Laboratory 

SC Silhouette Coefficient 

  



Subscripts/superscripts 

𝑑𝑙𝑜𝑠𝑠 Loss function of discriminator 

𝐷(𝑥) Discriminator output given input x, usually binary (0 or 1) 

𝑔𝑙𝑜𝑠𝑠 Loss function of generator 

𝐺(𝑥) Generator output given input x, usually 24-dimension vector 

1. Introduction 

1.1 Background 

The term “building electrical load profile” refers to the variation of the building's electrical load versus 

time. 1  Building electrical load profile is influenced by both physical and behavioral factors [1]. 

Building load profile analytics have wide applications, such as identification of unnecessary waste[2], 

load forecasting [3], customer segmentation and demand-side management [4], demand response 

planning and pricing [5], long-term resource planning, and renewable energy integration [6]. Therefore, 

collecting and analyzing load profiles plays a significant role in enhancing our understanding of how 

best to integrate buildings with a changing electric grid and to finally reduce building carbon footprints.  

Building load profiles can be collected by smart meter data, which are the data (mostly electrical power 

consumption) collected by the smart meter at fine temporal granularities [7]. A smart meter is an 

electronic device that records consumption of electric energy and communicates the information to a 

remote server. Compared with conventional electricity meters, the smart meter has two key 

characteristics: fine temporal granularity and real-time communication. The temporal granularity of 

smart meter data is usually 5 to 15 mins.  

With the pervasive deployment of smart meters, fine-grained electricity consumption data are becoming 

increasingly available [8]. While the use of smart meter data is unlocking large benefits, it also raises 

data privacy and security concerns [9]. Partly due to those privacy concerns, utility companies are 

unwilling or unable to share customer meter data for general research and analysis, which is a major 

barrier to advancing smart meter data analytics. To address the privacy concerns, existing studies have 

proposed privacy-preserving approaches, such as data aggregation [10], clustering [11], principal 

component analysis [12], and wavelet-based representation [13]. However, those privacy-preserving 

methods suffer from reduced data resolution and unavoidable information loss. 

1.2 Building electrical load profile analysis 

As building electrical load profiles can yield useful information and have wide applications, many 

studies have been done to analyze building load profiles, and these dated back to as early as the 1980s 

[14]. Studies on building load profiles can be classified into descriptive and generative studies. 

Descriptive studies aim to describe the characteristics of building load profiles. Price [2] defined five 

statistics to characterize daily load profile: (1) near-peak load, (2) near-base load, (3) high-load duration, 

(4) rise time, and (5) fall time, and demonstrated how load profile analysis can be used to estimate 

demand response effectiveness.  

Generative studies aim to generate load profiles that are as realistic as possible, and they can avoid the 

privacy concerns of directly using smart meter data. Additionally, the relatively high cost of smart 

meters prevents them from being deployed in some regions; this problem can be solved by using 

generative studies instead. The generated load profiles can be used to test or verify demand control 

techniques [15] and to evaluate demand response policies. 

Two common approaches are used to generate realistic building load profiles. The first is through energy 

simulation using white-box models. The white-box approach is physics based, which simulates the 

energy consumption with detailed building energy models. To facilitate physics-based building energy 

                             

1
A similar term to load profile is “load shape,” which is defined as the curve that represents load as a function of 

time [2]. It can be observed from the definitions that the terms of load profile and load shape are interchangeable. 

To avoid confusion, we will only use the term “load profile” in this study. 



simulation, detailed assumptions about the building’s physics (envelope, system efficiency), predicted 

occupant behavior [16], and electrical appliance schedules [17] need to be provided, which demands 

expertise and is labor intensive. To avoid the tedious efforts needed to collect data on building physical 

and behavioral factors for white-box simulation, some studies use schedules and assumptions from 

reference building models to generate load profiles [18]. For instance, using U.S. Department of Energy 

(DOE) reference models, the National Renewable Energy Laboratory (NREL) generated and open 

sourced hourly load profile data for 16 commercial building types on OpenEI. 2  However, the 

assumptions proposed by the modelers or in the reference building model may not necessarily reflect 

the reality of actual buildings [19], resulting in a gap in the load profiles between the white-box 

simulation and the real building [20]. 

The second approach is to use black-box models to regress building energy consumption, with features 

such as demographics [21], energy price [22], local climate [23], and presence of end-use appliances 

(aka “conditional demand analysis”) [24]. The black-box model can be developed through a 

probabilistic method [15], regression [25], or a neural network [26]. However, the black-box approach 

usually does not address individual end uses [27], and more importantly, it is unable to provide high 

temporal-granularity load variations. Figure 1 summarizes major approaches taken to collect or generate 

building load profiles and their constraints. 

 

Figure 1. Approaches to generating building load profiles and their constraints 

 

1.3 Objectives 

The major contribution of this study is to propose a data-driven approach to generate realistic building 

electrical load profiles using the Generative Adversarial Network (GAN). This new approach can 

generate load profiles at the individual building or household level.  

As a data-driven black-box approach, this approach can save tedious work of making assumptions on 

building physics and occupant schedules, which are required by physics-based models. In terms of 

privacy concern, GAN retains important statistical information such as the dynamic and stochastic 

behaviors of building loads, while anonymizing user-sensitive information to protect users’ privacy.  

The proposed approach can be used to generate or forecast building load profiles, as well as to 

anonymize collected smart meter data. By protecting customer privacy, it is expected that more building 

owners will be encouraged to share their data for research and analysis. 

The remaining of this paper is organized as follows. Section 2 proposes a two-step approach to applying 

GAN to generate realistic building load profiles. Section 3 presents the result of testing our proposed 

approach on smart meter data from real buildings. Hyper-parameter tuning, potential applications, and 
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 https://openei.org/doe-opendata/dataset 



limitations of this approach are discussed in Section 4. Section 5 offers conclusions.  

 

2. Method 

Figure 2 presents the technical roadmap to generate building load profiles through GAN, which has 

three major steps: data preprocessing, load profile clustering, and GAN, which is discussed in detail in 

this section.  

 

Figure 2. Technical roadmap to generate building electrical load profiles using GAN 

2.1 Data source  

In this study, we selected the open source Building Data Genome Project database [28] as our testbed. 

Testing our approach on an open source database can demonstrate the reproducibility of this new 

method. The Building Data Genome Project has collected and open sourced one-year hourly whole 

building electrical meter data from 507 non-residential buildings. Those buildings are mostly from the 

education industry in the United States and Europe. Metadata of floor area, occupant counts, and 

primary heating source are released for some but not all buildings. 

In this study, we used the smart meter data of 156 office buildings from the Building Data Genome 

Project database. Office buildings represent the largest sample in the Genome database and represent 

the largest floor area and highest total energy use in the U.S., according to the Commercial Building 

Energy Consumption Survey (CBECS 2012) [29]. From the 156 office buildings, we extracted 56,957 

daily electrical load profiles.3 The temporal granularity of this dataset is one hour. 

Figure 3. Overview of the buildings used in this study.4 The majority of building samples are medium office 

buildings in educational institutions, such as researchers’ offices in universities. 

 

                             
3
 The electrical meter recordings of 17 buildings are from the leap year. 
4
 “Small office” is defined as floor area less than 30,000 square feet, “medium office” 

is defined as floor area between 30,000 and 300,000 square feet, and “large office” is 

defined as floor area above 300,000 square feet. 



2.2 Data preprocessing 

Figure 3 presents key building information for the office buildings investigated in this study. Building 

electrical load profiles vary markedly among different office buildings due to different floor area, 

climate conditions, occupancy schedules, primary heating/cooling source and other factors. As we 

focused on time-varying behavior, rather than the overall energy usage, we normalized each building’s 

daily load profiles by their annual peak load, to make sure the load profiles of different buildings were 

similar in magnitude, in the range of 0 to 1.  

Due to the existence of extreme weather conditions and uncommon events, the definition of “peak load” 

varies among the different literature. We prefer the peak load to be more stable and free from the 

influence of extreme events. Luo et al. proposed the 95 percentile as the peak load [30], while Price 

defined the near-peak load as the 97.5 percentile [2]. The choice of the peak load definition is beyond 

the discussion of this study, and we used the 95 percentile as the peak load for normalization. As we did 

not use the absolute peak as the denominator, the normalized load can be above 1, which has not been 

clipped in this study. 

 

2.3 Load profile clustering 

Clustering is a necessary step of generating realistic load profiles. Daily load profiles vary a lot, even 

for the same building, due to different working schedules and weather conditions. It makes sense to 

generate the building load profiles for each cluster, i.e., capturing the key explanatory variables and 

characteristics of each cluster, rather than for the whole dataset. 

As a non-supervised machine learning technique, clustering is widely utilized in many fields to discover 

meaningful patterns and structures in data. In the field of electrical usage, clustering, sometimes also 

referred to as “load profiling,” had been widely used in customer segmentation and grouping. 

Accordingly, several previous studies developed different clustering methods. In this study, we selected 

k-means as the clustering algorithm, as k-means [31], [32], [33] and its variants [34], [35] are frequently 

used for load profile clustering. 

To evaluate the performance of clustering, we selected the Davies-Bouldin Index (DBI), defined in 

equations 1 and 2 [36]. 

 

                  (1) 

               (2) 

Where 𝑠𝑖 and 𝑠𝑗 are the average distance between each point of cluster i, cluster j and the centroid of 

that cluster; and 𝑑𝑖𝑗 is the distance between cluster centroids i and j. The clustering configuration with 

a lower DBI is preferred, as a low DBI indicates that the distance of points within each cluster is small 

compared with the distance between different clusters. 

In this study, we selected DBI rather than Silhouette Coefficient (SC) [37] because SC needs to calculate 

the distance between any two points of the same cluster, which has the computational complexity of 

o(N2)5, while DBI only needs to calculate the distance between each point and the cluster centroid, with 

the computational complexity of o(N). With the increase of sample points, DBI is much more 

computationally efficient than SC. 

 

                             
5
 N is the number of points in each cluster, which is on the same scale of the number of 
total samples. 



2.4 Generative Adversarial Network (GAN) 

GAN was first proposed by Goodfellow et al. in 2014 [38], and has since been applied widely in creative 

activities such as generating paintings or music. As shown in Figure 4, GAN consists of two neural 

networks: the generator and the discriminator. The generator generates load profiles with the seeds 

randomly sampled from the latent space. The discriminator judges whether an input load profile is real 

or fake (generated). The latent space may have a structure that can be explored. For instance, in the 

image generation case, some dimensions in the latent space may correspond to ‘happy vs. unhappy’ or 

‘male vs. female’. In our building load generation case, some dimensions in the latent space may 

correspond to ‘large variation vs. small variation’. Therefore, performing vector arithmetic between 

points in latent space can have meaningful and targeted effects on the generated profiles. 

The objective of the generator is to generate load profiles which can resemble the real load profiles as 

much as possible, while the goal of the discriminator is to detect the real load profiles from the generated 

ones as accurately as possible. Given a properly defined loss function, the generator becomes more 

capable of generating realistic load profiles, while the discriminator becomes more sensitive to detecting 

the subtle differences between the real and the generated load profiles after epochs of training. The 

competition between the generator and the discriminator helps them both to evolve and improve. 

 

Figure 4. Generative Adversarial Network (GAN) 

 

The loss function of the discriminator and the generator are defined in equations 3 and 4, respectively, 

where G stands for generator, and D stands for discriminator. In Equation 3 and 4, 𝐷(𝑥) and 𝐺(𝑥) 
denotes the output of the discriminator and generator, respectively. 𝐺(𝑥) is the generated load profile, 

which has the same dimension as the real load. In this study, 𝐺(𝑥) is a 24-dimension vector. 𝐷(𝑥) is 

a binary variable, indicating whether the input load profile is real or fake, 1 for real and 0 for fake.  

To train the discriminator, we usually sampled half the data points from the real load profile database, 

and another half from the fake load profiles generated by the generator (equal weight for identifying the 

real load profiles and detecting the fake ones, as in Equation 3). The goal of training the discriminator 

was to minimize 𝑑𝑙𝑜𝑠𝑠, defined in Equation 3, which enhances the capability of the discriminator to 

distinguish the real load profiles from the fake ones. Ideally, we hope the generator is accurate enough. 

When the load profile is from the real database (𝑥~𝑋𝑡𝑟𝑢𝑒), the discriminator outputs 𝐷(𝑥) = 1; and 
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 seed is a random sampling from the latent space. Seed is the input to the generator to generate load 

profiles 



    (3) 
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 ADDIN ZOTERO_ITEM CSL_CITATION 

{"citationID":"quTwp3C4","properties":{"formattedCitation":"[39]","plainCitation":"[39]","noteInde

x":0},"citationItems":[{"id":3307,"uris":["http://zotero.org/users/4360772/items/PTZN5ZII"],"uri":["h

ttp://zotero.org/users/4360772/items/PTZN5ZII"],"itemData":{"id":3307,"type":"webpage","title":"H

ome - Keras Documentation","URL":"https://keras.io/","accessed":{"date-

parts":[["2019",6,14]]}}}],"schema":"https://github.com/citation-style-

language/schema/raw/master/csl-citation.json"} [39] backend by Tensorflow [40] to implement and 

 

Figure 5. Pseudocode for training the GAN model 

In Keras or Tensorflow, the model needs to be compiled before training. To train the discriminator 

network, we need to compile the discriminator model first, then use the loss function defined in Eq (3) 
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 The dimension of the latent space is an important hyper-parameter. In this study, we 

selected the dimension as 20, as shown in Table 3 



to train it. However, to train the generator network, we need to compile the generator and discriminator 

together and set the parameters of the discriminator untrainable. Because we need to use D(G(seed)), 

as shown in Eq (4), to train the generator. To get D(G(seed)), we need to compile the generator and 

discriminator together. Meanwhile, the parameters of the discriminator need to be set as untrainable 
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3. Results 

3.1 Load profile clusters  

The first step of clustering is to select the optimal number of clusters. We used DBI to select the optimal 

number of clusters. Clustering configuration with a lower DBI is always preferred, as a low DBI 

indicates the distance between data points within the same cluster is small compared with the distance 

between different clusters. We ran the clustering algorithm with different cluster numbers and selected 

the optimal number of clusters that had a low DBI value. As the k-means algorithm is sensitive to the 

initial values of the cluster centers, we ran k-means 50 times with a different initial value and recorded 

only the best result of each cluster number. As shown in Figure 6 (a), local minimum DBI values can 

be achieved when the optimal number is 14 or 19. The clustering analysis have been conducted for 14 

and 19 number of clusters.  

 

(a) Davies–Bouldin index 

Number of clusters

D
B

I

Selected number 

of clusters: 19



 

(b) In-cluster Standard Deviation of key statistics 

Figure 6. Selection of optimal number of clusters 

We used five key parameters to quantify the load shape of building daily electricity consumption: base 

load, peak load, peak load duration, rise time and fall time. The above five parameters are proposed by 

Price, P. to analyze electric load shape and its variability [2], with the following definition: 

Near-Peak load: 97.5 percentile of daily load, denoted as 𝑃𝑝𝑒𝑎𝑘 

Near-Base load: 2.5 percentile of daily load, denoted as 𝑃𝑏𝑎𝑠𝑒 

High-load duration: Duration for which load is closer to near-peak load (𝑃𝑝𝑒𝑎𝑘) than to the near-base 

(𝑃𝑏𝑎𝑠𝑒), i.e., the duration of 𝑃 >
1

2
(𝑃𝑝𝑒𝑎𝑘 + 𝑃𝑏𝑎𝑠𝑒) 

Rise time: Duration for load to go from base load to the start of the high-load period 

Fall time: Duration for load to go from the end of the high-load period to the base load 

In this study, we made two slight changes to Price, P.’s definition [2]. First, we distinguish working 

days from non-working days, as they demonstrate different load shapes. We only calculated the above 

five parameters for the working day, as in non-working days, the daily load is less variant and stable on 

the base load. Therefore, the concepts of peak load, peak load duration, rise time, and fall time are not 

applicable to non-working days. In this study, the working day is defined as if the near-peak load is 

more than 1.2 times of the near-base demand. Contrarily, if the near-peak load is less than 1.2 times of 

the near-base load, it is a non-working day. The peak load, peak load duration, rise time, and fall time 

are only defined for working days and shown in Table 1 and Table 2. The second revision is we used 

95% and 5%, rather than 97.5% and 2.5%, as the threshold of near-peak and near-base load. The key 

statistics of each cluster are presented in Table 1 and Table 2 respectively. 

As observed in Table 1 and Table 2, the standard deviation within each cluster is smaller if the building 

load is clustered into 19 clusters rather than 14. For instance, the standard deviation of base load is 

between 0.03 and 0.09 for 14 clusters, compared with 0.02 and 0.07 for 19 clusters. Similar results can 

be found in all the other four parameters. Since the standard deviation within each cluster quantifies the 

dissimilarities of each instances within the same cluster, a lower standard deviation means the instances 



of the cluster are similar to its peers in the same cluster. As shown in Figure 6(b), if we select 19 as the 

optimal number of clusters, the relative in-cluster standard deviation of each cluster will be lower for 

all of the five key statistics of the load profile. Therefore, we finally selected the number of cluster as 

19 because 19 clusters can deliver a cluster result with lower in-cluster standard deviation. 

Table 1: Clustering result if the number of cluster is 14  

Cluster Day Type Percentage Base Load Peak Load High Load 

Duration 

Rise Time Fall Time 

mean std mean std mean std mean std mean std 

0 Non-working 0.04 0.17 0.05         

1 Working 0.04 0.23 0.05 0.35 0.06 13.38 6.49 2.67 2.61 3.32 2.58 

2 Non-working 0.09 0.37 0.03         

3 Working 0.08 0.30 0.08 0.51 0.05 11.48 4.49 3.49 2.35 4.21 2.52 

4 Working 0.04 0.32 0.09 0.59 0.08 11.11 4.42 3.59 2.42 4.80 2.66 

5 Working 0.05 0.42 0.09 0.62 0.06 13.35 5.58 2.93 2.42 3.53 2.46 

6 Working 0.06 0.28 0.09 0.78 0.07 9.65 1.73 4.02 1.79 5.92 1.79 

7 Working 0.04 0.35 0.06 0.84 0.08 10.14 1.92 4.10 1.59 5.88 1.73 

8 Working 0.06 0.50 0.08 0.76 0.08 11.84 4.21 3.48 2.01 4.59 2.46 

9 Working 0.10 0.46 0.08 0.90 0.07 10.76 2.34 3.97 1.62 5.27 1.79 

10 Working 0.05 0.64 0.06 0.85 0.07 12.48 4.99 3.34 2.25 4.07 2.38 

11 Non-working 0.10 0.62 0.08         

12 Non-working 0.09 0.70 0.06         

13 Non-working 0.14 0.90 0.04         

 

Table 2: Clustering result if the number of cluster is 19 

Cluster Day Type Percentage Base Load High Load High Load 

Duration 

Rise Time Fall Time 

mean std mean std mean std mean std mean std 

0 Non-working 0.03 0.17 0.05         

1 Non-working 0.03 0.28 0.02         

2 Non-working 0.07 0.34 0.02         

3 Non-working 0.07 0.40 0.03         

4 Working 0.08 0.24 0.07 0.62 0.08 9.38 1.96 3.37 2.19 5.25 2.27 

5 Non-working 0.05 0.49 0.03         

6 Working 0.09 0.34 0.06 0.67 0.06 10.58 3.49 3.64 1.90 5.24 2.54 

7 Working 0.06 0.28 0.08 0.79 0.07 9.44 1.68 4.09 1.80 5.87 1.73 

8 Working 0.04 0.44 0.06 0.69 0.07 12.21 4.58 3.34 2.20 4.52 2.53 

9 Working 0.03 0.37 0.07 0.83 0.07 10.12 2.09 4.07 1.58 5.10 1.92 

10 Working 0.02 0.48 0.07 0.76 0.07 11.94 4.13 3.47 2.02 4.32 2.21 

11 Working 0.05 0.44 0.07 0.85 0.07 11.12 3.10 3.72 1.66 5.02 2.09 

12 Working 0.06 0.45 0.07 0.93 0.06 10.58 1.84 4.06 1.56 5.59 1.63 

13 Working 0.03 0.55 0.07 0.88 0.06 11.34 2.99 3.92 1.81 4.64 1.88 

14 Non-working 0.09 0.77 0.03         



15 Working 0.03 0.62 0.07 0.98 0.05 10.35 2.18 4.07 1.60 5.33 1.65 

16 Non-working 0.06 0.85 0.02         

17 Non-working 0.06 0.89 0.03         

18 Non-working 0.05 0.93 0.04         

 

Figure 7 presents the clustering results. Each cluster accounts for 2%-9% of the total 56,957 daily load 

profiles. Some clusters, such as clusters 4, 7, 9, 11 and 12, demonstrated a clear working day pattern, 

i.e., electricity usage increased in the morning and decreased in the late afternoon. Some clusters, such 

as cluster 1 and 2, demonstrated a non-working day pattern, i.e., the electricity usage was low 

throughout the whole day. Though some clusters were similar in general shape, some subtle but 

important differences did exist, such as the base load value, the ramp height, the time of morning warm 

up, and the duration of the peak load.  

 

 

(a) Distribution of each cluster 
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(b) The 19 clusters identified. The silver band denotes the load ranges, the bold line denotes the 

cluster centroid 

Figure 7. Load profile clustering results 

 

3.2 Generating load profiles with GAN  

As observed in Figure 7, each cluster load profile demonstrates similar patterns. The goal of GAN is to 

learn and reproduce those patterns to generate artificial load profiles which can maintain the key 

statistical information of real load profiles.  

Because there are two neural networks (the generator and the discriminator) to be trained at the same 

time, GAN is a dynamic system, where the optimization minimum is not fixed. Therefore, it is difficult 

to train GAN [41]. This section focuses on the results; however, we present a discussion of hyper-

parameter tuning in Section 4.1. Figure 8 uses cluster 12 as an example to illustrate how the generated 

load profiles evolved with the training process. Figure 8a shows 100 randomly selected load profiles 

from the real dataset. Figures 8b1 through 8b6 show the load profiles generated from the nine randomly 

selected seeds during the training process. 

 



 

(a) Raw data 

  

(b1) Epoch 1                                      (b2) Epoch 30 

  

(b3) Epoch 60                                      (b4) Epoch 90 



 

(b5) Epoch 120                                      (b6) Epoch 150 

 

Figure 8. Evolution of the generated load profiles (using cluster 12 as an example)  

 

Because the weights of the generator were totally randomized at the beginning of the process, the 

generated load profiles at the early epochs were dissimilar to the actual load profiles. As the training 

continued, the overall shape (load increasing at around 05:00, starting to peak at about 09:00, and 

starting to decrease at about 15:00) was gradually learned by the generator. Again, as the training 

continued, some details and random variations, such as the possibility of load decreasing during the 

lunch break (as shown in Figure 8a) had been learned as well (Figure 8b6). This process enables the 

generated load profiles to capture not only the general trend but also the random variation of the 

actual ones.  

 

3.3 Accuracy of the generator and discriminator  

To present a clear picture of the evolution of the generator and discriminator, we plotted how the 

accuracy of the discriminator and generator change as the training epochs increase, as shown in Figure 

9. The accuracy of the discriminator is defined as the proportion of load profiles that can be detected 

correctly. The accuracy of the generator is defined as the percentage of generated load profiles that are 

detected as “real” by the discriminator. The accuracy plotted in Figure 9 is the average accuracy of the 

19 clusters on the test dataset, which accounts for 20% of the total data points.  
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Figure 9. Training accuracy of GAN  

 

The oscillating saw shape of the discriminator’s and generator’s accuracy evolving with epochs (Figure 

9) is due to GAN’s competing nature, i.e., the enhancing of the discriminator or generator imposes 

additional challenges to the other. There are two phases in each epoch: the discriminator training phase 

and the generator training phase. In typical GAN settings, the discriminator will be trained first, and 

then the generator. As shown in Figure 9, after the first half of each epoch (the discriminator training 

phase), the accuracy of the discriminator improves; meanwhile, the generator’s accuracy decreases, as 

the enhanced discriminator becomes more capable and sensitive in detecting the generated fake load 

profiles. In the second half of each epoch (the generator training phase), the generated load profiles 

become more similar to the real ones, with the generator weights being optimized to reduce the 

generator loss defined in Equation 4. The enhanced generator poses additional challenges for the 

discriminator to differentiate the real and the generated load profiles. As a result, the accuracy of the 

discriminator decreases after the second half of each epoch. These cycles repeat throughout the whole 

training process, and finally improve both the generator and the discriminator. 

Another observed trend was that as the training progressed, the accuracy of the discriminator decreased, 

while the accuracy of the generator increased. During early epochs of the training, the generator weights 

are random and less trained. As a result, the generated load profiles are distinct from the real ones. It is 

not difficult for the discriminator to distinguish the real load profiles from the generated ones. Therefore, 

at the beginning of the training process, the accuracy of discriminator is high, and it can almost reach 

100% after each epoch’s training. With the training process going on, the generator can generate load 

profiles that are more similar to the real ones. However, it is more challenging for the discriminator to 

detect the real load profiles from the fake ones. As a result, the accuracy of the discriminator between 

epoch 140 and 150 is not as high as it is in earlier epochs.  

 

3.4 Validation  

Two approaches were adopted to validate whether GAN can generate load profiles which are similar to 

the reality. The first approach is to compare the mean and standard deviation of the key parameters of 

the generated and real smart meter data for each cluster. Again, the five key parameters proposed by 

Price [2] were used. The difference between the generated and real smart meter data is presented in the 

form of heat map in Figure 10 (a). It can be seen the generated load profiles have very similar mean 

value and standard deviation of the five key parameters. The difference of base load is a little bit higher 

in some of non-working clusters (such as cluster 5 and 14). 

 

 

(a) difference of statistics (mean and standard deviation) of key parameters 



 

(b) KL divergence of key parameters 

  

     (c) cluster 2 (low KL divergence)                        (d) cluster 8 (high KL 

divergence) 

Figure 10. Model validation through comparing mean, standard deviation, and KL divergence of key parameters 
8   

The second approach we used is to compare the distribution of the five key parameters of the generated 

and original smart meter data using the metrics of Kullback–Leibler (KL) divergence. The KL 

divergence is a measure of how one probability distribution is different from another, reference 

probability distribution. A KL divergence of 0 indicates that the two distributions in comparison are 

identical. KL divergence is mathematically defined as Equation 5. Where, P and Q are probability 

distributions that defined on the same space X. KL divergence is an asymmetric metrics, P is usually 

the distribution of the real data, while Q is the distribution of the generated data. 

                        Equation 5 

We plotted the KL divergence of the distributions of the five key statistics for each cluster in Figure 10 

(b). It can be observed that the KL divergence of majority metrics for each cluster is less than 0.3, 

indicating the parameter distributions of the generated load profiles are very similar to those of the 

original data. The only parameter which has a relatively large KL divergence is the base load, which 

can be due to the base load has a smaller absolute value, and accordingly has a larger generation error. 

To further illustrate the implication of KL divergence, we plotted the distribution of base load for the 

cluster 2, which has a lower KL divergence; and the cluster 8, which has the highest KL divergence. 

Even for cluster 8, the distribution of the generated load is similar to that of the real load, confirming 

the validity of our proposed load generation approach. 

                             
8
 Clusters 0, 1, 2, 3, 5, 14, 16, 17, 18 only have the value of key parameter of base load 

because those clusters are from non-working day, which do not have peak load periods, rise 

time or fall time. The peak load duration, rise time and fall time were normalized by 

dividing 24 hours 



 

4. Discussion 

4.1 Hyper-parameter tuning  

Hyper-parameter tuning is especially challenging in training a GAN model because GAN is a dynamic 

system consisting of two neural networks, with adversarial loss functions. The typical approach to train 

a deep neural network gradient descent method normally consists of going downhill in a static loss 

landscape. But with GAN, the loss landscape is no longer static. Every step taken down the hill changes 

the entire landscape a little, which makes it more difficult to find the minimal point through the gradient 

descent method [41]. 

To efficiently train GAN, tricks provided by previous studies were tested. Some of them work in this 

case (for instance, adding a dropout layer in the discriminator), but some do not (for instance, adding 

random noise to the labels for the discriminator). Table 3 presents the detailed hyper-parameters selected 

in this study, which can be helpful for other researchers. 

Table 3: Hyper-parameters of GAN settings in this study 

Latent space Dimension 20 

Sampling method Normal distribution, NOT uniform distribution 

Generator Layer 1 Densely connected; 64 units; activation = LeakyReLU 

Layer 2  Densely connected; 128 units; activation = LeakyReLU 

Layer 3 Batch normalization; momentum = 0.8 

Layer 4 Densely connected; 64 units; activation = LeakyReLU 

Output Layer  Densely connected; 24 units 

Loss function Binary cross entropy 

Optimizer Adam (Adaptive moment estimation) [42]: learning 

rate=0.0002; clipvalue =1; learning rate decay=4e-6 

Training epochs 100 

Training callback early stopping, patience = 3 

Discriminator Layer 1 Densely connected; 64 units; activation = LeakyReLU 

Layer 2 Densely connected; 128 units; activation = LeakyReLU 

Layer 3 Densely connected; 128 units; activation = LeakyReLU 

Layer 4 Densely connected; 64 units; activation = LeakyReLU 

Layer 5 Dropout; dropout rate = 0.4 

Output Layer Densely connected; 1 unit; activation = sigmoid 

Loss function Binary cross entropy 

Optimizer Adam: learning rate=0.0004; clipvalue =1; learning rate 

decay=8e-6 

Training epochs 50 

Training callback early stopping, patience = 3 

Training Total epochs 150 

Train-test split Training fraction=0.8 

Batch size 2048 



For generative models such as GAN, there are no ground truths to evaluate the performance of the 

model. Therefore, it is challenging to decide when we should stop training because the concepts of 

underfitting and overfitting are defined on ground truths. In this study, we used two approaches: the 

typology of the generated load profile (as shown in Figure 8) and some quantitative metrics (as shown 

in Figure 10) to decide when we stop training. 

4.2 Potential applications 

As a new approach to generating building electrical load profiles, it is important to know what GAN 

can do and what it cannot. We will discuss what it can do in this section and what it cannot do in the next. 

The first potential application of GAN is to anonymize real building electrical load profiles. The privacy 

concern is considered to be a major barrier for smart meter data analytics, because it prevents end users 

and utility companies from donating and sharing their data [9]. GAN can be used to anonymize smart 

meter data, because it is capable of generating load profiles that maintain key statistical information 

(both the general trend and random variations) while removing sensitive information, because the load 

profile is randomly generated. This process contains two steps: first, using the real load profiles to train 

the generator; and second, using the trained generator to generate load profiles and open source the 

generated load profiles rather than the original real one. To train the generator, we still need to get access 

to the real smart meter data, but it can be done in a secure and private way. Compared with directly 

sharing the original real data with the public, sharing the generated load profiles (which are different 

from the real data but have same statistics) preserve the value of data while addressing data privacy 

concerns. Using GAN to anonymize smart meter data may encourage more data owners and utility 

operators to share their data. 

The second application of GAN is to generate electrical load profiles based on exogenous variables, 

such as building type, vintage, day type (working or non-working) and weather. The two-step workflow 

to predict load profiles is shown in Figure 11. The first step is to predict which cluster the load profile 

will belong to, given critical information of the building and the weather. Then we can use GAN to 

generate the load profiles, given the predicted cluster.  

 



Figure 11. Load profile prediction with GAN  

 

The GAN discriminator can also be used to verify other load profile generation models by leveraging 

the trained discriminator to test if it can distinguish the generated load profiles from the real ones. If 

not, then the load profile generation model, which can be either physics-based white-box or data-driven 

black-box, is validated. 

The last but not least, a potential application of GAN is to detect or diagnose changes to building 

electrical load profiles. The load profile changes can be diagnosed if the discriminator detected a marked 

difference between the newly measured load profile and the previous load profile patterns, which can 

be due to building operational changes (e.g., occupancy, use hours), equipment or thermostat 

malfunction [1], or extreme events. This information can be helpful for fault detection and building 

operation improvement. 

 

4.3 Limitations 

As a data-driven approach, GAN can not explain what it generates. We have little information about 

how the load is constituted or whether novel control strategies can be used to shift or shed the peak load, 

which may be possible to know in a physics-based white-box model. 

Additionally, GAN can only work within the domain of training data, and can not generate load profiles 

it has never seen before. For instance, if the building’s energy system was retrofitted, its building load 

profiles may change dramatically. In this case, we can not input load profiles before renovation into 

GAN to generate load profiles after renovation. 

 

5. Conclusions 

Building electrical load profiles have wide applications in research and analysis of building operations, 

energy efficiency, and building-grid interactions. Current approaches to obtain these load profiles may 

be either time-consuming, unable to reflect the dynamic and stochastic behaviors of real buildings, or 

have privacy concerns. In this study, we proposed a novel approach to generate realistic electrical load 

profiles through the Generative Adversarial Network (GAN), an unsupervised machine learning 

technique that can be used to reveal an unknown probability distribution from the smart meter data. 

Our proposed approach has three steps. We first normalized the daily load profiles to 95 percentile of 

the annual peak load to make sure the load profiles of different buildings are similar in magnitude. Then 

we use k-means to cluster the daily load profiles into 19 clusters. The optimal number of clusters is 

selected with the Davies-Bouldin Index. Lastly, we use GAN to generate the load profiles for each 

cluster.  

We tested our approach with the open source Building Data Genome Project database. We validated the 

method we proposed by comparing the mean, standard deviation, and distribution of the key parameters 

of the generated load profiles with those of the real ones. It can be observed that the generated load 

profiles have very similar mean and standard deviation of the five key parameters (base load, peak load, 

peak load duration, rise time, and fall time) with the real ones. The KL divergence of the above five 

parameters between the generated and real load profiles are within 0.3 for majority clusters. Additionally, 

the results showed the load profiles generated by GAN can capture not only the general trend but also 

the random variations of actual building loads.  

The proposed GAN approach can be used to anonymize smart meter data, generate load profiles, verify 

other load profile generation models, and detect changes to load profiles. Future research includes 

verifying the GAN approach for other building types and on a larger dataset of smart meter data, as well 

as interpretation of the clustering results with real building characteristics, weather, operational 

parameters, and occupant behavior. 
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