UC Berkeley UC Berkeley Previously Published Works

Title

Impact of Peroxymonocarbonate on the Transformation of Organic Contaminants during Hydrogen Peroxide in Situ Chemical Oxidation

Permalink https://escholarship.org/uc/item/60h32712

Journal Environmental Science & Technology Letters, 6(12)

ISSN 2328-8930

Authors

Yang, Xuejing Duan, Yanghua Wang, Jinling <u>et al.</u>

Publication Date

2019-12-10

DOI

10.1021/acs.estlett.9b00682

Peer reviewed

HHS Public Access

Environ Sci Technol Lett. Author manuscript; available in PMC 2020 December 10.

Published in final edited form as:

Author manuscript

Environ Sci Technol Lett. 2019 December 10; 6(12): 781–786. doi:10.1021/acs.estlett.9b00682.

The Impact of Peroxymonocarbonate (HCO_4^-) on the Transformation of Organic Contaminants during Hydrogen Peroxide (H_2O_2) in situ Chemical Oxidation (ISCO)

Xuejing Yang^{a,b}, Yanghua Duan^a, Jinling Wang^{b,c}, Hualin Wang^{b,c}, Honglai Liu^c, David L. Sedlak^{a,*}

^aDepartment of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720-1716, USA

^bNational Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China

^cState Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China

Abstract

Under the conditions employed when in situ chemical oxidation is used for contaminant remediation, high concentrations of H_2O_2 (e.g., up to ~10 M) are typically present. Using ¹³C NMR, we show that in carbonate-rich systems, these high concentrations of H_2O_2 result in a reaction with HCO_3^- to produce peroxymonocarbonate (HCO_4^-). After formation, HCO_4^- reacts with phenol to produce di- and tri-hydroxyl phenols. HCO_4^- reacts with substituted phenols in a manner consistent with its electrophilic character. Exchanging an electron-donating substituent in the *para* position of a phenolic compound with an electron-withdrawing group decreased the reaction rate. Results of this study indicate that HCO_4^- is a potentially important but previously unrecognized oxidative species generated during H_2O_2 *in situ* Chemical Oxidation (ISCO) that selectively reacts with electron-rich organic compounds. Under conditions in which HO· formation is inefficient (e.g., relatively high concentration of HCO_3^- , low total Fe and Mn concentrations), the fraction of the phenolic compounds that are transformed by HCO_4^- could be similar to or greater than the fraction transformed by $HO\cdot$. It may be possible to adjust treatment conditions to enhance the formation of HCO_4^- as a means of accelerating rates of contaminant removal.

Graphical Abstract

^{*}Corresponding Author: sedlak@berkeley.edu.

Supporting Information. The spectrum of HPLC-UV, HPLC-MS, the resonance signal of EPR and the losses of phenol at varying concentration of reagents could be found in the supporting information. This information is available free of charge on the ACS Publications website.

INTRODUCTION

Over the past three decades, ISCO has emerged as a cost-effective remediation technology for contaminated soil and groundwater due to its rapid implementation and ability to treat a variety of contaminants.^{1–4} Currently, H_2O_2 is one of the most widely applied oxidants used for ISCO. When H_2O_2 is introduced to the subsurface, it reacts with dissolved and surface-associated iron (\equiv Fe^{II} or \equiv Fe^{III}) to produce reactive oxygen species, including hydroxyl radical (HO·) and hydroperoxyl radical (HOO·):

$$\mathrm{Fe}^{2+} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{Fe}^{3+} + \mathrm{HO} \cdot + \mathrm{HO}^{-}$$
(eq.1)

$$\operatorname{Fe}^{3+} + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{Fe}^{2+} + \operatorname{HOO} \cdot + \operatorname{H}^+$$
 (eq.2)

$$\equiv Fe^{II} + H_2O_2 \rightarrow \equiv Fe^{III} + HO \cdot + HO^{-}$$
(eq.3)

$$\equiv Fe^{III} + H_2O_2 \rightarrow \equiv Fe^{II} + HOO \cdot H^+$$
(eq.4)

$$2 \operatorname{H}_2\operatorname{O}_2 \to 2\operatorname{H}_2\operatorname{O} + \operatorname{O}_2 \tag{eq.5}$$

In parallel with these reactions, H_2O_2 reacts with iron and manganese species in a process that results in the production of H_2O and O_2 without the formation of reactive oxygen species (eq. 5). Measurement of the stoichiometry efficiency (E, the number of moles of organic compound oxidized per mole of H_2O_2 lost, eq. 6) under conditions in which the concentrations of the organic contamination are high enough to capture all of the HOproduced indicate that non-radical reactions (i.e., eq. 5) typically account for over 99% of the $H_2O_2 \ loss^{5-8}$. In other words, $H_2O_2 \ ISCO$ is inherently inefficient because a twoelectron transfer mechanism predominates rather than radical chain reactions that produce $HO^{.9}$.

$$E = \frac{\Delta[\text{Organic Compound}]}{\Delta[\text{H}_2\text{O}_2]} \times 100\%$$
(eq.6)

As a result of ineffecient nature of the process, relatively high concentrations of H_2O_2 (i.e., 1–10 M) are typically encountered near the injection well.^{1, 10, 11} Under these conditions, reactions that are usually considered to be unimportant under more dilute conditions may contribute to the oxidation of contaminants. In particular, peroxymonocarbonate ion (HCO₄⁻), a substitution product formed when H_2O_2 reacts with bicarbonate (HCO₃⁻), can be formed (eq. 7):^{12, 13}

$$HCO_3^- + H_2O_2 \rightleftharpoons HCO_4^- + H_2O \quad K = 0.32 \pm 0.02M^{-1}$$
 (eq.7)

Percarbonate has been detected during the production of alkali-metal peroxocarbonate salts^{12, 14} and in enzymatic reactions.¹⁵ It also has been evaluated as a potential oxidant for organic contaminants when contaminated groundwater from carbonate-rich formations undergoes pump-and-treat remediation.^{16–18} However, its role in contaminant transformation during ISCO has not been considered previously. HCO_4^- is a selective electrophile that reacts with electron-rich compounds, such as organosulfides,^{13, 19} amines²⁰ and alkenes.²¹ To assess the potential of HCO_3^- to contribute to contaminant removal during H_2O_2 ISCO, we studied the formation of HCO_4^- and its reaction with substituted phenols under conditions typically encountered during remediation.

MATERIALS AND METHODS

Materials and Chemicals.

All experiments were performed with water purified by a Milli-Q system. NaHCO₃, NaOH, NaH₂PO₄, Na₂HPO₄, H₃BO₃, Na₂B₄O₇ and other inorganic chemicals were obtained from Sigma-Aldrich at ACS reagent purity. Stock solutions of phenol (50 mM) and H₂O₂ (10 M), standardized by KMnO₄ titration²², were stored at 5 °C. ¹³C enriched NaHCO₃ used for NMR analysis was purchased from Cambridge Isotope Laboratories Inc. 5,5-dimethyl-1-pyrroline N-oxide (DMPO, ESR grade) from Sigma Aldrich was used as a spin trap. The color indicator for H₂O₂ measurement, TiOSO₄ (15% wt) solution, was purchased from Fluka.

Kinetics Experiments.

In most experiments, reactions were initiated by mixing equal volumes of a phenol solution and a buffered H_2O_2 -containing solution in a 2-mL borosilicate glass auto-sampler vial at room temperature. Typically, the initial phenol concentrations ranged from 0.5 to 5.0 mM. NaHCO₃ was used both as the buffer and as a reactant at concentrations ranging from 10 to 1000 mM. To initiate the reaction, an aliquot of H_2O_2 was carefully added to the glass vial by pipette to a final volume of 2 mL. The auto-sampler vial was immediately capped after H_2O_2 addition. There was no headspace or noticeable bubble formation before the experiment. After manual shaking for 30 s, samples were injected into the HPLC at time intervals of 5 or 15 min for determination of phenol concentrations. For the measurement of

 H_2O_2 , a separate set of vials was prepared and sampled in parallel. Three replicate measurements were conducted for each treatment. The reaction rate constant of pseudo first order for phenol conversion was calculated as follows:

$$k_{obs} = -\frac{\ln([PhOH]/[PhOH]_0)}{t}$$
 (eq. 8)

Analytical Methods.

For the measurement of phenol, 10 or 25 µL aliquots were injected with an Agilent® 1260 Infinity auto-sampler in an Agilent 1200 series HPLC system equipped with a C18 column (300×3 mm, 4µM; Phenomenex, Aschaffenburg, Germany). Phenols were detected by UV absorbance at 271 nm. Acetonitrile (40%) and 10 mM formic acid (60%) were used as the mobile phase at a flow rate of 1 mL/min. For substituted phenols, the flow rate was reduced to 0.6 mL/min and a gradient program was employed as described previously.²³ The concentration of H₂O₂ was determined with the TiOSO₄ colorimetric method²⁴ using a UV-vis spectrophotometer (Shimadzu UV-2600). The pH of the solution was measured with a Mettler Toledor 230 pH meter with an InLab® Flex Micro electrode. The existence of ring opening products was identified by analysis on a Waters UHPLC-MS Acquity autopurification system, which equipped with a XBridge C18 column (3.5µm, 4.6 ×100 mm), with the mass spectrometer operated in the full scan mode of a range of a m/z of 84 to 248. The gaseous products in headspace were measured by gas chromatography (HP 7890; Agilent Technologies) with an HP-Plot Q (15 m × 0.53 mm × 40 µm), a Plot Molesieve 5A column (30 m × 0.53 mm × 50 µm) and a TCD detector.

Electron Paramagnetic Resonance (EPR).

Experiments to assess the presence of free radical species, including hydroxyl radical (HO·) and carbonate radical (CO₃²⁻.) were conducted with DMPO as a spin trap.²⁵ A Bruker EMX-8/2.7C spectrometer was operated at X-field with a center field at 3511.520 G and a sweep width of 200 G. The microwave frequency was 9.873 GHz and the power was 2.016 mW. The sweep time of the signal channel was 41.9 s with a 3.56×10^4 gain at the receiver. Before each experiment, the sample solution was freshly prepared with H₂O₂ (0.25 M) and bicarbonate (10–1,000 mM). After stirring for 30 s, 1 mL aliquots were mixed with 1 mL DMPO (10 mg/L) immediately. The obtained solution was transferred into a 100 µL capillary tube, which was then fixed in the resonant cavity of the spectrometer. The experiment was performed at room temperature.

¹³C Labeling Nuclear Magnetic Resonance (NMR).

¹³C NMR spectra were measured on a Bruker Advanced 400 MHz instrument. Solutions were prepared as described for the kinetics study with the addition of 10% D_2O . The stock solutions of phenol and H_2O_2 employed were the same as those used for the kinetic measurements section and ¹³C enriched NaHCO₃ (1000 mM) was prepared with 10% D_2O in MilliQ water as the buffer solution. The solution was continuously mixed by a vortex mixer for 5 min before injecting it into the NMR tube for signal collection at room temperature. Spectra were obtained with a d*I*=8 s and 32 times of acquisitions. The

concentrations of H_2O_2 and HCO_3^- varied from 0.25 M to 5 M and 50 mM to 1000 mM, respectively. When the concentration of HCO_3^- was lower than 50 mM, the signal: noise ratio of the spectra was too low for the detection of peaks.

RESULTS AND DISCUSSION

Effect of NaHCO₃ concentration on phenol transformation during H₂O₂-ISCO.

The HCO_3^- concentration in groundwater undergoing ISCO depends upon the geochemistry of the aquifer. The concentration of HCO_3^- in groundwater typically ranges from 0.1 to 10 mM.²⁶ If a carbonate-containing aquifer is subjected to acidification (e.g., through release of acidic contaminants or chemical reactions that produce acid) or if biological processes produce CO_2 as a product of metabolism processes, higher concentrations can occur.

To assess the potential importance of HCO_4^- to phenol transformation, 250 mM H_2O_2 was added to a 10 mM HCO_3^- solution at pH 8.4. Under these conditions, approximately 20% of phenol disappeared after 90 minutes, whereas 40% loss was observed over the same period when the initial HCO_3^- was increased to 100 mM (Figure 1). Little if any phenol loss was observed in borate buffer, phosphate buffer or solutions without buffer.

The loss of phenol was accompanied by the appearance of new peaks at retention times around 5.6 min, 6.5 min and 8.7 min that can be assigned to 1,2,4-benzenetriol, hydroquinone and 1,4-benzoquinone, respectively (Figure S1~S3). The formation of polyhydroxylated benzene derivatives, including hydroquinone and 1,4-benzoquinone, has been reported for advanced oxidation processes, such as Fenton's reagent,²⁷ UV-H₂O₂^{28, 29} and electro-Fenton processes.^{30, 31} In the HCO₄⁻ system, no catechol was detected. Instead, 1,2,4-benzenetriol was the predominant product. These observations suggest that a different mechanism than the sequential oxidation reaction observed for oxidants like HO· may be involved. For example, the Elb oxidation mechanism, which has been studied for the oxidation of phenols also produces 1,2,4-benzenetriol as a primary product.^{32, 33} In the HCO₄⁻ system, a ring cleavage product with a m/z of 158, which may correspond to a compound like 2-hydroxy muconic acid or maleylacetate was detected (Figure S4). Further research is needed to definitively identify the compound.

HCO_4^- detection by NMR.

To identity the oxidant species, NMR spectra were collected with varying concentrations of H_2O_2 and constant concentrations of ${}^{13}C$ -enriched NaHCO₃ (Figure S5). An additional peak was detected between 158.2 and 158.5 ppm as NaHCO₃ increases that can be assigned to $HCO_4^{-.13, 34-36}$ As the concentration of H_2O_2 increased from 0.25 to 5.0 M, the relative peak height of ([HCO₄^{-]}/[HCO₃⁻]) increased from 0.05 to 0.49.

After the addition of H_2O_2 to the NaHCO₃ solution, bubbles were observed within 2 min. The gaseous products were collected and analyzed by gas chromatography. O_2 was the major product, suggesting that HCO_4^- may decompose (eq. 9) or react with H_2O_2 (eq. 10). 13, 35

$$2 \operatorname{HCO}_{4}^{-} \rightarrow 2 \operatorname{HCO}_{3}^{-} + \operatorname{O}_{2}$$
 (eq. 9)

$$HCO_4^- + H_2O_2 \rightarrow HCO_3^- + H_2O + O_2$$
 (eq.10)

The addition of phenol inhibited the formation of bubbles. For instance, bubbles were observed only after 15 min in the presence of 0.5 mM phenol. The decrease in bubble formation can be explained by the consumption of HCO_4^- by phenol, which occurs in competition with reactions 8 and 9.

Involvement of Hydroxyl Radical (HO-).

The potential involvement of free radicals in phenol transformation was tested by electro paramagnetic resonance (EPR). As a control, a 250 mM H_2O_2 solution was irradiated with ultraviolet light (254 nm) in the absence of HCO_3^- to generate the HO·. A standard EPR signal of the DMPO-HO· adduct was clearly observed with an intensity ratio of 1:2:2:1 (Fig. S6). Due to the scavenging of HO·, no EPR signal was detected with the addition of 10 mM NaHCO₃. No obvious EPR signal could be detected in the H_2O_2 -HCO₃⁻ system at HCO₃⁻ concentrations ranging from 10 mM to 1000 mM even after 30 minutes. This suggests that phenol transformation in this system occurs via a non-radical pathway.

Effect of NaHCO₃ on Phenol Transformation.

The transformation of phenol was measured at different NaHCO₃ concentrations with initial concentration of phenol of 0.5 mM and an initial H_2O_2 concentration of 250 mM. Under these conditions, the rate of phenol disappearance increased in proportion to the NaHCO₃ concentration (Figure 2a and Figure S7). Measurement of H_2O_2 indicate that less than 5% of the H_2O_2 disappeared during the 120 min experiments even at the highest NaHCO₃ concentration (i.e., the final concentration of H_2O_2 was 240 mM).

Effect of H₂O₂ on Phenol Transformation.

The rate of phenol transformation also was measured at varying H_2O_2 concentrations, at an initial phenol concentration of 0.5 mM and an initial HCO_3^- concentration of 1000 mM. The rate of phenol loss approximately doubled as $[H_2O_2]_0$ increased from 50 to 200 mM. Above 200 mM of H_2O_2 , only a small increase (21.2%) in phenol removal rate was observed at a concentration of H_2O_2 of 1000 mM (Figure 2b and Figure S8). The diminishing effect of H_2O_2 at higher concentration may be attributable to increased loss of HCO_4^- through a reaction with H_2O_2 (e.g., eq. 9). We also observed a decrease in the measured initial concentration of HCO_4^- and its reaction with phenol in the approximately 30 s period prior to collection of the first sample.

Effect of Initial Phenol Concentration.

Rates of phenol decomposition were also measured at initial phenol concentrations ranging from 0.1 to 2.5 mM (Figure S9a and S9b). Rates of phenol loss significantly increased as

[Phenol]₀ increased in a proportional manner from 2.0×10^{-3} mM·min⁻¹ at 0.1 to 1.1×10^{-2} mM·min⁻¹ at 0.5 mM. Above 0.5 mM, the rate of phenol transformation was constant (Figure 2c). The observations suggest that some of the HCO₄⁻ is lost to reactions with H₂O₂ or decompose at phenol concentration below 0.5 mM (eq. 9 and 10). Above 0.5 mM phenol, HCO₄⁻ preferentially reacted with phenol.

The effects of varying initial concentrations of reagents are consistent with Scheme 1. As indicated by the NMR results, low concentrations of HCO_4^- ($10^{-2} \sim 10^{-5}$ mM) are produced when H_2O_2 and HCO_3^- are present. As expected, increasing $[HCO_3^-]_0$ increased the concentration of HCO_4^- by shifting the equilibrium toward the right. Increasing $[H_2O_2]_0$ also shifted the equilibrium to the right but it also increased the rate of conversion of HCO_4^- into O_2 and HCO_3^- . The loss of H_2O_2 through reactions with HCO_4^- was less importance when the initial phenol concentration was above 0.5 mM.

Reactivity of HCO₄⁻ towards Other Substituted Phenols

To assess the reactivity of HCO_4^- towards various phenolic compounds, six phenolic compounds were studied at concentration of 0.5 mM in the presence of 250 mM H₂O₂ and 1000 mM NaHCO₃ in the pH range of 8.2~8.8 (Figure 2d). Changing the *para* substituent on the aromatic ring from an electron-donating group, such as -OH, to an electron-withdrawing group, such as -NO₂, decreased the reaction rate. The strong rate acceleration observed for electron-donating substituents is consistent with electrophilic attack of HCO_4^- to the phenolate species. Further research is needed to assess the mechanism of the reaction, the products and the potential role of the phenolate species in the reactions.

Comparisons on the performance with other ISCO techniques.

To assess the importance of HCO_4^- to the transformation of other compounds in the H_2O_2 -ISCO process, we predicted the rate of transformation of the organic contaminants through the HCO_4^- -initiated transformation reaction. We fitted the data of phenol disappear vs. time as a pseudo first-order process to facilitate comparisons with reported values for other treatment processes.^{37–40} The observed reaction rate constant in our system at 10 mM NaHCO₃ was $(3.20\pm0.23) \times 10^{-3}$ min⁻¹, which is over four times higher than rates of phenol loss observed when goethite was used to activate H_2O_2 in borate buffer at the same pH (i.e., pH 8.4 ± 0.2).⁷ The HCO₄⁻ reactions were also faster than other heterogeneous Fenton systems^{7, 41, 42} indicating that this process could be a relevant for understanding the efficacy of H_2O_2 - ISCO.

Environmental Implications.

When H_2O_2 is used for ISCO, high concentrations of the oxidant can persist for several days in the area undergoing treatment. Under many circumstances, most of the H_2O_2 decomposes by reactions catalyzed by Fe and Mn associated with mineral surfaces. Organic contaminants, including phenolic compounds, are oxidized as the H_2O_2 decomposes because a small fraction (i.e., <1%) of the H_2O_2 produces HO· during the catalytic decomposition process. During the period when H_2O_2 is present, a small fraction will react with HCO_3^- to form HCO_4^- , which can also transform electron-rich contaminants, such as phenolic

compounds and possibly chlorinated ethenes. In aquifers that contain carbonate minerals, HCO_4^- -mediated transformation of phenolic compounds can occur at rates similar to those attributable to HO· produced from H_2O_2 . For example, if magnesite ($MgCO_{3(s)}$) is in equilibrium with groundwater at pH 7, the HCO_3^- concentration will be approximately 8 mM (see supporting information). Under these conditions, extrapolation of the data in Figures S7 and 2d indicate that approximately 10–20% loss of phenol and 30–50% loss of the anisole (i.e., a more reactive contaminant) would be expected through peroxymonocarbonate reactions during the first two hours of ISCO treatment.

Most of the groundwater contaminants that are the targets for ISCO treatment (e.g., benzene, petroleum hydrocarbons) react with peroxymonocarbonate at relatively slow rates. It is unlikely that peroxymonocarbonate reactions alone would ever be a preferred option for ISCO treatment because they are relatively slow. If compounds that react with HCO_4^- were the target of a remediation project, it might be possible to increase the rates of the reactions by amending the H_2O_2 with relatively high concentrations of HCO_3^- (e.g., 100–1000 mM) prior to injection. These elevated concentrations of HCO_3^- would scavenge HO· produced during H_2O_2 decomposition and could clog aquifer pores if sufficient quantities of divalent cations (e.g., Ca^{2+} , Mg^{2+}) were present. Additional research is needed to assess the potential for enhancing HCO_4^- -mediated reactions during ISCO treatment or exploiting this process for other treatment methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

We acknowledge supports from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23010400), the National Natural Science Foundation of China (21876049), US National Institute for Environmental Health Sciences Superfund Research Program (NIEHS Grant P42 ES004705) at the University of California, Berkeley, US/China Clean Energy Research Center for Water-Energy Technologies and the International Postdoctoral Exchange Fellowship Program of China (20150074).

REFERENCES

- Siegrist RL; Crimi M; Simpkin TJ, In situ chemical oxidation for groundwater remediation. Springer Science & Business Media: New York, 2011; Vol. 3.
- 2. Glaze WH; Kang J-W, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J. Am. Water Works Assoc. 1988, 80, 57–63.
- Bellamy WD; Hickman GT; Mueller PA; Ziemba N, Treatment of VOC-contaminated groundwater by hydrogen peroxide and ozone oxidation. Res. J. Water Pollut. Control Fed 1991, 63, 120–128.
- Watts RJ; Udell MD; Rauch PA; Leung SW, Treatment of Pentachlorophenol-Contaminated Soils Using Fenton's Reagent. Hazard. Waste Hazard. Mater 1990, 7, 335–345.
- Jafar Khan MA; Watts RJ, Mineral-catalyzed peroxidation of tetrachloroethylene. Water, Air, Soil Pollut. 1996, 88, 247–260.
- 6. Watts RJ; Jones AP; Chen P-H; Kenny A, Mineral-catalyzed Fenton-like oxidation of sorbed chlorobenzenes. Water Environment Research 1997, 69, 269–275.
- 7. Pham AL-T; Doyle FM; Sedlak DL, Kinetics and efficiency of H₂O₂ activation by iron-containing minerals and aquifer materials. Water Res. 2012, 46, 6454–6462. [PubMed: 23047055]

- Pham AL-T; Lee C; Doyle FM; Sedlak DL, A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol 2009, 43, 8930–8935. [PubMed: 19943668]
- Pham AL-T; Doyle FM; Sedlak DL, Inhibitory Effect of Dissolved Silica on H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H₂O₂-Based In Situ Chemical Oxidation. Environ. Sci. Technol 2011, 46, 1055–1062. [PubMed: 22129132]
- Moyer E; Kostecki PT, MTBE remediation handbook. Springer Science & Business Media: Boston, 2004.
- 11. Kakarla P, Personal communication with Mr. Kakarla Kakarla, Technical Manager for ISOTEC, West Windsor, New Jersey Google Scholar 2002.
- 12. Flangan J; Jones DP; Griffith WP; Skapski AC; West AP, On the existence of peroxocarbonates in aqueous solution. J. Chem. Soc., Chem. Comm 1986, 1, 20–21.
- Richardson DE; Yao H; Frank KM; Bennett DA, Equilibria, Kinetics, and Mechanism in the Bicarbonate Activation of Hydrogen Peroxide: Oxidation of Sulfides by Peroxymonocarbonate. J. Am. Chem. Soc 2000, 122, 1729–1739.
- de CT Carrondo MA; Griffith WP; Jones DP; Skapski AC, X-Ray crystal structure of the industrial bleaching agent 'sodium percarbonate' [sodium carbonate-hydrogen peroxide (2/3)]. Journal of the Chemical Society, Dalton Transactions 1977, 2323–2327.
- 15. Elam JS; Malek K; Rodriguez JA; Doucette PA; Taylor AB; Hayward LJ; Cabelli DE; Valentine JS; Hart PJ, An Alternative Mechanism of Bicarbonate-mediated Peroxidation by Copper-Zinc Superoxide Dismutase rates enhanced via proposed enzyme-associated peroxycarbonate intermediate J. Bio. Chem 2003, 278, 21032–21039. [PubMed: 12649272]
- Zhou L; Song W; Chen Z; Yin G, Degradation of organic pollutants in wastewater by bicarbonateactivated hydrogen peroxide with a supported cobalt catalyst. Environ. Sci. Technol 2013, 47, 3833–3839. [PubMed: 23495717]
- Pi L; Yang N; Han W; Xiao W; Wang D; Xiong Y; Zhou M; Hou H; Mao X, Heterogeneous activation of peroxymonocarbonate by Co-Mn oxides for the efficient degradation of chlorophenols in the presence of a naturally occurring level of bicarbonate. Chem. Eng. J 2018, 334, 1297–1308.
- 18. Xu X; Tang D; Cai J; Xi B; Zhang Y; Pi L; Mao X, Heterogeneous activation of peroxymonocarbonate by chalcopyrite (CuFeS₂) for efficient degradation of 2, 4-dichlorophenol in simulated groundwater. Appl. Catal. B: Environ 2019, 251, 273–282.
- Bennett DA; Yao H; Richardson DE, Mechanism of sulfide oxidations by peroxymonocarbonate. Inorg. Chem 2001, 40, 2996–3001. [PubMed: 11399166]
- Balagam B; Richardson DE, The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines. Inorg. Chem 2008, 47, 1173–1178. [PubMed: 18179203]
- Yao H; Richardson DE, Epoxidation of Alkenes with Bicarbonate-Activated Hydrogen Peroxide. J. Am. Chem. Soc 2000, 122, 3220–3221.
- 22. Klassen NV; Marchington D; McGowan HCE, H₂O₂ Determination by the I₃- Method and by KMnO₄ Titration. Anal. Chem 1994, 66, 2921–2925.
- Buckman N; Hill J; Magee R; McCormick M, Separation of substituted phenols, including eleven priority pollutants using high-performance liquid chromatography. J. Chromatogr. A 1984, 284, 441–446.
- 24. Eisenberg G, Colorimetric Determination of Hydrogen Peroxide. Ind. Eng. Chem., Anal. Ed 1943, 15, 327–328.
- 25. Han SK; Hwang T-M; Yoon Y; Kang J-W, Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR). Chemosphere 2011, 84, 1095–1101. [PubMed: 21561642]
- 26. Thurman EM, Organic geochemistry of natural waters. Springer Science & Business Media: Dordrecht, 1985; Vol. 2.
- Zazo JA; Casas JA; Mohedano AF; Gilarranz MA; Rodríguez JJ, Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent. Environ. Sci. Technol 2005, 39, 9295–9302. [PubMed: 16382955]

- 28. Kusic H; Koprivanac N; Bozic AL, Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chem. Eng. J 2006, 123, 127–137.
- 29. Olmez-Hanci T; Arslan-Alaton I, Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J 2013, 224, 10–16.
- Pimentel M; Oturan N; Dezotti M; Oturan MA, Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl. Catal. B: Environ 2008, 83, 140–149.
- Mousset E; Frunzo L; Esposito G; Hullebusch E. D. v.; Oturan N; Oturan MA, A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Appl. Catal. B: Environ 2016, 180, 189–198.
- 32. Ogata Y; Akada T, Kinetics and orientation in the peroxydisulfate oxidation of phenol. Tetrahedron 1970, 26, 5945–5951.
- Behrman EJ, The Elbs and Boyland-Sims peroxydisulfate oxidations. Beilstein J. Org. Chem 2006, 2, 22. [PubMed: 17090305]
- Richardson DE; Yao H; Frank KM; Bennett DA, Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: oxidation of sulfides by peroxymonocarbonate. J. Am. Chem. Soc 2000, 122, 1729–1739.
- Bakhmutova-Albert EV; Yao H; Denevan DE; Richardson DE, Kinetics and Mechanism of Peroxymonocarbonate Formation. Inorg. Chem 2010, 49, 11287–11296. [PubMed: 21077618]
- Trindade DF; Cerchiaro G; Augusto O, A role for peroxymonocarbonate in the stimulation of biothiol peroxidation by the bicarbonate/carbon dioxide pair. Chem. Res. Toxicol 2006, 19, 1475– 1482. [PubMed: 17112235]
- Crimi ML; Siegrist RL, Factors affecting effectiveness and efficiency of DNAPL destruction using potassium permanganate and catalyzed hydrogen peroxide. J. Environ. Sci. Eng 2005, 131, 1724– 1732.
- 38. Venkatesh R; Karunakaran K, Kinetic investigation of oxidation of aromatic anils by potassium peroxymonosulfate in aqueous acidic medium. Int. J. Chem. Kinet 2013, 45, 542–550.
- 39. Liang C; Su H-W, Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Ind. Eng. Chem. Res 2009, 48, 5558–5562.
- 40. Mora VC; Rosso JA; Mártire DO; Gonzalez MC, Phenol depletion by thermally activated peroxydisulfate at 70 C. Chemosphere 2011, 84, 1270–1275. [PubMed: 21601909]
- Huling SG; Arnold RG; Sierka RA; Miller MR, Measurement of Hydroxyl Radical Activity in a Soil Slurry Using the Spin Trap α-(4-Pyridyl-1-oxide)-N-tert-butylnitrone. Environ. Sci. Technol 1998, 32, 3436–3441.
- 42. Miller CM; Valentine RL, Mechanistic studies of surface catalyzed H₂O₂ decomposition and contaminant degradation in the presence of sand. Water Res. 1999, 33, 2805–2816.

Figure 1.

Phenol transformation in various buffer, bicarbonate of 100 mM (\blacksquare), bicarbonate of 10 mM (\blacklozenge), phosphate of 10 mM (\blacklozenge), borate of 10 mM (\blacktriangle) and no buffer (\blacktriangledown). Experimental conditions: [H₂O₂]₀ = 250 mM, [phenol]₀ =0.5 mM, pH= 8.4 ±0.2

Figure 2.

(a) Dependence of initial rate of phenol loss (r_{obs}) on the initial concentration of NaHCO₃, Conditions: [Phenol]₀=0.5 mM, [H₂O₂]₀=250 mM, [NaHCO₃]₀ 10–1000 mM, pH pH= (8.4–8.7) ±0.2; (b) Dependence of initial rate of phenol loss (r_{obs}) on the initial concentration of H₂O₂. Conditions: [Phenol]₀=0.5 mM, [NaHCO₃]₀= 1000 mM, [H₂O₂]₀=50–1000 mM. pH=(8.4–8.7) ±0.2; (c) Dependence of reaction rate on the initial concentration of phenol. Conditions: [NaHCO₃]₀=1000 mM, [H₂O₂]₀=250 mM, [Phenol]₀=0.1–2.5 mM, pH=(8.4–8.7) ±0.2; (d) Disappearance of various substituted phenolic compounds by HCO₄⁻. Conditions: [H₂O₂]₀=250mM, [HCO₃⁻]₀=1000mM, [Phenolic]= 0.5 mM, pH=(8.4–8.7) ±0.2

