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Abstract

Using Building Simulation and Optimization to Calculate
Lookup Tables for Control

by

Brian Coffey

Doctor of Philosophy in Architecture

University of California, Berkeley

Professor Gail Brager, Chair

There is a growing demand for more energy efficient buildings. Integrated sys-
tems with more intelligent controls are an important part of meeting this demand.
Model predictive control (MPC) is an established control technique in other fields
and holds promise for improved supervisory control in buildings. It has been re-
ceiving increasing attention in buildings research but has yet to find its way into
common practice. This is due, at least in part, to a mismatch between the tools
and techniques used in most MPC development and the tools, skills and processes
commonly found in building design and operation. This dissertation investigates an
approach to optimization-based control that uses common building simulation tools
and could fit more readily into building design and operation practices. Instead
of solving optimization problems in real-time to determine control set-points given
current states and predicted disturbances, the optimal set-points are pre-computed
offline over a grid of possible conditions and the resulting lookup table is used with
linear interpolation for control. The feasibility and range of applicability of this ap-
proach are evaluated, including analyses of the performance impacts of grid spacing
and techniques for problem dimensionality reduction. Three abstract case studies
and two detailed case studies are presented. The approach is found to be feasible
for supervisory control problems that can be effectively simplified to functions of
roughly 5-6 conditions variables, and the case studies show good performance rela-
tive to online MPC. The benefits for ease of implementation are significant, but the
most useful aspect is likely the feedback it can provide to the design process.
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1 Background

1.1 Introduction

Building designers and operators are currently being challenged by two opposing
trends. The 20th century saw the introduction of mechanical cooling, large-scale
window glass manufacturing and cheap energy sources, and building occupants have
come to expect tighter temperature control, more daylighting and more expansive
views. However, by the end of the 20th century it also became clear that fossil
fuel consumption would eventually be forced to decline because of the economics of
finite resources, and would likely have to decrease much more quickly than that if
the risk of disruptive anthropogenic climate change is to be kept low. In the United
States, the residential and commercial sectors combine to account for 40% of national
energy consumption (USDOE, 2011a). Much of that is not directly attributable to
the building itself as much as it is to energy uses that occur within the building,
such as cooking and plug loads, but roughly half of it is from space heating (27% in
residential, 14% in commercial), space cooling and ventilation (16% in residential,
19% in commercial), and lighting (10% in residential, 17% in commercial) (USDOE,
2011a). This very significant portion of national energy consumption attributable to
buildings is also considered to be one of the least expensive and fastest areas of the
economy in which to improve energy efficiency (Metz et al., 2007). Building designers
and operators are thus being asked to produce much lower energy consumption rates
while still meeting contemporary expectations for comfort and amenities.

There is much to be learned from low-energy buildings designed before mechanical
cooling, float glass and cheap energy, but these designs cannot be simply replicated
now in pursuit of decreased energy consumption. Contemporary comfort expecta-
tions and the spirit of architectural innovation both demand an approach that learns
from historical low-energy precedents while devising new forms of energy efficient
design and operation. The digital revolution has also pressed this agenda in two sig-
nificant ways: (1) waste heat from plug loads makes it even more untenable to simply
replicate pre-air-conditioning designs, and (2) information and controls technologies
promise to change the building stock just as they have so much else in contemporary
society. This dissertation is a small part of a growing body of research and practice
that looks to harness these new-found computational powers to both decrease energy
consumption and improve occupant comfort.
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1.2 Context

The research presented herein considers a novel approach to creating near-optimal
control strategies for innovative low-energy buildings. The approach grows out of
the context of current design and operations practice, and if it is to be successful
then it must also fit well within this context. Significant aspects of current practice,
from the perspective of new controls development, are thus discussed below, before
considering research precedents in control optimization for buildings.

1.2.1 Trends in high-performance building design

Design strategies that decrease solar, lighting and envelope loads are being pursued
not just for their own incremental energy savings, but also because low enough ther-
mal loads can allow for the use of more efficient, but lower capacity, HVAC systems,
such as radiant slabs and natural ventilation. These lower capacity HVAC systems
often operate at temperatures closer to ambient, which increases the possibility of
using site and program peculiarities, such as local heat sources and sinks, to further
increase building efficiency. Thermal energy storage is becoming more common, both
for increased efficiency and for load shifting to avoid peak energy charges. In addi-
tion, some new designs are also integrating previously independent systems, such as
HVAC and solar shading, in order to draw out even more efficiency improvements.

Intelligent operation of these more complex and integrated systems is often crucial
to their success. However, designing good controls for such systems is challenging,
and is rarely considered properly during the system design process.

1.2.2 State of the art in building control systems

The rate of new developments in the fields of electronics, controls and computer
technology over the past four decades has been much faster than the turnover rate
of the building stock, or even that of most buildings’ HVAC equipment. Because of
this, and perhaps also because of how relatively small a concern energy expenditure
is for most firms, existing buildings sport a patchwork quilt of pneumatic, analog,
digital and wireless systems implementing a wide array of control and interfacing
strategies, ranging from archaic to reasonably advanced. Simple thermostats are
used in most commercial buildings, with more complex central energy management
systems installed in only about one third of the commercial buildings stock, more
often in larger buildings than in smaller ones (Brambley et al., 2005). These central
energy management systems are used by building operators primarily to identify po-
tential operations problems (e.g. zones not meeting set-point), and only occasionally
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to monitor or analyze energy consumption. Their user interfaces tend to be rudi-
mentary, and closed proprietary systems make it difficult for people other than the
control system vendors to make any major adjustments. Lighting control systems are
becoming more common, allowing for daylighting or occupancy-based controls, but,
when they are used, they are almost always a completely separate control system
from the HVAC control system, with no communication between them.

From the perspective of energy efficiency, the interest in building controls is gen-
erally not for tighter set-point tracking or greater stability (as is often the case in
other controls fields), but rather for devising ways to reduce energy use while still
maintaining occupant comfort. Various supervisory control strategies have been de-
veloped for use in building energy management systems, such as night temperature
set-backs and ‘economizer’ controls for outdoor air flow rates. These control strate-
gies are generally describable by decision trees - based on a collection of current
conditions (e.g. time of day, outdoor air temperature), decision rules are used to
determine the set points for each system component. So when building system de-
signers and controls designers consider new control strategies for new systems, it is
through this lens that they tend to look. But as systems become more complex, such
decision trees become harder to define, harder to manage, and harder to optimize.

1.2.3 Existing design processes

Building design is usually a very time-consuming process, but controls design tends
to get very little of this time. Standardized control strategies are used for common
HVAC and lighting systems and lighting control systems. Controls vendors usually
have their own standard rule sets, the American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE) publishes standard control sequences,
and some HVAC design firms may develop and specify their own for particular sys-
tem types that they commonly use. More innovative building systems often require
custom-made supervisory control rules, which usually rely very heavily on the engi-
neering judgement of the designers. As an example of custom-made control rules,
consider the use of ‘red light green light’ systems for mixed mode systems (signaling
to occupants when they can open their window or not), which is too new a technol-
ogy to have been standardized. Ackerly and Brager (2011) found that a wide variety
of control strategies have been used in practice in such buildings, even though, in the
cases considered, the building systems themselves were very similar. This suggests
that relying entirely on engineering judgement may not be the best way to approach
the design of controls strategies for innovative systems.

Shallow consideration of control strategies during system design makes it diffi-
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cult to evaluate the energy savings potential of design variants whose performance
depends on intelligent controls. It also makes it difficult to ensure that the designed
system operates as intended, since the controls implementation is often left to some-
one other than the system designer.

The use of building energy simulation tools in building design is worth noting.
The tools are generally intended to provide the designers with feedback on the po-
tential operational energy consumption of building designs, to help guide the design
process towards more efficient buildings. However, most buildings never get simu-
lated before being built, and those that do are usually just simulated for comparison
against a pre-defined base case, for the purposes of code compliance (e.g. Title 24
in California) or green-building certification (e.g. LEED). Some more progressive
design firms will use building simulation to inform design decisions. The simulation
tools used for this are often the same ones that will be used later for compliance /
certification modeling, despite sometimes being limited by interfaces better suited to
compliance modeling than to systematic analysis of design trade-offs. However, this
modeling process by system designers or consultants is usually the point when the
most detailed energy efficiency analysis occurs in a building’s life cycle. At present,
this process rarely involves active development of control strategies, and the mod-
els, with their embedded knowledge of design intent and expected system behavior,
rarely get used beyond the point of building occupation.

1.2.4 Existing building energy simulation tools

History of building energy simulation

Dynamic building simulation got its start in the 1970s and 1980s, spurred on by
the energy crisis and the introduction of the personal computer. The first generation
of programs were written primarily in FORTRAN, and include the whole-building
simulation program DOE-2 (written primarily at Lawrence Berkeley National Lab
(LBNL)), along with BLAST (by the US Department of Defense) and TRNSYS
(University of Wisconsin, Madison). DOE-2, primarily in its eQuest / DOE-2.2
form, has become the most commonly used building simulation program in North
America. TRNSYS has continued to expand from its initial focus on solar water
heating systems to become a modular program with an extensive library of building
system components and load models, but it requires software purchase (unlike many
of the other tools) and sees more use in Europe and Canada than it does in the
United States. BLAST has become essentially obsolete, but some of its principles
and code have been absorbed into EnergyPlus, which started its development in the
1990s after DOE-2.1E development ended. EnergyPlus is being developed by the
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US Department of Energy through a number of its national labs (including LBNL
and the National Renewable Energy Lab (NREL)) and with a number of partners
(including the Florida Solar Energy Center).

It is worth noting that all of these programs are still FORTRAN based, and
that many of the core algorithms have not changed since the 1970s, despite the vast
changes in programming practices since then. Recognizing the benefits of a more
modular approach to both code development and tool use, there were a number of
attempts in the 1990s to develop more modular simulation programs in languages
like C++. SPARK was one such program, developed at LBNL, which allows users to
define objects with ports, rather than pre-defined inputs and outputs (as is the case
with TRNSYS), and has a solver that determines what the inputs and outputs are
within a given case and devises an efficient method to parse and solve the problem.
As Augenbroe (2003) has argued, these attempts at object-oriented programs in the
1990s were founded on good ideas, but got caught up in the many challenges associ-
ated with developing the modular structures and solvers, and they were overwhelmed
by the very large challenge of having to re-write the algorithms of the existing pro-
grams, without the funding that the existing programs received. Another attempt
at developing a more modular, equation-based, object-oriented building simulation
environment is under way, this time taking advantage of underlying structural de-
velopment that has already been completed (an approach that Augenbroe endorses
in his analysis) by developing a buildings library for Modelica (Wetter, 2009b).

This US-centric brief history has not yet noted whole building tools like ESP-r
and TAS that are more commonly used in Europe. The commercial software IES-
Virtual Environment is important to include, as it is becoming common in Europe
and Australia and is gaining popularity in the US. Ecotect is also worth noting (it
is very popular among architects, but more for its climate and solar analysis and
graphics than for its energy simulation), as are the variety of CFD tools available,
the bulk airflow tools like CONTAM, and Radiance and DaySim for light simulation.
The US Department of Energy maintains a list of publicly-available (free or commer-
cial) building simulation tools and other tools closely related to building simulation,
currently with over 400 tools listed (USDOE, 2011b).

Characteristics of existing building energy simulation tools

The main use case in the original development of most of the major building
simulation tools is to aid in design decisions regarding building orientation, massing,
HVAC system selection, glazing areas and so forth. Related to this is the more
common use for compliance checking for codes and certifications. In both of these
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cases, annual simulations with timesteps on the order of 15 minutes to one hour
are the norm. Initial state values rarely have a noticeable impact on the annual
energy results, and most of the simulation tools have hard-coded ‘warm-up period’
requirements (to get the initial states roughly correct), rather than allowing the user
to enter initial state values themselves. Models tend to be of an entire building, with
possibly hundreds of thermal zones, rather than of a smaller part of the building.
Annual simulation run-times of minutes or even hours are neither uncommon nor
particularly problematic for these use cases.

Existing software that extends the use of building simulation tools

Although less common in practice than desired by most researchers and advanced
practitioners, parametric analysis with these tools is occasionally carried out in the
early design phases to study the sensitivity of the building’s energy consumption to
particular design parameters. Numerical optimization is even less common in prac-
tice, although it does happen in some consulting firms, and is relatively common in
building research. GenOpt (Wetter, 2009a) is an open-source java program designed
to facilitate optimization with any building simulation tool that uses human-readable
text files as inputs and outputs (as most of the common tools do). It has an extensi-
ble library of optimizations algorithms, so the user may choose an existing algorithm
or write their own. It is well established as an optimization tool for building simu-
lation (and a more complete user interface would likely increase its use in practice).
It is used extensively in the research presented herein.

It is often the case that multiple simulation tools are needed to investigate partic-
ular design or research questions, and sometimes these need to be run alongside each
other to pass information back and forth at each timestep. The Building Control
Virtual Test Bed (BCVTB, (Wetter and Haves, 2008)) is an extension of the Ptolemy
II software (of Electrical Engineering and Science, 2011) that facilitates the run-time
coupling of various building simulation tools and controls software platforms. It can
be used for co-simulation of whole-building energy simulation tools with CFD or de-
tailed daylighting analysis, and also can be used for the coupling of energy simulation
tools with controls software or hardware. It is a relatively new piece of software that
is quickly becoming common in research use and may eventually make its way into
practice. It is also used extensively herein.

1.2.5 Trends in building simulation research and development

Building simulation tool development is currently being shaped in at least four sig-
nificant ways by the trends in building design and the demands for more efficient
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buildings. The first is the demand from users to simulate more complex and efficient
HVAC systems, such as chilled beams, variable-refrigerant-flow systems and radiant
slab cooling. The second is to make simulation tools more user-friendly, as building
codes and labeling schemes are vastly increasing the demand for building simulation
for compliance purposes. The third is a growing use of Building Information Models
(BIM) in the building design and construction industries in general, and building
simulation tools are being pushed to properly integrate with such models. All three
of these are of interest in this context, because they mean that at least some of the
existing building simulation tools are likely to be further developed to become more
information-rich, less taxing on the model developer, potentially more flexible, and
more widely-used. In general, they are likely to become ever more prominent in
building design.

The fourth notable trend in building simulation development is towards the oper-
ations phase of the building life cycle. Although the vast majority of energy analysis
occurs during building design, it is during building operation that the energy is actu-
ally consumed, and researchers and some practitioners are beginning to find ways of
re-using building models from the design phase to improve operations. Three main
operations-phase uses of simulation are outlined below: benchmarking and feedback,
fault detection and diagnosis, and retrofit analysis.

Benchmarking and occupant / operator feedback

There has been much recent growth in the field of real-time building data visu-
alization. Just making the data available to building occupants and operators has
been found to have a significant impact on their behavior, but building ‘dashboard’
developers are finding that it is much more effective if the current energy use data can
be related to a reference. Some dashboards are using other buildings on a campus
or other floors in the same building as references, which can also foster a collegial
competitiveness that has been shown to be an effective motivator for energy-saving
behavior (Petersen et al., 2007). Other dashboards are using other benchmarks for
comparison. For example, the Pulse Energy software (Pulse Energy, 2011) uses a
sophisticated regression-based baseline model to calculate how the building would
be expected to perform at the current hour given its historical performance under
similar conditions (outdoor temperature, time of day, etc) - this can be used to flag
potential problems, such as equipment not turning off overnight when it should be.
A data visualization project at UC Merced (Apte et al., 2010) developed a calibrated
lumped-parameter model of one of the buildings to use in similar ways. More detailed
models can do more than provide a reference point or raise a flag when something
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seems wrong - they could also suggest to the occupants or operators what the prob-
lem might be and/or how to fix it, and thus overlap with the fault detection and
diagnosis approach described below.

In addition to these real-time data visualization and comparison tools, there have
been a number of recent developments aimed at comparing buildings’ annual energy
consumption to benchmarks. Such a strategy can be considered on two levels. At the
building stock or portfolio level, the benchmarking process is useful in identifying
problem buildings to look at in more detail. And at the level of the individual
building, a more detailed benchmarking process might suggest particular subsystems
or components that may have problems. These more detailed benchmarks generally
involve some sort of energy simulation models. The Facility Energy Decision System
(FEDS) was developed by the Pacific Northwest National Lab with this intent, and
is used by various federal agencies (PNNL, 2011). The Energy Profile Tool (EnerSys
Analytics, 2011) is a similar piece of software which uses a database of results from
a wide variety of parametric simulations on template DOE-2.1 models. The LBNL-
Target project (Haves et al., 2008) is an interesting example in that it was devised
to operate at both the portfolio level and the individual building level, as well as to
provide guidance on retrofit possibilities for the existing stores and on design changes
for the next generation. The project took advantage of the relative standardization of
the big box store design across the country, and developed a high-fidelity EnergyPlus
model of a prototype store design that could be easily modified to match the small
customizations in insulation levels and HVAC equipment that occurred in the various
climate regions. With relative ease (although, it turns out, with perhaps not enough
ease), the EnergyPlus model could then be matched to any store in the portfolio
of a recent vintage (the older stores were of different designs). Annual energy use
discrepancies between the simulated and actual would be used at the portfolio level
to identify problem stores. And the details of such differences could be used at the
store level as indicators of possible problems.

Fault detection and diagnosis

Fault detection and diagnosis may be done by expert rules systems, such as the
Diagnostics Agent for Building Operators (DABO) (NRCan-Varennes, 2011), which
uses a set of pre-programmed rules to analyze the data from an EMCS, identifies
problems (e.g. when equipment is operating outside of its expected efficiency range)
and suggests solutions. But model-based fault detection and diagnosis is perhaps
more easily generalized. A model-based version of fault detection and diagnosis is
being developed at LBNL (Xu et al., 2005). Measured outputs from actual compo-
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nents are compared to the outputs of modeled components given the same inputs.
Flags and suggestions result when the actual behavior deviates from the modeled
behavior to some extent deemed significant. The model-based version has a number
of other benefits: it can possibly link well with the other uses of building simula-
tion in operations discussed herein, and could also link with HVAC visualization and
training tools - when a problem occurs, the component model can be used within
a visualization environment like the Flash-based interface for LearnHVAC (SuPerB
and LBNL, 2011) to demonstrate to the operator what the problem is and how it
can be fixed.

Retrofit analysis

Retrofit analysis is perhaps the most common current use of building simulation
in the operations phase, and it is the most akin to simulation use in the design
phase. Retrofit studies with simulation are usually carried out as part of a larger
energy auditing process, where an auditor may use whole building models from the
design phase (potentially re-calibrated with measured data) to inform the analysis.

1.2.6 Summary

Driven by demands for higher building efficiency while still meeting contemporary
comfort standards, building designs are changing such that they more often integrate
various previously independent subsystems (e.g. facades and HVAC), take advantage
of efficiency opportunities afforded by the particularities of the site and program,
and often incorporate thermal storage. The control of such systems is crucial to
their success. Existing building control systems can handle new supervisory control
strategies as long as they are simple to implement, ideally in the form of a decision
tree or something similar, but they are difficult to extend much beyond their existing
structures. Various existing building simulation tools may be used during the design
phase, and this is when most of the energy analysis happens for a building. Some
research projects and practical applications are exploring ways of using these models
to improve operations through benchmarking, fault detection and diagnosis, and
retrofit analysis.

Methods to improve the controls of complex buildings by using building simula-
tion models, while fitting in with current design practices and control systems, and
integrating with other operations-phase uses of building simulation, could thus be
valuable to the industry.
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1.3 Control optimization with building simulation tools

1.3.1 Model Predictive Control (MPC)

Online MPC offers a way of approaching the complex control problems associated
with many of the new high-performance building systems. Instead of trying to define
the control logic explicitly, a building model and an optimization algorithm are used
within the control system in real-time to calculate the best setpoint values given the
current and predicted conditions. MPC is a repeated solution of a finite-time optimal
control problem: at each controller time step, an optimal sequence of control values
over a prediction horizon is calculated, only the first of which is implemented, and
at the next controller time step the horizon shifts forward one step and the process
is repeated, as shown in Figure 1, where u is the control output, p is the horizon
length, the horizontal axis is time and the greyed out part is the past. (Note that
a number of variants on this are also possible, such as implementing two or more
time steps of inputs and performing the optimization less often, or having different
control and prediction horizon lengths.)

Figure 1: Receding horizon strategy
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only the first step in the sequence gets implemented

MPC is well established in other fields. It was first used in the chemical process
industry in the 1960s, and has seen increasing use since then. A survey by Qin and
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Badgwell (2003) notes that MPC is used in more than 4,000 industrial applications.
It is well suited to the control of non-linear systems with strong state constraints
and relatively slow system dynamics, which is often found in chemical process con-
trol. It was a practically proven technique before it was studied theoretically, with
mathematical investigations of stability and optimality criteria beginning essentially
with the work of Mayne in the 1980s. Overviews of the field are available in Morari
and Lee (1999) and Mayne et al. (2000).

There have also been a growing number of MPC studies for building systems,
originating not in controls research but in building energy simulation research. The
idea was referenced in the buildings engineering literature at least as early as 1988
(Kelly, 1988) as something worth considering for buildings, but it was not until
the turn of the century that computation power and building simulation were at
the levels required to test it. Mahdavi (2001) provided a succinct description of
simulation-based control using standard simulation tools (but without prediction,
since the systems he considered did not require it), and studied its application to
solar shading (Mahdavi et al., 2005) and natural ventilation (Mahdavi and Proglhof,
2005). A more complete investigation of MPC for passive and active thermal storage
systems has been carried out by Henze et al (Henze and Liu, 2005; Henze and Krarti,
2005). This work includes a test of a real-time implementation of model predictive
control of a system with active and passive thermal storage, using a TRNSYS model
of the system as the online model in the controller. This work also includes analyses
of automated calibration to improve the models used in model predictive control
(Henze et al., 2005), and a study of the effects of prediction inaccuracies (Henze
et al., 2004). Henze is now leading a team of researchers on the investigation of model
predictive control for buildings with natural ventilation and massive chilled slabs (see
(Henze et al., 2007) for some of the preliminary work). Various other researchers
have made contributions in this field, including the investigation of optimal start
and stop times for slab charging (Kummert et al., 2005; Kummert and Andre, 2005;
Clarke et al., 2002), and VAV control (Wang and Jin, 2000; Nassif et al., 2005a,b).
Clarke et al. (2002) also worked with Honeywell to test the use of ESP-r for model
predictive control. The paper by Clarke et al also compares MPC to fuzzy logic
and neural network controllers, noting the various benefits of having a physics-based
model in the controller, including the avoidance of an in-situ learning period. An
open-source software framework for model predictive control using any text-based
building simulation software, and using GenOpt to perform the online optimization,
is presented in (Coffey, 2008) and (Coffey et al., 2010a). Some recent work has
come from controls researchers from other fields turning their attention to buildings
(e.g. Ma et al. (2010) and Oldewurtel et al. (2010)). Potential for energy savings,
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demand reduction and performance improvement has been shown with a wide variety
of systems, including chilled water storage, radiant slab pre-cooling and integrated
HVAC and facade control. And as buildings become more complex the benefits of
MPC are expected to become more pronounced.

However, MPC is currently far from common practice in building design and
operation - it has yet to get beyond the stage of individual case study implemen-
tations by researchers. It is difficult to use standard building simulation tools for
this because of their long run-times and the fact that many do not allow the user
to explicitly specify initial state values, and the software used by most controls re-
searchers is unfamiliar to most buildings researchers and practitioners. In addition,
online optimization is difficult to implement with existing building control systems,
and the fact that the control rules are implicit rather than explicit makes it difficult
for system designers to integrate it into their design processes.

Because of the long run-times of common simulation-tools, researchers have been
attempting either the use of long controller timesteps with standard building sim-
ulation models, or making custom lower-order models for particular buildings or
systems. Some research groups are postulating that MPC with simplified models
can be standardized enough to be used in many buildings. Others are suggesting
that insights gained through online MPC implementations and annual simulation
studies with particular buildings can lead to the development of simplified rules that
can be applied to many buildings with configurations similar to the particular build-
ings studied. However, buildings designed to be highly responsive to weather and
occupants and use low-exergy site-specific heat sources and sinks are inherently dif-
ficult to match with prototype buildings or to effectively model with standardized
simple models. Indeed, one of the primary motivations for using MPC in buildings is
that it provides a coherent method for near-optimal supervisory control of complex
integrated systems for which good heuristic rules are difficult to define.

1.3.2 Offline approximation to MPC

For some types of MPC problems, multiparametric programming can be used to
solve the problem explicitly, providing a set of control laws that fully cover the con-
ditions space and that exactly replicate the control behaviour of online MPC (referred
to as ‘explicit MPC’, see Bemporad et al. (2002)). However, multiparametric pro-
gramming can only be used to solve certain types of MPC problems (e.g. linear or
switched-linear models with linear or switched-linear objective functions), into which
categories most of the challenging building control problems do not fit. And with
the possible future exception of Modelica (Wetter, 2009b), this approach would not
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be possible with any of the commonly used building simulation tools.
However, the idea of explicit MPC is very appealing for buildings applications,

because it would be easier to implement in existing building control systems than
online MPC, and being able to describe and visualize optimal control responses over
the full conditions space would provide useful feedback during system design. Find-
ing ways to approximate it using common building simulation tools could thus be
worthwhile, even if it brings with it some performance penalties relative to online
MPC. Current work by May-Ostendorp and Henze considers the approach of simu-
lating online MPC over some or all of a representative weather year and then using
statistical techniques to derive near-optimal control laws from the results. This could
provide a useful way of getting these benefits.

A potential alternative, discussed herein, is to develop tools and techniques for
using building simulation and optimization to compute a lookup table of optimal
control setpoints for a grid of current and predicted disturbance values and initial
state values. The lookup table is then used for online control of the real building
system or in annual simulations, rather than running the optimization online at each
timestep.

1.4 Statement of the Problem

There is a need for better methods for designing supervisory controls for innovative
building systems, in order to capture more of the available energy savings and comfort
improvements that these systems offer. The methods must fit well within current
building design and operations practices in order to see market uptake. Ideally,
the solution should be useable in design-phase annual simulations, for evaluation
of energy savings and payback periods of different systems. Methods for offline
approximation to MPC are promising in these regards, in particular the use of offline
optimization over a grid of possible conditions to produce a lookup table that can
be used with interpolation in real-time control. This latter approach, however, has
not been studied in previous research in terms of its range of feasibility, techniques
required to make it work, and its performance relative to MPC and heuristic rule-
based controls.
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2 Objectives and Overview

This dissertation investigates the feasibility and relative performance of an offline
approximation to MPC using optimization over a grid of possible conditions (e.g.
outdoor temperature, occupancy level) to produce a lookup table that is used with
interpolation for real-time implementation. Methods for the approach are developed
and demonstrated through a series of case studies, and these studies are extended to
analyze various aspects of the approach.

2.1 Essential concepts and terms

Although methods are discussed in much greater detail in the next chapter, some
essential concepts and terms are provided in overview here to act as a general guide
to the reader, and in order to make comprehensible the research objectives delineated
below.

The term ‘conditions’ is used throughout to refer to both (1) current and predicted
disturbances (e.g. outdoor temperature, outdoor horizontal diffuse radiation, plug
load heat gains) and (2) initial states (e.g. current indoor air temperature, current
storage tank charge level). At any control timestep, the controller is responding
to conditions and outputing control signals (e.g. shading position setpoint, tank
charging start time).

As described in the previous chapter, an online MPC controller calculates the
control signals given the conditions by running an optimization algorithm that itera-
tively calls, or otherwise references, a system model. It does this optimization at each
control timestep in the actual implementation, so the model and optimization algo-
rithm are a part of the controller itself. The offline optimization approach, described
herein, produces a ‘lookup controller’, which calculates the control signals given the
conditions by interpolation between pre-calculated control signals in a ‘conditions
grid’. The term ‘conditions grid’ refers to an n-dimensional grid of conditions values
(i.e n conditions variables, each with a set of values ci), that is intended to cover the
range of possible conditions that the controller might face in its application. The
size of the conditions grid is the product of the number of values in each dimension
(
∏n

i=1 ci).
As discussed in greater depth in the next chapter, for the offline optimization

approach to be computationally feasible, the conditions grid size must be limited,
which means that the number of conditions variables that can be considered must be
kept low (to roughly 5 or 6, given current computing costs). Two methods of limiting
the size of the grid are investigated in detail herein: (1) ‘conditions parametrization’,
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and (2) ‘problem decomposition’. ‘Conditions parametrization’ refers to a process of
correlating conditions variables so that estimated values of a larger set of conditions
variables can be derived from a given values of a smaller set of conditions variables -
the smaller set is then used in defining the conditions grid, while the larger set is used
as inputs to the model in the offline optimization process. ‘Problem decomposition’
refers to the splitting of a problem into subproblems - in some cases the subproblems
might be tractable with offline optimization while the original problem is not.

Visualization of the lookup table is an important aspect of the approach described
herein. It helps the system designer to understand how the controller is responding
to conditions, provides a way of verifying the reasonability of the control responses,
affords opportunities to debug the model and optimization configuration, and can
lead to insights that might result in improved system designs. Graphs of lookup
table slices are used extensively herein. Upon first viewing, they can be difficult to
comprehend, but with repeated viewing of these types of graphs they tend to become
easier to understand. The next chapter includes an explanation of how to read them,
which may help to speed the familiarizing process.

2.2 Research objectives

The objectives of this research are as follows:

• To develop and test methods for offline approximation of MPC with standard
building simulation tools, including:

• techniques for reducing problem dimensionality (conditions parametriza-
tion and problem decomposition, as described in the next chapter)

• conditions grid definition and solution methods

• visualization methods for the lookup table controller

• methods for testing the controller through simulated implementations

• methods for facilitating physical implementations, including human-in-
the-loop implementations

• To test the approach’s range of feasibility and applicability through case studies

• To evaluate the lookup controller’s performance relative to online MPC and
heuristic rule-based controls

• To identify areas for further research and development

15



2.3 Dissertation overview

Methods are described in the next chapter, followed by three abstract case studies and
two detailed case studies. These case studies are used to demonstrate the approach
and its benefits, and are analyzed to address the research questions. In particular,
the first abstract case study includes an analysis of the performance impacts of
grid spacing, the second abstract case study includes an analysis of the effects of
conditions parametrizations, and the third abstract case study considers problem
decomposition. The two detailed case studies demonstrate the application of the
approach to more complex problems.
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3 Methods

3.1 Approaches: Rule-based control, online model predic-
tive control, and lookup control with offline optimiza-
tion

A heuristic rule-based controller is illustrated in Figure 2a. Controllers like this will
be used as base cases for comparison in the case studies that follow. Figure 2b illus-
trates an online MPC controller, using the open-source software SimCon developed
in previous research (Coffey et al., 2010a). SimCon acts as an organization layer,
reading the conditions and setting up the optimization problem at each controller
timestep, which is then solved by GenOpt and a building model in any simulation
tool that can be used with GenOpt (ie. any tool that uses text files as inputs and
outputs and can be called from the command line). The optimal control signals are
then collected from GenOpt by SimCon and sent to the actual building (or annual
simulation) for use.

Figure 2: Controller configurations: rule-based control versus online MPC

(a) rule-based control (b) online MPC
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As noted earlier, there are various challenges associated with implementing online
MPC controllers in real buildings, or even with performing annual simulations of the
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control, in large part because of the long run-times of standard building simulation
tools. But the same basic structure can be used offline to produce lookup tables for
near-optimal control, as shown in Figure 3. The optimizations over the conditions
grid can be performed in parallel and are carried out prior to implementation, so
that the optimizations do not need to be run in real-time within the controller.

Figure 3: Controller configuration for lookup control using offline-optimization
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The resulting lookup table can be used for supervisory control in physical imple-
mentation and annual simulations much more readily than online MPC. In addition,
the lookup table provides an excellent way of visualizing the controller’s behavior,
which facilitates debugging and can also lead to a better understanding of the build-
ing system under consideration. These aspects are described later in this chapter
and demonstrated through the case studies in subsequent chapters.

3.2 Range of computational feasibility

This approach of using lookup tables has numerous benefits. The big question, how-
ever, is how feasible it is for what types of problems. Figure 4 considers the question
in terms of how much computing time would be needed for particular problem config-
urations. The figure is based on the fact that the number of processor hours required
is equal to the product of the conditions grid size and the average number of proces-
sor hours per optimization. The conditions grid size is the product of the number of

18



elements per dimension. The processor hours per optimization is the product of the
simulation time and the number of simulations per optimization. The dollar costs
in the figure are based on $0.10 per processor hour, which is roughly the current
commercial cloud computing cost for small-scale users.

Figure 4: Range of feasibility of lookup table approach
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The shaded area is a somewhat conservative cut-off point for feasibility for a
consulting or design firm working on a single building, although it might easily be
extended upwards, perhaps to the 5000 processor hours line. It shows the trade-offs
in terms of simulation time (ie. model complexity), optimization precision and grid
spacing, and it shows the scale of problems that are feasible - simulation time for
the control model must be within seconds (note that this is over a simulation length
of a few hours to a few days, rather than a full year), and the number of conditions
variables must be kept to less than 5 or 6.

As such, this approach usually requires that approximations be made to limit
the dimensionality of the lookup table, and it is not appropriate for use in all cases.
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A significant part of the research described herein is aimed at better understanding
the performance costs associated with various types of approximations that might be
used to limit lookup table size. Two methods of approximation to limit dimension-
ality are described in the next two sections, followed by an explanation of methods
to solve the optimizations over the conditions grid.

3.3 Conditions parametrization

The optimization problem at each timestep in MPC may be generalized to Equation
1, where f is the objective function (output from the simulation tool or from a
post-processor), u is the vector of control variables, U is the set of allowable values
for u, x0 is the vector of initial state variables, and w is the vector of disturbances
and disturbance predictions. (Note that this form does not explicitly consider state
constraints or terminal constraints, but they may be considered as penalty functions
within f .)

min
u∈U

f(x0, u, w) (1)

The overall approach, as noted above, is to solve this problem offline over a grid
of conditions, i.e. over a grid of values for x0 and w. The challenge, however, lies
in the number of elements in the vectors x0 and w, which defines the dimensionality
of the conditions grid and of the resulting lookup table of solutions to be used for
control.

Conditions parametrization is used to decrease the dimensionality of the condi-
tions grid. The basic idea idea is to create a mapping from the values of a small
number of conditions parameters (used in the conditions grid) to a large number of
conditions values that are used in the building simulation model. This process is de-
pendent on the structure of the problem under consideration. However, some types
of disturbance predictions are common across many buildings-related applications,
such as ambient temperature or solar gains predictions, and some of these distur-
bances have strong patterns across samples, such as the sine-wave shape of ambient
temperatures over the course of a day. So useful examples can be given.

Consider a control problem that requires day-ahead predictions of ambient tem-
peratures, such as the overnight cooling of a massive chilled floor or ceiling. If hourly
predictions were used (as illustrated in Figure 5a), this would require 24 dimensions
in the lookup table just for the ambient temperature. If 5-minute predictions were
used, 288 dimensions would result. One way of decreasing the dimensionality would
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be to use a courser prediction, for example using average temperatures for 4-hour
blocks instead of 1-hour blocks, as shown in Figure 5b.

Figure 5: Example parametrizations
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A conditions parametrization approach to this case is to make use of the expected
shape of the diurnal temperature profile, and use a smaller number of parameters
to define the prediction. In this example, the parameters could be the maximum
and minimum temperatures, as shown in Figure 5c. Variants on this include a
1-parameter approximation using just the maximum or minimum temperature and
assuming a constant range, and a 4-parameter approximation that uses the maximum
and minimum temperatures and their times of occurrence. In all of these variations,
a normalized curve is required to produce the values of the temperature at each
timestep of the simulation, based on the parameter values. In the case of ambient
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temperature, there are standard curves that can be used for this (ASHRAE, 2005;
Thevenard, 2009). A more generally-applicable method is to derive a curve based
on typical or historical data for the site by normalizing each day in the data set
by its maximum and minimum values, finding this set of normalized days’ average
hourly values, and using these values as the basis for the normalized curve - Figure
5d illustrates this, and the process is demonstrated in greater detail in the abstract
case study #2 in Chapter 5.

Other disturbance predictions that might be similarly parametrized include dif-
fuse and direct solar, occupancy and plug loads. Solar predictions could be paramet-
rized in various ways, including by length of day and cloudiness factor, making use
of solar position equations. Other predictions, such as occupancy and plug loads,
might be harder to generalize by making use of underlying physics or geometry, but
could also be approached by deriving parametric curves based on historical data.

It is also possible to correlate disturbance variables to one another in order to
decrease the size of the conditions grid. The case study in Chapter 8 provides an
example of this, approximating all the variables in a weather files as a function of
ambient temperature, direct normal radiation and diffuse normal radiation.

Approximated state initialization

Similar approaches may also be used for initial states, if there are a lot of initial
states of interest (e.g. in cases with thermal storage in many different tanks or mas-
sive building components). But the bigger concern pertaining to state initialization
in buildings-related control is that many common building simulation tools do not
provide easy access to the state vector. Instead of being able to explicitly initialize
states, one often has to use an ‘initialization horizon’ (termed a ‘pre-conditioning
horizon’ in the papers of Henze et al), simulating over days or weeks of previous
disturbances and control actions to get the model state values to be roughly equal
to the observed initial state values. This means that instead of having a small vec-
tor of initial states as part of the conditions grid, there would have to be a much
longer vector of previous disturbances and previous control actions in the conditions
grid, ballooning its dimensionality. One approach to this problem, and perhaps the
simplest, is to define an initialization horizon for the simulation where all of the
values are constant except some small number of parameters that can be modified
to produce the desired initial states. As such, a desired initial state value can be
translated into parameter values in the simulation. This technique is demonstrated
in the abstract case study #2 in Chapter 5.
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3.4 Problem decomposition

Even with the approximations of input parametrization, many control problems in
buildings still have a dimensionality that is too high to be tractable as lookup tables.
However, the lookup table approach may still offer some help in such a case, if
the structure of the problem allows it to be decomposed into a hierarchical set of
problems, where some of the subproblems are small enough to be solved offline.
Figure 6 illustrates a case with one subproblem that is solved offline.

Figure 6: Controller configuration for lookup control using offline-optimization
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Generic mathematical description

For any MPC optimization problem,

min
u∈U

f(x0, u, w) (2)

given a parsing of a control vector u into components as follows,
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u = [uα, uβ1 , uβ2 , ..., uβN ] (3)

if the corresponding subsets of U , i.e. Uα , Uβ1 ... UβN , are independent (e.g. in
problems with only box constraints on the control variables), and if the effects on
the objective function f of the components uβi , i ∈ 1...N , are independent, then the
following optimization problem is equivalent to the problem in Equation 2 above,
with ukβj representing arbitrary but constant values within Uβj :

min
uα∈Uα

f(x0, uα, u
∗|uα
β1

, ..., u
∗|uα
βj

, ..., u
∗|uα
βN

, w) (4)

where u
∗|uα
βi

= min
uβi∈Uβi

f(x0, uα, uβi , u
k
β1
...ukβj 6=i ...u

k
βN
, w) ∀i ∈ 1...N

Parsing the problem in this manner may be beneficial in cases where all or some
of the subproblems in Equation 4 are of low enough dimensionality to be pre-solved
offline, and particularly beneficial if the subproblems are repeated. Note, however,
that simply decomposing a problem does not necessarily make it easier to solve
as a whole. (In fact, for fully linear or quadratic problems with all continuous
variables, such decomposition can in some cases actually lead to slower solutions.)
For mixed-integer non-linear problems, using heuristic optimization algorithms with
opaque models (as often describes the situation when performing optimization with
building simulation tools), injecting expert knowledge into the optimization process
through problem decomposition will often result in a faster overall solution, but it
is not guaranteed. The main reason for considering problem decomposition is if the
subproblems can have few enough conditions dimensions to be solved offline as a
lookup table, thus allowing some of the optimization computation requirement to
be handled offline before implementation. In some cases, this can result in a faster
online solution. Chapters 6 and 7 show particular examples of this.

Similar to conditions parametrization, the application of problem decomposition
depends on the details of the problem under consideration. Below are two conceptual
examples to illustrate some types of problems for which the approach might be useful.

Example with repeating subproblems

Consider the optimization of overnight charging lengths and start times for a
chilled water storage system with a 7-day prediction horizon (this is akin to the case
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study in Chapter 7). Even if the approximation of using just the minimum and max-
imum daily temperatures is acceptable, that still leaves 14 dimensions for the lookup
table, which is likely too many to be practical for offline solution. However, the opti-
mization can be broken into a higher level problem that determines the charge length
for each night (referencing the lower level problem solution as it does so) and a lower
level problem that determines the optimal start time and energy consumption for a
particular night given the charge length and the overnight temperature predictions.
With this decomposition, the lower level problem could be solved as a lookup table,
leaving the higher level problem to be solved as an online MPC, but now potentially
faster since the online MPC problem has just 7 control variables to consider (only
the charge lengths), instead of 14 (the charge lengths plus the start times).

Example with conditionally-applicable optimization variables

Consider a mixed mode HVAC control problem in Equation 5, with u1 being a
vector of window opening percentages and u2 being a vector of mechanical cooling
zone setpoint values, over some prediction horizon of length N .

min
u1,u2

f(x0, u1, u2, w) (5)

To the decision variables u1 and u2 add a third decision variable uα to signify
a binary decision between natural and mechanical ventilation, and reconsider the
problem as follows, where, for example, k1 = 0% (ie. the windows are closed) and
k2 = 30C (ie. the mechanical cooling is disactivated).

min
uα,u1,u2

f(x0, u1, u2, w) (6)

s.t. uα ∈ {0, 1}
if uα = 0 then u1 = k1, u2 ∈ U2

if uα = 1 then u1 ∈ U1, u2 = k2

This can be implemented with two optimizers as shown in Equation 7. Note that
the U sets in Equation 7 could be subsets of those in Equation 6.
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min
uα∈{0,1}

min
u1,u2

f(x0, u1, u2, w) (7)

s.t. uα ∈ {0, 1}
if uα = 0 then u1 = k1, u2 ∈ U2

if uα = 1 then u1 ∈ U1, u2 = k2

Instead of the original optimization problem with 2N continuous decision vari-
ables, we now have a heirarchical problem, with N binary decision variables at the
top level and N continuous variables in the subproblem (ie. only N continuous
variables are active during each call to the subproblem optimizer, since the other
N continuous variables are constrained by the equality constraints). Even without
offline solution of the subproblem, this could result in a faster solution (although
there is no guarantee of that, as discussed above), and it should avoid some cases
of equivalent solutions by keeping the optimization from searching in inactive parts
of the search space. More significantly, if the subproblem (in either or both of its
modes) can be squeezed into few enough conditions dimensions through conditions
parametrization, then it can be solved offline over a conditions grid, which could
allow for a faster online solution to the main problem.

Approximations in problem decomposition

In the generic mathematical description above, the decomposed problem is math-
ematically identical to the original problem. As such, problem decomposition does
not necessarily imply approximation. However, the same approach can be used to
split a problem into components when those components are nearly but not entirely
independent, ie. if the effects on the objective function f of the components uβi ,
i ∈ 1...N , are not independent, but one nonetheless simplifies the problem from
Equation 2 to Equation 4. The detailed case study of the UC Merced chilled water
system in Chapter 7 involves an approximation like this in its decomposition. Various
other control problems in buildings could have similar approximated decompositions.

3.5 Solution methods for the conditions grid

Once a conditions grid has been defined, optimizations must be carried out for all of
the points in that grid. In all of the case studies herein, GenOpt has been used for
the optimizations, primarily with the GPS-Hookes-Jeeves algorithm. But different
optimization algorithms or platforms could easily be used instead, while still fitting
within the same conceptual framework.
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The optimizations for each grid point can be solved independently, and thus the
computation can be massively parallel. The Amazon Elastic Compute Cloud (EC2)
has been used extensively in the case studies, with numerous virtual machines solving
different parts of the conditions grid.

The other noteworthy aspect of solving over the conditions grid is that it can be
done iteratively - one can begin by solving over a relatively coarse grid and potentially
with fewer dimensions (by holding some of the dimensions constant), view the results,
debug the model and optimizer if necessary, refine the grid if necessary (potentially
focusing grid precision in particular areas rather than always using a uniform spacing,
although this has not been studied in the case studies and analyses herein), and re-run
the optimizations if changes were made or just continue solving over the remaining
grid points if no changes were made, repeating this process as desired until the final
grid precision is reached. The overall approach thus provides many opportunities for
debugging the model and the optimization configuration as the grid solution process
unfolds.

3.6 Lookup table visualization

Although the main impetus for exploring this approach was the potential benefits of
faster annual simulations and easier physical implementations, the ability to explore
and better understand the controller’s behavior through lookup table visualization is
perhaps even more beneficial. It facilitates debugging, and it can lead to insights into
the nature of the problem under consideration, which could lead to better system
design and/or to the development of better simplified controls for the system.

The challenge in visualizing the solutions grid lies in its being multi-dimensional,
and the fact that it is difficult to show more than 3 dimensions in a flat graphic.
However, by holding all but two of the conditions dimensions constant and selecting
just one output variable at a time (since each point in the conditions grid has a
solution consisting of a vector of control variable values and the objective function
value), one can view a particular slice through the lookup table as a 2-dimensional
graphic.

As an example, Figure 7 shows some conditions grid results from abstract case
study #2 (Chapter 5). The lookup table in this case is 6-dimensional. For the graphs
shown in Figure 7, 4 of the 6 conditions dimensions are held constant, while the other
two are shown varying over their range. Figures 7a and 7b show the same slice of the
lookup table in two different ways. Sometimes one of these views is more intuitive
than the other.
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Figure 7: An example lookup table slice shown in two different ways
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In the lines plot of Figure 7a, one of the conditions dimensions (daily max ambient
temp) is on the horizontal axis, and the output variable (average PPD, an objective
function output in this example) is on the vertical axis. The different lines correspond
to different values of the second conditions variable (daily range of amb. temp), with
the darker lines showing smaller values of that second conditions variable.

In the surface plot of Figure 7b, the two conditions dimensions are along the
vertical and horizontal axes, and the output variable value is represented by the
tonal gradient, again with darker tones representing lower values.

More dimensions can be shown by repeating these slice graphs for different values
of the dimensions that are being held constant for each particular slice graph. This
approach is used extensively in displaying the grid results in the case studies that
follow.

Two-dimensional scatter plots of all the points in the grid can also provide useful
information, particularly in showing if there are strong patterns in how two variables
relate. For example, the scatter plot in Figure 8 shows that for the chilled water
system under consideration (this graph is taken from the case study in Chapter
7), the optimal start time is limited by the charge length such that longer charge
lengths mean earlier optimal start times, but the optimum start time varies within
the constraints imposed by the charge length, in response to the other conditions
values (which includes both the initial tank temperature shown as different colors in
the graph, and the minimum and maximum overnight wet bulb temperatures).

28



Figure 8: Example lookup table scatter plot
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3.7 Simulated implementation

To test the lookup table controller and to analyze its performance over a typical
year or over some historical period of disturbance data, one may simulate it in much
the same way that one would simulate any other controller. The simulation is done
with a model that may either be exactly the same as the model used in the offline
optimizations (simulating the theoretical case of zero mismatch between the model
within the controller and the behavior of the real system), or it may be a modified
version of that model or a more detailed model. Within the simulation model, there
must be a call at each controller timestep to a method that interpolates over the
lookup table to calculate the control variable values given the current conditions
in the simulation (including the current predictions, which may either be perfectly
matched to the upcoming simulation conditions, for the theoretical case of perfect
predictions, or a modification thereof).

In some cases, with some building simulation tools, the call to the lookup table
interpolation can happen directly within that simulation tool: for example, if the
lookup table is just two dimensions and the tool being used is Modelica, then one can
simply use the CombiTable2D object in the standard Modelica library to perform the
interpolation. However, a more generic option is to use the Building Control Virtual
Test Bed (BCVTB, (Wetter and Haves, 2008)) to couple the simulation model to
an external process that performs the interpolation and sends the control variable
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values back to the simulation. A diagram of the basic BCVTB configuration used to
perform this function in the case studies herein is shown in Figure 9.

Figure 9: Simulated implementation with BCVTB

In each of the case studies that follow, the annual performance of the lookup
controller will be compared with a heuristic rules-based controller (as illustrated in
Figure 2a), and in some of the cases it will also be compared with an online MPC
controller (Figure 2b). These are also simulated through the BCVTB, swapping
out the lookup controller for a rules-based controller (generally also programmed
in java in these case studies) or for a direct call to the online MPC using similar
SimCon-GenOpt configurations as used for the lookup table creation.

3.8 Physical implementation

Implementation in a real system is just a matter of feeding initial state values and
current and predicted disturbance values to a component that interpolates over the
lookup table and returns the control values to be used. Aside from technical chal-
lenges associated with linking to closed-source proprietary control systems in build-
ings, setting up an automated procedure for this is generally simple, and can use
the same interpolation component used in the simulated implementation. Weather
predictions are usually available on the internet, for example through the National
Digital Forecast Database (NDFD), which can be accessed through a Simple Object
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Access Protocol (SOAP) programming interface. One notable complexity, however,
in moving from simulated implementation to physical implementation is the treat-
ment of state variables - in simulation these can usually be treated as known values,
but in physical implementation they must often be derived from measured values.

As an alternative to a direct automated connection between the building control
system and the lookup table controller, for use in testing or to simplify the imple-
mentation in some cases, a human interface for the lookup table controller can be
used, like the one shown in Figure 10, which has been developed for the chilled water
system at UC Merced, as discussed in Chapter 7. The user inputs the initial state
values. Weather predictions are automatically downloaded from the NDFD and can
be checked by the user. The computed control setpoints are then provided to the
user, who can check them for reasonableness before manually implementing them in
the real system.

Figure 10: Example human-in-the-loop interface for lookup table controller

3.9 Open-source software

Open-source software for online MPC with standard building simulation tools was
developed in previous research (Coffey et al., 2010a), using GenOpt (Wetter, 2009a)
as the optimizer, which allows for the use of any text-based building simulation tool
(e.g. DOE-2, EnergyPlus, TRNSYS, Modelica). This software has been extended
to be used for computing control lookup tables. The extended software has been
developed and tested through the case studies described in the chapters that follow.
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The software is written in java, and the source code is freely available for download
(Coffey, 2011). The software’s current functionality includes:

• The option of running in either online MPC mode or in lookup table calculation
mode, so it can still be used for online MPC, including cases with decomposed
problems that involve a higher-level problem that must be solved online and
lower-level problems that can be solved offline as lookup tables

• Core methods to set up a sequence of optimization problems for a user-defined
conditions grid, solve them using GenOpt, and record the results to a lookup
table file

• Multi-variable interpolation for lookup tables stored in a text file format

• An extensible library of algorithms to convert conditions inputs to and from
parametrized forms

Peripheral components are also included in the open source code, including sam-
ple BCVTB files for running annual simulations with the controller, java methods for
collecting weather predictions from the National Digital Forecast Database, sample
java-based interfaces for the controller, a visualization tool for the lookup tables (cur-
rently in Excel with VBA), and two conditions parametrization tools (also currently
in Excel with VBA).

3.10 Case studies

Five case studies are presented in the following chapters. The first three are abstract
studies designed to demonstrate and test particular aspects of the approach. The
last two are more detailed studies of more realistic systems.

Abstract case study #1 (Chapter 4) demonstrates the general approach and is
used to analyze the relationship between grid spacing and controller performance.
Abstract case study #2 (Chapter 5) demonstrates the use of conditions parametriza-
tion and analyzes its impacts on controller performance. Abstract case study #3
(Chapter 6) demonstrates the use of problem decomposition. All of the case studies
show the methods of lookup table visualization and simulated implementation, and
show the range of the applicability (and degrees of suitability) of the approach both
in terms of problem types and simulation tools. They also each produce various
lessons for potential users and for further developments of the approach.
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4 Abstract Case Study #1:

Active Facade, Grid Spacing

4.1 Case study: Solar shading and natural ventilation

This simplified case study illustrates the basic methods for making a lookup table
controller. Because the problem is small, no problem decomposition or conditions
parametrization is required. The model is simple enough to have all of the equations
written out herein, so that it could be easily replicated in a different modeling tool
if desired, and so that the calculation results can be more easily traced back to the
model equations to verify that the control responses are reasonable.

4.1.1 Case description

Consider a single south-facing zone with automated external shading and automated
natural ventilation, as illustrated in Figure 11. A supervisory controller must deter-
mine hourly setpoints for the shading percentage (defined as the percentage decrease
in solar gains, not necessarily a linear function of the shade angle) and the natural
ventilation percentage (defined as the number of air changes per hour (ACH) relative
to its minimum and maximum possible values) to minimize the combined heating,
cooling and lighting energy consumption.

Figure 11: Solar shading and natural ventilation case study illustration

automated
shading

automated 
natural ventilation

The control is simulated over a typical meteorological year in San Francisco, the
annual savings are compared against a simple heuristic control strategy, and selected
weeks are also compared against a full online MPC implementation. To keep the
problem simple, the zone is considered as massless, glare is not considered in the
shading control, a highly simplified approach to the daylighting calculation is used,
the dimmable lights are controlled perfectly to maintain a pre-specified lighting level
at a point in the space, the daylighting and solar gains vary in proportion when the
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shading percentage varies, and the variable capacity for natural ventilation under
different wind and thermal conditions is ignored.

4.1.2 Model description

A one-zone thermal model is used for this example. As shown in Figure 12, the model
inputs are of two types: disturbances (Tamb(C), Q̇solarDirect(W/m

2
window), Q̇solarDiffuse

(W/m2
window), Q̇peopleAndP lugLoads(W/m

2
floor)); and control inputs (ushading, unatV ent).

The model consists of Equations 8 - 19, with the parameter values in Table 1.

Figure 12: Massless zone model

disturbances
(Tamb, directSolar, 
diffuseSolar, peopleAndPlugs)

control inputs
(shading %, natural vent %)

outputs
(heating load, cooling load,
lighting load, total load)

massless
zone

model

Table 1: Model parameters

Tzone 22 C zone setpoint temperature
Uwall 0.25 W/m2K wall U-value

Uwindow 3 W/m2K window U-value
Afloor 10 m2 floor area
hceiling 3 m ceiling height
Awall 6 m2 wall area (excluding window)

Awindow 3 m2 window area
infilmin 0.25 ACH minimum infiltration + ventilation rate
infilmax 5.0 ACH maximum infiltration + ventilation rate
SHGC 0.5 − window solar heat gain coefficient
βdirect 1 lux/W desktop illuminance per unit of direct solar gain

βdiffuse 5 lux/W desktop illuminance per unit of diffuse solar gain
αlightLevelSetpoint 500 lux desktop illuminance setpoint

Q̇lightGainMax 7 W/m2 heat gain from lights at full power
µheating 0.75 − heating system efficiency
µheating 3.0 − cooling system COP
µheating 5 lux/W desktop lighting efficiency
cp,air 1012 J/kgK specific heat of air
ρair 1.2 kg/m3 density of air
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Q̇conduction =(Tamb − Tzone) · (UwallAwall + UwindowAwindow) (8)

Q̇infil =(Tamb − Tzone) · (infilmin + unatV ent · (infilmax − infilmin))

· (1/3600) · Afloor · hceiling · ρair · cp,air (9)

Q̇solarGain =(Q̇direct + Q̇diffuse) · Awindow · SHGC · (1− ushading) (10)

αdaylightLevel =(βdirect · Q̇direct + βdiffuse · Q̇diffuse) · (1− ushading) (11)

αartificialLightLevel = max(αlightLevelSetpoint − αdaylightLevel, 0) (12)

Q̇internal =((αartificialLightLevel/αlightLevelSetpoint) · Q̇lightGainMax

+ Q̇peopleAndP lugLoads) · Afloor (13)

Q̇thermalLoad =Q̇conduction + Q̇infil + Q̇solarGain + Q̇internal (14)

Q̇heatingEnergyCons =(1/µheating) ·min(Q̇thermalLoad, 0) · (−1) (15)

Q̇coolingEnergyCons =(1/µcooling) ·max(Q̇thermalLoad, 0) (16)

Q̇lightingEnergyCons =(1/µlighting) · αartificialLightLevel (17)

PmultSolPenalty =M ·max(αdaylightLevel − αlightLevelSetpoint, 0) · unatV ent (18)

Q̇totalEnergyCons =Q̇heatingEnergyCons + Q̇coolingEnergyCons + Q̇lightingEnergyCons

+ PmultSolPenalty (19)

The penalty function PmultSolPenalty in Equation 18 was added to the model after
learning from initial test iterations, as discussed below. It is used to avoid noise
caused by the existence of multiple optimal control solutions in some parts of the
conditions space. When computing the lookup table and within the online MPC
model, M is set to an arbitrarily large number. When the model is being used as
the simulation test model in annual simulations, M is set to zero.

A Modelica model with these equations was created in Dymola. The model reads
a disturbance input text file and a controls input text file, and writes Q̇totalEnergyCons

to an objective function output text file.
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4.1.3 Optimization configuration

The multi-dimensional grid used for the disturbances was as shown in Table 2. This
grid configuration results in 2880 sets of disturbances for which optimal control was
to be determined. The Hookes-Jeeves algorithm in GenOpt was used, with 5 step size
reductions, and non-parallelized so running on just one processor. The sequential
optimizations required approximately 84.5 hours (3.5 days) on a single Windows
virtual machine.

Table 2: Disturbances grid

min max step size
ambient temp (C) 0 30 2

direct solar (W/m2
window) 0 1000 200

diffuse solar (W/m2
window) 0 1000 200

gains from people and plugs (W/m2
floor) 2 18 4

4.1.4 Lookup tables results

Figure 13 shows the optimal shading and natural ventilation levels as a function
of the ambient temperature, direct and diffuse solar irradiation, and internal heat
gains. In each of the graphs, the control signal is on the vertical axis and the ambient
temperature along the horizontal axis, and the different lines correspond to different
internal load levels (the higher the internal load level, the darker the line). For each
individual graph, the other two conditions dimensions (direct solar and diffuse solar)
are fixed at constant values. The graphs are repeated with different values of these
two conditions to show their impacts on the control responses.

Figure 14 highlights the response of the optimal shading control to different values
for direct and diffuse solar. In these graphs, both the vertical and horizontal axes are
used for conditions (direct solar and diffuse solar), with the control signal (shading
level) shown by the gradient from black (no shading) to white (fully shaded).
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Figure 13: Optimal shading and natural ventilation levels
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Figure 14: Optimal shading levels versus direct and diffuse solar gain (white = fully
shaded, black = no shading)
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The results make intuitive sense. The natural ventilation level generally increases
from 0% to 100% as ambient temperature goes from very cold up to the zone tem-
perature setpoint (22oC), and then drops back down to 0%. The solar shading level
increases with greater solar gains, except when the ambient temperature and internal
loads are low enough to warrant using the solar gains to heat the zone. When the
ambient temperature is slightly lower than the zone setpoint, the solar shading only
approaches zero as the solar gains approach zero and the light can be used for day-
lighting. However, when the ambient temperature is greater than the zone setpoint,
the shading control blocks the sun completely when the direct solar is high and the
diffuse solar is low (cooling these solar gains is more costly than using the artificial
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lights), but with a more favorable direct-diffuse split the shading control allows just
enough daylighting in to eliminate the artificial lighting requirement.

4.1.5 Annual simulations

To test the lookup table control, an annual simulation was run using TMY data for
San Francisco. The TRNSYS weather reader was used to calculate the solar gains on
the window (assuming south-facing glazing) given the time of day, day of year and
direct and diffuse data in the TMY file. Figure 15 shows the hourly disturbances
values over the year. A weekly schedule for internal loads was created for the annual
simulation, as shown in Figure 16. The annual simulations were carried out using a
copy of the Modelica model as the ‘real’ system, connected to a controller through
the BCVTB. A full annual simulation with hourly calls to the lookup table controller
requires about an hour of computation time.

Figure 15: Weather disturbances used in the annual simulation
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Figure 16: Weekly schedule for waste heat from people and plugs
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For comparison with the lookup table controller, a base case controller was also
simulated, with the following control rules (derived as heuristic simplification of the
trends in the optimal control shown in Figure 13): if Tamb ≤ 12C then ushading = 0%
and unatV ent = 0%; if 12C < Tamb ≤ 22C then ushading = 75% · (Tamb − 12C)/10C
and unatV ent = 100% · (Tamb − 12C)/10C; otherwise ushading = 75% and unatV ent =
0%. This base case controller is not intended to be the best controller that could
be devised without a model-based approach (for example, a much better heuristic
controller could make use of the idea that when the zone is in heating mode the blinds
should always be open and when the zone is in cooling mode the blinds should only
be open enough to meet the daylighting setpoint), but rather it is chosen for its
simplicity and for its ease of comparison with the lookup controller.

Also for comparison, three two-week periods were simulated with full online MPC
(using the same optimization configuration used in the lookup table creation, but
with the actual disturbance values for each hour of the simulation, connected again
through BCVTB): March 1-14, June 9-23 and December 17-31. A full-year online
MPC simulation was not attempted because of the computation time requirements -
each of the two week periods required 6-8 hours of run time, so a full year simulation
would require roughly 150 to 200 hours (6-8 days). The three simulation periods
were chosen to be representative, as they capture summer solstice, winter solstice
and a shoulder season.

Figure 17 shows the control decisions over the year. As expected, the shading
percentage and natural ventilation percentage are both higher in the later summer
and early autumn, when the ambient temperatures and solar gains are both high.
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But at this resolution it is difficult to see the differences between the base case
controller and the lookup table controller. Figure 18 shows just the two-week period
of March 1-14, for which a full online MPC comparison was also run. The lookup
table control responses are very similar to the online MPC responses in all but a few
times during this period of the simulation. For this period, the lookup table control
(and the online MPC control) are generally calling for both more shading and more
natural ventilation than used by the base case control. This is likely because there
are relatively high solar gains during this period, and the base control considers only
ambient temperature in its decision while the optimization-based lookup table also
considers the solar gains.

Figure 17: Control decisions, lookup table control versus base case, annual
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Figure 18: Control decisions, March 1-14
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The scatter plots in Figure 19 compare the controllers’ behaviours perhaps more
clearly, with the spread in the lookup controller points being caused by its response
to different solar conditions and different internal loads. Also note in Figure 19 the
drop in natural ventilation percentage in the lookup case between 20oC and 22oC.
However, given the model equations, we know that the optimal control should be
at 100% natural ventilation until it drops to 0% at exactly the the zone setpoint
temperature (22oC). The reason that it does not behave this way is because it
is interpolating linearly between the grid points at 20oC and 22oC. This is an
illustration of one of the performance penalties in the lookup table approach.

Figure 19: Control decisions versus ambient temperature
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Figure 20 shows when and how the lookup table is outperforming the base case:
primarily by using less cooling in the winter (afternoons) and less heating in the
summer (start and end of work day). In the two weeks shown in Figure 21, for
example, the lookup case is using much less cooling energy than the base case. The
comparison with the online MPC suggests that the lookup table control could be
saving more lighting energy on some days.
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Figure 20: Hourly energy consumption, lookup table control vs base case, annual
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Figure 21: Energy consumption outputs, March 1-14
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Figure 22 compares energy use of the base case to the lookup control over the
year. The annual total energy consumption (heating + cooling + lighting) during
occupied hours (8am-6pm) is 54.1 kWh/m2 in the base case and 33.4 kWh/m2 in the
lookup table control case, an annual savings of 38.2%. Figure 23 shows the hourly
energy savings versus the ambient temperature and direct solar gains. The lookup
controller is often significantly outperforming the base case controller during periods
when the ambient temperature is within economizer range and also when the solar
loads are high. It does less well at low solar loads and when the temperature is just
barely below the zone setpoint.

Figure 22: Total energy consumption outputs, lookup table control versus base case
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Figure 23: Lookup control energy savings over base case
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The three 2-week periods of simulation with the online MPC provides a compari-
son from another perspective, showing where the lookup controller is not performing
as well an ideal controller. (In this case, the performance losses are entirely because
of interpolation inaccuracies between grid points; in the remainder of the case stud-
ies the approximations from conditions parametrization or problem decomposition
will add to the loss in performance.) Figure 25 shows the total energy consumption
of the base case, lookup controller and online MPC for the three periods. Table
3 summarizes the results. With the online MPC demarcating the upper bound of
savings potential, over the six test weeks the lookup controller with the configuration
outlined above was able to capture 87.1% of the available savings over the base case
control. Figure 24 shows how the lookup table controller is performing relative to
the online MPC at different ambient temperature and direct solar gains conditions -
most of the inaccuracies occur when the direct solar gain is between the grid points
of 0 and 200 W/m2.

Table 3: Energy savings over base case for full MPC test periods

lookup controller MPC controller
March 1-14 64.1% 72.2%

June 9-23 18.1% 26.6%
December 17-31 62.4% 68.2%

Total for 6 weeks 49.6% 57.0%

Figure 24: Lookup control energy minus online MPC energy
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Figure 25: Total energy consumption outputs
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4.2 Analysis: Effects of grid spacing on control performance

To test the effects of grid spacing on control performance, this simple case study
was repeated with different granularities of grid for the direct and diffuse solar gains
conditions. This cannot provide a definitive relationship between grid spacing and
performance in general, since the relationship is case dependent. However, the anal-
ysis does give a sense of the effects, and points to possible areas for future research
and development.

4.2.1 Controller performance relative to grid spacing

The three different conditions grids considered are shown in Table 4. Note that the
diffuse and direct solar were decreased to a maximum of 600 W/m2 in these grids
(except for the case with solar spacing of 400, which required a max of 800 W/m2

because of its coarser spacing), because the annual values for this site never exceeded
these values. Lookup tables were calculated and annual simulations performed for
each of them in the same way as shown above.

Table 4: Disturbances grids considered

min max step size
test 1 test 2 test 3

ambient temp (C) 0 30 2 2 2
direct solar (W/m2

window) 0 600 or 800 400 200 100
diffuse solar (W/m2

window) 0 600 or 800 400 200 100
gains from people and plugs (W/m2

floor) 2 18 4 4 4
grid size (# points) 1152 2048 6272

processor-hours required 35 62 189

Figure 26 shows the hourly performance of each of the resulting lookup tables
versus the full online MPC for the 6 weeks of available online MPC results. Note that
the difference between the lookup control performance and the full MPC performance
decreases with smaller grid spacing, and that the most notable decrease is when the
solar gains are low. A graph of the energy savings versus grid spacing for these
6 weeks is shown in Figure 27, where the blue line shows the energy savings from
online MPC for comparison. The percentage savings over the baseline are: test 1
(400 spacing) - 47.3% (capturing 83.0% of available savings); test 2 (200 spacing)
- 49.6% (capturing 87.1% of available savings); and test 3 (100 spacing) - 53.5%
(capturing 93.8% of available savings).
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Figure 26: Lookup control energy minus online MPC energy
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Figure 27: Energy savings vs direct and diffuse grid spacing
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Note that as the grid spacing for direct and diffuse approaches zero, the energy
savings should approach a savings level that is less than the 57% upper limit defined
by the online MPC, because the grid spacing for ambient temperature and internal
loads is being held at a non-zero constant. The three points shown do not suggest
as simple of a relationship between grid spacing and performance as may have been
hoped. In general, the relationship must certainly be monotonic and asymptotic to
online MPC, but beyond that it is case dependent and difficult to characterize.

4.3 Discussion

This case study illustrates the essential methods of lookup table creation and use. A
lookup table of optimal control solutions for a grid of conditions was created. This
was then used with linear interpolation between grid points to act as a controller in
an annual simulation. It was found to perform much better than a simple heuristic
base case controller but not quite as well as an online MPC controller (for the six
weeks of comparison, the lookup table control captured 87% of the savings that were
captured by the MPC controller).

This case study also provides an example of the benefits of being able to visualize
the control response over the conditions grid, in that it provides the user with an
opportunity to test, debug and understand the controller’s behavior.
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Because this example is intended to illustrate the basic process of lookup table
creation and use, and to illustrate ways of viewing and analyzing the results, it has
been kept very simple. There was no prediction horizon in this example, only four
disturbance variables, and no initial states or terminal constraints, so none of the
techniques for conditions parametrization are required. Some practical problems are
like this (e.g. central plant cogeneration dispatch without thermal storage or monthly
demand charges but with fuel switching or similar complexities), but most problems
of interest require approximations like those used in the next case study.

4.3.1 Process notes

As noted in the model description, a penalty function was added to avoid noise in
the solution grid caused by the existence of multiple optimal solutions in parts of
the conditions space (i.e. multiple control responses produce an objective function
value of zero). The noise did not have a significant effect on controller performance,
but it made the visualizations of the lookup table hard to interpret. The noise was
encountered in an earlier iteration of this case study - Figure 28 shows some slices
through this earlier lookup table. Further exploration of the grid led to the insight
that parts of the conditions space had multiple solutions. Figure 29 shows that the
objective function output is roughly zero when there is noise in Figure 28. The
physical explanation of this is as follows: if the outdoor air temperature is less than
the zone temperature and the thermal loads in the zone are balanced such that the
the heating and cooling requirements are at zero, then a decrease in the shading
percentage (increasing solar gains) alongside an increase in the natural ventilation
percentage (increasing convective loss) of the appropriate ratio can keep the heating
and cooling loads at zero. So to avoid the noise, a penalty function was added that
only has an impact on the optimal value when multiple solutions exist, and which
forces the optimizer to select the equivalent solution with the highest shading value.

4.3.2 For future consideration

As shown in Figure 26, most of the performance improvements with the smaller
grid size were because of the addition of a point at 100 W/m2. The other added
points had lesser impacts on the performance. This raises the question whether the
performance to computation-time ratio might be improved through the use of an
adaptive grid or through some other variety of sampling method. This is discussed
further in other case studies and in the general discussion in Chapter 9.
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Figure 28: An earlier iteration: optimal shading and natural ventilation levels

direct solar = 200 W/m2, diffuse solar = 200 W/m2
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Figure 29: An earlier iteration: optimal total energy

diffuse solar = 400 W/m2, internal gains = 1.0 W/m2
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5 Abstract Case Study #2:

Slab Pre-Cooling, Conditions Parametrization

5.1 Case study

This case study illustrates the use of EnergyPlus within this procedure, as well as
the use of conditions parametrization, both for disturbance predictions and for state
initialization in the simulation tool.

5.1.1 Case description

The controller must determine the start time and charging length for overnight
charging of a massive chilled slab with a cooling tower only, to minimize the av-
erage percentage people dissatisfied (PPD) during the following day with a floating
slab and zone temperature. A 48-hour prediction horizon is used for the ambient
temperature, and the control time-step is 24 hours long. The EnergyPlus example
file RadLoTempHydrCoolTower.idf (from the example files folder in the EnergyPlus
standard release) is used for this case study, along with the EnergyPlus TMY weather
file for San Francisco.

Figure 30: Chilled slab case study illustration

cooling
tower

5.1.2 Model description

As per the description at the top of the RadLoTempHydrCoolTower.idf example file:
The building is one story tall and has three zones, the total floor area is 130.1 m2 (1403 ft2), and the layout as

shown in Figure 31. “The walls are 1 inch stucco over 4 inch common brick and gypboard. The roof is a built up

roof with 1/2 inch stone over 3/8 inch felt over 1 inch dense insulation supported by 2 inch heavy weight concrete.

The window is single pane 3mm clear. The window to wall ratio is approximately 0.07. The building is oriented due

north.” The internal gains are as follows: West zone - 0W installed lighting, 2929W installed equipment, 3 occupants;

North zone - 879W installed lighting, 2929W installed equipment, 4 occupants; East zone - 1464W installed lighting,
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1464W installed equipment, 3 occupants. “A hydronic low temperature radiant system is used for heating and

cooling. The hot water is provided by purchased heating while ‘chilled’ water is supplied solely by a cooling tower.

No other systems are present to provide conditioning.”

Figure 31: Building layout image from the RadLoTempHydrCoolTower.idf file

Only very minor changes were made to the example model, to keep the case study
simple and replicable. The slab heating system was turned off. The run period was
changed to just four days. The idf was changed to an imf file, with the HVAC
control schedule variables made into functions of the parameters StartTime and
ChargeLength. The weather provided to the model from midnight to 9pm on the first
day of the simulation (the initialization horizon) is always the same, and thereafter
the hourly weather file values are overwritten as a function of the predictions. The
possible charging periods of interest are the overnight period (9pm-7am) between the
first and second day of the simulation, and the overnight period following the second
day. The simulation outputs are simplified to output just the average occupied PPD
for the East zone of the building.

5.1.3 Conditions parametrization: disturbances

Instead of using hourly predictions for the temperature, solar radiation, humidity,
etc, over the prediction horizon (which would require 48 dimensions in the conditions
grid just for the temperature), only the daily maximum dry bulb temperatures and
daily temperature ranges over the prediction horizon are used in the conditions grid
(ie. just four disturbance prediction variables, two for each day in the prediction
horizon). The annual values of these conditions parameters are shown in Figure 32.
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Figure 32: Ambient temperatures - daily maximum and range, SF TMY data
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The EnergyPlus model, however, requires hourly inputs for a lot of weather vari-
ables, so a relationship must be derived to estimate these hourly values over the
prediction horizon given the maximum temperature and daily temperature range.
Figure 33(a) shows the daily temperature profiles from the TMY data, with each
colored line representing one day. Figure 33(b) shows each of the the daily tempera-
ture profiles normalized to [0,1] by their maximum and minimum. The dotted black
line is the hourly average of these daily normalized curves. The solid black line is the
normalization to [0,1] of that dotted black line. The hourly values for this solid black
line are used in the model to estimate the hourly temperatures over the day-ahead
prediction given the predicted maximum and minimum temperatures.

Figure 33: Ambient temperatures parametrization, based on SF TMY data
(a) hourly values (b) normalized hourly values
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The other weather variables are normalized by their own daily minimum and
maximum values in the same way. Their maximum and minimum values are then
checked for correlations with the maximum and minimum dry bulb temperature.
Some of these normalizations and the correlations of the maximums are shown in
Figures 34 through 37. If the variable’s daily maximum or minimum values show
correspondence with the maximum or minimum temperature values (subfigure (c),
with ‘correspondence’ meaning above some nominal R2 value, which could be quite
small and still be useful), then the normalized curves (subfigure (b)) and the correla-
tions (subfigure (c)) are used in the model as described below. If no correspondence
exists, then the average hourly values (subfigure (a)) are used in the model.

Figure 34: Global horizontal solar parametrization, based on SF TMY data
(a) hourly values (b) normalized hourly values
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(c) correlation of maximum daily value with maximum ambient temperature
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When the correlation is used, the process of mapping from the daily maximum
temperature and daily temperature range conditions variables to the hourly values
of the other variable (e.g. direct normal radiation) needed in the simulation is as
follows: (1) given the maximum and minimum temperatures, the line of best fit
equations (shown on the graphs in subfigure (c)) are used to estimate the maximum
and minimum daily values of the variable under consideration; then (2) given these
maximum and minimum values, the normalized curve in subfigure (b) is used to
estimate the hourly values.

Figure 35: Direct normal solar parametrization, based on SF TMY data
(a) hourly values (b) normalized hourly values
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(c) correlation of maximum daily value with maximum ambient temperature
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Of the four variables shown in the graphs (the process was carried out for 10
weather variables in total, covering the most significant epw weather file columns),
the first two shown (global horizontal radiation and direct normal radiation) used the
correlation with ambient temperature, while the last two (diffuse horizontal radiation
and relative humidity) just used the average hourly values (subfigure (a)).

Figure 36: Diffuse horizontal solar parametrization, based on SF TMY data
(a) hourly values (b) normalized hourly values
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(c) correlation of maximum daily value with maximum ambient temperature
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Figure 37: Relative humidity parametrization, based on SF TMY data
(a) hourly values (b) normalized hourly values
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(c) correlation of maximum daily value with maximum ambient temperature
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5.1.4 Conditions parametrization: initial states

As noted in the Methods chapter, many commonly-used building simulation tools do
not allow the user to explicitly initialize state variables. EnergyPlus is one such tool.
It was conceived for annual simulations, where state initialization is not particularly
important. Instead of asking users to specify initial state values, it runs a warmup
period wherein it repeats the first day of the simulation until a periodic steady state
is approximately reached, and then carries on with the actual simulation from there.
For MPC, however, this is problematic, and it is particularly problematic for offline
optimization, as noted earlier.

One possible workaround is illustrated in this case study. The process is to set up
an ‘initialization horizon’ with a few well-selected model or weather parameters and
then determine the mapping between these parameters and the state values. This
mapping is then used to set those parameter values in the simulation to produce the
desired initial state. The approach is difficult to use, and while it is shown to work
reasonably well here for two state variables, it seems that it is very hard to generalize
or scale up beyond a handful of state variables.

In this case, an ‘initialization horizon’ of one day was configured with constant
weather inputs and two simulation parameters that could be modified to affect the
initial values of the two state variables of interest. The simulation parameters being
modified are a pre-charge length (using the same slab cooling mechanism used for the
overnight charging in the rest of the simulation) and a fifteen-minute-long internal
gain scheduled for 8pm (using the EnergyPlus object “OtherEquipment”). The two
state variables that must be initialized are the floor surface temperature and the
zone temperature, both at 9pm on the night before the first charging period to be
optimized. The pre-charge length parameter primarily effects the floor temperature,
but it also has some effect on the zone temperature, as shown in Figure 38. Likewise,
the fifteen minute internal heat gain (called the ‘heat burst’ in the graphs) primarily
effects the zone temperature but also has some effect on the floor temperature (Figure
39). So the mapping between the modifiable parameters and the states of interest
is a complex 2D-2D mapping. In the java implementation of this mapping, the
relationships shown in Figures 38 and 39 where used with an initial guess of one of
the state values and the output of one graph being used as the input to the other,
repeated until the state values converged within a tolerance.
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Figure 38: Floor temperature as a function of pre-charge length and heat burst
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Figure 39: Zone temp minus floor temp, as a function of heat burst and pre-charge
length
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5.1.5 Optimization configuration

The charge length was constrained between 0 and 10 hours, and the start time be-
tween 0 and 10 hours after 9pm. The conditions grid is shown in Table 5. The Hookes-
Jeeves algorithm in GenOpt was used, with 2 step size reductions. The 2880 opti-
mizations required approximately 275 processor-hours (11.5 processor-days). The
computations were carried out on 5 virtual machines on the Amazon Elastic Com-
pute Cloud.

Table 5: Conditions grid for the massive slab cooling case study

min max step size
floor temp at 9pm (C) 20 26 2
zone temp at 9pm (C) 2.0 3.5 0.5

maximum ambient temperature, day 1 (C) 16 32 4
range in ambient temperature over day, day 1 (C) 4 16 4

maximum ambient temperature, day 2 (C) 16 32 8
range in ambient temperature over day, day 2 (C) 4 16 6

5.1.6 Lookup table results

Figure 40 shows the charge length (vertical axis) as a function of the next day’s
maximum ambient temperature (horizontal axis) for different values of the next day’s
temperature range (different greyscale lines, darker is larger) and for different values
of the initial zone and slab temperatures. In general, when the conditions are such
that more pre-cooling is required, then the charge length is longer. The optimal
charge length is found to be zero hours when both the day-ahead predictions of
ambient temperature and the initial zone temperatures are low, ten hours when
predicted ambient temperatures and initial zone temperatures are high, and it varies
roughly linearly between zero and ten over a band of conditions that lies in between
these two groups. The same results are shown on the right in Figure 41, with the
tonal gradient showing the control signal (black when charge length is zero, white
when it is ten hours). On the left of Figure 41 is the optimal start time (black is the
very start of the night, white is the last available charging time), which shows less
coherent of a pattern. The model’s PPD outputs are much less sensitive to the start
time than to the charge length, which could explain some of the variation in those
results. Figure 42 shows the optimal PPD versus the next day temperatures.
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Figure 40: Optimal charge length
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Figure 41: Surface plots of optimal start time and charging length
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Figure 42: Optimal average PPD
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5.1.7 Annual simulations

Annual simulations were run to test the performance of the lookup table control
versus two different base cases. The annual disturbances, derived from the TMY
file for San Francisco, are shown in Figure 43. Figures 44 and 45 show the control
decisions for the lookup controller and the base cases, and Figure 46 shows the
resulting state values over the simulation length. “Basecase1” does not use any day-
ahead prediction and its charge length varies monthly. “Basecase2” was created after
learning from the lookup table control outputs, and it represents a very good base
case. The comfort results are shown in Figures 47 and 48 and summarized in Table
6.

Figure 43: Disturbances, annual
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Figure 44: Control decisions versus next day max ambient temperature
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Figure 45: Control values, summer - top, June only - bottom
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Figure 46: State values, summer - top, June only - bottom
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Figure 47: PPD values, summer
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Figure 48: Control performance versus next day max ambient temperature
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Table 6: Results for the massive slab cooling case study: basecase vs lookup

ave PPD summer
basecase1 11.71
basecase2 11.12

lookup 10.84

Note that the minimum possible PPD is 5.0 (from the equations that define PPD,
based on empirical data). “Basecase2”, which was derived after learning from the
lookup table visualizations, performs much better than the original “Basecase1”, but
the lookup table control performs still better. The Analysis section below compares
this performance with online MPC.

5.2 Analysis: Effects of conditions parametrization on per-
formance

5.2.1 Full online MPC configurations for comparison

Annual simulations were run to test the performance of the lookup table control ver-
sus three different online MPC configurations designed to tease apart performance
losses due to grid spacing, disturbance parametrization, and initial state approxima-
tion. The three online MPC cases are defined as follows: “MPC1” uses the same 6
conditions variables as the lookup controller, thus keeping the disturbance and initial
state parametrizations, but runs online instead of interpolating and so defines how
good the lookup table control could do if the grid spacing was zero; “MPC2” uses
the actual hourly weather predictions rather than the parametrized approximations,
and thus shows the performance gains that could not be captured because of the
use of disturbance parametrizations; and “MPC3” uses a 7-day initialization horizon
with historical weather and control values, and thus allows for an estimate of the
performance loss due to initial state approximation.

5.2.2 Results

The control decisions of the three MPC cases, the lookup controller and the base
case are shown in Figure 49. The resulting state values are shown in Figure 50, and
the objective function outputs are shown in Figure 51. The performance results are
summarized in Table 7.
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Figure 49: Control values with MPC, summer

0

1

2

3

4

5

6

7

8

9

10

91 115 139 163 187 211 235 259 283

day of year

ch
ar

ge
 l

en
gt

h
 (

h
o

u
rs

)

basecase2

MPC 1

MPC 2

MPC 3

lookup

0

1

2

3

4

5

6

7

8

9

10

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361

day of year

st
ar

t 
ti

m
e 

(h
o
u
rs

 a
ft

er
 9

p
m

)

basecase2

MPC 1

MPC 2

MPC 3

lookup

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

day of month (June)

ch
ar

ge
 l
en

gt
h
 (

h
o
u
rs

)

basecase2 MPC 1 MPC 2 MPC 3 lookup

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

day of month (June)

st
ar

t 
ti

m
e 

(h
o

u
rs

 a
ft

er
 9

p
m

)

basecase2 MPC 1 MPC 2 MPC 3 lookup

72



Figure 50: State values with MPC, summer
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Figure 51: PPD values with MPC, summer
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Table 7: Results for the massive slab cooling case study: lookup vs MPC

ave PPD summer
basecase1 11.71
basecase2 11.12

lookup 10.84
mpc1 10.33
mpc2 10.26
mpc3 10.24

Defining the performance improvement potential as the difference between “MPC3”
and “basecase1”, the heuristic control rule (“basecase2”) derived from looking at the
lookup table slices was able to capture 40%, and the lookup table control (with its
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relatively coarse grid spacing) was able to capture 59% of the available performance
improvement. With a finer grid, the lookup table control could capture no more
than 94% of the savings (as determined by “MPC1”), with the remaining 6% being
lost through the parametrizations, most of this because of the disturbance approxi-
mations rather than the initial states approximations.

5.3 Discussion

In hindsight, average PPD is perhaps not the most appropriate objective function
metric for use in this case study. The maximum hourly PPD over the day or the
number of hours above a certain threshold would likely be better to use for future
work in this application area. They would be both more representative of what the
desired outcome, and they would likely also show greater differences between the
various cases described above.

This case study demonstrated the use of EnergyPlus with this approach. The
most difficult part of doing so is in dealing with the initial states. In this case a work-
around was devised that had little impact on the controller performance, and which
may be used for similar problems. However, it is unlikely that such work-arounds
can be developed for cases with many more initial states under consideration.

The case study also tested the use of conditions parametrization over a prediction
horizon, and presented a generic method for doing so. In this case, the performance
losses due to the parametrizations were small. The performance impacts are very
much case dependent, so general conclusions are hard to draw from this single case,
but it does suggest that the losses in performance due to conditions parametrization
are not so high to consider the approach as infeasible, and that it should be considered
in further case studies and applications.
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6 Abstract Case Study #3:

Cogeneration Dispatch, Problem Decomposition

6.1 Case study

This case study demonstrates the decomposition of a problem into a main problem
and a subproblem, where the subproblem is tractable for offline optimization over a
conditions grid, and whose solution grid is referenced by an online MPC in solving
the main problem.

6.1.1 Case description

Figure 52 shows the schematic of a generic campus heating, cooling and electricity
plant which provides hot and cold water to meet the heating and cooling demand of
a set of buildings, as well as providing onsite generation or purchasing grid electricity
to meet the electrical demand of the buildings. Real-time decisions of what level at
which to run the onsite generation must be made, as well as the output levels of
the the absorption chiller, electric chiller, heat exchanger (generation waste heat to
the hot water loop) and gas boiler, given the varying demands for electricity, cooling
and heating, the varying price of grid electricity and also considering a charge on the
monthly peak draw from the electric grid. (A monthly demand charge like this is
found in various electric utility regions in North America.)

Figure 52: Fuels to loads diagram of the cogeneration plant considered in this study
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6.1.2 Problem decomposition

The main challenge in this problem is in dealing with the monthly peak demand.
The controller must look ahead over the remainder of the month to determine if it
is worth paying more for generator use than the current grid price in order to save
on the monthly peak demand charge. This could thus require a lot of optimization
variables over the prediction horizon, too many for the problem to be computationally
feasible. However, we know that the optimal solution over the remainder of the month
would see the peaks in grid consumption trimmed off at a flat threshold (Coffey and
Kutrowski, 2006). This structure can be used to reformulate the problem into a
high-level problem and a repeating sub-problem. The high-level problem determines
the grid threshold for the month. The subproblem determines real-time setpoints
for the cogeneration plant based on current conditions and the given threshold. The
subproblem is of low enough dimensionality to be solved offline, and the meta problem
is an online optimization with just one optimization variable, and references the
subproblem solution in its objective function.

6.1.3 Subproblem model description

The subproblem model inputs and outputs are as follows,

• disturbance inputs: Q̇electricity, Q̇cooling, Q̇heating, cunitGrid, Q̇gridThreshold

• control signals: ugenSignal, uabsChillerSignal

• objective function output: cgridConsumption + cgasConsumption + pthreshold

where Q̇electricity is the campus demand for electricity, Q̇cooling is the campus demand
for cooling, Q̇heating is the campus demand for heating, cunitGrid is the price of grid
electricity per kWh, Q̇gridThreshold is the threshold for grid consumption determined
by the meta problem, ugenSignal is the signal to the generator (a value between 0 and 1,
where 0 is off and 1 is full output), uabsChillerSignal is the signal to the absorption chiller
(a value between 0 and 1, corresponding to the fraction of waste heat available that
will get used by the absorption chiller), cgridConsumption is the cost of grid electricity
consumption (not including the demand charge), cgasConsumption is the cost of gas
consumption, and pthreshold is a penalty function that is used if the grid threshold is
exceeded.

A screenshot of the TRNSYS model is shown in Figure 53, and some of the key
model parameters are shown in Table 8.
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Figure 53: TRNSYS model of cogeneration system

Table 8: Key model parameters

generator electrical capacity 350 kW
generator minimum electrical loading 125 kW
generator rated electrical efficiency (default in standard TRNSYS generator model) 0.42

(modified by standard TRNSYS curve for other conditions)
waste heat capture effectiveness 50%
absorption chiller rated COP (default in standard TRNSYS abs. chiller model) 0.53

(modified by standard TRNSYS curve for other conditions)
electric chiller COP (modeled as constant) 3.0
natural gas price $1.50 / therm
controller timestep 1 hr
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6.1.4 Optimization configuration

The conditions grid is shown in Table 9. This grid configuration results in 15125
sets of disturbances for which optimal control was to be determined. The GenOpt
Hookes-Jeeves Multi-Start algorithm was used (to avoid local minima), with 4 step
size reductions and 20 initial points, and non-parallelized so running on just one
processor. The sequential optimizations required approximately 210 hours (8.8 days)
on a single Windows virtual machine.

Table 9: Disturbances grid

min max step size
electricity demand (kW) 100 500 100

heating demand (kW) 0 200 50
cooling demand (kW) 0 100 25

electricity price ($/kW) 0.10 0.20 0.01
electrical grid threshold (kW) 250 500 25

6.1.5 Subproblem lookup table results

Figures 54 through 56 show various slices through the resulting lookup table. In
Figure 54, the optimal generation level is shown in the vertical axis versus the electric
grid cost on the horizontal axis. The different lines correspond to different electric
demand levels for the campus, with the darker lines representing higher demand. In
this graph, both the heating and cooling demands are fixed at zero, so any waste
heat will be unused. The shapes of the lines are instructive: for the most part, when
the electricity price is low, the generator is turned off (since it is cheaper to purchase
electricity than it is to run the generator), and when the electricity price is high the
generator is turned on to a level determined by the campus electric load, the electric
demand threshold, and the maximum and minimum allowable generator operation
level; the electricity price at which this switch from off to on occurs depends on the
price of gas and the efficiency of the generator at the level at which it will be run.
Figure 55 shows an example of how these switch prices are modified by the campus
heating load - when there is a heat sink available, the generator will be run at a lower
electricity price than it otherwise would. Figure 56 shows some of the behaviour of
the cooling components (when the heating load is zero). Note, in particular, the
bottom line of graphs, for a high grid threshold: when the threshold is high and the
electricity price is low, the generator will be turned off and the electric chiller will
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be turned on; under most other conditions, if there is a cooling load, the generator
will run and the absorption chiller will be used to meet the cooling load.

Note that the generator, heat exchanger and absorption chiller are usually op-
erating at one of their constraint boundaries (either off, or at capacity, or at the
electric load level, or to just maintain the grid purchase threshold, etc). The optimal
control values are usually at these constraint boundaries because the efficiency curves
in the system model have a less significant impact on the optimal values than do the
constraints. This is discussed further in the Discussion section below.

Figure 54: Optimal generator level vs elec price and elec demand
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Figure 55: Optimal generator heating level vs elec price and heating demand
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Figure 56: Optimal generator and chiller levels vs elec price and cooling demand
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6.1.6 Annual simulations

To test the controller, annual simulations were run using randomized electrical, heat-
ing and cooling loads for a hypothetical campus, as shown in Figure 57, using the
Chicago TMY weather file to provide variation. The electrical loads are uniformly
random between (100-200kW) overnight and between (300-500kW) during the day.
The heating and cooling loads are probability functions of the outdoor temperature.
The electricity price is uniformly random between $0.07-0.14/kWh when the outdoor
temperature is low, and varies as a probabilistic function of the cooling load in the
summer.

Figure 57: Loads and prices for annual simulation
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Optimal monthly thresholds were found by running a GenOpt optimization for
each month, minimizing the total monthly cost (gas consumption cost + electricity
consumption cost + peak demand charge cost) as a function of the threshold, using
the subproblem lookup tables to determine the control configuration for each hour
given the threshold. The optimal monthly thresholds shown in Figure 58 are for a
monthly peak demand charge of $1.20/kW. Winter and summer have lower optimal
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thresholds: in winter this is because there is usually enough demand for waste heat,
which effectively decreases cost of using the generator to shave peaks; and in summer
the electricity price is higher, so the generator with absorption cooling can be used
cheaply to offset peaks. The spring and autumn have higher thresholds because they
lack these benefits.

Figure 58: Optimal monthly thresholds
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These monthly thresholds were then used with the lookup table controller for a
full-year simulation. For comparison, a case without any cogeneration system was
run, as well as a cogeneration system with a base case control strategy. The base
case control simply runs the generator at capacity (or at the electric load level if this
is less than the capacity, or turned off if the electric load is less than the minimum
operating level of the generator), with the waste heat being used first for the heating
load and then if any left it is used for the absorption chiller. Figure 59 shows the
hourly grid purchase levels for the three cases over the year. The lookup control
is using the generator extensively during the summer months, slightly less during
the winter, and not very much in the spring and fall. Note the flat line demand
trimming that varies monthly (it is particularly apparent in the graph during the
winter months).
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Figure 59: Annual hourly electric grid purchases
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Table 10 compares the energy costs for the three cases. The cogeneration instal-
lation would pay back about 5% faster with the lookup table control than it would
with the base case control strategy.

Table 10: Annual energy costs comparisons

no cogen base case lookup
total electricity and gas consumption cost $309,527 $279,201 $275,422

monthly demand costs jan $600 $181 $360
feb $599 $179 $360
mar $600 $180 $472
apr $624 $180 $473
may $632 $180 $474
jun $628 $179 $300
jul $635 $179 $300
aug $629 $180 $300
sep $625 $179 $300
oct $621 $179 $474
nov $602 $176 $471
dec $600 $180 $300

total annual demand costs $6,794 $2,151 $4,225
annual total cost $316,322 $281,352 $279,647

annual savings $34,970 $36,675
annual savings % 11.06% 11.59%

% faster payback on cogen investment 4.88%
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6.2 Discussion

This case study has demonstrated the use of problem decomposition and the use of
TRNSYS within this approach. The problem and the results are relatively straight-
forward. The biggest outstanding question is how best to deal with the fact that
the optimal control responses tend to be on constraint boundaries and show many
discontinuities.

6.2.1 Irregular grid and/or heuristics to deal with control switch points

Sampling over a regular grid is not particularly well suited to cases like this one
with discontinuities in the optimal control values. Sampling techniques that provide
higher density of points near changes of values are likely to provide better results.

Another potential approach to this problem is to combine the conditions grid
optimization with analytical (or heuristic) determination of some particular switch
points. For example, in this case when there is zero demand for cooling or heating and
the electrical load is greater than the generator capacity and the demand threshold is
high, one may calculate the switch point price at which the generator should switch
from off to on as follows, where cgeneration is the cost of generation per kWh, cnatGas
is the price of natural gas, and µgenerator is the generator rated electrical efficiency.

cgeneration =cnatGas/µgenerator (20)

=($1.50/therm)/0.41

=$0.1248/kWh

Similar calculations that incorporate the money saved by offsetting heating or
cooling can also be used to calculate other switch point prices for other loading
conditions. The model-based optimization over the conditions grid could thus be used
to map out the optimal control across the conditions space, and analytical solutions
could be used to refine the control at certain points. (Similarly, in abstract case study
#1, an analytical solution could be used to improve the lookup table controller by
keeping the natural ventilation level at 100% right until the ambient temperature
equals the zone temperature, then dropping to 0% for any warmer temperature, as
discussed in Chapter 4). Allowing for such heuristic interventions into the control
configuration is a practicality worth considering in any further development of this
approach.
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6.2.2 Computational infeasibility of a full online solution

As noted in the problem description, running a full online MPC for any given hour,
without the problem decomposition, would be computationally infeasible. The opti-
mization problem faced at the first hour of the month would be for 1440 optimization
variables (30 days · 24 hrs/day · 2 optimization variables / hr). As such, a comparison
with full online MPC could not be carried out for this case.
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7 Detailed Case Study #1:

Extension of the UC Merced chilled water sys-

tem MPC study

7.1 Case description

7.1.1 Background

The campus chilled water system at UC Merced includes a two million gallon storage
tank that is charged overnight when electricity is less expensive and the wet bulb
temperature is lower (and thus when the charging COP is higher). A research project
by a group of researchers from Lawrence Berkeley National Laboratory, UC Berkeley,
UC Merced and United Technologies Research Center was carried out in 2009 to
develop and test an online MPC implementation for this system. Two weeks of
experiments were performed, the details and results of which are provided in Ma
et al. (2010), Coffey et al. (2010b), and the final project report (Haves et al., 2011).
The first experiment uncovered a number of bugs that were fixed before the second
experiment, which showed an increased cooling COP of approximately 3% +/- 2%
over their baseline operation.

This MPC implementation was written in Matlab (based on models created and
tested in Modelica) and used the proprietary optimizer Tomlab. A 3-day predic-
tion horizon was used. The online optimization solved each evening required about
20 minutes of computing time on a laptop. The experiments were carried out by
collecting weather predictions and system state data every evening and running the
optimization on the laptop before providing instructions to the operators in person
or by phone or email.

The work presented herein is a follow-up project with the goal of producing a fast-
running approximation to the rigorous MPC implementation developed previously.
This could be used in longer-term physical implementation on campus and in various
annual simulation studies, and could be modified for use on other campuses with
similar systems.

7.1.2 Description of campus chilled water system

The main components of the UC Merced chilled water system are shown in Figure
60. Water cooling is performed by the chillers and cooling towers in the cooling
plant. The chilled water is stored in a stratified thermal energy storage (TES) tank
and distributed to the campus buildings via a secondary loop (on the right in Figure
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60). Tertiary loops (not shown in Figure 60) within each building distribute the
chilled water to fan coils and air handling units. During tank charging, cool water
from the chillers enters the bottom of the tank and warm water from the top of the
tank is returned to the chillers. During tank discharging, cool water from the bottom
of the tank is supplied to the campus, and warm from the campus returns to the
top of the tank. The central plant energy management and control system (EMCS)
provides the supervisory control that coordinates the electric chillers, cooling towers
and pumps used in the overnight charging of the tank.

Figure 60: Chilled water storage system
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7.1.3 Problem definition

The goal of controller development for this case is to minimize the cooling plant
energy consumption, primarily by choosing the optimal times to charge the tank,
and by intelligently controlling other cooling plant setpoints such as the condenser
water temperature setpoint. Equation 21 provides a high-level view of the control
response that must be calculated each night before 10pm.

control signals = controller ( conditions )

[tstart, tstop, Tcws] = controller (Twb,Tamb, Q̇campus, Ta0 , h0) (21)

The control variables are the charging start time (tstart), the charging stop time
(tstop), and the condenser water temperature set-point (Tcws) for the night. The
conditions variables are as follows: the initial temperature in the warm part of the
chilled water storage tank (Ta0), the initial height of the thermocline in the storage
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tank (h0), the predicted overnight ambient wet bulb temperature profile over the
prediction horizon (Twb), the predicted full day ambient dry bulb temperature profile
over the prediction horizon (Tamb), and the predicted full day campus load profile
over the prediction horizon (Q̇campus). A pre-calculation predicts the campus load
profile (Q̇campus) as a function of the predicted ambient temperature, solar position,
cloud cover, and a schedule of internal loads based on the day of week.

The base case controller (based on how the system was operated before the online
MPC experiments) ignores all of these conditions variables except the initial height
of the thermocline (h0) and the ambient wet bulb temperature (Twb ) for just the
upcoming night. The heuristic rules used in the base case are as follows: if h0 > 60%
then do not charge at all that night, otherwise tstart = 9pm and charge until full;
and Tcws varies between 14.5oC and 20oC as a function of the average overnight wet
bulb temperature.

The controller described herein responds to all of the conditions variables, and
performs an optimization with a system model. The system model is based on the
system component models developed and used in the previous research project, as
described below, but the overall model structure is modified by the problem decom-
position described in section 7.2.

7.1.4 System component models

A detailed description of the UC Merced chilled water system, and the component
models and optimization configuration used in the initial study, are available in
the project report (Haves et al., 2011). Detailed descriptions of the campus load
and return temperature models are also included herein as the Appendix. For the
purposes of this case study description, only a high level view of them is required.

The three main blocks in Figure 60 are the cooling plant, the storage tank and
the campus. In this case study, the cooling plant model is a steady-state model
and can be considered as a black box with the inputs and output for any given
timestep as shown in Equation 22. Note that in this case study, the number of
chillers (nchillers) is fixed at 2, the flow rate through the chillers (ṁchillers) is fixed
at its maximum allowable flow rate when charging, and the chilled water supply
temperature (TchwsChillers) is held constant at 4oC.

Q̇plantConsumption = plantModel (Twb, Tcws, TchwrChillers,

TchwsChillers, ṁchillers, nchillers) (22)
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The storage tank is modeled as two well-mixed volumes with a sharp division
between them (the ‘thermocline’) that is at a variable height (thus their individual
volumes can change but their sum is constant). Note that in both the original MPC
implementation and in this approximated one, the thermal losses through the tank
wall are ignored. Because the tank is well insulated and has a low surface to volume
ratio, tank losses are not significant, and this assumption simplifies the problem. The
campus block predicts the cooling load, return temperature and flow rate through
the secondary loop.

7.2 Problem decomposition

The problem is parsed into a subproblem and a main problem, where the subproblem
pertains only to components modeled as steady-state and whose dimensionality can
be made small enough to allow for the production of a lookup table through offline
optimizations. This results in a much simpler online optimization problem (using
the subproblem lookup table in its objective function), that can be quickly solved
with GenOpt. To keep the dimensionality of the lookup table small enough to be
tractable, conditions parametrization is used, as discussed in section 7.3.

The system model contains just three state variables: the tank thermocline height
and the temperatures of the hot and cold nodes in the tank. The rest of the model
is treated as steady-state. (The campus load model is dynamic, but it is external
to the system model, acting as a disturbance model.) The control problem can be
parsed in such a way to decouple the parts of the problem that rely only on the
cooling plant model from the parts that rely on the tank model as well. Consider a
divisions of days and nights over the prediction horizon, with the daytime period for
a given day i defined as 8am to 10pm, and the night period defined as 10pm to 8am
the following day. Note that tank charging can only occur during the night period.
The controller must determine the charge amount Qchargei , the charging start time
tstarti , the condenser water temperature setpoint Tcwsi , and the number of chillers
nchillers for each night in the prediction horizon. The problem decomposition is as
follows:

• Main problem: A higher level optimization problem determines the charge
amounts Qchargei for each night over the horizon, using the solution to the sub-
problem to relate the optimal energy consumption of the plant for an overnight
period i to any possible value of Qchargei .

• Subproblem: For any overnight period i, given the charge amount Qchargei , a
lower level optimization problem (solved offline over a conditions grid) deter-
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mines the optimal value of the start time tstarti and condenser water temper-
ature Tcwsi , and the associated optimal energy consumption of the plant for
that overnight period.

7.2.1 Subproblem definition

Note that the solution of the subproblem for each night is nearly independent of the
solution for the other nights. It is primarily dependent on the given values of charge
amount Qchargei , the predicted overnight Twb values, and the overnight values of the
hot node in the tank Ta. Since the solution of the higher level optimization problem
depends on testing different values for the charge amount Qchargei for each night, the
subproblem may be called many times in the course of solving the whole problem.
The solution of this subproblem requires only the cooling plant portion of the system
model, which is fast running and free of state variables. This makes the subproblem
amenable to offline solution over a conditions grid, resulting in a lookup table that
may be used in place of online optimization.

For one overnight charging period i, with a constant overnight Tcws, the overnight
plant energy consumption is as shown in Equation 23,

[QplantConsumptioni , tstopi , Ta8ami+1
, h8ami+1

] (23)

= plantSimulation (Twbi ,TchwrCampusi , ṁchwrCampusi , Ta10pmi , h10pmi , Qchargei ,

tstarti , Tcwsi)

where TchwrCampusi is the overnight campus return temperatures, ṁchwrCampusi is the
overnight campus flow rates, Ta10pmi and h10pm are the hot node tank temperature and
thermocline height at the start of the night, and Ta8ami and h8am are the tank warm
node temperature and thermocline height at the end of the night. The optimization
problem in Equation 24 defines the subproblem for one charging period.

min
tstarti ,Tcwsi

QplantConsumptioni (24)

with Twbi ,TchwrCampusi , ṁchwrCampusi , Ta10pmi , Qchargei given

This subproblem can be solved offline over a grid of values for Twbi , TchwrCampusi ,
ṁchwrCampusi , Ta10pmi and Qchargei . A number of input approximations are used, as
described below, to keep the grid dimensionality low.
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7.2.2 Main problem definition

With the subproblem solved in lookup table form, the main problem can be simplified
to Equation 25.

min
Qchargei

N∑
i=1

QplantConsumptioni (25)

s.t. [QplantConsumptioni , Ta8ami+1
, h8ami+1

, tstarti , tstopi , Tcwsi ]

= subproblemSolution(Twbi ,TchwrCampusi , ṁchwrCampusi , Ta10pmi , h10pmi , Qchargei)

i = 1...N

[h10pmi , Ta10pmi ] = daytimeSimulation(h8ami , Ta8ami ,TchwrCampusi , ṁchwrCampusi)

i = 1...N

h10pmi ≥ h10pmmin i = 1...N

h10pm1 , Ta10pm1 given

where N is the length of the prediction horizon (in days), and h10pmmin is the min-
imum allowable thermocline height. Note that there are only N optimization vari-
ables (Qcharge) in this problem. The other 2N control variables, Tcwsi and tstarti , are
outputs from the table given the optimal Qcharge values.

The optimization problem is solved using GenOpt. The objective function and
penalty functions for the constraints are coded in java, referencing a pre-calculated
lookup table for the subproblem. Weather predictions are collected over the hori-
zon, and the campus load and return temperature models are used for the daytime
simulation.

7.3 Conditions parametrization

Two significant approximations must be made. The first is a parametrization of
the predicted overnight values of Twb. The original MPC implementation used 1-hr
predictions, which would require 11 dimensions in the subproblem lookup table for
just Twb. This can be decreased by using one of various parametrizations of the
temperature profile. For this case, the two values TwbMin and TwbRange are used as
the basis for approximating the hourly predictions. Annual values of TwbMin and
TwbRange for a typical year (from the EnergyPlus TMY file for Merced) are shown
in Figure 61. Figure 62 shows this same weather data with each night normalized
by its nightly minimum and maximum values: the colored lines are for each night,
the dashed black line is the hourly average of the curves, and the solid black line is
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the normalized version of the dashed black line. This normalized curve is used to
approximate the hourly Twb predictions given the predicted TwbMin and TwbRange.

Figure 61: Overnight Twb minimum and range over a typical year
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Figure 62: Normalized overnight Twb values
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The other necessary approximation relates to the overnight temperatures of the
warm node in the storage tank Ta. To capture this as accurately as the online
MPC does, hourly predictions for the overnight campus return flow ṁchwrCampus

and temperature TchwrCampus would be required, along with the initial temperature
Ta10pm and initial thermocline height h10pm, thus requiring 24 dimensions in the
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lookup table. However, the overnight temperature values are dominated by the initial
temperature Ta10pm, since the overnight campus flow rates are much smaller than the
daytime campus flow rates. So the overnight temperatures may be approximated by
using an initial value Ta10pm and simulating the progression of overnight Ta by using
average hourly values for TchwrCampus and ṁchwrCampus, and by assuming a value for
h10pm. These average values are shown in Figure 63. Note that the campus return
temperatures are lower overnight than during the day, so the warm node of the tank
gets colder as the night progresses. The annual range of Ta10pm values (derived from
measured data) is shown in Figure 64.

Figure 63: Overnight campus return temperatures and flow rates
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Figure 64: Annual 10pm temperatures of the storage tank hot node
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7.4 Subproblem: Optimization configuration

7.4.1 Grid definition

The subproblem was solved over the grid of conditions shown in Table 11. For each
point in the conditions space, the subproblem solution vector contains a value for
start time, Tcws and overnight energy consumption.

Table 11: Grid of conditions for subproblem solution lookup table

Parameter Min Max Resolution
Qcharge 10 MWh 90 MWh 10 MWh
Twbmin 0 C 18 C 2 C
Twbrange 1 C 11 C 1 C
Ta10pm 8 C 16 C 2 C

7.4.2 Computation methods

Solution over the four dimensional grid in Table 11 requires 4950 optimizations. The
GPS Hookes-Jeeves optimization algorithm in GenOpt was used. To perform the
optimizations, virtual machines on the Amazon EC2 cloud were used. Before the
optimizations, the Modelica plant model was gridded into a lookup table, with the
inputs and outputs shown in Equation 22 (similar to how it was used in the original
MPC implementation), and this lookup table was used as the plant model in the
optimizations (using the same lookup table interpolation coded in java). Nine single-
processor virtual Windows machines were used, each requiring approximately 30
hours, so a total of approximately 270 processor-hours, which at $0.12 per processor-
hour costs about $32.

7.5 Subproblem: Lookup table results

Figures 65 and 66 show the optimal start time values (t∗start), versus Qcharge, TwbMin,
TwbRange and Ta10pm. Of interest in interpreting the scatter plot in Figure 65 is the
fact that with the conditions parametrization in use, if the optimization were simply
always looking for the lowest Twb charging period, there would be very little scatter
in the graph, since the charge period would always straddle the time with the lowest
Twb (7am in the parametrization), and thus the start time would be a monotonic
function of just the overnight charge amount. On the other hand, if the optimization
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were searching just for the highest TchwrChillers values, the start time would always be
0, since the overnight campus return temperature is assumed constant and is lower
than Ta10m (with the exception of the Ta10pm = 8C case), so TchwrChillers is decreasing
overnight. So the scatter in Figure 65 between a line at t∗start = 0 and a line that
is roughly linear downward from an intersection around t∗start = 7 at zero charge
amount reflects the fact that the optimum value is a trade-off between the desire for
a higher TchwrChillers and a lower Twb when charging, which depends on all four of
the conditions in the conditions grid.

Figure 66 shows a set of slices through the grid for t∗start versus Qcharge and Ta10pm.
Note that with lower Ta10pm values, a given charge amount requires a longer charging
time, which is reflected in the different slopes in the start time graphs, and in the
gradients in the surface plot at the bottom of the figure.

Figure 65: Scatter plot of optimal start time versus charge length
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Figure 66: Detailed slices of optimal start time versus charge length and tank temp
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Figure 67 shows a scatter plot of T ∗cws versus TwbMin, Qcharge, TwbRange and Ta10pm,
and Figure 68 shows a set of slices through the grid for T ∗cws versus TwbMin and Ta10pm.
Note that, in the scatter plot, the optimal values vary throughout the entire range
within its constraints. In the line graphs, the general trend of increasing slope with
higher Ta10pm, which shows as steeper gradients in the surface plot at the bottom
of the figure, show that the optimal value of Tcws is more sensitive to Twb when
TchwrChillers is higher.

Figure 69 shows slices through the grid for the optimized plant COP versus TwbMin

and Ta10pm. Note that the optimal COP increases as TwbMin decreases, and increases
as Ta10pm increases, as expected. But it is much more sensitive to changes in Ta10pm

than to changes in TwbMin. This means that the higher level MPC problem will
want to charge more on nights with higher Ta10pm and with lower TwbMin, but it will
respond to any changes in Ta10pm from night to night much more than to changes in
TwbMin.

Figure 67: Scatter plot of optimal condenser temp versus minium wet bulb temp
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Figure 68: Detailed slices of optimal condenser temp versus TwbMin and Ta10pm
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12

14

16

18

20

22

24

26

28

30

0 5 10 15

overnight min. wet bulb temp (C)

co
n
d
en

so
r 

w
at

er
 t

em
p
 (

C
)

8
10
12
14
16

tank temp
10pm (C)

12

14

16

18

20

22

24

26

28

30

0 5 10 15

overnight min. wet bulb temp (C)

co
n
d
en

so
r 

w
at

er
 t

em
p
 (

C
)

8
10
12
14
16

tank temp
10pm (C)

Qcharge = 50MWh, TwbRange = 4C Qcharge = 70MWh, TwbRange = 4C

12

14

16

18

20

22

24

26

28

30

0 5 10 15

overnight min. wet bulb temp (C)

co
n
d
en

so
r 

w
at

er
 t

em
p
 (

C
)

8
10
12
14
16

tank temp
10pm (C)

12

14

16

18

20

22

24

26

28

30

0 5 10 15

overnight min. wet bulb temp (C)

co
n
d
en

so
r 

w
at

er
 t

em
p
 (

C
)

8
10
12
14
16

tank temp
10pm (C)

Qcharge = 40MWh, TwbRange = 6C

0 2 4 6 8 10 12 14 16 18
8

10

12

14

16

ov

26.82

24.83

22.83

20.84

18.84

16.85

14.85

99



Figure 69: Detailed slices of optimal plant COP versus TwbMin and Ta10pm
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7.6 Main problem: Online solution using the subproblem
lookup table

Given the lookup table of solutions to this sub-problem, the online MPC problem is
simply to determine the charge amount for each night over the prediction horizon.
The objective function for this online problem is coded in java, using linear interpo-
lation over the lookup table. Penalty functions are used to enforce the thermocline
height constraint. The java program takes as input a text file containing values of
the following for each night over the horizon: the specified Q̇charge, TwbMin, TwbRange,
and the number of charge hours required to stay above the minimum thermocline
height (which is calculated externally based on the initial thermocline height and the
projected campus loads). The prediction horizon can be varied between 1-6 days.
The program outputs the total energy consumption plus any penalties for violating
constraints, along with the optimal Tcws values and charging start times from the
lookup table. This objective function program is called iteratively by GenOpt to find
the optimal charge amounts.

7.7 Annual simulations

Annual simulations were run with Merced TMY data, with the hourly loads as output
from the campus model used in the original MPC implementation. Figure 70 shows
the disturbances over the year. The base case control was coded in java and run
through the BCVTB configuration in the same way that the approximated MPC
implementation was.

For the annual simulation, the approximated MPC used 6.42% less energy than
the base case. Figure 71 shows the control decisions, comparing the base case control
with that of the approximated MPC. Figure 72 compares the resulting system states
over the course of the simulation. Figure 73 shows the charging length (stop time
minus start time) over the year. Figure 74 shows scatter plots of the charge length
versus the overnight wet bulb temperature, tank temperature and day-ahead return
temperature from campus. Figure 75 shows this same data averaged over bins for
easier visualization. Note that, relative to the base case control, the approximated
MPC generally charges for longer when the overnight wet bulb temperature is lower
and less when it is higher. Also note that the approximated MPC generally charges
less when next day’s campus return temperature is higher (thus when the following
night’s COP is higher), and more when it is lower. Figure 76 shows the monthly
average wet bulb temperature and tank temperature during charging, comparing the
base case with the MPC. Figure 77 compares the base case and approximated MPC
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in terms of monthly COP and monthly energy use. There are still some unexpected
cases during the year when the base case is performing better than the approximated
MPC (e.g. December in Figure 77).

Figure 70: Disturbances, Merced
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Figure 71: Daily control decisions, Merced

-1

0

1

2

3

4

5

6

7

8

1 31 61 91 121 151 181 211 241 271 301 331 361

day of year

st
ar

t 
ti

m
e 

(h
rs

 a
ft

er
 1

0
p
m

) basecase

mpc

-1

0

1

2

3

4

5

6

7

8

9

10

11

1 31 61 91 121 151 181 211 241 271 301 331 361

day of year

st
o
p
 t

im
e 

(h
rs

 a
ft

er
 1

0
p
m

) basecase

mpc

14

15

16

17

18

19

20

21

22

1 31 61 91 121 151 181 211 241 271 301 331 361

day of year

co
n

d
en

se
r 

re
tu

rn
 s

et
p

o
in

t 
(C

) basecase

mpc

103



Figure 72: System states, Merced
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Figure 73: Daily charge length, Merced
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Figure 74: Charge length versus disturbances and states, Merced
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Figure 75: Charge length versus disturbances and states, averaged values, Merced
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Figure 76: Monthly average wet bulb temperature and tank temperature during
charging, Merced
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Figure 77: Monthly plant COP and energy consumption, Merced
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7.8 Packaged software for use by operators

The interface version automatically downloads the necessary weather forecasts from
the National Digital Forecast Database website, so the operators need only input
the current charge level of the tank and the average temperature of the tank above
the thermocline. (These last two could eventually be pulled from the central energy
management system directly, but for now this approach is much simpler and places
only a small burden on the operators.) The program is written entirely in java
and can be installed and run directly on the user’s machine. The computation to
determine the optimal setpoints with a 5-day prediction horizon takes about 3-5
minutes on a standard PC.

Figure 78: User interface for approximated MPC implementation

7.9 Discussion

7.9.1 Lessons learned in previous iterations

This case study has undergone a few iterations, and could likely still benefit from
at least one or two more (as discussed below). The first iteration was with the
assumption of a constant campus return temperature. The difference between the
results of that optimization (Figure 79) and the results of the optimization with
variable campus return temperature is interesting, and an example of how the ability
to visualize the lookup tables can lead to insights into the nature of the problem.
In the constant-return-temperature case, the optimal start time is just a function
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of the charge length, as it is just trying to minimize the Twb while charging, and
thus always charges in a window around the lowest Twb hour. But in the variable-
return-temperature case, because the overnight return temperature is lower than the
daytime return temperature and thus the tank warm node temperature gets colder
as the night progresses, the optimizer will make a trade-off between a lower in Twb
and a higher TchwrChillers, and find the best start time, which is usually somewhat
earlier in the night than the start time in the constant-return-temperature case.

Figure 79: Optimal start time vs charge amount, assuming constant return temp

7.9.2 Possible extensions in future research

In analyzing the annual results, it was found that the chilled water supply setpoint
was not always being met (in both the base case and the lookup table case), because
the chilled water plant was exceeding its capacity. To avoid this problem, the flow
rate must be allowed to modulate. As such, it can be added to the problem, and
the subproblem solution grid re-solved. This adds an optimization variable to the
subproblem, making it more expensive to solve, but it does not add any dimensions
to the conditions grid.

The choice of 1 versus 2 chillers can also be added to the model. Because the
number of chillers is a discrete control variable, it cannot be interpolated. So the
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subproblem must be solved over this grid twice, once with the number of chillers
fixed at 1 and once with it fixed at 2. The subproblem solution can be calculated at
any point by interpolating over the two grids independently and then choosing the
case with the least energy consumption.

A variable Tchws can be added back into the problem by including it as a given
in the subproblem, increasing the dimension of the lookup table by one. And the
heat exchanger model developed for use in the initial study at Merced would then
be built into the main problem as a lookup table (similar to the way it was gridded
for the experimental MPC implementations). The main problem would thus be
modified such that ṁchwrCampus and TchwrCampus are no longer extraneous inputs to
the problem, but rather are functions of Tchws and Q̇campus, calculated by the campus
return temperature model in the Appendix.

This study has varied the Tcws from night to night, but has kept it constant over
each night. It should ideally be allowed to vary in real-time (if the physical control
implementation allows for it). The chiller flow rate should ideally also be treated this
way (if allowed). As such, these variables could be removed from the MPC problem
(making it easier to solve) and treated as a separate optimization to be carried out at
a lower level, leaving just the charging start and stop times (and Tchws if applicable)
to be solved in the subproblem.

Various annual simulations could be run with different horizon lengths, as well as
with different hourly loads and weather data, different storage capacities and with
different levels of model mismatch and prediction inaccuracies. The same general
configuration could also be used with a different gridded plant model and a dif-
ferent campus loads model, and thus could be used for other campuses by simply
re-calculating the lookup table with the new plant model.
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8 Detailed Case Study #2:

Integrated Facade and HVAC Control

8.1 Case description

8.1.1 Background

This case study considers the integrated control of an underfloor air distribution
(UFAD) system and an automated shading system. Automated shades and UFAD
systems are usually controlled independently. The question at hand is whether there
might be any energy savings available through integrated control of the two systems.

8.1.2 Problem definition

Figure 80 shows the two control setpoints considered in this study. The problem
is considered for two cases: one with internal shades and the other with external
shades.

Figure 80: Shading and HVAC control variables of interest

shade angle

supply air temp

The optimization must consider various complexities, including:

• the general tradeoffs between thermal loads and lighting energy for different
shade positions

• the effects of solar gains to the floor on thermal decay in the UFAD system,
which effects supply air flow rates and feasible supply air temperature ranges,
and thus cooling COP and the potential for economizer operation

• capturing the solar gains at the shades creates a plume that drives thermal
stratification in the zone, which affects cooling COP.
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8.2 Model description

An EnergyPlus version 6.0 model was constructed with a core zone and a perimeter
zone with a UFAD system and automated shades (Figure 81). Table 12 shows some
of the key model parameters and their values in the model.

Figure 81: EnergyPlus model for case study

Table 12: Some key model parameter values

lighting power density 4.0 W/m2

equipment power density 10.0 W/m2

people density 15 m2/person
chiller COP at rated conditions 3.0

pump total efficiency at rated conditions 62%
supply air fan efficiency at rated conditions 70%

cooling tower fan power at design air flow rate 1 kW

The control setpoints are the blind angle (allowed to vary in the range of 90
degrees (horizontal) to 10 degrees (closed)) and the supply air temperature (allowed
to vary in the range of 12-16oC). In the base case for comparison, the control values
are kept constant at a 90 degree blind angle and a 12oC supply air temperature.

Figure 82 and Table 13 show the annual energy consumption by end use for the
current model configuration with the base case control. (The ‘heat rejection’ category
captures the energy consumption of the cooling tower, while the ‘cooling’ category
covers just the chiller.)
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Figure 82: Annual energy basecase, end-use breakdowns
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Table 13: Base case annual energy consumption by end use, W/m2

total lights plugs fans pumps cooling heat reject.
base case 170.92 31.79 87.60 17.65 0.03 27.74 6.11

% of total 19% 51% 10% 0% 16% 4%

The EnergyPlus model uses the EPMacro language extensively, structured as a
set of include files (e.g. different files for geometry, internal loads, HVAC distribu-
tion, etc) and one main imf file that references these files and also lists key global
parameters, such as the control setpoints. This facilitates model debugging and
makes parametric analysis, calibration and optimization easier to configure.
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8.2.1 Assumptions and overview

Because the building envelope is primarily glass and the zone temperatures are kept
relatively constant, it was assumed that thermal mass had little effect on the optimal
values of the blind position and supply air temperature. Neglecting thermal mass
simplifies the control optimization analysis significantly because it eliminates the
need for a prediction horizon.

Five conditions variables have been chosen a priori for the grid, as follows:

• ambient temperature • direct beam radiation • day of year
• diffuse horizontal radiation • time of day

The day of year and time of day variables are used primarily to capture solar
position, but may also be used to estimate internal loads in the model with calibrated
schedules. Note that the EnergyPlus weather files have many more variables than just
the five conditions listed above. The remaining variables are estimated as functions
of these five conditions, as described in the conditions parametrization section below.

8.2.2 Model configuration for control optimization

Although EnergyPlus is generally used for annual simulations, it may also be used
for simulation lengths as short as one day. In this analysis, the simulation would
ideally only be run for one timestep (usually 15 minutes or less). But since this is
not possible, it is run for one day and the objective function output is limited to just
the hour of interest by using a schedule in the output definition. The month, date
(derived externally by a pre-processing step in SimCon) and hour of day parameters
are thus listed in the main imf file and used by the EPMacro language to define the
start and stop days for the run period and the schedule used in the output.

The main imf file of the EnergyPlus model also contains the two control variables,
which are used by the EPMacro language to set these values in the appropriate places
in the model. The GenOpt and SimCon variables are thus demarcated at the top of
the main imf file as follows:

##set1 SupplyAirTempVal = %supplyAirTemp%

##set1 BlindsAngle = %blindAngle%

##set1 MonthNum = $monthNum$

##set1 DayNum = $dayNum$

##set1 HourNum = $hourOfDay$
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The EnergyPlus output reports are limited to just one variable:

Output:Variable,*,Total Electric Demand,daily,ReportSched;

The weather file, on the other hand, requires more significant modifications. In
addition to the monthNum and dayNum values, there are 14 weather variable values
that must be entered in the weather file, as shown below. The parametrization to go
from the 5 conditions variables to these 14 weather inputs is described in the next
section.

LOCATION,New York Central Prk Obs Belv,NY,USA,TMY3,725033,40.78,-73.97,-5.0,40.0
...
DATA PERIODS,1,1,Data,Sunday, $monthNum$/$dayNum$,$monthNum$/$dayNum$
...
1987,$monthNum$,$dayNum$,6,0,[long flag value],$Tamb$,$Tdp$,$RH$,101500,$EtHorRad$,$EtDirNorRad$, ...

$HorIRsky$,$GlobalHor$,$DirectNorm$,$DiffuseHor$,$GlobalHorIll$,$DirectNormIll$,$DiffuseHorIll$, ...

$ZenithLum$,190,$WindSpeed$,0,0,40.2,77777,9,999999999,110,0.243,0,88,999,999,99

8.3 Conditions parametrization

Many of the EnergyPlus weather variables are closely coupled, such as the diffuse
horizontal radiation (W/m2) and the diffuse horizontal illuminance (lux), where one
may be reasonably well approximated by a linear correlation with the other. With
this in mind, a spreadsheet tool is used to graph and linearly correlate any particular
weather variable with each of the 5 chosen conditions variables, as shown in Figure 83.
In this particular screenshot, the horizontal infrared radiation (W/m2) is compared
against (from left to right and top to bottom) the day of year, hour of day, ambient
temperature, direct normal radiation and diffuse horizontal radiation. The horizontal
infrared radiation shows a good correlation with the ambient temperature (shown
in closer detail in Figure 84), so the linear curve fit relating these two variables
is used in the conditions pre-processor in SimCon to derive the value for infrared
horizontal radiation given the ambient temperature. For cases where none of the
conditions variables correlate well with the particular weather variable (as is the case
with wind direction, shown in Figure 85), then the average value for that weather
variable is used throughout. Table 14 summarizes the correlations that are used in
the implementation.
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Figure 83: Screenshot of hourly weather parametrization, horizontal infrared radia-
tion

Figure 84: Horizontal infrared radiation versus ambient temperature
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Figure 85: Screenshot of hourly weather parametrization, wind direction

Table 14: Parameter correlations

variable correlate equation R2

Tdp Tamb y = 1.0082x - 7.0768 0.8557
RH use Tdp psychrometric function

Extraterr Horiz Rad (Wh/m2) Diffuse y = 3.3948x + 53.85 0.8516
Extraterr Direct Normal Rad (Wh/m2) hr y=1400 if 7<hr<18, 0 otherwise
Horiz Infrared Rad from Sky (Wh/m2) Tamb y = 5.4938x + 260.2 0.878

Global Horiz Rad (Wh/m2) Direct y = 0.7989x + 47.26 0.7039
Global Horiz Ill (lux) Direct y = 83.749x + 5397.5 0.6804

Direct Normal Ill (lux) Direct y = 98.645x - 312.56 0.9931
Diffuse Horiz Ill (lux) Diffuse y = 113.14x + 216.25 0.9962

Zenith Luminance (Cd/m2) Diffuse y = 44.955x + 63.426 0.4138
Wind Direction (degrees) average 190

wind speed (m/s) Tamb y = -0.044x + 5.9043 0.0393
Sky cover average 4

Opaque sky cover average 4
Visibility (km) average 15

Ceiling height (m) average 77777
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This process can be improved for some variables in future iterations, by consider-
ing higher-order and multi-variable correlations. For example, the global horizontal
radiation could be directly calculated from the diffuse horizontal and the direct beam
by using the solar angle, which can be derived from the time of day and day of year.

8.4 Optimization configuration

The multi-dimensional grid used for the disturbances is as shown in Table 15. This
grid configuration results in 1500 sets of disturbances for which optimal control was
to be determined. The Hookes-Jeeves algorithm in GenOpt was used, with 1 step
size reduction, and non-parallelized, so running on just one processor. The sequential
optimizations required approximately 24 hours on a single Windows virtual machine.

Table 15: Conditions grid

min max spacing
day of year 1 183 91
hour of day 9 15 3

ambient temperature (C) 5 30 2.5
direct beam radiation (W/m2) 0 400 100

diffuse horizontal radiation (W/m2) 0 400 100

8.5 Lookup table results

8.5.1 Interior blind case

Figures 86 through 88 show some of the many possible slices through the calcu-
lated lookup table (day = 183 in graphs). Figure 86 shows the optimal supply air
temperature as a function of ambient temperature and direct radiation, for various
values of diffuse radiation and time of day. The shape of the curve when the ambient
temperature is greater than or equal to 17.5oC is as expected, with the supply air
temperature at or near the upper bound when the ambient temperature is 17.5oC,
and decreases to its lower bound with the ambient temperature is at or above the
zone temperature setpoint. The specifics of this part of the curve depend on the solar
gains variables. The shape of the curve when the ambient temperature is less than
17.5oC is less intuitive, but it is reasonable: the supply air temperature setpoint falls
in keeping with the ambient air temperature, which is likely because (1) lower supply
air temperatures require lower air flow rates and thus lower fan power consumption,
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and (2) no cooling energy is required to provide the supply air temperature at the
ambient air temperature plus the fan heat-gain delta temperature.

Figure 86: Interior blind case: Optimal supply temperature versus ambient temp.
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The optimal blind position, graphed in Figure 87 for the same conditions as those
in Figure 86, does not show the same consistency. In particular, it shows a lot of
variation when the solar gains are low. The variations at low loads may be because
under these conditions the energy use is not very sensitive to shading position. (This
variation at low loads should be investigated in greater detail in future research.)
But the general trends are as expected, with the blinds tending towards closed when
it is hot and sunny, and tending more towards open when it is cold or less sunny.
Figure 87 shows the optimal blind position as a function of the direct and diffuse
solar gains - here it shows somewhat less variation, and tends towards closed when
either the direct or diffuse gains are high, and tends towards open when both are
low.
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Figure 87: Interior blind case: Optimal blind angle versus ambient temperature
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Figure 88: Interior blind case: Optimal blind angle versus direct and diffuse solar
values
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8.5.2 Exterior blind case

Figures 89 through 91 repeat the previous figures but for the exterior blind case.
Note that the optimum supply air temperature curve is more consistent in this case,
deviating only very slightly from a constant curve shape versus ambient temperature.
The optimal blind position is still highly variable at low solar loads, but the trends
towards closed under higher solar gains is stronger, and the results also show the
optimal blind position to be more responsive to the ambient temperature than it is
in the internal blind case.

Figure 89: Exterior blind case: Optimal supply temperature versus ambient temper-
ature
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Figure 90: Exterior blind case: Optimal blind angle versus ambient temperature
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Figure 91: Exterior blind case: Optimal blind angle versus direct and diffuse solar
values
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8.6 Annual simulations

8.6.1 Annual simulation configuration

To test the lookup table control, its use is simulated through the Building Control
Virtual Test Bed (BCVTB). The ‘real building’ simulation model in EnergyPlus
receives its inputs through the Schedule:ExternalInterface object in the main imf file.
Otherwise, the EnergyPlus model is identical to the one used in the optimizations to
derive the lookup table (although in future iterations the effects of model mismatch
could be investigated by varying parameters in this annual simulation model). The
timestep of the BCVTB simulation is 15 minutes.

The annual simulations were run with the NY Central Park TMY3 weather file.
The annual ambient temperatures and solar radiation are shown in Figure 92.

Figure 92: Annual weather variables
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8.6.2 Annual simulation results: Interior blind case

Figure 93 shows the control setpoints over the course of the year, and Figure 94 shows
a more detailed view of just the month of March. The x-y plots (Figure 95) of the
control values versus the ambient temperature are somewhat more informative. The
supply air temperature behaves as expected, and the blind angle generally trends
towards closed when the ambient temperature is higher and open when it is colder,
but there is more variation than expected.

Figure 93: Annual control outputs
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Figure 94: March control outputs
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Figure 95: Hourly control outputs vs ambient temperature
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Figure 96 shows the energy savings of the lookup table control case over the base
case. In general, the lookup table case is using slightly more fan power, but is saving
more cooling energy.

Figure 96: Annual energy savings, end-use breakdowns
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The annual energy consumption is summarized in Table 16. The lookup controller
is generally decreasing cooling energy compared to the base case by using more
shading, and is trading off higher fan energy consumption for lower cooling energy by
increasing the supply air temperature. There is only a very slight (less than 0.005%)
increase in lighting energy in the lookup case. It was suspected that this may be
pointing to an error in the daylighting controls in the model, but it was thoroughly
checked and was working properly. It seems that the lookup table controller is
avoiding increasing lighting use in the way that it is controlling the blind, which
would make sense if the cost of increasing lighting use always outweighs whatever
cooling savings may be gained by increasing shading.

Table 16: Interior blind case: Annual energy consumption, W/m2

total HVAC lights plugs fans pumps cooling heat reject.
basecase 170.92 51.53 31.79 87.60 17.65 0.03 27.74 6.11

lookup 168.37 48.98 31.79 87.60 18.54 0.03 24.72 5.69
savings 2.55 2.55 0.00 0.00 -0.88 0.00 3.01 0.42

saving % 1.49% 4.95% 0.00% 0.00% -4.99% 0.56% 10.87% 6.83%
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As with the control values, it is often instructive to view x-y plots of the energy
consumption versus the ambient temperature (and against other variables). Figure
97 suggests that the control is not making much difference relative to the baseline
when the temperature is less than 10C, and is generally saving energy in the 10-23C
range, but seems to be often performing worse than the base case in the 23-30C
range. More detailed investigation of the hourly outputs reveals that these times of
poor performance usually occur at times when the control setpoints for the supply
air temperature are changing quickly - this loss in performance is thus likely because
the MPC model is not considering the thermal mass of the air in the UFAD zones.
Any further extensions of this research should investigate this further, and consider
including a state variable for the UFAD zone temperature and using a prediction
horizon of a few hours.

Figure 97: Hourly energy consumption vs ambient temperature
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8.6.3 Annual simulation results: Exterior blind case

The results for the exterior blind case are very similar to the interior blind case, but
with slightly higher energy savings compared to the baseline. Table 16 shows the
details; the annual HVAC energy savings were 5.56%, rather than the 4.95% in the
interior blind case.
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Table 17: Exterior blind case: Annual energy consumption, W/m2

total HVAC lights plugs fans pumps cooling heat reject.
basecase 168.95 49.56 31.79 87.60 17.25 0.03 26.20 6.08

lookup 166.20 46.80 31.79 87.60 18.07 0.03 23.06 5.64
savings 2.75 2.76 0.00 0.00 -0.82 0.00 3.14 0.44

saving % 1.63% 5.56% 0.00% 0.00% -4.77% 0.58% 11.99% 7.19%

8.7 Discussion

This study could be extended in various ways in further research. The controller
performance loss due to the thermal lag of the UFAD zones should be investigated
further and a state variable and prediction horizon should be added to avoid this
problem; an interesting follow-up research question would be to look at how much
performance improvement is gained relative to the increase in controller complexity.
The study could be repeated for other climates and with other design parameter
values (such as the reflectivity of the roller shades or the use of active external
shading or changes to the building geometries or materials), to search for the most
promising application configurations. In addition, the controller could be redesigned
to consider a case where the change in blind position over time is constrained such
that the movements are not perceptible by the occupants, and the goal is still to
minimize glare and total energy consumption over the day (which would thus require
prediction).
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9 Discussion

9.1 Lessons learned from the case studies

The case studies have considered a variety of problems and simulation tools, providing
good testing grounds for refinement of the methods and analysis of their effectiveness.
In general, the case studies have highlighted the importance of iteration when using
this approach: start with a lower resolution grid and use it to debug the model and
optimization configuration, then re-run the optimizations and build up to a higher
resolution only when comfortable with the set up.

Each of the case studies also highlighted particular aspects of the control ap-
proach. The abstract case study #1 (solar shading and natural ventilation) showed
that the impact of grid size on controller performance is not necessarily straightfor-
ward, and suggested that irregular grids should be considered in future research (as
discussed below).

The abstract case study #2 (massive slab pre-cooling) allowed for the demon-
stration and testing of various details of conditions parametrization over a predic-
tion horizon, and provided a test case for the approach with EnergyPlus. In general,
EnergyPlus can be used effectively for cases with just one or two state variables
of interest, but it is more challenging to use for this than tools like Modelica or
TRNSYS that allow for explicit state initialization; having to use a work-around to
approximate initial state variable values is onerous and problematic, and is what
keeps EnergyPlus from being useful when more than a couple of state variables are
of interest. The three different online MPC configurations proved useful in teasing
apart the performance impacts of grid spacing, disturbance parametrizations and
initial state parametrizations; the three configurations may be useful in any future
research to further quantify the performance impacts of these three different aspects
of the approach.

The abstract case study #3 (cogeneration dispatch) showed the use of problem
decomposition, as intended, but also strengthened the argument for using irregular
grids. It also pointed to the potential use of analytical solutions for control switch
points to augment the performance of the lookup table approach in some cases.

The two detailed case studies (chilled water storage control and integrated shading-
HVAC control) provided tests of the approach with more detailed modeling and
real-world systems, grounding the investigation by ensuring that the methods can be
applied to more than just abstract problems. The chilled water storage study also
provided an opportunity to wrap the controller into a human-in-the-loop interface
and connect it to an online source of weather prediction.
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9.2 Evaluation of the approach

9.2.1 Range of feasibility and suitability

The figure in the Methods chapter that relates grid size to computational time (Figure
4) suggests that the approach is only feasible for problems that can be simplified to
5-6 dimensions (potentially slightly more if one’s computation budget is higher).
The case studies have shown that a wide variety of building control problems can
be effectively simplified to this size through conditions parametrization and problem
decomposition, with reasonably small performance losses relative to online MPC and
heuristic rule-based control.

Two of the five case studies involved a prediction horizon, the other three were
steady-state problems. For the two case studies with prediction, the horizons were
relatively short. Longer prediction horizons would likely make the problems infeasible
by ballooning their dimensionality. In general, the approach is more often feasible
for steady-state problems than for predictive problems, but as shown in those two
case studies this is not strictly so. Further parametrizations or other developments
may make feasible predictive problems with longer horizons than the ones considered
herein.

The case studies demonstrated the use of the approach with Modelica, TRNSYS
and EnergyPlus. Modelica and TRNSYS are better suited to the approach because
of their greater flexibility in model construction, shorter simulation time-steps, more
variable simulation lengths, and explicit state initialization. But EnergyPlus was also
shown to be effective for some problems. It could be made more broadly effective
if future versions of the program allow for explicit state initialization and shorter
run-periods than one day. Given that EnergyPlus can be used with the approach,
it is likely that DOE-2 could also be used. Similarly, most other simulation tools
could likely be used, given that they share common characteristics with at least one
of three tools tested.

The case studies have also shown that the approach is better suited to control
problems whose solutions are generally smooth and continuous, rather than problems
whose solutions have many discontinuous jumps. However, it could be made better
at the latter through more sophisticated sampling techniques.

9.2.2 Benefits

Although the approach was first investigated because of its potential to simplify
implementation in existing control systems, the most beneficial aspect of it seems to
be the feedback it can provide to the design process. Graphs of slices through the
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lookup table provide the system designer or analyst with a way of visualizing the
optimal control response for the system. If the control response is nearly always on
a constraint boundary, then the system designer may want to loosen that constraint
if possible. On the other hand, if the control response never ventures into particular
areas of the control space, then the system designer may want to eliminate that
flexibility.

The lookup table slices graphs also provide a very useful debugging tool for the
controller development process. As such, the approach may also provide online MPC
developers with a good way of testing and debugging their implementations.

The lookup table visualizations and annual simulated implementations can also
help system designers to estimate the potential for energy savings with near-optimal
control with a particular system. This can help system designers to more accurately
compare different systems in terms of energy savings and payback periods. In some
cases, this approach may also be useful in estimating potential savings with a full
online MPC configuration with a given system, thus aiding in the decision of whether
or not to investment in more advanced controls for the system.

In general, the approach is well suited to existing processes in building design
and operation: building designers or consultants could develop lookup tables using
their design models and their own processing power or cloud computing, and then
hand over lookup tables with interfaces to building operators or have them imple-
mented directly in buildings’ control systems. It could thus offer improvements to
the control of both new and existing buildings. The approach could also be useful for
design studies, including analyses of which building elements (e.g. external shades,
operable windows) in a particular design are more important as dynamic elements,
and which ones could be designed as static elements without much loss in perfor-
mance. Additionally, the approach could fit in well with other uses of simulation
during building operations. The same model used in the controller could be used for
benchmarking, fault detection and diagnosis, and for retrofit analysis, and this single
model could be updated with changes to the building or periodically re-calibrated
to account for building and system deterioration over time. Updates to the model
would then require re-running the optimizations over the conditions grid, but this
could be easily automated.

For research purposes, the approach could be used to help determine the energy
savings potential of integrated dynamic systems in buildings in general, and it could
be used for the development of better simplified control rules for common systems
of particular types of buildings.
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9.2.3 Challenges

The biggest challenge at this point is in streamlining the approach and making it
accessible to practitioners. The methods may need to be simplified somewhat in order
to become commonly used. A good user interface will be required to walk people
through the process. For most practical problems, cloud computing is necessary for
the problem to be solved in a reasonable amount of time - a good interface will have
to account for this and facilitate the process of partitioning the grid and sending it
to cloud machines for processing.

9.2.4 Prospects for market uptake

If a good interface can be developed, the methods as they currently stand could
likely find their way into use at a handful of consulting firms, as an additional service
offering for some projects. Chilled water storage systems and cogeneration systems
are the most likely systems to see practical benefits from this approach. If such
initial applications prove successful, and/or if the methods and interface can be
simplified, then it could conceivably find its way into more design firms and more
applications, particularly if building design continues to trend towards more complex
and integrated systems.

If the approach were to see significant market uptake, it is likely that it would
become more heuristic in nature and less academic, with the optimization approach
used to inform aspects of otherwise heuristic control laws, or heuristics used to fill
in gaps in the optimization or to speed up the process.

9.3 Areas to consider in future research

As noted previously, an important area for future research is the use of irregular
grids. Various sampling techniques (such as adaptive grids, or even random sam-
pling) should be considered, and they should be evaluated not only for the resulting
controller’s performance, but also for the parallelizability of the technique - a fully
serial sampling method is unlikely to be appropriate for this use. The integration of
user-supplied heuristics for control switch points, as discussed at the end of Chapter
6, should also be considered in future research.

Other areas to consider in future research include the use of nonlinear interpo-
lations, and how best to deal with uncertainties. The use of optimization starting
points based on solutions to neighboring grid points should also be considered as a
way to speed up the optimization process. Again, successful techniques must ensure
that the approach remains massively parallelizable, so that the conditions grid can
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still be solved quickly through the use of many processors available through cloud
computing services.

A good idea gained from feedback by researchers at NRCan-Varennes (personal
communication, 2010) is to find ways of structuring optimization configurations such
that variables that change often (e.g. electricity rate structures) can be exposed
either as conditions variables or as the online MPC parts of decomposed problems,
while aspects that are more likely to remain unchanged are embedded in the offline
solution.

The other main area in need of future research and development is to devise
appropriate software interfaces to facilitate the use of this approach in research and
practice, to study its integration into practice (possibly through interviews with
users or potential users), and to integrate this software and methodology with other
operations-phase uses of building simulation tools.
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10 Conclusions

A method for near-optimal supervisory control using building simulation tools and
offline optimization is outlined herein. Through case studies, the approach is shown
to be feasible for problems that can be suitably expressed as a function of 5-6 con-
ditions variables (or slightly more, depending on one’s computation budget), or for
problems that can be broken down into subproblems of this size. The case studies
demonstrated the use of the approach with Modelica, EnergyPlus and TRNSYS, and
considered the following application areas: integrated solar and natural ventilation;
massive slab pre-cooling; cogeneration dispatch; chilled water storage; and integrated
solar and HVAC control.

Three abstract case studies were used to analyze particular aspects of this ap-
proach. The first considered the effect that grid spacing has on controller perfor-
mance. The relationship is complex and case-dependent, but the methods of investi-
gation used herein could be useful in finding appropriate grid spacings in other case
studies. The study also pointed to the importance of considering irregular grids in
future research. The second abstract case study analyzed the performance losses
associated with conditions parametrization methods: for this case they were found
to be small. Simple heuristic baseline controls and full online MPC were used as
comparison points in these two case studies, with the available savings defined as the
difference between the baseline and the full MPC.

In the first case study, the lookup table control captured 83%-94% of the available
savings (depending on the grid spacing). In the more complex case #2, with a coarse
grid spacing, the lookup table control captured 59% of the available savings.

Problem decomposition was demonstrated in the third abstract case study, and
was found to make an otherwise infeasible problem easily solvable, and produced a
5% faster payback on cogeneration system investment, relative to a simple base case
controller.

The inability to explicitly specify initial states in many building simulation tools
remains a problem. This should be fixed by simulation tool developers. In the
meantime, for controls problems with one or two important state variables, the work-
arounds for EnergyPlus described in Chapter 5 may be used; for larger problems,
users are recommended to use simulation tools that do allow for explicit state ini-
tialization.

Open-source software to facilitate the use of building simulation tools both in
online MPC and in the modified approach described herein is available online. The
promise of this software and approach is that it might fit well within existing design
and operation processes, with visualization of control responses over the conditions
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space providing important feedback during the design process, and the resulting
controls could be easy to implement within existing building control systems. Further
research, software interface development and early-adopter implementation is needed
to move in that direction.

Designing good controls for low-energy building systems is challenging. It is
hoped that the concepts and tools described herein will help designers and operators
get closer to optimal performance.
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A Appendix: Campus Load and Return Temper-

ature Models

A.1 Overview

As discussed in Chapter 7, the campus chilled water system MPC model is divided
into three major parts: the cooling plant, the storage tank, and the campus buildings.
At each simulation timestep, given a supply water temperature (Twi) and weather
conditions, the campus part of the model must calculate the return temperature
(Two) and the required chilled water flow rate (ṁw). This calculation is divided into
two sub-models, as shown in Figure 98. The campus load is modeled as a function
of weather and occupancy disturbances. It is not dependent on any other models
for its input values, and thus may be treated as a disturbance model whose values
can be pre-calculated at each controller time step and does not need to be repeated
iteratively within the online optimization. The flow rate and return temperature
from the campus is a function of this load, the ambient temperature, and the chilled
water supply temperature, the latter of which is a control variable, so the return
temperature model must be included in the fast-running online system model.

Figure 98: Campus load and return temperature models
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A.2 Campus load model

A.2.1 Model description

The objective of the campus load model is to predict the campus cooling load based
on the ambient conditions, time of day, day of the week, and time of year. The build-
ing load model has two main sub-components: a Gains component and a Building
Thermal Load component.

Figure 99: Building load model in Modelica, showing the two main sub-components

Gains component

The Gains component takes the time of day, day of week, day of year and cloud
cover as inputs and outputs a solar load and an internal load. The internal gain
is essentially just a scheduled heat addition to the space, representing the heat
gains from people, lights and equipment, with different values for nighttime, day-
time during the week and daytime on Saturday and daytime on Sunday. The solar
load is determined by first calculating the extraterrestrial horizontal radiation (an
atmospheric-independent value which is a function of the time of day and day of
year), and then using the cloud cover and two parameters for the building’s geome-
try and absorptivity to calculate the inside and outside solar gain values. The model
has 12 parameters whose values are determined by calibration (Table 18), and one
parameter (site latitude) that is specified by the user. The equations for the inside
and outside solar gain calculations are shown in Equations 26 through 30.
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Table 18: Gains component parameters

Internal gain
occDayStart hour of the day when the daytime internal load starts
occDayEnd hour of the day when the daytime internal load ends

QintBaseline a constant load independent of occupancy, ie. the overnight load
QintOccupied this plus QintBaseline = daytime internal load for a weekday

QintOccupiedSaturday this plus QintBaseline = daytime internal load for a Sat. daytime
QintOccupiedSunday this plus QintBaseline = daytime internal load for Sun. daytime

Solar gain
bldgSolarOutsideQperHorRad a building-geometry parameter: solar gain on the outer wall mass

per unit of horizontal radiation
bldgSolarInsideQperHorRad a building-geometry parameter: solar gain on the inner wall mass

per unit of horizontal radiation
cloudCover.fewClouds when cloudCover = fewClouds,

the ratio of extraterrestrial horiz. solar to horiz. solar at building
cloudCover.scatteredClouds when cloudCover = scatteredClouds,

the ratio of extraterrestrial horiz. solar to horiz. solar at building
cloudCover.brokenClouds when cloudCover = brokenClouds,

the ratio of extraterrestrial horiz. solar to horiz. solar at building
cloudCover.overcast when cloudCover = overcast,

the ratio of extraterrestrial horiz. solar to horiz. solar at building

solarHour = (TimeOfDay− 12) · 15◦ (26)

solarDec = −23.45◦ · cos

(
360◦ · (DayOfYear + 10)

365

)
(27)

extraterrHorizSolar = max(0, cos(solarHour) · cos(solarDec) · cos(latitude)

+ sin(solarDec) · sin(latitude)) (28)

QsolarOutside = cloudCover.[currentCondition] · extraterrHorizSolar

· bldgSolarOutsideQperHorRad (29)

QsolarInside = cloudCover.[currentCondition] · extraterrHorizSolar

· bldgSolarInsideQperHorRad (30)
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Building Thermal Load component

The BuildingThermalLoad component is based on the thermal resistance and ca-
pacitance model shown in Figure 100 and Equations 31 through 33. Various lumped
parameter models like this have been developed and used in the literature (see Lee
and Braun (2004) for a good example and further references). Its inputs are the
ambient temperature (θoutside), the outside solar load (qsolarOut), the inside solar
load (qsolarIn), the internal load (qinternal) and the indoor temperature set-point. It
outputs the cooling load (qload), and stores the temperature state of the thermal
mass (Tmass). The component has six parameters: UAeff inst (= 1

R1
), UAc outside

(= 1
R2

), UAc inside (= 1
R4

), UAc middle (= 1
R3

), WallCapInside (= CmassIn), and
WallCapOutside (= CmassOut).

Figure 100: Thermal resistance and capacitance model

C
massOut

C
air

R
4

R
2

R
1

θ
outside

q
AC

q
internal

q
solarout

C
massIn

R
3

q
solar in

qload = max

(
0, qinternal +

1

R4

(TmassIn − Tzone) +
1

R1

(Tamb − Tzone)
)

(31)
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A.2.2 Model calibration

The model was calibrated with annual data during pre-experiment development, then
re-calibrated right before each experiment with the two previous weeks to ensure that
it was up to date with any changes in occupancy or other attributes. Table 19 shows
the calibrated parameter values and performance for the first experimental period.

Table 19: Campus load model calibrated parameter values

Name Value Name Value
cloudCover.fewClouds 0.175 QintOccupiedSaturday 250000
cloudCover.scatteredClouds 0.4 QintOccupiedSunday 125000
cloudCover.brokenClouds 0.6 QintBaseline 527000
cloudCover.overcast 0.8 UAinst 66200
bldgSolarOutsideQperExtratHoriz 400000 UAcOut 100000
bldgSolarInsideQperExtratHoriz 400000 UAcIn 100000
occDayStart 7 UAcMiddle 99600
occDayEnd 20 WallCapInside 5000012800
QintOccupied 500000 WallCapOutside 500000000

Figure 101: Campus cooling load, May 16 - Jun 2, 2009
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A.3 Campus return temperature model

A.3.1 Model description

The main purpose of the heat exchange model is to predict the chilled water return
temperature and flow rate, given the chilled water supply temperature, cooling load
and ambient air temperature. A block diagram of the model is shown in Figure
102. The return temperature and flow rates are important in that they determine
the effective capacity of the storage tank in the system, as well as influencing the
COP of the chillers and the energy consumption of the system pumps. The model
plays a key role within the MPC in deciding if and when the chilled water supply
temperature should be increased or decreased.

Figure 102: Block diagram of the heat exchange model
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Figure 103 shows hourly measurements of the C&O Building and the campus
return water temperatures for the period Aug29-Sep4 2009, during which time the
supply water temperature was kept at their standard operating point of 277K. A fully
empirical model of return temperature as a function of load and ambient temperature
can capture the behavior in Figure 103 well (the curve is a function of the load and the
scatter a function of the ambient temperature), but in order for the model to be useful
in predicting behavior on non-standard conditions, particularly for different supply
water temperatures, some first principles should be incorporated. The challenge is
in devising a semi-empirical model to accurately capture the measured data and also
to predict the effects of changing the supply water temperature.
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Figure 103: Measured return temperatures for (a) C&O Building, (b) entire campus

The model was developed through detailed consideration of the C&O Building,
which has a single air handling unit, and its behavior was extrapolated to the campus
level (the execution speed requirement for the MPC application prohibited modeling
all of the heat exchangers separately, and initial tests indicated that this aggregation
would not be a significant source of error). The model is based upon an air-to-
water counterflow heat exchanger. The system of Equations 34 and 35 is used, with
unknowns mw and Two, where the Log Mean Temperature Difference (LMTD) ∆Tm
is defined in Equation 36.1 This system of equations requires values for the air side
entering and leaving temperatures. The leaving air temperature Tao is kept as a
constant in the model, and the entering air temperature is calculated as in Equation
37, with a constant return temperature TairReturn, the measured outdoor temperature
Tamb, and a calibration parameter γ as the percentage outside air.2

1Note that these two unknowns are not commonly used with these equations, and a variety of
implementation challenges result. Equation 36 is undefined when Tao Twi = Tai Two, when Tai

= Two, or when Tao = Twi. The system of equations is also challenging in that under particular
conditions there are no solutions. In the Matlab implementation of the model, two fminsearch
solution loops are used, one to solve Equation 35 for given a Two value (made more difficult when
Equation 38 below is added to Equation 35), and the other used to find the intersection of Equations
34 and 35. (An explicit formulation of Equation 35 is possible using Matlab’s labertw function, but
it seems to continually run into solutions that are undefined. Using an implicit solution loop avoids
this.) In both cases, the tolerance of the solution loop can be set fairly high (0.1K for the Two value
in our case), and a maximum number of iterations specified (15 in our case), which increases the
model speed while still producing acceptable performance.

2Note that if the model is being used with a single air handler and the real-time data is available,
Tao and Tai may be used directly as measured.
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Q̇load = ṁwcpw (Two − Twi) (34)

Q̇load = UA∆Tm (35)

∆Tm =

Tao − Tai − Twi + Two

log
(
Tao−Twi
Tai−Two

)
 (36)

Tai = TairReturn + γ(Tamb − TairReturn) (37)

The assumption of a constant UA is not appropriate for variable flow heat ex-
changers. Such an assumption produces model behavior where the return tempera-
ture decreases with an increase in load, opposite to what is observed in Figure 103.
So a variable UA is used. Based on the empirical work of Holmes (1982) and as used
in the model of Wetter (1999), Equation 38 (shown in three dimensions in Figure
104a) is used for the relationship between the steady state UA and the water and air
flow rates (Equation 39), with α1 and α2 used as calibration parameters. With this
addition, the model performs much better than with a constant UA (Figure 104b),
but it still does not accurately capture the observed curve of UA versus load.

UAsteadyState =
(
α1ṁ

−0.85
w + α2ṁ

−0.85
a

)−1
(38)

ṁa = Q̇load/(cpa(Tai − Tao)) (39)

Figure 104: (a) UA as a function of mw and ma (Equation 38), (b) Performance of
model with the variable UA, Equations 34-39
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There may be a variety of reasons why the UA is lower at low loads than expected,
one of which is an observed increase in flow rate fluctuations at low loads (likely
because the local PI gains were set to match design conditions). An adjustment
factor ζ is added to the UA calculation to account for it, as shown in Equations 40
and 41. The form of Equation 41 was chosen such that ζ is in the range (0,1) and
β is used as a calibration parameter to determine the strength of the effect. The
variable ξ is a building-specific empirical function of the load. For the UC Merced
case, Equation 42 was used, which is a function in the range (0,1) fit to the curve of
flow rate fluctuations (differences in successive 15-min samples) versus load for the
C&O Building. But the main purpose of this factor, as discussed further below, is
to provide a means of modifying the thermodynamics-based model to better fit the
measured data without losing the ability to use the model to reasonably predict the
impacts of changes in supply water temperature.

UA = ζ (UAsteadyState) (40)

ζ =
(
1 + βξ2

)−1
(41)

for C&O Building, ξ =
−0.9074 ln(1 + Q̇load) + 12.329− 0.3

12.329− 0.3
(42)

The UA is thus a function of mw, ma and Qload, as shown in Figure 105a (shown
in three dimensions by assuming Qload to be a linear function of mw and ma), with
the calibration parameters α1, α2 and β. The parameters α1 and α2 determine the
height and skew of the function, and β determines the magnitude of the dip (the
difference between Figure 104a and 105a) at low loads. With this addition, the model
can match measured data much better, as shown in Figure 105b.
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Figure 105: (a) UA varied by Equations 38-42, (b) Model performance, Equations
34-42

A.3.2 Model calibration

The four model parameters, α1, α2, β and γ, should be calibrated to fit measured
data through a global error-minimization method3. The following steps may be used
to provide a good initial point for this global calibration:

1. Determine TairReturn and Tao as averages of measured data, or based on set
point info. Fit γ using the determined value of TairReturn and the data for Tamb
and the mixed air temp TMA.

2. Fit the parameters α1 and α2 using Equation 38 and only points where the
load is greater than some heuristically-determined value (e.g. 0.3MW for C&O
Bldg)

3. Fit the parameter β using the α1 and α2 values from step 2 and all of the data

For the UC Merced study, the constant values used were TairReturn = 296.66 K
and Tao = 284.84 K, and the calibrated parameter values were as follows: γ = 0.1355,
α1 = 7.3443e-05, α2 = 1.5464e-04 and β = 56.025.

3Non-convergence of the system of equations can happen in cases where airflow rate is high
relative to the load (high values of ma limit the potential impact of the water flow rate on the UA),
and/or if the values of α1, α2 or β are too high, so calibration constraints are necessary.
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A.3.3 Model predictions with warmer supply water temperatures

Equation 34 makes one suspect that the return temperature would always increase
with an increase in the supply temperature, and for a given water flow rate and load
this is what happens with this equation. But for that same given flow rate and load,
Equation 35 calculates a lower return temperature, for the following reasons: for
given mass and air flow rates, the UA is a given, thus the LMTD is also a given; to
maintain a given LMTD when the inlet water temperature is increased, the outlet
water temperature must be decreased, as illustrated in Figure 106a. Equations 34
and 35 must always converge at a higher mw when Twi is increased (Figure 106b),
and depending on the load and the model parameters, the value of Two may be either
increased or decreased.

Figure 106: (a) Maintaining a LMTD, (b) a new convergence point with a higher
Twi
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If supply water temperature is increased, the model predicts the somewhat non-
intuitive behavior: the return temperature should change very little at most loads,
except at very low loads where it should increase slightly, and at high loads it should
decrease slightly.4 Figure 107a shows the abstracted result with an exaggerated
4K increase in supply temperature, without the scattering effect of the ambient
air temperature. And Figure 107b compares the model predictions under normal
conditions (as shown in Figure 105b) with the predictions when the supply water

4Note that this result is sensitive to the values of the calibrated α1 and α2 values, and at some
combinations of these values (generally at the extremes) the effect of increasing Twi is always to
increase (or decrease) the solution value for Two.
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temperature is increased by 4K. Figure 107 shows a 4K increase to highlight the
nature of the effect; the pattern is the same with a 1K increase, but impacts are
smaller.

Figure 107: Predicted return temperature values with a higher supply temperature

A.3.4 Experimental results

To test the validity of the model, an experiment was conducted where the campus
chilled water temperature was increased by approximately 1K for the period Sep6-
11, 2009. The model predicted that the return temperature would change very
little, increasing by less than 1K at low loads and decreasing by less than 0.25K
at high loads. This was correct for the C&O Building (Figure 108a), and for most
other buildings on campus. But it was incorrect for the campus as a whole, where
there was an approximately 1K increase in return temperature at low loads and
an approximately 0.5K increase at low loads (Figure 108b), and the increase of
return temperature at the lowest loads was actually more than the increase in supply
temperature, which runs counter to the models thermodynamic principles.

The unexpected campus-level behavior was mostly caused by two buildings, in-
cluding the S&E Building, which accounts for approximately one quarter of the
campus load and which showed a pronounced offset in the return temperature versus
load graph. While the C&O Building has just one air handler and the other build-
ings that performed as expected have a few each, but the S&E Building has many,
and also has other complicating factors such as on-site outdoor air pre-cooling. The
results thus suggest a partial affirmation: the model is perhaps appropriate as is for
individual buildings or for individual air handling units, but further modifications

152



Figure 108: Measured effect of increased Twi on (a) C&O Building, (b) entire campus

may be necessary for it to be used with whole campuses and buildings that deviate
significantly from the one air handler configuration upon which the model was based.
Further research is required to further validate, modify and determine the range of
applicability of the model.

A.3.5 Discussion

One of the downfalls of using this model at a campus level is that the air side becomes
a potentially problematic abstraction. It may work in cases where all of the buildings
are similar enough to assume similar air side behavior. But in other cases, if the
modeling application can handle the additional simulation time required, it may be
wise to model each building (or even each air handler) separately using this model.
The outside air fraction (Equation 37) can also be better suited to buildings with
economizers by using two different γ values based on Tamb (the resulting discontinuity
does not present any numerical problems since this is a pre-calculation at each time
step).

Equations 40-42 were added to the model to allow a better fit to the empirical
data (with lower UA than expected at low loads) while maintaining the model’s
counterflow heat exchanger basis. They could be improved upon in one of two ways.
Either (1), digging into more detail: the identification of flow rate fluctuations as a
potential cause of a lower UA at low loads is perhaps a useful starting point for this
investigation, but the current use of Equation 41 and building-specific Equation 42
is just a convenient stretch of principle to fit the data; further investigation of more
potential causes and more explicit relationships between these causes and the model
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equations is called for. Or (2), considering a purely empirical fit of UA modification
as a function of load: graphing and fitting a curve to Equation 43 would likely result
in equations similar to Equations 40-42, but a slightly different form might provide
a better fit, and the approach would be more transparent.

ζ(Qload) = UAmodel/UAmeasured (43)

As often happens with the modeling of building systems in operation, a number
of side-benefits resulted from looking at the system and its energy data in detail.
Uncovering and fixing various small problems during MPC model development and
experimentation produced energy savings for UC Merced that were similar in size
to the energy savings resulting from the application of the improved controller. In
particular, with the heat exchange modeling, two such problems were identified:
some of the building bridges were recirculating their chilled water return when they
should not have been; and comparing the return temperatures and flow rates from
the various buildings with the return temperature at the central plant pointed to a
bypass problem or a faulty flow rate meter somewhere in the system, the latter of
which was found and fixed, decreasing pump energy use, improving comfort in one of
the buildings and increasing the chiller COP by increasing the campus return water
temperature.
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