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Abstract

Purpose—Following colonoscopic polypectomy, US Multisociety Task Force (USMSTF) 

guidelines stratify patients based on risk of subsequent advanced neoplasia (AN) using number, 

size, and histology of resected polyps, but have only moderate sensitivity and specificity. We 
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hypothesized that a state-of-the-art statistical prediction model might improve identification of 

patients at high risk of future AN and address these challenges.

Methods—Data were pooled from seven prospective studies which had follow-up ascertainment 

of metachronous AN within 3–5 years of baseline polypectomy (combined n = 8,228). Pooled data 

were randomly split into training (n = 5,483) and validation (n = 2,745) sets. A prognostic model 

was developed using best practices. Two risk cut-points were identified in the training data which 

achieved a 10 percentage point improvement in sensitivity and specificity, respectively, over 

current USMSTF guidelines. Clinical benefit of USMSTF versus model-based risk stratification 

was then estimated using validation data.

Results—The final model included polyp location, prior polyp history, patient age, and number, 

size and histology of resected polyps. The first risk cut-point improved sensitivity but with loss of 

specificity. The second risk cut-point improved specificity without loss of sensitivity (specificity 

46.2 % model vs. 42.1 % guidelines, p < 0.001; sensitivity 75.8 % model vs. 74.0 % guidelines, p 
= 0.64). Estimated AUC was 65 % (95 % CI: 62–69 %).

Conclusion—This model-based approach allows flexibility in trading sensitivity and specificity, 

which can optimize colonoscopy over- versus underuse rates. Only modest improvements in 

prognostic power are possible using currently available clinical data. Research considering 

additional factors such as adenoma detection rate for risk prediction appears warranted.

Keywords

Polyp surveillance; Risk stratification; Epidemiology; Colorectal cancer; Colorectal polyps

Introduction

Colorectal cancer (CRC) is a leading cause of cancer death worldwide. For example, 

annually in the USA, 130,000 individuals develop CRC, and about 50,000 die of the disease 

annually [1]. CRC can be prevented by the identification and removal of colorectal polyps 

[2]. After polypectomy, recommendations are routinely provided for repeat surveillance 

colonoscopy, with the goal of reducing risk of CRC-associated morbidity and mortality 

based on practice guidelines [3]. For example in the USA, current surveillance intervals are 

largely based on US Multisociety Task Force (USMSTF) guidelines, which stratify 

individuals for risk of future advanced neoplasia (AN) based on the number, size, and 

histology of resected polyps.

Although this approach is the standard of care after colonoscopy, evidence suggests that 

current guidelines can be improved [4]. Indeed, the sensitivity and specificity of USMSTF 

guidelines for predicting metachronous AN are estimated to be 59–81 % and 43–58 %, 

respectively [5–9]. Thus, many patients who later develop AN are classified as low risk at 

baseline, and many who remain free of AN on follow-up are classified as high risk at 

baseline. In different patient groups this results in over- or underuse of surveillance 

colonoscopy, exposing many individuals to the risks and costs of unnecessary colonoscopy, 

while others miss an opportunity for early detection and prevention. Improved risk 

stratification strategies are needed.
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Incorporation of additional risk factors beyond the number, size, and histology of resected 

polyps might improve risk stratification. For example, age, sex, body mass index (BMI), and 

polyp location have each been associated with risk of metachronous AN, but have not been 

formally incorporated into risk stratification guidelines [5, 7, 8, 10–12]. Our aim was to 

determine whether a statistical model incorporating additional clinical factors could improve 

post-polypectomy risk stratification compared with USMSTF guidelines, utilizing a large 

pooled dataset of over 8,000 individuals who underwent polypectomy and subsequent 

surveillance colonoscopy.

Materials and methods

Design and participants

Data were pooled from seven prospective studies [13–19] of patients with sporadic 

colorectal adenoma in North America that included 8,228 individuals with polypectomy and 

repeat surveillance colonoscopy within 3–5 years, as previously described [5]. These studies 

ascertained baseline data on patient and adenoma characteristics considered as predictors in 

the analyses and assessed the number, size, histopathology of resected polyps, adenomas, 

and CRCs detected at follow-up.

Primary outcome

The primary outcome was metachronous AN within 3–5 years of polypectomy, defined by 

any of the following: adenoma with size ≥1 cm, high-grade dysplasia, and/or tubulovillous 

or villous histology or adenocarcinoma. AN occurring within 6 months of qualifying 

colonoscopy was counted as part of baseline rather than follow-up findings.

USMSTF guidelines [3]

The USMSTF guideline low-risk group includes patients with 1 or 2 small (<1 cm), tubular 

adenoma(s). The USMSTF guideline high-risk group includes patients with 3–10 adenomas, 

or who have any adenoma with size ≥1 cm, >25 % villous features, or high-grade dysplasia. 

The USMSTF guideline also specifies a very high (highest)-risk group with more than 10 

adenomas. Very few subjects (n = 11) in our data were in highest risk group; therefore, we 

combined high-risk and highest risk subjects into one group.

Baseline risk factors (predictors)

At qualifying colonoscopy, in addition to adenoma size, number, and histology, we 

considered adenoma location (distal colorectum, proximal only, proximal and distal), age, 

sex, race/ethnicity, family history of CRC, cigarette smoking (current, former, never), body 

mass index (BMI), and history of prior polyp. Additionally, unlike current USMSTF 

guidelines, we considered number and size of adenoma(s) as continuous rather than 

categorical variables. To address missing data, we created an unknown category for variables 

for which more than 4 % of patients were missing information including family history of 

CRC, polyp location, and history of previous polyp. Polyps with non-adenomatous histology 

were grouped into one category. Presence of high-grade dysplasia was not characterized by 

two studies; therefore, this variable was characterized as unknown for patients from these 

two studies [14, 16].

Liu et al. Page 3

Cancer Causes Control. Author manuscript; available in PMC 2017 October 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Statistical analysis

All analyses were performed using R [20]. Patients were randomly assigned 2:1 to training 

(n = 5,483) and validation (n = 2,745) datasets. Training data were used to develop our 

prognostic model and identify risk stratification cut-points. Validation data were used to 

compare sensitivity, specificity, and estimated clinical benefit between the model-based risk 

stratification (as developed in the training data) and existing USMSTF guidelines.

Development of the prognostic model—Risk factors that were significantly (p < 0.15) 

associated with the outcome in univariate analysis were considered as potential predictors in 

a multivariable logistic regression model with the outcome AN. We used two 

complementary methods for variable selection that are considered to be superior to 

traditional stepwise model selection approaches [21, 22]. First, an L1-regularized logistic 

regression model (LASSO) [23, 24] was used to assess the order of entry of variables into 

the model, using the glmpath package in R. To assess stability of the entry order, a 

sensitivity analysis using bootstrap LASSO based on 1,000 samples was conducted. Second, 

Bayesian model averaging (BMA) [25] was used for variable selection, implemented in the 

BMA package in R. The performance of the models selected by BMA was compared using 

generalized R2 and Brier’s scores, discrimination was assessed using the area under the 

receiver operating characteristic curve (AUC), and calibration was assessed using the 

Hosmer–Lemeshow goodness-of-fit test [26]. Among the top performing BMA models, we 

prioritized the model which was most consistent with the variables selected by LASSO.

Identification of cut-points for risk stratification—We then used the predicted 

probability of AN from the selected best model to determine a cut-point above which a 

patient would be identified as at high risk of AN. We made an a priori plan to identify two 

risk stratification cut-points. Defining sensitivity as the proportion of individuals with 

metachronous AN at follow-up who were classified as high risk at baseline (Table 1), we 

targeted the first cut-point to achieve a 10 percentage point improvement in sensitivity 

compared with the current USMSTF guidelines. Defining specificity as the proportion of 

individuals without metachronous AN at follow-up who were classified as low risk at 

baseline (Table 1), we targeted the other cut-point to achieve a 10 percentage point 

improvement in specificity [27–29]. The population sensitivity and specificity of USMSTF 

guidelines were estimated on the entire set of pooled data. The cut-point determination 

included all subjects in the training data with defined values for all predictors in the final 

model (including those predictors assigned an unknown category for missing values) and 

used the OptimalCutpoints package in R.

Model validation and comparison of estimated clinical benefit—Model validation 

was performed on all subjects that could be classified by both the model-based method and 

the USMSTF guidelines in the validation dataset. Model discrimination was assessed by the 

AUC. Model calibration was assessed by comparing the predicted risk and observed risk of 

AN for 10 deciles of risk groups. Potential clinical benefit (Table 1) was assessed in the 

validation data using the model coefficients and cut-points identified in the training data, by 

estimated sensitivity and specificity for metachronous AN and estimated rates of over- and 

underuse of colonoscopy. Overuse of surveillance colonoscopy was defined as the 
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proportion of those classified as high risk at baseline who did not develop metachronous AN 

(i.e., 1-positive predictive value). Underuse of surveillance colonoscopy was defined as the 

proportion of those classified as low risk at baseline who developed AN (1-negative 

predictive value). Improvement in specificity and sensitivity using the predictive model on 

the validation data was assessed by McNemar’s test. Differences in overuse and underuse 

between the predictive model and current guidelines were assessed by 95 % confidence 

intervals (CI) based on 1,000 bootstrap samples. Clinical benefit of using the predictive 

model over current guidelines was also assessed using net reclassification improvement 

(NRI) [30].

Results

Analytic cohort selection

The final dataset included 8,228 patients, randomly split into 5,483 training and 2,745 

validation subjects. There were no major differences in baseline patient characteristics 

between the training and validation datasets. Using current USMSTF guidelines, 30.1 % of 

the cohort was classified as low risk, 47.9 % as high risk, and 22 % could not be classified 

due to missing data on adenoma size, adenoma number, histology, or high-grade dysplasia, 

which are required by USMSTF guidelines for risk classification. As described in the 

Methods, the unclassified subjects were included in predictive model development in the 

training data, but were excluded from model assessment and the comparison of the clinical 

benefit between the USMSTF guidelines and the predictive model in the validation data 

(Table 2).

Model development

In univariate analyses of the training dataset, age, sex, history of prior polyps, adenoma 

number, adenoma size, adenoma location, presence of tubulovillous or villous histology, and 

presence of high-grade dysplasia were significantly associated with risk for AN on follow-

up (Table 3). Including these variables in multivariable logistic regression, LASSO variable 

selection and bootstrap samples showed that sex and presence of high-grade dysplasia were 

less important predictors, consistently entering the model last. Considering the top two best 

models selected by BMA, we found that both models did not include sex and high-grade 

dysplasia which was consistent with the LASSO result. We also found that both models 

included age, history of prior polyp, adenoma number, size, and presence of tubulovillous or 

villous histology, while one included adenoma location and the other did not. Since adenoma 

location was identified as an important predictor in LASSO, the model including adenoma 

location was selected as the final model. In the training dataset, the final model had AUC = 

0.68 (95 % CI: 0.66–0.70), with good calibration (goodness-of-fit test p = 0.39).

Identification of cut-points for risk stratification

Based on the entire set of pooled data, the sensitivity and specificity of USMSTF guidelines 

were estimated to be 78 and 41 %, respectively. Using the selected model, two cut-points 

were identified to achieve the targeted sensitivity of 88 % and the targeted specificity of 

51 %, respectively; that is, a 10 percentage point improvement in sensitivity and specificity 

over the guidelines. When targeting improvement in sensitivity, the cut-point of 0.075 for 
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predicted probability of AN was selected, and the actual sensitivity achieved at this cut-point 

was 88.1 % in the training data. When targeting improvement in specificity, the cut-point of 

0.101 was selected, and the actual specificity achieved at this cut-point in the training data 

was 51.2 %. These two cut-points were finalized prior to applying the final predictive model 

to the validation dataset.

Model validation

When applied to the validation data, the AUC of the model was similar to that observed in 

the training data (AUC = 0.65; 95 % CI: 0.62–0.69, Fig. 1). Model calibration was also 

similar, as assessed by goodness-of-fit test (p = 0.21), and ratios of predicted to observed 

risk of AN, which were generally close to 1.00 (range 0.68–1.17, see Table S1, published 

online). The sensitivity and specificity of USMSTF guidelines in the validation data were 

plotted on the same figure (Fig. 1, red dot) and were observed to lie below the model-based 

ROC curve, indicating that the novel model has potential to improve upon risk stratification 

compared to current guidelines across a range of cut-points. For comparison, the sensitivity 

and specificity corresponding to the two a priori identified cut-points are also plotted in Fig. 

1, demonstrating that the first model cut-point (Fig. 1, blue square) had superior sensitivity 

compared to USMSTF guidelines and also demonstrating that the second cut-point (Fig. 1, 

green triangle) had superior specificity compared to USMSTF guidelines.

Comparison of model-based and USMSTF guidelines for risk stratification

We found that USMSTF guideline sensitivity and specificity in the validation data for 

prediction of AN were estimated to be 74 and 42.1 %, respectively, consistent with prior 

reports [5–8]. Further, we found that 83.2 % of individuals classified as high risk at baseline 

by USMSTF guidelines in the validation dataset had no AN on follow-up (consistent with 

surveillance colonoscopy overuse), and 8.9 % classified as low risk developed AN 

(consistent with surveillance colonoscopy underuse). Using the two cut-points identified in 

the training data, we next compared the sensitivity and specificity, underuse and overuse rate 

between the model and the USMSTF guidelines in the validation data (Table 4).

When using the cut-point targeted to improve sensitivity (Fig. 1, blue square), we found 

estimated sensitivity for the model-based rule to be significantly higher than for the 

USMSTF guidelines (88.9 % model vs. 74.0 % guidelines, p < 0.001), correctly identifying 

an additional net 43 subjects as high risk (14.9 % of all patients with AN on follow-up). 

However, there was a significant reduction in specificity when comparing the model-based 

and the USMSTF guidelines (27.7 % model vs. 42.1 % guidelines, p < 0.001), incorrectly 

classifying an additional net 262 subjects as high risk (14.4 % of all patients without AN on 

follow-up). The model-based risk stratification was associated with a 2.9 percentage point 

reduction in estimated surveillance colonoscopy underuse, when compared to the USMSTF 

guidelines (6.0 % model vs. 8.9 % guidelines, p < 0.05), without substantially changing 

estimated surveillance colonoscopy overuse among those classified as high risk (83.7 % 

model vs. 83.2 % guidelines, p > 0.05).

We then investigated the model cut-point targeted to improve specificity (Fig. 1, green 

triangle). Estimated specificity for the model was significantly superior to USMSTF 
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guidelines in the validation data; however, it did not reach the 10 percentage point 

improvement that we targeted in the training data (46.2 % model vs. 42.1 % guidelines, p < 

0.001). At this cut-point, the model correctly identified an additional net 76 subjects as low 

risk (4.2 % of all patients without AN on follow-up). There was no reduction in sensitivity 

(75.8 % model vs. 74.0 % guidelines, p = 0.64), and the model correctly identified an 

additional net 5 patients as at high risk (1.7 % of all patients with AN on follow-up). Model 

performance at this cut-point was associated with a modest absolute reduction in estimated 

surveillance colonoscopy overuse (81.8 % model vs. 83.2 % guidelines, p < 0.05), along 

with a nonsignificant reduction in colonoscopy underuse (7.7 % model vs. 8.9 % guidelines, 

p > 0.05).

Discussion

We have demonstrated that a novel predictive model for metachronous AN, together with an 

a priori established risk cut-point, can modestly improve specificity (46.2 % model vs. 

42.1 % guidelines, p < 0.001) with no deterioration in sensitivity (75.8 % model vs. 74.0 % 

guidelines, p = 0.64), when compared to current USMSTF guidelines for post-polypectomy 

risk stratification. Our predictive model was developed using best statistical practices for 

predictive modeling on one of the most comprehensive datasets available. These practices 

include a priori specification of the model and cut-point development in the training data 

using optimal prediction strategies, and prespecifying the testing plan in the validation data. 

Statistical theory thus supports that the model likely represents a near optimal prediction rule 

based on available data, which is an advantage of a model-based approach over more ad hoc 

approaches. The improved test characteristics we observed were likely due to selection of 

additional variables into the final model which are not used by USMSTF guidelines, and 

also by employing some variables as continuous rather than categorical predictors (e.g., 

considering the absolute number of adenomas in the predictive model rather than 

categorizing the number of adenomas as 3 or more, or less than 3, as in the USMSTF 

guidelines). Although the magnitude of the estimated benefit was rather modest, our work 

provides proof of concept that improved modeling techniques and additional variables, 

beyond adenoma number, size, and histology as used for USMSTF guideline-based 

management, have potential to improve risk stratification of individuals with colorectal 

polyps, and merit further investigation.

An additional advantage of model-based risk stratification is the ability to tune sensitivity 

and specificity to clinical needs more finely by choosing a clinically appropriate cut-point. 

Indeed, as seen from Fig. 1, a risk cut-point to maximize sensitivity or specificity could be 

identified. Thus, the model could be used to select strategies for surveillance that maximizes 

either sensitivity or specificity depending on the priorities of patients, physicians, or policy 

makers. For example, use of the cut-point targeted to improve sensitivity in practice would 

have resulted in detection of an additional 14.9 % of all individuals with metachronous AN 

on follow-up. In situations with strained colonoscopy resources, or for patients at increased 

risk for colonoscopy associated complications due to factors such as age, use of the cut-point 

targeted to improve specificity could have resulted in reduced colonoscopy use, without an 

increase in underuse for individuals who developed metachronous AN. These examples also 

illustrate how a model-based approach can be used to investigate the balance between 
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estimated population level costs of surveillance colonoscopy overuse and underuse across a 

range of risk stratification cut-points.

A number of cohort and case–control studies have identified risk factors for metachronous 

AN after initial polypectomy [6, 8, 10, 11, 31–45]. These include patient characteristics 

(age, sex, BMI, diabetes, and family history of CRC), polyp characteristics (adenoma size, 

number, location), and histology (villous and/or high-grade dysplasia). We also found many 

of these characteristics to be associated with risk of metachronous AN in our analysis. 

However, unlike prior reports, we extended our identification of risk factors for 

metachronous AN to develop and validate a statistical model for predicting this outcome. To 

our knowledge, there have not been previous reports of comprehensive statistical models that 

take into account multiple characteristics, and compare performance to established practice 

guidelines. As such, our findings confirm and extend prior work seeking to improve risk 

stratification of individuals after baseline polypectomy. In addition, our model-based 

stratification rule was based on choosing appropriate cut-points for predicted probability of 

risk and the performance of the risk stratification was evaluated through sensitivity and 

specificity, a strategy not commonly reported though it has the advantage of statistical rigor 

and direct clinical relevance.

Notably, our targeted cut-points, which aimed to achieve substantial improvements in either 

sensitivity or specificity, could not simultaneously improve sensitivity and specificity. This 

illustrates the limits of the potential improvements supported by the current data and 

highlights the need for incorporation of data from additional risk factors, which might 

support further improvements in overall prognostic power. It is likely that additional 

variables will need to be identified in order to achieve the goal of substantially improving 

both specificity and sensitivity at the same time. Although we included key patient and 

polyp characteristics that were not taken into account by USMSTF guidelines in our 

predictive model, there are other variables that might be influential but were not considered. 

For example, the adenoma detection rate has been found to be significantly associated with 

interval CRC after colonoscopy [46, 47], but was not available for our study. Colonoscopy is 

an operator-dependent test with performance characteristics (such as adenoma detection 

rate) varying within endoscopist and other factors [48]. Thus, indicators of the quality of 

colonoscopy are natural further candidates that could be considered in risk classification 

[35]. Indeed, because of the observed close relationship between colonoscopist adenoma 

detection rate and risk for interval cancer after colonoscopy [46, 47], it is possible that this 

parameter might be a very powerful prognostic variable for metachronous neoplasia. Aspirin 

and dietary variables, such as red meat, processed meat, and fiber, have also been linked 

with risk for CRC and may also be considered as candidate variables for risk stratification 

for metachronous advanced neoplasia [5]. It is likely that additional variables (such as 

adenoma detection rate and aspirin exposure) would have a substantial impact on the ability 

of the model to correctly identify both high-risk and low-risk patients. For variables already 

considered in the predictive model, additional information (such as types of previous polyp, 

serrated or not) might also improve model performance.

Several limitations may be considered in interpreting this work. First, colonoscopies 

contributing data to this study were performed between 1984 and 1998. Changes in 
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colonoscopy quality may have occurred over time, such that individuals encountered in 

clinical practice now might be at different risk of metachronous AN than the individuals 

included in this study. Second, six of the seven studies contributing to this analysis were 

from prevention trials, and in two of the trials (one of aspirin, the other of calcium 

supplementation) a modest degree of intervention efficacy was shown. Further, studies 

contributing data were not limited to individuals undergoing first time colonoscopy. We are 

unable to ascertain whether these issues might have resulted in inclusion of a study 

population that was at higher or lower risk of advanced metachronous neoplasia compared 

with the general population. Thus, patients from included trials may not be representative of 

the general population of individuals with adenomas. Third, our training and validation sets 

were a random split of a larger dataset, and we did not have additional independent 

validation datasets available. Fourth, analyses may have been affected by the detail of 

variable ascertainment. For example, we used history of prior polyp as a predictor variable, 

but do not have detail on type of prior polyp. It is possible that within the prior polyp 

category, it is only those with prior history of AN who have increased risk. Fifth, some 

predictors had a high percentage of missing data (24 % for high-grade dysplasia and 21 % 

for history of previous polyps). We included an ‘unknown’ category for these variables in 

order to retain more subjects in the analysis and improve the study power. Note that our 

focus in this study is risk prediction, and optimal methods to address missing data in this 

context are an area of active statistical research. Further, family history data were collected 

differently across studies, and were aggregated in this analysis as history of CRC in one or 

more parents, siblings, or children. Details such as prior polyp type and relationship and age 

of family members with CRC were not available for analysis, and may have affected the 

performance of these variables in our models. All of these limitations might be addressed in 

the future by conducting analyses using large clinical datasets collected as part of usual care, 

or by developing prospective registries of patients undergoing polypectomy, with careful 

data collection.

In conclusion, our results suggest that a predictive model including polyp and patient 

characteristics can be used to improve post-polypectomy risk stratification. Such a model 

has potential to reduce the unnecessary colonoscopy risks and costs for low-risk patients and 

identify high-risk individuals who might benefit from early surveillance colonoscopy. 

However, in order to substantially improve prognostic models for planning colonoscopy 

surveillance, additional clinical variables associated with colonoscopy outcomes appear to 

be needed. In ongoing work, we will incorporate quality factors and other additional patient 

and polyp factors to build on our current methodology for predicting metachronous AN after 

initial polypectomy. More research is needed to develop and validate prognostic models for 

planning colonoscopy surveillance, and this should eventually lead to prospective trials that 

test model-based strategies for surveillance.
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AUC Area under the receiver operating characteristic curve

BMI Body mass index

CI Confidence intervals

CRC Colorectal cancer

LASSO L1-regularized logistic regression model

NRI Net reclassification improvement

ROC Receiver operating characteristic

USMSTF US Multisociety Task Force

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65:5–29. 
[PubMed: 25559415] 

2. Atkin WS, Edwards R, Kralj-Hans I, Wooldrage K, Hart AR, et al. Once-only flexible 
sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled 
trial. Lancet. 2010; 375:1624–1633. [PubMed: 20430429] 

3. Lieberman DA, Rex DK, Winawer SJ, Giardiello FM, Johnson DA, et al. Guidelines for 
colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-
Society Task Force on Colorectal Cancer. Gastroenterology. 2012; 143:844–857. [PubMed: 
22763141] 

4. Martínez ME, Ahnen D, Greenberg ER. One-year risk for advanced colorectal neoplasia. Ann Intern 
Med. 2013; 158:639.

5. Martínez ME, Baron JA, Lieberman DA, Schatzkin A, Lanza E, et al. A pooled analysis of advanced 
colorectal neoplasia diagnoses after colonoscopic polypectomy. Gastroentereolgy. 2009; 136:832–
841.

6. Laiyemo AO, Murphy G, Albert PS, Sansbury LB, Wang Z, et al. Postpolypectomy colonoscopy 
surveillance guidelines: predictive accuracy for advanced adenoma at 4 years. Ann Intern Med. 
2008; 148:419–426. [PubMed: 18347350] 

7. Pinsky PF, Schoen RE, Weissfeld JL, Church T, Yokochi LA, et al. The yield of surveillance 
colonoscopy by adenoma history and time to examination. Clin Gastroenterol Hepatol. 2009; 7:86–
92. [PubMed: 18829395] 

8. Chung SJ, Kim YS, Yang SY, Song JH, Kim D, et al. Five-year risk for advanced colorectal 
neoplasia after initial colonoscopy according to the baseline risk stratification: a prospective study 
in 2452 asymptomatic Koreans. Gut. 2011; 60:1537–1543. [PubMed: 21427200] 

Liu et al. Page 10

Cancer Causes Control. Author manuscript; available in PMC 2017 October 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



9. Stegeman I, de Wijkerslooth TR, Stoop EM, van Leerdam ME, Dekker E, et al. Colorectal cancer 
risk factors in the detection of advanced adenoma and colorectal cancer. Cancer Epidemiol. 2013; 
37:278–283. [PubMed: 23491770] 

10. Saini SD, Kim HM, Schoenfeld P. Incidence of advanced adenomas at surveillance colonoscopy in 
patients with a personal history of colon adenomas: a meta-analysis and systematic review. 
Gastrointest Endosc. 2006; 64:614–626. [PubMed: 16996358] 

11. van Heijningen EM, Lansdorp-Vogelaar I, Kuipers EJ, Dekker E, Lesterhuis W, et al. Features of 
adenoma and colonoscopy associated with recurrent colorectal neoplasia based on a large 
community-based study. Gastroenterology. 2013; 144:1410–1418. [PubMed: 23499951] 

12. Laiyemo AO, Pinsky PF, Marcus PM, Lanza E, Cross AJ, et al. Utilization and yield of 
surveillance colonoscopy in the continued follow-up study of the polyp prevention trial. Clin 
Gastroenterol Hepatol. 2009; 7:562–567. [PubMed: 19138760] 

13. Schatzkin A, Lanza E, Corle D, Lance P, Iber F, et al. Lack of effect of a low-fat, high-fiber diet on 
the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N Engl J Med. 2000; 
342:1149–1155. [PubMed: 10770979] 

14. Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, et al. A randomized trial of aspirin to prevent 
colorectal adenomas. N Engl J Med. 2003; 348:891–899. [PubMed: 12621133] 

15. Alberts DS, Martínez ME, Roe DJ, Guillen-Rodriguez JM, Marshall JR, et al. Lack of effect of a 
high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer 
Prevention Physicians’ Network. N Engl J Med. 2000; 342:1156–1162. [PubMed: 10770980] 

16. Baron JA, Beach M, Mandel JS, van Stolk RU, Haile RW, et al. Calcium supplements for the 
prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. N Engl J Med. 1999; 
340:101–107. [PubMed: 9887161] 

17. Greenberg ER, Baron JA, Tosteson TD, Freeman DH Jr, Beck GJ, et al. A clinical trial of 
antioxidant vitamins to prevent colorectal adenoma. Polyp Prevention Study Group. N Engl J Med. 
1994; 331:141–147. [PubMed: 8008027] 

18. Alberts DS, Martínez ME, Hess LM, Einspahr JG, Green SB, et al. Phase III trial of 
ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst. 2005; 97:846–
853. [PubMed: 15928305] 

19. Lieberman DA, Weiss DG, Bond JH, Ahnen DJ, Garewal H, et al. Use of colonoscopy to screen 
asymptomatic adults for colorectal cancer. Veterans Affairs Cooperative Study Group 380. N Engl 
J Med. 2000; 343:162–168. [PubMed: 10900274] 

20. Dean CB, Nielsen JD. Generalized linear mixed models: a review and some extensions. Lifetime 
Data Anal. 2007; 13:497–512. [PubMed: 18000755] 

21. Steyerberg EW, Eijkemans MJ, Harrell FE Jr, Habbema JD. Prognostic modelling with logistic 
regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med. 
2000; 19:1059–1079. [PubMed: 10790680] 

22. Wang D, Zhang W, Bakhai A. Comparison of Bayesian model averaging and stepwise methods for 
model selection in logistic regression. Stat Med. 2004; 23:3451–3467. [PubMed: 15505893] 

23. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via 
coordinate descent. J Stat Softw. 2010; 33:1–22. [PubMed: 20808728] 

24. Park MY, Hastie T. L1-regularization path algorithm for generalized linear models. J R Stat Soc 
Ser B Stat Methodol. 2007; 69:659–677.

25. Volinsky CT, Madigan D, Raftery AE, Kronmal RA. Bayesian model averaging in proportional 
hazard models: assessing the risk of a stroke. J R Stat Soc Ser C Appl Stat. 1977; 46:433–448.

26. Hosmer, D., Lemeshow, S. Applied logistic regression. Wiley; New York: 2000. 

27. Vermont J, Bosson JL, François P, Robert C, Rueff A, et al. Strategies for graphical threshold 
determination. Comput Methods Programs Biomed. 1991; 35:141–150. [PubMed: 1914452] 

28. Schäfer H. Constructing a cut-off point for a quantitative diagnostic test. Stat Med. 1989; 8:1381–
1391. [PubMed: 2692111] 

29. Gallop RJ, Crits-Christoph P, Muenz LR, Tu XM. Determination and interpretation of the optimal 
operating point for ROC curves derived through generalized linear models. Underst Stat. 2003; 
2:219–242.

Liu et al. Page 11

Cancer Causes Control. Author manuscript; available in PMC 2017 October 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



30. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive 
ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 
2008; 27:157–172. [PubMed: 17569110] 

31. Seo JY, Chun J, Lee C, Hong KS, Im JP, et al. Novel risk stratification for recurrence after 
endoscopic resection of advanced colorectal adenoma. Gastrointest Endosc. 2015; 81:655–664. 
[PubMed: 25500328] 

32. Fairley KJ, Li J, Komar M, Steigerwalt N, Erlich P. Predicting the risk of recurrent adenoma and 
incident colorectal cancer based on findings of the baseline colonoscopy. Clin Transl 
Gastroenterol. 2014; 5:e64. [PubMed: 25472702] 

33. van Enckevort CC, de Graaf AP, Hollema H, Sluiter WJ, Kleibeuker JH, et al. Predictors of 
colorectal neoplasia after polypectomy: based on initial and consecutive findings. Neth J Med. 
2014; 72:139–145. [PubMed: 24846927] 

34. Jang ES, Kim JW, Jung YJ, Jeong JB, Kim BG, et al. Clinical and endoscopic predictors of 
colorectal adenoma recurrence after colon polypectomy. Turk J Gastroenterol. 2013; 24:476–482. 
[PubMed: 24623285] 

35. Brenner H, Chang-Claude J, Jansen L, Seiler CM, Hoffmeister M. Role of colonoscopy and polyp 
characteristics in colorectal cancer after colonoscopic polyp detection: a population-based case–
control study. Ann Intern Med. 2012; 157:225–232. [PubMed: 22910933] 

36. Cottet V, Jooste V, Fournel I, Bouvier AM, Faivre J, et al. Long-term risk of colorectal cancer after 
adenoma removal: a population-based cohort study. Gut. 2012; 61:1180–1186. [PubMed: 
22110052] 

37. de Jonge V, Sint Nicolaas J, van Leerdam ME, Kuipers EJ, Veldhuyzen van Zanten SJ. Systematic 
literature review and pooled analyses of risk factors for finding adenomas at surveillance 
colonoscopy. Endoscopy. 2011; 43:560–572. [PubMed: 21437854] 

38. Nusko G, Hahn EG, Mansmann U. Risk of advanced metachronous colorectal adenoma during 
long-term follow-up. Int J Colorectal Dis. 2008; 23:1065–1071. [PubMed: 18597098] 

39. Bonithon-Kopp C, Piard F, Fenger C, Cabeza E, O’Morain C, et al. Colorectal adenoma 
characteristics as predictors of recurrence. Dis Colon Rectum. 2004; 47:323–333. [PubMed: 
14991494] 

40. Bertario L, Russo A, Sala P, Pizzetti P, Ballardini G, et al. Predictors of metachronous colorectal 
neoplasms in sporadic adenoma patients. Int J Cancer. 2003; 105:82–87. [PubMed: 12672034] 

41. Nusko G, Mansmann U, Kirchner T, Hahn EG. Risk related surveillance following colorectal 
polypectomy. Gut. 2002; 51:424–428. [PubMed: 12171968] 

42. Gschwantler M, Kriwanek S, Langner E, Goritzer B, Schrutka-Kolbl C, et al. High-grade dysplasia 
and invasive carcinoma in colorectal adenomas: a multivariate analysis of the impact of adenoma 
and patient characteristics. Eur J Gastroenterol Hepatol. 2002; 14:183–188. [PubMed: 11981343] 

43. Bertario L, Russo A, Sala P, Pizzetti P, Ballardini G, et al. Risk of colorectal cancer following 
colonoscopic polypectomy. Tumori. 1999; 85:157–162. [PubMed: 10426124] 

44. Yang G, Zheng W, Sun QR, Shu XO, Li WD, et al. Pathologic features of initial adenomas as 
predictors for metachronous adenomas of the rectum. J Natl Cancer Inst. 1998; 90:1661–1665. 
[PubMed: 9811316] 

45. Triantafyllou K, Papatheodoridis GV, Paspatis GA, Vasilakaki TH, Elemenoglou I, et al. Predictors 
of the early development of advanced metachronous colon adenomas. Hepatogastroenterology. 
1997; 44:533–538. [PubMed: 9164533] 

46. Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, et al. Adenoma detection rate and risk of 
colorectal cancer and death. N Engl J Med. 2014; 370:1298–1306. [PubMed: 24693890] 

47. Kaminski MF, Regula J, Kraszewska E, Polkowski M, Wojciechowska U, et al. Quality indicators 
for colonoscopy and the risk of interval cancer. N Engl J Med. 2010; 362:1795–1803. [PubMed: 
20463339] 

48. Leggett BA, Hewett DG. Colorectal cancer screening. Intern Med J. 2015; 45:6–15. [PubMed: 
25582937] 

49. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, et al. Multitarget stool DNA testing 
for colorectal-cancer screening. N Engl J Med. 2014; 370:1287–1297. [PubMed: 24645800] 

Liu et al. Page 12

Cancer Causes Control. Author manuscript; available in PMC 2017 October 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 1. 
ROC curve for the predictive model using validation data. This graph demonstrates the 

potential advantage of using a continuous predictive model for risk stratification. Cut-points 

for probability of metachronous advanced neoplasia, which were estimated by the predictive 

model, can be identified to improve either sensitivity or specificity over the USMSTF 

guidelines. The red dot represents the sensitivity and specificity estimated by the USMSTF 

guidelines in the validation data. The blue square represents the estimated sensitivity and 

specificity in the validation data corresponding to the cut-point targeted for improved 

sensitivity over USMSTF guidelines. The green triangle represents the estimated sensitivity 

and specificity in the validation data corresponding to the cut-point identified in the test data 

targeted to improve specificity over the USMSTF guidelines. (Color figure online)
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Table 1

Glossary of risk stratification terms [49]

Sensitivity (true positive rate) proportion of individuals with metachronous advanced neoplasia at follow-up who was classified as ‘high risk’ at 
baseline by classification strategy (i.e., predictive model or guidelines)

Specificity (true negative rate) proportion of individuals without metachronous advanced neoplasia at follow-up who was classified as ‘low risk’ 
at baseline by classification strategy

Positive predictive value (PPV) proportion of individuals with metachronous advanced neoplasia at follow-up among those who were classified 
by a strategy as ‘high risk’ at baseline

Negative predictive value (NPV) proportion of individuals without metachronous advanced neoplasia at follow-up among those who were 
classified by a strategy as ‘low risk’ at baseline

Surveillance colonoscopy overuse rate (1-PPV) proportion of individuals without metachronous advanced neoplasia at follow-up among those 
who were classified by a strategy as ‘high risk’ at baseline

Surveillance colonoscopy underuse rate (1-NPV) proportion of individuals with metachronous advanced neoplasia at follow-up among those 
who were classified by a strategy as ‘low risk’ at baseline
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Table 2

Patient characteristics for the study cohort, stratified by training versus validation dataset assignment

Total (n = 8,228)
n (%)

Training (n = 5,483)
n (%)

Validation (n = 2,745)
n (%)

p valuea

Demographics

Age (year)

 Mean (SD) 62.1 (9.42) 62.1 (9.43) 62.0 (9.41) 0.42

BMI

 Mean (SD) 27.5 (4.43) 27.5 (4.42) 27.6 (4.47) 0.60

Sex

 Female 2,374 (28.9) 1,566 (28.6) 808 (29.4) 0.42

 Male 5,845 (71.1) 3,917 (71.4) 1,937 (70.6) 0.42

Race/ethnicity

 White 7,316 (88.9) 4,870 (88.8) 2,466 (89.1) 0.91

 African-American 461 (5.6)  311 (5.7)  150 (5.5)  

 Others 451 (5.5)  302 (5.5)  149 (5.4)  

Family history of colorectal cancer

 No 5,818 (70.7) 3,840 (70.0) 1,978 (72.1) 0.04

 Yes 1,879 (22.8) 1,265 (23.1) 614 (22.4)

 Unknown 531 (6.5)  378 (6.9)  153 (5.6)  

Cigarette smoker

 Never 2,805 (34.3) 1,906 (34.9) 899 (32.9) 0.18

 Former 4,081 (49.9) 2,695 (49.4) 1,386 (50.8)

 Current 1,299 (15.9) 853 (15.6) 446 (16.3)

Personal history of previous polyp

 No 4,447 (54)   2,967 (54.1) 1,480 (53.9) 0.18

 Yes 2,057 (25)   1,342 (24.5) 715 (26)   

 Unknown 1,724 (21)   1,174 (21.4) 550 (20)   

Adenoma characteristics

Number (count)

 Mean (SD) 1.73 (1.28) 1.73 (1.26) 1.74 (1.33) 0.85

Size of largest (mm)

 Mean (SD) 8.14 (6.20) 8.23 (6.30) 7.95 (6.00) 0.02

Locationb

 Distal colorectum 3,867 (47)   2,578 (47)   1,289 (47)   0.31

 Proximal only 2,482 (30.2) 1,657 (30.2) 825 (30.1)

 Proximal and distal 1,553 (18.9) 1,017 (18.5) 536 (19.5)

 Unknown 326 (4.0)  231 (4.2)  95 (3.5)  

Histology

 Tubular 5,576 (67.8) 3,729 (68)   1,847 (67.3) 0.75

 Tubullovillous or villous 1,728 (21)   1,147 (20.9) 581 (21.2)

 Unknown and others 924 (11.2) 607 (11.1) 317 (11.5)
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Total (n = 8,228)
n (%)

Training (n = 5,483)
n (%)

Validation (n = 2,745)
n (%)

p valuea

High-grade dysplasia

 No 5,630 (68.4) 3,747 (68.3) 1,883 (68.6) 0.91

 Yes 599 (7.3)  404 (7.4)  195 (7.1)  

 Unknownc 1,999 (24.3) 1,332 (24.3) 667 (24.3)

Predicted risk of advanced adenoma on follow-upd 0.53

 High risk 2,477 (30.1) 1,635 (29.8) 842 (30.7)

 Low risk 3,939 (47.9) 2,649 (48.3) 1,290 (47.0)

 Unknownc 1,812 (22.0) 1,199 (21.9) 613 (22.3)

a
p value is for comparing the distribution of variables between training and validation datasets

b
Adenoma location is defined as proximal (cecum, ascending colon, hepatic flexure, transverse colon, and splenic flexure) or distal (descending 

colon, sigmoid colon, and rectum)

c
Presence of high-grade dysplasia was not characterized by AFT and CPPS studies, this variable was characterized as unknown for patients from 

these two studies

d
Risk of advanced adenoma was classified using USMSTF guidelines, subjects were classified as unknown if missing adenoma size, adenoma 

number, histology, or high-grade dysplasia
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Table 3

Factors associated with metachronous advanced neoplasia, training data

Unadjusteda Adjustedb

OR (95 % CI) p value OR (95 % CI) p value

Demographics

Age (per year) 1.04 (1.03–1.05) <0.001 1.03 (1.02–1.04) <0.001

BMI 1.01 (0.99–1.03)   0.17

Sex

 Female Ref

 Male 1.24 (1.03–1.50)   0.02

Race/ethnicity

 White Ref

 African-American 1.00 (0.71–1.42)   0.99

 Other 0.88 (0.61–1.28)   0.51

Family history of colorectal cancer

 No Ref

 Yes 1.04 (0.86–1.26)   0.68

 Unknown 1.07 (0.78–1.47)   0.68

Cigarette smoker

 Never Ref

 Former 1.10 (0.92–1.31)   0.31

 Current 0.97 (0.75–1.25)   0.80

Personal history of previous polyp

 No Ref Ref

 Yes 1.45 (1.21–1.75) <0.001 1.50 (1.23–1.84)   0.001

 Unknown 0.85 (0.68–1.07)   0.16 0.90 (0.71–1.14)   0.38

Adenoma characteristics

Number (per adenoma) 1.25 (1.19–1.32) <0.001 1.13 (1.06–1.21) <0.001

Size (per mm) 1.05 (1.04–1.06) <0.001 1.03 (1.02–1.04) <0.001

Location

 Distal colorectum Ref Ref

 Proximal only 1.44 (1.19–1.76) <0.001 1.41 (1.14–1.74)   0.002

 Proximal and distal 2.25 (1.83–2.76) <0.001 1.51 (1.17–1.95)   0.002

 Unknown 1.08 (0.69–1.70)   0.73 0.96 (0.58–1.61)   0.88

Histology

 Tubular Ref Ref

 Tubullovillous or villous 2.11 (1.76–2.54) <0.001 1.63 (1.32–2.00) <0.001

 Unknown/other 1.31 (1.01–1.71)   0.04 1.09 (0.83–1.45)   0.53

High-grade dysplasia

 No Ref

 Yes 1.81 (1.38–2.36) <0.001

 Unknown CPPS 1.23 (0.96–1.58)   0.11
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Unadjusteda Adjustedb

OR (95 % CI) p value OR (95 % CI) p value

 Unknown AFT 0.85 (0.65–1.10)   0.22

a
Unadjusted OR from simple logistic regression model

b
Adjusted OR from the best selected multivariable logistic regression model. Note that the ORs are not available for risk factors that were not 

selected in the best model. Ref, reference group
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Table 4

Net clinical benefit of the novel model versus USMSTF guidelines using model cut-points targeted to improve 

(a) sensitivity, and (b) specificity, applied to the validation dataset

Model cut-point strategy Measure of 
clinical benefit

Validation dataset results

USMSTF guidelines (%) Predictive model (%) Difference (95 % CI)a

Improve sensitivity compared to USMSTF guidelines

Specified sensitivity within training 
data: 88 %

Sensitivity 74.0 88.9   14.9 (9.5, 20.2)***

 Resulting cut-point = 0.075 Specificity 42.1 27.7 −14.4 (−16.7, −11.9)***

Overuse 83.2 83.7     0.5 (−0.6,1.6)

Underuse   8.9   6.0   −2.9 (−5.0, −0.9)†

Improve specificity compared to USMSTF guidelines

 Specified specificity within training 
data = 51 %

Sensitivity 74.0 75.8     1.8 (−4.2, 7.4)

 Resulting cut-point = 0.101 Specificity 42.1 46.2     4.1 (2.0, 6.7)***

Overuse 83.2 81.8   −1.4 (−2.7, −0.1)†

Underuse   8.9   7.7   −1.2 (−3.0, 0.6)

a
Difference is the estimate using predictive model minus the estimate using US guidelines and 95 % CI is based on 1,000 bootstrapped samples

*
p value < 0.05;

**
p value < 0.01;

***
p value < 0.001;

†
Statistically significant at alpha = 0.05 based on 95 % bootstrap CI
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