
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Hessian Approximations for Large-Scale Inverse Problems Governed By Partial Differential 
Equations

Permalink
https://escholarship.org/uc/item/60k3q303

Author
Vuchkov, Radoslav G.

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60k3q303
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, MERCED

Hessian Approximations for Large-Scale Inverse Problems
Governed By Partial Differential Equations

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Applied Mathematics

by

Radoslav G. Vuchkov

Committee in charge:

Professor Noemi Petra, Chair
Professor Boaz Ilan
Dr. Cosmin G. Petra
Professor Roummel Marcia

2022



Copyright

Radoslav G. Vuchkov, 2022

All rights reserved.



The dissertation of Radoslav G. Vuchkov is ap-

proved, and it is acceptable in quality and form

for publication on microfilm and electronically:

(Professor Boaz Ilan)

(Dr. Cosmin G. Petra)

(Professor Roummel Marcia)

(Professor Noemi Petra, Chair)

University of California, Merced

2022

iii



DEDICATION

To my wife and family.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background: Large-Scale Inverse Problems Governed by Par-
tial Differential Equations (PDEs) . . . . . . . . . . . . . . . . 6
2.1 Deterministic Inverse Problems . . . . . . . . . . . . . . 6

2.1.1 Adjoint-based first- and second-order derivatives . 7
2.2 Bayesian Inverse Problems . . . . . . . . . . . . . . . . . 9

Chapter 3 Quasi-Newton Formulas for Optimization in Function Space . 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Least-squares variational characterization framework for

deriving quasi-Newton updates . . . . . . . . . . . . . . . 17
3.4 Derivation of various secant update formulas . . . . . . . 21

3.4.1 Note on the limited-memory compact representa-
tion formulas . . . . . . . . . . . . . . . . . . . . 29

3.5 Incorporating Hessian structure in quasi-Newton formu-
las: a case study for inverse problems governed by partial
differential equations . . . . . . . . . . . . . . . . . . . . 30
3.5.1 Derivation of structured DFP and BFGS formulas 31
3.5.2 Numerical results . . . . . . . . . . . . . . . . . . 32

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Inexact Hessian-applies for Inverse Problems Governed by PDEs 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 38
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ABSTRACT OF THE DISSERTATION

Hessian Approximations for Large-Scale Inverse Problems

Governed By Partial Differential Equations

by

Radoslav G. Vuchkov

Doctor of Philosophy in Applied Mathematics

University of California, Merced, 2022

Professor Noemi Petra, Chair

Inverse problems abound in all areas of science, engineering, and beyond. These

can be seen as tools that can be used to refine mathematical models using mea-

surement data. Here by refine we mean, estimate unknown or uncertain input

parameters that cannot directly be measured. This is an important task, since

the quality and predictability of the mathematical models relies on the ability to

estimate these parameters as accurately as possible. In this thesis, we focus on

a particular class of inverse problems, namely on inverse problems governed by

partial differential equations (PDEs). These inverse problems are formulated as

nonlinear least squares optimization problems constrained by PDEs. The major

part of the thesis is devoted to developing efficient computational strategies to solve

these optimization problems. To this end, we focus on derivative-based optimiza-

tion methods, e.g., quasi-Newton and Newton. The first- and second-order (when

applicable) derivative information is derived using adjoint-based techniques. For

quasi-Newton, we provide a new derivation of well-known quasi-Newton formulas

in an infinite-dimensional Hilbert space setting. We show numerical results that

demonstrate the desired mesh-independence property and superior performance of

the resulting quasi-Newton methods. For Newtons’ method, we aim to reduce the

computational cost (measured in PDE solves) per Newton iteration. There are a

number of existing approaches in the literature that target this goal. For instance,

xiii



via efficient preconditioning of the underlying Newton system, inexact Newton-

CG solves, via low-rank approximations of the second-order derivative (Hessian)

of the optimization objective, and via inexact Hessian-vector products (i.e., inex-

act second-order adjoint solves). In this thesis we focus on the latter and derive

bounds for tolerances for inexact PDE solves required by the Hessian apply. We

apply these tolerances for an inverse problem governed by a Poisson problem and

show that relaxing the Hessian apply can lead to an overall reduced number of

PDE solves.

In the last part of the thesis, we go beyond a deterministic setup and quantify

the uncertainties in the solution of inverse problems. To this end, we adopt the

framework of Bayesian inference which allows us to systematically take into account

noisy observations, uncertain models and prior knowledge about the unknown.

The problem of interest is the estimation of the basal sliding coefficient field for

an uncertain thermally-dependent nonlinear Stokes ice sheet model. The novelty

in this inverse problem is the uncertainty in the forward model in addition to the

uncertain basal sliding coefficient field. This additional uncertainty stems from the

unknown temperature distribution within the ice, which is dictated by both the

unknown thermal conductivity and unknown geothermal heat flux. To account

for model uncertainties, we use the Bayesian approximation error (BAE) approach

combined with a variance reduction technique. Preliminary results indicate that

the BAE approach can be used to account for model uncertainties induced by

the unknown thermal properties of the ice, and that failure to take into account

these uncertainties can lead to erroneous estimates. In addition, we show that

BAE combined with a variance reduction technique has the potential to reduce

the offline costs of the BAE approach.

xiv



Chapter 1

Introduction

Mathematical models play a central role in all areas of sciences (e.g., physical,

engineering, social sciences). These can help analyze and simulate systems and

to ultimately make predictions. Models can take many forms, including dynam-

ical systems, differential equations, statistical models, etc. In this thesis, we will

focus on physics-based models governed by partial differential equations (PDEs).

Once a mathematical model is designed and validated (typically against idealistic

experimental setup and results), the next question is how to solve the underlying

mathematical problem or equations. In other words, the problem at hand becomes:

given inputs (e.g., source terms, coefficients fields, initial and/or boundary condi-

tions, geometry, etc.) solve the underlying equations to obtain a specific output.

This is the so-called forward (or state) problem. When one derives (or defines) the

underlying mathematical equations, one needs to decide on the values for these

inputs. While some of these input parameters may be known (i.e., can be directly

observed or measured), often these are unknown or uncertain. The quality and

predictability of the mathematical models depends on the ability to better esti-

mate these parameters. When observations are available, these parameters can be

inferred via solving an inverse problem.

Inverse problems come with various mathematical and computational chal-

lenges. The most typical one is the fact that these problems are ill-posed, that is,

their solution is not unique and is highly sensitive to errors in the observations.

The remedy for ill-posedness is regularization. Defining a suitable regularization

1
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is a modeling choice and will affect the solution of the inverse problem. Therefore

care must be taken to properly choose this term for the inverse problem. The sec-

ond challenge is the numerical solution for these problems. Inverse problems are

typically formulated as nonlinear least squares minimization problems, in which

the cost (or the objective) function is composed of a so-called misfit term (be-

tween the solution of the forward problem and observations) and a regularization

term. One can solve this optimization problem with various methods. However,

the dimension of optimization problems governed by PDEs are typically large-scale

stemming from discretization. Therefore, efficient solution methods will require at

least the first derivative of the cost function. For inverse problems governed by

PDEs, deriving (and computing) derivatives is challenging. Typically, however,

adjoint-based methods, the approach taken in this thesis, give a systematic means

to derive derivatives. In addition, when solving an inverse problem governed by

PDEs, the forward problem will need to be solved several times. Therefore, solving

the inverse problem inherits all the computational challenges the forward problem

has. Finally, the solution of (deterministic) inverse problems are highly sensitive

to the noise in measurements and modeling errors. Therefore, it is not sufficient

to solve the inverse problem, but one needs to quantify the uncertainties in its

solution. To do so, we model the unknown as a random variable, which leads to a

statistical inverse problem. The resulting solution to the statistical inverse prob-

lem is a posterior distribution. In this thesis, we adopt the framework of Bayesian

inference. The deterministic inverse problem will be a subproblem in a Bayesian in-

verse problem, therefore, the algorithmic developments for Bayesian inversion will

inherit all the computational challenges of the deterministic inverse and forward

problems and have the additional challenge to explore possibly high-dimensional

distributions.

In this thesis, we focus on computational methods for inverse problems governed

by PDEs. In particular we focus on reducing the computational cost (measured

in forward PDE solves) for second-order (and second-order-like) methods, such as

Newton and quasi-Newton methods. In addition, in this thesis we also focus on

inverse problems governed by uncertain forward models. In particular we account
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for model uncertainty additional to the uncertainty in inversion parameters and

propose a technique to reduce the computational cost in the process.

Organization of the Dissertation. The overall structure of this dissertation

is divided into: background material (Chapter 2), research contributions (Chapters

3-5), and conclusion and future work (Chapter 6). The chapters in this dissertation

are organized as follows:

• Chapter 2: Background: Large-Scale Inverse Problems governed

by PDEs

In this section, we discuss the general formulation of inverse problems gov-

erned by PDEs, provide background on optimization methods to solve such

problems, and introduce notations.

• Chapter 3: Quasi-Newton Formulas for Optimization in Function

Spaces

In this section, we discussed quasi-Newton alternatives to Newton’s method,

which are preferred when solving optimization problems due to its superior

convergence properties. In our work, we provide a new derivation of well-

known quasi-Newton formulas in an infinite-dimensional Hilbert space set-

ting. It is known that quasi-Newton update formulas are solutions to certain

variational problems over the space of symmetric matrices. In this thesis, we

formulate similar variational problems over the space of bounded symmetric

operators in Hilbert spaces. By changing the constraints of the variational

problem we obtain updates (for the Hessian and Hessian inverse) not only for

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method but

also for Davidon–Fletcher–Powell (DFP), Symmetric Rank One (SR1), and

Powell-Symmetric-Broyden (PSB). In addition, for an inverse problem gov-

erned by a partial differential equation (PDE), we derive DFP and BFGS

“structured” secant formulas that explicitly use the derivative of the regu-

larization and only approximates the second derivative of the misfit term.

We show numerical results that demonstrate the desired mesh-independence

property and superior performance of the resulting quasi-Newton methods.

This work was published in the Journal of Numerical Functional Analysis
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and Optimization [3].

• Chapter 4: Second-Order Adjoints in Inexact Hessian-Vector Prod-

ucts

In this section, we focus on Newton’s method to solve optimization prob-

lems governed by PDEs. Second-order, Newton-like algorithms exhibit con-

vergence properties superior to gradient-based or derivative-free optimiza-

tion algorithms. However, deriving and computing second-order derivatives–

needed for the Hessian-vector product in a Krylov iteration for the Newton

step– often is not trivial. Second-order adjoints provide a systematic and

efficient tool to derive second derivative information. In this chapter of the

thesis, we show that the efficiency of an inexact Newton-Conjugate Gradient

(CG) approach to solve inverse problems governed by PDEs can be improved

with inexact Hessian-vector products using approximate second-order adjoint

solves. We showed numerical results for an inverse problem governed by an

elliptic PDE. In particular we show that one can relax the tolerance of the

second-order adjoint solves, which leads to reducing the number of inner CG

iterations and overall computational effort. This is joint work with Prof.

Ekkehard Sacks and Prof. Noemi Petra.

• Chapter 5: Variance reduction for the Bayesian approximation er-

ror (BAE) with application to the Stokes ice sheet model under

uncertain thermal distribution

In this chapter, we considered the problem of estimating the basal sliding co-

efficient field for an uncertain thermally-dependent nonlinear Stokes ice sheet

model based on synthetic surface velocity measurements. The uncertainty in

the forward model stems from the unknown temperature distribution within

the ice which is dictated by both the unknown thermal conductivity and

unknown geothermal heat flux. The estimation problem is considered within

the Bayesian framework which allows for the incorporation and subsequent

quantification of uncertainty. The Bayesian approximation error (BAE) ap-

proach is employed to simultaneously premarginalise over both the model

uncertainties and measurement errors. The basal sliding parameter can then
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be estimated independently of the thermal parameters. To reduce the com-

putational costs associated with the BAE approach, we propose a linear

Taylor-based control variate to reduce the variance of the model error. To

quantify the posterior uncertainty in the basal sliding parameter we employ

a local Gaussian approximation to the posterior centered at the maximum

a posteriori (MAP) basal sliding coefficient estimate. Computation of the

MAP estimate is carried out using inexact Newton-CG for which the gradi-

ent and (action of) the Hessian are computed using the adjoint method. The

performance and computational costs of the BAE approach are assessed on a

two-dimensional test problem taken from the Ice Sheet Model Intercompar-

ison Project for Higher-Order Ice Sheet Models (ISMIP-HOM) benchmark

study. We pay particular attention to the feasibility of the estimates, i.e.,

how well the posterior density supports the truth, as well as the computa-

tional costs associated with carrying out the premarginalisation. Our results

indicate that the BAE approach can be used to account for model uncertain-

ties induced by the unknown thermal properties of the ice, and that failure

to take into account these uncertainties can lead to erroneous estimates. Fur-

thermore, preliminary results show that the proposed control variate has the

potential to reduce the offline costs of the BAE approach. This is joint work

with Prof. Ruanui Nicholsons, Prof. Umberto Villa, and Prof. Noemi Petra.

• Chapter 6: Conclusion and Potential Future Research Directions

In this chapter, we summarize the contributions of this thesis, discuss re-

search work tangential to the thesis but parallel to possible future work, and

future research directions.



Chapter 2

Background: Large-Scale Inverse

Problems Governed by Partial

Differential Equations (PDEs)

In what follows, we provide a brief introduction to the deterministic and Bayesian

formulation of inverse problems and their connection to PDE-constrained optimiza-

tion.

2.1 Deterministic Inverse Problems

In model parameter inversion (i.e., inverse problems governed by partial differ-

ential equations), we seek to reconstruct an unknown spatially varying parameter

field m from measurements d of a forward (or state) variable u that depend on

the parameter implicitly through the solution of the underlying (forward) model.

In this work we will assume the forward (state) equation is described by a PDE

unless otherwise stated. Mathematically the inverse problem can be written as

d = F(m) + η, (2.1)

where F :M→ Rq is the so-called parameter-to-observable map, and the additive

noise η can be modeled as η ∼ N (0,Γnoise) [82]. The domain of the mappingM is

6
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assumed to be compact and unless otherwise specifiedM⊆ L2(D), where D ⊂ Rd,

with d ∈ N.

Evaluating F is equivalent to solving the underlying forward problem for a

given parameter m, followed by the application of an observation operator B to

extract the solution at measurement locations. To be more precise

F(m) = Bu s.t r(u,m) = 0, (2.2)

where u ∈ V is the solution of the forward (state) problem, V is a Hilbert space,

B : V → Rq is the observation operator, which maps from the state space to the

measurement data space, and r : M × V → V∗ represents the PDE. A com-

mon problem that arises is when the data d is sparse and there are multiple

parameters that can fit the model, leading to an ill-posed problem in the sense

of Hadamard [26]. To cope with ill-posedness, additional assumptions on the in-

version parameter, such as smoothness are included via regularization [83, 132].

The inverse problem is stated as a nonlinear least-squares minimization problem,

namely

min
m∈M

J (m) :=
1

2
‖F(m)− d‖2

Γ−1
noise

+R(m), (2.3)

where the first term on the right in Equation (2.3) represents the misfit term

(between observations and the predicted forward solution), and R(m) is the reg-

ularization. Here ‖·‖Γ−1
noise

is a weighted norm defined in finite dimensions as

‖u‖2
W = uTWu), and Γnoise is the noise covariance matrix. In this thesis, unless

otherwise stated, Equation (2.3) is our objective function with Tikhonov regular-

ization [80].

2.1.1 Adjoint-based first- and second-order derivatives

We use the Lagrangian formalism [79] and follow [126] to derive abstract ex-

pressions for the first- (i.e., gradient) and second-order (i.e., Hessian) derivative

information. The procedure is outlined below. First we write the Lagrangian

functional as
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L(u,m, p) :=
1

2
‖F(m)− d‖Γ−1

noise
+R(m) + 〈p, r(u,m)〉V,V∗ , (2.4)

where p ∈ V is the Lagrange multiplier (which later will become the adjoint variable

or so-called test function, depending on the context), and 〈·, ·〉V,V∗ represents the

duality pair or the variational (or weak) formulation of the PDE.

We remind the reader that the weak form of a PDE given in general form by

r(u,m) = 0 can be written as 〈p, r(u,m)〉V,V∗ = r(u,m)p =
∫

Ω
r(u,m)(x)p(x)dx,

for all test functions p ∈ V . Returning to the derivation of the optimality system,

the derivative of the Lagrangian function (2.4) in an arbitrary direction m̃ ∈ M
(in weak form) is given by

G(u,m, p)(m̃) = (Rm(m), m̃) + 〈p, rm(u,m)[m̃]〉V,V∗ , ∀m̃ ∈M, (2.5)

where (R(m), m̃) denotes the derivative of the regularization with respect to m in

the direction m̃. Here we used the Euler-Lagrange formula from variational calcu-

lus [2], namely G(u,m, p)(m̃) = 〈∇L(u,m, p), m̃〉 = d
dε
L(u,m+ ε, p)|ε=0. Similarly

rm(u,m)[m̃] is the derivative of r with respect to m in a direction m̃. Furthermore,

we can derive the Fréchet derivatives of the Lagrangian with respect to the adjoint

p and the state variable u as follows

Lp(u,m, p)(p̃) = 〈p̃, r(u,m)〉V∗ ∀p̃ ∈ V , (2.6)

Lu(u,m, p)(ũ) = 〈p, ru(u,m)[ũ]〉V∗ + 〈B(u)[ũ],B(u)− d〉Rq ∀ũ ∈ V , (2.7)

where we call Lp(u,m, p)(p̃) = 0, for all p̃ ∈ V , the forward (state) problem and

Lu(u,m, p)(ũ) = 0, for all ũ ∈ V , is the adjoint problem. To obtain the second

derivative of the objective function we can consider the gradient, forward, and

adjoint together in a new Lagrangian (second order) functional

LH(u,m, p; û, ,̂m, ,̂p) : = (G(m), m̂) + 〈p̂, r(u,m)〉V,V∗ + 〈p, ru(u,m)[û]〉V,V∗ (2.8)

+ 〈B(u)[û],B(u)− d〉Rq , (2.9)

where the first term is the gradient expression, the second term stems from the

forward problem, and the last two terms represent the adjoint problem. We can
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repeat the previous steps to obtain the new optimality system. The Hessian-apply

(or action) in an arbitration direction m̂ evaluated at [p0, u0,m0] can be written

as [126, 125, 127]

〈m̃,H(m0)m̂〉 = 〈m̃,Rmm(m0)[m̂]〉+ 〈p0, rmm(u0,m0)[m̃, m̂]〉V,V∗ (2.10)

+ 〈p̂, rm(u0,m0)[m̃]〉V,V∗ + 〈p̂0, rum(u0,m0)[ũ, m̂]〉V,V∗ . (2.11)

We note that the cost of each Hessian-apply requires the solution of the so-called

incremental state problem

LHp (u,m, p; û, ,̂m, ,̂p)(p̃) = 〈p̃, ru(u,m)[û]〉V,V∗ = 0 ∀p̃ ∈ V , (2.12)

and incremental adjoint problem

LHu (u,m, p; û, ,̂m, ,̂p)(ũ) = 〈p̂, r(u,m)[ũ]〉V,V∗ + 〈B(u)[û],B(u)[ũ]− d〉Rq = 0 ∀ũ ∈ V .
(2.13)

2.2 Bayesian Inverse Problems

In what follows we state the inverse problem in a Bayesian inference framework

and formulate the inverse problem as a problem of statistical inference over the

space of uncertain parameters, which are to be inferred from data and a physical-

based model. This is done using Bayes formula, which in infinite dimensions reads

dµpost

dµprior

∝ πlike(d|m). (2.14)

Here, dµpost/dµprior denotes the Radon-Nikodym derivative [78] of the posterior

measure µpost with respect to µprior, and πlike(d|m) denotes the data likelihood [76].

Following [126] we assume an additive noise model, d = F(m) + η, where

η ∼ N (0,Γnoise) is a centered Gaussian on Rq. Therefore we define the likelihood

as

πlike(d|m) ∝ exp
{
− 1

2
‖F(m)− d‖2

Γ−1
noise

}
. (2.15)

Also in line [126], we choose the prior to be Gaussian, i.e., m ∼ N (mpr, Cprior).
This implies

dµprior(m) ∝ exp
{
− 1

2
‖m−mpr‖2

C−1
prior

}
, (2.16)
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where the covariance operator is defined using a Laplacian like operator [126, 76].

With the likelihood and prior chosen as above, the posterior distribution in (2.14)

becomes

dµpost ∝ exp
{
− 1

2
‖F(m)− d‖2

Γ−1
noise
− 1

2
‖m−mpr‖2

C−1
prior

}
. (2.17)

The maximum a posteriori (MAP) point mMAP is defined as the parameter field

that maximizes the posterior distribution, namely

mMAP := arg min
m∈M

(− log dµpost(m)) = arg min
m∈M

1

2
‖F(m)− d‖2

Γ−1
noise

+
1

2
‖m−mpr‖2

C−1
prior

.

(2.18)

We note that when F is linear, due to the particular choice of prior and noise

model, the posterior measure is Gaussian, N (mMAP, Cpost) with [76, Section 6.4],

Cpost = H−1 = (F∗Γ−1
noiseF+C−1

prior)
−1, mMAP = Cpost(F∗Γ−1

noised+C−1
priormpr), (2.19)

where F∗ : Rq → M is the adjoint of F . In the following projects we focus on

approximations and reduced order models for the Hessian H(mmap) of the negative

log-posterior evaluated at the maximum a posteriori. The driving force behind

that is the Hessian plays a fundamental role in the inversion and the uncertainty

quantification for the inferred parameter. According to [67] the Hessian (inverse)

indicates which directions in the parameter space are most informed by the data.



Chapter 3

Quasi-Newton Formulas for

Optimization in Function Space

3.1 Introduction

In optimization, quasi-Newton methods are a pragmatic alternative to Newton-

type methods for problems where the Hessian of the objective function is difficult

to derive (e.g., for optimization problems constrained by differential equations,

which requires a considerable amount of work to setup the numerical evaluation

of the second-order derivatives) or is computationally expensive to evaluate. In

computational practice, it is often the case that quasi-Newton performs similarly

or even outperforms Newton’s method: while the iteration count is generally higher

for quasi-Newton methods than for Newton-type methods, the cost of one iteration

of quasi-Newton methods is generally lower than the cost of a Newton iteration,

which may offset the disadvantage of a higher iteration count.

Quasi-Newton methods received considerable attention in the optimization

community in the last decades [111]. When applied to the minimization of a

twice continuously differentiable function f(x) : Rn → R, that is

min
x∈Rn

f(x), (3.1)

a quasi-Newton method generates a sequence of iterates xk, k = {0, 1, . . .}, by

computing a search direction of the form ∆xk = αkB
−1
k ∇f(xk), and by choosing

11
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an appropriate scalar step size αk that ensures a minimum decrease of the objective

f(x) along the direction ∆xk. Alternatively, the search direction can be in the form

∆xk = αkHk∇f(xk). The n × n matrices Bk and Hk are approximations of the

Hessian ∇2f(xk) and its inverse, respectively. The salient idea of quasi-Newton

methods is to maintain these approximations by enforcing the secant condition in

the form Bksk = yk or Hkyk = sk, where

sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).

The Davidon–Fletcher–Powell (DFP) and the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) rank-two update formulas have emerged in the last decades [111] as the

most efficient and, as a consequence, most commonly used Hessian approximations

in a quasi-Newton framework. These formulas have closed-form algebraic forms,

namely,

BDFP
k+1 = (I − γkyksTk )Bk(I − γkskyTk ) + γkyky

T
k ,

HDFP
k+1 = Hk −

Hkyky
T
kHk

yTkHkyk
+ γksks

T
k ,

BBFGS
k+1 = Bk −

Bksks
T
kBk

sTkBksk
+ γkyky

T
k , and

HBFGS
k+1 = (I − γkskyTk )Hk(I − γkyksTk ) + γksks

T
k ,

where γk = 1
sTk yk

. Other secant formulas that have been proposed and investi-

gated in the past are the symmetric rank-one (SR1) [111] and Powell–Symmetric–

Broyden (PSB) updates [96]. They also have closed-form expressions in the form

of

BPSB
k+1 = Bk +

sk(yk −Bksk)
T + (yk −Bksk)s

T
k

〈sk, sk〉
− 〈yk −Bksk, sk〉

〈sk, sk〉2
sks

T
k ,

HPSB
k+1 = Hk +

yk(sk −Hkyk)
T + (sk −Hkyk)y

T
k

〈yk, yk〉
− 〈sk −Hkyk, yk〉

〈yk, yk〉2
yky

T
k ,

BSR1
k+1 = Bk +

(yk −Bksk)(yk −Bksk)
T

〈sk, yk −Bksk〉
, and

HSR1
k+1 = Hk +

(sk −Hkyk)(sk −Hkyk)
T

〈yk, sk −Hkyk〉
.
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Related work In this thesis we consider the optimization problem (3.1) over

a separable Hilbert space H, possibly infinite-dimensional, e.g., a function space

such as L2, and derive infinite-dimensional versions of the update formulas above.

Central to our derivation is the use of a variational, least-squares approach that

was first introduced by Güler et al. for finite-dimensional optimization prob-

lems [103]. To this extent the present work can be seen as a generalization of

the work presented in [103] to an infinite-dimensional optimization setting. Some

of the infinite-dimensional quasi-Newton formulas we derive in this work have pre-

viously appeared in the literature. In [109], for example, the authors use the

class of variable metric methods, of which the BFGS, DFP, and Symmetric Rank

One (SR1) formulas are members, for control problems over function spaces, while

Broyden updates are proposed in [122] for solving nonlinear operator equations in

Hilbert spaces. In [102] the authors derive the BFGS formula in infinite dimension

starting from finite-rank updates and by imposing symmetry and positivity to ar-

rive to desired form. More recently, a survey of quasi-Newton methods in Hilbert

spaces is given in [87] with a case study for Riccati matrix equations. The BFGS

and DFP formulas are used for optimization problems in a Hilbert space setting

also in [124, 123, 37]. In [124, 123, 107] the authors present an instructive example

of the impact of taking into account the infinite-dimensional nature of the under-

lying optimization problem on the performance of the numerical algorithm leading

to mesh-independence. However, these quasi-Newton formulas are typically simply

constructed/conjectured in analogy with the finite-dimensional counterparts.

Contributions To the best of our knowledge, the present work is the first to

introduce a formal derivation of BFGS, DFP, SR1, and PSB formulas for infinite-

dimensional optimization problems. We note that our derivation can be also

used to formally generalize the finite-dimensional limited-memory compact quasi-

Newton representations of Byrd et al. [92] to Hilbert spaces. We succinctly do so

in Section 3.4.1. Furthermore, in this thesis we also illustrate how the infinite-

dimensional least-square variational approach can be used to derive new and im-

proved quasi-Newton formulas that exploit structured Hessians present in some

specific classes of optimization problems; in particular, we look at inverse prob-
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lems governed by partial-differential equations, derive new structured updates that

explicitly incorporate the computationally affordable part of Hessian, and show

that the new “structured” quasi-Newton formulas improve considerably over the

unstructured counterparts.

The remaining sections of this chapter of the thesis are organized as follows.

After presenting the requisite background material in section 3.2, we derive a series

of technical results that are crucial for the main results in section 3.3. In section 3.4,

we derive formally the update formulas for various standard secant formulas over

infinite-dimensional Hilbert spaces. In the same section we also show that the

limited-memory compact representations for BFGS and DFP can be generalized

to Hilbert spaces using the technical results presented in section 3.3. Finally, in

section 3.5 we exploit the structure present in certain classes of infinite-dimensional

inverse problems and show how structured, more efficient secant formulas, can be

obtained using the variational approach developed in sections 3.3 and 3.4. Here

we also show numerical results. Section 3.6 provides concluding remarks.

3.2 Preliminaries

In this section, we summarize the terminology and background material re-

quired for the derivation of the quasi-Newton formulas in infinite-dimensional set-

ting. In what follows, we consider H and K separable Hilbert spaces, i.e., they

have a countable basis [93].

Definition 1. [106, p. 187] The space of all bounded linear operators from H to

K is denoted by B(H,K). In particular, the space of all bounded linear operators

from H to itself is denoted by B(H).

Definition 2. [110, p. 60] Let H be a separable Hilbert space and {ei}i∈I be an

orthonormal basis for H. A bounded operator A ∈ B(H) is a Hilbert–Schmidt (HS)

operator if

‖A‖HS =
∑
i∈I

‖Aei‖2 <∞. (3.2)

We denote the set of all Hilbert–Schmidt operators by B00(H).
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Definition 3. [110, p. 60] For any A and B ∈ B00(H), the Hilbert–Schmidt inner

product is defined as

〈A,B〉HS =
∑
i∈I

〈Aei, Bei〉, (3.3)

where {ei}i∈I is an orthonormal basis of H.

Definition 4. [120, p. 97] The adjoint of an operator A ∈ B(H) is denoted

by A∗ and is defined as an operator from B(H) that allows the transformation

〈Ax, y〉 = 〈x,A∗y〉 for all x and y in H.

Proposition 1. [110, p. 62] The Hilbert–Schmidt operators form a two-sided ideal

in the Banach algebra of bounded operators on H, that is, for any A ∈ B00(H)

and B ∈ B(H), one must necessarily have AB ∈ B00(H), BA ∈ B00(H), and

A∗ ∈ B00(H).

Definition 5. [118, p. 132] A linear bounded operator A ∈ B(H) is positive if

〈x,Ax〉 ≥ 0 for all x ∈ H.

Definition 6. [118, p. 263] The square root operator R of symmetric positive A

is defined as a symmetric operator such that R2 = A.

Theorem 1. [118, p. 265] If A ∈ B(H) is a symmetric positive operator, then

there exists a unique positive square root R of A. Furthermore, R commutes with

any bounded operator that commutes with A.

Theorem 2. [118, p. 266] Given any A ∈ B(H), the following conditions are

equivalent:

i) A is invertible;

ii) there exists a constant α > 0 such that A∗A ≥ αIH and AA∗ ≥ αIH;

iii) there exists a constant α > 0 such that

〈A∗Ax, x〉 ≥ α ‖x‖ and 〈AA∗x, x〉 ≥ α ‖x‖ ;

iv) both operators A∗A ∈ B(H) and AA∗ ∈ B(H) are invertible.
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Following [87, 122, 105], we next define the outer (dyadic) product, which is the

correspondent of the rank-one update used with finite-dimensional secant formulas.

Definition 7. [110, p. 55] Let x, y ∈ H. The outer or dyadic product of x and y

is the (linear) operator, denoted by x⊗ y, that satisfies

(x⊗ y)z = 〈y, z〉x,∀z ∈ H. (3.4)

We note that x⊗ y is a bounded linear operator.

Definition 8. [94, p. 41] An operator T is of finite-rank if its range is finite-

dimensional.

Example 1. The operator x⊗y is a rank-one operator since it has the range equal

to the one-dimensional subspace of H that is spanned by x.

Remark 1. For the vectors {xi}ni=1 and {yi}ni=1, the operator
∑n

i=1 xi ⊗ yi has

finite rank of most n.

Remark 2. It can be proven that every finite-rank operator is a Hilbert–Schmidt

operator [110].

Definition 9. [106, p. 110] A linear operator T : H → K is compact if and only

if for every bounded sequence {xn} ∈ H there exists a subsequence {xnk} such that

T ({xnk}) converges in K.

Theorem 3. [94, p. 41] If T is a compact operator, then there exists a sequence

of finite rank operators {Tn} such that ‖T − Tn‖ → 0.

We now state the Hilbert Projection Theorem, which is one of the key results

used by our least-squares variational approach.

Theorem 4. [108, p. 50] Let H be a Hilbert space and M a closed subspace of H.

For any vector x ∈ H, there is a unique vector m0 ∈ M such that ‖x−m0‖ ≤
‖x−m‖ for all m ∈ M . Furthermore, a necessary and sufficient condition to

characterize m0 ∈M is that x−m0 is orthogonal to M .
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Finally, the following Theorem states the Sherman–Morrison–Woodbury for-

mula in Banach spaces of linear operators [95]; for compactness, we consider such

linear operators to be defined over Hilbert spaces H and K, however, they can be

defined in general over Banach spaces.

Theorem 5. [95, p. 1] Let A ∈ B(H) and G ∈ B(K) both be invertible and

Y, Z ∈ B(K,H). The operator A+Y GZ∗ is invertible if and only if G−1 +Z∗A−1Y

is invertible. Furthermore,

(A+ Y GZ∗)−1 = A−1 − A−1Y (G−1 + Z∗A−1Y )−1Z∗A−1. (3.5)

3.3 Least-squares variational characterization frame-

work for deriving quasi-Newton updates

This section derives intermediary results needed in Section 3.4 to derive vari-

ous quasi-Newton update formulas as analytical solutions to infinite-dimensional

variational problems. Let us first denote by Bs(H) the set of bounded linear op-

erators that are self-adjoint and consider the linear subspace L = {X ∈ Bs(H) :

Xs = 0}, which corresponds to the affine subspace given by the secant equation,

namely to A = {X ∈ Bs(H) : Xs = y}. Furthermore, we define the operators

Si = s ⊗ ei + ei ⊗ s for each i ∈ I, where {ei}i∈I is an (countable) orthonormal

basis of the (separable) Hilbert space H.

Lemma 1. If s, y ∈ H with s 6= 0, then the following statements are true:

(i) L = {X ∈ Bs(H) : 〈X,Si〉HS = 0, ∀i ∈ I};

(ii) L⊥ = span{{Si}i∈I};

(iii) L⊥ = {s⊗ λ+ λ⊗ s : λ ∈ H}.

Proof. (i) We first remark that

XSiej = X(s⊗ ei)ej +X(ei ⊗ s)ej = 〈ei, ej〉Xs+ 〈s, ej〉Xei (3.6)
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for any X ∈ Bs(H) and i ∈ I. Since 〈X,Si〉HS =
∑∞

j=1〈Xej, Siej〉 =∑
j〈ej, XSiej〉, identity (3.6) allows us to write

〈X,Si〉HS =
∞∑
j=1

[
〈ei, ej〉〈ej, Xs〉+ 〈s, ej〉〈ej, Xei〉

]
. (3.7)

Since X is self-adjoint, 〈ei, ej〉 = 0 for i 6= j, and 〈ej, ej〉 = 1, one can

subsequently write that

〈X,Si〉HS = 〈ei, Xs〉+ 〈
∞∑
j=1

〈s, ej〉ej, Xei〉

= 〈ei, Xs〉+ 〈s,Xei〉 = 〈ei, Xs〉+ 〈Xs, ei〉 = 2〈Xs, ei〉.

This shows that X ∈ L if and only if 〈X,Si〉HS = 0 for all i ∈ I.

(ii) Let Y ∈ span{{Si}∞i=1}, namely Y =
∑∞

i=1 αiSi. Then consider 〈X, Y 〉 for

any X ∈ L, one can write

〈X, Y 〉 = 〈X,
∞∑
i=1

αiSi〉 =
∞∑
i=1

αi〈X,Si〉 = 0

obtaining L⊥ ⊇ span{{Si}∞i=1}. For the other inclusion, let Y ∈ span{{Si}∞i=1}⊥,

this implies 〈Y, Si〉 = 0 for all Si, i.e., Y ∈ L. This shows that span{{Si}∞i=1}⊥ ⊆
L, taking the orthogonal complement we obtain span{{Si}∞i=1} ⊇ L⊥.

(iii) Consider Y ∈ L⊥, Y =
∑∞

i=1 αiSi, which we can rewrite as

∞∑
i=1

αiSi =
∞∑
i=1

αi(s⊗ ei + ei ⊗ s) = (s⊗ λ+ λ⊗ s) (3.8)

for some λ =
∑∞

i=1 αiei. This shows that L⊥ ⊆ {s⊗ λ+ λ⊗ s : λ ∈ H}. On

the other hand, if Y ∈ {s⊗ λ+ λ⊗ s : λ ∈ H} and X ∈ L we have

〈X, Y 〉 = 〈X, s⊗ λ+ λ⊗ s〉 = 〈X, s⊗
∞∑
i=1

αiei +
∞∑
i=1

αiei ⊗ s〉

=
∞∑
i=1

αi〈X, s⊗ ei + ei ⊗ s〉 =
∞∑
i=1

αi〈X,Si〉 = 0.

This completes the proof that L⊥ = {s⊗ λ+ λ⊗ s : λ ∈ H}.
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We now consider a generic least-squares problem that is closely related to

the variational problem used to derive the various quasi-Newton formulas in Sec-

tions 3.4 and 3.5. This is motivated in the spirit of the work in [37].

Theorem 6. Given s, y ∈ H, the variational problem

min
X∈B(H)

1

2
‖X‖2

HS (3.9)

s.t. Xs = y (3.10)

has a self-adjoint solution operator X ∈ B00(H) given by

X =
s⊗ y + y ⊗ s
〈s, s〉

− 〈y, s〉
〈s, s〉2

s⊗ s. (3.11)

Proof. We note that the set A = {X ∈ B(H) |Xs = y} is closed. Let X denote

a solution of (3.9)-(3.10); such solution necessarily exists per Hilbert projection

Theorem [121, p. 80]. We remark that for any A ∈ L and for any t ∈ R, the

function X + tA satisfies the secant equation (3.10). Let us consider an arbitrary

A ∈ L. Then we obtain by the minimality of X that
∥∥X∥∥2

HS
≤
∥∥X + tA

∥∥2

HS
, or,

equivalently, that 〈X,X〉HS ≤ 〈X+ tA,X+ tA〉HS for any t ∈ R. A simple manip-

ulation of this inequality reveals that one must necessarily have −2t〈X,A〉HS ≤
t2〈A,A〉HS for any t ∈ R. For positive t, the previous inequality is equivalent to

〈X,A〉HS ≥ − t
2
〈A,A〉HS and can hold for arbitrarily small t only if 〈X,A〉HS ≥ 0.

Similarly, by taking t to be negative and arbitrarily close to zero, one must nec-

essarily have 〈X,A〉HS ≤ 0. Therefore, we have that 〈X,A〉HS = 0. Since A

was chosen arbitrary from L, this implies that X ∈ L⊥ and thus, based on iii) of

Lemma 1 that X = s⊗ λ+ λ⊗ s, for some λ ∈ H.

Next we find an explicit expression for λ. Since Xs = y, we can write

〈y, s〉 = 〈Xs, s〉 = 〈[s⊗ λ+ λ⊗ s]s, s〉

= 〈[s⊗ λ]s, s〉+ 〈[λ⊗ s]s, s〉 = 〈〈λ, s〉s, s〉+ 〈〈s, s〉λ, s〉

= 〈〈λ, s〉s, s〉+ ‖s‖2 〈λ, s〉 = 2 ‖s‖2 〈λ, s〉,

to obtain that 〈λ, s〉 = 〈y,s〉
2‖s‖2 . This can be used in conjunction with the secant

equation to write that y = Xs = [s⊗λ+λ⊗s]s = 〈s, s〉λ+〈λ, s〉s = ‖s‖2 λ+ 〈y,s〉
2‖s‖2 s,



20

from which λ is obtained to be

λ =
1

‖s‖2y −
〈y, s〉
2 ‖s‖4 s.

Equation (3.11) follows readily by substituting the above expression for λ in X =

λ⊗ s+ s⊗ λ. Finally, we remark that X given by (3.11) is self-adjoint; also, one

can easily verify that has rank two, which implies that X ∈ B00 [97].

The following corollary offers an analytical expression for the solution of a

prototype variational problem and will be the basis of the derivation of quasi-

Newton update formulas in generic Hilbert spaces.

Corollary 1. For any given operator X0 ∈ Bs(H) and positive and invertible

“weight” operator W ∈ Bs(H), the variational problem

min
X∈B(H)

1

2

∥∥W 1/2(X −X0)W 1/2
∥∥2

HS
(3.12)

s.t. Xs = y (3.13)

admits a solution X ∈ Bs(H) in the form

X =X0 +
W−1s⊗ (y −X0s) + (y −X0s)⊗W−1s

〈s,W−1s〉
−

〈y −X0s, s〉
〈s,W−1s〉2

W−1s⊗W−1s.

Furthermore, the operator X −X0 lies in B00(H).

Proof. The corollary is a direct consequence of Theorem 6. More specifically, since

W is invertible and positive, we can write the secant equation (3.13) as

W 1/2(X −X0)W 1/2(W−1/2s) = W 1/2(y −X0s).

Then Theorem 6 implies that a minimizer X of (3.12)-(3.13) exists and satisfies

W 1/2(X −X0)W 1/2 =
W−1/2s⊗W 1/2(y −X0s) +W 1/2(y −X0s)⊗W−1/2s

〈W−1/2s,W−1/2s〉

− 〈W
1/2(y −X0s),W

−1/2s〉
〈W−1/2s,W−1/2s〉2

W−1/2s⊗W−1/2s.
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The form of X from the corollary follows from the above identity by multiplying

from left and right with W−1/2 and performing appropriate simple algebraic ma-

nipulations. We remark that Theorem 6 also implies that W 1/2(X − X0)W 1/2 ∈
B00(H). This implies that X − X0 = W−1/2W 1/2(X − X0)W 1/2W−1/2 ∈ B00(H)

since Hilbert–Schmidt operators form an ideal in B(H) (see Proposition 1).

3.4 Derivation of various secant update formulas

In this section we derive the quasi-Newton update formulas for approximating a

second-order derivative operators defined over generic Hilbert spaces. Corollary 1

is used with specific choices for the “weight” operator W to obtain in this section

the classical BFGS, DFP, PSB, and SR1 formulas in their operator form.

Proposition 2 (DFP formula for Hessian operator). Let us consider an operator

Bk ∈ Bs(H), a positive and invertible operator W ∈ Bs(H) such that Wyk = sk,

and sk and yk nonzero elements of H.

(i) The solution to the variational problem

min
B∈B(H)

1

2

∥∥W 1/2(B −Bk)W
1/2
∥∥2

HS

s.t Bsk = yk

(3.14)

is given by

Bk+1 = (I − γ(yk ⊗ sk))Bk(I − γ(sk ⊗ yk)) + γ(yk ⊗ yk), (3.15)

where γ = 1
〈sk,yk〉

; in addition, Bk+1 ∈ Bs(H) and Bk+1 −Bk ∈ B00(H).

(ii) If Bk is positive and invertible, and the positive curvature condition 〈sk, yk〉 >
0 holds, then Bk+1 is positive and invertible.

Proof. (i) By Corollary 1, we have that

Bk+1 = Bk +
W−1sk ⊗ (yk −Bksk) + (yk −Bksk)⊗W−1sk

〈sk,W−1sk〉

−〈yk −Bksk, sk〉
〈sk,W−1sk〉2

W−1sk ⊗W−1sk.



22

Since yk = W−1sk and by letting γ = 1
〈sk,yk〉

, the above identity becomes

Bk+1 = Bk + γ[yk ⊗ (yk −Bksk) + (yk −Bksk)⊗ yk]

−γ2〈yk −Bksk, sk〉(yk ⊗ yk).
(3.16)

We note that the last term in the above equality can be simplified as follows

γ2〈yk −Bksk, sk〉(yk ⊗ yk) = γ2[〈yk, sk〉 − 〈Bksk, sk〉](yk ⊗ yk)

= γ(yk ⊗ yk)− γ2〈Bksk, sk〉(yk ⊗ yk).
(3.17)

With the above simplification, equation (3.16) above can be manipulated to

obtain the following

Bk+1 = Bk + γ[yk ⊗ (yk −Bksk) + (yk −Bksk)⊗ yk − (yk ⊗ yk)]

+ γ2〈Bksk, sk〉(yk ⊗ yk),

and hence

Bk+1 = [Bk − γ(yk ⊗Bksk)− γ(Bksk ⊗ yk) + γ2〈Bksk, sk〉(yk ⊗ yk)] (3.18)

+ γ(yk ⊗ yk).

One can further manipulate the last identity to get the desired equation (3.15)

as follows

Bk+1 = (Bk − γyk ⊗Bksk) (I − γsk ⊗ yk) + γ(yk ⊗ yk)

= (I − γyk ⊗ sk)Bk(I − γsk ⊗ yk) + γ(yk ⊗ yk).
(3.19)

From (3.18) we note that Bk+1 − Bk is a finite rank operator as it has at

most rank four, therefore it is a Hilbert-Schmidt operator [110]. Finally, since

yk ⊗ Bksk is the adjoint of Bksk ⊗ yk, and yk ⊗ yk is self-adjoint, by using

the properties of the dyadic product and the fact that Bk is self-adjoint we

conclude that Bk+1 is self-adjoint.

(ii) Let us write Bk+1 = G∗G + F where G = B
1/2
k (I − γsk ⊗ yk), and F =

γ(yk ⊗ yk). Since Bk is positive, one can prove that 〈x,G∗Gx〉 ≥ 0 for all

x ∈ H. Furthermore, 0 = 〈x,G∗Gx〉, or equivalently, 0 = 〈Gx,Gx〉 if and

only if Gx = 0, which in turn holds if and only if x − γ(sk ⊗ yk)x = 0
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by the positiveness of Bk. We leave the proof of the fact that {x ∈ H :

x − γ(sk ⊗ yk)x = 0} = {αsk : α ∈ R} as an exercise to the reader, and

conclude that 0 = 〈x,G∗Gx〉 if and only if x = αsk for some real scalar

α. On the other hand, it is straightforward to prove that 〈x, Fx〉 ≥ 0 for

all x ∈ H when the positive curvature holds (and, as a result, γ > 0).

Furthermore, we remark that 〈αsk, Fαsk〉 = α2〈sk, yk〉 > 0 for all nonzero

α ∈ R.

With the above, we have that 〈x,Bk+1x〉 > 0 for all nonzero x, which shows

the positive definiteness of Bk+1. Finally, the invertibility of Bk+1 follows

from the Sherman–Morrison–Woodbury formula. We note that the latter is

shown in detail in the proof of Proposition 6.

Proposition 3 (BFGS formula for the inverse Hessian operator). Let us consider

an operator Hk ∈ Bs(H), a positive and invertible operator W ∈ Bs(H) such that

Wsk = yk, and sk and yk nonzero elements of H.

(i) The solution to the variational problem

min
H∈B(H)

1

2

∥∥W 1/2(H −Hk)W
1/2
∥∥2

HS
(3.20)

s.t Hyk = sk (3.21)

is given by

Hk+1 = (I − γ(sk ⊗ yk))Hk(I − γ(yk ⊗ sk)) + γ(sk ⊗ sk), (3.22)

where γ = 1
〈sk,yk〉

; in addition, Hk+1 ∈ Bs(H) and Hk+1 −Hk lies in B00(H).

(ii) If Hk is positive and invertible, and the positive curvature condition 〈yk, sk〉 >
0 holds, then Hk+1 is positive and invertible.

Proof. The proof is identical to the proof of Proposition 2.

We next show that different choices of the “weight” operator W inside the

Hilbert-Schmidt norm lead to different quasi-Newton formulas for the Hessian or
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its inverse. The Powell–Symmetric–Broyden formula is obtained using the trivial

weight W = I as we show next in Proposition 4. Surprisingly, the symmetric

rank-one update can be also obtained (when it exists) with a particular choice of

W , as shown in Proposition 5. Furthermore, notable from these two examples is

that W does not have to satisfy the secant equation (as it does in Propositions 2

and 3 for the DFP and BFGS formulas).

Proposition 4 (Powell–Symmetric–Broyden Update). Let us consider an operator

Bk ∈ Bs(H) and sk and yk nonzero elements of H. The solution to the variational

problem

min
B∈B(H)

1

2
‖B −Bk‖2

HS

s.t Bsk = yk

is given by

Bk+1 = Bk +
sk ⊗ (yk −Bksk) + (yk −Bksk)⊗ sk

〈sk, sk〉
− 〈yk −Bksk, sk〉

〈sk, sk〉2
sk ⊗ sk.

Furthermore, Bk+1 is self-adjoint and Bk+1 −Bk ∈ B00(H).

Proof. The proof follows by taking W to be the identity in Corollary 1.

Proposition 5 (Symmetric Rank-One Update). Let us consider an operator Bk ∈
Bs(H) and assume that a positive and invertible operator W ∈ Bs(H) exists such

that W−1sk = yk−Bksk for sk and yk nonzero elements of H. The solution to the

variational problem

min
B∈B(H)

1

2

∥∥W 1/2 (B −Bk)W
1/2
∥∥2

HS

s.t Bsk = yk

is the operator

Bk+1 = Bk +
(yk −Bksk)⊗ (yk −Bksk)

〈sk, yk −Bksk〉
,

which is self-adjoint and satisfies Bk+1 −Bk ∈ B00(H).
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Proof. By Corollary 1 we have that

Bk+1 = Bk +
W−1sk ⊗ (yk −Bksk) + (yk −Bksk)⊗W−1sk

〈sk,W−1sk〉

− 〈yk −Bksk, sk〉
〈sk,W−1sk〉2

W−1sk ⊗W−1sk.

Since W−1sk = yk −Bksk, we simplify the above identity as follows:

Bk+1 = Bk +
(yk −Bksk)⊗ (yk −Bksk) + (yk −Bksk)⊗ (yk −Bksk)

〈sk, yk −Bksk〉

− 〈yk −Bksk, sk〉
〈sk, yk −Bksk〉2

(yk −Bksk)⊗ (yk −Bksk)

= Bk +
(yk −Bksk)⊗ (yk −Bksk)

〈sk, yk −Bksk〉
,

which completes the proof.

In the remainder of this section we derive the inverse formulas for the DFP and

BFGS formulas presented above in Propositions 2 and 3 using a generalization of

Sherman–Morrison–Woodbury formula [95] given in Theorem 5.

Proposition 6 (BFGS formula for Hessian operator). Let us consider the positive

definite and invertible operators Bk ∈ Bs(H) and W ∈ Bs(H) such that Wyk = sk,

where sk and yk are nonzero elements of H.

(i) The solution to the variational problem

min
B∈B(H)

1

2

∥∥W 1/2(B−1 −B−1
k )W 1/2

∥∥2

HS

s.t Bsk = yk

(3.23)

is given by

Bk+1 = Bk −
Bksk ⊗Bksk
〈sk, Bksk〉

+
yk ⊗ yk
〈sk, yk〉

; (3.24)

in addition, Bk+1 ∈ Bs(H), Bk+1 −Bk ∈ B00(H), and Bk+1 is invertible.

(ii) If the positive curvature condition 〈sk, yk〉 > 0 holds, then Bk+1 is positive.
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Proof. (i) The salient idea of the proof is to obtain (3.24) by inverting the inverse

Hessian BFGS formula B−1
k+1 = Hk+1 from Proposition 3 using the Sherman–

Morrison–Woodbury (SMW) formula of Theorem 5.

Let the linear operator Y : R×R→ H be defined by Y (α, β) = αsk+βHkyk.

We remark that Y ∈ B(R × R,H) and that the adjoint operator Y ∗ ∈
B(H,R× R) is given by

Y ∗x =

[
〈sk, x〉
〈Hkyk, x〉

]
. (3.25)

Also, let G : R× R→ R× R be given by

G(α, β) =

[
γα + γ2〈Hkyk, yk〉α− γβ

−γα

]
.

Above, we used the notation γ = (〈sk, yk〉)−1. We remark that G is a linear

bounded invertible operator and has a bounded inverse in the form of

G−1(ω, ν) =

[
− ν
γ

−ω
γ
− ν

γ
(1 + γ〈Hkyk, yk〉)

]
.

One can show that [G−1 +Y ∗H−1
k Y ](α, β) =

[
α〈s, Bks〉 − β

γ

]
, which implies

that G−1 + Y ∗H−1
k Y is invertible and

(G−1 + Z∗H−1
k Y )−1 =

[
1

〈sk,Bksk〉
0

0 −γ

]
. (3.26)

Note we chose Z = Y . In the above we used the matrix notation to be close

to the the standard finite dimensional notation, but one can write this in
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operator notation as well. We next notice that

[Hk + Y GY ∗]x = Hkx+ Y (G(Y ∗x)) = Hkx+ Y (G

([
〈sk, x〉
〈Hkyk, x〉

])

= Hkx+ Y

([
γ〈sk, x〉+ γ2〈Hkyk, yk〉〈sk, x〉 − γ〈Hky, x〉

−γ〈sk, x〉

])
= Hkx+

(
γ〈sk, x〉+ γ2〈Hkyk, y〉〈sk, x〉 − γ〈Hkyk, x〉

)
sk

− γ〈sk, x〉Hky

= Hkx− γ(sk ⊗Hkyk)(x)− γ(Hkyk ⊗ sk)(x)

+ (sk ⊗ γ2〈Hkyk, yk〉sk)(x) + γ(sk ⊗ sk)(x).

On the other hand, the inverse Hessian BFGS formula from Proposition 3

can be manipulated as follows:

Hk+1 = (I − γ(sk ⊗ yk))Hk(I − γ(yk ⊗ sk)) + γ(sk ⊗ sk)

= Hk − γ(sk ⊗ yk)Hk − γ(Hkyk ⊗ sk) + γ2(sk ⊗ yk)Hk(yk ⊗ sk) + γ(sk ⊗ sk).

ThereforeHk+Y GY
∗ = Hk+1. Finally, from the Sherman–Morrison–Woodbury

formula formula and by using the fact that H−1
k = Bk we obtain that

Bk+1 = H−1
k+1 = H−1

k −H
−1
k Y (G−1 + Y ∗H−1

k Y )−1Y ∗H−1
k

= Bk −BkY (G−1 + Y ∗BkY )−1Y ∗Bk.

The definition of Y , equations (3.25) and (3.26), and the properties of dyadic
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products can be used to write for any x ∈ H that

Bk+1x = Bkx−BkY

[
1

〈sk,Bksk〉
0

0 −γ

][
〈sk, Bkx〉
〈Hkyk, Bkx〉

]

= Bkx−BkY

 〈sk,Bkx〉
〈sk,Bksk〉

− 〈Hkyk,Bkx〉〈sk,yk〉


= Bkx−Bk

(
〈sk, Bkx〉
〈sk, Bksv〉

sk −
〈Hkyk, Bkx〉
〈sk, yk〉

Hkyk

)
= Bkx−

〈sk, Bkx〉
〈sk, Bks〉

Bksk +
〈Hkyk, Bkx〉
〈sk, yk〉

yk

= Bkx−
Bksk ⊗ sk
〈sk, Bksk〉

Bkx+
yk ⊗ yk
〈sk, yk〉

x

= Bkx−
Bksk ⊗Bksk
〈sk, Bksk〉

x+
yk ⊗ yk
〈sk, yk〉

x.

This completes the proof of (3.24) and also shows that Bk+1 is invertible. It

remains to show Bk+1 ∈ Bs(H), Bk+1 − Bk ∈ B00(H) and part (ii) i.e., to

show Bk+1 is positive. Both are consequence of Proposition 3 which gives us

Hk+1 ∈ Bs(H), Hk+1 −Hk ∈ B00(H) and Hk+1 is positive. One way to show

both in one step is to use the fact B00(H) and the space of positive bounded

linear operators are an ideal in the space of bounded operators.

Proposition 7 (DFP formula for the inverse Hessian operator). Let us consider

the positive definite and invertible operators Hk ∈ Bs(H) and W ∈ Bs(H) such

that Wyk = sk, where sk and yk are nonzero elements of H.

(i) The solution to the variational problem

min
H∈B(H)

1

2

∥∥W 1/2(H−1 −H−1
k )W 1/2

∥∥2

HS
(3.27)

s.t Hyk = sk (3.28)

is given by

Hk+1 = Hk −
(Hkyk ⊗Hkyk)

〈yk, Hkyk〉
+

(sk ⊗ sk)
〈sk, yk〉

. (3.29)

Furthermore, Hk+1 is invertible and Hk+1 −Hk lies in B00(H).



29

(ii) If the curvature condition is met 〈yk, sk〉 > 0, then Hk+1 ∈ B00(H) is self-

adjoint and positive definite.

Proof. The proof is similar to the proof of Proposition 6 and uses Theorem 5 for

the inverse Hessian operator given by Proposition 2.

3.4.1 Note on the limited-memory compact representation

formulas

The popular limited-memory compact representations introduced by Byrd et

al. [92] have similar forms for Hessian operators defined over general Hilbert spaces.

For completeness, we succintly present them below. Their derivation is analogous

to the finite-dimensional case [92] and relies on the Sherman–Morrison–Woodbury

formula (Theorem 5) along the lines of the proof of Proposition 6. In what follows,

given si ∈ H and yi ∈ H, i = {0, 1, . . . , l − 1}, let Sl : Rl → H be given by

Sl(v) =
∑l−1

i=0 vi+1si, and Yl : Rl → H given by Yl(v) =
∑l−1

i=0 vi+1yi, where vi

denotes the ith component of a vector v ∈ Rl. Furthermore, define Rl as a l × l
matrix as

(Rl)ij =

〈si−1,yj−1〉 if i ≤ j,

0 otherwise.

Theorem 7. Let H0 ∈ Bs(H) be positive and invertible. Furthermore, let Hl be

given by updating H0 l times using the inverse BFGS formula obtained in Proposi-

tion 3. If all the pairs {si, yi}l−1
i=0 satisfy the positive curvature condition 〈si, yi〉 > 0,

then

Hl = H0 +
[
Sl H0Yl

]([R−Tl (Dl + (H0Yl)
∗Yl)R

−1
l −R−Tl

−R−1
l 0

][
S∗l

(H0Yl)
∗

])
,

where Dl is the l × l diagonal matrix given by

(Dl)ij =

〈si,yj〉 if i = j,

0 otherwise.
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Theorem 8. Let B0 ∈ Bs(H) be positive and invertible. Furthermore, let Bl be

given by updating B0 l times using the BFGS formula obtained in Proposition 6.

If all the pairs {si, yi}l−1
i=0 satisfy the positive curvature condition 〈si, yi〉 > 0, then

Bl = B0 −
[
B0Sl Yl

][S∗l B0Sl Ll

LTl −Dl

]−1 [
(B0Sl)

∗

Y ∗l

] ,

where Ll is the l × l matrix with entries

(Ll)ij =

〈si−1,yj−1〉 if i > j,

0 otherwise.

3.5 Incorporating Hessian structure in quasi-Newton

formulas: a case study for inverse problems

governed by partial differential equations

As an illustration of potential uses of the results introduced by this thesis, we

consider the class of regularized inverse problems governed by partial differential

equations (PDEs) and derive DFP and BFGS “structured” secant formulas that

explicitly use the derivative of the regularization and only approximates the second

derivative of the misfit term. To this end, we consider the inversion of a coefficient

field in an elliptic PDE. Depending on the interpretation of the inputs and the type

of measurements, this problem arises, for instance, in inversion for the permeability

field in a subsurface flow problem, for the conductivity field in a heat transfer

problem, or the stiffness parameter field in a membrane deformation problem [117].

We formulate the inverse problem over Ω = [0, 1] × [0, 1] as follows: given

possibly noisy observations d ∈ Rq of the state solution u, we wish to infer the

coefficient field m that best reproduces the observations. Mathematically, this can

be formulated as the nonlinear least-squares minimization problem

min
m
J (m) :=

1

2
〈Ou(m)− d, Ou(m)− d〉Rq +

γ

2
〈∇m,∇m〉L2 , (3.30)

s.t. m ≤ m ≤ m, (3.31)
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where u solves the state (or forward) problem

−∇ · (m∇u) = f in Ω and u = 0 on ∂Ω. (3.32)

Above, d ∈ Rq denotes the observations, with q denoting the number of observation

spoints, f ∈ H−1(Ω) is a given volume force, O : L2(Ω)→ Rq is a linear observation

operator that extracts measurements from u, and m,m ∈ L∞(Ω) are the lower and

upper bounds of the unknown coefficient field m, respectively. The first term in

the objective of (3.30) is the data misfit term, which we will denote by M(m),

and the second term, which we will denote by R(m), is a regularization term

with regularization parameter γ > 0 added to render the inverse problem well-

posed [132, 98]. We note that when we discretize the regularization term, this will

take the form of mTKm, where m is the vector of finite element coefficients of

the parameter field m, and K is the stiffness matrix [100, 113].

We solve (3.30) using a quasi-Newton interior-point method [112]. We assume

that only the second derivative of the regularization term is available, while the

second derivative of the misfit term is not (e.g., we target application problems

for which this terms is expensive to evaluate). Therefore, to take advantage of

this structure, in what follows, we derive and apply so-called structured DFP and

BFGS formulas.

3.5.1 Derivation of structured DFP and BFGS formulas

To derive structured DFP and BFGS formulas for the Hessian matrix, we con-

sider a structured variant of Proposition 2. More specifically, since we are looking

for a DFP update in the form B = R + A, where A approximates the second-

derivative of the misfit term M, in the spirit of Proposition 2 we require that a

formula for A satisfies

min
A

1

2

∥∥W 1/2 (A− Ak)W 1/2
∥∥2

HS

s.t Ask = ȳk,

(3.33)

where ȳk = ∇M(mk+1) −∇M(mk). In words, the variational form (3.33) builds

the structured update A based only on the change in the gradient of the misfit.
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Analogous to the proof of Proposition 2, one can show that the structured DFP

formula for the Hessian is

Ak+1 = (I − γ̄(ȳk ⊗ sk))Ak(I − γ̄(sk ⊗ ȳk)) + γ̄(ȳk ⊗ ȳk), (3.34)

where γ̄ = 1/〈sk, ȳk〉. Similarly, the structured BFGS formula for the Hessian can

be obtained by considering the structured version of Proposition 6 in the form of

min
A

1

2

∥∥W 1/2
[
(A+R)−1 − (Ak +R)−1

]
W 1/2

∥∥2

HS
,

s.t Ask = ȳk

(3.35)

which gives the structured BFGS formula

Ak+1 = Ak −
(Ak +R)sk ⊗ (Ak +R)sk

〈sk, Rsk + ȳk〉
+

(ȳk +Rsk)⊗ (ȳk +Rsk)

〈sk, Rsk + ȳk〉
. (3.36)

We remark that the Hessian formula Bk = R + Ak with Ak given by (3.36) above

is identical to the unstructured BFGS given by Proposition 6 as long as the two

formulas are initialized with B0 = R + A0 and A0. This is not the case for the

structured and unstructured DFP formulas (3.34) and (3.15), respectively.

3.5.2 Numerical results

We compare the performance of structured update formulas derived in Sec-

tion 3.5.1 with their unstructured counterparts for the inverse problem governed

by the Poisson equation given by (3.30)-(3.32). The numerical algorithm we use

is a filter line-search interior-point method for constrained optimization prob-

lems [134, 133] in which we replace the Hessian of the objective (3.30) with quasi-

Newton approximations similarly to the state-of-the-art Ipopt solver [135]. The

stopping criteria for the interior-point method consist of a stringent 10−8 tolerance

for the norm of gradient (of the Lagrangian function of (3.30), for more details

see [135]) and a maximum number of 100 iterations. We derive the gradient (i.e.,

the firs-derivative information) using an adjoint-based approach [113, 88, 126]. The

underlying PDEs are solved with the finite element method using COMSOL with

Matlab, while the interior-point method is implemented in Matlab. The problem
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was solved on five uniform 2D meshes and on one nonuniform 2D mesh with rect-

angular elements. For the discretization of the state and ajoint variables we used

quadratic and for the parameter linear finite elements. The state dimension was

increased form 441 to 5227 and the parameter dimension (i.e., the dimension of

the optimization problem) from 121 to 1328. The numerical experiments were per-

formed on an Intel Ivy Bridge 2.5GHz 8-Core Linux machine with 128 GB RAM

memory.

In what follows, the structured quasi-Newton formulas are denoted with acronyms

starting with “S-”. These are compared with unstructured counterparts, which are

prefixed by “U-”. For a both fair play and comprehensive comparison, the unstruc-

tured quasi-Newton formulas are used with an uninformed (suffixed by “-U”) and

informed (suffixed by “-I”) initial Hessian approximations. The uninformed ini-

tial approximations correspond to a plain, fully unstructured formula, while the

informed initial approximation correspond to unstructured formulas that take into

account the known part of the Hessian (that is, the Hessian of the regularization

term). Table 3.1 summarizes this discussion and presents the algorithmic param-

eters used in the numerical experiments. The parameter multiple of the identity

σk is the Barzilai-Borwein spectral estimate [86] that changes at each optimization

iteration according to σk = 〈sk, sk〉/〈sk, yk〉. This estimate is also used in Ipopt;

in our experiments it gave the smallest number of iterations for all formulas from

Table 3.1.

In Table 3.2, we report on the number of iterations for unstructured informed

and uninformed and structured BFGS and DFP formulas. We have used these

formulas with (sk, yk) pairs from the last ` iteration for ` = 8 (a), ` = 16 (b),

and ` = 32 (c). Our numerical experiments reveal that the standard unstructured

updates with uninformed initialization, namely U-BFGS-U and U-DFP-U, exhibit

a number of iterations that increases for finer or non-uniform meshes. This mesh

dependence behavior is present for all three memory sizes ` = 8, ` = 16, and

` = 32 we have used. On the other hand, the standard unstructured formulas with

informed initialization, namely U-BFGS-I and U-DFP-I, do not show this mesh de-

pendent behavior; instead, the iteration count for these updates remains relatively
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Acronym Formula for Bk Initial Hessian Notes

U-BFGS-U (3.24) B0 = σkM unstructured

BFGS with

uninformed ini-

tialization

U-BFGS-I (3.24) B0 = σk(M +R) unstructured

BFGS with

informed initial-

ization

S-BFGS Bk = Ak +R A0 = σkM structured BFGS

Ak given by (3.36)

U-DFP-U (3.15) B0 = σkM unstructured

DFP with unin-

formed initializa-

tion

U-DFP-I (3.15) B0 = σk(M +R) unstructured

DFP with in-

formed initializa-

tion

S-DFP Bk = Ak +R A0 = σkM structured DFP

Ak given by (3.33)

Table 3.1: Summary of the formulas investigated numerically in this section. The

algorithmic parameter σk is the Barzilai-Borwein spectral estimate [86] discussed

in the text.

constant for all meshes. Our point is that in order to obtain mesh independence,

one needs not only to use the infinite-dimensional BFGS and DFP formulas but

also to carefully choose the initial quasi-Newton approximation operator. Intu-

itively, for the inverse problem we solve here, the use of an informed initialization
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Mesh (a) Number of iterations for ` = 8

U-BFGS-U U-BFGS-I S-BFGS U-DFP-U U-DFP-I S-DFP

10× 10 41 35 37 39 30 34

20× 20 87 43 39 95 38 37

30× 30 >100 41 38 >100 39 36

40× 40 >100 42 39 >100 45 52

50× 50 >100 46 39 >100 44 36

non-unif. >100 43 40 >100 46 39

(b) Number of iterations for ` = 16

U-BFGS-U U-BFGS-I S-BFGS U-DFP-U U-DFP-I S-DFP

10× 10 39 29 30 38 27 29

20× 20 78 36 34 90 35 32

30× 30 >100 36 33 >100 39 32

40× 40 >100 36 33 >100 39 32

50× 50 >100 39 35 >100 38 34

non-unif. >100 36 34 >100 38 39

(c) Number of iterations for ` = 32

U-BFGS-U U-BFGS-I S-BFGS U-DFP-U U-DFP-I S-DFP

10× 10 37 28 28 37 26 29

20× 20 77 34 29 87 33 32

30× 30 >100 35 30 >100 37 30

40× 40 >100 38 30 >100 37 35

50× 50 >100 37 30 >100 37 37

non-unif. >100 37 30 >100 36 34

Table 3.2: Shown are the number of optimization iterations obtained with formulas

from Table 3.1 with quasi-Newton memory for ` = 8 (a), ` = 16 (b), and ` = 32

(c).
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with U-BFGS-I and U-DFP-I, namely a multiple of the identity operator plus the

stiffness operator, circumvents the need to approximate the stiffness operator; in-

stead these formulas approximate only the Hessian of the misfit, which is known

to be compact [99, 89] and, therefore, can be approximated relatively well (both

in a mesh independent manner and within a relatively small number of iterations)

by the finite-rank operators built using the infinite-dimensional BFGS and DFP

formulas derived in this thesis.

We now turn to the structured BFGS and DFP formulas, i.e., S-BFGS and S-

DFP, which we derived in this section to explicitly incorporate additional Hessian

information (namely the stiffness operator). We remark from Tables 3.2 (a)–(c)

that these structured formulas improve over the unstructured informed formulas

U-BFGS-I and U-DFP-I in terms of number of iterations (by up to 20%) and, also,

exhibit mesh independence behavior. In particular, we remark that S-BFGS shows

a more consistent iteration count over all meshes when compared to S-DFP; and,

for larger quasi-Newton memory sizes (` = 32), S-BFGS seems slightly faster than

S-DFP, while for smaller memory sizes the two compare similarly.

3.6 Conclusions

We have presented a new derivation of well-known quasi-Newton formulas in

an infinite-dimensional Hilbert space setting needed for example for solving op-

timization problems governed by differential equations. In particular, we have

generalized the variational, least-squares framework of Güler et al. [103] to opera-

tors defined over general separable Hilbert spaces. The framework we present was

used to derive classical BFGS, DFP, PSB, and SR1 formulas in operator form.

Furthermore, we illustrated how the variational framework can be employed to

derive improved DFP and BFGS updates for a class of inverse problems governed

by PDEs. To illustrate the importance of using these infinite-dimensional quasi-

Newton formulas we formulated and solved an inverse problem governed by partial

differential equations (PDEs) via a quasi-Newton interior-point method on progres-

sively finer uniform meshes and on a nonuniform mesh. In addition, we derived
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structured DFP and BFGS formulas for the Hessian operator, where we consid-

ered parts of the Hessian known and only approximate the remaining part (e.g.,

the second-derivative of the term corresponding to the misfit). Numerical results

showed that in order to obtain mesh independence, it is essential not only to use

the infinite-dimensional BFGS and DFP formulas but also to carefully choose the

initial quasi-Newton approximation operator. In addition, we compared the per-

formance of the structured update formulas with their unstructured counterparts

and found that taking into account the structure of the problem leads to reducing

further the computational cost.
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Chapter 4

Inexact Hessian-applies for

Inverse Problems Governed by

PDEs

4.1 Introduction

Second-order, Newton-like algorithms exhibit convergence properties superior

to gradient-based or derivative-free optimization algorithms [111]. However, deriv-

ing and computing second-order derivatives needed for the Hessian-vector prod-

ucts in a Krylov iteration for the Newton step often is not trivial. As shown

and discussed in Chapter 1, second-order adjoints (also called incremental state

and adjoints) provide a systematic and efficient means to derive second derivative

information for solving optimization problems efficiently. For inverse problems

governed by PDEs, one Hessian-vector product costs two (linear) PDE solves. For

many applications and problems, a high number of such Hessian-vector products

may be needed for convergence. For large-scale problems often we cannot afford

a very large number of such solves. For instance in [114], the authors solve a rea-

sonable size ice sheet inverse problem with inexact Newton-CG and show that the

cost of solving the optimization problem (up to tolerance 10−5) was about 7000

PDE solves. When solving the same inverse problem on the continental/Antarctica

38
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scale, the computational cost per Newton iteration increased to about 100,000 PDE

solves and this for a much higher tolerance and with a maximum number of CG

iterations set to 250 [9]. For complex problems, such as the ice sheet inverse prob-

lem, there is a need to develop methods that reduce the number of PDE solves

required for convergence.

There are a number of ways to reduce the computational cost. For instance, via

efficient preconditioners for the Newton system (e.g., [90], via inexact Newton-CG

solves [113], via low-rank approximations of the Hessian [43], and inexact Hessian-

vector products (i.e., inexact second-order adjoint solves) [40]. In [40] the author

shows bounds for the tolerances for solving the second-order adjoints inexactly that

ensure the Hessian-vector product remains sufficiently accurate for inexact-Krylov

methods. These bounds are of the typical inexact-Newton type where further in

the iteration we are more computational effort we exert, in practice, this could be a

problem for large-scale inversion. Their numerical results have been obtained with

Newton-GMRES algorithm [61, 60]. In this work we investigate means of setting

the tolerance for inexactness dynamically, while retaining robustness.

In this thesis, we follow the framework presented in [77] to obtain analytical

Hessian-vector products. In section 4.2 we give the necessary background that

leads to the Hessian-vector product. The main theorem that shows the dynamic

tolerances is given in Section 4.4.1. This result shows that the inexactness can

increase with the number of iterations of the inverse problem. While increase of the

tolerance (inexactness) sounds counterintuitive, this has been previously observed

in the following previous related works [49, 48, 47]. In [45] the authors also explored

the application of Krylov methods to (A + E)x = b and devolved a framework

for inexact Krylov methods with increasing perturbation. They observe the rate

of convergence and stability of Krylov methods as the norm of the perturbation

matrix E grows. One of their conclusions was that the stopping criteria for the

Krylov method is also allowed to increase as the norm of E increases. While their

work was in the realm of linear algebra we found it inspirational to this project.

We show numerical results for an inverse problem governed by a Poisson problem

in Section 4.6. Our results reveal that close to the solution of the inverse problem,
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the tolerance of the second-order adjoint solves can be relaxed, which leads to

reducing the number of inner Krylov iterations.

Problem formulation To set the stage, we choose a general framework: let

Y, U, Z be Banach spaces, e.g. Y is the space variable or dependent variable, U

the space of control or design variables, and Z the range space of the equality

constraint. The optimization problem is formulated as follows:

Problem 4.1.1.

min
y,u

φ(y, u), (y, u) ∈ Y × U (4.1)

s.t. g(y, u) = 0 (4.2)

where φ : Y × U → IR, g : Y × U → Z. (4.3)

If we assume that for each control variable u, we have a unique solution y = s(u)

of the equality constraint g(s(u), u) = 0, then we can rewrite the constrained

optimization problem as an unconstrained optimization problem, namely

min
u

φ(s(u), u), u ∈ U.

It is well known that the gradient of this function can be expressed in two

ways [77]. Either using

• the sensitivity equations or

• the adjoint equations.

The first approach is considered reasonable for a small number of variables, whereas

the second one requires more analysis in the derivation, but shows to be highly

efficient for large scale problems. If we turn to the second derivative applied

to a vector as this required for iterative solvers like conjugate gradient (CG) or

generalized minimal residual method (GMRES), we are free to choose for this

purpose again either the adjoint or sensitivity approach. It was shown in [77]

that this results in two possible implementable schemes: one with a second order

sensitivity equation or one with a second order adjoint equation. We concentrate
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in this chapter of the thesis on the approach using a second order adjoint. The

effort per iteration is comparable to that of an inexact Newton’s method, where

the matrix-vector multiplication is approximated by a finite difference quotient,

yet it gives the precise result rather than an approximation.

4.2 First- and Second-Order Fréchet-Derivative

For notational purposes we recall that a map g : X → Z from a Banach space

X to another Banach space Z is called Fréchet-differentiable at x ∈ X, if there

exists a linear operator denoted by g′(x) : X → Z such that

‖g(x+ h)− g(x)− g′(x)h‖Z ≤ α(‖h‖X)‖h‖X ,

with a function α(r) satisfying α(r)→ 0 for r → 0. The partial Fréchet-derivatives

of e.g., g(y, u) is denoted by gy(y, u) or gu(y, u) with a subscript indicating the

variable the derivative is taken. The adjoint operator of g′(x) is denoted by g′(x)∗ :

X∗ → Z∗. We note that Fréchet-derivatives of second order like gyu(y, u) are linear

operators in the spaces L(U,L(Y, Z)) = L(U × Y, Z). In what follows, we impose

the following smoothness assumptions on the functions in the problem formulation.

Assumption 4.2.1. Let the function φ and the mapping g be continuously Fréchet-

differentiable on Y × U .

Furthermore, we assume the following constraint qualification to hold at a later

to be specified point (y, u) ∈ Y × U .

Assumption 4.2.2. For (y, u) ∈ Y ×U let the partial Fréchet-derivative gy(y, u) :

Y → Z be surjective and invertible.

With these assumptions we can apply the implicit function theorem.

Theorem 4.2.1. Let assumptions 4.2.1 and 4.2.2 hold at (y∗, u∗) ∈ Y ×U . Then

there exist neighborhoods BY ⊂ Y at y∗ and BU ⊂ U at u∗ and a Fréchet-

differentiable map s : BU → BY such that

g(s(u), u) = 0 and gy(s(u), u)s′(u) = −gu(s(u), u). (4.4)
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This theorem can be used to reformulate the constrained optimization problem

from above as an unconstrained optimization problem, namely

min
u∈BU

Φ(u), Φ(u) := φ(s(u), u). (4.5)

The necessary optimality conditions of first order require various derivatives

which are well defined under the statements above. Therefore, the first derivative

of the objective function of the unconstrained problem can be computed as follows

using the adjoint approach.

Theorem 4.2.2. Let assumptions 4.2.1 and 4.2.2 hold at (y, u) ∈ Y × U . Then

we obtain

Φ′(u) = gu(s(u), u)∗p+ φu(s(u), u) ∈ U∗, (4.6)

where p ∈ Z∗ is defined as the solution of the adjoint equation

gy(s(u), u)∗p = −φy(s(u), u) ∈ Y ∗. (4.7)

Alternatively, the action of the adjoint variable p ∈ Z∗ is given by

p(z) = −φy(s(u), u)gy(s(u), u)−1z ∀z ∈ Z. (4.8)

In the following we give the second derivative of the function Φ. A rigorous

derivation of both the gradient and second derivative can be found in [77]. Since

in many algorithmic applications, e.g., the use of iterative solvers for the Newton

step, the complete Hessian information Φ′′(u) is not needed, we concentrate on

the computation of the Hessian-vector product Φ′′(u)∆v. Obviously, we need to

strengthen assumption 4.2.1 to

Assumption 4.2.3. Let the functional φ and the map g be twice continuously

Fréchet-differentiable on Y × U .

As noted before, the notation using second derivatives can be somewhat com-

plex, since the second partial derivative gyu(y, u) can be interpreted as a map in

L(U,L(Y, Z)) or L(U × Y, Z), which gives multiple perspectives of how to view

second derivatives.
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Theorem 4.2.3. The second derivative Φ′′(u) applied to ∆v can be written as

Φ′′(u)∆v = gu(y, u)∗π+(gyu(y, u)ξ)∗p+φyu(y, u)ξ+(guu(y, u)∆v)∗p+φuu(y, u)∆v,

where y, u satisfy g(y, u) = 0 and, p solves the adjoint equation (4.7). Furthermore,

ξ solves the sensitivity equation of first order

gy(y, u)ξ = −gu(y, u)∆v, (4.9)

and π the second order adjoint equation

gy(y, u)∗π = −(gyy(y, u)ξ)∗p− φyy(y, u)ξ − (guy(y, u)∆v)∗p− φuy(y, u)∆v. (4.10)

Let us compare this with an inexact Newton method, where the Hessian-vector

multiplication Φ′′(u)∆v is approximated by one finite difference quotient in direc-

tion ∆v:

Φ′′(u)∆v ≈ 1

h
[Φ′(u+ h∆v)− Φ′(u)].

First, a proper choice of h can be quite delicate, since an h too small magnifies

any error tolerances in the gradient computations. Second, the additional gradient

evaluation requires a nonlinear system solve for y and an additional adjoint solve

for p. In our approach we need a linear instead of a nonlinear system solve for ξ

and only one additional adjoint solve (4.10) for π.

4.3 Inexact Newton

It is well accepted in the inverse community the use of an inexact Newton’s

method, in particular when one solves the linear systems which involve the Hessian

by iterative solvers. Here we take the opportunity to discuss some aspects in

connection with the second order adjoints.

Consider Hessian-vector multiplication needed for a Krylov-type solver in the

Newton equation, can be approximated by

Φ′′(uk)v ≈ (Φ′(uk + hkv)− Φ′(uk))/hk,
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for hk sufficiently small. Hence each Krylov iteration requires the solution of

another state and adjoint equation. However, if one uses the concept of second-

order adjoints, one does not need to approximate the Hessian-vector product, but

can compute it exactly at the expense of the solution of one sensitivity equation

and the computation of a second order adjoint. One advantage of our approach

is that while the state and first order adjoint equation must be solved to full

accuracy in order to obtain the correct gradient information, the solution of the

sensitivity and the second order adjoint equation could be performed at a lower

accuracy. This introduces only an error in the Hessian-vector product which can

be monitored within the framework of an inexact Newton approach. If one wants

to avoid the computation of certain second derivatives for the functions φ or the

mapping g, then one can replace these by finite difference quotients. For example,

in the right-hand side of the second order adjoint equation for the first term

replace gyy(y, u)ξ by [gy(y + hξ, u)− gy(y, u)]/h.

The general expectation is as we relax the solves of the second adjoint and

sensitivity in 4.2.3 we introduce more inexactness into the Hessian apply leading

us to more Newton iterations. However, in our work given some assumptions

we can retain good convergence rates while relaxing those solves moderately. In

our numerical experiments we observed the same number of Newton iterations

for solving the system exactly and using relaxed (dynamic) tolerances. While the

number of Newton iterations was the same the computational effort in the latter

case was less reflected in the number of Krylov iterations.

However, one can use the framework also for inexact gradient information,

which would allow also to compute the solution of the system equation y and the

adjoint equation p up to a certain accuracy. This is formulated in the following

theorem, where in contrast to the usual theory on inexact Newton’s method, the

measure for the inexact solves is not required to be driven to zero by the size of

the residual but rather by an independent given sequence of numbers converging

to zero.
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Theorem 4.3.1. Assume that each Newton step is solved inexactly

Φ′′(uk)∆uk = −Φ′(uk) + rk, uk+1 = uk + ∆uk.

If for some c ∈ (0, 1) we have for all k

‖rk‖ ≤ ρk, ρk+1 ≤ cρk,

then there exists an ε > 0 such that if ‖u0 − u∗‖ ≤ ε and Φ′′(u∗) is invertible, the

sequence uk converges to u∗ at a r-linear rate of convergence.

Proof. The convergence analysis for Newton’s method yields

uk+1 = Φ′′(uk)
−1[Φ′′(uk)uk − Φ′(uk) + rk].

With ek := uk − u∗ and the boundedness of ‖Φ′′(u)−1‖ for ‖u − u∗‖ ≤ ε for

sufficiently small ε, we obtain for ‖uk − u∗‖ ≤ ε

‖ek+1‖ ≤ L1‖Φ′′(uk)(uk − u∗)− Φ′(uk) + Φ′(u∗) + rk‖ ≤ L2(‖ek‖2 + ρk).

Choose ε > 0 so small such that also ε ≤ 1/(2L2) and k0 so large such that

ck ≤ ε/(2L2ρ0). Hence

‖ek+1‖ ≤ L2ε
2 + L2c

kρ0 ≤ ε/2 + ε/2 = ε,

which completes the induction argument that uk stay in an ε−neighborhood of u∗.

We turn to the proof of the rate of convergence. We choose ε > 0 so small that

L2ε+ c < 1. Then define

χk+1 = L2(εχk + ρk), k ≥ 1, χ0 = ρ0L2/c,

that converges at a linear rate to zero, because by induction

χk+1/χk = L2ε+ L2ρk/χk = L2ε+ ρk/(εχk−1 + ρk−1)

≤ L2ε+ ρk/ρk−1 ≤ L2ε+ c < 1.

Finally, we show that ‖ek‖ is bounded by χk which proves the r-linear rate. If this

is true for k, then for k + 1

‖ek+1‖ ≤ L2(‖ek‖2 + ρk) ≤ L2(‖ek‖χk + ρk) ≤ χk+1.

In order to see for the initiation of the induction that ‖e0‖ ≤ χ0 = ρ0L2/c holds,

we can choose ε so small, that ‖e0‖ ≤ ε ≤ χ0 = ρ0L2/c is true.
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This is a typical result one may find in the literature of inexact Newton. We

choose to prove this result as it is in the form most suited for our work, however

this Theorem can be viewed as restatement of Theorems 6.1.1 and 6.1.2 from [52].

4.4 Inexact Richardson Iteration

As an example, for an iterative solver of linear equations, in our case the Newton

system, we look at the Richardson iteration, since it can be analyzed in details

without much effort. Most of the final estimates also hold for general Krylov

methods such as Generalized Minimal Residual Method (GMRES) and Conjugate

Gradient Method (CG), as proved in the works by the authors in [45, 56, 55].

Consider a symmetric positive definite matrix A ∈ IRn×n and find x∗ ∈ IRn for

some b ∈ IRn with

Ax∗ = b

or equivalently for any α ∈ IR with α 6= 0

x∗ = x∗ + α(b− Ax∗).

Richardson’s method is an iterative procedure with

xi = xi−1 + α(b− Axi−1), i ∈ IN, x0 = 0.

This results using Ax∗ = b in

xi − x∗ = xi−1 − x∗ + α(b− Axi−1) = (I − αA)(xi−1 − x∗),

which is convergent for

α =
2

λ− + λ+

, (4.11)

where λ−, and λ+ are the smalles and largest eigenvalues of A, respectively. This

is because for spectral matrix norm we get

‖I − αA‖ = 1− 2λ−
λ− + λ+

=
λ+ − λ−
λ+ + λ−

=
cond2(A)− 1

cond2(A) + 1
< 1,
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where cond2(A) = ‖A‖2‖A−1‖2 is the condition number of A. Updating the resid-

ual by ri = b − Axi, as usual for Krylov methods, we can rewrite one step of the

Richardson iteration as

ri = ri−1 − αAri−1, i ∈ IN, r0 = b

xi+1 = xi + αri, i ∈ IN, x1 = αb.
(4.12)

For the further analysis let us assume that the matrix vector multiplication exhibits

an error quantified by gi. To be more precise, we assume at iteration i that the

matrix vector product has an error: A applied to an arbitrary vector z is not Az,

but rather Az+gi. Here the error term gi, in particular its size, could change from

iteration to iteration, namely

r̃i = r̃i−1 − α(Ar̃i−1 + gi−1), i ∈ IN, r̃0 = b

x̃i+1 = x̃i + αr̃i, i ∈ IN, x̃1 = αb.
(4.13)

It is to be noted that similar results can be found in [51, 45] other works, but the

authors keep the error in the matrix vector product not as Ax + g with an error

vector g, but in matrix form (A+ E)x with an error matrix E instead.

Lemma 2. The true residual b− Ax̃i and the computed residual r̃i of the inexact

iteration imply the following error estimate

‖r̃i − (b− Ax̃i)‖ ≤ α
i−1∑
j=0

‖gj‖. (4.14)

Proof. If we define

zi = r̃i − (b− Ax̃i), i ∈ IN, z0 = 0

then

zi = r̃i−1 − α(Ar̃i−1 + gi−1)− (b− A(x̃i−1 + αr̃i−1) = zi−1 − αgi−1

and hence

zi = zi−1 − αgi−1 = ... = z0 − α
i−1∑
j=0

gj.

From this, the statement of the lemma follows immediately.
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Lemma 2 states that the error in the perturbed residuals can accumulate as

the iteration progresses. This is not the case, if we compare it to the residuals of

the exact iteration. The following Lemma is explores how much is the difference

between the residual of the exact iteration and the perturbed.

Lemma 3. We have the following error estimate for the residuals of the inexact

and exact iteration:

‖r̃i − ri‖ ≤ α‖
i−1∑
j=0

(I − αA)i−1−jgj‖. (4.15)

Proof. If we define

zi = r̃i − ri, i ∈ IN, z0 = 0

then

zi = r̃i−1 − α(Ar̃i−1 + gi−1)− ri−1 + αAri−1 = (I − αA)zi−1 − αgi−1.

This leads to

zi = (I − αA)iz0 −
i∑

j=1

(I − αA)j−1αgi−j

and to (4.15) by rearranging the indices.

If one compares the estimates (4.14) and (4.15) one realizes that the error in

(4.15) contains a damping factor. This can be used to improve the estimate for

‖r̃i − ri‖ such that it stays bounded in contrast to the estimate in ‖r̃i − ri‖ where

an accumulation of error cannot be avoided.

Lemma 4. If the error gi follows

‖gi−1‖ ≤ ε i ∈ IN,

then we obtain

‖r̃i − (b− Ax̃i)‖ ≤ αiε,

where as

‖r̃i − ri‖ ≤ ‖A−1‖ε. (4.16)

with α chosen by (4.11).
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Proof. From the proof of the previous lemma we have

‖zi‖ ≤ α‖
i∑

j=1

(I − αA)j−1‖‖gi−j‖ ≤ α

i∑
j=1

‖I − αA‖j−1ε

and by the geometric series

‖zi‖ ≤ α

∞∑
j=1

(
λ+ − λ−
λ+ + λ−

)j−1

ε = α
λ− + λ+

2λ−
ε =

1

λ−
ε.

Similarly we have

‖zi‖ = ‖zi−1 − αgi−1‖ = ‖z0 − α
i−1∑
j=0

gj‖ ≤ α
i−1∑
j=0

ε, (4.17)

which concludes our result.

In [56, 55] the error gj is measured as a relative error. This leads to the following

corollary.

Corollary 2. If the relative error for gi satisfies

‖gi‖/‖ri‖ ≤ ηi i ∈ IN

with

ηi ≤ ‖A‖
ε

‖ri‖
then

‖r̃i − ri‖ ≤ cond2(A)ε. (4.18)

Furthermore the true residual ri can be estimated by the computed residual r̃i

through

‖ri‖ ≤ ‖r̃i‖+ cond2(A)ε.

Similar results can be seen in both the work of by Eshof and Sleijpen [56, 55]

and by Szyld and Simoncini [45].
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4.4.1 Application to finite dimensional case

Here we assume that the function spaces are all finite dimensional, while the

results hold true in the continuous setting as well. We consider the original problem

4.1.1 in the following setting.

Problem 4.4.1.

min φ(y, u), (y, u) ∈ IRm × IRn (4.19)

s.t. g(y, u) = 0 (4.20)

where φ : IRm × IRn → IR, g : IRm × IRn → IRm (4.21)

Theorem 4.4.1. We have for the second derivative applied to a vector

Φ′′(u)∆v = gu(y, u)Tπ+(gyu(y, u)ξ)Tp+φyu(y, u)ξ+(guu(y, u)∆v)Tp+φuu(y, u)∆v

where y, u satisfy g(y, u) = 0 and p ∈ IRm solves the adjoint equation (4.7). Fur-

thermore ξ solves the sensitivity equation of first order

gy(y, u)ξ = −gu(y, u)∆v (4.22)

and π the second order adjoint equation

gy(y, u)Tπ = −(gyy(y, u)ξ)Tp−φyy(y, u)ξ− (guy(y, u)∆v)Tp−φuy(y, u)∆v. (4.23)

Note that Theorem 4.4.1 is the finite dimensional counterpart of Theorem 4.2.3.

Theorem 4.4.2. Let assumptions 4.2.1 and 4.2.2 hold at (y, u) ∈ Y ×U = IRm×
IRn and equations (4.22) and (4.23) be solved inexactly i.e,

gy(y, u)ξ + gu(y, u)∆v = es

(4.24)

gy(y, u)Tπ + (gyy(y, u)ξ)Tp+ φyy(y, u)ξ + (guy(y, u)∆v)Tp+ φuy(y, u)∆v = ea.

(4.25)

If we assume that the errors are proportional to the corresponding residuals

‖es‖ ≤ ηu ‖gu(y, u)∆v‖ ,

‖ea‖ ≤ ηp
∥∥(gyy(y, u)ξ)Tp+ φyy(y, u)ξ + (guy(y, u)∆v)Tp+ φuy(y, u)∆v

∥∥ ,
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then there exist constants ηu, du, cu, ηp, dp, cp such that

‖r‖ ≤ (duηucu + dpηpcp)‖∆v‖, (4.26)

where r is the difference between the true Hessian apply and the perturbed Hessian

r = Φ′′(u)∆v − Φ̃′′(u)∆v.

Proof. We assume that the linear solves for ξ and π are carried out by an iterative

solver and stopped early. The stopping criterion is based on the relative error of

the residual with respect to the right hand side gu∆v, hence in norm less than

proportional to the size of the vector ∆v. Hence the approximate solution denoted

by ξ̃ satisfies

gy(y, u)ξ̃ + gu(y, u)∆v = es,

and by our assumption we have the following

‖es‖ ≤ ηu‖gu∆v‖ ≤ ηu‖gu‖‖∆v‖ = ηucu‖∆v‖. (4.27)

for ‖gu‖ ≤ cu. The error between ξ and ξ̃ satisfies

gy(y, u)(ξ̃ − ξ) = es,

and since gy is assumed to be invertible and using (4.27) we obtain

‖ξ̃ − ξ‖ ≤ ‖g−1
y ‖‖es‖ ≤ ηu‖g−1

y ‖‖gu‖‖∆v‖. (4.28)

Furthermore for ξ̃ from its definition

‖ξ̃‖ ≤ ‖g−1
y ‖ (‖gu‖‖∆v‖+ ‖es‖) ≤ ‖g−1

y ‖ [1 + ηu] ‖gu‖‖∆v‖. (4.29)

For the approximate solution π̃ we have the equation

gy(y, u)T π̃ + (gyy(y, u)ξ̃)Tp+ φyy(y, u)ξ̃ + (guy(y, u)∆v)Tp+ φuy(y, u)∆v = ea.

By the same assumption as above for ξ̃, and that the error for π̃ is relative to the

right hand side of the equation for π,

‖ea‖ ≤ ηp‖(gyy(y, u)ξ̃)Tp+ φyy(y, u)ξ̃ + (guy(y, u)∆v)Tp+ φuy(y, u)∆v‖.
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By the estimates for ξ̃ from above we obtain

‖ea‖ ≤ηp‖(gyy ξ̃)Tp+ φyy ξ̃ + (guy∆v)Tp+ φuy∆v‖ (4.30)

≤ηp(‖gyy‖‖p‖+ ‖φyy‖) ‖ξ̃‖+ ηp(‖guy‖‖p‖+ ‖φuy‖)‖∆v‖ (4.31)

≤ηp [ (‖gyy‖‖p‖+ ‖φyy‖) ‖g−1
y ‖ [1 + ηx] ‖gu‖]‖∆v‖ (4.32)

+ (‖guy‖‖p‖+ ‖φuy‖) ] ‖∆v‖ (4.33)

≤ηpcp‖∆v‖, (4.34)

where cp depends on ηx. The error in π̃ and π we obtain

gy(y, u)T (π̃ − π) + (gyy(y, u)(ξ̃ − ξ))Tp+ φyy(y, u)(ξ̃ − ξ) = ea,

and by assumption

‖ea‖ ≤ ηp‖(gyy(y, u)(ξ̃ − ξ))Tp+ φyy(y, u)(ξ̃ − ξ)‖. (4.35)

We use the estimates for the error in the ξ’s from above to obtain

‖ea‖ ≤ ηp [‖gyy(y, u)‖‖p‖+ ‖φyy(y, u)‖] ηx‖g−1
y ‖‖gu‖‖∆v‖.

By invertibility of gTy

‖π̃ − π‖ ≤ ‖g−Ty ‖‖(gyy(y, u)(ξ̃ − ξ))Tp+ φyy(y, u)(ξ̃ − ξ)− ea‖

and

‖π̃ − π‖ ≤ ‖g−Ty ‖ [ (‖gyy‖‖p‖+ ‖φyy‖) ‖ξ̃ − ξ‖+ ‖ea‖ ]

and using the previous estimate on the ξ′s

‖π̃ − π‖ ≤ ‖g−Ty ‖ [ (‖gyy‖‖p‖+ ‖φyy‖) ηx‖g−1
y ‖‖gu‖‖∆v‖+ ‖ea‖].

If we insert the estimate for the ea from above, we obtain

‖π̃ − π‖ ≤‖g−Ty ‖ [ (‖gyy‖‖p‖+ ‖φyy‖) ηu‖g−1
y ‖‖gu‖‖∆v‖ (4.36)

+ ηp [‖gyy(y, u)‖‖p‖+ ‖φyy(y, u)‖] ηx‖g−1
y ‖‖gu‖‖∆v‖ (4.37)

≤ (ηuc1 + ηpc2)‖∆v‖. (4.38)
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Using the approximate quantities, the Hessian-vector product become inexact de-

noted by Φ̃′′(u)∆v given by

Φ̃′′(u)∆v = gu(y, u)T π̃+(gyu(y, u)ξ̃)Tp+φyu(y, u)ξ̃+(guu(y, u)∆v)Tp+φuu(y, u)∆v.

In order to apply the theory from inexact methods we formulate the exact apply

as an inexact

Φ′′(u)∆v = Φ̃′′(u)∆v + r

with perturbation r described by

r = gu(y, u)T (π − π̃) + (gyu(y, u)(ξ − ξ̃))Tp+ φyu(y, u)(ξ − ξ̃).

We would like to estimate ‖r‖, by employ our estimates (4.38) and (4.35) we can

derive

‖r‖ ≤ ‖gu(y, u)T‖‖π − π̃‖+ (‖gyu(y, u)‖‖p‖+ ‖φyu(y, u)‖) ‖ξ − ξ̃‖

≤ ‖gu(y, u)T‖‖g−Ty ‖ [ (‖gyy‖‖p‖+ ‖φyy‖) ‖g−1
y ‖‖es‖+ ‖ea‖]

+(‖gyu(y, u)‖‖p‖+ ‖φyu(y, u)‖) ‖g−1
y ‖‖es‖

≤ du‖es‖+ dp‖ea‖

≤ (duηucu + dpηpcp)‖∆v‖.

Remark 3. We observe that

(duηucu + dpηpcp)‖∆v‖ ≤ ε

holds for some fixed constant ε, if

ηu ≤ ε/(2ducu‖∆v‖), ηp ≤ ε/(2dpcp‖∆v‖). (4.39)

In practice ε is a user supplied constant denoting an upper bound of the error

between the true Hessian apply and the perturbation Hessian. To estimate these

constants is computationally challenging as these involve computation of matrix

norms that at first glance seem expensive to evaluate. However, we note that if

one uses the ‖ · ‖2 norms, only the largest eigenvalue will need to be computed and

this can be only a rough estimate (as we are interested in the asymptotic behavior

of the ratios in (4.39)).
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Corollary 3. Let assumptions 4.2.1 and 4.2.2 hold at (y, u) ∈ Y ×U = IRm× IRn

and equations (4.22) and (4.23) be solved inexactly as in Theorem 4.4.2. Then we

conclude that there are constants cs, ca > 0 such that

‖ξ̃ − ξ‖ ≤ cs‖es‖ and ‖π̃ − π‖ ≤ ca(‖ea‖+ ‖es‖). (4.40)

Proof. From equations 4.24 we can conclude that

gy(y, u)(ξ̃ − ξ) = es

and

gy(y, u)∗(π̃ − π) = ea − (gyy(y, u)(ξ̃ − ξ))∗p− φyy(y, u)(ξ̃ − ξ).

By applying assumption 4.2.2 and some inequality work we can derive the result

with cs = ‖gy(y, u)−1‖ and ca = max{cs, cs‖(gyy(y, u)‖‖p‖+ ‖φyy(y, u)‖}.

4.5 Inexact Krylov Solvers

There is a vast literature on error estimates for Krylov methods [45, 51, 50,

44, 59]. An important question is “How much error is allowed at each Krylov

iteration?”. The stunning result is that towards the end of the iteration, the error

does not need to tend to zero, but can stay at a constant prescribed level or in other

words the relative error compared to the residual could increase as the iteration

progresses. While counter intuitive, such results can be found in the works by

Szyld and Simoncini [45] and by Eshof and Sleijpen [55]. Furthermore, the work

by Notay [36] and early observation made by Golub and Overton [33, 34, 35] that

Krylov methods such as Conjugate Gradient may maintain convergence rate even

at loose accuracy. In the book by Kelley [52, 6.2], these issues are also addressed

in the context of inexact Newton methods using finite difference approximation.

With regard to second order adjoints, the works of Hicken [40] touches on aspects

of the convergence.

In the general case of Theorem 4.2.3 the solution y of the equality constraint and

p of the adjoint equation have to be computed to high accuracy in order to obtain

precise gradient information. But the question arises, if this is also needed in the
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case of a Hessian-vector product within the inner iteration of a Newton solve like

CG or GMRES. Thus, in the next Theorem we examine the difference between the

exact Hessian apply and the one obtained from solving the two equations: (second

order) sensitivity equation (4.9) and (second order) adjoint equation (4.10).

If we use the inexact solves ξ̃ and π̃ in the Hessian vector product according

to Theorem 4.2.3, we do not obtain Φ′′(u)∆v but rather an approximate quantity

which we call H̃∆v defined by

H̃∆v = gu(y, u)∗π̃ + (gyu(y, u)ξ̃)∗p+ φyu(y, u)ξ̃ + (guu(y, u)∆v)∗p+ φuu(y, u)∆v.

Theorem 4.5.1. Let assumptions 4.2.1 and 4.2.2 hold at (y, u) ∈ Y ×U and H̃∆v

be the Hessian-vector product obtained by solving equations (4.22) and (4.23) be

solved inexactly. Then

‖(H̃ − Φ′′(u))∆v‖ ≤ cH(‖ea‖+ ‖es‖). (4.41)

Proof. Consider

(H̃ − Φ′′(u))∆v = gu(y, u)∗(π̃ − π) + (gyu(y, u)(ξ̃ − ξ))∗p+ φyu(y, u)(ξ̃ − ξ)

and using the estimates (4.40) and the standard inequality work, we conclude our

result, i.e., for some positive constant cH

‖ri‖ ≤ cH(‖ea‖+ ‖es‖), (4.42)

where r = gu(y, u)∗(π̃ − π) + (gyu(y, u)(ξ̃ − ξ))∗p+ φyu(y, u)(ξ̃ − ξ).

This gives us an estimate for the error in the Hessian-vector product in a

rigorous manner for a general Banach space. For the rest of the chapter we will

work with the finite dimensional version to be consistent with literature on Krylov

methods. Next, the question arises, how does the error, which influences each

iteration in a Krylov iteration affect the solution of each Newton step:

Φ′′(u)s = −∇Φ(u). (4.43)

If the Krylov method solving the inexact system (4.43) terminates with termination

criterion ε, then we have a Newton system that satisfies

‖H̃s+∇Φ(u)‖ ≤ ε
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. We provide analysis in terms of the Richardson iteration as a Krylov solver.

Theorem 4.5.2. Let ri and r̃i be the residuals of the Richardson iteration (see

Equations (4.12) and (4.13)) solving to the Newton system Φ′′(u)si = −∇Φ(u).

Furthermore, assume the perturbation gi from (4.13) is bounded

‖gi‖ ≤ ηi‖Φ′′(u)‖‖si‖

then the difference of the residuals follows

‖ri − r̃i‖ ≤
i∑

j=1

‖I − αΦ′′(u)‖j−1αηi−j‖Φ′′(u)‖‖Φ′′(u)si−j +∇Φ(u)‖, (4.44)

where α and η are some constants.

Proof. This can be seen as a direct consequence of Lemma 3, where A = Φ′′(u).

Consider the residual

‖zi‖ = ‖r̃i − ri‖ = ‖
i∑

j=1

(I − αA)j−1αgi−j‖ (4.45)

≤
i∑

j=1

‖I − αA‖j−1α‖gi−j‖, (4.46)

and by assumption the perturbation gi for the matrix vector productAri is bounded

‖gi‖ ≤ ηi‖A‖‖ri‖

then we can conclude

‖ri − r̃i‖ ≤
i∑

j=1

‖I − αA‖j−1αηi−j‖A‖‖ri−j‖ (4.47)

=
i∑

j=1

‖I − αΦ′′(u)‖j−1αηi−j‖Φ′′(u)‖‖Φ′′(u)si−j +∇Φ(u)‖, (4.48)

where α was defined in equation (4.11).

This estimate gives us a good understanding of how the error can propagate in

the system. While we were satisfied to do this for Richardson, there is more general

theory available for Full Orthogonalization Method (FOM) and the Generalized

Minimal Residual Method (GMRES), we point the reader to the works of Szyld

and Simoncini [45, 51, 44].
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4.6 Model problem setup

To illustrate the effect of using an inexact Hessian-apply using the dynamic

tolerance proposed in Section 4.4.1 (see Theorem 4.4.2 and equation (4.39)), we

consider the inference of the log-coefficient field in an elliptic partial differential

equation. The forward model can be mathematically expressed as

−∇ · (eu∇y) = f in D,

y = g on ΓD,

eu∇y · n = h on ΓN ,

(4.49)

where D ⊂ Rd (d = 2, 3) is an open bounded domain with sufficiently smooth

boundary Γ = ΓD ∪ΓN , ΓD ∩ΓN = ∅. Here, y is the state variable, f ∈ L2(D) is the

source term, and u is an uncertain parameter field in E = dom(A), where A is a

Laplacian-like operator, as defined in [76, 75]. To state the weak form of (4.49),

we define the space,

Vg = {v ∈ H1(D) : v
∣∣
ΓD

= g}, V0 = {v ∈ H1(D) : v
∣∣
ΓD

= 0},

where H1(D) is the Sobolev space of functions in L2(D) with square integrable

derivatives. Then, the weak form of (4.49) is as follows: Find y ∈ Vg such that

〈eu∇y,∇p〉 = 〈f, p〉+ 〈h, p〉ΓN , ∀p ∈ V0. (4.50)

Here 〈·, ·〉 denotes the standard inner products in L2(D).

For the numerical experiments we choose D := [0, 1]× [0, 1] and the boundaries

ΓN := {0, 1}× (0, 1) and ΓD := (0, 1)×{0, 1}. We also choose no source term, (i.e.,

f = 0) and no normal flux on ΓN := {0, 1}×(0, 1) (i.e., the homogeneous Neumann

condition eu∇y ·n = 0 on ΓN) are imposed. Dirichlet conditions are prescribed on

the top and bottom boundaries, in particular y = 1 on (0, 1) × {1} and y = 0 on

(0, 1) × {0}. In Figure 4.1, we illustrate the “truth” parameter field used in our

numerical tests, and the corresponding state solution.
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Figure 4.1: Log parameter field utrue (a) and state y obtained by solving the forward

(state) equation (4.49) with utrue . (b).

a) b) c) d)

Figure 4.2: Prior mean (a), and samples drawn from the prior distribution (b)–(d).

4.7 Computational results

In this section, we present numerical results for the model problem described

in section 4.6. The numerical results presented in this paper are obtained using

hIPPYlib (an inverse problem Python library [127, 126]). hIPPYlib implements

state-of-the-art scalable adjoint-based algorithms for PDE-based deterministic and

Bayesian inverse problems. It builds on FEniCS [128, 129] for the discretization of

the PDEs and on PETSc [131] for scalable and efficient linear algebra operations

and solvers needed for the solution of the PDEs.



59

4.7.1 Comparison of the performance of the Newton in-

verse solver with exact and inexact Hessian-applies

Here, we compute the MAP point discussed in Section 2.2. As can be seen in

Table 4.1 (a), the tolerance we derived in Section 4.4.1 is relaxed as we converge to

the inverse problem solution. This table also shows that the Newton inverse solver

with exact and inexact Hessian-applies perform similarly. Namely, both reduce the

optimization objective function to the same value and require the same number

of outer Newton iterations to converge (to the given tolerance). We would like to

note that while in this table the Newton inverse solver with inexact Hessian-applies

requires the same number of outer iterations to converge, we have also observed

tests where the number of iterations is slightly larger. This is expected due to the

approximate Hessian being used.

Figure 4.3 (left) confirms the results presented in Table 4.1 visually. In partic-

ular, from this figure we see that overall the inexact Hessian-apply leads to fewer

Krylov iterations than the exact Hessian-apply. The difference is more significant

in the middle of the iterations due to the lower dynamic tolerances. We note a

high number of inner iterations for the last Newton step even though the dynamic

tolerance is much smaller than the fixed tolerance. We attribute this to the fact

that the number of Newton-CG iterations was higher for the inexact Hessian-apply

case. On the right plot we show the total number of Krylov iterations for each

Newton iteration. As can be seen, the number of inner Krylov iterations for the

inexact Hessian-apply case is smaller than for the exact Hessian-apply case, and

the difference increases as we approach the inverse problem solution.

It is also important to consider the computational cost of the inexact versus

exact Hessian-based methods. To compare the two approaches we record the total

number of Krylov iterations for the two PDE solves required by the Hessian-apply.

As can be seen Table 4.1, the Newton inverse solver with inexact Hessian-applies

outperforms the one with exact Hessian-applies. We remind the reader though that

to compute the dynamic tolerance, one needs to compute matrix norms. However,

as discussed in Section 4.4.1 getting an approximate value for the tolerance has a

cost of computing the asymptotic behavior of the leading eigenvalue of φuy, φuu,



60

2 4 6 8 10
0

10000

20000

30000

40000

50000

Newton iter

K
ry
lo
v
it
er

fixed

dynamic

2 4 6 8 10

0

50000

100000

150000

Newton iter

K
ry
lo
v
it
er

fixed

dynamic

Figure 4.3: The performance of the inverse solver for the dynamic (black) and fixed

(blue) tolerances. The left and right figures show the number of Krylov iterations

per outer Newton iteration and the total Krylov iterations, respectively.

gy, gu [31, 32, 61, 60, 38]. In Table 4.3 we summarize the computational cost for

estimating the largest eigenvalues (i.e., l2 matrix norms) necessary for computing

the dynamic tolerance using randomized SVD and the power method. To show the

influence of the relative error on the final CG iterations, we compute these estimates

using 10% (left) and 5% (right) relative errors. The relative error is defined as
|‖Aref‖2−‖A‖2|
‖Aref‖2

, where ‖Aref‖2 is the accurate l2 norm of the reference matrix, and

‖A‖2 is estimated. These results show that the dynamic tolerance is not very

sensitive to the accuracy of the matrix norms. We also note that the power method

was slightly more efficient (for this problem) than the randomized SVD. Finally, we

would like to point out that in practice we found that the dynamic tolerance can

be reused for a number of iterations, which can save some computational effort.

Next we compare the spectrum of the data misfit Hessian evaluated at the

MAP point. Figure 4.4 shows a logarithmic plot of the eigenvalues of the general-

ized symmetric eigenproblem involving the exact and inexact Hessian-applies [126].

This plot shows that the spectrums coincide for the two approaces and that, as ex-

pected, they decay rapidly. As shown in [126], an accurate low-rank based approx-

imation of the inverse (exact and inexact) Hessian can be obtained by neglecting

eigenvalues that are small compared to 1.

In Figure 4.5 we show the MAP point (a) and samples from the Laplace approx-

imation (20) of the posterior probability density function (b)-(d). These samples
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Figure 4.4: Log-linear plot of first 25 eigenvalues of the prior-preconditioned Hes-

sian of the negative log-likelihood for the dynamic (blue) and fixed (red) tolerances.

The low-rank based approximation captures the dominant, data-informed portion

of the spectrum. The eigenvalues are truncated at λ = 1.

a) b) c) d)

Figure 4.5: The MAP point (a) and samples drawn from the Laplace approximation

of posterior distribution (b)–(d).

were obtained using the inexact Hessian-apply. The variance reduction between

the posterior samples and prior samples shown in Figure 4.2 reflects the informa-

tion gained from the data in solving the inverse problem. We note that the MAP

point (a) resembles the truth everywhere in the domain due to having observations

everywhere.
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4.8 Conclusion

In our work we relax the second adjoint and sensitivity equations required for

the Hessian-vector apply, we provide general and rigorous derivation on the toler-

ances used in for the inexact solves. In addition we show the tolerances controlling

the inexactness of the adjoint and sensitivity equations are allowed to increase (as

the number of Newton iterations in the inverse problem increases), while main-

tain our convergence properties (see Theorem 4.4.2). Our work provides a basis

for practical dynamic strategies for the relaxation of the Hessian-vector products.

We employ our dynamical tolerances as a stopping criteria for inner Krylov solver

for both the deterministic and Bayesian framework. We provide error bounds on

the difference of the inexact Hessian-vector product and the true Hessian-vector

product (see Theorem 4.5.1). We demonstrate the computational value of our

analytical work in an illustrative example, a statistical inverse problem.
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Nit Cost ‖g‖ CGit SensIt AdjIt PDE Tol

(a) inexact Hessian-apply

1 1.10E+03 1.59E+04 2 1580 1800 1.00E-09

2 2.90E+02 5.97E+03 2 2756 2490 9.06E-14

3 1.72E+02 2.57E+03 2 2164 1962 5.37E-13

4 6.00E+01 1.63E+03 4 3548 3362 1.64E-12

5 5.50E+01 1.05E+03 1 1053 1166 2.96E-12

6 4.20E+01 5.46E+02 6 5139 5258 8.45E-12

7 3.91E+01 3.17E+02 8 6679 6854 3.34E-11

8 3.85E+01 2.27E+02 5 4092 4205 4.72E-11

9 3.78E+01 1.56E+02 13 8712 10936 1.56E-10

10 3.78E+01 2.97E+01 20 11930 16183 4.15E-10

11 3.78E+01 1.28E+00 41 15742 29346 2.13E-09

Total iterations 104 146957

(b) exact Hessian-apply

1 1.10E+03 1.59E+04 2 1580 1800 1.00E-09

2 2.90E+02 5.97E+03 2 3327 2681 1.00E-14

3 1.72E+02 2.57E+03 2 3013 2302 1.00E-14

4 6.00E+01 1.63E+03 4 4640 4125 1.00E-14

5 5.50E+01 1.05E+03 1 1490 1401 1.00E-14

6 4.20E+01 5.46E+02 6 6917 6857 1.00E-14

7 3.91E+01 3.17E+02 7 8186 8275 1.00E-14

8 3.85E+01 2.24E+02 5 5619 6197 1.00E-14

9 3.78E+01 1.56E+02 11 12095 12928 1.00E-14

10 3.78E+01 2.98E+01 15 14263 17545 1.00E-14

11 3.78E+01 1.35E+00 23 18959 27270 1.00E-14

Total iterations 78 171470

Table 4.1: The number of total Krylov iterations for dynamic (a) and fixed (b)

tolerances. The Nit lists the number of outer Newton iterations needed to reduce

the norm of the gradient ‖g‖ five orders of magnitude. The Cost lists the value

of the optimization objective (i.e., the negative log posterior); the CGit lists the

number of CG iterations needed to solve the Newton system; the SensIt and

AdjIt list the number of Krylov iterations needed to solve the sensitivity and

second order adjoint problems to a tolerance given by PDE Tol.
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Test 1

Nit CG SensIt AdjIt Tol

1 1 19 18 10−6

2 1 19 17 10−6

3 1 20 12 10−6

4 21 366 157 10−6

5 1 19 11 10−6

6 147 2001 563 10−6

7 2 23 8 10−6

Total 174 3253

Test 2

1 1 47 46 10−15

2 1 47 45 10−15

3 1 47 39 10−15

4 10 452 327 10−15

5 4 171 122 10−15

6 14 563 416 10−15

7 20 621 470 10−15

Total 51 3413

Test 3 (Hicken∗)

Nit CG SensIt AdjIt Tol

1 1 15 14 10−5

2 1 19 17 10−6

3 1 24 17 10−8

4 11 250 141 10−8

5 4 100 65 10−10

6 16 350 205 10−10

7 18 422 277 10−13

Total 52 1927

Test 4 (Our approach)

1 1 19 18 10−7

2 1 34 32 10−12

3 1 31 26 10−11

4 10 291 215 10−11

5 5 126 82 10−10

6 16 344 190 10−10

7 6 49 9 10−8

Total 51 1426

Table 4.2: Solving the deterministic inverse problem 3.30 with fixed and adaptive

tolerances; Test 1 and Test 2 used fixed tolerances, Test 3 we used an adap-

tive tolerance suggested by Hicken and Alonso in [40], Test 4 uses the dynamic

tolerances from equation (4.39) where we fixed ε = 10−12. The Nit column lists

the number of outer Newton iterations needed to reduce the norm of the gradient

‖g‖ five orders of magnitude; the CGit column lists the number of CG iterations

needed to solve the Newton system; the SensIt and AdjIt columns list the num-

ber of Krylov iterations needed to solve the sensitivity and second order adjoint

problems to a tolerance given by PDE Tol, listed in the last column; Total is the

total number of Krylov iterations for the CG, SensIt and AdjIt.
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RelError<0.1 Ref RSVD PM

‖gy‖2 N/A 88 51

‖gu‖2 N/A 22 6

‖φuy‖2 N/A 28 7

‖φuu‖2 N/A 66 6

Total N/A 204 66

CG 1461 1461 1463

RelError<0.05 Ref RSVD PM

‖gy‖2 N/A 399 180

‖gu‖2 N/A 28 28

‖φuy‖2 N/A 30 20

‖φuu‖2 N/A 74 9

Total N/A 527 237

CG 1461 1461 1461

Table 4.3: A numerical study of the accuracy required for estimating the matrix

norms for the dynamic tolerances applied in an inexact Newton-CG solver. In the

columns we show the reference norm (Ref) computed within machine precision

using a direct method, the relative error (RelError), and the number of mat-vecs

for randomized SVD (RSVD) and the number of power method iterations (PM)

necessary to reach the accuracy prescribed by the relative error.



Chapter 5

Variance reduction for the

Bayesian approximation error

(BAE) with application to the

Stokes ice sheet model under

uncertain thermal distribution

5.1 Introduction

Inverse problems governed by physics-based models (e.g., expressed via PDEs)

typically contain multiple parameters which are uncertain. A common approach

is to formulate and solve the inverse problem to infer the unknown/uncertain

parameters simultaneously. However, this approach will result in a highly ill-posed

and potentially computationally intractable problem. Often times, these additional

uncertainties are not taken into account, which leads to infeasible estimates, as

shown in [23, 21]. To overcome these difficulties, one approach is to premarginalize

over the not important or so-called secondary or auxiliary parameters, and then

invert for the important or so-called primary parameters. This can be done via the

Bayesian approximation error (BAE) approach [71, 23, 21].

66
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Bayesian inversion combined with BAE will lead to a modified likelihood term

that will bring in the additional uncertainties via a modified (non-diagonal) cor-

relation matrix. It is common practice to approximate the model error with a

Gaussian distribution whose mean and covariance can be estimated with Monte

Carlo sampling. The goal of this work is to reduce the computational cost, i.e.,

reduce the number of samples needed to accurately estimate the statistics (i.e., the

mean and variance) of the model error. The key idea is to use a control variate

approach [136, 137] using a Taylor linear approximation of the model discrepancy

(i.e., the difference of the accurate and approximate models). This approach will

allow us to compute parts of the mean and covariance via analytical formulas, as

in [138, 139] and the remainder via Monte Carlo sampling. We illustrate our ap-

proach with an ice sheet inverse problem. The primary parameter is the so-called

basal sliding parameter field (a parameter field that has been the focus of ice sheet

inversion in the last decade [13, 11, 12, 10, 8, 7, 6, 5, 4, 114, 72, 9]). The secondary

parameters are parameters that go into the computation of the temperature field

that affects the viscosity of the ice.

The main contributions of this chapter of the thesis is threefold. First, we

show that simply ignoring the temperature distribution within the ice sheet flow

model by setting it to a (possibly well justified) nominal value can lead to signifi-

cantly overly confident and biased estimates for the basal sliding coefficient field if

the additional uncertainty is not accounted for. Secondly, we show that the BAE

approach can be used to take into account these additional uncertainties at essen-

tially no additional computational costs at the online stage, as all computations

are carried out prior to the acquisition of data. Thirdly, we show that employing

a linear Taylor expansion as a control variate can reduce the offline stage costs

associated with using the BAE approach.

This chapter is organized as follows. In Section 5.2 we discuss the conventional

Bayesian inverse problem formulation and provide necessary background on the

Bayesian approximation error approach. In Section 5.3, we describe the forward

ice sheet flow problem that is used for the inference of the basal sliding coefficient

field under uncertain rheology, and the mathematical model guiding the thermal
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distribution of the ice. In Section 5.4 we show how to estimate the mean and

variance for the model error, and in Section 5.5 we discuss the control variate

approach to reduce the variance of the model error. Finally, in Section 5.6 we

show numerical results. Section 5.7 provides concluding remarks.

5.2 Background

5.2.1 Conventional Bayesian Inverse Ice Sheet Problem

Here we summarize the Bayesian inverse ice sheet problem, for a more in-depth

discussion see [72, 114, 113, 116]. The goal of the inverse ice sheet problem is to

estimate the basal sliding parameter based on noisy surface velocity measurements.

It is well understood, however, that the surface velocity can also be significantly

influenced by the temperature dependent rheology of the ice (among other things).

As such, we write the accurate representation of the relationship between the

surface observations, do, and parameters, i.e., the noise model, as

do = F(β, z) + ε, (5.1)

where ε denotes measurement errors in the data, β the basal sliding parameter

field, and z any other unknown parameters, i.e., the geothermal heat flux and

thermal conductivity of the ice.

We pose the inverse problem in the Bayesian framework [76, 126, 67] as it allows

for systematic incorporation of uncertainty, including model uncertainties [69, 70].

As discussed in Chapter 2, within the Bayesian framework all unknowns are treated

as random variables, and are assigned prior probability densities which encode any

prior beliefs on the parameters. Here we model these prior densities as Gaussians,

i.e., β ∼ N (β0, Cβ) and z ∼ N (z0, Cz), where β0 and z0 denote the means, and Cβ
and Cz the respective covariance operators. The covariance operators are define

using Laplacian-like PDE operators, namely Cβ = A−1
β and Cz = A−1

z , with

Aβ = −∇ · (Θβ)∇+ δβI, Az = −∇ · (Θz)∇+ δzI, (5.2)

where (Θβ, Θz) and (δβ, δz) control the correlation lengths and the pointwise

variance of the prior operator, respectively [76, 126].
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Discretization: We discretize each of the parameters using continuous linear

Lagrange basis functions, leading to the approximations βh(s) =
∑p

i=1 βiφi(s)

and zh(x) =
∑q

k=1 zkψk(x), where the basis functions φ and ψ may or may not

coincide. The unknowns are then β = [β1, β2, . . . βp] and z = [z1, z2, . . . zq] which

are normally distributed with means β0 and z0 and covariance matrices[
Γ−1
β

]
ij

=

∫
Dβ
φi(s)A2

βφj(s)ds
[
Γ−1
z

]
kl

=

∫
Dz
ψk(x)A2

zψl(x)dx, (5.3)

for i, j ∈ {1, 2, . . . , p} and k, l ∈ {1, 2, . . . , q}, see [126] for details. The basal sliding

parameter is assumed to be (a priori) independent of the thermal parameters of

the ice. Thus the discrete joint prior distribution can be written as

πprior(β, z) ∝ exp

{
−1

2
‖β − β0‖

2
Γ−1
β
− 1

2
‖z − z0‖2

Γ−1
z

}
, (5.4)

where ‖·‖Γ−1
β

and ‖·‖Γ−1
z

denote the Γ−1
β and Γ−1

z weighted l2 norms, respectively.

The solution of the Bayesian inverse problem is the parameter posterior prob-

ability distribution, i.e., the distribution of the parameter conditioned on the ob-

servations. Bayes’ theorem [66, 24] allows us to write the posterior in terms of the

prior density and the likelihood,

π(β, z|do) ∝ πlike(do|β, z)πprior(β, z).

Assuming the measurement errors are independent of all parameters and are nor-

mally distributed with mean 0, i.e., ε ∼ N (0,Γe), the discrete likelihood is of the

form [126]

πlike(do|β, z) ∝ exp

{
−1

2
‖do −F(β, z)‖2

Γ−1
e

}
. (5.5)

Plugging this into Bayes’ theorem we have

πpost(β, z|do) ∝ exp

{
−1

2

(
‖do −F(β, z)‖2

Γ−1
e

+ ‖β − β0‖
2
Γ−1
m

+ ‖z − z0‖2
Γ−1
z

)}
.

When the parameter-to-observable map F is nonlinear, the posterior is not

Gaussian. Full characterization of the posterior would then necessitate the use

of sampling-based approaches such as Markov chain Monte Carlo (MCMC). How-

ever, for large-scale problems with computationally expensive forward problems,
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such as the problem at hand, sampling based approaches are computationally

infeasible. As a computationally practical alternative, the maximum a posteri-

ori (MAP) estimate, i.e., the parameters which maximize the posterior density,

and the approximate posterior covariance are computed. More specifically, letting

ω = [βT , zT ]T ∈ Rp+q, the approximation πpost(ω|do) ≈ N (ωMAP,Γpost) is made,

where the (joint) MAP estimate is defined

ωMAP := arg min
ω∈Rp+q

πpost(θ|do), (5.6)

and the approximate (joint) posterior covariance matrix is

Γpost :=
(
F TΓ−1

e F + Γ−1
prior

)−1
. (5.7)

Here F = [F β F z] ∈ Rd×(p+q) with F β ∈ Rd×p and F z ∈ Rd×q denoting the

Jacobian matrices of the parameter-to-observable map with respect to β and z,

respectively, and Γprior ∈ R(p+q)×(p+q) the joint prior (block diagonal) covariance

matrix, i.e., Γprior = diag(Γβ,Γz). Here we are only concerned with the estimation

of the basal sliding parameter, i.e., the uncertain (secondary or auxiliary) thermal

parameters of the ice are of little or no interest. That is, we only wish to find

the marginal posterior π(β|do). We follow the Bayesian approximation error ap-

proach [71, 23, 21], which provides a means to approximately premarginalize over

the auxiliary parameters, i.e., marginalize over the auxiliary parameters prior to

collecting data. In what follows, we give a brief overview of this approach.

5.2.2 The Bayesian Approximation Error Approach

The key idea of the Bayesian approximation error approach is to write the noise

model given in Equation 5.1 as follows

do = F(β, z) + ε = F(β, z)− G(β) + G(β) + ε = G(β) + η(β, z), (5.8)

where F(β, z) is the accurate (sometimes referred to as high-fidelity) model, G(β) =

F(β, z0) is the accurate model (also referred to as the low fidelity model) evaluated

at a nominal value for the additional uncertainty), η(β, z) is the total error sub-

suming the model error (or discrepancy) r(β, z) = F(β, z)−G(β) and the noise in
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measurements ε. Both the primary and auxiliary parameters are random variables,

and thus so is r. The next step in the BAE approach is to approximate r|(β, z)

as Gaussian, i.e., r|(β, z) ∼ N (ε∗,Γr). The mean, ε∗, and covariance, Γr, can in

general not be computed analytically, and thus we build these by sampling. Note

that all the sampling however can be carried out before we collect the data, and

is thus often referred to as being carried out offline.

It is common practice to approximate r as uncorrelated with the parameter of

interest, β, meaning that r|(β, z) = r. As a result, the noise model (5.1) can be

rewritten as

do = G(β) + η, (5.9)

with η ∼ N (η∗,Γη) = N (ε∗,Γe + Γr). We note that using BAE leads to an

updated likelihood. The MAP estimate then becomes

βMAP := arg min
β
‖do − G(β)− ε∗‖2

Γ−1
η

+ ‖β − β∗‖2
Γ−1
β
, (5.10)

and the posterior covariance changes to

Γpost = (FTΓ−1
η F + Γ−1

β )−1. (5.11)

5.3 Forward Ice Sheet Flow Model

In this section, we describe the accurate (i.e., high fidelity) and approximate

(i.e., low fidelity) forward ice sheet models described by the nonlinear Stokes equa-

tions and the model for the temperature distribution that influences the viscosity

term in the accurate Stokes problem. For the approximate forward model, the

temperature is fixed, i.e., this model is unaware of the changes in the temperature.

The accurate (high fidelity) ice sheet Stokes model. We model the flow of

ice as a nonisothermal, viscous, shear-thinning, incompressible fluid via the balance

of mass and linear momentum [Hutter, 1983, Marshall, 2005, Paterson, 1994]
−∇ · σu = ρg in Ω, (5.12a)

∇ · u = 0 in Ω, (5.12b)
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where u denotes the velocity field, σu the stress tensor, ρ the density of the ice,

and g gravity. The stress, σu, can be decomposed as σu = τu − Ip, where τu is

the deviatoric stress tensor, p the pressure, and I the identity tensor. We employ

Glen’s flow law [119, 27], which relates the stress and strain rate tensors by

τu = 2η(u, θ)ε̇u with η(u, θ) =
1

2
A(θ)−

1
n ε̇

1−n
2n

II , (5.12c)

where n is the Glen’s flow law exponent parameter (here taken 3 as in most of

ice sheet models), η is the effective viscosity, the Arrhenius A(θ) = A0 exp (− Q
Rθ

)

is the temperature dependent flow rate factor with Q the activation energy, R

the Boltzmann constant, and A0 is a pre-exponential constant. Finally, ε̇u =

1
2
(∇u+∇uT ) and ε̇II = 1

2
tr(ε̇2

u) are the strain rate tensor and its second invariant,

respectively. The top boundary, Γt, is equipped with a traction-free boundary

condition, while on the basal boundary Γb we apply a no flow condition for the

normal component of the velocity along with a linear sliding law for the tangential

components (as shown in Figure 5.1). That is, the boundary conditions can be

summarized as follows

σun = 0 on Γt, (5.12d)

u · n = 0 on Γb, (5.12e)

Tσun+ exp(β)Tu = 0 on Γb, (5.12f)

where β(x) is the log basal sliding coefficient field1, n is the outward normal unit

vector, and T := I −nnT is the projection onto the tangential plane. The obser-

vational data is comprised of (noisy) point-wise measurements of the velocities, u.

The noise model with the accurate parameter-to-observable mapping can be writ-

ten as

do = F(β, z) + ε = Bu+ ε, (5.12g)

where B denotes the observation operator. We note that this formulation is in line

with [9, 8, 23, 72, 113, 114, 115].

1The ‘exp’ parametrization is used to ensure the basal sliding coefficient remains positive.
Therefore β is the log basal sliding coefficient field, however for simplicity, in what follows, we
refer to β as the basal sliding coefficient.



73

x
Γb

y

α

H Γl

Γr

L

Γt

Figure 5.1: Schematic of a two-dimensional slab of ice, as used in the computa-

tional experiments. The blue circles show representative (random) measurement

locations. This figure is a modification of Figure 2 from [114].

The model for the thermal distribution of ice: To model the tempera-

ture distribution within the ice, we use a simple steady state heat equation. We

note that more complex coupled thermal Stokes model can be used, see for in-

stance [115]. The temperature θ = θ(x) is computed by solving the following

boundary value problem

−∇ · (exp(K)∇θ) = 0 in Ω, (5.13a)

θ = θs on Γt, (5.13b)

exp(K)∇θ · n = exp(G) on Γb, (5.13c)

where θs is the prescribed temperature at the top surface (chosen θs = 230 K

to be consistent with the surface temperature of a glacier [22, 25]), exp(G) is

the (distributed) (log-)geothermal heat flux, and exp(K) is the (distributed) (-

log) thermal conductivity of the ice. A key insight at this point is that θ is a

random variable which depends (only) on G and K, assuming θs is known. As

such the additional (auxiliary) uncertain parameters for this example are the (log-

)geothermal heat flux and thermal conductivity fields. That is z in this case is

z = (G,K).

The approximate (low fidelity) ice sheet Stokes model model: As an

approximate, but often used model in the literature, we consider the isothermal

version of the Stokes problem (5.12). This model is identical to (5.12), except here
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we use the isothermal version of Glen’s flow law, namely

τu = 2η(u)ε̇u with η(u) =
1

2
A−

1
n ε̇

1−n
2n

II , (5.14)

where η is the effective viscosity, A is the isothermal (i.e., temperature indepen-

dent) flow rate factor given by A = A0 exp
(
− Q
Rθ0

)
, where θ0 is the (fixed) tem-

perature obtained by solving the heat problem (5.13) with K and G defined as the

means of their distributions.

5.4 Computing the Statistics of the Approxima-

tion Error

As discussed above, we model the error model via a Gaussian distribution.

It’s mean and variance (i.e., it’s statistics) are estimated via Monte Carlo sam-

pling. The basic idea is the following: first we define Gaussian distributions for

the additional uncertain parameters z = (G,K), where K ∼ N (K∗,ΓK) and

G ∼ N (G∗,ΓG), draw samples (β(`), z(`)), ` = 1, 2, . . . , N , evaluate the model dis-

crepancy r(`) = F(β(`), z(`)) − G(β(`)), and compute the mean and covariance as

follows

r̂ := E[r] ≈ r∗ =
1

N

N∑
`=1

r(`), Γr := Var[r] ≈ 1

N − 1
RRT , (5.15)

where R = [r(1) − r∗, r(2) − r∗, . . . , r(N) − r∗]. The sampling procedure is sum-

marized in Algorithm 1. The entire process is also illustrated in Figure 5.2.

5.5 Variance Reduction for the Bayesian Approx-

imation Error Approach

Outlined above is the standard version of the BAE approach. Although all

sampling is carried out offline, for large-scale problems, such as the continental

ice sheet problem, this still poses a significant computational burden. One of the
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Algorithm 1 Calculate Statistics of Approximation Error

1: procedure (β∗,Γβ, G∗,ΓG, K∗,ΓK , N)

2: for i ≤ N do

3: Sample (β(i), G(i), K(i)) from associated priors

4: Solve for θ(i)(G(i), K(i))

5: Compute r(i) = F(β(i), G(i), K(i))− G(β(i))

6: end for

7: Compute r∗ = 1
N

∑N
`=1 r

(`)

8: Compute R = [r(1) − r∗, r(2) − r∗, . . . , r(N) − r∗].
9: Compute Γr = 1

N−1
RRT

10: end procedure

N (K∗,ΓK)

N (G∗,ΓG)
G(`)

K(`)

θ(K,G)

π(β)

θ(`)
F(β,K,G)

β(`)

β(`)

G(β)
û(`)

u(`)

r(`)

Figure 5.2: A schematic for the approximation errors sampling scheme.

major contributions of this work is to show that the number of samples required

to calculate r∗ and Γr can be reduced. In particular we propose the use of the first

order (i.e., linear) Taylor approximation of r(β, z) as a control variate to reduce

the variance of the Monte Carlo estimator in (5.15) for both the mean and the

covariance of the model error. By reducing the number of samples we alleviate

the major computational burden of the BAE approach, but still benefit from the

premarginalization over the parameter and auxiliary (thermal) parameters.

Recall, r = F(β, z) − G(β), where β and z = (G,K) are random variables.
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As such, our problem reduces to a forward uncertainty propagation. There are a

variety of approaches aimed at reducing the number of samples required to carry

out uncertainty propagation. These methods are typically referred to as variance

reduction techniques. Two of the more noteworthy approaches are the quasi-Monte

Carlo (qMC) method [18] and the control variates method [16, 17, 14]. The draw

back of qMC is that it typically does not provide any reduction in the number of

samples for large dimensional cases [18]. We next outline the application of the

control variates method to the BAE approach.

5.5.1 Control Variates for the Bayesian Approximation Er-

ror Approach

In what follows, let us consider the linear Taylor expansion of r in terms of all

the unknowns (β, z), i.e.,

r(β, z) ≈ rlin(β, z) = r(β0, z) + Dβr(β0, z)(β − β0)− r(β0, z0),

where Dβr(β0, z) denotes the Fréchet derivative of r in the direction β evaluated

at (β0, z). Consider introducing the following,

r = r + γ (rL − Eβ [rL]) ,

S = (r − Eβ[r])⊗ (r − Eβ[r]) + γ
(
(rL − Eβ [rL])⊗ (rL − Eβ [rL])− Γβ

rL

)
,

where at this point rL is not yet chosen, but one seeks to choose a random variable

strongly correlated with r (such as a linear Taylor approximation), γ is a weight

constant we choose γ = 1, but in general an optimal choice can be computed see

[14, 15], Eβ[X] is the expectation of of a random variable X, with respect to β,

and ⊗ is the outer product defined in Definition 7. Then clearly Eβ [r] = Eβ [r]
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and Eβ [S] = Γβ
r for any2 γ, and thus

Eβ [r] ≈ 1

Ncv

Ncv∑
`=1

(
r(`) + γ

(
r

(`)
L − Eβ [rL]

))
(5.16)

Γβ
r ≈

1

Ncv − 1

Ncv∑
`=1

(
r(`) − Eβ[r]

)
⊗
(
r(`) − Eβ[r]

)
(5.17)

+ γ
((
r

(`)
L − Eβ

[
r

(`)
L

])
⊗
(
r

(`)
L − Eβ

[
r

(`)
L

])
− Γβ

rL

)
, (5.18)

where Ncv denotes the number of samples taken.

While this would appear arbitrary choice, we clarify our reasoning shortly.

First, if we take β0 = β∗ (while β0 6= β∗ is not required it provides some cancella-

tions), then

Eβ [rL] = r(β∗, z),

Γβ
rL

= Dβr(β∗, z)ΓβDβr(β∗, z)

can be computed using (relatively) few forward runs. Second, and this is the entire

justification for using the control variates approach, is that the higher the corre-

lation between r and rL, the better the variance reduction, i.e., the less samples

are required to calculate Eβ [r] and Γβ
r (using (5.16) and (5.18), respectively). For

the auxiliary parameters, we use a linearization in z and use a similar approach as

before. That is, we linearize around (β0, z0),

r(β, z) ≈ rL(β, z) = r(β0, z0) + Dβr(β0, z0)(β − β0) + Dzr(β0, z0)(z − z0),

where Dzr(β0, z0) is computed using chain rule.

For our case, i.e., z = (G,K), the full (Taylor) linearization is then of the form

r ≈ rL = r0 + Dβr(β0, G0, K0)(β − β0) + DGr(β0, G0, K0)(G−G0)

+ DKr(β0, G0, K0)(K −K0),

while expressing the derivatives using the chain rule gives

DKu = DAuDθADKθ, DGu = DAuDθADGθ,

2An optimal γ does typically exists and is related to the correlation between r and rL.
However, it is unknown a priori in our case.
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where DKu is the Fréchet partial derivative of u with respect to K, DAu is the

partial with respect to the flow rate factor A(θ) (see equation (5.12c)), DθA is

the partial of A with respect to θ, DKθ is the partial of θ with respect to K, and

similarly when taking the derivative with respect to G. Or more concisely,

[DGu, DKu] = DAuDθA [DGθ, DGθ] .

The computation of the linear Taylor approximation and in particular the partial

derivatives required was carried out in the FEniCS environment. FEniCS employs

Unified Form Language (UFL), which is a domain-specific language for representing

weak formulations of PDEs. In UFL, the derivative of a form is based on the

Gateaux derivative [128]. The computation of Dβr(β0, z)(β−β0) will be carried out

by using the UFL library to compute the derivative of the variational form encoded

in FEniCS in conjunction with the Implicit Function Theorem 4.2.1, specifically

we compute

Dβr(β0, z)(β − β0) = (DβF(β0, z)− DβG(β0)) (β − β0)

= −
(
[DuwHF (β0, z)]

−1 DβwHF (β0, z)
)

(β − β0)

−
(
− [DuwLF (β0, z)]

−1 DβwLF (β0, z)
)

(β − β0),

where wHF and wLF are the variational representations of the PDEs associated

with F and G supplied to FEniCS. Similarly we can compute the remaining deriva-

tives in the Taylor approximation.The sampling procedure for BAE with control

variate (linear Taylor approximation) can be executed using the pseudocode out-

lined in Algorithm 2.

5.6 Numerical Results

In this section, we outline the numerical example to assess the applicability,

performance, and robustness of the BAE control variate approach to account for

uncertain parameters in the thermal distribution of the ice. The primary un-

certainty parameter is the basal sliding coefficient β and the secondary (auxiliary)

parameters are z = (G,K), where G is the (log-)geothermal heat flux, and K is the
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Algorithm 2 Calculate Statistics of Approximation Error

1: procedure (β∗,Γβ, G∗,ΓG, K∗,ΓK , N)

2: for i ≤ N do . Parallelisable

3: Sample (β(i), G(i), K(i)) from associated priors

4: Solve for θ(i)(G(i), K(i))

5: Compute r(i) = F(β(i), θ(i))− G(β(i))

6: Compute c(i) = r(mean) + r
(mean)
β (βi − βmean) + r

(mean)
z (zi − zmean)

7: end for

8: Compute r∗ = 1
N

∑N
`=1 r

(`)

9: Compute R = [r(1) − r∗, r(2) − r∗, . . . , r(N) − r∗].
10: Compute Γr,cv = 1

N−1
RRT − 1

N−1
CCT + Γc

11: end procedure

(log-)thermal conductivity. The forward problems considered here are inspired by

the models used in the Ice Sheet Model Intercomparison Project for Higher-Order

Models (ISMIP-HOM) benchmark study carried out in [29, 27].

To set up the problem and geometry, we follow [114]. In particular, we consider

a box-like geometry with Ω = [0, L]× [0, H], where L = 10km and H = 250m in-

clined with slope θ = 0.1 degrees. The density of the ice is fixed ρ = 910kg/m, and

the standard gravitational constant g = 9.81s−2. The true basal sliding coefficient

field is defined as

β(s) = 7 + sin(ws), ∀s ∈ Γb.

For the inversion, we use synthetic measurements. These are randomly placed noisy

pointwise measurements of each component of the velocity on the top surface of

the domain Γtop. The noise model ε ∼ N (0,Γe) with covariance matrix Γe = δ2
eI.

In particular we choose δe = 0.01, i.e., 1% of the range of the true synthetic

measurements. The mean on the geothermal heat flux distribution (shown in

Figure 5.3) was chosen such that exp(G) matches the one used in [72]. Similarly,

the values for exp(K) are chosen to be within an acceptable range of a plausible

thermal conductivity for ice of temperature −40◦C on top and −10◦C on the

bottom, as suggested in [73].
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Figure 5.3: Samples (orange) from the distributions of the geothermal heat flux G

(left) and of the basal sliding coefficient β (right). Red denotes the true parameter

fields and blue denotes the mean of the distributions.

Figure 5.4: Prior variance for the thermal conductivity K.

In Figure 5.6 we show that the surface velocity can be significantly influenced by

the temperature dependent rheology of the ice. Neglecting the uncertainty in the

auxiliary parameters z = (K,G) leads to a posterior that fails to capture the true

basal sliding parameter field using the standard conventional error model (CEM).

Furthermore, in Figure 5.7, one can see how the auxiliary parameters affect the

temperature and in turn the basal velocity. On the other hand, if we had the

truth for K and G we note that the posterior fully captures the true basal sliding

coefficient (this is the so-called accurate or reference (REF) case). Finally, the

Bayesian approximation error approach, which we presented in section 5.2.2, leads

to a MAP point that is close to the true basal sliding coefficient, and with this

approach the posterior is clearly feasible in the sense that the true basal sliding

coefficient is well supported by the Gaussian approximation of the posterior.

To validate the control-variate based BAE approach, in Figure 5.9 we show the

MAP estimates of the basal sliding parameter for the example problem described
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(a) The prior mean of the prior on the thermal conductivity K (left), the true thermal

conductivity K (right)

(b) Two samples from the thermal conductivity prior K.

Figure 5.5

above using the two approaches, the standard (left) and the control variate-based

(right) BAE. In these plots we also show the true basal sliding parameter (red),

samples from the respective distributions (orange), and the marginal distribution

(shaded) with darker shading indicating higher probability, and the ±2 (approx-

imate) standard deviation intervals (dashed black line). These results show that

the two approaches converge to the same result. The difference between the two

approaches is the number of samples required to converge, as detailed below.

In what follows we study the computational gain of the proposed control

variate-based BAE approach. In Table 5.1 we report on the mean square error of

the statistics estimated via the standard (MSE(R)) and the control variate-based

(MSE(D)) BAE approaches. This error is defined as

MSE(Q) =
Var[Q]

N
, (5.19)

where Var[Q] is the variance of Q at N random samples. In the last column in
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Figure 5.6: Example problem, accurate/reference (REF) case (left), conventional

error model (CEM) case (center), and Bayesian approximation error (BAE) case

(right), red denotes the true parameter, orange denotes samples, and blue is the

inversion. The axes have been stretched in the y-direction for ease of visualization.

Figure 5.7: Temperature θ realized over samples of K and G.

this table, we report on the so-called speed up factor, defined as

SpeedUpFactor =
MSE(R)

MSE(D)
,

which measures the computational gain of the control-variate based BAE. The

results show that a 8.60 speed up can be achieved when we take a large number

of samples. This means that the number of samples needed to achieve a target

MSE is about eight time smaller for the control variate BAE when compared to

the standard BAE.

To further study and compare the convergence properties of the two approaches,

in Figure 5.10 we show the error between the “true” (i.e., reference) and estimated

error means defined in (5.15). The reference error mean, r∗, was obtained by using

the standard BAE approach with 10,000 samples. More concretely, we computed

and plot the errors ‖r∗ − rN‖ and ‖r∗ − rN,CV ‖, with N = 2k, k = 5, . . . , 10.

In this plot we also check the convergence rate against the well-known Monte
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Figure 5.8: Rate factor at the mean of the prior distributions A(θmean) where for

the temperature range from 230K to 259K. Note (relative to the pressure melting

point) according to the Arrhenius law (263K) was not reached [27, 25] . As such we

do not see a kink at 263.15K is due to the piecewise definition of the pre-exponential

constant A0 and the activation energy Q.

Carlo convergence rate. The results show the control variate-based BAE approach

arrives to a smaller error with a smaller number of samples when compared to the

standard BAE approach.

5.7 Conclusions and Outlook

In this work, we have considered the inversion for the basal sliding coefficient

field for ice sheet flow problems under uncertain rheology stemming from uncer-

tainty in the thermal distribution of the ice. To account for the resulting model

error/uncertainties, we employed the Bayesian approximation error approach. This

approach shifts all uncertainty into a single additive total error term, which is ap-

proximated as Gaussian, and can be premarginalized over.

We quantified the uncertainty in the estimated basal sliding coefficient via

Bayesian inversion (under Gaussian approximation of the posterior) and showed

that fixing the additional or auxiliary uncertain parameters to some nominal values
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Figure 5.9: The MAP estimates of the basal sliding parameter obtained via the

standard (left) and the control variate-based (right) BAE approaches. Shown are

also the true basal sliding parameter (red), samples from the respective distribu-

tions (orange), the marginal distribution (shaded) with darker shading indicating

higher probability, and the ±2 (approximate) standard deviation intervals (dashed

black line). We note that the axes have been stretched in the y-direction for ease

of visualization.

can lead to overconfident and heavily biased results.

Furthermore, we proposed a computational framework to reduce the offline

cost of the BAE approach. Specifically, we advocate for the use of linear Taylor

expansion as control variates to reduce the variance of the Monte Carlo estimator.

Preliminary results suggest that the computational cost of the offline sampling

stage can be reduced via this approach.
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Ns MSE(R) MSE(D) SpeedUpFactor

32 2.87E+00 3.22E-01 8.92

64 1.27E+00 1.20E-01 10.6

128 6.27E-01 7.03E-02 8.91

256 3.54E-01 4.11E-02 8.63

512 1.79E-01 2.02E-02 8.83

1024 8.68E-02 1.03E-02 8.41

Table 5.1: Comparison of the variance of the estimators for the standard BAE

approach and our proposed control variate BAE for problem (5.10). Here Ns is

the number of samples used for the estimator, MSE(R) is the mean square error

of the standard BAE estimator, MSE(R) is the MSE of the control variate BAE

estimator, and SpeedUpFactor is the computational gain.

Ns MSE(Γr) MSE(Γr,cv) SpeedUpFactor

32 2.65E+01 9.97E+00 2.66

64 4.19E+00 1.52E+00 2.76

128 1.00E+00 4.49E-01 2.24

256 3.34E-01 1.83E-01 1.83

512 7.30E-02 3.95E-02 1.85

1024 1.60E-02 8.52E-03 1.88

Table 5.2: Comparison of the variance of the covariance matrix for the standard

and control variate-based BAE approaches. Here Ns is the number of samples

used for the estimator, MSE(Γr) is the mean square error of the standard BAE

covariance matrix, MSE(Γr,cv) is the MSE of the control variate BAE covariance

matrix, SpeedUpFactor is the computational gain.



86

Figure 5.10: The error between the “true” (i.e., reference) and estimated error

means defined in (5.15) obtained via the standard (blue) and control variate-based

(red) BAE approaches. The reference error mean, r∗, was obtained by using the

standard BAE approach with 10,000 samples. Shown are the errors obtained using

various realizations (dashed blue), the mean of these errors (solid blue), and the

expected N−1/2 Monte Carlo convergence rate (green) versus number of samples.



Chapter 6

Conclusion

In this thesis, we focused on computational methods to solve large-scale inverse

problems governed by PDEs. In particular, we adopted a derivative-based with

line search optimization approach and computed the derivatives via adjoint meth-

ods. The first part of the thesis (Chapter 3) focused on quasi-Newton methods

in infinite dimensions. In this context we derived the well-known quasi-Newton

formulas in an infinite-dimensional Hilbert space setting. The second part of the

thesis (Chapter 4) focused on Newton’s method. Here we focused on reducing the

computational cost when solving the Newton system by introducing inexactness

into the underlying PDE solves. We applied these approaches for a coefficient

field inverse problem governed by an elliptic PDE. The third part of the thesis

(Chapter 5) was devoted to computational methods for inverse problems governed

by uncertain PDEs, where the uncertainty stems from additional unknown or un-

certain parameters in the forward PDE model. Such inverse problems build on

deterministic inverse problems, therefore all the developments in the first parts of

the thesis can be applied to reduce the computational cost of the inverse solver. In

this part we build on Bayesian inversion and approximation error to account for

the model error (stemming from additional unknown/uncertain parameters) when

solving inverse problems governed by PDEs. In what follows, we outline possible

future research avenues.

• As discussed above, in Chapter 4, we presented a rigorous framework for

87
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inexact Hessian-vector products for Newton’s method. In particular we de-

rived bounds for the tolerances to control the error of each Hessian apply,

i.e., PDE solve. The computation of the tolerances required the computation

of the leading eigenvalue of the sub-blocks of the Hessian. As future work,

we plan to explore more efficient means, such as preconditioners and warm

starts to estimate the tolerances. Another idea is to explore the possibility

to use reduced order models for the Hessian-applies and the effect on the

convergence properties of Newton’s method.

• In the context of the Bayesian Approximation Error (BAE) combined with

control variates, the first goal is to investigate second-order Taylor expansion

as a control variate to obtain further reduction in the computational cost of

the sampling stage of BAE. Finally, we hope to apply this framework to a

more realistic ice sheet inverse problem.

• A tangential project to the BAE-related research I hope to work on is sensi-

tivity analysis for inverse problems governed by uncertain PDEs. The idea

is to make the primary and secondary uncertain parameters more systemat-

ically via this analysis.

• The simulation and analysis of high-dimensional problems is often infeasible

due to the curse of dimensionality. To mitigate this limitation for inverse

problems, I plan to build on my internship experience with using tensor

train decompositions. Specifically, I plan to apply tensor train numerical

schemes for solving the forward model within inverse problems.
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[20] V. Rimpiläinen, A. Koulouri, F. Lucka, J.P. Kaipio, and C.H. Wolters, Im-
proved EEG source localization with Bayesian uncertainty modelling of un-
known skull conductivity, NeuroImage, 188, 252-260, 2019.

[21] R. Nicholson, N. Petra, and J.P. Kaipio, Estimation of the Robin coefficient
field in a Poisson problem with uncertain conductivity field, Inverse Problems,
34(11), 115005, 2018.



91

[22] Y.C. Yen, Review of thermal properties of snow, ice, and sea ice, (Vol. 81, No.
10). US Army, Corps of Engineers, Cold Regions Research and Engineering
Laboratory.

[23] O. Babaniyi, R. Nicholson, U. Villa, and N. Petra, Inferring the basal sliding
coefficient field for the Stokes ice sheet model under rheological uncertainty.
The Cryosphere, 15(4), 1731-1750, 2021

[24] L. Wasserman, Bayesian inference. In All of Statistics (pp. 175-192). Springer,
New York, NY, 2007.

[25] K.M. Cuffey, and W.S.B Paterson, The physics of glaciers, Academic Press,
2010.

[26] S.I. Kabanikhin, Sergey I. Inverse and ill-posed problems, Inverse and Ill-posed
Problems. de Gruyter, 2011.

[27] R. Greve, and H. Blatter. Dynamics of ice sheets and glaciers, Springer Science
& Business Media, 2009.

[28] W. S. B. Paterson, The Physics of Glaciers. Pergamon, 3rd edition, 1994.

[29] F. Pattyn, L. Perichon,A. Aschwanden, B. Breuer, B. De Smedt, O. Gagliar-
dini, G.H. Gudmundsson, R. Hindmarsh, A. Hubbard, J.V. Johnson. Bench-
mark experiments for higher-order and full Stokes ice sheet models (ISMIP-
HOM), The Cryosphere Discussions, 2, 111–151, 2008.

[30] A.K. Saibaba, J. Lee, and P.K. Kitanidis. Randomized algorithms for general-
ized Hermitian eigenvalue problems with application to computing Karhunen–
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[135] A. Wächter and L. T. Biegler, On the implementation of an interior-
point filter line-search algorithm for nonlinear programming, Mathematical
Programming, 106 (2006), pp. 25–57.

[136] C. P. Robert and G. Casella, Monte Carlo Statistical Methods
(Springer Texts in Statistics), Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[137] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multi-
fidelity methods in uncertainty propagation, inference, and optimization, Siam
Review, 60 (2018), pp. 550–591.

[138] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-
variance risk-averse optimal control of systems governed by PDEs with ran-
dom parameter fields using quadratic approximations, SIAM/ASA Journal on
Uncertainty Quantification, 5 (2017), pp. 1166–1192.

[139] P. Chen, U. Villa, and O. Ghattas, Taylor approximation and variance
reduction for PDE-constrained optimal control under uncertainty, Journal of
Computational Physics, 385 (2019), pp. 163–186.

[Hutter, 1983] Hutter, Kolumban, 1983. Theoretical Glaciology, Mathematical Ap-
proaches to Geophysics, D. Reidel Publishing Company.

[Paterson, 1994] Paterson, W. Stanley B., 1994. The Physics of Glaciers, Butter-
worth Heinemann, third ed.

[Marshall, 2005] Marshall, Shawn J., 2005. Recent advances in understanding ice
sheet dynamics, Earth and Planetary Science Letters , 240, 191–204.




