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We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic 
space of constant negative curvature. The Lagrangian has a non-compact O (n, 1) global symmetry 
group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is 
gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the 
S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the 
curvature (including its sign) determines deviations from Standard Model values.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The recently discovered neutral scalar particle with a mass 
of ∼ 125 GeV has led to renewed interest in models of elec-
troweak symmetry breaking. The Standard Model (SM) is one such 
theory, where the electroweak symmetry is broken by a com-
plex scalar doublet H that transforms linearly as 21/2 under the 
SU(2)L × U (1)Y gauge symmetry. Generalizations of the SM in-
clude the Standard Model Effective Field Theory (SMEFT), which 
is the SM plus higher dimension operators, and Higgs Effective 
Field Theory (HEFT) [1,2], which contains the three “eaten” Gold-
stone boson degrees of freedom of the SM in a chiral field ξ(x), 
and an additional neutral scalar degree of freedom h(x). The ge-
ometry of the scalar manifold M is an interesting object that can 
be studied experimentally, as discussed in Ref. [3]. In the SM, the 
scalar manifold M is flat. Deviations from the SM cross section 
for Higgs boson and longitudinal W ± , Z gauge boson scatter-
ing are proportional to the curvature. In particular, the sign of 
the deviation depends on whether the curvature of M is posi-
tive or negative. In composite Higgs models [4], the Higgs field 
is a pseudo-Goldstone boson generated by the symmetry break-
ing G → H of a compact group G , and the scalar manifold is 
M = G/H which has positive curvature. HEFT is more general, and 
can accommodate manifolds with any curvature. In this paper, we 
give a simple example of a sigma model where M has negative 
curvature, based on the hyperbolic space Hn . Non-compact cosets 
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such as O (4, 1)/O (4) ∼ H
4 have been considered previously for 

composite Higgs theories [5–8].
Custodial SU(2) symmetry plays an important role in the SM, 

and we will assume that it is also a symmetry in the sigma 
model, so that the electroweak symmetry breaking pattern is 
O (4) → O (3). The group O (4) ∼ SU(2)L × SU(2)R , where SU(2)L is 
weak SU(2), and the T3 generator of SU(2)R is weak hypercharge. 
Schematically, the scalar manifold M of HEFT is shown in Fig. 1. 
The angular directions live on O (4)/O (3) ∼ S3, and are the three 
Goldstone bosons eaten by the Higgs mechanism. There is one (or 
more) additional scalar field direction h, often referred to as the 
radial direction.

The SM and SMEFT are special cases of HEFT, as can be seen by 
using the exponential parameterization

H = 1√
2

[
iϕ1 + ϕ2
ϕ4 − iϕ3

]
= 1√

2
(v + h)eiτ ·π/v

[
0
1

]

≡ 1√
2
(v + h) ξ

[
0
1

]
. (1)

The surface spanned by the angular coordinates π is the three-
sphere S3 of radius v ,

ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4 = v2 , (2)

which is the vacuum manifold of the SM. The radius of the sphere, 
v ∼ 246 GeV, is fixed by the gauge boson masses.

The manifold structure of HEFT, assuming custodial symmetry, 
contains the coset space

M ⊃ S3 = O (4)/O (3) , (3)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The scalar manifold M for HEFT. The space breaks up into angular coordi-
nates πa which form the (eaten) Goldstone boson manifold S3 of the SM, and a 
radial direction h.

where M has field coordinates h, ξ , with ξ a function of the Gold-
stone bosons π . The angular scalar fields π are eaten by the Higgs 
mechanism, producing the longitudinal polarization states of the 
massive W ± and Z bosons. S3 is a submanifold of M given by 
fixing h. Each value of h gives an S3, which together form a folia-
tion of M, in the same way that a sequence of concentric spheres 
gives a foliation of Rn .

Using polar coordinates for the SM,

ϕ = (v + h)n , (4)

where n is a four-dimensional unit vector, n ∈ S3, gives the scalar 
kinetic term

L = 1

2

(
∂μh

)2 + 1

2
(v + h)2 (

∂μn
)2

. (5)

The HEFT kinetic term is the generalization of Eq. (5),

L = 1

2

(
∂μh

)2 + 1

2
F (h)2 v2 (

∂μn
)2 (6)

where F (h) is an arbitrary radial function. The HEFT radial function 
satisfies

F (0) = 1 (7)

since the radius of S3 is fixed to be v . In the SM, the radial func-
tion is

F (h) =
(

1 + h

v

)
. (8)

In this paper, we assume that the scale f of new physics is 
larger than the electroweak scale v , so that the HEFT Lagrangian 
has a derivative expansion. The power counting for HEFT is dis-
cussed in Ref. [9]. The leading interactions in HEFT are the two-
derivative terms which comprise the scalar kinetic energy in 
Eq. (6). Their form depends on the details of the HEFT. For exam-
ple, in HEFT based on the G/H coset, they depend on the structure 
constants of G and H.

2. The O (5) → O (4) model

We start by discussing the well-known O (5) → O (4) composite 
Higgs model [10]. This example is the simplest composite Higgs 
model incorporating custodial SU(2) symmetry. The presentation 
of this model introduces the notation and formalism we will use, 
which carries over to the negative curvature case with only a few 
crucial sign changes.

Consider a five-dimensional scalar field φ which lives on a flat 
scalar manifold M ∼ R

5 which has an O (5) symmetry. The O (5)

generators are

i
[

T ab
]

i j
= δaiδbj − δajδbi (9)

with 1 ≤ a < b ≤ 5, so that
Fig. 2. The scalar manifold of the O (5) → O (4) sigma model is the sphere S4 of 
radius f . The SM SU(2) × U (1) gauge group is a subgroup of the unbroken group 
H that leaves φ0 invariant. The four-component field ϕ gets a VEV v 
 f , which 
breaks electroweak symmetry.

i T 12 =

⎡
⎢⎢⎢⎣

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ , etc. (10)

The theory has a potential V (φ ·φ) with a minimum at φ ·φ = f 2. 
The vacuum manifold of the theory is the sphere S4 of radius f , 
as shown in Fig. 2. The choice of vacuum expectation value

〈
φ0

〉 =
⎡
⎢⎢⎢⎣

0
0
0
0
f

⎤
⎥⎥⎥⎦ (11)

breaks the O (5) symmetry to O (4), giving four Goldstone bosons.
The four broken generators are T a5, a = 1, 2, 3, 4, where

iωa T a5 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 ω1

0 0 0 0 ω2

0 0 0 0 ω3

0 0 0 0 ω4

−ω1 −ω2 −ω3 −ω4 0

⎤
⎥⎥⎥⎥⎦ . (12)

The unbroken O (4) Lie algebra is isomorphic to SU(2)L × SU(2)R , 
which is generated by

TL = 1

2
( J + K) , TR = 1

2
( J − K) , (13)

where Ja = εabc T bc , Ka = T a4, and

i AL · T L = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 A3
L −A2

L A1
L 0

−A3
L 0 A1

L A2
L 0

A2
L −A1

L 0 A3
L 0

−A1
L −A2

L −A3
L 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

i AR · T R = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 A3
R −A2

R −A1
R 0

−A3
R 0 A1

R −A2
R 0

A2
R −A1

R 0 −A3
R 0

A1
R A2

R A3
R 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (14)

which will be used to construct the gauge covariant derivative.
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A general point of M in the Northern hemisphere can be pa-
rameterized as

φ =
[

f sinχ n

f cosχ

]
, (15)

where n is a four-dimensional unit vector, which transforms lin-
early as the four-dimensional representation under the unbroken 
O (4) symmetry. χ and n together have four degrees of freedom. 
An alternate square-root parameterization is also useful,

φ =
⎡
⎣ ϕ√

f 2 − ϕ ·ϕ

⎤
⎦ , (16)

where ϕ has 4 components. The kinetic term of the composite 
Higgs theory is

L = 1

2
∂μφ · ∂μφ = 1

2
f 2 (

∂μχ
)2 + 1

2
f 2 sin2 χ ∂μn · ∂μn

= 1

2

[
∂μϕ · ∂μϕ +

(
ϕ · ∂μϕ

)2

f 2 − ϕ ·ϕ

]

= 1

2
∂μϕ · ∂μϕ + 1

2 f 2

(
ϕ · ∂μϕ

)2

+ 1

2 f 4 (ϕ ·ϕ)
(
ϕ · ∂μϕ

)2 + . . . (17)

in the two parameterizations. Since the scalar manifold has an 
O (4) invariant fixed point φ0, the O (5)/O (4) model can be writ-
ten as a SMEFT with H given in terms of ϕ by Eq. (1),

L = ∂μH†∂μH + 1

2

[
∂μ

(
H† H

)]2(
f 2 − 2H† H

)
= ∂μH†∂μH − 1

2 f 2

(
H† H

)�(
H† H

)
+ . . . (18)

up to terms of dimension six.
The Lagrangian Eq. (17) has four scalar degrees of freedom. The 

angular part n has the three (eaten) Goldstone boson degrees of 
freedom, and the radial part χ has one degree of freedom. Both 
n and ϕ transform as the fundamental of O (4), and the group 
transformation law preserves the constraint n ·n = 1. In the gauged 
case, one replaces ∂μn and ∂μϕ by

Dμn = ∂μn + (
igL ALμ + igR ARμ

)
n ,

Dμϕ = ∂μϕ + (
igL ALμ + igR ARμ

)
ϕ , (19)

where the gauge generators are given in Eq. (14). Note that χ is a 
gauge singlet, so Dμχ = ∂μχ .

Comparing with Fig. 1, the surface of the sphere S4 in Fig. 2 is 
the HEFT manifold M, and the smaller red circle of radius v in 
Fig. 2 is the red curve marked S3 in Fig. 1. The four scalar fields 
ϕ = f sinχ n form the Higgs field H , as given in Eq. (1). The SM 
gauge symmetry is obtained by gauging the SU(2) ×U (1) subgroup 
of the unbroken O (4). Since all points on the vacuum manifold 
S4 are equivalent, we can choose the unbroken O (4) group to be 
rotations about the φ5 axis, as shown in Fig. 2.

If O (5) symmetry is exact, then ϕ are exact Goldstone bosons, 
and there is no potential V (ϕ). However, in composite Higgs mod-
els, one imagines that ϕ are approximate Goldstone bosons, and 
that some mechanism (not relevant for this paper) generates a 
potential that depends on the O (4) invariant ϕ · ϕ = f 2 sin2 χ =
2H† H , i.e. the angle χ shown in Fig. 2. If this potential has a min-
imum not at the North pole, but at some small angle χ , then the 
electroweak symmetry is broken by v = f sinχ , with v 
 f . The 
non-trivial task of composite Higgs models is to generate this small 
vacuum misalignment angle.

The kinetic term defines the scalar metric, which is the induced 
metric on S4,

ds2 = f 2dχ2 + f 2 sin2 χ (dn · dn) . (20)

M = S4 is a four-dimensional maximally symmetric space of con-
stant curvature, and the Riemann curvature tensor is

Rabcd(ϕ) = 1

f 2 (gac(ϕ)gbd(ϕ) − gad(ϕ)gbc(ϕ)) , (21)

the Ricci tensor is

Rab(ϕ) = 1

f 2

(
Nϕ − 1

)
gab(ϕ) , (22)

where Nϕ = 4 is the dimension of M, and the scalar curvature is

R(ϕ) = 1

f 2
Nϕ

(
Nϕ − 1

)
. (23)

Comparing Eq. (17) with Eq. (6), we see that

χ = χ0 + h

f
, f 2 sin2 χ = v2 F (h)2 , (24)

and Eq. (7) gives

f 2 sin2 χ0 = v2 , (25)

so that

F (h) = f

v
sin

[
h

f
+ sin−1 v

f

]

=
√

f 2

v2
− 1 sin

h

f
+ cos

h

f

= 1 + h

v

√
1 − v2

f 2
− h2

2 f 2
+ . . . . (26)

In the limit f → ∞, the O (5) → O (4) model reduces to the SM, 
the scalar manifold M becomes flat, and F (h) reduces to the SM 
value Eq. (8).

The symmetry breaking pattern in the O (5) model is

O (5)
f−−→ O (4)

v−−→ O (3) (27)

which generates the inclusion

O (5)/O (4) = S4 = M ⊃ O (4)/O (3) = S3 . (28)

3. The O (4, 1) → O (4) model

We now consider a sigma model where M has negative curva-
ture. Consider a five dimensional space with metric

ds2 =
4∑

i=1

(dφi)
2 − (dφ5)

2 (29)

and the embedded surface M given by

f 2 = (φ5)
2 −

4∑
i=1

(φi)
2 . (30)

Choosing the branch φ5 > 0 gives the four dimensional hyperbolic 
space H4, which is a maximally symmetric space of negative cur-
vature shown in Fig. 3. With coordinates
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Fig. 3. The scalar manifold of the O (4, 1) → O (4) sigma model is the hyperbolic 
space H4. The SM SU(2) × U (1) gauge group is a subgroup of the unbroken group 
H that leaves φ0 invariant. The four-component field ϕ gets a VEV v 
 f , which 
breaks electroweak symmetry. H4 cannot be embedded in Euclidean space, so it 
is difficult to draw an accurate representation of the manifold. H4 has constant 
negative curvature, though this is not apparent from the figure.

φ =
[

f sinhχ n

f coshχ

]
(31)

or

φ =
⎡
⎣ ϕ√

f 2 + ϕ ·ϕ

⎤
⎦ , (32)

the metric on H4 is

ds2 = dφ · dφ = f 2dχ2 + f 2 sinh2 χ dn · dn, (33)

and the scalar kinetic energy term is

L = 1

2
f 2 (

∂μχ
)2 + 1

2
f 2 sinh2 χ ∂μn · ∂μn

= 1

2

[
∂μϕ · ∂μϕ −

(
ϕ · ∂μϕ

)2

f 2 + ϕ ·ϕ

]

= 1

2
∂μϕ · ∂μϕ − 1

2 f 2

(
ϕ · ∂μϕ

)2

+ 1

2 f 4 (ϕ ·ϕ)
(
ϕ · ∂μϕ

)2 + . . . . (34)

H
4 has an O (4) invariant fixed point φ0, so the O (4, 1)/O (4)

model can be written as a SMEFT expansion,

L = ∂μH†∂μH − 1

2

[
∂μ

(
H† H

)]2(
f 2 + 2H† H

)
= ∂μH†∂μH + 1

2 f 2

(
H† H

)�(
H† H

)
+ . . . (35)

up to terms of dimension six. The dimension-six term has opposite 
sign from the O (5)/O (4) case [5–8].

H
4 has curvature tensors

Rabcd(ϕ) = − 1

f 2 (gac(ϕ)gbd(ϕ) − gad(ϕ)gbc(ϕ)) ,

Rab(ϕ) = − 1
2

(
Nϕ − 1

)
gab(ϕ) ,
f

Fig. 4. Graphs contributing to the ϕϕ forward scattering amplitude, whose imagi-
nary part gives the ϕϕ → ϕϕ total cross section.

R(ϕ) = − 1

f 2
Nϕ

(
Nϕ − 1

)
, (36)

where Nϕ = 4. The radial function is

F (h) = f

v
sinh

[
h

f
+ sinh−1 v

f

]

=
√

f 2

v2
+ 1 sinh

h

f
+ cosh

h

f

= 1 + h

v

√
1 + v2

f 2
+ h2

2 f 2
+ . . . . (37)

Despite the minus sign in Eq. (29), the metric in Eq. (34) is 
positive definite. The Hn sigma model defines a unitary theory of 
scalars, since the kinetic energy is positive definite. One way to see 
unitarity is to use the square root parameterization, and compare 
the Hn Lagrangian in Eq. (34) with the O (n) Lagrangian in Eq. (17). 
The two differ by the replacement f 2 → − f 2, so that the 4ϕ , 8ϕ , 
etc. vertices have their signs flipped. The imaginary part of the ϕϕ
scattering graph in Fig. 4 does not change sign, and remains equal 
to the ϕϕ → ϕϕ total cross section.

The vertices for Hn are given by those for Sn multiplied by 
(−1)(F−2)/2, and using the counting rule for a graph (see e.g. 
Ref. [9]),

F − 2 =
∑

i

(Fi − 2) − 2L , (38)

where Fi is the number of fields at each vertex, F is the number 
of external fields, and L is the number of loops, one finds that 
the amplitude of any Hn graph is related to that of an Sn graph 
by multiplying by (−1)(F−2)/2+L . For ϕϕ → ϕϕ , F = 4, and we 
see that graphs with even L have opposite sign to those for Sn . 
We need L ≥ 1 for the diagram to have an imaginary part. The 
L = 1 graph Fig. 4(a) has the same (positive) sign for the imaginary 
part as the Sn graph. The L = 2 graph Fig. 4(b) has the opposite 
sign. However, in chiral perturbation theory, the L = 2 graphs are 
a small O(p2/ f 2) correction to the L = 1 graph, so unitarity is 
respected.

The Lagrangian Eq. (34) has an O (4, 1) symmetry with 10 gen-
erators. Six of these are generators of the O (4) subgroup act-
ing as rotations on ϕ . These generators are the same as T ab in 
Eq. (10) with 1 ≤ a < b ≤ 4. The remaining four generators are the 
boosts Ba , 1 ≤ a ≤ 4,

i
[

Ba]
i j = δaiδ5 j + δajδ5i (39)

iB1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , etc. (40)
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The symmetry group O (4, 1) is non-compact. This structure should 
be familiar from the Lorentz group SO(3, 1). The space H4 is a 
homogeneous space, and we can choose the vacuum to be

〈
φ0

〉 =
⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

f

⎤
⎥⎥⎥⎥⎥⎦ , (41)

which breaks the non-compact O (4, 1) group down to the compact 
subgroup O (4). Again, this should be familiar from the Lorentz 
group, where Eq. (41) is analogous to the momentum vector of 
a particle at rest, which breaks the boost generators but leaves the 
rotations unbroken.

We can now gauge some subgroup of the full symmetry group 
O (4, 1). At this stage, the non-compact nature of the symmetry 
group becomes important. The gauge kinetic term is

L = −1

4
Ga

μνGμν bBab (42)

where Bab is proportional to the Killing form. For a compact Lie 
group, one can pick Bab = δab . However, for a non-compact group, 
the Killing form has some negative eigenvalues. In our example,

Tr T ab T cd = 2 (δacδbd − δadδbc) (43)

for the O (4) generators so that Tr T ab T ab = 2 > 0 (no sum on a, b), 
but

Tr Ba Bb = −2δab (44)

for the boost generators. Thus gauging the non-compact genera-
tors leads to a gauge boson kinetic energy with the wrong sign, so 
the theory is no longer unitary. However, there is no problem if 
we only gauge a compact subgroup of O (4, 1). For HEFT, we only 
need to gauge the SU(2) × U (1) compact subgroup of O (4, 1). The 
gauged Lagrangian is given by replacing ∂μn by Dμn, as before.

The symmetry breaking pattern in the O (4, 1) model is

O (4,1)
f−−→ O (4)

v−−→ O (3) (45)

which generates the inclusion

O (4,1)/O (4) = H
4 = M ⊃ O (4)/O (3) = S3 . (46)

We can thus construct a HEFT where M has negative curvature, 
by gauging a SU(2) × U (1) subgroup of O (4). The SM gauge sym-
metry is unbroken at the scale f . As in the compact O (5) model 
of the previous section, one then needs to construct a vacuum 
misalignment mechanism where the HEFT field ϕ = f sinhχ n de-
velops a VEV v , which breaks the SM gauge group. The unbroken 
symmetry group of the misaligned vacuum is a boosted version 
of O (4), and is also compact.

4. Experimental consequences

In Ref. [3], we showed that gauge boson and Higgs boson scat-
tering cross sections were related to the curvature of the HEFT 
manifold M. The curvature functions defined in Ref. [3] are

R4(h) = f 2

v2
sin4

[
h

f
+ sin−1 v

f

]
,

R2h(h) = 1

2
sin2

[
h

f
+ sin−1 v

f

]
, (47)

for O (5),
R4(h) = − f 2

v2
sinh4

[
h

f
+ sinh−1 v

f

]
,

R2h(h) = −1

2
sinh2

[
h

f
+ sinh−1 v

f

]
, (48)

for O (4, 1) and Ri(h) = 0 for the SM. The curvature constants ri ≡
Ri(0) of Ref. [3] are

r4 = κ
v2

f 2
, r2h = κ

v2

2 f 2
, (49)

where κ = +1, −1, 0 for positive, negative, and zero curvature, i.e. 
for the O (5) model, O (4, 1) model, and SM, respectively.

In general, if G is compact, G/H has non-negative sectional cur-
vatures. The sectional curvature K (X, Y ) is defined as

K (X, Y ) ≡ Rabcd XaY b Xc Y d

(gac gbd − gad gbc)XaY b Xc Y d

= 〈R(X, Y )Y , X〉
〈X, X〉 〈Y , Y 〉 − 〈X, Y 〉 〈X, Y 〉 (50)

for any two linearly independent tangent vectors X , Y , where 
〈∗,∗〉 is the inner product w.r.t. the metric gab . Choosing X , Y in 
the Goldstone boson directions and using the expression for Rabcd
in Ref. [3] gives

K (Xϕ, Yϕ) = 1

v2
R4(h), (51)

so that R4(h) ≥ 0 which implies r4 ≥ 0. Choosing X in the Gold-
stone boson direction and Y in the Higgs direction gives

K (Xϕ, Yh) = 2

v2
R2h(h), (52)

so that R2h(h) ≥ 0 which implies r2h ≥ 0.
For maximally symmetric spaces such as Sn and Hn , the sec-

tional curvature is independent of X , Y . Since the O (5)/O (4)

sigma model is based on a compact Lie group, the sectional cur-
vatures are non-negative, and r4 ≥ 0, r2h ≥ 0. For O (5, 1)/O (4), r4, 
r2h are negative.

The HEFT S-parameter contribution

S = 1

12π
r4 log

(
�2

M2
Z

)
, (53)

and the scattering amplitudes of longitudinal W -bosons W L and 
Higgs bosons at high energy [11–13]

A (W L W L → W L W L) = −4λ + s + t

v2
r4 ,

A (W L W L → hh) = 2λ − 2s

v2
r2h , (54)

depend on r4 and r2h . In particular, the sign of the new physics 
contribution depends on the curvature of the manifold.1 Exper-
imental constraints on the S parameter for O (4, 1)/O (4) were 
studied in Ref. [6]. The curvature component that enters the am-
plitude is determined by the bosons which scatter — W L picks out 
a Goldstone boson index and the Higgs boson picks out an h index.

Composite Higgs models considered in the literature are based 
on a compact group G , and so the new physics contribution in-
terferes destructively with the SM contribution. We have explic-
itly computed r4 and r2h for the O (5) theory in Eq. (49) and 
shown they are positive. While the values may change depend-
ing on the group structure of the G/H sigma model, they remain 

1 In Eq. (54), the first term is the SM amplitude in the limit s � M2
H � M2

W .
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Fig. 5. Gauge contribution to pseudo-Goldstone boson masses.

non-negative for all theories based on a compact group G . For the 
negatively curved space considered here, r4 and r2h are negative, 
and the interference is constructive.

Measuring deviations from the SM is a way of probing compos-
ite models, and gives direct information on the curvature of M. 
Experimental measurements based on perturbation theory calcula-
tions only probe the manifold in a neighbourhood of the vacuum 
(the black dot in Figs. 1–3). Since the S-matrix only depends on co-
ordinate invariant properties of the manifold, the leading quantity 
which can be measured is the local curvature which is propor-
tional to 1/ f 2, where f is the new physics scale. Higher order 
corrections can depend on curvature gradients or higher powers of 
the curvature, and are suppressed by additional powers of 1/ f .

5. Vacuum misalignment

The HEFT sigma models as described so far have exact Gold-
stone bosons, so that all points on M have the same energy. To 
have vacuum misalignment, it is necessary to generate a potential 
which breaks the exact G symmetry, so that the Goldstone bosons 
develop a small mass, and the minimum of the potential is at a 
small vacuum misalignment angle χ . Finding a suitable vacuum 
alignment mechanism is a difficult problem.

One mechanism for mass generation is from gauge interactions, 
since only a subgroup of the original symmetry group G has been 
gauged. The same mechanism is responsible for the π+ −π0 mass 
difference in QCD. Graphs such as Fig. 5 generate a mass difference, 
with a naive dimensional analysis [14] estimate

m2
π+ − m2

π0 ∼ α

4π
�2 (55)

which gives m ∼ 3 MeV vs. the experimental value of 4.6 MeV in 
QCD.

In both the O (5) → O (4) and O (4, 1) → O (4) sigma models in 
which the SU(2) × U (1) subgroup of O (4) is gauged, one generates 
terms of the form

g2
2

4π
�2φT T a T aφ = 3α

4π sin2 θW
�2 f 2s2(χ)

g2
1

4π
�2φT Y Y φ = α

4π cos2 θW
�2 f 2s2(χ) (56)

at one loop order, where s2(χ) = sin2 χ , sinh2 χ or χ2 for positive, 
negative, and zero curvature, respectively. The gauge interactions 
give an effective potential

V (χ) = c s2(χ) (57)

where c > 0, using the sign of the π+ − π0 mass difference in 
Eq. (55). Eq. (57) has a minimum at χ = 0, which does not break 
electroweak symmetry. Various ideas have been proposed to solve 
the vacuum misalignment problem, including gauging an addi-
tional axial U (1)A [15], or using top-quark loops [10,12,13] to drive 
vacuum misalignment. Gauging an additional U (1)A requires ex-
tending the sigma model so that U (1)A is still part of a compact 
group.
Typically, the potential generated in G/H models is of the form

V (χ) = α cosχ + β sin2 χ (58)

which breaks electroweak symmetry if α − 2β > 0, β < 0, |α/

(2β)| < 1. For the negatively curved case, the effective potential 
is of the form

V (χ) = α coshχ + β sinh2 χ (59)

which breaks electroweak symmetry if 2β + α < 0, β > 0. The 
gauge contribution to β should be positive in both cases, since 
the gauge bosons live in the compact part of the group. The top-
quark scenario produces different values for α, β in the elliptic and 
hyperbolic cases, and a detailed analysis is needed to see if the 
electroweak symmetry is broken. Since χ is no longer periodic, it 
is also necessary to check that the potential V (χ) is bounded from 
below. Some details of the O (4, 1) spinor algebra needed for the 
computation of the top-quark contribution to V (χ) are given in 
Appendix A.

6. Conclusions

We have given a simple example of a sigma model with nega-
tive curvature based on a hyperbolic space. Deviations in the Higgs 
boson and longitudinal gauge boson scattering cross sections from 
their Standard Model values depend on the curvature, and have 
opposite sign from the usual G/H case of positive curvature. Thus, 
one can directly measure the curvature of the HEFT scalar space 
experimentally. G/H sigma models typically arise from breaking a 
compact flavor symmetry group G in a strongly interacting the-
ory. In this case G/H has non-negative sectional curvatures, so 
that r4 ≥ 0 and r2h ≥ 0. A detailed scenario that produces an ex-
ample like the type discussed here requires the dynamics to pro-
duce a low-energy theory with a hyperbolic, rather than elliptic 
constraint. This scenario could occur in theories where the scalar 
manifold is complexified, as happens in supersymmetric theories. 
It would be interesting to study negatively curved sigma models 
in more detail to investigate unitarity and vacuum misalignment 
further.
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Appendix A. O (4, 1) spinors

We briefly review some aspects of the O (4, 1) spinor repre-
sentation needed for computing the top-quark induced potential. 
The results follow by analogy with known results on the rela-
tion between Euclidean and Minkowski space Dirac spinors for the 
Lorentz group.

The SO(5) Clifford algebra is{
�a,�b

}
= 2ηab, ηab = diag(1,1,1,1,−1) . (A.1)

The � matrices are

�i =
[

0 σ i

σ i 0

]
, i = 1,2,3
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�4 =
[

0 −i

i 0

]
, �5 =

[
i 0

0 −i

]
. (A.2)

The generators in the spinor representation are

M[i j] = 1

4i

[
�i,� j

]
. (A.3)

If ψ transforms as a spinor,

ψ → D(g)ψ , (A.4)

then

ψ ≡ ψ† �5 (A.5)

transforms as the inverse,

ψ → ψ D(g)−1 . (A.6)

The analog of �i�i in Refs. [10,12] that enters the top-quark 
contribution to the effective potential is

�5φi�i = f

[
coshχ i

(
σ ·n − in4

)
sinhχ

−i
(
σ ·n + in4

)
sinhχ coshχ

]
(A.7)

where φi is given in Eq. (31). If ψ , χ are spinors transforming as 
in Eq. (A.4), then
χ †�5φi�iψ (A.8)

is an invariant. The rest of the top-quark calculation proceeds as in 
Refs. [10,12].
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