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Abstract

High Order Partitioned Fully Implicit Runge-Kutta Solvers for Fluid-Structure Interaction

by

Noble T Macfarlane

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Per-Olof Persson, Chair

In this work, we develop and analyze a partitioned implicit time integration method designed
for fluid-structure interaction (FSI) modelling using discontinuous Galerkin (DG) discretiza-
tions and fully implicit Runge-Kutta (IRK) methods. The discontinuous Galerkin method
is a high-order finite element method used for fluid simulations on unstructured meshes. We
take a partitioned approach, modelling the structures separately and limiting communica-
tion between structure and fluid by use of a prediction-correction framework. We verify the
high-order accuracy, the stability, and the performance of our method on simple model prob-
lems including a one-dimensional sprung piston and a two-dimensional pitching airfoil with
prescribed vertical motion and a torsional restoring force, both with structures of two de-
grees of freedom. Finally we apply our method to the standard problem of a cantilever beam
shedding vortexes with two sets of parameters, and a vibrating tuning fork problem. Both
these final applications consist of fluids modelled on fully unstructured meshes of high-order
triangular elements deformed by radial basis functions according to the structure motion,
and structures modeled using a neo-Hookean formulation and discretized using standard
continuous finite elements.

Our scheme fully decouples the implicit solutions of the structure and the fluid, with com-
munication limited to boundary conditions and mesh deformation. We present our method
with two variations, one using explicit methods for predicted quantities and another using
implicit. We implement our method up to seventh order, and compare its cost with standard
Diagonally Implicit Runge-Kutta methods where possible. Our findings are that this new
method can be significantly cheaper, in particular for the more complex cantilever problem,
and it also has better stability properties.
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Chapter 1

Introduction

The Tacoma Narrows Bridge failed catastrophically on November 7th, 1940. The initial
report [1] noted that the oscillations were caused by the interaction of the wind with the
structure of the suspension bridge that had opened just 129 days earlier. This was an instance
of Aeroelastic flutter, where fluid forces and natural vibrational modes of a structure form a
positive feedback loop, leading to large, and possibly damaging, oscillations.

The study of fluid-structure interaction has applications well beyond computational test-
ing in civil engineering of bridges, building exteriors, nuclear power plants [77], and other
stationary but flexible structures whose structural integrity is important. Modelling FSI is
key for the aerospace industry [50], where weight savings are important, but unmitigated
aeroelastic flutter can be catastrophic. Noise is another concern addressed by FSI simula-
tions. Engine vibrations in vehicles can be modelled [66] to anticipate and reduce noise in
automotive applications. Modeling the noise reduction properties of interior walls in build-
ings [2] is another application of FSI simulations, whether this be in an apartment building,
where absorption is critical, or a concert hall, where a balance must be struck to optimize
the interior acoustics.

The development of wind turbines [45] is another key application of FSI models. The
newest designs are very large, with blades approaching 100 meters in length, and outputs
approaching ten megawatts each. For machines of this size, full-scale physical modelling is
not feasible. In comparing and evaluating designs, engineers want to maximize the amount
of energy harvested from the wind at a wide range of wind speeds. Energy dissipation due to
high frequency oscillations of the blades is not desirable. FSI modelling is therefore critical
for the building of large-scale wind farms.

In addition to efficiency concerns, the anticipation of material fatigue in wind turbines
[9] is another use case for FSI modelling. Wind turbines make hundreds of millions of
rotations during their lifetimes. They are usually made of lightweight, strong composite
material, but this material does degrade over time. Sensors are installed in some wind
turbine blades to monitor this, but they do not directly monitor damage, relying instead on
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proxy measurements. These measurements are taken at a limited number of points generally
far smaller than the number of points used for modelling. Thus FSI simulations are very
useful in understanding the lifecycle characteristics of large-scale wind installations.

Another application is in the study of biology. One particular example is the modeling
of a bat wing [5], where bones are modeled as rigid structures connected by a membrane. In
this case, the lift and drag may be calculated for a particular flapping motion, leading to a
better understanding of the physics of the animal. Another relevant example from the field
of medicine is in the modelling of blood vessels [13] in individual patients. As fluid flows
through arteries, the walls stretch in response to the increased pressure. With modern MRI
and CT scans, we have non-invasive access to the blood vessel configurations of living patients
at pressure. With FSI modelling, it is possible to calculate the resting configuration of parts
of the circulatory system, leading to better understanding and treatment of cardiovascular
disease.

1.1 Previous Work

Many numerical methods have been proposed for the time-integration of problems with
coupled fluid-structure interaction. Some, such as the approaches presented in [40] and [25],
use Explicit Runge-Kutta (ERK) methods, though implicit methods are more commonly
used due to their improved stability properties. Some FSI solvers apply multi-step meth-
ods, such as Backward Differentiation Formulae, for time integration [75, 73, 47], but other
methods have also been considered [70, 26, 74, 49]. Another option is to treat time as an
extra dimension and apply space-time methods [6, 67, 34], although these typically increase
the computational cost compared to standard time-integrators. In this work, we use one-
step Implicit Runge-Kutta (IRK) methods because of their excellent stability properties and
straight-forward extension to arbitrarily high orders of convergence.

One popular class of methods for FSI time integration are based on the so-called parti-
tioned approach. This differs from the monolithic approach, which combines the FSI problem
into one single system, increasing stability and facilitating the direct use of IRK methods
or other standard high-order time-integration techniques, as shown in [24, 35, 52]. However,
the partitioned approach allows for reusing existing solvers for the fluid and the structure,
separately, while the time-integration scheme is chosen such that the coupling between them
is properly accounted for. These partitioned methods have clear advantages, mainly the sep-
aration between the two physical systems and the ability to use separate schemes to integrate
them with readily available solvers, as in [48]. Our approach to partitioned time-integration
of fluid-structure interaction problems is closely related to operator splitting or fractional
step methods, examples of which can be found in [39, 15], and discussed further in [23].
Some of the drawbacks with partitioned schemes can be overcome with subiterations at each
timestep, as in [51, 76, 20, 48, 36], leading to the monolithic solution. These methods can
be applied to more general multiphysics problems, as in [65], and not just fluid-structure
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interaction simulations. The method presented in this work lends itself quite readily to
subiterations, though we do not find them necessary in every application studied, and, in
general, forgo their use and the associated cost.

Many partitioned time-integration schemes are based on some sort of predictor-corrector
framework [29, 11], often only achieving first [61, 28, 14, 53] or second [32, 27, 7, 8, 55,
16] orders of accuracy. In [78, 71, 72], a class of high-order schemes were derived based on
implicit-explicit (IMEX) Runge-Kutta schemes, which allow for the computation of predicted
tractions that yield higher-order accuracy. These techniques were further developed and used
in the setting of discontinuous Galerkin simulations in [30, 54], and extended to a broader
class of problems and solvers in [37].

The implicit time-integrators in these IMEX schemes are based on Diagonally Implicit
Runge-Kutta (DIRK) methods. These are convenient since they split each stage into a single
non-linear system to solve, similar to the (low-order) backward Euler method. However, this
limits the accuracy and the stability of the resulting scheme, which has led to an interest
in (fully) Implicit Runge-Kutta (IRK) schemes, as used in the monolithic approach in [24],
and, with first-order coupling, in [69]. These IRK schemes have many excellent properties,
such as higher stage-order and leading-order error coefficients which are typically smaller
than those found in the DIRK methods to which we compare them. However, they couple
all the stages in the Runge-Kutta scheme, which means they either require more degrees of
freedom or they have to be solved using specialized solvers.

In [56], a new iterative technique was proposed for solving the systems that arise from
(single-physics) IRK schemes. The method was based on a change of variable which increased
the sparsity, and a scaled block-Jacobi solver which allowed for individual solution of each
stage as part of the iterative scheme. These could then be solved using any existing solver,
such as an ordered ILU preconditioner, much like the case for the DIRK schemes. Another
benefit was the ability to parallelize across the stages, which allowed for further performance
improvements. The resulting scheme gave superior results to the standard DIRK schemes,
when comparing work vs. accuracy.

1.2 Overview

In this work, we present a partitioned approach for IRK integration of FSI systems,
based on the iterative solvers in [56] together with various predictors for the traction. We
consider both explicit and implicit predictors, and observe that while the implicit predictors
are more expensive, they can provide superior stability. We demonstrate the methods on
several model problems. The resulting schemes have comparable or better performance than
the partitioned IMEX solvers in [78, 30], while giving the additional advantages of a full IRK
scheme.

This dissertation is organized as follows. First we present the governing equations of the
fluids we model, both viscous and non-viscous. This is followed by a discussion of the way
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in which we modify these equations to handle a deforming domain. We then lay out the
governing equations of the structures we model. These consist of rigid bodies with simple
governing equations, and the more complex flexible structure we model.

Having laid out the governing equations for structure and fluid individually, we then
describe in detail the Runge-Kutta methods we use to move our simulations forward in
time. We discuss the relatively simple ERK methods, and classify various types of more
complicated implicit methods. After laying out the order conditions and stability properties
of such methods, we explain the standard blended implicit-explicit Runge-Kutta formulation.
Finally, we develop a novel type of implicit-explicit Runge-Kutta method which integrates
forward to multiple points in time, and is used later in the work as a basis for our implicit
prediction methods.

We then present standard discontinuous Galerkin methods for fluids and discontinuous
Galerkin methods for structures, as well as the solvers we use to apply Runge-Kutta methods
to these discretizations. This is followed by a discussion of the methods whereby we model
the interaction of fluids and structures. These elements are then combined to fully describe
the methods we use, both the DIRK method previously developed in [30], and the novel
fully-implicit Runge-Kutta FSI method we present here. This is followed by validation of
the method and applications to model problems.
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Chapter 2

Governing Equations

2.1 Compressible Navier-Stokes

In general, we model the fluid using the compressible Navier-Stokes equations,

∂

∂t
(ρ) +

∂

∂xj
(ρuj) = 0 (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) =

∂

∂xj
τij (2.2)

∂

∂t
(ρE) +

∂

∂xj
(ρujE + ujp) =

∂

∂xj
(−qj + uiτij) (2.3)

as written in conservation form using Einstein indicial notation, with i from 1 to D, the
number of dimensions. These are written in the conserved variables fluid density ρ, momen-
tum in the direction of the jth spatial dimension ρuj, and total energy ρE. The variable τij
denotes the viscous stress tensor. It is defined by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(2.4)

and the heat flux qj is defined by

qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
(2.5)

where µ is the dynamic viscosity, and Pr is the Prandtl number. In our applications, we
choose µ = 1.83 × 10−5 kg

m·s , and Pr = 0.72, as these are the values for air at the standard
temperature and pressure of 273.15 K and 1 bar. Modelling the fluid as an ideal gas, the
pressure p is given by

p = (γ − 1)

(
ρE − 1

2
ρukuk

)
(2.6)
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which is derived from the ideal gas law p = ρRT and the relationships R = CP − CV ,
E = CvT + 1

2
ukuk, and γ = CP

CV
where CP is the heat capacity of the fluid at a constant

pressure, and CV is the heat capacity of the fluid at a constant volume. Their ratio, γ, is the
adiabatic gas constant, which we set to γ = 1.4. This is the theoretical value for a diatomic
ideal gas such as O2 or N2, which together make up about 99% of the Earth’s atmosphere
at sea level.

We generally write the Navier-Stokes equations, 2.1, 2.2, & 2.3, with vector notation,
writing

∂u

∂t
+∇ · F i(u)−∇ · F v(u,∇u) = 0 (2.7)

with conserved variables and inviscid and viscous flux in the kth spatial direction written as

u =

 ρ
ρuj
ρE

 , F i
k =

 ρuk
ρujuk + δjkp
uk(ρE + p)

 , and F v
k =

 0
τjk

−qj − uiτjk

 . (2.8)

Note that the superscript i denotes “inviscid” and is not an index in this notation.

The enthalpy in this case is H = E+ p
ρ

and the speed of sound is a =
√

γp
ρ

. We visualize

numerical solutions to these equations by plotting vorticity, ω = ∇× ui, entropy, s = p
ργ

, or

Mach number M =
√
ukuk
a

=
√

ρukuk
γp

. In two dimensions, vorticity can be plotted as a scalar,

as its value has only one component. We also note that the internal energy, e, is defined as

e = E − ukuk
2

. (2.9)

This quantity is important for setting boundary conditions, and is proportional to temper-
ature by the heat capacity at constant volume. This implies

e = CV T. (2.10)

One way to reduce the number of degrees of freedom from the system is make the as-
sumption that the entropy s is constant. This implies that, in an ideal gas,

p = sργ, (2.11)

which allows us to eliminate the energy equation, equation 2.3.

2.1.1 Euler Equations

In addition to modeling viscous flow, we also model inviscid flow using the Euler equa-
tions. These are another simplification of the compressible Navier-Stokes equations, where
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the dynamic viscosity is set to zero. It is clear from equations 2.4 and 2.5 that µ = 0 implies
τij = qj = 0, and thus F v = 0. This leaves

∂u

∂t
+∇ · F i(u) = 0, (2.12)

again with pressure defined as in 2.6. In one dimension, we drop the dimension subscripts
and get the equation

∂

∂t

 ρ
ρu
ρE

+
∂

∂x

 ρu
ρu2 + p

u (ρE + p)

 = 0 (2.13)

where x is the spatial coordinate.

2.1.2 Boundary Conditions

In fluid-structure interaction simulations, it is necessary to impose two different boundary
conditions. The first is imposed at a interfaces of the fluid with a solid, either a dynamic
structure or a stationary edge. Defining ~vfluid to be the velocity of the fluid, and ~vwall to be
the velocity of the structure or stationary edge (generally zero), we impose adiabatic no-slip
boundary conditions, where

~vfluid = ~vwall (2.14)

and no heat or mass passes through the interface.

The second boundary condition is imposed at the outer boundary of the fluid domain,
away from the structure. Since there is a limit on computational work and memory storage,
the computational domain must be finite. We impose far-field boundary conditions at the
edge of the computational domain, with sufficient distance from the structure so as to avoid
any significant effects of the fluid-structure interaction. Far-field boundary conditions are
imposed by directly imposing the state of the system, with state u∞, defined with the far-field
state imposed as

u∞ =

 ρ∞
ρ∞~v∞

1
γ−1

p∞ + 1
2
ρ∞‖~v∞‖2

2

 (2.15)

with the pressure p∞, density ρ∞, and velocity ~v∞ chosen to match their values beyond the
computational domain.

2.2 Arbitrary Lagrangian Eulerian Formulation

As the structure moves, it displaces the fluid, changing its shape. Because of this effect,
we employ an Arbitrary Lagrangian Eulerian (ALE) framework to solve the conservation
laws presented in 2.1 on a fixed reference domain. Whereas an Eulerian formulation is fixed
in space, with fluid moving through elements, and a Lagrangian formulation has elements
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fixed on a moving material, an ALE formulation is neither fixed to the material nor fixed
in space, but offers a change of variables conversion from the system of conservation laws
on our varying physical domain into a system of conservation laws in the fixed reference
domain. We present this ALE formulation using the standard notation of capital letters for
the variables associated with the static reference domain V , and lowercase letters for those
of the deforming physical domain v(t).

Consider a point X ∈ V which is mapped at time t to x(X, t) ∈ v(t). We define the
deformation gradient G at x as

G = ∇Xx (2.16)

which describes how space is deformed at the point x. The local volume deformation is thus

g = detG (2.17)

with g = 1 denoting no volume deformation. The mapping velocity is defined as

ẋ =
∂x

∂t
. (2.18)

The relationships between the normal vector n, elemental area da, and elemental volume dv
in the physical coordinates and normal vector N , elemental area dA, and elemental volume
dV in the reference coordinates is derived in [60]. We state them here for brevity:

n da = gG−TN dA (2.19)

N dA = g−1GTn da (2.20)

dv = g dV (2.21)

Applying this to a system of conservation laws

∂u

∂t
+∇ · f(u,∇u) = 0 (2.22)

and integrating over the physical domain v(t) we get∫
v(t)

∂u

∂t
dv +

∫
v(t)

∇ · f(u,∇u) dv = 0 (2.23)

Application of the divergence theorem results in the integral form of the system∫
v(t)

∂u

∂t
dv +

∫
∂v(t)

f(u,∇u) · n da = 0. (2.24)

We apply Reynolds transport theorem to the first term to get

d

dt

∫
v(t)

u dv −
∫
∂v(t)

(ẋ · n)u da+

∫
∂v(t)

f(u,∇u) · n da = 0. (2.25)
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which is still in the physical domain. To change to the reference domain, we change coordi-
nates in accordance with equations 2.19, 2.20, and 2.21, and apply the Reynolds transport
theorem yet again to get the equation∫

V

∂(g−1u)

∂t
dV −

∫
∂V

(
guG−1ẋ

)
·N dA+

∫
∂V

(
gG−1f

)
·N dA = 0 (2.26)

which is in the reference domain. Applying the divergence theorem and localization theorem
once again removes the integrals to give the equation

∂U

∂t
+∇X · F (U ,∇XU) = 0 (2.27)

where
U = gu and F = gG−1f −UG−1ẋ (2.28)

are the conserved quantities and flux, respectively, in the reference domain. Applying the
chain rule to these definitions, we obtain the gradient

∇u = (∇X(g−1U)G−T =
(
g−1∇XU −U∇X(g−1)

)
G−T . (2.29)

This gives a complete picture of the conservation laws we seek to solve on the reference
domain of the ALE formulation.

Next we split the flux function into two parts, as in equation 2.7. This involves ascribing
the term UG−1ẋ to either the inviscid or viscous term. We ascribe it to the inviscid term
and get

F i = gG−1f i −UG−1ẋ (2.30)

F v = gG−1fv. (2.31)

In general, though constant solutions in the physical domain v(t) should be solutions
of the discretized equations in the reference domain V , under the ALE formulation just
described this is not guaranteed to be the case. This can be rectified by enforcing the
geometric conservation law (GCL) described in [68] by replacing the equation 2.27 by

∂ḡg−1U

∂t
+∇X · F = 0 (2.32)

where the quantity ḡ is derived by integrating the auxiliary equation

∂ḡ

∂t
= ∇X

(
gG−1ẋ

)
. (2.33)

For simplicity, however, We do not make this replacement. Though the errors resulting
from violating the GCL generally relatively large for low-order methods, the errors can be
somewhat smaller in higher-order methods. In our applications, we have not found them to
be a problem. For more information, see [60].
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2.3 Rigid Body Dynamics

The equations of motion for a rigid body of mass m and center of mass xm can be derived
from a simple application of Newton’s second law, that the change in momentum over time
is exactly equal to the force applied. Since our mass is invariant,

F = ma (2.34)

where F is the sum of the forces acting on the body, and

a =
d2xm
dt2

. (2.35)

In general, this force is applied by the fluid as a surface traction t, in force per unit area.
Integrating over the whole surface,

F =

∫
∂V

t dA (2.36)

gives the net force on the body.

As the state of the rigid body is uniquely determined by the position of the center of
mass and the orientation, all that remains is the set of equations governing the Euler angles,
which define the orientation. This follows from the law

τ = Iα (2.37)

where τ is the net torque acting at xm, I is the moment of inertia tensor, and α is the
angular acceleration, defined as

α =
d2θ

dt2
(2.38)

where θ is the vector of Euler angles. If the torque is applied by surface traction, this can
be calculated by the integral

τ =

∫
∂V

(x− xm)× t dA (2.39)

over the surface area.

Though we present the full three-dimensional equations for rigid body motion here, our
applications are limited to two dimensions. This means that the axis of rotation is fixed,
and θ, α, and τ can effectively be treated as scalars. In the case of linear force, the integral
in equation 2.36 reduces to one dimension. In one dimension, no rotation is possible, and
the motion of the body is determined solely by equation 2.34, with the force equal to the
traction at the interface point.
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2.4 Neo-Hookean Elasticity Model

The governing equations are somewhat more complicated for flexible structures than rigid
bodies. We model deformable structures V using a hyperelastic neo-Hookean formulation,
found in [30]. As with the notation in section 2.2, we use lowercase letters for the physical
domain and capital letters for the undeformed reference domain, mapping x(X, t) to X at
time t. As in the ALE formulation, the mapping velocity is important, and is defined as

v =
∂x

∂t
(2.40)

while the deformation gradient is given by

F = ∇Xx(X, t) (2.41)

and the determinant of the deformation gradient is defined as

J = detF . (2.42)

The first invariant of the deviatoric part of the left Cauchy-Green deformation tensor is given
by

Ī1 = J−
2
3 tr
(
FF T

)
(2.43)

We wish to fix the structure in place on some portion of the boundary of V , and allow
others to move under the influence of a traction t. This is done by assigning the fixed
parts of the boundary ∂V Dirichlet boundary conditions, while the free-moving parts are
assigned Neumann boundary conditions. These are denoted ΓD and ΓN , respectively. The
fixed motion of ΓD is described by xD. The traction t is a force per unit surface area. The
governing equation for the flexible structure in the interior V is

∂p

∂t
−∇ · P (F ) = b (2.44)

while the equation on ΓN is
P (F ) ·N = t (2.45)

and on ΓD
x = xD (2.46)

where

p = ρv = ρ
∂x

∂t
(2.47)

is the momentum of the structure, b is an external body force per unit reference volume
(usually zero), and N is a unit normal vector in the reference domain. The first Piola-
Kirchhoff stress tensor, P is defined as

P (F ) =
∂W

∂F
(2.48)
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where W is the strain energy density of material, which depends on the shear and bulk
moduli µ and κ by the equation

W =
µ

2

(
Ī1 − 2

)
+
κ

2
(J − 1)2 . (2.49)

As we are working in two dimensions, we treat the stretch in the third dimension as constant.
(Ī1−2 becomes Ī1−3 in three dimensions.) This means that the Piola-Kirchhoff stress tensor
is

P (F ) = µJ−
2
3

(
F − 1

3

(
tr
(
FF T

)
+ 1
)
F−T

)
+ κ (J − 1) JF−T . (2.50)

As this does not go to infinity as J goes to zero, this model does not satisfy the requirements
of Ball’s existence theorem for finite elasticity. In practice, however, this is not a problem in
the applications we consider in this document.

It should be noted that we generally do not describe our parameters in terms of shear
and bulk modulus, but in terms of Young’s modulus E and Poisson’s ratio ν. These are

µ =
E

2 (1 + ν)
and κ =

E

3 (1− 2ν)
. (2.51)
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Chapter 3

Runge-Kutta Temporal Discretization

We evolve the partial differential equations described in chapter 2 in time using the
method of lines. This is done by discretizing the equations in space, as described in chapter
4, then integrating the resulting vector-valued ordinary differential equation forward in time
using Runge-Kutta methods. The ODE developed in chapter 4 is

M
du

dt
= R(t, u) (3.1)

with initial conditions
u(t0) = u0. (3.2)

Using the Galerkin methods we employ results in a non-singular matrix M and a Lipschitz
function R in equation 3.1, allowing us to apply both explicit and implicit Runge-Kutta
methods to the ODE to integrate one timestep ∆t from tn to tn+1 = tn + ∆t, calculating
un+1 from un.

3.1 Explicit Runge-Kutta Methods

The most basic explicit Runge-Kutta (ERK) method is forward Euler, which is derived
by setting the solution at time tn+1, called un+1, equal to the first two terms of the Taylor
expansion of R about tn:

Mun+1 = Mun + ∆tR(tn, un) (3.3)

This method can be implemented by evaluating b = R(tn, un) and solving the linear equation
Mk = b for k, essentially solving

Mk = R(tn, un). (3.4)

To finish the implementation of forward Euler’s method, we set

un+1 = un + ∆tk. (3.5)
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Forward Euler has been improved upon significantly, beginning with [64]. (A history of
Runge-Kutta is found in [18].) One example is Heun’s method, a slightly more complicated
Runge-Kutta method which consists of solving

Mk1 = R(tn, un) (3.6)

Mk2 = R(tn + ∆t, un + ∆tk1) (3.7)

for two stages k1 and k2, and advancing un by

un+1 = un + ∆t

(
1

2
k1 +

1

2
k2

)
. (3.8)

Analysis of the Taylor expansion of R about un and un + ∆tk1 reveals that the error at
each step is reduced by using Heun’s method. This per-step error can be further reduced by
replacing equation 3.7 with

Mk2 = R

(
tn +

2

3
∆t, un + ∆t

2

3
k1

)
(3.9)

and advancing un by

un+1 = un + ∆t

(
1

4
k1 +

3

4
k2

)
(3.10)

in a Runge-Kutta method known as Ralston’s Second-Order Method. These methods can be
interpreted as using evaluations of R at tn and tn + c∆t in linear combination to advance
the solution un to un+1, with c = 1 for Heun’s method, and c = 2

3
for Ralston’s second-order

method. Note that at each stage, R must be evaluated and one linear solve of the linear
system Mk = b, meaning that the two stage methods are twice as expensive per timestep
as forward Euler’s method, though, because we will solve these systems in a static reference
domain, M remains unchanged, and this cost can be quite low.

A general Runge-Kutta method of s stages is written as

Mki = R (tn + ci∆t, un + ∆twi) (3.11)

un+1 = un + ∆t
s∑
i=1

biki (3.12)

where aij are called coefficients, bi weights, and ci nodes, and we define wi throughout this
document as

wi =
s∑
j=1

aijkj (3.13)
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Runge-Kutta methods are usually presented as a Butcher tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

(3.14)

In this form, forward Euler, Heun’s method, and Ralston’s second-order methods are ex-
pressed as

0 0

1

0 0 0

1 1 0
1
2

1
2

0 0 0
2
3

2
3

0
1
4

3
4

(3.15)

Generally, however, zeros in the tableau are left implied. For example, the Kutta’s third-
order method and the classical Runge-Kutta method from [46], RK4, are

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

0
1
2

1
2

1
2

1
2

1 1
1
6

1
3

1
3

1
6

. (3.16)

It should be noted that explicit Runge-Kutta methods have the property that wi depends
only on the preceding stages. This implies that the A matrix in the Butcher tableau is
strictly lower-triangular, and the stages can be calculated in sequence explicitly, solving a
linear equation of the form 3.11 explicitly at each stage.

3.2 Implicit Runge-Kutta Methods

Implicit Runge-Kutta methods, described in [17], are clearly identifiable by their butcher
arrays. A Runge-Kutta method whose Butcher tableau is lower-triangular with non-zero
entries on the diagonal is a Diagonally Implicit Runge-Kutta Method (DIRK). Each stage
can be calculated in sequence, though at each stage i with a non-zero entry in the diagonal
equation ki is implicitly defined by equation 3.11 as wi is dependent on ki itself. This leads
to our approximating a zero of

F (ki) = Mki −R(tn + ci∆t, un + ∆twi). (3.17)

We use Newton’s method for this, beginning with a guess (usually zero, for simplicity), and
solving the linear equation

(M −∆taiiJR(tn + ci∆t, un + ∆twi)) ∆ki = R(tn + ci∆t, un + ∆twi)−Mki (3.18)
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with a linear solver, updating ki by adding ∆ki at each iteration, until tolerance is achieved.
Note that JR is the Jacobian matrix of the residual R. Though this is more expensive than
solving equation 3.11 in the explicit case, DIRK methods have stability advantages discussed
further below.

Two special cases of DIRK methods are singly diagonally implicit (SDIRK) methods,
where all diagonal entries of A are equal, and explicit first stage, singly diagonally implicit
(ESDIRK) methods, where all diagonal entries of A are equal, except for a11, which is set to
zero. SDIRK methods offer the advantage that the Jacobian matrix in equation 3.18 is scaled
by the same constant at each stage, simplifying implementation. ESDIRK methods have the
advantage of offering an easily calculated first stage k1 before more stages are calculated
implicitly.

A Runge-Kutta method whose Butcher tableau is dense is called an Implicit Runge-Kutta
method (IRK) or Fully Implicit Runge-Kutta method. All stage values ki are interdependent,
prohibiting their calculation sequentially. The complete system is

(Is ⊗M)K = R (t0 + ∆tc,Un + ∆t(A⊗ In)K) , (3.19)

where K, R and Un are concatenations of ki, f and un, respectively (using boldface for
multi-stage objects). When A is invertable,

W = (A⊗ In)K (3.20)

where W is the concatenation of of wi, becomes

K = (A−1 ⊗ In)W (3.21)

and this allows the transformation of equation 3.19 into

(A−1 ⊗M)W = R(t0 + ∆tc,U 0 + ∆tW ). (3.22)

The time advancement in equation 3.12 can be written in the transformed variables as

un+1 = un + ∆t(bTA−1 ⊗ In)W . (3.23)

Analogous to what is done with equation 3.18, we begin with a guess for W, then solve the
linear equation from Newton’s method(
A−1 ⊗M −∆tJ(t0 + ∆tc,U 0 + ∆tW )

)
∆W = R(t0 +∆tc,U 0 +∆tW )−

(
A−1 ⊗M

)
W

(3.24)
and update W by adding ∆W at each iteration until tolerance is reached. This creates a
linear system of size s times larger than with DIRK methods, but leads to certain advantages
discussed below. A summary of each type of Runge-Kutta discussed here can be found in
table 3.1.
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These classes of Runge-Kutta methods can be further characterised by their stage order,
defined for a pth-order Runge-Kutta method as q = min{p, qi}, where qi is defined as

u(tn + ∆tci) = un + ∆twi +O
(
∆tqi+1

)
(3.25)

for all i from 1 to s. The maximum stage order for any DIRK method is q = 2, achieved only
in EDIRK and ESDIRK methods, whereas ERK and DIRK methods have maximum stage
order q = 1. Furthermore, though ERK methods have the attractive property of involving
no non-linear solves, they lack the stability achievable with other Runge-Kutta methods. As
discussed in [56], high stage order and stability are particularly important for stiff problems.
Though DIRK, EDIRK, ESDIRK, and IRK methods can all achieve L-stability, DIRK,
EDIRK, and ESDIRK methods do so with relatively small non-linear solves, but a limit on
stage order, while IRK methods exist with no such limitation on stage order, but requiring
larger non-linear solves.

Many examples of IRK methods have been developed, but we will focus on two main
types: Radau IIA and Lobatto IIIC methods. Radau IIA methods are L-stable with order
2s− 1 and stage order s. The first three have Butcher tableaus

1 1

1

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4−
√

6
10

296−169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

. (3.26)

See [56] for Radau IIA methods of higher order. Lobatto IIIC methods have order 2s − 2
and stage order s. Like Radau IIA methods, Lobatto IIIC methods are L-stable. They are
also algebraically stable and thus B-stable. The Butcher tableaus for the second-, fourth-,
and sixth-order Lobatto IIIC methods are

0 1
2
−1

2

1 1
2

1
2

1
2

1
2

0 1
6
−1

3
1
6

1
2

1
6

5
12
− 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

0 1
12

−
√

5
12

√
5

12
− 1

12
5−
√

5
10

1
12

1
4

10−7
√

5
60

√
5

60
5+
√

5
10

1
12

10+7
√

5
60

1
4

−
√

5
60

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

. (3.27)

3.3 Runge-Kutta Method Order Conditions

In addition to the classification of Runge-Kutta methods found in table 3.1, Runge-
Kutta methods are also classified by their order of accuracy. For simplicity of notation,
we focus on the one-dimensional case, but note when the analysis applies differently in the
multi-dimensional case. Consider the ODE

y′ = f(t, y) (3.28)
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Class Property of A System size Systems/step

Explicit (ERK) strictly lower-triangular - 0

Diagonally-Implicit (DIRK) lower-triangular N s

Explicit first stage lower-triangular N s− 1
Diagonally-Implicit (EDIRK) & a11 = 0

Explicit first stage Singly lower-triangular, a11 = 0, N s− 1
Diagonally-Implicit (ESDIRK) & aii = ajj ∀ i, j > 1

Implicit (IRK) dense N · s 1

Table 3.1: Classes of Runge-Kutta Methods solving an ODE of N variables

where y′ is the time derivative of the exact solution y(t) and f(t, y) is Lipschitz continuous,
that is to say there exists some λ such that for any two states y and ỹ,

||f(y, t)− f(ỹ, t)|| ≤ λ||y − ỹ|| (3.29)

for some norm || · ||. Any smoothly differentiable function satisfies this condition. Let
the initial condition be y(0) = y0. To define the order of a RK method, let yn = y(tn)
be the solution at time tn, yn+1 be the solution at time tn+1 = tn + ∆t as computed by
the RK method, and y(tn+1) be the exact solution at time tn+1. (Note that in general,
y(tn+1) 6= yn+1.)

A Runge-Kutta method is defined as order q (or qth-order) if

||y(tn+1)− yn+1|| = O(∆tq+1) (3.30)

which is to say that the RK method cancels out the first q terms of the Taylor series of y
about tn. This is accomplished when, adopting the notation of 3.12,

yn +

q∑
i=1

∆ti

i!
y(i)(tn) +O(∆tq+1) = yn + ∆t

s∑
i=1

biki. (3.31)

Consider the term y(i)(tn). Dropping the function inputs for clarity, the ODE requires that,
in the case of i = 1, y′ = f . Applying chain rule to the i = 2 and i = 3 cases, y′′ = fyf and
y′′′ = fyyf

2 + f 2
y f . Setting i equal to four gives y′′′′ = fyyyf

3 + 4fyyfyf
2 + f 3

y f . Continuing

in this way, it is clear that y(i) is equal to a linear combination of products of y-derivatives
of f . These derivatives may not be unique, leading to exponents higher than one. Each is
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fyyyf
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2
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f 4

Figure 3.1: y′′′′ trees

associated with a rooted tree, from graph theory, as described in [22]. The connection to RK
methods described below is proven in [33]. An overview of this connection is found in [19].

Consider all rooted trees τi,j with i vertices, indexed by j. When i = 1 or i = 2, j = 1,
as there is only one such tree, having one vertex when i = 1, or two vertices connected when
i = 2. When i = 3, j goes from one to two, as there are two trees with three vertices. For
each n, we associate the nth y-derivative of f with each vertex with n children. With each
rooted tree τi,j we associate the product of all these y-derivatives of f from the vertices.
Thereby f is associated with τ1,1, fyf with τ2,1, fyyf

2 with τ3,1 (star tree), and f 2
y f with τ3,2

(path graph). The trees for i = 4 are found in figure 3.1. In this way, the linear combination
equal to y(i) has all its components accounted for by all trees τi,j, indexed by j.

Note that in the multi-dimensional case, derivatives are no longer scalars, but tensors,
which are not generally commutative, prohibiting the grouping of non-unique terms. Each
derivative of y is then mapped to a rooted tree labeled with additional, ordered indices
such that the parent of any node comes earlier in the ordering. The requirements for each
derivative of y turn out to be the same, however, so we continue with the one-dimensional
case.

To describe the Runge-Kutta method order conditions, we define a function γ(τ) for each
rooted tree τ . To define γ, we define uprooting of a tree as the removal of the root, and
assignment of root status to all the children of the now-absent root. Uprooting results in
cuttings of the original tree. A tree whose root has n children produces n cuttings when
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uprooted. γ(τ) is defined recursively as the product

γ(τi,j) = i

n∏
k=1

γ(τ ki,j) (3.32)

where n is the number of children of the root of τi,j and each τ ki,j is a cutting of τi,j. For the
empty tree, γ(τ0) = 1.

To connect this to the coefficients, weights, and nodes of a RK method, consider the
rooted tree τi,j, which has i vertices. Choosing an arbitrary ordering for the vertices, we
assign each an integer. As this is arbitrary, we assign one to the root, and the integers two
through i to the other vertices. Noting that each edge connects exactly two vertices, there
are i − 1 edges, each connecting a unique pair of vertices. Thus each edge can be assigned
a unique pair of non-equal integers {n,m}, with n as the integer assigned to the vertex at
one end of the edge, and m the integer assigned to the vertex at the other end. We define
the set of edges of a rooted tree with the function Ψ(τ). Going left to right in figure 3.1, for
example, the rooted tree Ψ(τ4,1) = {{1, 2}, {1, 3}, {1, 4}}, Ψ(τ4,2) = {{1, 2}, {1, 3}, {3, 4}},
and Ψ(τ4,3) = {{1, 2}, {2, 3}, {3, 4}}. From these, we define a function

Φk1(τ) =
s∑

k2,··· ,ki=1

bk1

 ∏
{n,m}∈Ψ(τij)

akn,km

 . (3.33)

Where each k1 is a free index and akn,km are coefficients of a Runge-Kutta method with
s stages. We sometimes simplify Φk1(τ) by imposing the consistency requirement of RK
methods,

ckn =
s∑

km=1

akn,km ∀kn ∈ {1, · · · , s} (3.34)

which replaces one of the terms akn,km in the product in equation 3.33 with ckn (Specifically
where {kn, km} is an edge connecting a vertex with no children).

Finally, the order condition corresponding to the rooted tree τi,j for an s-stage Runge-
Kutta method is

1

γ(τij)
=

s∑
k1=1

bk1Φ(τi,j). (3.35)

For a RK method to be accurate to order q, it must satisfy equation 3.34 (consistency), and
equation 3.35 for all rooted trees τi,j up to i = q.

3.4 Stability of Runge-Kutta Methods

Runge-Kutta methods can be sorted into classes based on their linear stability. This is
based on each method’s ability effectively solve the linear ODE y′ = λy, for a complex λ.
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Since the solution to this ODE is y(t) = y0e
λt, the solution should grow over time if the real

part of λ is greater than zero, but not if the real part of λ is negative. Applying this ODE
to equation 3.11,

ki = λ

(
un + ∆t

s∑
j=1

aijkj

)
(3.36)

and equation 3.12 becomes

un+1 = un + ∆t
s∑
i=1

(
biλ

(
un + ∆t

s∑
j=1

aijkj

))
=
(
1 + ∆tλbT (I −∆tλA)−1 e

)
un (3.37)

where e is a vector of s ones. Setting ∆t = z, we multiply un by

R(z) = 1 + zbT (I −∆tλA)−1 e (3.38)

at each step. A method is called A-stable if |R(z)| < 1 for all z with negative real parts. A
method is called L-stable if it is A-stable and

lim
z→∞
|R(z)| = 0 (3.39)

A-stability and L-stability are attractive properties in a RK method, as they keep the solution
un from ”blowing up” as the timestep is increased.

In addition to linear stability, we define two types of non-linear stability here. A method
is B-stable if for any two solutions u1

n and u2
n, ||u1

n+1 − u2
n+1|| ≤ ||u1

n − u2
n|| for all n, where

uin+1 is the result of one step of an RK method applied to a dissipative ODE, beginning with
uin. A RK method is algebraically stable if the matrix BA + ATBT − bbT is non-negative
semidefinite, where B is the s-by-s matrix with the weights of bi on the diagonal. A RK
method is B-stable if it is algebraically stable.

3.5 Implicit-Explicit Runge-Kutta Methods

The three main types of Runge-Kutta methods each have their advantages and disad-
vantages. ERK methods are very cheap to implement per timestep, but become unsta-
ble when applied to stiff problems unless very small timesteps are used, as they are never
A-stable. DIRK methods, are more expensive to implement per timestep because of the
non-linear solves involved at each stage, but can be applied to stiff problems with much
larger timesteps than ERK methods, as they can be A- or L-stable, allowing for larger, and
thus fewer, timesteps, incurring less cost over a finite period of time. IRK methods, though
generally more expensive to implement per timestep than DIRK methods, nonetheless have
even better stability properties, allowing for even larger timesteps. As discussed in 3.2, IRK
methods have no inherent limit on their stage order, a particularly attractive property for
exceptionally stiff problems.
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In many types of problems it is advantageous to blend these different types of Runge-
Kutta Methods. Consider the standard convection-diffusion equation

ut = uux + ν∆u. (3.40)

Using a spatial discretization, as in section 4.1, we arrive at the semi-discrete ordinary
differential equation

du

dt
= f(u) + g(u). (3.41)

If the equation were simply du
dt

= uux, our ODE would be du
dt

= f(u). Employing an ERK
would be the option of choice, as f is not generally stiff. We would avoid non-linear solves
and not have an unreasonably small ∆t, limiting the number of timesteps. If the equation
were du

dt
= ν∆u, the resulting ODE would be du

dt
= g(u). This would be stiff, suggesting

an IRK method would be most suitable. Additionally, g would be linear, meaning that the
non-linear solve 3.22 would actually be a linear solve. However, the sum (equation 3.41)
would require an IRK method, negating the benefits of both functions.

A common choice for a situation like this is to pair an implicit method with an explicit
one, in an implicit-explicit (IMEX) Runge-Kutta method. As introduced in [4], we can use
an ERK method with coefficients Â, weights b̂, and nodes ĉ, and a DIRK method with
coefficients A, weights b, and nodes c. Though not necessary, we typically require the nodes
to be the same for both RK methods, so we require c = ĉ. It should be noted that for a
Runge-Kutta method to be consistent,

ci =
s∑
j=1

aij (3.42)

as discussed in section 3.3. Since âij are the coefficients of an explicit method, Â must be
strictly lower-triangular, and thus â1j = 0∀j. This means that c1 = 0. Since aij are the
coefficients of a DIRK method, a1j = 0∀j > 1, so a11 = c1 = 0. This means the DIRK
method must be an EDIRK method. The most basic example of such an ERK-EDIRK pair
is the first-order forward-backward Euler:

0

1 1

1 0

&

0

1 0 1

0 1

. (3.43)

A second-order ERK-EDIRK pair can be constructed with the trapezoidal rule, adding no
additional stages:

0

1 1
1
2

1
2

&

0

1 1
2

1
2

1
2

1
2

(3.44)
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ERK-ESDIRK pairs of orders three, four, and five are developed in [44]. The schemes
are named ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and ARK5(4)8L[2]SA, in accordance with
the naming convention ARKq(p)sS[qSO]X for a qth-order method, paired with a pth-order
method, with s stages. S denotes a characterization of the stability, and qSO is the stage-
order of the implicit method. The letter X is used for any other trait of note. We will denote
the methods from 3.43, 3.44, and [44] as ESDIRKn, where n is the order of the method.
Thus ARK5(4)8L[2]SA will be called ESDIRK5, and so on.

These pairs are employed to form an IMEX method by calculating two seperate sets of
stage values using the following equations:

Mk̂i = f(un + ∆tŵi + ∆twi) (3.45)

Mki = g(un + ∆tŵi + ∆twi) (3.46)

where, wi is defined in 3.13 and

ŵi =
s∑
j=1

âij k̂j. (3.47)

In the IMEX method, un is advanced to un+1 by

un+1 = un + ∆t
s∑
i=1

b̂ik̂i + ∆t
s∑
i=1

biki. (3.48)

Since Â comes from an ERK method, âij = 0 unless j < i, so the sum in equation 3.47
might as well only go up to i−1. This means that equation 3.46 can be solved for ki without
knowing k̂i. As equation 3.45 cannot be solved for k̂i without knowing ki, there exists a
natural order for calculating the 2s stage values, solving equation 3.46 for ki, then equation
3.45 for k̂i, at each stage from i = 1 to i = s. We present this procedure as algorithm 1

3.6 Implicit-Explicit Prediction Methods

In practice, we use the RK method pairs ESDIRK3 and ESDIRK5 to build a predictor-
corrector framework, as shown in [30], to advance the solution un forward in time. We extend
this to predict the values of W of the IRK defined in equation 3.20 using the values wi from
a predictor RK method. In order to make effective predictions at each stage, it is required
that ĉ = c, so that explicit prediction is made at a node of the implicit method, and not
elsewhere in time. In this section we develop novel ERK-EDIRK pairs that can be used to
predict values at each node of the Radau IIA and Lobatto IIIC methods introduced in 3.2.
The Radau IIA method of s stages has nodes which are the zeros of the polynomial

ds−1

dxs−1

(
xs−1 (x− 1)s

)
(3.49)
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Algorithm 1: Implicit-Explicit (IMEX) Runge-Kutta Method (ERK-EDIRK Pair)

Result: ODE Solution un+1 at time t0 + ∆t
Input: IRK scheme Â, b̂, ĉ
Input: EDIRK scheme A, b, c = ĉ
Input: ODE Mut = f(t, u) + g(t, u)
Input: Solution un at time tn
Input: Timestep ∆t > 0

Set T̃ = T
(
U f

0 + ∆tW̃
f
)

;

for i from 1 to s do

Calculate ŵi =
∑s

j=1 âij k̂j;

Define wi =
∑s

j=1 âijkj;

Solve Mki = g(tn + ci∆t, un + ∆tŵi + ∆twi) implicitly for ki;

Solve Mk̂i = f(tn + ci∆t, un + ∆tŵi + ∆twi) explicitly for k̂i;

end

Set un+1 = un + ∆t
∑s

i=1 b̂ik̂i + ∆t
∑s

i=1 biki;

while Lobatto methods have nodes at one, zero, and the zeros of P ′s−1(x), where Pn(x) is the
nth Legende Polynomial. To ensure consistency of the ERK-EDIRK pairs, we set the first
node of our method to zero, and add an extra zero node at the beginning in the case of Radau
IIA methods, where c1 is non-zero. These nodes exactly prescribe those of the methods we
develop here. The lowest-order ERK-EDIRK pair is found in equation 3.43. This pair works
with both the first-order Radau IIA (Backward Euler), and the second-order Lobatto IIIC,
shown in equations 3.26 and 3.27.

In order to have the best prediction at each time tn + ci∆t, we prioritize stage order at
each stage for the EDIRK method. This contrasts with the usual priorities in choosing the
coefficients of a RK method, where methods generally focus on high order and stability at
t+ ∆t, at the expense of stage accuracy. To achieve accuracy at each stage, we first consider
a generic RK method with lower-triangular coefficients A:

c1 a11

c2 a21 a22

...
...

...
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

(3.50)

where each aii is possibly zero. This is either a DIRK method or an ERK method. Since
our prescribed nodes require that c1 = 0, q1, as defined in equation 3.25, is arbitrarily high,
since u(tn) = un and w1 = 0. To determine the requirements for the subsequent stages, we



CHAPTER 3. RUNGE-KUTTA TEMPORAL DISCRETIZATION 25

define the stage i > 1 method of 3.50 as

c1 a11

c2 a21 a22

...
...

...
. . .

ci ai1 ai2 · · · aii

ai1 ai2 · · · aii

. (3.51)

This stage i method can be viewed as an RK method stepping un not from tn to tn + ∆t,
but from tn to tn + ∆tci, yielding un + ∆twi as the result, as set out in 3.12. Comparing
this result to 3.25, the order of the stage i method is precisely qi, the order of each stage.
To determine this value, we modify the order condition from equation 3.35 in section 3.3,∑

biΦi(τ) =
1

γ(τ)
(3.52)

to adjust for the time goal of tn + ∆tci. This gives order conditions of∑
aijΦj(τ) =

cqi
γ(τ)

(3.53)

where q is the order of the tree τ .

Firstly, this implies a11 = c1 = 0. We now use these modified order conditions to optimize
the order of the stage methods of the EDIRK method sequentially, beginning by applying
equation 3.34 of the stage i = 2 method. This gives

c2 =
2∑
j=1

a2j = a21 + a22, (3.54)

while the second order condition from 3.53 gives

c2
2

2
=

2∑
j=1

a2jcj = a21c1 + a22c2 = a22c2, (3.55)

implying that a22 = 1
2
c2. Together, these two equations require that a21 = a22 = 1

2
c2,

embedding the implicit trapezoid method in the first two stages of the DIRK method. The
first two rows of and A are thus uniquely fixed:

0
c2

1
2
c2

1
2
c2

...
...

...
. . .

ci as1 as2 · · · ass
bs1 bs2 · · · bss

(3.56)
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The order conditions of the stage i = 3 method are

c3 =
3∑
j=1

a3j
c2

3

2
=

3∑
j=1

a3jcj
c3

3

3
=

3∑
j=1

a3jc
2
j

c3
3

6
=

3∑
j=1

3∑
k=1

a3jajkck. (3.57)

It appears there are four equations for three variables. However, as c1 = 0, the middle
equations simplify to

c2
3

2
= a32c2 + a33c3

c3
3

3
= a32c

2
2 + a33c

2
3. (3.58)

Multiplying the left equation by a33 and the right equation by 1
2
,

a33c
2
3

2
= a32a33c2 + a2

33c3
c3

3

6
=
a32c

2
2

2
+
a33c

2
3

2
. (3.59)

Substituting the right side of the left equation for the last term of the right equation, we
have

c3
3

6
=
a32c

2
2

2
+ a32a33c2 + a2

33c3. (3.60)

If the first two rows of the Butcher tableau are consistent with equation 3.56, then this
is simply the fourth equation in 3.57. Therefore the EDIRK stage 3 method is able to
achieve third-order accuracy with uniquely determined coefficients. The first three rows of
coefficients for the ESDIRK method are

0

c2
1
2
c2

1
2
c2

c3 c3

(
1− c23+2c2c23−3c2

6c2(1−c3)

)
−c33

6c2(1−c3)

3c3−2c23
6(1−c3)

...
...

...
...

. . .

ci as1 as2 as3 · · · ass

bs1 bs2 bs3 · · · bss

(3.61)

The weights, bi, are set equal to the last row of the coefficients, as this maximizes the order
of accuracy of the method. Applying this procedure to the third-order Radau IIA method

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

(3.62)

we get the ESDIRK method

0 0 0 0
1
3

1
6

1
6

0

1 0 3
4

1
4

0 3
4

1
4

(3.63)



CHAPTER 3. RUNGE-KUTTA TEMPORAL DISCRETIZATION 27

with stage order two, and third-order accuracy at stage three. From the nodes of the fourth-
order Lobatto IIIC method

0 1
6
−1

3
1
6

1
2

1
6

5
12
− 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

(3.64)

the procedure gives

0
1
2

1
4

1
4

1 1
6

2
3

1
6

1
6

2
3

1
6

(3.65)

which has stage order two, and third-order accuracy at stage three. We note that the order
conditions from the branchless trees in equation 3.52 require that the final row of coefficients
and weights match those of the method from which the ESDIRK is produced.

In general, it is not possible to proceed this way indefinitely, achieving ith-order accuracy
at the stage i method. For fourth-order accuracy, equation 3.53 imposes four additional
conditions beyond those for third-order accuracy, and seven more for fifth-order accuracy.
These are too many for the number of degrees of freedom, i, in the row of coefficients.
Extending the procedure to the fifth-order Radau IIA method
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(3.66)

and using the weights from the method as the final row of the ESDIRK method coefficients,
we get the method

0 0 0 0 0
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√
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1
9

(3.67)

which achieves stage order two, but third-order accuracy at stages three and four. For the
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sixth-order Lobatto IIIC method
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we deviate from the procedure described above, exchanging one order of accuracy at the
third stage for an extra order at the fourth. The resulting ESDIRK,
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has stage order two, but fourth-order accuracy at stage four.

To complete each pair, we create an ERK method with nodes and weights matching
those of the corresponding ESDIRK and IRK methods. We seek to maximize the order of
each ERK method, by satisfying as many of the order conditions from equation 3.52. In
some cases, we find there remains a degree of freedom, even when the maximum number of
order conditions possible has been satisfied. In this case, we adjust this degree of freedom
according to our secondary consideration of minimizing the quantity

max
i,j

∣∣∣∣ âij − aijaii

∣∣∣∣ (3.70)

to reduce numerical error when using the IMEX method introduced in [78], shown in equation
5.17. Finally, we have the following ERK-ESDIRK-IRK triplets, where the ERK-ESDIRK
pair serves as a prediction method for the IRK:

First-order Radau IIA, with first-order ERK:

0

1 1

1 0

&

0

1 0 1

0 1

&
1 1

1
(3.71)

Second-order Lobatto IIIC, with first-order ERK:
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(3.72)
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Third-order Radau IIA, with third-order ERK:
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Fourth-order Lobatto IIIC, with third-order ERK:
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Fifth-order Radau IIA, with third-order ERK method (IRK omitted for brevity):
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Sixth-order Lobatto IIIC, with fourth-order ERK method (IRK omitted for brevity):
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Chapter 4

Spatial Discretization and Solvers

4.1 Spatial Discretization

From the governing equations found in chapter 2, we build vector-valued ordinary dif-
ferential equations in N variables, with the vector value expressing an approximation of the
solution. For this we use finite element methods, specifically Galerkin finite element meth-
ods. These offer many advantages, including high order accuracy and applicability to flexible
and irregular meshes.

4.1.1 Fluid Spatial Discretization

Our approach to discretizing the fluid equations described in the previous chapter is a
high-order discontinuous Galerkin (DG) formulation. We split the fluid domain, Ω, into
triangular mesh elements and impose a set of nodal basis functions of third-order polynomi-
als. At the boundary of these elements, we compute inviscid fluxes with Roe’s Method as
introduced in [63], and use the compact DG method in [58] to compute numerical fluxes for
the viscous terms.

We use the standard procedure for DG discretization of governing equations with second
derivatives found in [3], namely the conversion to a system of first-order equations via an
auxiliary gradient variable q = ∇u. Then the fluid is governed by

∂u

∂t
+∇ · F i(u)−∇ · F v(u, q) = 0, q = ∇u (4.1)

where F i is the inviscid portion of F and F v is the viscous component.

As is standard with any finite element method, we seek a solution within the space of
polynomial functions of degree up to p on each element K in the set of elements Th specified
by the mesh we impose on the fluid domain. This solution space V p

h × Σp
h is defined by

V p
h =

{
ν ∈ [L2(Ω)]4| ν|k ∈ [Pp(K)]4 ∀K ∈ Th

}
(4.2)
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Σp
h =

{
τ ∈ [L2(Ω)]4×2| τ |k ∈ [Pp(K)]4×2 ∀K ∈ Th

}
. (4.3)

Multiplying equation 4.1 by arbitrary test functions ν ∈ V p
h and τ ∈ Σp

h and integrating by
parts, we obtain our semi-discrete DG formulation, with solution uh ∈ V p

h and qh ∈ Σp
h such

that

0 =

∫
K

∂uh
∂t
·ν dx+

∫
K

(
F i(uh)− F ν(uh, qh)

)
: ∇ν dx−

∮
∂K

(
F i(uh)
∧

− F v(uh, qh)
∧)

·ν ds

(4.4)

0 =

∫
K

qh : τ dx+

∫
K

uh · (∇ · τ ) dx−
∮
∂K

(ûh ⊗ n) : τ ds (4.5)

for all K ∈ Th, ν ∈ [Pp(K)]4, and τ ∈ [Pp(K)]4×2, using numerical fluxes F i(uh

∧

) on the
boundary ∂K computed according to Roe’s method [63], modified for the ALE formulation

described in [60] for inviscid terms, and, for viscuous terms, numerical fluxes F v(uh, qh)
∧

and
ûh computed according to the Compact Discontinuous Galerkin method described in [58].
The normal vector n is defined at the boundary ∂K.

To compute these numerical functions, we for each boundary e between two neighboring
elements K and K ′, we denote the solution in element K is uh and the solution on the
other side of e, in element K ′, is u′h. We define a switch function SK

′
K ∈ {−1, 1} with the

requirement that SK
′

K = −SKK′ . To satisfy this, we order all elements and set SK
′

K = −1 when
K comes after K ′, and SK

′
K = 1 when K comes before K ′. When SKK′ = 1, we set ûh = u′h.

When SKK′ = −1, we set ûh = uh, as is standard up-winding practice.

With this numerical flux ûh, we define the piecewise function on K

ûeh =

{
ûh on face e
uh on interior of K

(4.6)

and similarly on element K ′,

ûeh
′ =

{
ûh on face e
uh on interior of K ′

. (4.7)

Using this equation, we define the face gradient qeh of element K by with a slight variation
on equation 4.5:

0 =

∫
K

qeh : τ dx+

∫
K

uh · (∇ · τ ) dx−
∮
∂K

(ûeh ⊗ n) : τ ds (4.8)

and qeh
′ on element K ′ by

0 =

∫
K′
qeh
′ : τ dx+

∫
K

uh · (∇ · τ ) dx−
∮
∂K′

(
ûeh
′ ⊗ n

)
: τ ds. (4.9)
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Finally, we define the viscous numerical fluxes F v(uh, qh)
∧

are defined on the face e by

F v(uh, qh)
∧

= C11 (u′h − uh) +

{
F v (ueh, qh) · n when SKK′ = 1
F v (ueh

′ , qh
′) · n when SK

′
K = 1

(4.10)

with the stabilization parameter C11 set to the value of 10
hmin

where hmin is the height of the
element with respect to the face e. Having defined the numerical fluxes at interfaces between
all elements, we choose numerical fluxes at the boundary of Ω to weakly enforce boundary
conditions, according to [57].

With these definitions in place, we impose a nodal basis on equations 4.5 and 4.4. First,
we define a set of nodes xj on each element K. Using Lagrange interpolation functions
φ(x) ∈ Pp(K), with the property φi(xj) = δij as our basis functions, the solution in each
element K can be written as a linear combination of these interpolation functions, with
coefficients ui:

uh(x) =
n∑
i=1

uiφi(x) (4.11)

Similarly the auxiliary variable qh, the time derivative ∂uh
∂t

, and the test functions ν and
τ can be described as a linear combination of these interpolation functions. Applying this
equations 4.5 and 4.4 and integrating with high-order Gaussian quadrature, we get one
equation to satisfy for each test function. As the Lagrange interpolation functions form a
(nodal) basis for the space of test functions, the set of equations derived from all possible
test functions is equivalent to the set of equations derived from setting the test functions to
each interpolation function. From there, we can eliminate the coefficients for the auxiliary
variable qh from the system of equations, and obtain a semi-discrete Ordinary Differential
Equation in the vector space of sets of coefficients ui, with solution vectors uf :

M f du
f

dt
= rf

(
uf
)

(4.12)

with mass matrix M f and residual function rf
(
uf
)
.

As each of the components of the solution vector uf corresponds to one of the interpola-
tion functions, and each of the interpolation functions corresponds to one of the nodes in one
of the elements, uf has N components, where N is the product of the number of nodes per
element, the number components in the governing equation, and the number of elements.
The number of components is three in the one-dimensional case, four in the two-dimensional
case, and five in the case of three dimensions. The number of nodes per element is given in
table 4.1.1, and depends on the order of the polynomial space used. The number of elements
can vary widely, but we use up to several thousand in some cases. These factors combine
to give a values of N up to hundreds of thousands for two dimensions, and easily into the
millions for three.

Another consequence of using the nodal basis of interpolation functions as test functions
is that each component of the output of residual function rf corresponds to a single node
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in one element. The interior integrals appearing in equations 4.4 and 4.5 cause this output
component to depend on all components of the input corresponding to the nodes in the
same element. The boundary integrals appearing in equations 4.4 and 4.5, together with
the numerical flux functions chosen, mean that the output components depend on input
components from neighboring elements, but not on non-neighboring elements.

Because each of the test functions τ (and the eliminated ν) have support limited to one
element, the product of any two test functions is zero throughout the domain unless they
come from the same element. This implies that the mass matrix M f is block diagonal,
with one block for each element. This fact, together with the dependence of rf output
components being limited to an element and its neighbors, are helpful properties for the
parallel implementation described in section 4.2

Polynomial Order Triangular Elements Quadrilateral Elements
p=2 6 9
p=3 10 16
p=4 15 25
p=5 21 36
p=6 28 49

Table 4.1: Number of higher order nodes per element for triangles and quadrangles in two
dimensions

4.1.2 Structure Spatial Discretization

In contrast with the fluid, we use a continuous Galerkin finite element method to model
flexible structures. Breaking the domain into triangles, we fit curved boundaries with isopara-
metric elements. The solution space is the set of continuous piecewise polynomials of degree
p on the mesh Th:

V p
h =

{
ν ∈ [C0(Ω)] | ν|K ∈ [Pp(K)]2 ∀K ∈ Th

}
(4.13)

We then define two subspaces. The first,

V p
h,D = {ν ∈ V p

h | ν|ΓD = xD} , (4.14)

adheres to the non-homogeneous Dirichlet boundary conditions, and the second adheres to
homogeneous Dirichlet boundary conditions:

V p
h,0 = {ν ∈ V p

h | ν|ΓD = 0} (4.15)

We proceed by multiplying the equation described in the previous chapter by any test func-
tion z from V p

h,0 and integrating over the domain V . In applying Green’s theorem, we
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arrive at the finite element formulation, a solution xh ∈ V p
h,D such that for all test functions

z ∈ V p
h,0,∫
V

ρ
∂2xh
∂t2

zdX = −
∫
V

P (F (xh)) : ∇zdX +

∮
ΓN

t(xh) · zdS +

∫
V

b · zdX. (4.16)

As with the fluid, these integrals are calculated with high-order Gaussian quadrature, and
a nodal basis is used to produce a discrete solution vector Y of coefficients yi multiplied by
basis function φi to form the solution. With this, we form the global discrete residual vector
R(Y ) and the second-order ODE

M
d2Y

dt2
= R(Y ) (4.17)

which we transform into a first-order system with a velocity vector V = dY
dt

. The combined
solution vector us is the concatenation of these two solution vectors:

us =

[
Y
V

]
(4.18)

and the structure residual is

rs (us) =

[
V

R(Y )

]
(4.19)

and the mass matrix is of block form

M s =

[
I 0
0 M

]
. (4.20)

These combine to give the semi-discrete form of the continuous Galerkin formulation for the
structure:

M sdu
s

dt
= rs(us). (4.21)

4.2 Fluid Solvers

As Discussed in 3.2, our use of Runge-Kutta methods requires three types of solvers. For
ERK methods, we solve for the stage values kfi explicitly with a relatively straightforward
linear solve. Though we solve for kf1 in the same manner when employing ESDIRK methods,
later stages, and all stages in DIRK methods, require non-linear solves of size N , where N is
the number of degrees of freedom defined in 4.1.1. Finally, IRK methods require non-linear
solves of size s · N , where s is the number of stages. These non-linear solves can be very
large and computationally expensive.

To efficiently solve these non-linear equations, we take a parallel approach in all but the
simplest cases. First, the fluid portion of the computational domain is decomposed into
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nproc partitions, the number of processors to be used. This is done by building the adjacency
graph, representing elements as vertices and connecting two vertices if the corresponding
elements share an edge. The partitions are then created using the METIS software described
in [43]. The nproc partitions created generally have roughly the same number of nodes, while
minimizing the number of edges shared between elements in two different partitions. This
allows the partitions to be as self-contained as possible, reducing the need for communication
between processors.

4.2.1 Explicit Parallel Fluid Solver

The stage value kfi of an explicit stage i depends only on the current state ufn and the
previous stage values kfj , j < i, by the equation

M fkfi = rf
(
ufn + ∆twfi

)
, wfi =

i−1∑
j=1

aijk
f
j . (4.22)

Note that the boldface has been dropped from the notation, as we are dealing with only one
stage. Additionally, time dependence is taken out of the notation for simplicity.

As noted in section 4.1.1, the mass matrix introduced in equation 4.12 and found again
in equation 4.22 is block diagonal, with each block corresponding to an element of the
fluid domain. This allows for a natural parallelism, with each block factored and stored in
the appropriate processor, according to the partition created. The inverse of M f can then
be applied without communication between processors. The residual function rf does not
have this property, as the flux functions from section 4.1.1 require values from neighboring
elements. However, each process only needs the up-to-date values from first-degree neighbors,
and no others beyond this single layer beyond the partition the process is assigned.

To solve equation 4.22, we first evaluate rf at all elements which have neighbors outside
their partitions. We then initiate asynchronous send and receive operations with the results,
communicating between processors. Then, rf is calculated on the remaining elements, which
requires no communication between processors. Once the communication and local residual
evaluation is finished, the inverse of M f is applied at each element, resulting in kfi .

4.2.2 Single-Stage Parallel Newton-Krylov Fluid Solvers

When using DIRK, EDIRK, and ESDIRK methods, a stage value kfi of an implicit stage
i depends on the current state ufn, previous stage values kfj , j < i, and kfi itself, by the
equation

M fkfi = rf
(
ufn + ∆twfi

)
, wfi =

i∑
j=1

aijk
f
j . (4.23)
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This requires a non-linear solve, for which we use Newton’s Method. This requires linear
solves of the form (

M f − aii∆t
drf

duf

)
δkfi = rf (4.24)

for which we use an iterative preconditioned GMRES method. The matrix on the left can
become quite large, and we would prefer to calculate its values during the computation
of matrix-vector products, on an as-needed basis, using the so-called matrix-free method.
Unfortunately, this creates significant difficulties for preconditioning.

We compute the matrix and store it in a block-diagonal format, according to the 3DG
implementation found in [59]. In addition to the blocks on the diagonal found in the spar-
sity pattern of M f , this consists of two off-diagonal blocks for each interface between two
elements. Each processor is assigned the rows corresponding to elements in its partition,
but not elements of neighboring partitions. The required matrix-vector products are thus
computed with some communication between processors to transfer data associated with
neighboring elements across the partition boundaries.

To precondition equation 4.24, we have a choice of preconditioners. The block Jacobi
preconditioner has the same sparsity pattern as M f and consists of the inverse of each
diagonal block of the matrix. As this does not consider off-diagonal blocks, it requires
no communication between processors to calculate in parallel implementation. The more
expensive block ILU(0) preconditioner, described in [56], is an approximation of the LU
factorization of the matrix using a modified Gaussian elimination strategy on the blocks of
the matrix. Instead of allowing for fill, the block sparsity pattern of L + U is kept at that
of the original matrix. This limits the size of the storage required for L + U to that of the
original matrix.

Applied to the entire matrix, the block ILU(0) preconditioner, unlike the Block Jacobi,
requires communication between processors, as the off-diagonal blocks are considered. We
apply the block ILU(0) preconditioner individually to the rows held within each processor.
This does not take off-diagonal blocks corresponding to dependence between partitions into
account, eliminating the need for communication between processors, but increasing the
number of GMRES iterations necessary when many processors are used. In fact, the ILU(0)
we use is precisely block Jacobi when the number of processors is equal to the number of
elements.

As in [56], we impose the requirement our meshes that if two elements K ′1 and K ′2 are
neighbors of element K, then K ′1 and K ′2 are not neighbors. With this satisfied, the process
for calculating the block ILU(0) is shown in algorithm 2. The algorithm for block matrices
not satisfying this condition can be found in [56].
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Algorithm 2: Block ILU(0) preconditioner

Result: Block LU factorization of preconditioner, L̃Ũ
Input: Block sparse matrix B with T diagonal blocks
for i from 1 to T do

for neighbors j of i with j > i do
Bji ← BjiB

−1
ii ;

Bjj ← Bjj −BjiBij;

end

end

L̃← I + strict block lower triangular portion of B;

Ũ ← block upper triangular portion of B

4.2.3 Multi-Stage Parallel Newton-Krylov Fluid Solvers

Though ERK and DIRK methods allow for the sequential calculation of stages, IRK
methods do not. All stages must be calculated simultaneously, resulting in a non-linear
system in s · N variables that we solve using Newton’s method, as with individual stages.
The resulting linear system, found in equation 3.24, is(

A−1 ⊗M f − J
(
ufn + ∆tW f

))
δW f = rf

(
ufn + ∆tW f

)
. (4.25)

We again use a preconditioned GMRES method. The sparsity pattern of the matrix in
equation 4.25 differs from the one found in equation 4.24 due the s2 − s off-diagonal mass
matrices. Though the use of a block ILU(0) preconditioner which takes these mass blocks
into account is a possible choice, adopt the stage-uncoupled, shifted ILU(0) preconditioner
introduced in [56]. This takes the form

L̃1Ũ1 0 · · · 0

0 L̃2Ũ2 · · · 0
...

...
. . .

...

0 0 · · · L̃sŨs

 (4.26)

where L̃iŨi is the block ILU(0) factorization, calculated by algorithm 2, of the shifted matrix((
A−1

)
ii

+ αi
)
M f −∆tJi (4.27)

where Ji is the Jacobian of the ith stage, and the ith diagonal stage-block of J . For the shift,
αi, we use the value adopted in [56],

αi =
∑
j 6=i

∣∣∣(A−1
)
ji

∣∣∣ (4.28)
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with similar success.

When solving the full IRK system, here are certain advantages to the stage-uncoupled,
shifted ILU(0) over the stage-coupled ILU(0) used in 4.2.2. Firstly, its implementation is
trivial when algorithm 2 has already been implemented, as it involves only s iterations
of this algorithm. Secondly, the memory needed to store the preconditioner scales as s
times the memory needed for one block ILU(0) factorization, with no s2 term. Finally, this
choice offers the ability to use an alternate partitioning, with a factor s fewer partitions
in the fluid domain, reducing the number of GMRES iterations necessary. This is done
by handling each stage for each partition in a different processor, so that nproc is equal
to the number of partitions times s, instead of simply the number of partitions. This is
known as stage parallelization, and results in no extra communication between processors,
as no communication is necessary between stages for the stage-uncoupled, shifted ILU(0)
preconditioner.

In practice, we do not take advantage of stage parallelization for fluid-structure interac-
tion simulations. As we discuss further in section 5.3, we develop an algorithm that uses
both EDIRK and IRK methods for each timestep. Though stage parallelization is possible,
and beneficial, in the implementation of a pure IRK fluid solver, it is impossible with an
EDIRK method, where stages are computed sequentially. Thus, switching between two mesh
partitions would be necessary, one for the EDIRK, and another for the IRK, incurring very
large communication costs.

4.2.4 Fluid Solver Computational Costs

As we use preconditioned Krylov solvers for the linear systems arising from Newton’s
method both with individually computed diagonally implicit stages, and with concurrently
computed IRK stages, the two main costs of these solvers are computing the residual, stage
Jacobians, and preconditioner, and applying the matrix at each GMRES iteration to cal-
culate the matrix-vector product. For single-stage solves, one stage Jacobian, one ILU(0)
preconditioner, and one residual are computed at each Newton iteration. The number of ma-
trix applications is equal to the number of GMRES iterations. For multi-stage solves with s
stages, each Newton iteration requires the computation of s stage Jacobians and residuals,
as well as a preconditioner. Since we employ a stage-uncoupled preconditioner, each stage
preconditioner L̃iŨi is exactly equivalent in cost to the preconditioner in the single-stage
case. As there are s preconditioners needed, this means the calculation cost incurred at
each Newton iteration of the multi-stage fluid solver is exactly s times that of a single-stage
solver, not counting the matrix applications.

As shown in [56], the transformation in equation 3.22 reduces the cost of the matrix-
vector products calculated in GMRES iterations from s2 times that of the single-stage solver
to nearly s times. The application of the multi-stage preconditioner is exactly s times
that of the single-stage preconditioner, due to its block-diagonal structure. The multi-stage
matrix itself, however, is not block diagonal, but has off-diagonal blocks of scaled mass
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matrices. These additional blocks require application of the mass matrix and scaling at
each matrix application. As noted in 4.2.1, the mass matrix is block diagonal, with each
block corresponding to an element in the mesh. Because we do not take advantage of stage
parallelization, each partition contains the data for every element at each stage, as well
as the portion of the mass matrix corresponding to those elements. This means that the
multiplication by off-diagonal mass blocks in multi-stage matrix applications is done locally,
incurring very little computational cost.

In comparing the cost of our single-stage to our multi-stage fluid solvers, we neglect the
effect of the off-diagonal mass blocks, and count both the per-Newton-iteration assembly
cost and per-GMRES-iteration matrix application cost as differing by a factor of s. In
practice, the difference between these two costs can vary wildly, but we have found that in
the applications studied here the Jacobian and preconditioner assembly cost incurred at each
Newton iteration is typically between ten and a hundred times the cost of a GMRES iteration,
as measured by wall clock time. In general, however, we use the number of GMRES iterations
as a proxy for computational work, with each multi-stage GMRES iteration counting as
s matrix application equivalents, and each single-stage GMRES iteration counting as one
matrix application equivalent.

4.3 Structure Solvers

The ODE from the semi-discretization of the structure, found in equation 4.21, has the
same form as that of the fluid, but our CG discretization and the domain itself mean there
are some significant differences. Firstly, the physical domain has a smaller area, requiring
fewer elements. In the case of rigid bodies, we only have two degrees of freedom. In larger
structures, where we employ the neo-Hookean Elasticity model, the DG discretization used
has no duplicate nodes on the edge of elements, reducing the number of degrees of freedom.
For these applications, however, we still use the METIS software described in [43] to decom-
pose the domain, and perform the discretization and matrix assembly in parallel. As with
the fluid, stage parallelism is not utilized in solving the IRK systems, in order to maintain
a consistent partition between all RK methods.

4.3.1 Explicit Parallel Structure Solver

In solving the explicit RK stages for the structure, we have the equation

M sksi = rs (usn + ∆twsi ) (4.29)

with wsi defined, as usual, by

wsi =
i−1∑
j=1

aijk
s
j . (4.30)
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This differs very little from equation 4.22. Again, the residual is computed at each element
locally, then added to global residual by the stamping method, where overlapping values are
added together. Since we use a CG method for the structure, the mass matrix is not block
diagonal, as it is with the CG used on the fluid. We forego the use of iterative methods for
linear systems and solve directly using the MUMPS multifrontal parallel sparse direct solver
used in [30]. This software package factors and stores the mass matrix once, making parallel
solves very efficient.

4.3.2 Implicit Parallel Structure Solvers

As with the fluid, the implicit stages for the structure come from implicit stages of
EDIRK, ESDIRK, and DIRK methods, as well as IRK methods. We solve these using
Newton’s method, which results in our needing to solve the linear equation(

M s − aii∆t
drs

dus

)
δksi = rs (4.31)

for single stages and(
A−1 ⊗M s − J (usn + ∆tW s)

)
δW s = Rs (usn + ∆tW s) (4.32)

for IRK methods, where multiple stages are computed at once. As with explicit solves, we
use MUMPS to solve these systems in parallel.

In both single- and multi-stage cases, each process contributes a local portion of the
matrix in coordinate form, supplying global coordinates and corresponding entries. The
stamping method is used, with MUMPS completing assembly one element at a time, sum-
ming duplicate entries from the boundary nodes automatically. In both the single- and
multi-stage cases, the structure of the matrix is fixed, so the global coordinates need only
be supplied once. MUMPS then factors the matrix symbolically. This prefactorization is
reused, leaving only the numerical factorization phase at each step. These direct solves are
not particularly efficient, but, in practice, take significantly less time than fluid solves.
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Chapter 5

Fluid-Structure Interaction

Having laid out the governing equations in chapter 2 for both structure and fluid, and the
discretization of these equations in chapter 4, we focus on their interaction. So far, we have
described the effects of the structure on the fluid in section 2.2 as a domain deformation,
which we deal with via an ALE formulation. The fluid applies a traction force on the
structure, described in equation 2.39 for the rigid body case and in equation 2.45 in the
flexible neo-Hookean case.

5.1 Coupling

In order to facilitate ease of computation, we add two additional requirements to the
structure and fluid spatial discretizations described in sections 4.1.1 and 4.1.2, namely that
the elements use the same polynomial order p, and be edge-wise matching (face-wise in 3D)
at the interface. Two elements T1 and T2 are edge-wise matching on an interface Γ12 between
two meshes if they satisfy

∂T1 ∩ Γ12 = ∂T2 ∩ Γ12. (5.1)

This is illustrated in figure 5.1.

This approach of requiring edge-wise matching meshes of the same polynomial order
imposes some restrictions on the meshing process, as the fluid and structure meshes cannot be
chosen independently. As the length of the elements tangent to the interface must be the same
in both meshes, this leads to so-called mesh constraint leak in this direction. Once the meshes
are formed, however, these restrictions ease simulation-time processes significantly. As the
edge nodes on the interface line up, passing data across the boundary is very straightforward,
accomplished with a static lookup table instead of interpolation. Additionally, the fluid mesh
deformation due to structure movement is easy to construct. These advantages generally
outweigh the difficulties caused in mesh generation.
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1) Edge-wise matching interface

T1

T2

Γ12

2) Edge-wise non-matching interface

T1

T2

Γ12

Figure 5.1: Two mesh interfaces illustrating a matching (1) and a non-matching (2) interface
between a structured mesh (above in each, colored red) and an unstructured mesh (below in
each, colored blue): The interface, Γ12, is shown in bold.

5.1.1 Fluid-to-structure coupling

When dealing with flexible structures, described by the equations in 2.4, the fluid-to-
structure coupling is described by a traction applied at the fluid-structure interface. With
the meshes aligned, the traction is applied to the structure by computing the momentum
flux through the interface with no interpolation. This is done pointwise at Gauss integration
nodes instead of solution nodes to maximize accuracy.

For rigid bodies, however, some integration is required, as the total force is defined as

F =

∮
∂V

t dx (5.2)

(or dA in three dimensions). This is computed numerically with Gaussian integration at

each face e on the interface. The traction is computed as t
(
x
{e}
i

)
at each Gauss node x

{e}
i
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with 1 ≤ i ≤ ng. Weighting and summing, we arrive at the linear combination

F =
∑
e∈Γ

ng∑
i=1

w
{e}
i t

(
x
{e}
i

)
(5.3)

which is used for the numerical force. The torque about a point x0, usually the rotation axis
or center of mass, is

τ =

∮
∂V

(x− x0)× t dx (5.4)

and is similarly calculated at the Gauss nodes as

τ =
∑
e∈Γ

ng∑
i=1

w
{e}
i

(
x
{e}
i − x0

)
t
(
x
{e}
i

)
. (5.5)

This is somewhat more complicated in the three dimensional case, which we do not consider
here.

5.1.2 Structure-to-fluid coupling

As discussed in section 2.2, the effect of the structure movement on the fluid is a change
in the fluid domain shape. The effect of this on the governing equations is dealt with using
an ALE framework. The change in the shape of the computational domain of the fluid also
requires the fluid mesh to move, however. For very small movement of the structure, moving
the boundary nodes alone is sufficient, but if the magnitude of the movement of the structure
approaches or exceeds the size of the fluid boundary nodes, the fluid mesh can become
very ill conditioned or even inverted at the boundary. To avoid this, we move the interior
nodes in addition to the boundary nodes. There are several ways to handle the necessary
mesh deformations. For rigid body applications, we simply move the entire mesh with the
structure, resulting in no relative motion within the fluid mesh. With flexible structures,
this is not possible, and we adopt the method from [30] using radial basis functions, which
is appropriate for the small to moderate deformations we observe.

The basic premise of our mesh deformation scheme is to establish a mapping from each
position X in the reference fluid domain to a point x in the physical fluid domain, with a
set of control points, {Xj} fixed according to the structure deformation, with

xj = x (Xj) ∀ 1 ≤ j ≤ n. (5.6)

We then define a set of radial basis functions φj, characteristic radii rj and weights αj to
construct the mapping

x(X) =
n∑
j=1

αjφj

(
‖X −Xj‖2

rj

)
+ p(X) (5.7)
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where p is a linear polynomial, whose coefficients are determined by imposing equation 5.6
and the additional requirement that

n∑
j=1

αjq (Xj) = 0 (5.8)

for all polynomials q of degree less than or equal to p.

In order to compute the mapping efficiently, we precompute the matrix

Mij = φ

(
‖Xj −Xj‖2

rj

)
(5.9)

and define ϕ = [1, X] to convert the mapping into the linear system[
M ϕ
ϕT 0

] [
α
p

]
=

[
x
0

]
(5.10)

whose matrix we pre-factor in parallel. This is generally faster than computing the factoriza-
tion at simulation time, as the control points are the boundary nodes of the fluid, and thus
significantly less numerous than the total number of nodes in the mesh. One last benefit of
the radial basis function approach is that the mapping velocity v is readily available as

v(X) =
n∑
j=1

dαj
dt

φ

(
‖Xj −Xj‖2

rj

)
+
dp

dt
(X) (5.11)

and used in the ALE formulation described in section 2.2 directly. For more information on
radial basis functions, see [10, 12, 30].

5.2 Diagonally Implicit Runge-Kutta Temporal

Integration

With the discretization and coupling in place, we have our full combined system of
ordinary differential equations to integrate in time, which we write as

M
du

dt
= r(u) (5.12)

with

M =

[
M f

M s

]
, u =

[
uf

us

]
, r(u) =

[
rf (uf ;x(us))
rs(us; t(uf ))

]
.

We drop the bold notation for single-stage vectors of the ODE, to differentiate between the
multi-stage vectors found in the full IRK time integration. The structure residual depends



CHAPTER 5. FLUID-STRUCTURE INTERACTION 45

on the applied traction t and the fluid residual depends on the ALE mesh motion written
as x. When using DIRK schemes to integrate in time, we use the method from [78, 30, 37].
This method relies on the key fact that the structure residual can be broken into two parts:

rs(us; t(uf )) = rss(rs) + rsf (t(uf )) (5.13)

which separates out the fluid effect from the rest of the function. We see from section 5.1.1
that the structure residual is linear in t, which allows us to write this as

rs(us; t(uf )) = rs(us; t̃) + rsf (t(uf )− t̃) (5.14)

for any arbitrary traction t̃. From this property arises the split formulation,

M
du

dt
=

[
rf (uf ;x(us))
rs(us; t̃)

]
+

[
rsf (t(uf )− t̃)

]
. (5.15)

The use of ERK methods for this ODE is straightforward, but directly-applied DIRK meth-
ods require the computation of the Jacobian of the residual,

J =

[
Jff Jfs

Jsf Jss

]
. (5.16)

Though the diagonal blocks of equation (5.16) are readily available in the single-physics
solvers we use, 3DG, the off-diagonal blocks are not. Thus, we avoid calculating them, using
the method from [30]. We use an ESDIRK method, where a prediction, structure solve, fluid
solve, structure correction sequence is followed at each implicit stage. The final structure
correction is calculated explicitly, whereas the structure and fluid solves are implicit, using
only diagonal blocks of the Jacobian in equation (5.16). The ESDIRK is paired with an
ERK, as described in section 3.5. The traction prediction, t̃, is calculated at each implicit
stage by a predictor suggested by van Zuijlen in [78]:

t̃i =
i−1∑
j=1

âij − aij
aii

tj (5.17)

where aij come from the butcher array of the ESDIRK, and âij are from the paired ERK. The
tj are the calculated values of the traction at each stage. This method of time integration is
described in algorithm 3, with Gauss-Seidel iterations.

It should be noted that algorithm 3 is not strictly an IMEX scheme as defined in algorithm
1, as the explicit term rsf is not actually calculated separately, but only as a part of rs in
the final stage correction after the Gauss-Seidel iterations. It has been found in [30] that
these Gauss-Seidel iterations are not necessary to reach the design accuracy of the ESDIRK
method used, but can improve the stability of the method.
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Algorithm 3: ESDIRK time integration scheme for coupled fluid-structure system

Result: ODE Solution at time t0 + ∆t, ufn+1 and usn+1

Input: Paired ESDIRK A, b, c and ERK Â, b̂, ĉ and initial values ufn, usn
t1 ← t(ufn);
Solve M sks1 = rs(usn; t1) for ks1;

Solve M fkf1 = rf (ufn;x(usn)) for kf1 ;
for i from 2 to s do

t̃i ←
∑i−1

j=1
âij−aij
aii

tj;

for j from 1 to number of Gauss-Seidel iterations do
Solve M sksi = rs(usn + ∆twsi ; t̃i) for ksi ;

Solve M fkfi = rf (ufn + ∆twfi ;x(usn + ∆twsi )) for kfi ;

t̃i ← t(ufi + ∆twfi );

end

ti ← t(ufi + ∆twfi );
Solve M sksi = rs(usn + ∆twsi ; ti) for ksi ;

end
usn+1 ← usn + ∆t

∑s
i=1 bik

s
i ;

ufn+1 ← ufn + ∆t
∑s

i=1 bik
f
i ;

# Note that wi is defined in equation 3.13

5.3 Fully Implicit Runge-Kutta Temporal Integration

We now develop a time integration scheme for fully implicit Runge-Kutta methods called
Corrected Implicit Runge-Kutta (CIRK). Our method takes advantage of the property of
linearity in the traction (equation 5.14) as the ESDIRK method shown in algorithm 3, and is
similarly fully partitioned, that is, it can be implemented with separate fluid and structure
solvers, allowing for reuse of existing software components. The key difference between
these time integration methods is that while the ESDIRK method has stages computed in
sequence, with opportunity for traction prediction, our CIRK method does not present this
opportunity, as all stages are computed at once. This creates a need for the development of
prediction methods, two of which we present here.

5.3.1 Prediction-based IRK Solver

Our method, shown in Algorithm 4, uses predicted stage values W̃
f

and W̃
s
, as approx-

imations of those defined in equation 3.20. While only W̃
f

is strictly necessary, both are
useful in practice as starting values for the Newton-iteration in each non-linear system. The
algorithm follows the general pattern found in the method developed in [30], with traction
predictions preceding two non-linear solves, followed by a structure correction.
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Algorithm 4: Corrected IRK Method

Result: ODE Solution at time t0 + ∆t, U f
n+1 and U s

n+1

Input: IRK method A, b, c, initial values U f
n, U s

n, & predicted values W̃
f
, W̃

s

W f ← W̃
f
;

for i from 1 to number of Gauss-Seidel iterations do

T̃ ← T
(
U f
n + ∆tW f

)
;

Solve
(
A−1 ⊗M s

)
W̃

s
= Rs

(
U s
n + ∆tW̃

s
; T̃
)

for W̃
s
;

Solve
(
A−1 ⊗M f

)
W f = Rf

(
U f
n + ∆tW f ;X

(
U s
n + ∆tW̃

s
))

for W f ;

end

Solve
((
A−1 ⊗M s

)
−∆tJ ss

)
∆W s = Rsf

(
T
(
U f
n + ∆tW f

)
− T̃

)
for ∆W s where

J ss is recovered from last Newton iteration of most recent Structure Solve;

W s ← W̃
s

+ ∆W s;

U s
1 = U s

0 + ∆t
(
bTA−1 ⊗ I

)
W s;

U f
1 = U f

0 + ∆t
(
bTA−1 ⊗ I

)
W f ;

The correction step in algorithm 4 relies on the linear property from equation 5.15, but
differs from the correction step in its use of the Jacobian J ss. The correction step is derived
from the formulation in equation 5.15, where the structure portion is

M sdu
s

dt
= rs(us; t̃) + rsf (t(uf )− t̃). (5.18)

Under the transformation laid out in 3.20, we have(
A−1 ⊗M s

)
W s = Rs

(
U s
n + ∆tW s; T̃

)
+Rsf

(
T
(
U f
n + ∆tW f

)
− T̃

)
. (5.19)

Let W̃
s

be a solution to the structure ODE with predicted traction T̃ ,(
A−1 ⊗M s

)
W̃

s
= Rs

(
U s
n + ∆tW̃

s
; T̃
)
, (5.20)

and let the difference be defined as ∆W s := W s− W̃ s
. Linearizing about U s

n + ∆tW̃
s
, we

have

Rs
(
U s
n + ∆tW̃

s
+ ∆t∆W s; T̃

)
= Rs

(
U s
n + ∆tW̃

s
; T̃
)

+ J ss∆t∆W s + ε

where
‖ε‖ = O

(
‖∆t∆W s‖2) = O

(
∆t2 ‖∆W s‖2) .

This is equivalent to

Rs
(
U s
n + ∆tW s; T̃

)
−Rs

(
U s
n + ∆tW̃

s
; T̃
)

= J ss∆t∆W s + ε,
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meaning that the difference of equations 5.19 and 5.20 can be expressed as(
A−1 ⊗M s

)
∆W s = ∆tJ ss∆W s +Rsf

(
T
(
U f

0 + ∆tW f
)
− T̃

)
+ ε. (5.21)

For small enough ∆W s, the higher order term, ε, can be dropped, giving the structure
correction step of algorithm 4. Note that because the structure solve is performed with
Newton iterations, the Jacobian, J ss, will have already been calculated, incurring only the
extra cost of one solve.

The CIRK method (algorithm 4) allows for the implementation of additional Gauss-Seidel
subiterations even more naturally than the comparison ESDIRK method from [30]. Whereas
the ESDIRK method takes only a predicted traction, but not predicted stage values, our
CIRK method relies on predicted stage values, giving a natural starting value for Newton’s
method. The stage values from the previous Gauss-Seidel subiteration naturally replace
these predicted stage values after the first subiteration. Though it is possible to use a similar
strategy with an ESDIRK method, we maintain the original implementation as described in
[30] when using subiterations. In both methods, these subiterations improve the stability
of the method, but are not required to achieve the design order of the RK method used.
When using them, however, we have found that the solution converges to the monolithic
case after a sufficient number of subiterations. This number is investigated further in section
6.2. In general, however, we hold the number of Gauss-Seidel iterations at one, executing
the for-loop only once, unless otherwise stated.

It should be noted that both the cost and accuracy of the CIRK method is highly depen-

dent on the accuracy of the predicted values W̃
f

and W̃
s
. Good predicted values reduce the

number of Newton iterations by offering a good starting iteration. Additionally, the value

of W̃
f

determines the traction at each stage, which effects the accuracy of the method.

5.3.2 Stage-Value Predictors

We propose two predictor algorithms for the Corrected IRK Method presented in section
5.3.1. The first, described in algorithm 5, involves explicit timestepping from time t0+ci−1∆t
to t0 + ci∆t for each ci in the vector c of the IRK butcher array, with c0 defined as 0. The
advantage of the ERK prediction of the stage values is that it involves no non-linear solves,
reducing computational work of prediction to s times the cost of a step with the chosen
ERK. For stiff problems, however, explicit prediction limits the size of the timestep. We
find that in some cases that the Corrected IRK method (algorithm 4), paired with the ERK
prediction from algorithm 5, faces similar limits on the size of ∆t to a simple application of
RK4, the fourth-order ERK from equation 3.16, though this is highly problem-dependent.

The second prediction method we present is based on implementation of a modified
version of the IMEX algorithm presented in [30] and discussed in section 5.2, which relies

on a paired EDIRK and ERK. Our method uses stage-values to build W̃
f

and W̃
s

instead
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Algorithm 5: ERK Prediction Algorithm

Result: Predicted Stage Values W̃
f
, W̃

s

Input: c = [c1, ..., cs] from Butcher array of IRK
A, b from Butcher array of r-stage ERK
Initial values ufn, usn
c0 ← 0;

un ←
[
uf0
us0

]
;

W̃
f ← 0;

W̃
s ← 0;

for i = 1 to s do
for j = 1 to r do

Solve Mkj = r
(
ufn + (ci − ci−1)∆t

∑j−1
p=1Aipkp

)
for kj;

end

di ← (ci − ci−1)
∑j−1

p=1 bpkp;

if i = 1 then

W̃ f
i ← dfi ;

W̃ s
i ← dsi ;

end
if i > 1 then

W̃ f
i ← W̃ f

i−1 + dfi ;

W̃ s
i ← W̃ s

i−1 + dsi ;

end

ufn ← ufn + ∆tdfi ;
usn ← usn + ∆tdsi ;

end
# Note that Wi is the ith-stage component of W
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of updating the solution un. We require an EDIRK-ERK pair which is chosen to have the
same c vector in their butcher arrays as the IRK, adding an initial zero as necessary to allow
for consistency in the EDIRK scheme. We have developed just such a pair for several IRK
methods in section 3.6. The EDIRK prediction method is shown in algorithm 6.

Algorithm 6: DIRK Prediction Algorithm

Result: Predicted Stage Values W̃
f
, W̃

s

Input: Paired EDIRK A, b, c and ERK Â, b̂, ĉ and initial values ufn, usn
Solve M fkf1 = rf (ufn;x(usn)) for kf1 ;
Solve M sks1 = rs(usn; t(ufn)) for ks1;
for i = 2 to s do

t̃←
∑i−1

j=1
âij−aij
aii

tj;

Solve M sksi = rs
(
usn + ∆twsj ; t̃

)
for ksi ;

Solve M fkfi = rf
(
ufn + ∆twfj ;x

(
usn + ∆twsj

))
for kfi ;

ti ← t
(
ufn + ∆twfj

)
;

Solve M sksi = rs(usn + ∆twsi ; ti) for ksi ;

W̃ f
i ←

∑i
j=1 aijk

f
j ;

W̃ s
i ←

∑i
j=1 aijk

s
j ;

end
# Note that wi is defined in equation 3.13

Though this prediction algorithm requires solving one non-linear system of size N for
each stage of the IRK method, for a total of s solves, the added stability of using an IMEX
method allows for much larger timesteps than with explicit prediction, though at a higher
cost per step. However, with the use of an IRK, a non-linear system of size N · s will
ultimately need to be solved, whose cost contributes a large portion of the total amount of
work needed. Furthermore, the s solves give more accurate predictions for the W vectors
used in algorithm 4, offering a starting-value for Newton iterations, thus lowering the cost
of solving the larger system.

5.4 Verification

5.4.1 One-Dimensional Piston

We first apply our CIRK method to a gas-filled cylinder with one weighted spring-
moderated free-moving piston and one fixed wall (see figure 5.2). The gas is modeled by the
Euler equations for inviscid flow, and the movement of the piston is governed by Hooke’s
law:

m
∂2y

∂t2
= k(y0 − y) + p (uf ) (5.22)
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inviscid flow

x

m

k

Figure 5.2: One-dimensional piston system (image from [37])

where m and y are the mass and position of the piston, respectively, k is the spring stiffness,
y0 is the rest position of the piston, uf is the state of the gas at the piston face, and the
pressure p is defined by

p = (γ − 1)

(
ρE − ρv2

2

)
.

Equation 5.22 is converted to an ordinary differential equation in two variables, y and ∂y
∂t

,
where

us =

[
y
∂y
∂t

]
and a mesh of n equally spaced elements is imposed on the fluid domain, with ALE mesh
motion described by equal element sizes, giving a linear relationship between x-coordinate
and mesh velocity. Together these ordinary differential equations for a system of the form
found in equation 5.12. For our implementation, we choose y0 = 1, γ = 1.4, n = 10 and
p = 4. A spring stiffness of k = 1000 is used, which makes the problem unsuitable for explicit
methods.

The Corrected IRK method from algorithm 4, using third- and fifth-order IRK methods
from equation 3.26 and a sixth-order IRK from equation 3.27, is implemented to solve the
piston problem using both the explicit prediction from algorithm 5 and the EDIRK pre-
diction from algorithm 6 (hereafter called ERK-CIRK and EDIRK-CIRK). We perform a
convergence analysis of these methods and the ESDIRK method from [30] (algorithm 3 with
m = 1), with results shown in the left panels of figures 5.3, 5.4, and 5.5. With the sixth-order
method, we employ two explicit predictors, one using the fourth-order ERK from equation
3.16, and the other using the fifth-order ERK
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described in [21]. We compute a reference solution using the standard fourth-order ERK from
[46] for calculating error. Though explicit prediction is not possible for larger timesteps, the
order of the method is achieved in all six cases.

In order to make a fair comparison between the ESDIRK and CIRK methods, we adopt
the same work metric as [56], discussed in depth in section 4.2.4, and compute the total
number of n-by-n matrix-vector multiplications required across all stages, referring to this
quantity as matrix application equivalents. As there are only two degrees of freedom in the
structure, the cost of the non-linear fluid solves dominates, and the cost of structure solves
is not counted. We compare the cost of solving the piston problem with the corrected IRK
method with the ESDIRK method described in algorithm 3 in the right panels of figures 5.3
and 5.4. Again we use the parameter m = 1 and count all matrix application equivalents
from t0 = 0 to t = 1.0. The system is initialized with the piston at rest and in equilibrium
with the fluid, which has velocity zero as both ends of the cylinder.
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Figure 5.3: Third Order Method Comparison, Piston

We see clearly that both the three-stage fifth-order Radau IIA method and the two-stage
third-order Radau IIA method achieve their design order of accuracy, at a comparable cost
to the ESDIRK3 and ESDIRK5 methods used for comparison. This holds true using both
the explicit prediction (ERK-CIRK) and implicit prediction (EDIRK-CIRK). Though there
is, in the fifth-order case, a slightly lower cost for the explicit prediction, its use restricts
the choice of timestep in this problem considerably. The four-stage sixth-order Lobatto IIIC
method achieves its design order of accuracy with implicit prediction. We find that the
fifth-order explicit predictor allows us to achieve the design-order of the sixth-order method
through the smallest timesteps, whereas the fourth-order explicit predictor falls off the design
order of the method for small timesteps.

In figure 5.7, we show the timesteps for which each method successfully solves the piston
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Figure 5.4: Fifth Order Method Comparison, Piston
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Figure 5.5: Sixth Order Method, Piston, with fifth-order Cash-Karp ERK predictor and
fourth-order RK4 predictor

problem, varying the ratio of piston mass to initial density of the fluid at the piston face.
Since our initial value for the fluid density at both ends of the cylinder is one, the mass ratio is
equal to the mass of the piston. As the mass decreases, the sensitivity of the structure to the
pressure increases, as is clear from equation 5.22. This decreases the maximum timestep size
for some methods. Whereas the explicit methods are limited to smaller timesteps, especially
at lower mass ratios, the ESDIRK method we use for comparison can be used with large
timesteps. We find that the EDIRK-CIRK implementation possesses the same advantage
over the ERK as the ESDIRK implementation does.
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Figure 5.6: Seventh Order Method, Piston, with fifth-order Cash-Karp ERK predictor

5.4.2 Pitching and Heaving Airfoil

We next apply our method to a common test problem that is a two dimensional cross
section of a wing with air flowing past it. Our simulation is comprised of a pitching and heav-
ing NACA 0012 airfoil in viscous fluid with Reynolds number 1000. The far-field boundary
conditions are set to horizontal velocity one and density one, and the boundary conditions on
the airfoil interface are no-slip. We treat the airfoil as a rigid body, as set out in section 2.3,
whose motion is described by two variables, vertical position and pitch. We choose the pitch
as the free variable, with a prescribed vertical motion of the pivot point, y(t), which satisfies
y(0) = 0 and y(1) = 1

4
. This leaves two free variables describing the airfoil motion, which are

θ and ω, the angle and angular velocity. The distance from the pivot to the center of mass is
l, as shown in figure 5.8. For our simulation, the angle θ is governed by a torsional restoring
force with torsional spring constant k and a torque τ resulting from the fluid. Setting the
moment of inertia to I and mass to m, the governing equations are

∂θ

∂t
= ω (5.24)

I
∂ω

∂t
= −kθ − lm cos (θ)y′′(t)− τ. (5.25)

The mesh moves as a rigid body fixed to the airfoil, so that the motion of the airfoil
exactly determines the mesh motion. We apply our DG method from section 4.1.1 on a
mesh with 1148 elements, and polynomial degree p = 3, yielding a total of 30,996 degrees of
freedom. For our simulation, we choose parameters I = 1, k = 0.1, l = 0.2, m = 1.0, and a
distance of 1

3
from the leading edge of the airfoil to the pivot.



CHAPTER 5. FLUID-STRUCTURE INTERACTION 55

10 2 100
10 4

10 3

10 2

10 1

100

m
as

s r
at

io

ERK3

10 2 100
10 4

10 3

10 2

10 1

100

ESDIRK3

10 2 100
10 4

10 3

10 2

10 1

100

ERK-CIRK3

10 2 100
10 4

10 3

10 2

10 1

100

EDIRK-CIRK3

10 2 100

timestep size

10 4

10 3

10 2

10 1

100

m
as

s r
at

io

ERK5

10 2 100

timestep size

10 4

10 3

10 2

10 1

100

ESDIRK5

10 2 100

timestep size

10 4

10 3

10 2

10 1

100

ERK-CIRK5

10 2 100

timestep size

10 4

10 3

10 2

10 1

100

EDIRK-CIRK5

Mass Ratio vs. Stepsize Method Viability

Figure 5.7: Mass Ratio Method Viability Comparison, Piston (ERK3 and ERK5 are Ral-
ston’s third-order method and fifth-order Cash-Karp, respectively. Blue triangles denote
successful completion to time t = 1.0. Red squares denote failure of method to reach
t = 1.0.)

The fluid is governed by the two-dimensional isentropic Navier-Stokes equations, using
the simplification found in equation 2.11. The starting values for the fluid and the structure
are chosen such that the structure is at rest and horizontal (θ = 0) with a steady-state
solution of the fluid. Error is measured in the fluid at time t = 1.0, with the max-norm,
using a benchmark of the solution as determined by the ESDIRK5 scheme, with a timestep
of ∆t = 1 × 10−4. The structure equations, having only two degrees of freedom, are solved
to machine precision, while we use the Newton-Krylov methods from section 4.2, with a
relative GMRES tolerance of 10−5, and an absolute Newton tolerance of 10−7, for structure
solves in both prediction EDIRK and final IRK.

The system is found to be too stiff to implement the explicit prediction described in
algorithm 5 (ERK-CIRK) with a reasonable timestep size. Thus, we only use the EDIRK-
CIRK method. We again apply this method using the fifth- and third-order RK methods from
equation 3.26, and the sixth-order method from equation 3.27, with appropriate EDIRK-
ERK pairs, as developed in section 3.6. For reference, we include the first-order methods
from equation 3.43. Both the ESDIRK and EDIRK-CIRK methods exhibit the design order
error convergence, in all four implementations, at comparable cost, where comparison is
possible.
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θ(t)

y(t)

l

Figure 5.8: Schematic drawing of pitching airfoil.

Figure 5.9: Solutions at t ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5} of the pitching airfoil
problem, with sinusoidal heaving. The color denotes Mach number.

In figure 5.14, we include the results of a study comparing the EDIRK-CIRK method
with the reference-implementation ESDIRK in their abilities to successfully solve the airfoil
problem to at least time t = 1.0, varying the timestep and airfoil mass. The moment of
inertia, in order to stay proportional to the mass of the airfoil, is set equal to the mass in
each case. The mass ratio is defined as the ratio of the mass of the structure to the mass
of the fluid displaced. We again use the initial fluid density, one, so the mass ratio is mass
of the airfoil divided by the area, 0.08221. Our results indicate that our Corrected IRK
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Figure 5.10: First Order Method Comparison, Airfoil
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Figure 5.11: Third Order Method Comparison, Airfoil

method is stable over a wide range of values of timestep sizes (∆t) and mass ratios, where
comparable ESDIRK methods are unstable.
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Figure 5.12: Fifth Order Method Comparison, Airfoil
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Chapter 6

Applications

6.1 Cantilever Behind Rigid Square Body

We now apply our method to a standard fluid-structure interaction test problem con-
sisting of a flexible cantilever fixed to the back of a rigid square body. As discussed in [24],
there are two standard variations of this problem, which differ in structure characteristics
and fluid input velocity, but not geometry or viscosity. The first, Wall’s Cantilever, was
introduced in [62], and the second, Hübner’s Cantilever, first appeared in [38]. We model
the flexible cantilever with the neo-Hookean formulation from section 2.4. The two sets of
parameters used are shown in Table 6.1.

Our fluid mesh contains 3,118 degree 3 elements, totaling 31,180 nodes and 124,720 de-
grees of freedom. We again apply the discontinuous Galerkin method described in section
4.1.1 to the fluid, and use the radial basis functions from section 5.1.2 to handle the mesh
motion. The fixed square body and flexible cantilever are assigned no-slip boundary con-
ditions, and the outer walls have far-field conditions corresponding to a uniform rightward
input fluid velocity, as determined by table 6.1. The geometry is shown in figure 6.1. The
flexible cantilever structure is modeled using the continuous Galerkin framework from section
4.1.2, with 34 degree p = 3 triangular elements, totalling 1,380 degrees of freedom. We use
the Newton-Krylov methods described in 4.2. Our error tolerance for Newton’s method is
10−8, measured in the max norm, for all non-linear solves from ESDIRK, EDIRK prediction,
and IRK methods. Our GMRES iterations are performed to a relative tolerance of 10−5,
also using the max norm.

Unlike in the airfoil and piston applications, this problem is found to be stiff enough that
we increase the number of Gauss-Seidel iterations in algorithm 4 from one to two. We also
perform two Gauss-Seidel iterations at each stage of the comparison ESDIRK methods, just
as [30] does for this problem, and without observing the problems laid out in [42]. This
change increases the stability of our method, allowing for reasonably large timesteps (see
Table 6.2). No attempt at explicit prediction was made in this application. We observe von
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viscous flow

fixed

10.04.01.04.5

5.5

1.0

5.5

0.06
flexible cantilever

Figure 6.1: Two-dimensional Cantilever System (dimensions in cm, fluid boundary not to
scale)

Parameter Wall Hübner

Input Fluid Velocity 0.513m
s

0.315m
s

Young modulus, E 2.5× 106 kg
m s2

0.2× 106 kg
m s2

Structure Density, ρs 100 kg
m3 2000 kg

m3

Poisson Coefficient, ν 0.35 0.35

Fluid Viscosity, µf 1.82× 10−5 kg
m s

1.82× 10−5 kg
m s

Fluid Density, ρf 1.18 kg
m3 1.18 kg

m3

Table 6.1: Parameters of the two variations of the cantilever problem.

Kármán vortices and track the vertical displacement of the cantilever tip.

Applying the third-order Corrected Implicit method to Wall’s problem, with a timestep
of ∆t = 0.001 seconds, we observe the vertical tip displacement shown in figure 6.3, with a
maximum tip displacement of 1.13cm. Interpolating linearly between timesteps, we see zero
tip displacement at t = 2.13285 and t = 19.99732, and 57 cycles between these two zeros,
giving a frequency of 3.19Hz. Our frequency and maximum displacement agree well with
the values obtained in the literature, which uses various other methods and discretizations.
In particular, our frequency and amplitude agree almost exactly with those found using
the ESDIRK3 method in [30], 3.18Hz and 1.12cm. Similar results are shown for the fifth-
order method in figure 6.4, but with a larger timestep. We also apply the same third-
order Corrected Implicit method to Hübner’s problem, again with a timestep of ∆t = 0.001
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Figure 6.2: Solution to Wall’s variation at the beginning of vortex shedding (t = 0.600s),
in the middle of a flap (t = 1.820s), at the highest tip displacement (t = 2.355s), and
at the lowest dip displacement t = 2.515s, with color gradient corresponding to entropy
(EDIRK-CIRK5, no G-S iterations, ∆t = 0.005)

Figure 6.3: Vertical Tip Displacement in centimeters using EDIRK-CIRK3 method with
two Gauss-Seidel iterations and timestep ∆t = 0.001: Maximum amplitude is 1.1317cm;
frequency 3.1907Hz.
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Figure 6.4: Vertical Tip Displacement in centimeters using EDIRK-CIRK5 method with
two Gauss-Seidel iterations and timestep ∆t = 0.005: Maximum amplitude is 1.1316cm;
frequency 3.1950Hz. (ESDIRK5 with two G-S iterations shows a maximum amplitude of
1.1318cm and a frequency of 3.1871Hz with a timestep of ∆t = 0.001, for comparison.)

Figure 6.5: Vertical Tip Displacement in centimeters using EDIRK-CIRK6 method with
two Gauss-Seidel iterations and timestep ∆t = 0.001: Maximum amplitude is 1.1318cm;
frequency 3.1871Hz.

seconds, and show the observed vertical tip displacement shown in figure 6.6. Using the
same process, we observe twelve cycles between the zeros at t = 1.37992 and t = 16.96617,
giving a frequency of 0.77Hz. This, along with the maximum tip displacement of 2.23cm,
match those found in the initial deflection mode from [38], which observes 2.0cm and 0.8Hz.

Applying the Fast Fourier Transform to the tip displacement values generated using our
EDIRK-CIRK method at orders 3, 5, and 6, we observe a second mode of oscillation at
3.417Hz, 3.667Hz, and 3.667Hz respectively, with a much lower amplitude. This agrees with
the higher frequency mode found in this system at 3.1Hz in [38], 3.067Hz in [24] and 3.125Hz
in [70]. When this analysis is performed on the tip displacement seen using the ESDIRK5
method, shown in figure 6.9, no such secondary frequency is found, suggesting an accuracy
advantage with the current method over the comparison ESDIRK method.
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..

Figure 6.6: Vertical Tip Displacement in centimeters (cm) using EDIRK-CIRK3 method
with two Gauss-Seidel iterations and timestep ∆t = 0.001: Maximum amplitude is 2.2296cm;
frequency 0.7699Hz.

..

Figure 6.7: Vertical Tip Displacement in centimeters (cm) using ESDIRK5 method with
one Gauss-Seidel iteration and timestep ∆t = 0.001: Maximum amplitude is 1.8057cm;
frequency 0.7652Hz.

..

Figure 6.8: Vertical Tip Displacement in centimeters (cm) using EDIRK-CIRK6 method
with two Gauss-Seidel iterations and timestep ∆t = 0.001: Maximum amplitude is 2.0263cm;
frequency 0.7866Hz.
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Figure 6.9: Fourier Analysis of Tip Displacement, Hübner’s Problem (One additional G-S
iteration, ∆t = 0.001, T = 8.0 to T = 20.0)
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In addition to solution frequency, we compare cost and timestep viability of our CIRK
method, shown in Table 6.2, using both metric laid out in section 4.2.4, matrix application
equivalents and Jacobian assembly equivalents. We find exceptional stability properties in
the EDIRK-CIRK5 method, regardless of number Gauss-Seidel iterations, compared to all
the other methods studied. Additionally, our EDIRK-CIRK method is significantly cheaper,
as compared with the ESDIRK methods using matrix application equivalents, for solving
this cantilever problem. This direct comparison is only possible for orders three and five,
as no DIRK6 IMEX method is established in [44]. However, we note that though our
EDIRK-CIRK6 method is shown in Table 6.2 to be slightly more expensive over the first
second of simulation, simulating Hübner’s cantilever to T = 20.0s with ∆t = 0.001s actually
costs 9.4% fewer matrix application equivalents and 2.9% fewer matrix equivalent assemblies
using EDIRK-CIRK6 than EDIRK-CIRK5, suggesting our sixth-order method would be
competitive in cost with any DIRK method of order six.

We find that in the two cantilever problems, where additional Gauss-Seidel iterations are
needed, our CIRK method becomes significantly cheaper than the ESDIRK methods from
[30], by a factor up to three, when counting matrix application equivalents. Though adding
these iterations in both ESDIRK and CIRK methods allows for similar gains in timestep size
viability, it is clear from the results found in Table 6.2 that additional Gauss-Seidel iterations
increase the cost of the method only a modest 10-20%, whereas the cost of ESDIRK methods
must roughly double for the same advantage. (The exception being EDIRK-CIRK5, where
G-S iterations are not even necessary.) This gives our EDIRK-CIRK method a considerable
cost advantage for solving these problems.

6.2 Tuning Fork

We first apply our method to a two-dimensional tuning fork, whose geometry is shown in
figure 6.12. The structure is modelled with Young modulus E = 200GPa, Poisson coefficient
ν = 0.29, and density ρ = 7800 kg

m3 . We impose a mesh on the flexible structure with 358
triangular elements. We use the continuous Galerkin framework described in 4.1.2, with a
degree p = 3 nodal basis. Though it would be possible for this application to get away
with a simpler linear elasticity model, we use the neo-Hookean formulation formulation from
section 2.4, and reuse the code from the cantilever simulation.

According to the coupling described in section 5.1.1, we interface the tuning fork with
a fluid mesh of 1,456 triangular elements, also of degree p = 3, upon which we impose the
discontinuous Galerkin formulation described in section 4.1.1. A partitioning of this mesh
is shown in figure 6.11. Our fluid is modeled as viscous flow by the compressible Navier-
Stokes equations, with initial density 1.204 kg

m3 , speed of sound 343m
s
, a kinematic viscosity

of 1.525 × 10−5 m2

s
, and a dynamic viscosity of 1.8306 × 10−5 kg

m·s . The internal boundary of
the fluid domain, where it interfaces with the tuning fork, is modelled with no-slip bound-
ary conditions. The outer boundary of the fluid domain has far-field boundary conditions,
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ü
b
n
er

*
*

*
*

*
*

E
D

IR
K

-C
IR

K
3

W
al

l
*

*
*

*
*

*
H

ü
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Figure 6.10: Fork Solution at time t = 0.0005 seconds. The scheme used is EDIRK-CIRK5
with timestep ∆t = 0.001 milliseconds. The color denotes pressure.

described in section 2.1.2 with fluid velocity zero. The far-field boundary conditions we use
are only able to absorb planar waves which approach the boundary orthogonally. Though
so-called absorbing boundary conditions would prohibit the reflection of pressure waved cre-
ated by the tuning fork back into the computational domain, our boundary conditions prove
a sufficient approximation in practice.

We integrate the system forward in time using both the reference ESDIRK from [30],
as well as our CIRK method. For the CIRK method, no attempt was made at explicit
prediction, as the system is considered too stiff. For both methods, we use the Newton-
Krylov methods described in section 4.2 with an error tolerance of 10−8 for Newton’s method
and a relative tolerance of 10−5 for the GMRES iterations. The initial conditions consist of
the fluid at rest, and an initial perturbation of the velocity of the structure. A solution is
shown in figure 6.10.

From the tuning fork, we wish to extract an audible pitch. To do this, we plot the pressure
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Figure 6.11: Tuning Fork fluid mesh with sixteen partitions

at one of the nodes near the base of the tuning fork over time, obtained from our EDIRK-
CIRK5 method with timestep ∆t = 0.01 milliseconds. This is shown in figure 6.13, which
demonstrates a clear decay of amplitude in the sound wave. We perform a Fourier analysis
of the second half of this simulation, from 50-100 milliseconds, and see a clear fundamental
peak at 600Hz. We present this Fourier analysis in figure 6.14, both in linear scale from
20Hz to 20,000Hz, and in log scale from 200Hz to 20,000Hz. (20Hz-20,000Hz is generally
considered to be the full range of human hearing.) In addition to the fundamental peak at
600Hz, we see a secondary peak at 3640Hz, and a tertiary peak at 10200Hz. This represents
a note between D5 and D]

5, with two overtones, one two octaves and a fifth higher, and the
other three octaves and a ninth higher, as shown on the right side of figure 6.14.

For comparison, we run the same simulation using the ESDIRK5 method from [30]. As
the timestep ∆t = 0.01 milliseconds is not viable for this method, we use ∆t = 0.005. We
track the pressure in the same location, and perform a Fourier analysis on the portion of
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Figure 6.12: Two-dimensional Cantilever System, with fixed left edge (dimensions in cm,
fluid boundary not to scale)

the wave from 50-100 milliseconds. The results are shown in figure 6.14. The frequencies
observed in the ESDIRK5 simulation correspond almost exactly with those from the EDIRK-
CIRK5 method, with the peaks at the same frequencies, 600Hz, 3640Hz, and 10200Hz. The
difference comes only in the amplitude of the vibrations, where the ESDIRK5 method shows
greater variation in pressure for the first few milliseconds, followed by steeper decay.

Unfortunately, though finite element analysis of tuning forks has been done in three di-
mensions in [41] and [31], there is no existing literature for this particular test problem, so
measurements of accuracy cannot be compared to previous work. However, using the metrics
described in section 4.2.4, we are able to compare the computational work of our EDIRK-
CIRK method with that of the existing ESDIRK method. Using fifth-order schemes, with
∆t = 10−3 milliseconds, our EDIRK-CIRK5 method requires 1,599,353 matrix applications
equivalents and 120,152 Jacobian assembly equivalents, whereas the ESDIRK5 method re-
quires 1,109,757 matrix application equivalents and 140,305 Jacobian assembly equivalents.
This means the EDIRK-CIRK5 method requires 44.1% more matrix application equivalents,
but 14.4% fewer Jacobian assemblies. Assuming that a computer architecture results in
Jacobian assembly being thirty times more expensive than a matrix application equivalent,
our EDIRK-CIRK5 method is less expensive in this simulation. The pattern of our EDIRK-
CIRK5 method requiring more matrix application equivalents but fewer Jacobian assembly
equivalents than the ESDIRK5 method also holds for larger timesteps. Furthermore, our
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Figure 6.13: Pressure during first hundred milliseconds of Tuning Fork Simulation
Top: EDIRK-CIRK5 Metho with ∆t = 0.01 milliseconds
Bottom: ESDIRK5 with ∆t = 0.005 milliseconds
Both simulations use two Gauss-Seidel subiterations. Though the ESDIRK method exhibits
a larger initial amplitude, the two methods show similar wave patterns and sound decay.
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Figure 6.14: Fourier Transform of Tuning Fork Pressure Waves from Figure 6.13
The transform of the wave generated using the EDIRK-CIRK5 method is shown above, while
the transform of the ESDIRK5-generated wave is shown below. The frequency axis is scaled
linearly on the left and in log scale on the right, with stanard A440 musical pitch labelled.
The frequency peaks of the two methods match exactly in position, differing only in size.
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Method timestep size, milliseconds (∆t)

1 G-S Iteration 0.1 0.08 0.04 0.02 0.01 0.005

ESDIRK5 * * * * * 403 (28.3)
EDIRK-CIRK5 239 (1.6) 241 (1.9) 234 (3.3) 250 (6.1) 335 (12.1) 508 (24.5)

2 G-S Iterations 0.1 0.08 0.04 0.02 0.01 0.005

ESDIRK5 * * * * * 806 (56.6)
EDIRK-CIRK5 258 (1.9) 256 (2.2) 259 (4.0) 290 (7.6) 409 (15.1) 634 (30.5)

3 G-S Iterations 0.1 0.08 0.04 0.02 0.01 0.005

ESDIRK5 * * * * * 1209 (85.0)
EDIRK-CIRK5 276 (2.2) 277 (2.6) 287 (4.6) 291 (7.6) 412 (15.3) 634 (30.5)

Table 6.3: Turning Fork Problem: Cumulative Fluid Solve Cost in thousands of Matrix
Application Equivalents (Jacobian matrix equivalent assemblies in parentheses) to T = 0.01s
Note that * marks method failure. None of the methods studies were viable at ∆t = 0.2
milliseconds. Gauss-Seidel subiterations are described in algorithm 4 and [30].

fifth-order method also exhibits a significant advantage in stability, as shown in table 6.3,
allowing for timesteps that are twenty times greater.

One proxy for the accuracy of the EDIRK-CIRK5 method, as compared to solving the
monolithic system, is the number of additional Newton iterations required when adding
Gauss-Seidel subiterations. If the CIRK method solves the monolithic system to within
the Newton iteration tolerance, then our implementation will recognise this and initiate no
additional Newton iterations at the fluid solve stage of the next subiteration. We see in table
6.3 that the first additional Gauss-Seidel subiteration adds somewhere between twenty and
twenty-five percent more Newton iterations for the CIRK5 method, suggesting that there
is some discrepancy between the solution calculated with two Gauss-Seidel subiterations
and that which would be calculated by applying the fifth-order Radau IIA method directly
to the monolithic system. With three Gauss-Seidel subiterations, however, we see almost
no additional computational cost at the smaller timesteps, culminating in only nine extra
Newton iterations over 20,000 steps for the smallest timestep of ∆t = 0.005 milliseconds.
This suggests that in this application, our method, with two subiterations, is no worse than a
monolithic method would be, and that adding a third Gauss-Seidel subiteration is generally
useless.
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As section 5.4 shows clearly, our method achieves its design-order, without the use
of Gauss-Seidel subiterations. Though they cannot increase the order of accuracy of the
method, adding one can in some instances be used to increase the stability of the method,
in order to use larger timesteps. We have not observed this with the fifth-order method, but
have in applications of third and sixth order.
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Chapter 7

Conclusions & Future Work

We have presented a high order accurate fully implicit Runge-Kutta method for time
integration of fluid-structure interaction problems. This method can be paired with two
different prediction methods, tackling a range of different problems. As it is a partitioned
method, as opposed to monolithic, it allows for the use of standard fluid and structure
solvers, without the need for specialized solvers.

We apply our method to a variety of problems of interest, including the standard can-
tilever problem. The results agree with existing literature, without more computational
cost than the comparison diagonally implicit Runge-Kutta method implemented. In fact,
when subiterations are necessary for stability, these come at a significantly lower cost than
those of the comparison method, presenting a significant advantage, while maintaining the
advantages of a fully implicit Runge-Kutta method.

Moving forward, it would be advantageous to apply this method to three-dimensional
problems. Additionally, investigation of mesh-motion strategies other than radial basis func-
tions could allow for the application of this method to problems with larger structure de-
formations. Our method could also be applied with a stage-parallel mesh to decrease the
computational cost of the IRK solves.

This method could also be modified in several ways. Though we have implemented it
with only two different prediction methods, any number of novel prediction methods could
be used, allowing even more efficient time integration of fluid-structure interaction problems.
Finally, the Implicit-Explicit Prediction methods we develop in chapter 3 could be used for
the time integration of multi-physics problems using IRK methods, in a predictor-corrector
framework similar to our CIRK method.
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92400 Courbevoie. 2009.

[74] Wolfgang Wall. “Fluid-Struktur-Interaktion mit Stabilisierten Finiten Elementen”.
PhD thesis. Universität Stuttgart Institut für Baustatik, Jan. 2000. doi: 10.18419/
opus-127.

[75] Clare A. C. Wood et al. “A partitioned coupling approach for dynamic fluid-structure
interaction with applications to biological membranes”. In: International Journal for
Numerical Methods in Fluids 57.5 (2008), pp. 555–581. doi: 10.1002/fld.1815.

[76] Clare A. C. Wood et al. “Partitioned block-Gauss-Seidel coupling for dynamic fluid-
structure interaction”. In: Computers & Structures 88.23 (2010). Special Issue: Associ-
ation of Computational Mechanics - United Kingdom, pp. 1367–1382. issn: 0045-7949.
doi: 10.1016/j.compstruc.2008.08.005.

[77] Chunfeng Zhao et al. “Sensitive analysis of water levels and air intakes on natural
frequency of AP1000 nuclear island building considering FSI effects”. In: Annals of
Nuclear Energy 78 (2015), pp. 1–9.

[78] Alexander H. van Zuijlen, Aukje de Boer, and Hester Bijl. “Higher-order time integra-
tion through smooth mesh deformation for 3D fluid-structure interaction simulations”.
In: J. Comput. Phys. 224.1 (2007), pp. 414–430. issn: 0021-9991. doi: 10.1016/j.
jcp.2007.03.024.




