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ABSTRACT 

As energy management and information systems (e.g., automated fault detection and 

diagnostics [AFDD] tools) become more prevalent in the commercial building stock, it is 

important to determine the effectiveness of these technologies by benchmarking their 

performance. The authors have been working to develop the largest publicly available dataset of 

HVAC fault data for performance benchmarking applications, covering the most common 

HVAC systems and designs including chiller plants, rooftop packaged units, dual duct air 

handling units and single duct air handling units. This study covers the development, modeling, 

and validation of a synthetic fault dataset for a single duct air handling unit (AHU), one of the 

most common HVAC configurations found in the commercial building stock. Despite this being 

a common system, real-world time series data are scarce and usually do not span a wide range of 

weather conditions. Due to this limitation, a detailed AHU model was employed to carry out 

annual simulations of numerous common sensor and mechanical faults, which were then 

validated by comparing their effects on system performance to expected symptoms. We 

summarize the nature of each fault and their impacts under different weather and operation 

conditions. Finally, we highlight considerations for FDD developers that may want to use this 

dataset to assess their algorithms’ performance and their improvement over time. 

Introduction 

As building data becomes more readily available, and as the budding field of data science 

and analytics comes to buildings, fault detection and diagnostics (FDD) is of increasing 

relevance to the research and product development  communities. A primary method of 

improving  building controls and operational efficiency is through algorithms developed to 

perform FDD, which use building data to identify the presence of faults and potentially isolate 

root causes. Building owners and operators have already leveraged the benefits of FDD 

technology,  with an estimated median whole-building portfolio savings of 9% (Kramer et al. 

2019). 

 FDD development for the single duct hydronic air handling units (SDAHU) system, for 

example, are presented in a number of studies from the start of the millenium (House, Vaezi-

Nejad, and Whitcomb 2001)  (Bushby et al. 2001).  Since then, a diversity of techniques have 

been developed for FDD in AHU systems (Yo, Woradechjumroen, and Yu 2014). In less 

sophisticated but more common methods, studies take a knowledge-based approach, using rules 

to determine faults in the HVAC system (Bushby and Schein 2006). Analytical-based physical 



model FDD such as Wu and Sun’s study (2012),  determines accurate predictions in zone 

temperature based on AHU energy balances  to detect when zone temperature deviates from 

predicted values. More access to building and HVAC system data has spawned data driven 

approaches to create neural networks as a fault diagnosis method as seen in Liao et. al’s study for 

example (2021). 

 A persistent challenge, however, has been the lack of common datasets and test methods 

to benchmark the performance accuracy of FDD methods, and gauge improvement of these tools 

over time. Granderson (2018) most recently developed a test and benchmarking framework for 

FDD algorithm performance, demonstrating a growing need for HVAC fault datasets that can be 

used to further determine the accuracy and effectiveness of FDD algorithms. HVAC 

performance datasets have been developed before in the form of  ASHRAE’s RP1312 fault 

dataset. ASHRAE Project RP-1312 data (Li et al. 2010a, Li et al. 2010b) is the resulting dataset 

from a series of experiments that were performed on two multi-zone VAV AHUs (AHU-A and 

AHU-B) with the same configuration running simultaneously. AHU-A always ran under normal 

conditions while AHU-B simulated different fault conditions. Seventeen faults were tested, for 

example, outside air damper stuck/leakage, cooling coil valve stuck, heating coil valve leakage, 

AHU duct leaking, control unstable, outside air temperature bias, etc. Each fault was tested at 

multiple fault intensity levels in three seasons - spring, summer, and winter. At each level of 

each fault, the experiment lasted for one day and the operational data of 160 variables were 

collected at 1-min intervals. This dataset has been leveraged by a number of FDD studies (Yan et 

al 2016) (Zhong et al 2019) (Montazeri and Kargar 2020) (Yun, Hong, and Seo 2021).  Further 

work was initiated to fill this gap with the introduction of an open sourced dataset for FDD 

evaluation purposes (Granderson et al. 2020), which introduced a first of its kind public dataset 

with ground-truth data on the presence and absence of faults for multiple HVAC systems, 

including a simulated SDAHU system.  

 This paper will more specifically dive into the expansion of a SDAHU fault dataset, 

which is considered one of the most typical HVAC system designs in commercial buildings. The 

data set consists of high resolution, simulated time series HVAC operational data (e.g. 

temperatures, pressures, control signals, component status, etc.) under a diversity of operating 

and weather conditions, combined with information on the presence and absence of faults and 

their associated intensity. Furthermore, the paper applies our previously established data 

validation and ground truth assessment protocol for the successful development of the SDAHU 

FDD test dataset (Casillas et al. 2020).   

Methods 

 The overview of the SDAHU model, including the system configuration, controls 

specification and co simulation framework will be detailed in this section. Furthermore we will 

provide detail on the modeled HVAC faults, the nature of these faults and expected system 

performance and behavior as well as our method of imposition.  



Model Overview: 

 The SDAHU model was developed in the Modelica language by developers at PNNL, 

based on model components available in open-source Modelica libraries such as the Modelica 

Buildings, IBPSA libraries. Modelica is an equation-based, object-oriented modeling language 

for complex dynamic systems. In order to capture the building’s thermal response a reference 

commercial building model from EnergyPlus (Deru et al. 2011) was integrated. The data 

exchange between the EnergyPlus input data file (IDF) model and the Modelica system model, 

as pictured in Figure 1, was handled by a co-simulation framework, exporting the IDF file as a 

functional mockup unit, analogous to the methods in Huang et. al (2021).  In addition to 

calculating the thermal loads of the space, the IDF file also stores pertinent weather information 

that is fed into the modelica model, which allows for annual modeling of a building based on a 

historical weather data set. For this study’s purposes, the climate data modeled was that of 

Chicago, Il. The final result of this co-simulation process is a .mat result file that contains time-

series building performance data. 

 

 

Figure 1. The data exchanged by E+ and Modelica are shown in the figure above 

 

 The major components of the modeled SDAHU, as shown in Figure 2, are supply air fan 

with a variable frequency drive (VFD), return fan with a VFD, cooling coil, cooling control 

valves, outdoor air (OA) and return air (RA) dampers. The control specifications of the AHU are 

shown in Table 1. The AHU’s baseline control sequence is applied from engineering standard 

best practices (e.g. ASHRAE 90.1 ) and are detailed below in Table1. These control parameters 

and sequences are programmed in the modelica language with control and logic components.  

The control loops are mostly concerned with three different components:  



● Fan speed control determined by occupancy state and static pressure setpoints 

● Cooling coil valve position determined by occupancy state and supply air temperature 

setpoint 

● Damper positions determined by occupancy state, outdoor air temperature and mixed air 

temperature setpoint 

 

Figure 2. SDAHU diagram with all measurement points denoted 

 

  



Table 1. Controls overview for SDAHU Model 

Control/Operations 

Specification 

Description Specification 

Typical Building Control Baseline Data Source/ References 

System 

Operation 
Mode 

Occupied Mode  Start the HVAC system 2 hr ahead of 

occupancy schedule:  
• Occupancy schedule (weekday 6:00-

22:00) 

• Cooling set point (occupied): 26.7°C 
(75°F) 

• Heating set point (occupied): 21°C 

(70°F) 

DOE commercial reference 

building (Deru, et al., 
2011) 

Unoccupied 

Mode 

Maintain the unoccupied heating and 

cooling setpoint: 

 • Cooling set point  
(unoccupied): 24°C (80°F) 

• Heating set point 

(unoccupied):15.6°C (60°F) 

Air 

Handling 

Unit 

Supply /Return 

fan control 

Fixed static pressure, SPset: 169.8 Pa 

(0.68 in. w.g.) 

Based on testing, air 

balancing analysis of given 

system to meet cooling 
design condition 

Fixed differential speed ratio (10% 

less) between supply air and return air 
fan. 

Based on engineering 

practices 

Supply air 
temperature 

control 

Fixed supply air temperature setpoint: 
12.7°C (55°F) 

Based on engineering 
practices 

Minimum 
outdoor air 

control 

Fixed minimum OA damper position 
(10% open) during the occupied hour. 

Closed during the unoccupied hour. 

Based on engineering 
practices 

Economizer Fixed dry bulb temp threshold, OA 

damper is engaged from 1°C to 15.6°C 

(33°F to 60°F ), otherwise at minimum 

position (10%).  Damper modulates to 
hold mixed air temperature of 55F.  

ASHRAE Guideline 36-

2020 / ASHRAE 90.1-2016 



Fault Modeling: 

Table 2. Overview of HVAC fault modeled and imposition method  

Fault Method of Fault Imposition Fault intensities covered 

Supply, Outdoor Air 

Temperature Sensor Bias 

Add or subtract value from 

initial sensor reading 

-4,-2,+2,+4 °C 

OA Damper, Cooling Coil 

Valve Stuck 

Automated override of OA 

damper position to indicate 

that OA damper is stuck. 

Automates to override of coil 

valve position to indicate that 

cooling coil valve is stuck. 

10%, 25%,50%,75%, Fully 

open (100%) 

Cooling Coil Valve Leak Adjusted the minimum coil 

valve position value when 

control signal is zero  

10%, 25%,40%,50% 

 

3 different components were targeted for fault modeling in the SDAHU model: the outdoor air 

damper, the cooling coil and the temperature sensors.  

 The outdoor air damper stuck fault is a mechanical fault by nature and will directly 

affect the AHU’s ability to take advantage of outdoor air to maintain supply temperatures while 

minimizing cooling energy as well  its ability to maintain effective supply temperature control. 

During instances in which the OA damper is stuck above minimum position and supply air is 

cooler than desired setpoint, excess outdoor air may cause the cooling energy to be minimized 

while dramatically reducing the supply air temperature of the AHU. The case in which warmer 

temperatures are seen outdoors, the excess outdoor air will cause more cooling energy to be 

used, driving the control signal of the OA damper to minimum while maximizing the cooling 

coil control signal. Higher than normal supply air temperatures may occur.  

A stuck cooling coil valve directly affects the AHU’s ability to maintain effective supply 

air temperature control. During instances in which the cooling coil valve is stuck closed or at a 

position that is lower than needed, the supply air will be warmer than desired, driving the control 

signal to 100% due to the inability of the system to maintain cool enough air to the zone level. 

This will cause higher than normal supply temperatures, higher than normal return  air 

temperatures, and lower  overall cooling energy consumed, with higher energy consumed in the 

fan, as the zone demand increases with less cooling available.. During instances in which the 

valve is stuck open or higher than needed, the cooling coil will be providing too much cooling. 

This will result in a supply temperature colder than the setpoint and the control signal will 

eventually be driven to zero due to the inability of the system to maintain supply air temperature 



set point. This will ultimately lead to lower than desired supply and return air temperatures and 

higher overall cooling energy consumed.  

A leaking cooling coil valve affects the AHU’s ability to fully close the cooling coil 

valve. During instances in which the control signal is driven to a level below the leakage level or 

to 0, the ground truth position of the valve will bottom out at the leakage level. This will cause 

lower than normal supply temperatures during these instances, and higher overall cooling energy 

consumed. During instances in which the leakage level is higher than the control signal, the fault 

will behave more like a stuck valve fault. 

A temperature sensor bias fault in the outdoor temperature sensor would cause an 

adverse effect on supply temperature control, mainly the modulation of the outdoor air damper 

according to the economizer control sequence. As the bias becomes more positive (4°C), the 

seemingly higher outdoor air temperature would result in less activity in the economizer control 

signal, resulting in higher overall cooling energy consumption. As the bias becomes more 

negative (-4C), the seemingly lower outdoor air temperature would result in a more active 

control signal for the economizer, resulting in lower overall cooling energy consumption by the 

cooling coils. 

A temperature sensor bias fault in the supply temperature sensor would cause an 

adverse effect on supply temperature control, mainly the modulation of the cooling coil valve to 

meet setpoint. As the bias becomes more positive (4°C), the seemingly higher supply 

temperature would result in higher control signal for added cooling, resulting in higher overall 

cooling energy consumption, cooler rooms (lower return air temperatures) and possible impact 

on thermal comfort.As the bias becomes more negative (-4C), the seemingly lower supply 

temperature would result in lower control signal for reduced cooling, resulting in lower overall 

cooling energy consumption, cooler rooms (lower return air temperatures). 

 The faults are all implemented by modifying or overriding the baseline control logic of 

the model. For example, the outdoor air damper stuck fault is implemented by overriding the 

position of the damper component.  The fault imposition methods are summarized in the table 

below. As an example, for each intensity of the OA damper stuck fault, the fault  is imposed by 

overriding the position of the modeled damper to the predetermined value. The scaled dataset 

creation is carried out with a parametric simulation Modelica script. This allows for the intensity 

of each fault to be modeled based on a single value that is passed as a parameter into the fault 

model component such as “TwoWayValveStuck” for both the cooling coil valve and OA 

damper.  

Results 

The SDAHU model was simulated under baseline, fault free conditions for one full calendar year 

and further simulated with each of the faults under different severity levels. The ability to 

conduct annual fault simulation is one of the most valuable contributions, since this allows us to 

observe the fault’s impact on system behavior and performance across the full range of weather 

conditions. The difference in behavior across seasons will be covered in this section. First, are 



details on the observed behavior of the SDAHU model under fault free conditions for two 

different seasons (Spring and Summer). In the subsequent section, the behavior under a sample 

fault case will then be analyzed in comparison to the previous baseline case. The outdoor air 

damper and cooling coil control are the focus of the analysis below. The fan speed will remain 

mostly constant across the annual dataset so it is not highlighted.  

Baseline Operation: 

Spring:  

The first season analyzed is Spring in which we expect to see milder outdoor air temperatures. 

This equates to maximum activity for the economizer and minimum cooling coil use. The OA 

damper control sequence can be seen in Figure 3 as being activated in the range of 3°C to 12.7°C 

(37.5°F to 55°F). The supply temperature setpoint is set at 55F, so the damper modulating to 

100% is expected. Because the simulated range of this sample day never reaches the min or max 

thresholds for economizer mode (33°F, 60°F), we never see the minimum position of the damper 

OF 10%. The cooling coil is modulated based on the supply air temperature setpoint and works 

in conjunction with the OA damper in milder conditions. In Figure 4 we can see the OA damper 

is modulated to meet SAT setpoint until the OA temp reaches its max threshold of 60°F. The OA 

damper then is commanded to a minimum value of 10% while the cooling coil command signal 

is ramped up to meet the supply air temperature setpoint at this instance. As seen by the supply 

air temperature plot, the setpoint of 55°F is always met.    

 



Figure 3. Validation of Economizer control sequence 

 

Figure 4. Spring Operation of OA damper and cooling coil working together to maintain 55F supply 

temperature 

Summer: 

Analyzing the SDAHU model’s behavior during the Summer period is relatively more 

straightforward compared to the nuanced operation of the OA damper during shoulder season, 

when economizing is frequent. A seen in Figure 5, during summer operation, the OA 

temperatures range at values greater than the 60°F max threshold for economizing, so the damper 

is always set at 10%, while the cooling coil is modulated instead to meet the supply air 

temperature setpoint.  

 

Figure 5. Summer Operation of OA damper at min position while cooling coil maintains 55F supply temperature 

 



Faulty Operation - OA Damper Stuck at Minimum (10%): 

Spring: 

For the faulty operation example, the outdoor air damper stuck at minimum case is presented. As 

seen in Figure 6. The same day is plotted as in Figure 3, although now we see the faulty 

operation of the damper during this fault. The first thing to observe is that the control signal is at 

100% throughout the entirety of the day. This is caused primarily by the feedback loop of the 

controller, which is calculating the difference between the mixed air temperature and the supply 

air setpoint of 55°F. As the temperature difference increases due to the stuck component, the 

control output is saturated at 100%. Meanwhile, the outdoor air damper ground-truth position is 

plotted at a constant value of 10%, which allows us to effectively validate the presence of our 

fault. This fault results in higher cooling coil activity and higher energy consumption due to the 

lost opportunity of economizing based on ideal weather conditions. This can be seen in the 

subsequent plot in Figure 6, in which the cooling coil signal is noticeable higher for the faulty 

case.   

 

 

Figure 6. Spring Operation of a stuck OA damper. Cooling coil is more active in faulted case in order to 

maintain 55F supply temperature 



Summer: 

The presence and symptoms of each fault will not always be evident, based on the weather 

conditions and/or the operational state of the HVAC system. This is most evident in the Summer 

case for the OA Damper Stuck at Minimum case, , shown in Figure 7, where the OA 

temperatures reach their maximum range, up to 95°F. This is well beyond the maximum 

threshold for economizing and as a result the damper is already at minimum position. The lack of 

OA damper modulation means the faulty and baseline cases are virtually indistinguishable from 

one another, as seen by the pair of Figures below, where the OA damper control signal overlaps 

at 10%, and the cooling coil control signal for both cases are also equivalent.  

 

 

 

Figure 7. Summer Operation of a stuck OA damper, the ambient conditions during summer cause the damper to stay 

at minimum and therefore the symptoms are not prevalent in this season.  



Discussion 

The results presented in this study are only a small subset of a significant, large-scale effort. The 

process was a multi-year effort which presented challenges and subsequent lessons learned that 

we have been able to draft into a series of best practices. The  aforementioned study detailing our 

data validation protocol (Casillas et al. 2020) lists the process of building the datasets by first 

conducting small scale simulations and validation before proceeding to full scale simulation. 

Individual control sequences are best tested in functional tests that can be executed in Modelica, 

but may lead to unintended behaviors as part of a full scale model with varying weather 

conditions and operational states.  This is particularly effective in validating documented control 

sequences across different seasons. Dedicating some time to validating small scale simulation 

results can avoid wasted time and resources, given that scaled up annual simulations can take 

several days to complete and occupy anywhere between 1-10 GB of memory.  

One such incident during the generation of this dataset was the discovery of competing PID 

loops from the OA damper and the cooling coil in simultaneous economizing and cooling 

situations. The issue is compounded when the simultaneous conditioning of these two systems 

have different control variables, with the economizer sequence, controlled to mixed air 

temperature and cooling coil valve controlled to the supply air temperature. When applying PI 

controllers to a process, there will always be static errors between these two values. The static 

error of the PI controller # 1 may trigger the action of the PI controller # 2, which is downstream. 

Best practice controls programming for AHU’s recommends cooling coil valve control to be 

disabled in economizing mode and disabled until economizer reaches 100% as seen in Figure 8. 

  

 Figure 8. Traditional interaction between OA damper and heating/cooling coils 

Another lesson learned in best practice has to do with time expression in the co simulation 

framework. Daylight savings options exist in EnergyPlus time reporting, which may affect the 

time schedules of the HVAC operation when modeled in the Modelica environment. To avoid 

this, it would be best to disable daylight savings options for IDF files.  



Along with best practices for large scale simulations, we have compiled considerations for FDD 

developers that may want to use this dataset to assess their algorithms’ performance. The dataset 

has undergone a validation protocol, which includes common naming convention, topology, and 

post processed variables. We have tried to reduce the number of measurements available to us 

via simulation to those that are usually found in a typical building management system. This 

removes variables like actuator position and wet bulb temperatures from the dataset list.  

The common naming convention has been most recently paired with an attempt to align the 

dataset description and topology to that of the Brick Schema ontology (Balaji et al. 2016). This 

allows some algorithms to determine the topology of the HVAC system and the relationships 

more efficiently between parts, and measurement associated with each part. The Brick Schema 

tool set allows us to generate machine readable files that can be visualized and processed by 

more sophisticated algorithms with rule-based sets or clustering based on the topology of the 

system. 

This dataset along with others from different data partners and contributors are well on their way 

to being part of an eventual publicly available dataset in which users will be able to download 

along with documentation of the system, fault cases and the aforementioned machine-readable 

files. The hope is for the FDD community to apply to their algorithm development similar to that 

of ASHRAE RP-1312 and further spur the growth of this valuable technology.   

Conclusion  

This paper presents results and lessons learned from a multi-year modeling effort aimed at 

producing a diverse set of annual fault cases for the SDAHU system: one of the most common 

HVAC system configurations found in the building stock. Annual simulation of any system 

provides a full range of operating conditions across all seasons, a diversity that may not be 

available in limited experimental or field measured datasets. The results present baseline and 

faulted scenarios for Spring and Summer operation of the SDAHU model that demonstrate the 

value of assessing performance across multiple seasons. Lessons learned about the modeling 

process, including issues such as control loop programming in Modelica are discussed in order to 

provide some insight for FDD developers on how difficult it may be to accurately emulate a real 

system. Exciting new developments include the development of the largest publicly available 

FDD dataset, which will include the SDAHU dataset along with that of 6 other systems along 

with BRICK models for all systems. 
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