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A Fast 3D Poisson Solver with Longitudinal Periodic and

Transverse Open Boundary Conditions for Space-Charge

Simulations

Ji Qiang

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary

conditions can have important applications in beam physics of particle accelerators. In this paper,

we present a fast efficient method to solve the Poisson equation using a spectral finite-difference

method. This method uses a computational domain that contains the charged particle beam

only and has a computational complexity of O(Nu(logNmode)), where Nu is the total number of

unknowns and Nmode is the maximum number of longitudinal or azimuthal modes. This saves both

the computational time and the memory usage by using an artificial boundary condition in a large

extended computational domain.

PACS numbers: 52.65.Rr; 52.75.Di
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FIG. 1: A schematic plot of a train of charged particle beam bunches in the particle accelerator.

I. INTRODUCTION

The particle accelerator as one of the most important inventions of the twenty century

has many applications in science and industry. In accelerators, a train of charged particle

(e.g. proton or electron) beam bunches are transported and accelerated to high energy for

different applications. To study the dynamics of those charged particles self-consistently

inside the accelerator, the particle-in-cell (PIC) model is usually employed in simulation

codes (e.g. the WARP and the IMPACT code suite [1–3]). This PIC model includes both

the space-charge forces from the Coulomb interactions among the charged particles within

the bunch and the forces from external accelerating and focusing fields at each time step. To

calculate the space-charge forces, one needs to solve the Poisson equation for a given charge

density distribution. A key issue in the PIC simulation is to solve the Poisson equation

efficiently, at each time step, subject to appropriate boundary conditions.

Solving the 3D Poisson equation for the electric potential of a charged beam bunch

with longitudinal periodic and transverse open boundary conditions can have important

applications in beam dynamics study of particle accelerators. In the accelerator, a train of

charged particle bunches as shown in Fig. 1 are produced, accelerated, and transported.

If the separation between two bunches is large, each bunch can be treated as an isolated

bunch, and the 3D open boundary conditions can be used to solve the Poisson equation. In

some accelerators such as a Radio-Frequency Quadrupole (RFQ), the separation between

particle bunches is short, to model a single bunch, one needs to use the longitudinal periodic

boundary condition [4]. The same model can be used to study space-charge effects in a

longitudinally modulated electron beam, where the electron beam density varies periodically

from the interaction with the laser beam and the magnetic optic elements [5].

In previous studies, a number of methods for solving 3D Poisson’s equation subject to a

variety of boundary conditions have been studied [6–21]. However, none of these methods

handles the Poisson equation with the longitudinal periodic and transverse open boundary
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conditions. In the code of reference [2], an image charge method is used to add the contri-

butions from longitudinally periodic bunches into the single bunch’s Green function. Then

an FFT method is used to effectively calculate the discrete convolution between the charge

density and the new Green’s function that includes contributions from other bunches. The

computational cost of this method scales as O(Nlog(N)). However, this method requires the

computation of the Green’s function from multiple bunch summation. It is not clear, how

many bunches are needed in order to accurately emulate the longitudinal periodic boundary

condition. In reference [5], the image charge method is used with special function to approx-

imate the summation of the Green’s function in different regimes. In practical application,

one may not know beforehand what regime should be used for a good approximation. Be-

sides the complexity of the new Green’s function in the image charge method, to use the

FFT to calculate the discrete convolution, one needs to double the computational domain

with zero padding [8, 22]. This increases both the computational time and the memory

usage.

In this paper, we propose a fast efficient method to solve the 3D Poisson equation with the

longitudinal periodic and transverse open boundary conditions. We use a Galerkin spectral

Fourier method to approximate the electric potential and the charge density function in the

longitudinal and azimuthal dimensions where periodic boundary conditions are satisfied.

We then use a second order finite-difference method to solve the radial ordinary differential

equation for each mode subject to the transverse open boundary condition. Instead of using

a large radial domain with empty space and artificial finite Dirichlet boundary condition to

approximate the open boundary condition, we use a domain that contains only the charged

particle beam and a boundary matching condition to close the group of linear algebraic

equations for each mode. This group of tridiagonal linear algebraic equations can be solved

efficiently using the direct Gaussian elimination with a computational cost O(N), where N

is the number of unknowns on the radial grid.

The organization of this paper is as follows: After the introduction, we describe the

proposed spectral finite-difference numerical method in Section II. Several numerical tests

of the 3D Poisson solver are presented in Section III. The conclusions are drawn in Section IV.
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II. NUMERICAL METHODS

The three dimensional Poisson equation in cylindric coordinates can be written as:

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
+

∂2φ

∂z2
= −ρ(r, θ, z) (1)

where φ denotes the electric potential, ρ the charge density function, r and z the radial and

longitudinal distance. The longitudinal periodic and transverse open boundary conditions

for the potential are:

φ(r = ∞, θ, z) = 0 (2)

φ(r, θ + 2π, z) = φ(r, θ, z) (3)

φ(r, θ, z + L) = φ(r, θ, z) (4)

Given the periodic boundary conditions of the electric potential along the θ and the z, we

use a Galerkin spectral method with the Fourier basis function to approximate the charge

density function ρ and the electric potential φ along these two dimensions as:

ρ(r, θ, z) =
n=Nn/2−1

∑

n=−Nn/2

m=Nm/2−1
∑

m=−Nm/2

ρmn (r) exp(−ianz) exp(−imθ) (5)

φ(r, θ, z) =
n=Nn/2−1

∑

n=−Nn/2

m=Nm/2−1
∑

m=−Nm/2

φm
n (r) exp(−ianz) exp(−imθ) (6)

where

ρmn (r) =
2

Lπ

∫ L

0

∫

2π

0

ρ(r, θ, z) exp(imθ) exp(ianz) dθdz (7)

φm
n (r) =

2

Lπ

∫ L

0

∫

2π

0

φ(r, θ, z) exp(imθ) exp(ianz) dθdz (8)

and an = n2π/L, L is the longitudinal periodic length. Substituting the above expansions

into the Poisson Eq. 1 and making use of the orthonormal condition of the Fourier function,

we obtain:

∂2φm
n

∂r2
+

1

r

∂φm
n

∂r
− (

m2

r2
+ (an)

2)φm
n = −ρmn (9)

This is a group of decoupled ordinary differential equations that can be solved for each

individual mode m and n. For these equations, at r = 0, we have the boundary conditions:

∂φm
n

∂r
(0) = 0; for m = 0 (10)

φm
n (0) = 0; for m 6= 0 (11)
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Assuming all charged particles within the beam bunch are contained within a radius R, we

discretize the above equation using a second order finite-difference scheme, and obtain a

group of linear algebraic equations for each mode (m,n) as:

(
r2i
h2

−
ri
2h

)φm
n (ri−1)− (

2r2i
h2

+m2 + a2nr
2

i )φ
m
n (ri) + (

r2i
h2

+
ri
2h

)φm
n (ri+1) = −r2i ρ

m
n (ri) (12)

where i = 1, 2, · · · , N , and ri = ih. The boundary conditions at r = 0 are approximated as:

−
3

2
φm
n (r0) + 2φm

n (r1)−
1

2
φm
n (r2) = 0; for m = 0 (13)

φm
n (r0) = 0; for m 6= 0 (14)

For m = 0, there are only N +1 linear equations but N +2 unknowns, and for m 6= 0, there

are only N linear equations but N + 1 unknowns. For the potential outside the radius R,

the Eq. 9 can be written as:

∂2φm
n

∂r2
+

1

r

∂φm
n

∂r
− (

m2

r2
+ (an)

2)φm
n = 0 (15)

subject to the open boundary conditions

φm
n (r = ∞) = 0 (16)

For n 6= 0, a formal solution of the equation 15 subject to the boundary condition 16 can

be written as:

φm
n (r) = A Km(anr) (17)

where Km is the second kind modified Bessel function. Using the above equation and the

continuity of the potential at rN , we obtain another equation for the unknowns φm
n (rN) and

φm
n (rN+1) as:

φm
n (rN)Km(anrN+1) = φm

n (rN+1)Km(anrN) (18)

For n = 0,m 6= 0, the Eq. 15 is reduced to the Cauchy-Euler equation:

∂2φm
0

∂r2
+

1

r

∂φm
0

∂r
−

m2

r2
φm
0 = 0 (19)

A formal solution of this equation that satisfies the open radial boundary condition can be

written as:

φm
0 (r) = Ar−m (20)
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From the above equation, we obtain another equation for the unknowns φm
0 (rN) and

φm
0 (rN+1) as:

φm
0 (rN)r

m
N = φm

0 (rN+1)r
m
N+1 (21)

For n = 0,m = 0, the Eq. 15 is reduced to:

∂2φ0
0

∂r2
+

1

r

∂φ0
0

∂r
= 0 (22)

A formal solution of this equation that satisfies the open radial boundary condition can be

written as:

φ0

0(r) = A log(r) (23)

From this equation, we obtain another equation for the unknowns φ0
0(rN) and φ0

0(rN+1) as:

φ0

0(rN) log(rN+1) = φ0

0(rN+1) log(rN ) (24)

Using Eqs. 18, 21, 24, we have N + 2 linear equations for N + 2 unknowns for m = 0 and

N + 1 linear equations for N + 1 unknowns for m 6= 0. For each mode m and n, this is a

group of tridiagonal linear algebraic equations, which can be solved effectively using direct

Gaussian elimination with the number of operations scaling as O(N). Since both Fourier

expansions in θ and z can be computed very effectively using the FFT method, the total

computational complexity of the proposed algorithm scales as O(NNmNnlog(NmNn)).

III. NUMERICAL TESTS

The numerical algorithm discussed in the preceding section is tested using two charge

density distribution functions. The first example is an infinite long cylindric coasting beam

with uniform charge distribution within the radius R = 2. The charge density function is

given as

ρ(r, θ, z) =











1.0 : r ≤ 2

0.0 : r > 2
(25)

For this charge density function, there is only the radial component of the electric field. The

analytical solution of the electric field can be found as:

Er(r) =
r

2
for r ≤ 2 (26)
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FIG. 2: Longitudinal electric field profile Ez on the z-axis (left) and the transverse radial electric

field profile Er in the middle of the bunch from the numerical solutions together with the analytical

solution (right) in a uniform cylinder coasting beam.

Figure 2 shows the longitudinal electric field and the transverse radial electric field from

the numerical solution and the above analytical solution. It is seen that the numerical

solution agrees with the analytical solution very well.

In the second test example, we assume that there is a longitudinal modulation of the

charged particle density distribution. The charge density function is given as:

ρ(r, θ, z) =











4− 4(r/R)2 + sin(a1z)[4 − (a1r)
2]/5 : r ≤ R

0.0 : r > R
(27)

The analytical solution of the electric fields for this charge distribution can be written as:

Ez(r, z) = a1 cos(a1z)[r
2 −AI0(a1r)]/5 (28)

Er(r, z) = 2r − r3/R2 + sin(a1z)[2r −Aa1I1(a1r)]/5 (29)

where the constant A is given as:

A =
R2a1K1(a1R) + 2RK0(a1R)

a1I1(a1R)K0(a1R) + a1I0(a1R)K1(a1R)
(30)

Here, the matching condition at the edge R is used together with the analytical formal so-

lution Eq. 17 for the open boundary condition to determine the above constant A. Figure 3

shows the longitudinal electric field and the transverse radial electrical field from the numer-

ical solutions and from the analytical solutions. The numerical solutions and the analytical

solutions agree with each other very well in this longitudinally modulated charged particle

beam too. Here, we have assumed R = 10 and L = πR.
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FIG. 3: Longitudinal electric field profile Ez on the z-axis (left) and the transverse radial electric

field profile Er in the middle of the bunch (right) from the numerical solutions together with the

analytical solutions in a longitudinally modulated charged particle beam bunch.

The numerical method proposed in the preceding section has the advantage that uses

a computational domain that contains the charged particle beam only while satisfying the

transverse open boundary condition. In principle, the transverse open boundary can be

approximated by an artificial closed Dirichlet boundary condition in a larger computational

domain. Since only the electric fields inside the charge particle beam bunch are needed

in the self-consistent accelerator space-charge beam dynamics simulation, this larger com-

putational domain by using the artificial Dirichlet boundary condition will waste both the

computational time and the memory storage in the empty computational domain. In the

following, we use a simplified one-dimensional equation from above equations to illustrate

the advantage of the above proposed method.

For m = 0 and n = 1, Eq. 9 is reduced to:

∂2φ0
1

∂r2
+

1

r

∂φ0
1

∂r
− a21φ

0

1 = −ρ01 (31)

Assuming a radial charge distribution ρ01(r) as:

ρ01(r) =











4− (a1r)
2 : r ≤ R

0.0 : r > R
(32)

we can have an analytical solution as:

φ0

1(r) = −r2 + AI0(a1r) (33)

where the constant A is given in Eq. 30. Figure 4 shows the electric potential and the

relative errors as a function of radial distance from the analytical solution, and from the
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FIG. 4: The electric potential (left) and the relative errors (right) from the analytical solution

and from the numerical solution with transverse open, transverse closed with two times radial

computational domain, and transverse closed with four times computational domain.

proposed numerical solution with transverse open boundary condition (R = 10), from the

artificial transverse closed Dirichlet boundary condition using two times computational do-

main (φ0
1(R = 20) = 0), and from the artificial transverse closed boundary condition using

four times computational domain (φ0
1(R = 40) = 0). It is seen that even using two times

computational domain, the artificial closed boundary condition solution still shows much

larger errors than the proposed open boundary numerical solution. It appears that four

times larger computational domain is needed in the artificial closed boundary solution in

order to attain the same numerical accuracy as the open boundary solution that uses a

domain with radius R that contains the charged particle beam only. In the above example,

we have used 201 radial grid points for the open boundary solution, 401 grid points for the

artificial closed boundary solution with two times computational domain and 801 grid points

for the solution with four times computational domain.

IV. CONCLUSIONS

In this paper, we presented a fast three-dimensional Poisson solver subject to longitudi-

nal periodic and transverse open boundary conditions. Instead of using a larger artificial

computational domain with closed Dirichlet boundary condition, this solver uses a compu-

tational domain that contains the charged particles only. This saves both the computational

time and the memory usage compared with the artificial closed boundary condition method.

By using the FFT method to calculate the longitudinal and azimuthal Fourier expansion
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and the direct Gaussian elimination to solve the radial tridiagonal linear algebraic equations,

the computational complexity of the proposed numerical method scales as O(Nu(logNmode)).

This makes this fast Poisson solver very efficient and can be included in the self-consistent

space-charge simulation PIC codes for space-charge beam physics study in particle acceler-

ators.
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