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Summary

Models of nonlinear dynamical systems are typically composed of unknown and

known parts due to the existence of mismatch between the true nonlinear system

dynamics and their models. This paper presents a multivariable control strategy

for nonlinear systems that deals explicitly with the existence of incomplete mod-

els in a data-driven framework. The proposed strategy uses feedback linearization

and continuous-time estimation of the unknown derivatives to achieve satisfactory

closed-loop performance for fast sampling applications with simple tuning of design

parameters in the absence of a fully known system model. It is shown that this strat-

egy possesses useful steady-state properties, such as elimination of steady-state error

and rejection of constant input disturbances without any integral term, and ensures

exponential convergence to the setpoints. Another contribution of this paper is the

development of methods for quantitative analysis of the stability and performance

of the control strategy in the continuous-time case. The approach is illustrated via a

simulated example of reactor control. The proposed control strategy is broadly appli-

cable and simplifies control design significantly for a large variety of systems.

KEYWORDS:

Multivariable control, Feedback linearization, Derivative estimation, Nonlinear systems, Data-driven

control

1 INTRODUCTION

System identification and model-based control design are often seen as closely related tasks, since control laws are typically

designed based on the knowledge of a system model1. However, in the context of nonlinear dynamical systems, the dynamic

models that are used to predict the evolution of the system state for control are typically composed of parts that are well known

and other ones that are unknown2. This situation occurs mostly due to the existence of structural mismatch between the true

nonlinear system and its model in the sense that the true system may not be in the model set3,4,5. This can be the case not only

for first-principles models but also for data-driven models6. Thus, although it is possible to use system identification or first-

principles modeling to obtain a relatively accurate description of the true dynamical system, this description remains subject to

some uncertainty, and the experimental effort required to reduce the model uncertainty may be time-consuming and expensive.

In addition, typical model-based control strategies based on linearization of nonlinear models at an equilibrium point cannot

achieve globally exact linearization and may lead to unsatisfactory performance and robustness if the system is operated far

from the point at which the model was linearized. For this reason, control methods for nonlinear systems based on exact

linearization have been developed, namely, input-output feedback linearization and input-state feedback linearization7,8,9,10.
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These approaches via feedback linearization typically require an adequate model of the nonlinear system, otherwise the property

of exact linearization is lost. However, in practice, significant modeling errors and disturbances may be present11. Hence, several

approaches have been presented to increase the robustness of feedback-linearizing control with respect to errors and disturbances

via adaptive control12,13 and robust control14,15,16,17, or to analyze the impact of the modeling errors on the stability and

performance of the control strategy via feedback linearization18. However, the guarantees provided by these methods typically

require some assumptions that the modeling errors and disturbances must satisfy, related to parametric uncertainty, conditions of

similarity with respect to the nominal model (also known as matching conditions), relative degree, or bounded magnitude, which

complicate their practical application. Since these earlier works on adaptive and robust feedback linearization, the work on control

of nonlinear systems has mainly focused on model predictive control (MPC), which has found wide application in industrial

contexts19,20. However, while nonlinear MPC is necessary to control highly nonlinear systems, it may be too computationally

expensive for fast sampling applications, despite recent developments in this field21, and it generally requires good models that

may be difficult to obtain. On the other hand, although the ubiquitous proportional-integral-derivative (PID) control strategy

is conceptually simple and computationally efficient for fast sampling applications, it remains challenging to design and tune

adequate multi-loop PID control systems for multivariable and nonlinear systems. Hence, control approaches based on feedback

linearization remain useful as computationally efficient advanced control strategies for uncertain, multivariable, and nonlinear

systems. The applications of feedback linearization range from magnetic levitation22 and power systems such as micro grids23,24

to chemical and biological reactors11 and cancer immunotherapy25, only to name a few.

Nonetheless, it still remains an open problem how to identify models of nonlinear systems that yield satisfactory performance

and robustness for feedback linearization control. However, since input-output feedback linearization relies mostly on the

knowledge of values that can be related to the output derivatives, one could infer these derivatives directly from measurements

via signal differentiation, without using a dynamic model. Some approaches for numerical differentiation for nonlinear systems,

such as sliding mode26 and Tikhonov regularization27,28, can be highlighted in this context. More recently, efficient algebraic

approaches for numerical differentiation via finite impulse response (FIR) filters have also been proposed, which result in an

interesting deadbeat property of the derivative estimates29,30. This would be an alternative to the use of observers31,32 or unknown

input estimators33 for measurement-based derivative estimation, which may be difficult to design so as to minimize the effect

of measurement noise. However, possibly due to the scarcity of work on adaptive and robust control via feedback linearization

in recent years, the use of derivative estimation via FIR filters for adaptive and robust control via feedback linearization has not

been explored, to the best of our knowledge, despite the improved handling of measurement noise by these FIR filters.

The primary objective of this paper is to propose a multivariable control strategy for nonlinear systems that deals explicitly and

systematically with the fact that models may be incomplete in the sense that there may exist parametric model uncertainty or even

structural mismatch between the true nonlinear system and its model. The proposed control strategy is intuitive to understand

and simple to tune. In addition, it provides elimination of steady-state error and rejection of constant input disturbances without

any integral term and ensures exponential convergence to the setpoints. We use the concept of continuous-time derivative

estimation to estimate the derivatives of the unknown system dynamics without model identification. This concept has already

been developed and applied to chemical reactor control34,35,36. The control design uses an approach via input-output feedback

linearization that was proposed originally for the case of fully known models37, as it is typically the case whenever feedback

linearization is used. The requirement of full knowledge of the dynamic model is avoided by the proposed control strategy

since it is based on derivative estimation. As such, the proposed control strategy is similar to observer-based control, in which

the unknown derivatives are estimated via high-gain observers. It has been shown that observer-based control recovers the

performance of control via feedback linearization in the absence of model uncertainty and disturbances32. In contrast, in this

work, the unknown derivatives are estimated via FIR filters, which provides advantages such as deadbeat estimation, instead of

asymptotic convergence, and minimization of the effect of measurement noise. The quantitative analysis of the local stability

and performance of this approach via feedback linearization and derivative estimation represents another contribution of this

paper since this analysis has only been performed for the particular case of relative degree one of the controlled outputs with

respect to the inputs and derivatives up to first order38. To the best of our knowledge, although continuous-time estimation of

derivatives up to arbitrary order via FIR filters has been proposed before, this paper proposes and analyzes for the first time

the use of continuous-time estimation of derivatives up to arbitrary order via FIR filters for control of nonlinear systems with

incompletely known dynamics via input-output feedback linearization. In summary, the main contributions of the paper include:

1. Description of the multivariable control strategy that uses input-output feedback linearization and continuous-time

estimation of derivatives up to arbitrary order via FIR filters for control of nonlinear systems with incompletely known

dynamics and arbitrary relative degree of the controlled outputs with respect to the inputs.
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2. Proof of the property of minimization of measurement noise provided by continuous-time derivative estimation via FIR

filters, as well as several auxiliary results and generalizations related to these FIR filters that are necessary before these

filters can be applied to multivariable control.

3. Proof of the properties of elimination of steady-state error and rejection of constant input disturbances without any integral

term, and exponential convergence of the controlled outputs to the setpoints provided by the proposed control strategy.

4. Quantitative analysis of the local stability and performance of the proposed control strategy for a given system.

The paper is organized as follows. Section 2 describes the system under study and the control problem. Section 3 presents

the control strategy via feedback linearization and derivative estimation. Section 4 shows the steady-state and convergence

properties of the proposed control strategy, presents methods to assess its stability and performance, and addresses practical

aspects related to the control strategy. Section 5 provides an illustrative example of reactor control without the use of kinetic

models, followed by Section 6 that concludes the paper.

2 PROBLEM DESCRIPTION

Consider a nonlinear dynamical system with =G states x(C), =D inputs u(C), and =H outputs y(C). The state dynamics are composed

of an unknown part and a known or available part, denoted by the subscripts D and 0, while the outputs are known functions of

the states. The true dynamical system is

¤x(C) = f
(
x(C), u(C)

)
, x(0) = x0, (1a)

y(C) = g
(
x(C)

)
, (1b)

where f
(
x(C), u(C)

)
and g

(
x(C)

)
are nonlinear functions of appropriate dimensions.

Suppose that the objective is to control y2 (C) := Sy(C), the =2 linear combinations of the outputs y(C) given by the =2 × =H

matrix S with rank (S) = =2 , which implies that =2 ≤ =H . Also, suppose that f
(
x(C), u(C)

)
and g

(
x(C)

)
are =+1 times differentiable

with respect to x(C) and the relative degree of the outputs y2 (C) with respect to u(C) is =. Consequently, the ?th time derivatives

of y2 (C) denoted as y
(?)
2 (C), for ? = 0, . . . , = − 1, are absolutely continuous functions of C that depend only on the absolutely

continuous states x(C), which implies that the time derivatives ¤y
(?)
2 (C) = y

(?+1)
2 (C), for ? = 0, . . . , =− 1, exist almost everywhere

and are Lebesgue integrable. Furthermore, suppose that

¤y
(=−1)
2 (C) = y

(=)
D (C) + y

(=)
0 (C), (2)

with

y
(=)
D (C) = sD

(
x(C)

)
, (3)

where sD
(
x(C)

)
is a fully unknown function of the absolutely continuous states x(C) only, and

y
(=)
0 (C) = s0

(
y(C), u(C)

)
, (4)

where s0
(
y(C), u(C)

)
is a function of the current outputs y(C) and inputs u(C) that is partially known with some modeling error.

In addition, suppose that s0
(
y(C), u(C)

)
is an affine function of the inputs, that is,

s0
(
y(C), u(C)

)
= #0

(
y(C)

)
+ B0

(
y(C)

)
u(C), (5)

for some vector #0

(
y(C)

)
and some invertible matrix B0

(
y(C)

)
, which implies that =2 = =D . As mentioned, s0

(
y(C), u(C)

)
is

partially known with some modeling error as

s̃0
(
y(C), u(C)

)
= #̃0

(
y(C)

)
+ B̃0

(
y(C)

)
u(C), (6)

where #̃0

(
y(C)

)
and B̃0

(
y(C)

)
are the modeled counterparts of #0

(
y(C)

)
and B0

(
y(C)

)
.

The goal is to control the outputs y2 (C) to the setpoints r(C) despite the fact that the function sD
(
x(C)

)
that corresponds to

the derivative y
(=)
D (C) is fully unknown, the functions #0

(
y(C)

)
and B0

(
y(C)

)
are partially known with some modeling error, the

derivatives y
(?)
2 (C), for ? = 0, . . . , = − 1, are unknown, and the inputs and outputs u(C) and y(C) are subject to disturbances. The

proposed control strategy must also ensure elimination of steady-state error and rejection of constant input disturbances without

any integral term, as well as fast convergence of the controlled outputs to the setpoints. It must also be possible to assess the

stability and performance of this strategy for a given system.
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3 CONTROL STRATEGY

This section describes the control strategy via feedback linearization and continuous-time estimation of unknown derivatives.

3.1 Control via feedback linearization

If the true system (1) were perfectly known, one could use the input-output feedback linearization law10

u(C) = B0

(
y(C)

)−1
(
v(C) − y

(=)
D (C) − #0

(
y(C)

) )
(7)

to set the rates of variation v(C) for y
(=−1)
2 (C) as follows:

¤y
(=−1)
2 (C) = v(C). (8)

In the remainder, we assume that r(=−1) (C) is piecewise-constant but may be discontinuous, which implies that ¤r(=−1) (C) = 0=2
between time instants with discontinuity of r(=−1) (C), while r(?) (C), for ? = 0, . . . , = − 2, are absolutely continuous functions of

C, which implies that the time derivatives ¤r(?) (C) = r(?+1) (C), for ? = 0, . . . , = − 2, exist almost everywhere and are Lebesgue

integrable. Then, for the rates of variation v(C), one could choose the control law

v(C) = g−=2

(
r(C) − y2 (C)

)
+
∑=−1

?=1

(=
?

)
g
?−=
2

(
r(?) (C) − y

(?)
2 (C)

)

= Ug−=2

(
r(C) − y2 (C)

)
+
∑=−1

?=0 (1 − U0?)
(=
?

)
g
?−=
2

(
r(?) (C) − y

(?)
2 (C)

)
, (9)

with 0 ≤ U ≤ 1, which would imply that
[
¤r(=−1) (C)T − ¤y

(=−1)
2 (C)T · · · ¤r(C)T − ¤y2 (C)

T
]T

= A2

[
r(=−1) (C)T − y

(=−1)
2 (C)T · · · r(C)T − y2 (C)

T
]T

, (10)

between time instants with discontinuity of r(=−1) (C), with

A2 =

[
A2,=−1 · · · A2,0

I=2 0=2×(=−2)=2 0=2×=2
0(=−2)=2×=2 I(=−2)=2 0 (=−2)=2×=2

]
, A2,? = −

(=
?

)
g
?−=
2 I=2 , ? = 0, . . . , = − 1, (11)

and all the eigenvalues of A2 equal to −g−1
2 . This would result in the solution

[
r(=−1) (C)T − y

(=−1)
2 (C)T · · · r(C)T − y2 (C)

T
]T

= exp
(
A2 (C − C0)

) [
r(=−1) (C0)

T − y
(=−1)
2 (C0)

T · · · r(C0)
T − y2 (C0)

T
]T

, (12)

where C0 is the previous time instant with discontinuity of r(=−1) (C), which would ensure exponential convergence of y
(?)
2 (C)

to r(?) (C), for ? = 0, . . . , = − 1, with time constants g2 in the ideal case of perfectly known functions sD
(
x(C)

)
, #0

(
y(C)

)
, and

B0

(
y(C)

)
, known derivatives y

(?)
2 (C), for ? = 0, . . . , = − 1, and no input or output disturbances.

However, as mentioned, the function sD
(
x(C)

)
that corresponds to the derivative y

(=)
D (C) is fully unknown, while the functions

#0

(
y(C)

)
and B0

(
y(C)

)
are partially known with some modeling error. Likewise, the derivatives y

(?)
2 (C), for ? = 0, . . . , = − 1,

are unknown. Furthermore, there is a difference between the system inputs u(C) and the actuator inputs ũ(C) due to the input

disturbances d(C) := u(C) − ũ(C) and a difference between the sensor outputs ỹ(C) and the system outputs y(C) due to the output

disturbances w(C) := ỹ(C) − y(C). We also define the sensor outputs ỹ2 (C) := Sỹ(C) and the disturbances w2 (C) := ỹ2 (C) − y2 (C).

In this case, it is not possible to use directly the control laws (7) and (9). However, one can approximate them by replacing

u(C) and y(C) by ũ(C) and ỹ(C), #0

(
y(C)

)
and B0

(
y(C)

)
by #̃0

(
ỹ(C)

)
and B̃0

(
ỹ(C)

)
, as well as the unknown derivatives y

(?)
2 (C),

for ? = 0, . . . , = − 1, and y
(=)
D (C) by their estimates ŷ

(?)
2 (C), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C), which results in:

ũ(C) = B̃0

(
ỹ(C)

)−1
(
ṽ(C) − ŷ

(=)
D (C) − #̃0

(
ỹ(C)

) )
, (13)

ṽ(C) = Ug−=2

(
r(C) − ỹ2 (C)

)
+
∑=−1

?=0 (1 − U0?)
(=
?

)
g
?−=
2

(
r(?) (C) − ŷ

(?)
2 (C)

)
. (14)

The estimation of these derivatives is investigated in the next subsection.

3.2 Estimation of unknown derivatives

One can use (2)–(4) to estimate the values ŷ
(?)
2 (C), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C) of the unknown derivatives by applying an

FIR filter to the sensor outputs ỹ2 (C) and the available rates

ỹ
(=)
0 (C) = s̃0

(
ỹ(C), ũ(C)

)
, (15)
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in the interval [C − ΔC, C], where ΔC is the size of the filter window.

Remark 1. One can also apply an infinite impulse response (IIR) filter to ỹ2 (C) and ỹ
(=)
0 (C), which results in a linear observer31,32.

However, the following results about derivative estimation refer to the FIR filter. These results were discussed previously for

derivatives up to first order in the discrete-time case36 and in the continuous-time case38 and are extended here to derivatives

up to arbitrary order in the continuous-time case such that closed-form expressions for the FIR filter and the corresponding

differences between derivative estimates and true derivatives are still obtained. As discussed in the remainder of this section,

the advantages of the FIR filter with respect to an IIR filter are the property of deadbeat estimation of the unknown derivatives

after the window size ΔC, instead of asymptotic convergence, and the minimization of the effect of measurement noise w2 (C) for

a given ΔC without the need to tune the observer parameters.

Remark 2. Since r(=−1) (C) may be discontinuous, the same is valid for ũ(C) and ỹ
(=)
0 (C) and consequently for u(C), y

(=)
0 (C), and

y
(=)
2 (C). On the other hand, since x(C) is absolutely continuous, the same is valid for y(C), y

(?)
2 (C), for ? = 0, . . . , = − 1, and

y
(=)
D (C). We also assume that w(?) (C), for ? = 0, . . . , = − 1 are absolutely continuous, thus the same is valid for ỹ(C) and ỹ

(?)
2 (C),

for ? = 0, . . . , = − 1. The fact that these functions are absolutely continuous is used in several technical results in this section.

For any distance I from the beginning of the filter window, we propose to compute the estimates ŷ
(?)
2 (C − ΔC + I), for

? = 0, . . . , = − 1, and ŷ
(=)
D (C − ΔC + I) as the quantities that minimize the mean squared error between the measured sensor

outputs ỹ2 (C − ΔC + g) and the predicted outputs ŷ2 (C − ΔC + g) for g ∈ [0,ΔC], with the goal of minimizing the effect of w2 (C)

for a given ΔC. This mean squared error is defined as

�=,I (C) =
1
ΔC

∫
ΔC

0
&̂=,I (C − ΔC + g)T&̂=,I (C − ΔC + g)dg, (16)

where the prediction errors are

&̂=,I (C − ΔC + g) = ỹ2 (C − ΔC + g) −
∑=−1

;=0
(g−I);

;!
ŷ
(;)
2 (C − ΔC + I) −

∫ g

I

(g−Z )=−1

(=−1) !
ŷ
(=)
2 (C − ΔC + Z )dZ , (17)

with

ŷ
(=)
2 (C − ΔC + g) = ŷ

(=)
D (C − ΔC + I) + ỹ

(=)
0 (C − ΔC + g). (18)

These derivative estimates are given by the following lemma.

Lemma 1. The predicted outputs ŷ2 (C) that minimize the mean squared error �=,I (C) are given by

ŷ
(?)
2 (C − ΔC + I) =

?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

4=,I (C − ΔC + g)dg, ? = 0, . . . , = − 1, (19)

ŷ
(=)
D (C − ΔC + I) = =!

ΔC=+1

∫
ΔC

0

(
c=,I (g)

)
=+1

4=,I (C − ΔC + g)dg, (20)

where

4=,I (C − ΔC + g) = ỹ2 (C − ΔC + g) −
∫ g

I

(g−Z )=−1

(=−1) !
ỹ
(=)
0 (C − ΔC + Z )dZ , (21)

the (= + 1)-dimensional vector function c=,I (g) is defined as
(
c=,I (g)

)
?+1

=
∑=

8=0

(
g−I
ΔC

)8 (
AA

=

)
8+1, ?+1

, ? = 0, . . . , =, (22)

and the (= + 1) × (= + 1) matrix AA
= is the inverse of GA

= defined as

(
GA

=

)
;+1,8+1

=
∫ A

A−1
G8+;dG =

A 8+;+1−(A−1)8+;+1

8+;+1
, ; = 0, . . . , =, 8 = 0, . . . , =, (23)

with A = 1 − I
ΔC

. Furthermore, ŷ
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C − ΔC + I) are the linear unbiased estimators of

y
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and y

(=)
D (C − ΔC + I) that provide minimal variance if the following assumptions hold:

1. The unknown derivatives y
(=)
D (C − ΔC + g) are constant for g ∈ [0,ΔC].

2. The mismatch between ỹ
(=)
0 (C) and y

(=)
0 (C) is negligible in comparison with the measurement noise w2 (C).

3. The measured outputs ỹ2 (C) are corrupted by zero-mean noise w2 (C).

4. The noise w2 (C) is uncorrelated and homoscedastic with covariance �w2
, which implies that, for any !2 function 6(C),

Var
[

1
ΔC

∫
ΔC

0
w2 (C − ΔC + g)6(g)dg

]
=

1
ΔC

∫
ΔC

0
6(g)2dg�w2

. (24)

Proof. See Appendix A.
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Remark 3. Lemma 1 can be regarded as an adaptation of Gauss-Markov Theorem to the context of continuous-time observations

since Gauss-Markov Theorem also states that the estimator that minimizes the mean squared error is the linear unbiased estimator

that provides minimal variance if the observation errors are uncorrelated and homoscedastic and have mean equal to zero.

Hence, to determine ŷ
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C − ΔC + I), it is necessary to know AA

=. For this, we use

the concept of shifted Legendre polynomials, which allows us to obtain expressions for the elements of AA
= according to the

following lemma.

Lemma 2. The elements of AA
= are given by
(
A1

=

)

8+1,<+1
= (−1)8+<

∏=
:=0 (=+8+1−:) (=+<+1−:)

(8+<+1) 8!(=−8) !<!(=−<)! , (25)

(
A

1/2
=

)

8+1,<+1
= 28+<

∏=
:=0 (=+8+1−2:) (=+<+1−2:) +

∏=
:=0 (=+8−2:) (=+<−2:)

(8+<+1) 8!(=−8) !<!(=−<) !
, (26)

(
A0

=

)

8+1,<+1
=

∏=
:=0 (=+8+1−:) (=+<+1−:)

(8+<+1) 8!(=−8) !<!(=−<) !
, (27)

for A ∈ {0, 1/2, 1}. In addition, for all 0 ≤ B ≤ 1,
(
AB

=

)
8+1, ?+1

=
∑=

9=8

∑=
<=?

( 9
8

) (<
?

)
(A − B) 9−8+<−? (

AA
=

)
9+1,<+1

, 8 = 0, . . . , =, ? = 0, . . . , =. (28)

Proof. See Appendix B.

The following lemma builds on the previous results and shows the outcome of applying a more general version of the FIR

filter in Lemma 1 to ỹ2 , instead of 4=,I , using the definition

ỹ
(=)
D (C) = ỹ

(=)
2 (C) − ỹ

(=)
0 (C) = w

(=)
2 (C) + y

(=)
D (C) + y

(=)
0 (C) − ỹ

(=)
0 (C). (29)

Lemma 3. Let H ?,=,I (ỹ2 , C) be the ?th differentiation continuous-time FIR filter of order = and window size ΔC given for the

point at a distance I from the beginning of the filter window and applied to the function ỹ2 on the interval [C − ΔC, C]. If ỹ
(=−1)
2

is absolutely continuous and H ?,=,I (ỹ2 , C) is defined as

H?,=,I (ỹ2 , C) :=
?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

ỹ2 (C − ΔC + g)dg, (30)

where, for A ∈ {0, 1/2, 1} and all 0 ≤ B ≤ 1,

(
c=,I (g)

)
?+1

=
∑=

<=?

(<
?

) (
I
ΔC

− 1 + A
)<−?

(c= (g))<+1 =
∑=

8=0

(
g
ΔC

− 1 + B
) 8 (

aB?,=,I

)

8+1
, (31)

with

(c= (g))<+1 =
∑=

8=0

(
g
ΔC

− 1 + B
) 8 ∑=

9=8

( 9
8

)
(A − B) 9−8

(
AA

=

)
9+1,<+1

, < = 0, . . . , =, (32)
(
aB?,=,I

)

8+1
=
∑=

9=8

( 9
8

)
(A − B) 9−8

∑=
<=?

(<
?

) (
I
ΔC

− 1 + A
)<−? (

AA
=

)
9+1,<+1

, 8 = 0, . . . , =, (33)

where AA
= is the inverse of GA

=, then

H ?,=,I (ỹ2 , C) = ỹ
(?)
2 (C − ΔC + I) +

?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1)! (g − Z )=−1 dZdg

= ỹ
(?)
2 (C − ΔC + I) +

?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )

(=−1) ! (g − Z )=−1 dZdg, ? = 0, . . . , = − 1, (34)

H=,=,I (ỹ2 , C) = ỹ
(=)
D (C − ΔC + I) + =!

ΔC=+1

∫
ΔC

0

(
c=,I (g)

)
=+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1)!
(g − Z )=−1 dZdg

=
=!

ΔC=+1

∫
ΔC

0

(
c=,I (g)

)
=+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )

(=−1)!
(g − Z )=−1 dZdg. (35)

Proof. See Appendix C.

Remark 4. The function H?,=,I (ỹ2 , C) corresponds to the continuous-time version of the ?th-differentiation Savitzky-Golay

filter of order =, which was developed originally for the discrete-time case39 and has been called algebraic time-derivative

estimation in the continuous-time case30. Even though the FIR filters in this section coincide with the FIR filters in previous

work29,30, this section provides several new auxiliary results and generalizations that are necessary before these FIR filters can

be applied to multivariable control and their implications on the performance of the control strategy can be properly studied.

Also, the use of a smaller window size ΔC of the differentiation filter amplifies the effect of measurement noise in w2 (C).
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Lemma 3 uses the fact that ỹ
(=−1)
2 is absolutely continuous to derive expressions for all the necessary derivative estimates

and relates the remainder H?,=,I (ỹ2 , C) − ỹ
(?)
2 (C − ΔC + I) (or H ?,=,I (ỹ2 , C) − ỹ

(=)
D (C − ΔC + I) if ? = =) to a double integral of

ỹ
(=)
2 (C −ΔC + Z ) − ỹ

(=)
D (C −ΔC + I) = ỹ

(=)
0 (C −ΔC + Z ) + ỹ

(=)
D (C −ΔC + Z ) − ỹ

(=)
D (C −ΔC + I) for Z ∈ [0,ΔC]. Now we aim to obtain a

more explicit expression for this remainder in terms of a single convolution integral of the known function ỹ
(=)
0 (C − ΔC + g) for

g ∈ [0,ΔC] and of the unknown function ỹ
(=)
D (C −ΔC + g) − ỹ

(=)
D (C−ΔC + I) for g ∈ [0,ΔC], which is done in the following lemma.

Lemma 4. If ỹ
(=−1)
2 is absolutely continuous and H?,=,I (ỹ2 , C) is defined as in Lemma 3, then

H?,=,I (ỹ2 , C) = ỹ
(?)
2 (C − ΔC + I) +V?,=,I (ỹ

(=)
D , C) +Z?,=,I (ỹ

(=)
0 , C)

= ỹ
(?)
2 (C − ΔC + I) +Z?,=,I (ỹ

(=)
D , C) +Z?,=,I (ỹ

(=)
0 , C), ? = 0, . . . , = − 1, (36)

H=,=,I (ỹ2 , C) = ỹ
(=)
D (C − ΔC + I) +V=,=,I (ỹ

(=)
D , C) +Z=,=,I (ỹ

(=)
0 , C)

= Z=,=,I (ỹ
(=)
D , C) +Z=,=,I (ỹ

(=)
0 , C), (37)

with

V?,=,I (ỹ
(=)
D , C) =

?!

ΔC ?+1

(∫ I

0

(
c
(−=)

=,I,1
(g)

)
?+1

ỹ
(=)
D (C−ΔC+g)−ỹ

(=)
D (C−ΔC+I)

(−1)=
dg +

∫
ΔC

I

(
c
(−=)

=,I,0
(g)

)
?+1

ỹ
(=)
D (C−ΔC+g)−ỹ

(=)
D (C−ΔC+I)

(−1)=
dg

)

=
?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
D (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1) ! (g − Z )=−1 dZdg, (38)

Z?,=,I (ỹ
(=)
0 , C) =

?!

ΔC ?+1

(∫ I

0

(
c
(−=)

=,I,1
(g)

)
?+1

ỹ
(=)
0 (C−ΔC+g)

(−1)=
dg +

∫
ΔC

I

(
c
(−=)

=,I,0
(g)

)
?+1

ỹ
(=)
0 (C−ΔC+g)

(−1)=
dg

)

=
?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
0 (C−ΔC+Z )

(=−1) !
(g − Z )=−1 dZdg, (39)

where
(
c
(−=)
=,I,B (g)

)
?+1

=
∑=

8=0

(
g
ΔC

− 1 + B
) 8+= ΔC=8!

(8+=) !

(
aB?,=,I

)

8+1
(40)

is the =th antiderivative of
(
c=,I (g)

)
?+1

such that
(
c
(−=)
=,I,B ((1 − B) ΔC)

)
?+1

= 0.

Proof. See Appendix D.

Lemma 4 shows that H ?,=,I (ỹ2 , C) − ỹ
(?)
2 (C − ΔC + I) (or H ?,=,I (ỹ2 , C) − ỹ

(=)
D (C − ΔC + I) if ? = =) discounted by a single

convolution integral of the known function ỹ
(=)
0 (C −ΔC + g) for g ∈ [0,ΔC] equals the same convolution integral of the unknown

function ỹ
(=)
D (C − ΔC + g) − ỹ

(=)
D (C − ΔC + I) for g ∈ [0,ΔC]. The particular case ? = 1, = = 1, and I = ΔC is shown below.

Lemma 5. If ỹ2 is absolutely continuous and D(ỹ2 , C) is defined as

D(ỹ2, C) := H1,1,ΔC (ỹ2 , C) =
1

ΔC2

∫
ΔC

0

(
c1,ΔC (g)

)
2

ỹ2 (C − ΔC + g)dg, (41)

where
(
c1,ΔC (g)

)
2
=

(
a1

1,1,ΔC

)

1
+
(
g
ΔC

) (
a1

1,1,ΔC

)

2
, (42)

with
(
a1

1,1,ΔC

)

1
= −6,

(
a1

1,1,ΔC

)

2
= 12, (43)

then

D(ỹ2 , C) = ¤̃yD (C) +R( ¤̃yD, C) +W( ¤̃y0, C) = W ( ¤̃yD, C) +W ( ¤̃y0, C), (44)

with

R( ¤̃yD, C) := V1,1,ΔC ( ¤̃yD, C) =
∫

ΔC

0
6
(
g
ΔC

−
(
g
ΔC

)2) ¤̃yD (C−ΔC+g)−¤̃yD (C)

ΔC
dg, (45)

W ( ¤̃y0, C) := Z1,1,ΔC ( ¤̃y0, C) =
∫
ΔC

0
6
(
g
ΔC

−
(
g
ΔC

)2) ¤̃y0 (C−ΔC+g)

ΔC
dg. (46)

Proof. See Appendix E.

Then, we can note that, according to the definitions in Lemmas 3 and 4,

ŷ
(?)
2 (C) = H?,=,ΔC (ỹ2 , C) −Z?,=,ΔC (ỹ

(=)
0 , C), ? = 0, . . . , = − 1, (47)

ŷ
(=)
D (C) = H=,=,ΔC (ỹ2 , C) −Z=,=,ΔC (ỹ

(=)
0 , C), (48)
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which implies that, from (36) and (37),

ŷ
(?)
2 (C) = ỹ

(?)
2 (C) +V?,=,ΔC (ỹ

(=)
D , C) = ỹ

(?)
2 (C) +Z?,=,ΔC (ỹ

(=)
D , C), ? = 0, . . . , = − 1, (49)

ŷ
(=)
D (C) = ỹ

(=)
D (C) +V=,=,ΔC (ỹ

(=)
D , C) = Z=,=,ΔC (ỹ

(=)
D , C). (50)

In particular, if = = 1, we can note that, according to the definitions in Lemmas 3 and 4,

¤̂yD (C) = H1,1,ΔC (ỹ2 , C) −Z1,1,ΔC ( ¤̃y0, C), (51)

which implies that, from (36) and (37),

¤̂yD (C) = ¤̃yD (C) +V1,1,ΔC ( ¤̃yD, C) = Z1,1,ΔC ( ¤̃yD , C). (52)

Remark 5. From (49), (50), and the definition of V?,=,I in Lemma 4, one can observe that, if ỹ
(=)
D (C − ΔC + g) is constant for

g ∈ [0,ΔC], the estimates ŷ
(?)
2 (C) and ŷ

(=)
D (C) yield the desired values ỹ

(?)
2 (C) and ỹ

(=)
D (C). This results in the deadbeat property

claimed in Remark 1. In addition, as shown in Lemma 1, these estimates minimize both the mean squared error and the effect

of measurement noise w2 (C) for a given ΔC as claimed in Remark 1.

In summary, the proposed controller via feedback linearization and continuous-time derivative estimation is given by (13),

(14) with (6), (15), (47), (48) for the system (2)–(5). The next section shows some properties provided by this control strategy.

3.3 Laplace transform of the derivative estimates

Before we describe the properties of control via feedback linearization and continuous-time derivative estimation in the next

section, it is necessary to convert the estimation of unknown derivatives developed for the time domain in this section to the

frequency domain by applying the Laplace transform. This result will be used to establish the convergence properties of the

control strategy in Theorem 8. It is assumed that, for each time-varying signal s(C), the initial conditions s(0) correspond to the

equilibrium point s̄, deviation variables are defined as Xs(C) := s(C) − s̄, which implies that the initial conditions Xs(0) are zero

and can be omitted, and the corresponding Laplace transforms are denoted as S(B). The Laplace transform of the derivative

estimates ŷ
(?)
2 (C), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C) is obtained in the following lemma.

Lemma 6. The estimation of ŷ
(?)
2 (C), for ? = 0, . . . , =−1, and ŷ

(=)
D (C) in (47) and (48), which implies (49) and (50), is expressed

in the frequency domain by applying the Laplace transform as

Ŷ
(?)

2 (B) =
?!

ΔC ?+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8 ∑=
9=8

( 9
8

)
(−1) 9−8

(
A0

=

)

9+1, ?+1
exp (−BC) dCSỸ(B)

−
?!

ΔC ?+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8+= ΔC=8!
(8+=) !

∑=
9=8

( 9
8

)
(−1)=+ 9−8

(
A0

=

)

9+1, ?+1
exp (−BC) dCỸ

(=)
0 (B)

= Ỹ
(?)
2 (B)

+
?!

ΔC ?+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8+= ΔC=8!
(8+=) !

∑=
9=8

( 9
8

)
(−1)=+ 9−8

(
A0

=

)

9+1, ?+1
exp (−BC) dCỸ

(=)
D (B), ? = 0, . . . , = − 1, (53)

Ŷ
(=)

D (B) = =!

ΔC=+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8 ∑=
9=8

( 9
8

)
(−1) 9−8

(
A0

=

)

9+1,=+1
exp (−BC) dCSỸ(B)

− =!

ΔC=+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8+= ΔC=8!
(8+=) !

∑=
9=8

( 9
8

)
(−1)=+ 9−8

(
A0

=

)

9+1,=+1
exp (−BC) dCỸ

(=)
0 (B)

=
=!

ΔC=+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8+= ΔC=8!
(8+=) !

∑=
9=8

( 9
8

)
(−1)=+ 9−8

(
A0

=

)

9+1,=+1
exp (−BC) dCỸ

(=)
D (B). (54)

Proof. See Appendix F.

4 PROPERTIES OF THE CONTROL STRATEGY

This section shows the steady-state and convergence properties provided by the control strategy developed in the previous

section, presents methods to assess its stability and performance, and addresses practical aspects related to the control strategy.
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4.1 Steady-state and convergence properties

We start by proving that, although this controller does not include any integral term, it eliminates steady-state error and rejects

constant input disturbances, as shown by the following theorem.

Theorem 7. The controller given by (13), (14) with (6), (15), (47), (48) for the system (2)–(5) eliminates steady-state error and

rejects constant input disturbances if steady state is reached.

Proof. Firstly, note that the controller with (47), (48) enforces (49), (50) with (29). The evaluation is performed at steady state,

thus r(C) = r̄, d(C) = d̄, w(C) = w̄, u(C) = ū, y(C) = ȳ, x(C) = x̄, and y
(?)
2 (C) = r(?) (C) = w

(?)
2 (C) = 0=2 for ? = 1, . . . , =, that is,

y
(?)
2 (C) = 0?ȳ2 , r(?) (C) = 0? r̄, w

(?)
2 (C) = 0?w̄2 for ? = 0, . . . , =. Then, (13), (14), (15), (29), (49), (50) are written as

ū − d̄ = B̃0

(
ȳ + w̄

)−1
(
ṽ(C) − ŷ

(=)
D (C) − #̃0

(
ȳ + w̄

) )
, (55)

ṽ(C) = Ug−=2

(
r̄ − ȳ2 − w̄2

)
+
∑=−1

?=0 (1 − U0?)
(=
?

)
g
?−=
2

(
0? r̄ − ŷ

(?)
2 (C)

)
, (56)

ỹ
(=)
0 (C) = s̃0

(
ȳ + w̄, ū − d̄

)
, (57)

ỹ
(=)
D (C) = y

(=)
D (C) + y

(=)
0 (C) − ỹ

(=)
0 (C), (58)

ŷ
(?)
2 (C) = 0? ȳ2 + 0?w̄2 +V?,=,ΔC (ỹ

(=)
D , C), ? = 0, . . . , = − 1, (59)

ŷ
(=)
D (C) = ỹ

(=)
D (C) +V=,=,ΔC (ỹ

(=)
D , C), (60)

while (2)–(5) and (6) are written as

0=2 = y
(=)
D (C) + y

(=)
0 (C), (61)

y
(=)
D (C) = sD

(
x̄
)
, (62)

y
(=)
0 (C) = s0

(
ȳ, ū

)
, (63)

s0
(
ȳ, ū

)
= #0

(
ȳ
)
+ B0

(
ȳ
)
ū, (64)

s̃0
(
ȳ + w̄, ū − d̄

)
= #̃0

(
ȳ + w̄

)
+ B̃0

(
ȳ + w̄

) (
ū − d̄

)
. (65)

This implies that

ỹ
(=)
D (C) = sD

(
x̄
)
+ #0

(
ȳ
)
− #̃0

(
ȳ + w̄

)
+ B0

(
ȳ
)
d̄ +

(
B0

(
ȳ
)
− B̃0

(
ȳ + w̄

) ) (
ū − d̄

)
(66)

is constant, which means that, from the definition of V?,=,I in Lemma 4,

ŷ
(?)
2 (C) = 0?ȳ2 + 0?w̄2 , ? = 0, . . . , = − 1, (67)

ŷ
(=)
D (C) = ỹ

(=)
D (C). (68)

Consequently, if steady state is reached,

0=2 = y
(=)
D (C) + y

(=)
0 (C)

= sD
(
x̄
)
+ s0

(
ȳ, ū

)

= sD
(
x̄
)
+ #0

(
ȳ
)
+ B0

(
ȳ
)
ū

= sD
(
x̄
)
+ #0

(
ȳ
)
+ B0

(
ȳ
)
ū + ṽ(C) − ŷ

(=)
D (C) − #̃0

(
ȳ + w̄

)
− B̃0

(
ȳ + w̄

) (
ū − d̄

)

= sD
(
x̄
)
+ Ug−=2

(
r̄ − ȳ2 − w̄2

)
+
∑=−1

?=0 (1 − U0?)
(=
?

)
g
?−=
2

(
0? r̄ − ŷ

(?)
2 (C)

)
− ŷ

(=)
D (C)

+ #0

(
ȳ
)
− #̃0

(
ȳ + w̄

)
+ B0

(
ȳ
)
d̄ +

(
B0

(
ȳ
)
− B̃0

(
ȳ + w̄

) ) (
ū − d̄

)

= sD
(
x̄
)
+ g−=2

(
r̄ − ȳ2 − w̄2

)
− ỹ

(=)
D (C)

+ #0

(
ȳ
)
− #̃0

(
ȳ + w̄

)
+ B0

(
ȳ
)
d̄ +

(
B0

(
ȳ
)
− B̃0

(
ȳ + w̄

) ) (
ū − d̄

)

= g−=2

(
r̄ − ȳ2 − w̄2

)
, (69)

which shows that ȳ2 + w̄2 = r̄ at steady state regardless of the values of r̄, d̄, and w̄ and implies that the controller eliminates

steady-state error and rejects constant input disturbances.

Theorem 7 considers the steady-state case, which implies that the setpoints and disturbances must be constant. For this case,

Theorem 7 shows that the control strategy in this paper eliminates steady-state error and rejects constant input disturbances if
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steady state is reached, in the same way as a proportional-integral controller, although the control strategy in this paper does

not include any integral term. The discussion about the effect of time-varying setpoints and disturbances on the closed-loop

stability and performance will be presented in the next subsection.

The presented control strategy requires only two design parameters with a well-defined meaning: (i) ΔC is the window size

of the differentiation filter, which should be sufficiently small so that the unknown function sD
(
x(C)

)
is approximately constant

in this window and the resulting derivative estimates are sufficiently accurate, but not too small to prevent amplification of

measurement noise in w2 (C); and (ii) g2 is the inverse of the =th root of the controller gain in (14), which means that it should not

be too small due to the noise, but sufficiently small since it is expected to be approximately equal to the dominant closed-loop

time constant if the derivative estimation is sufficiently accurate and the variations of the disturbances w
(=)
2 (C) and d(C) and of

the modeling error in the known part of the model are bounded. The latter property is shown in the following theorem.

Theorem 8. Denote the supremum of the largest singular value of the matrix K0 (C) as :0 := supC f̄
(
K0 (C)

)
and the H∞-norm

of the transfer function �4 (B)I=2 = Ŷ
(∗)

D (B)Ỹ
(=)
D (B)−1 inferred from Lemma 6 as ‖�4 (B)‖∞ := supl∈R |�4 (l 9) |, where

K0 (C) :=
(
B0

(
y(C)

)
− B̃0

(
ỹ(C)

) )
B̃0

(
ỹ(C)

)−1
, (70)

Ŷ
(∗)

D (B) :=
∑=−1

?=0 (1 − U0?)
(=
?

)
g
?−=
2

(
Ŷ

(?)

2 (B) − Ỹ
(?)
2 (B)

)
+ Ŷ

(=)

D (B). (71)

Suppose that (i) :0 < 1
‖�4 (B) ‖∞

, (ii) the control of ỹ
(?)
2 (C) to r(?) (C), for ? = 0, . . . , = − 1, keeps ¤x(C) bounded, and (iii) the

variations of the disturbances w
(=)
2 (C−ΔC+g) and B0

(
y(C−ΔC+g)

)
d(C−ΔC+g) and of the modeling error in the known function

#0

(
y(C − ΔC + g)

)
are bounded. Then, there exists a bounded vector %B and a scalar ΔC̄ > 0 such that, for any sufficiently small

window size ΔC ≤ ΔC̄, (i) the disturbances w
(=)
2 (C − ΔC + g), the unknown function sD

(
x(C − ΔC + g)

)
, and the modeling error in

the known function s0
(
y(C − ΔC + g), u(C − ΔC + g)

)
do not vary more than %B in the interval g ∈ [0,ΔC], and (ii) the controller

given by (13), (14) with (6), (15), (47), (48) for the system (2)–(5) forces ỹ
(?)
2 (C) to converge exponentially to a distance linear

in ‖%B ‖ from r(?) (C), for ? = 0, . . . , =− 1, with time constants g2 , that is, there exists a nondecreasing scalar function 2B (ΔC/g2)

and a matrix K2

(
C−Z
g2

, g2

)
with elements that depend polynomially on

C−Z
g2

such that


[
e
(=−1)
2 (C)T · · · e2 (C)

T
]T

− exp
(
− C−C0

g2

)
K2

(
C−C0
g2

, g2

) [
e
(=−1)
2 (C0)

T · · · e2 (C0)
T
]T 

≤
∫ C

C0
exp

(
−

C−Z
g2

) K2

(
C−Z
g2

, g2

)2B (ΔC/g2 )‖%B‖dZ , (72)

where e2 (C) := r(C) − ỹ2 (C) and C0 is the previous time instant with discontinuity of r(=−1) (C).

Proof. Again, (2)–(5), (6), (13), (14), (15), (29), (49), (50) are valid for the system and the controller, which implies that

ỹ
(=)
D (C) = w

(=)
2 (C) + sD

(
x(C)

)
+ #0

(
y(C)

)
− #̃0

(
ỹ(C)

)
+ B0

(
y(C)

)
d(C) +

(
B0

(
y(C)

)
− B̃0

(
ỹ(C)

) )
ũ(C), (73)

where

ũ(C) = B̃0

(
ỹ(C)

)−1
(
Ug−=2

(
r(C) − ỹ2 (C)

)
+
∑=−1

?=0 (1 − U0?)
(=
?

)
g
?−=
2

(
r(?) (C) − ŷ

(?)
2 (C)

)
− ŷ

(=)
D (C) − #̃0

(
ỹ(C)

) )

= B̃0

(
ỹ(C)

)−1
(∑=−1

?=0

(=
?

)
g
?−=
2

(
r(?) (C) − ỹ

(?)
2 (C)

)
− ŷ

(∗)
D (C) − #̃0

(
ỹ(C)

) )
, (74)

with

ŷ
(∗)
D (C) :=

∑=−1
?=0 (1 − U0?)

(=
?

)
g
?−=
2

(
ŷ
(?)
2 (C) − ỹ

(?)
2 (C)

)
+ ŷ

(=)
D (C). (75)

The previous equations indicate the existence of a linear time-variant relation between ỹ
(=)
D (C) and ŷ

(∗)
D (C) given by

ỹ
(=)
D (C) = −K0 (C)ŷ

(∗)
D (C) + uD (C), (76)

with

uD (C) := w
(=)
2 (C) + sD

(
x(C)

)
+ #0

(
y(C)

)
− #̃0

(
ỹ(C)

)
+ B0

(
y(C)

)
d(C)

+ K0 (C)
(∑=−1

?=0

(=
?

)
g
?−=
2

(
r(?) (C) − ỹ

(?)
2 (C)

)
− #̃0

(
ỹ(C)

) )
. (77)

To show the boundedness of the variations of ŷ
(∗)
D (C), ỹ

(=)
D (C), and B̃0

(
ỹ(C)

)
ũ(C), we use the circle criterion in a similar

way to previous work32. To this end, we note that, from the definition of :0 and the singular value decomposition K0 (C) =
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U(C)�(C)V(C)T, where U(C) and V(C) are matrices with orthogonal columns and �(C) is a diagonal matrix of singular values,

ŷ
(∗)
D (C)TK0 (C)

TK0 (C)ŷ
(∗)
D (C) = ŷ

(∗)
D (C)TV(C)�(C)�(C)V(C)Tŷ

(∗)
D (C) ≤ ŷ

(∗)
D (C)TV(C)

(
:2
0I
)
V(C)Tŷ

(∗)
D (C) = :2

0 ŷ
(∗)
D (C)Tŷ

(∗)
D (C). (78)

Then, it is possible to show that the negative feedback loop with input uD (C) that consists in the connection of the transfer

function �4 (B)I=2 and the time-variant gain K0 (C) is input-to-state stable if ‖�4 (B)‖∞:0 < 140. Since the latter condition is

satisfied by assumption, the variations of ŷ
(∗)
D (C), ỹ

(=)
D (C), and B̃0

(
ỹ(C)

)
ũ(C) are bounded if the variations of uD (C) are bounded.

One can then define

Δw
(=)
2 (C − ΔC + g) = w

(=)
2 (C) − w

(=)
2 (C − ΔC + g), (79)

ȳ
(=+1)
D (C − ΔC + g) =

∫
ΔC

g

msD
mx

(
x(C−ΔC+Z )

)
¤x(C−ΔC+Z )dZ

ΔC
, (80)

Δy
(=)
0 (C − ΔC + g) = #0

(
y(C)

)
− #̃0

(
ỹ(C)

)
+ B0

(
y(C)

)
d(C) + K0 (C)B̃0

(
ỹ(C)

)
ũ(C)

− #0

(
y(C − ΔC + g)

)
+ #̃0

(
ỹ(C − ΔC + g)

)
− B0

(
y(C − ΔC + g)

)
d(C − ΔC + g)

− K0 (C − ΔC + g)B̃0

(
ỹ(C − ΔC + g)

)
ũ(C − ΔC + g), (81)

for g ∈ [0,ΔC]. This implies that

ỹ
(=)
D (C − ΔC + g) = w

(=)
2 (C − ΔC + g) + sD

(
x(C − ΔC + g)

)

+ s0
(
y(C − ΔC + g), u(C − ΔC + g)

)
− s̃0

(
ỹ(C − ΔC + g), ũ(C − ΔC + g)

)

= w
(=)
2 (C) − Δw

(=)
2 (C − ΔC + g) + sD

(
x(C)

)
− ΔCȳ

(=+1)
D (C − ΔC + g)

+ s0
(
y(C), u(C)

)
− s̃0

(
ỹ(C), ũ(C)

)
− Δy

(=)
0 (C − ΔC + g)

= ỹ
(=)
D (C) − Δw

(=)
2 (C − ΔC + g) − ΔCȳ

(=+1)
D (C − ΔC + g) − Δy

(=)
0 (C − ΔC + g), (82)

which shows that, if the control of ỹ
(?)
2 (C) to r(?) (C), for ? = 0, . . . , = − 1, keeps ¤x(C) bounded and the variations of the

disturbances w
(=)
2 (C−ΔC+g) and B0

(
y(C−ΔC+g)

)
d(C−ΔC+g) and of the modeling error in the known function #0

(
y(C−ΔC+g)

)

are bounded, then there exists a bounded vector %B and a scalar ΔC̄ > 0 such that, for any sufficiently small window size

ΔC ≤ ΔC̄, the disturbances w
(=)
2 (C − ΔC + g), the unknown function sD

(
x(C − ΔC + g)

)
, and the modeling error in the known

function s0
(
y(C − ΔC + g), u(C − ΔC + g)

)
do not vary more than %B in the interval g ∈ [0,ΔC], where these variations are given

by Δw
(=)
2 (C − ΔC + g), ΔCȳ

(=+1)
D (C − ΔC + g), and Δy

(=)
0 (C − ΔC + g), respectively.

Moreover, from (49), (50), (82), and the definitions of V?,=,I and Z?,=,I in Lemma 4, one can observe that

ŷ
(?)
2 (C) = ỹ

(?)
2 (C) −Z?,=,ΔC (Δw

(=)
2 + ΔCȳ

(=+1)
D + Δy

(=)
0 , C), ? = 0, . . . , = − 1, (83)

ŷ
(=)
D (C) = ỹ

(=)
D (C) −Z=,=,ΔC (Δw

(=)
2 + ΔCȳ

(=+1)
D + Δy

(=)
0 , C). (84)

Consequently,

¤y
(=−1)
2 (C) = y

(=)
D (C) + y

(=)
0 (C)

= sD
(
x(C)

)
+ s0

(
y(C), u(C)

)

= sD
(
x(C)

)
+ #0

(
y(C)

)
+ B0

(
y(C)

)
u(C)

= sD
(
x(C)

)
+ #0

(
y(C)

)
+ B0

(
y(C)

)
u(C) + ṽ(C) − ŷ

(=)
D (C) − #̃0

(
ỹ(C)

)
− B̃0

(
ỹ(C)

)
ũ(C)

= sD
(
x(C)

)
+ Ug−=2

(
r(C) − ỹ2 (C)

)
+
∑=−1

?=0 (1 − U0?)
(=
?

)
g
?−=
2

(
r(?) (C) − ŷ

(?)
2 (C)

)
− ŷ

(=)
D (C)

+ #0

(
y(C)

)
− #̃0

(
ỹ(C)

)
+ B0

(
y(C)

)
d(C) +

(
B0

(
y(C)

)
− B̃0

(
ỹ(C)

) )
ũ(C)

= sD
(
x(C)

)
+
∑=−1

?=0

(=
?

)
g
?−=
2

(
r(?) (C) − ỹ

(?)
2 (C)

)
− ỹ

(=)
D (C)

+ #0

(
y(C)

)
− #̃0

(
ỹ(C)

)
+ B0

(
y(C)

)
d(C) +

(
B0

(
y(C)

)
− B̃0

(
ỹ(C)

) )
ũ(C)

+
∑=

?=0 (1 − U0?)
(=
?

)
g
?−=
2 Z?,=,ΔC (Δw

(=)
2 + ΔCȳ

(=+1)
D + Δy

(=)
0 , C)

=
∑=−1

?=0

(=
?

)
g
?−=
2 e

(?)
2 (C) − w

(=)
2 (C) − u2 (C), (85)
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where e2 (C) := r(C) − ỹ2 (C) and, from the definition of Z?,=,I in Lemma 4,

u2 (C) := −
∑=

?=0 (1 − U0?)
(=
?

)
g
?−=
2 Z?,=,ΔC (Δw

(=)
2 + ΔCȳ

(=+1)
D + Δy

(=)
0 , C)

= −
∑=

?=0 (1 − U0?)
(=
?

)
g
?−=
2

?!

ΔC ?+1

∫
ΔC

0

(
c
(−=)

=,ΔC ,1
(g)

)
?+1

Δw
(=)
2 (C−ΔC+g)+ΔC ȳ

(=+1)
D (C−ΔC+g)+Δy

(=)
0 (C−ΔC+g)

(−1)=
dg

= −
∑=

?=0 (1 − U0?)
(=
?

) (
ΔC
g2

)=−?∫ 1

0

∑=
8=0

b 8+=?!8!

(8+=) !

(
a1
?,=,ΔC

)

8+1

Δw
(=)
2 (C−ΔC+ΔC b )+ΔC ȳ

(=+1)
D (C−ΔC+ΔC b )+Δy

(=)
0 (C−ΔC+ΔC b )

(−1)=
db, (86)

thus, since ΔC > 0 and g2 > 0, there exists a nondecreasing scalar function 2B (ΔC/g2 ) such that

‖u2 (C)‖ ≤
∑=

?=0 (1 − U0?)
(=
?

) (
ΔC
g2

)=−?∫ 1

0

∑=
8=0

b 8+=?!8!

(8+=) !

���
(
a1
?,=,ΔC

)

8+1

��� db‖%B‖

= 2B (ΔC/g2 )‖%B‖. (87)

Since ¤r(=−1) (C) = 0=2 between time instants with discontinuity of r(=−1) (C), this results in the minimal realization

¤x2 (C) = A2x2 (C) + B2u2 (C), (88)
[
e
(=−1)
2 (C)T · · · e2 (C)

T
]T

= x2 (C), (89)

with

A2 =

[
A2,=−1 · · · A2,0

I=2 0=2×(=−2)=2 0=2×=2
0(=−2)=2×=2 I(=−2)=2 0 (=−2)=2×=2

]
, A2,? = −

(=
?

)
g
?−=
2 I=2 , ? = 0, . . . , = − 1, (90)

B2 =

[
I=2

0(=−1)=2×=2

]
. (91)

The corresponding response is
[
e
(=−1)
2 (C)T · · · e2 (C)

T
]T

= exp
(
A2 (C − C0)

) [
e
(=−1)
2 (C0)

T · · · e2 (C0)
T
]T

+
∫ C

C0
exp

(
A2 (C − Z )

)
B2u2 (Z )dZ , (92)

where C0 is the previous time instant with discontinuity of r(=−1) (C).

Hence, one constructs the decomposition A2g2 = V2J2V−1
2 , where V2 is a matrix with the generalized eigenvectors of A2g2

in its columns and J2 is the Jordan normal form of A2g2 , with

J2 = I=2 ⊗
(
−I= +

[
0=−1 I=−1

0 0T
=−1

] )
, (93)

which implies that

exp
(
A2 (C − Z )

)
= exp

(
A2g2

C−Z
g2

)
= exp

(
−

C−Z
g2

)
K2

(
C−Z
g2

, g2

)
, (94)

where

K2

(
C−Z
g2

, g2

)
= V2

(
I=2 ⊗

(∑=−1
?=0

1
?!

(
C−Z
g2

) ? [ 0=−1 I=−1

0 0T
=−1

] ? ))
V−1

2 (95)

is a matrix with elements that depend polynomially on
C−Z
g2

.

From (87), (92), (94), and the Cauchy-Schwarz inequality, one can then show that (72) holds. This proves that ỹ
(?)
2 (C) converge

exponentially to a distance linear in ‖%B ‖ from r(?) (C), for ? = 0, . . . , = − 1, with time constants g2 if the window size ΔC is

sufficiently small such that the disturbances w
(=)
2 (C − ΔC + g), the unknown function sD

(
x(C − ΔC + g)

)
, and the modeling error

in the known function s0
(
y(C − ΔC + g), u(C − ΔC + g)

)
do not vary more than %B in the interval g ∈ [0,ΔC].

Corollary 9. Suppose that the conditions of Theorem 8 are satisfied and the disturbances w
(=)
2 (C) and B0

(
y(C)

)
d(C) and the

modeling error in the known function #0

(
y(C)

)
are absolutely continuous functions of C. Then, asΔC → 0, the controller given by

(13), (14) with (6), (15), (47), (48) for the system (2)–(5) forces ỹ
(?)
2 (C) to converge exponentially to r(?) (C), for ? = 0, . . . , =−1,

with time constants g2 , that is, there exists a matrix K2

(
C−Z
g2

, g2

)
with elements that depend polynomially on

C−Z
g2

such that

[
e
(=−1)
2 (C)T · · · e2 (C)

T
]T

= exp
(
−

C−C0
g2

)
K2

(
C−C0
g2

, g2

) [
e
(=−1)
2 (C0)

T · · · e2 (C0)
T
]T

, (96)

where e2 (C) := r(C) − ỹ2 (C) and C0 is the previous time instant with discontinuity of r(=−1) (C).
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Proof. The proof proceeds as for Theorem 8, but this time we note that, since the disturbances w
(=)
2 (C) and B0

(
y(C)

)
d(C) and

the modeling error in the known function #0

(
y(C)

)
are absolutely continuous functions of C, one can define

w̄
(=+1)
2 (C − ΔC + g) =

Δw
(=)
2 (C−ΔC+g)

ΔC
=

∫
ΔC

g
¤w
(=)
2 (C−ΔC+Z )dZ

ΔC
, (97)

as well as ȳ
(=+1)
0 (C −ΔC + g) in a similar way, where w̄

(=+1)
2 (C −ΔC + g) and ȳ

(=+1)
0 (C −ΔC + g) are bounded. Then, one can observe

that the variations of the disturbances w
(=)
2 (C −ΔC + g), of the unknown function sD

(
x(C −ΔC + g)

)
, and of the modeling error in

the known function s0
(
y(C−ΔC+g), u(C−ΔC+g)

)
are given by ΔCw̄

(=+1)
2 (C−ΔC+g), ΔCȳ

(=+1)
D (C−ΔC+g), and ΔCȳ

(=+1)
0 (C−ΔC+g),

respectively. Hence, there exists a vector %B → 0=2 that bounds these variations as ΔC → 0, which concludes the proof.

Theorem 8 and Corollary 9 imply that the exponential convergence of ỹ
(?)
2 (C) to r(?) (C), for ? = 0, . . . , = − 1, with time

constants g2 is a general feature of the controller given by (13), (14) with (6), (15), (47), (48) for some sufficiently small ΔC.

However, note that, to ensure this convergence, one must verify that controlling ỹ
(?)
2 (C) to r(?) (C), for ? = 0, . . . , = − 1, keeps

¤x(C) bounded. This is similar to the condition of stable zero dynamics that is typically required for the successful implementation

of input-output feedback linearization in the case of fully known dynamic models. However, with the proposed approach, this

successful implementation of feedback linearization is possible under the same condition despite the fact that only an incomplete

dynamic model is used.

Since the values of ΔC and g2 needed to guarantee fast exponential convergence to the setpoints according to Theorem 8

and Corollary 9 are typically too small to be practically useful due to the consequent amplification of measurement noise, the

question becomes how much one can increase the values of ΔC and g2 without compromising the stability and performance of

the closed-loop system. Moreover, in general it may be difficult to verify that controlling ỹ
(?)
2 (C) to r(?) (C), for ? = 0, . . . , =− 1,

keeps ¤x(C) bounded. These challenges are dealt with in the next subsection.

4.2 Stability and performance

We now address another goal of this paper, which is the assessment of the local stability and performance of the control scheme.

Although several other criteria exist, the performance is assessed here only in terms of the speed of the closed-loop response.

The concept of eigenvalues is used for this analysis. To this end, the plant and the controller are linearized to allow expressing

the open-loop and closed-loop systems as linear state-space representations, which are accurate approximations of the true

nonlinear systems if the deviations are not too large.

Although local stability and performance analysis via eigenvalues is a basic and standard concept in control theory, it is

appropriate to present it in this section because this analysis is not straightforward for the proposed control approach and is not

available in the literature since the proposed control approach has not been proposed before, to the best of our knowledge. The

presented conditions for closed-loop stability and performance analysis can then be readily applied for any equilibrium point of

a system. In contrast, a Lyapunov-based analysis, which is a particular type of time-domain stability and performance analysis,

would require the verification of existence of a Lyapunov function for each equilibrium point of the closed-loop system10.

However, this verification would have to be performed for all the trajectories in some invariant set, which may be more difficult.

While it was assumed for control design that a part of the model is fully unknown, it is assumed for stability and performance

analysis that the uncertainty in the knowledge of f
(
x(C), u(C)

)
is described by =\ unknown plant parameters ) := (\1, . . . , \=\

)

that can take any value in a compact set �. Although it may seem that only parametric uncertainty in the knowledge of

f
(
x(C), u(C)

)
can be handled, in fact structural mismatch between the true nonlinear system and its model can be handled if we

suppose that the plant parameters ) correspond to the uncertain elements of the Jacobian matrices mf
mx

(
x̄, ū

)
and mf

mu

(
x̄, ū

)
.

The state-space representation of the plant with the system outputs y(C) as outputs, the system inputs u(C) as inputs, and the

states x(C) is given by the matrices A?, B?, C? . The state-space representation of the controller with the actuator inputs ũ(C) as

outputs, the sensor outputs ỹ(C) and the setpoints r(C) as inputs, and the states z(C) is given by the matrices A: , B
H

:
, B

A ,?

:
, C: , D

H

:
,

D
A ,?

:
, for ? = 0, . . . , = − 1. These state-space representations depend on the unknown plant parameters ) and the control design

parameters ΔC and g2 . The open-loop transfer function of the plant is computed as G? (B), and the open-loop transfer functions

of the controller with respect to the sensor outputs ỹ(C) (superscript H) and the setpoints r(C) (A) are computed as G
H

:
(B) and

GA
: (B). Appendix G details the state-space representations and the open-loop transfer functions of the plant and the controller.
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+

+

+

+ Plant

G? (B)

Feedback

Linearization

Derivative

Estimation

Computation of

Available Rates

Controller

G: (B)

Closed-loop System

G2; (B)

ỹ
(=)
0 (C)

ŷ
(?)
2 (C), ŷ

(=)
D (C)

r(C)

w(C)

y(C)

ỹ(C)

d(C)

ũ(C)
u(C)

FIGURE 1 Schematic of the closed-loop system that results from multivariable control based on incomplete models via feedback

linearization and continuous-time derivative estimation.

Also, we need to consider the following relations between the inputs and outputs of the plant and controller:

u(C) = ũ(C) + d(C), (98a)

ỹ(C) = y(C) + w(C). (98b)

Figure 1 shows a schematic of the closed-loop system. For the stability and performance analysis, we aim to explicitly obtain

the state-space representation of the closed-loop system with the outputs y2; (C) :=
[

y(C)
u(C)

]
, the inputs u2; (C) :=

[
r(C)
d(C)
w(C)

]
, and the

states x2; (C) :=
[

x(C)
z(C)

]
, given by the matrices A2; , B

?

2;
, C2; , D

?

2;
, for ? = 0, . . . , = − 1. This results in the closed-loop transfer

functions of the plant outputs y(C) (superscript H) and inputs u(C) (D) with respect to the setpoints r(C) (A), the input disturbances

d(C) (3), and the output disturbances w(C) (F) as G
A→H

2;
(B), G

3→H

2;
(B), G

F→H

2;
(B), GA→D

2; (B), G3→D
2; (B), GF→D

2; (B). These transfer

functions are the so-called “gang of six” that fully specifies the closed-loop behavior and are also detailed in Appendix G.

To analyze the stability and performance of the closed-loop system for an equilibrium point, it is necessary to note that A2; ,

B
?

2;
, C2; , D

?

2;
, for ? = 0, . . . , =−1 depend not only on the design parameters ΔC and g2 but also on the unknown plant parameters

) in the set �. Then, one can use the eigenvalues of A2; to assess the robust local stability and some of those eigenvalues to

assess the robust local performance of the closed-loop system for an equilibrium point, as stated by the following theorem.

Theorem 10. Consider the matrices

A2; =

[
A?+B?D

H

:
C? B?C:

B
H

:
C? A:

]
, (99a)

B
?

2;
=
[

B
A, ?

2;
B
3,?

2;
B
F,?

2;

]
=

[
B?D

A, ?

:
0?B? 0?B?D

H

:

B
A, ?

:
0=I×=D 0?B

H

:

]
, ? = 0, . . . , = − 1, (99b)

C2; =

[
C

H

2;

CD
2;

]
=

[
C? 0=H×=I

D
H

:
C? C:

]
, (99c)

D
?

2;
=

[
0=H×=D 0=H×=D 0=H×=H

D
A, ?

:
0?I=D 0?D

H

:

]
, ? = 0, . . . , = − 1, (99d)

with A?, B?, C? in (G51) and A: , B
H

:
, B

A ,?

:
, C: , D

H

:
, D

A ,?

:
in (G66), and construct the decomposition A2; = V2;J2;V

−1
2; , where

V2; is a matrix with the generalized eigenvectors of A2; in its columns and J2; is the Jordan normal form of A2; .

For all the plant states x(C) in a neighborhood of the equilibrium point x̄ and for all the unknown plant parameters ) in the set

�, the closed-loop system is locally asymptotically stable if and only if

_<0G
2; (ΔC, g2 , )) < 0, ∀) ∈ �, (100)
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where _<0G
2;

(ΔC, g2 , )) is the maximum real part of the eigenvalues of the matrix A2; , or equivalently the maximum real part of

the diagonal elements of J2; , and all the closed-loop time constants are less than W−1 if and only if

B<0G
2; (ΔC, g2 , )) < −W, ∀) ∈ �, (101)

with W > 0, where B<0G
2;

(ΔC, g2 , )) is the maximum real part of the diagonal elements of J2; that correspond to nonzero columns

of C2;V2; , since the maximum closed-loop time constant g<0G
2;

(ΔC, g2 , )) = −B<0G
2;

(ΔC, g2 , ))
−1 < W−1.

Proof. From (98), (G50), and (G65), the state-space representation of the closed-loop system in a neighborhood of x̄ is

X ¤x2; (C) = A2;Xx2; (C) +
∑=−1

?=0B
?

2;
Xu

(?)

2;
(C), (102a)

Xy2; (C) = C2;Xx2; (C) +
∑=−1

?=0D
?

2;
Xu

(?)

2;
(C), (102b)

with A2; , B
?

2;
, C2; , D

?

2;
in (99).

If the real parts of the eigenvalues of A2; are less than a value −W, with W > 0, then the closed-loop system is locally

asymptotically stable and all the closed-loop time constants are less than W−1. However, this might be more conservative than

needed because some eigenvalues of A2; might be related to unobservable closed-loop time constants. In that case, one constructs

the decomposition A2; = V2;J2;V
−1
2;

, where V2; is a matrix with the generalized eigenvectors of A2; in its columns and J2;

is the Jordan normal form of A2; . The observable closed-loop time constants are related to the diagonal elements of J2; that

correspond to nonzero columns of C2;V2; . The theorem then follows from standard control theory10.

Remark 6. Note that the conditions (100) and (101) in Theorem 10 are nonconvex in general but can be verified easily if the

number of parameters ) is not too large. Moreover, results from robust control theory can be applied to transform (100) and

(101) into conditions that can be verified in a more tractable way. However, this reformulation is considered out of the scope of

this paper and is not further analyzed here.

4.3 Practical considerations and challenges

As shown throughout this paper, the proposed control strategy via feedback linearization and derivative estimation achieves

satisfactory closed-loop performance in the presence of structural mismatch between true nonlinear systems and their models.

In addition, the proposed control strategy is explicitly constructed for multivariable control and is computationally efficient

since it does not require solving an optimization problem at each sampling point. These are important practical advantages

of the proposed control strategy. On the other hand, due to the absence of any optimization-based component, the proposed

control strategy cannot guarantee constraint satisfaction. Furthermore, the main practical challenge faced by the proposed control

strategy is the handling of measurement noise, even though the proposed method for continuous-time derivative estimation

minimizes the effect of measurement noise. In fact, the proposed control strategy is expected to perform best when frequent and

precise output measurements ỹ(C) are available. This is not surprising since the measured data are used, in a certain sense, to

compensate the absence of an accurate model. From this perspective, the proposed control strategy can be regarded as a data-

driven control strategy. Since the proposed control strategy is particularly useful for fast sampling applications in which it makes

sense to use continuous-time derivative estimation, the requirement of frequent measurements does not seem to be a major issue.

Another important practical consideration concerns the information that the user needs to supply before applying the proposed

control strategy to a given control problem. Upon analyzing the controller given by (13), (14) with (6), (15), (47), (48), it is

possible to observe that, besides the output data ỹ(C) and the derivatives r(?) (C) of the setpoints, for ? = 0, . . . , = − 1, the user

needs to supply the partially known functions #̃0

(
y(C)

)
and B̃0

(
y(C)

)
and the two design parameters ΔC and g2 . Regarding the

partially known functions #̃0

(
y(C)

)
and B̃0

(
y(C)

)
, they can be obtained from a coarse control-relevant model of the form in (6)

for ¤y
(=−1)
2 (C). Note that this coarse model does not need to satisfy strict accuracy requirements. Indeed, according to Theorem

8, the only condition that needs to be satisfied is :0 < 1
‖�4 (B) ‖∞

, with :0 := supC f̄
((

B0

(
y(C)

)
− B̃0

(
ỹ(C)

) )
B̃0

(
ỹ(C)

)−1
)

and the

definition of ‖�4 (B)‖∞ in Theorem 8. Hence, B̃0

(
ỹ(C)

)
only needs to be a coarse approximation of the matrix B0

(
y(C)

)
that

satisfies (2)–(5) for the true dynamical system.

Regarding the two design parameters ΔC and g2 , as mentioned in Section 4.1, they should be chosen so as to represent

a sufficiently small window size in which the unknown function sD
(
x(C)

)
is approximately constant and a sufficiently small

dominant closed-loop time constant, respectively. This apparently suggests that it is always advantageous to choose ΔC and g2

as small as possible. However, as also mentioned in Section 4.1, if these parameters are too small, this may amplify the effect of

measurement noise. Hence, as a practical guideline, if the effect of measurement noise is deemed to be excessive after choosing
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ΔC and g2 and applying the proposed control strategy to the given control problem, the user may assess which term in the control

law (13) causes that effect: if it is ŷ
(=)
D (C), it may be necessary to increase ΔC; if it is ṽ(C), it may be necessary to increase g2 .

In this design process, the stability and performance analysis in Section 4.2 can be performed to obtain additional guarantees

that the chosen design parameters are acceptable. This design process is potentially more intuitive than the design of multi-loop

PID controllers for multivariable systems, in which the choice of design parameters may not be obvious without using dedicated

computational tools even in the case of relatively simple models, due to the lack of clear meaning of the design parameters41.

5 ILLUSTRATIVE EXAMPLE

In models of chemical and biological process systems, it is known that (i) one part is well known owing to its macroscopic nature,

for instance the flows of material and energy between different units, and (ii) another part is unknown due to the fact that it

results from microscopic processes, such as the reaction kinetics and transport phenomena. For example, regarding chemical and

biological reaction systems, efficient control typically requires good kinetic models to predict the dynamic effects, namely the

reaction rates. In the particular case of continuous stirred-tank reactors, that is, perfectly mixed reactors with constant volume,

various control structures based on reaction variants, inventories, and extensive variables have been proposed35,37,42,43,44.

However, there does not exist a systematic way of taking advantage of partial model knowledge and multiple measurements of

variables that are not directly controlled to simplify the design of multivariable controllers, in particular without the use of a

kinetic model.

Hence, in this section, the possibility of controlling chemical and biological reactors without the use of kinetic models is

investigated as an illustrative example of the theory in the previous sections. The reaction rates are estimated from concentration

and temperature measurements and then used via a feedback-linearization scheme to control the reactor temperature and reactant

concentrations by manipulating the amount of heat that is exchanged with the environment and the inlet flowrates in a continuous

stirred-tank reactor. This particular example concerns a nonisothermal reactor with 4 species (A, B, C, D) and 2 reactions

(A+B→C and 2B→D).

5.1 System description

The =G = 5 states x(C) are the heat &(C) := +d2?
(
) (C) − )A4 5

)
and the numbers of moles =B (C) := +2B (C) of the species

B = A, . . . ,D. Here, + is the constant volume, 2B (C) is the concentration of the species B, ) (C) is the reactor temperature, )A4 5

is the reference temperature, d is the constant density, and 2? is the constant specific heat capacity. The =D = 3 inputs u(C) are

the exchanged heat power @4G (C) and the volumetric flowrates of two inlets at the temperature )A4 5 . One inlet is fed with the

concentration of A 28=,A and the flowrate �A (C) and the other inlet is fed with the concentration of B 28=,B and the flowrate

�B (C). The outlet flowrate is the sum of the inlet flowrates. Since the =H = 3 outputs and the =2 = 3 controlled outputs are

y(C) = y2 (C) := [ & (C) =A (C) =B (C) ]
T, the relative degree of which is = = 1, one can define g

(
x(C)

)
:= [ I3 03×2 ]x(C) and S := I3.

Hence, the dynamic model of the plant can be written as

¤&(C) = −Δ�A ,1AE,1 (C) − Δ�A ,2AE,2 (C) + @4G (C) − l(C)&(C), (103)

¤=A(C) = −AE,1 (C) + 28=,A�A (C) − l(C)=A(C), (104)

¤=B (C) = −AE,1 (C) − 2AE,2 (C) + 28=,B�B (C) − l(C)=B (C), (105)

¤=C (C) = AE,1 (C) − l(C)=C (C), (106)

¤=D(C) = AE,2 (C) − l(C)=D(C), (107)

where AE,8 (C) := +A8
(
x(C)

)
, with A8

(
x(C)

)
the rate of the 8th reaction, Δ�A ,8 is the enthalpy of the 8th reaction at )A4 5 , and

l(C) :=
�A (C)+�B (C)

+
is the inverse of the residence time.

The part of the dynamic model shown in (103)–(107) is known, which is typically the case. However, the part of the model

that concerns the reaction kinetics, that is, the functional relationships A8
(
x(C)

)
, is unknown, which is common in reactor models.

In other words, it is assumed that the kinetic model of the 2 unknown rates

A1 (x(C)) = :1,A4 5 exp
(
−

�0,1

') (C)
+

�0,1

')A4 5

)
=A (C)
+

=B (C)
+

, (108a)

A2 (x(C)) = :2,A4 5 exp
(
−

�0,2

') (C)
+

�0,2

')A4 5

) (
=B (C)
+

)2

, (108b)
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TABLE 1 Plant parameters and operating conditions.

Variable Value Units

:1,A4 5 0.53 L mol−1 min−1

:2,A4 5 1.28 L mol−1 min−1

�0,1 20000 J mol−1

�0,2 10000 J mol−1

' 8.314 J mol−1 K−1

)A4 5 298.15 K

−Δ�A ,1 70 kJ mol−1

−Δ�A ,2 100 kJ mol−1

28=,A 2.0 mol L−1

28=,B 1.5 mol L−1

+ 500 L

+d2? 736.3 kJ K−1

is used only to simulate the system, but not to implement control. In (108), :8,A4 5 is the rate constant of the 8th reaction at )A4 5 ,

and �0,8 is the activation energy of the 8th reaction, which correspond to the unknown plant parameters ).

Hence, the terms in (103)–(107) that include AE,8 (C) correspond to sD
(
x(C)

)
, while the other terms correspond to s0

(
y(C), u(C)

)
.

From (103)–(107), one can then observe that
[

¤& (C)
¤=A (C)
¤=B (C)

]
= sD

(
x(C)

)
+ s0

(
y(C), u(C)

)
, (109)

where

sD
(
x(C)

)
:=

[
−Δ�A,1 −Δ�A,2

−1 0
−1 −2

] [
+ A1 (x(C))
+ A2 (x(C))

]
, (110)

s0
(
y(C), u(C)

)
:=



1 −
& (C)
+

−
& (C)
+

0 28=,A−
=A (C)

+
−

=A (C)

+

0 −
=B (C)

+
28=,B−

=B (C)

+


u(C). (111)

Hence, since the function sD
(
x(C)

)
on the right-hand side of (109) is unknown, the only way to estimate its value is via

estimation of the output derivatives on the left-hand side.

The numerical values used for the plant parameters and operating conditions are summarized in Table 1.

5.2 Stability and performance

First of all, the stability and performance of the closed-loop system are analyzed by computing the closed-loop response for

the nominal values g2 = 3 min and ΔC = 3 min of the design parameters. These parameters are chosen such that their sum

is 5 times less than the desired settling time of 30 min, based on the reasonable assumption that the unknown reaction rates

remain approximately constant in a window of ΔC = 3 min. Since the closed-loop system has 9 inputs and 6 outputs, it is clearly

inconvenient to show here the closed-loop response to all the inputs of the closed-loop system, but this analysis is performed for

the setpoints and input disturbances. Then, the stability and performance are analyzed by computing g<0G
2;

(ΔC, g2 , )) for values

of the design parameters g2 and ΔC around their nominal values, as well as for values of the unknown plant parameters :1,A4 5

and :2,A4 5 around their true values. Note that the values of these plant parameters are not used for controller design.

Figure 2, Figure 3, and Figure 4 show the closed-loop response to step increases of 0.5% of &0 − +d2? (273.15 − )A4 5 ) =

18407 kJ in the setpoint &A (C), 0.5% of =A,0 = 204.40 mol in the setpoint =A
A
(C), and 0.5% of =B,0 = 51.09 mol in the setpoint

=A
B
(C). Figure 5, Figure 6, and Figure 7 show the closed-loop response to step increases of 0.5% of @4G,0 = −1443 kJ min−1 in

the input disturbance @34G (C), 0.5% of �A,0 = 11.67 L min−1 in the input disturbance �3
A
(C), and 0.5% of �B,0 = 18.33 L min−1

in the input disturbance �3
B
(C). The initial conditions for this simulation correspond to the steady state in which &̄ = 0 kJ,

�̄A = 11.67 L min−1, and �̄B = 18.33 L min−1. In Figure 4, one can observe that =B (C) converges to the new value of =A
B
(C) and
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FIGURE 2 Closed-loop response to a step increase in the setpoint &A (C), with the setpoints represented by the red lines. The

blue lines represent the response obtained via linearization and the green lines represent the response obtained via numerical

simulation of the nonlinear system.
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A
(C), with the setpoints represented by the red lines. The

blue lines represent the response obtained via linearization and the green lines represent the response obtained via numerical

simulation of the nonlinear system.
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(C), with the setpoints represented by the red lines. The

blue lines represent the response obtained via linearization and the green lines represent the response obtained via numerical

simulation of the nonlinear system.
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FIGURE 5 Closed-loop response to a step increase in the input disturbance @34G (C), with the setpoints represented by the red

lines. The blue lines represent the response obtained via linearization and the green lines represent the response obtained via

numerical simulation of the nonlinear system.
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FIGURE 8 Contour plot of the maximum closed-loop time constant as a function of the design parameters g2 and ΔC.

both&(C) and =A (C) return to their initial values within the desired settling time of 30 min, and similar conclusions can be drawn

from Figure 2 and Figure 3. In Figure 7, one can observe that &(C), =A (C), and =B (C) as well as @4G (C), �A (C), and �B (C) return

to their initial values within the desired settling time of 30 min despite the step increase in �3
B
(C), and similar conclusions can

be drawn from Figure 5 and Figure 6. This elimination of steady-state error and this rejection of input disturbances are obtained

despite the fact that the controller does not include any integral term and uses an incomplete plant model. This closed-loop

behavior also agrees well with the corresponding maximum time constant g<0G
2;

(ΔC, g2 , )) = 6.8 min, which is considerably

smaller than the maximum time constant of the open-loop system g<0G
? ()) = 16.7 min. The aforementioned figures also

compare the responses obtained via numerical simulation of the nonlinear system and via linearization, which shows that the

linearization approximates well the dynamics of the nonlinear system.

Figure 8 shows g<0G
2;

(ΔC, g2 , )) as a function of values of the design parameters around their nominal values, that is, for

g2 ∈ [1, 10] min and ΔC ∈ [1, 10] min. Although the performance of the closed-loop system in terms of its maximum

time constant becomes worse with increasing values of g2 and ΔC, as expected, the stability of the closed-loop system is not

compromised for any values of these parameters. Note that the states =B (C) for B = A, . . . ,D are necessarily bounded owing to

the fact that the numbers of moles in a reactor are bounded and the state &(C) that could become unbounded is controlled in

this example, which implies that all the states x(C) are bounded. This, in turn, entails the boundedness of ¤x(C) and guarantees

stability for sufficiently small ΔC according to Theorem 8. In fact, one can observe in Figure 8 that, for small values of ΔC, the

maximum time constant approaches the value of g2 , as predicted by Theorem 8. Moreover, Figure 9 shows g<0G
2;

(ΔC, g2 , )) as a

function of values of the unknown plant parameters around their true values, that is, for :1,A4 5 ∈ [0.2, 2] L mol−1 min−1 and

:2,A4 5 ∈ [0.4, 4] L mol−1 min−1. The effect of the unknown plant parameters �0,1 and �0,2 on g<0G
2;

(ΔC, g2 , )) is not shown

here since it is much weaker than the effect of :1,A4 5 and :2,A4 5 . Again, the performance of the closed-loop system becomes

worse with increasing values of :1,A4 5 and :2,A4 5 , but its stability is not compromised.

6 CONCLUSION

This paper has presented a control scheme based on incomplete models, which is implemented without full knowledge of

the model owing to the use of continuous-time derivative estimation and takes advantage of the knowledge about part of the

model owing to the use of feedback linearization. Although only incomplete knowledge of the model is used and the controller

possesses only two design parameters that are rather simple to tune thanks to their clear meaning, the control scheme converges

quickly to its setpoints and can eliminate steady-state error and reject constant input disturbances without any integral term. The

two design parameters are the time constant of exponential convergence of each controlled output that determines the controller

gain and the parameter of the FIR differentiation filter used for estimation of the unknown derivatives without a model. Instead

of linearizing the system around a given steady state, this controller implements feedback linearization, which simplifies control
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FIGURE 9 Contour plot of the maximum closed-loop time constant as a function of the unknown plant parameters :1,A4 5 and

:2,A4 5 .

design significantly and enables the use of the controller even when the states are not similar to the corresponding steady-state

values. The feedback linearization sets a rate of variation for the controlled outputs and forces the control error to converge

exponentially to zero. The resulting multivariable controller shows good performance for the case of frequent measurements of

several outputs. Furthermore, quantitative criteria to analyze the robust stability and performance of this control strategy have

been provided for the continuous-time case. These features have been illustrated by an example of a realistic control problem,

that is, control of temperature and reactant concentrations in a homogeneous reactor without kinetic models for the reaction

rates. Besides this illustrative example, the proposed control strategy is broadly applicable to a large variety of systems.

Future work could provide new criteria to assess the stability and performance in a robust sense and extend these results to the

discrete-time case. It would also be useful to formulate conditions that express the robust stability and performance criteria in a

way that is as explicit and computationally cheap as possible. Finally, it would be rather interesting to investigate how much one

can improve the closed-loop performance by using complete models that result from system identification and how this control

scheme compares with the use of techniques for robust control design in terms of stability and performance.
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APPENDIX

A PROOF OF LEMMA 1

Firstly, we show that ŷ
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C − ΔC + I) minimize the mean squared error �=,I (C). Upon

defining the predicted parameter matrix )̂=,I with = + 1 columns
(
)̂=,I

)
1
, . . . ,

(
)̂=,I

)
=+1

as

(
)̂=,I

)
;+1

=




ΔC ; ŷ
(;)
2 (C−ΔC+I)

;!
, ; = 0, . . . , = − 1

ΔC= ŷ
(=)
D (C−ΔC+I)

=!
, ; = =

, (A1)

and the true parameter matrix )=,I with = + 1 columns
(
)=,I

)
1
, . . . ,

(
)=,I

)
=+1

as

(
)=,I

)
;+1

=




ΔC ;y
(;)
2 (C−ΔC+I)

;!
, ; = 0, . . . , = − 1

ΔC=y
(=)
D (C−ΔC+I)

=!
, ; = =

, (A2)

and noticing that (18) holds, it follows that

&̂=,I (C − ΔC + g) = 4=,I (C − ΔC + g) −
∑=−1

;=0
(g−I);

;!
ŷ
(;)
2 (C − ΔC + I) −

(g−I)=

=!
ŷ
(=)
D (C − ΔC + I)

= 4=,I (C − ΔC + g) −
∑=

;=0

(
g−I
ΔC

) ; (
)̂=,I

)
;+1

, (A3)

�=,I (C) =
∑=

;=0

(∑=
8=0

∫
ΔC

0
1
ΔC

(
g−I
ΔC

) 8+;
dg

(
)̂=,I

)T
8+1

−
∫

ΔC

0
2
ΔC

(
g−I
ΔC

) ;
4=,I (C − ΔC + g)Tdg

) (
)̂=,I

)
;+1

+ 1
ΔC

∫
ΔC

0
4=,I (C − ΔC + g)T4=,I (C − ΔC + g)dg, (A4)

1
2

m�=,I (C)

m()̂=,I);+1
=
∑=

8=0

∫ 1− I
ΔC

− I
ΔC

G8+;dG
(
)̂=,I

)T
8+1

−
∫
ΔC

0
1
ΔC

(
g−I
ΔC

) ;
4=,I (C − ΔC + g)Tdg, ; = 0, . . . , =. (A5)

One can also define the (= + 1)-dimensional vector d=,I (g) as
(
d=,I (g)

)
;+1

=
1
ΔC

(
g−I
ΔC

) ;
, ; = 0, . . . , =, (A6)

which implies that

1
2

m�=,I (C)

m)̂=,I
= GA

=)̂
T

=,I −
∫

ΔC

0
d=,I (g)4=,I (C − ΔC + g)Tdg, (A7)

with A = 1 − I
ΔC

. Since the parameters )̂=,I that minimize �=,I (C) are such that
m�=,I (C)

m)̂=,I
= 0 and

(
c=,I (g)

)
?+1

= ΔC
∑=

8=0

(
d=,I (g)

)
8+1

(
AA

=

)
8+1, ?+1

, ? = 0, . . . , =, (A8)

it follows that

)̂=,I =
1
ΔC

∫
ΔC

0
4=,I (C − ΔC + g)c=,I (g)

Tdg, (A9)

which implies that ŷ
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C − ΔC + I) minimize the mean squared error �=,I (C).

Secondly, we show that ŷ
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C − ΔC + I) are the linear unbiased estimators of

y
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and y

(=)
D (C − ΔC + I) that provide minimal variance if Assumptions 1-4 hold. To this end,

we assess whether there exists any linear unbiased estimator )̄=,I of )=,I with smaller variance than )̂=,I by expressing )̄=,I in

terms of )̂=,I as

)̄=,I = )̂=,I +
1
ΔC

∫
ΔC

0
4=,I (C − ΔC + g)Xc=,I (g)

Tdg =
1
ΔC

∫
ΔC

0
4=,I (C − ΔC + g)

(
c=,I (g) + Xc=,I (g)

)T
dg, (A10)

and assessing whether any !2 vector function Xc=,I (g) improves )̄=,I with respect to )̂=,I . Upon defining the true errors as

&2 (C − ΔC + g) = w2 (C − ΔC + g) +
∫ g

I

y
(=)
D (C−ΔC+Z )−y

(=)
D (C−ΔC+I)+y

(=)
0 (C−ΔC+Z )−ỹ

(=)
0 (C−ΔC+Z )

(=−1) !
(g − Z )=−1 dZ , (A11)

and noticing that Assumptions 1 and 2 imply that &2 (C − ΔC + g) = w2 (C − ΔC + g), it follows that

4=,I (C − ΔC + g) = &2 (C − ΔC + g) +
∑=−1

;=0
(g−I);

;!
y
(;)
2 (C − ΔC + I) +

(g−I)=

=!
y
(=)
D (C − ΔC + I)

= &2 (C − ΔC + g) +
∑=

;=0

(
g−I
ΔC

) ; (
)=,I

)
;+1

= w2 (C − ΔC + g) + ΔC)=,Id=,I (g). (A12)
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Moreover, since the definition of c= (g) implies that
∫

ΔC

0

(
d=,I (g)

)
;+1

(
c=,I (g)

)
?+1

dg =
∑=

8=0
1
ΔC

∫
ΔC

0

(
g−I
ΔC

)8+; (
AA

=

)
8+1, ?+1

dg =
∑=

8=0

(
GA

=

)
;+1,8+1

(
AA

=

)
8+1, ?+1

=

{
0, ; ≠ ?

1, ; = ?
, ; = 0, . . . , =, ? = 0, . . . , =, (A13)

and Assumption 3 implies that E
[
w2 (C − ΔC + g)

]
= 0=2 ,

E
[ (
)̄=,I

)
;+1

]
=

1
ΔC

∫
ΔC

0

(
E
[
w2 (C − ΔC + g)

]
+ ΔC)=,Id=,I (g)

) ( (
c=,I (g)

)
;+1

+
(
Xc=,I (g)

)
;+1

)
dg

= )=,I
∫
ΔC

0
d=,I (g)

( (
c=,I (g)

)
;+1

+
(
Xc=,I (g)

)
;+1

)
dg

=
(
)=,I

)
;+1

+ )=,I
∫
ΔC

0
d=,I (g)

(
Xc=,I (g)

)
;+1

dg, ; = 0, . . . , =, (A14)

thus one concludes that
(
)̄=,I

)
;+1

is an linear unbiased estimator of
(
)=,I

)
;+1

if and only if
∫

ΔC

0
d=,I (g)

(
Xc=,I (g)

)
;+1

dg = 0=+1,

which is satisfied by
(
)̂=,I

)
;+1

. Since (24) holds according to Assumption 4 and
(
c=,I (g)

)
;+1

+
(
Xc=,I (g)

)
;+1

is an !2 function,

Var
[ (
)̄=,I

)
;+1

]
= Var

[
1
ΔC

∫
ΔC

0
w2 (C − ΔC + g)

( (
c=,I (g)

)
;+1

+
(
Xc=,I (g)

)
;+1

)
dg

]

=
1
ΔC

∫
ΔC

0

( (
c=,I (g)

)
;+1

+
(
Xc=,I (g)

)
;+1

)2
dg�w2

=
∑=

8=0

∫
ΔC

0

(
d=,I (g)

)
8+1

(
c=,I (g)

)
;+1

dg
(
AA

=

)
8+1,;+1

�w2

+ 2
∑=

8=0

∫
ΔC

0

(
d=,I (g)

)
8+1

(
Xc=,I (g)

)
;+1

dg
(
AA

=

)
8+1,;+1

�w2

+ 1
ΔC

∫
ΔC

0

(
Xc=,I (g)

)2

;+1
dg�w2

=
(
AA

=

)
;+1,;+1

�w2
+ 1

ΔC

∫
ΔC

0

(
Xc=,I (g)

)2

;+1
dg�w2

, ; = 0, . . . , =, (A15)

thus one concludes that
(
)̄=,I

)
;+1

is the linear unbiased estimator of
(
)=,I

)
;+1

that provides minimal variance if and only if(
Xc=,I (g)

)
;+1

= 0 and
(
)̄=,I

)
;+1

=
(
)̂=,I

)
;+1

. This implies that ŷ
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C − ΔC + I) are the

linear unbiased estimators of y
(?)
2 (C − ΔC + I), for ? = 0, . . . , = − 1, and y

(=)
D (C − ΔC + I) that provide minimal variance.

B PROOF OF LEMMA 2

The shifted Legendre polynomials with parameter A and orders : are defined as

%A
: (G) =

∑:
8=0

(
PA
=

)
8+1,:+1

G8 , : = 0, . . . , =, (B16)

for some (= + 1) × (= + 1) upper triangular matrix PA
=, such that they satisfy the conditions

∫ A

A−1
%A
: (G)%

A
; (G)dG =

{
1

2:+1
, : = ;

0, : ≠ ;
, : = 0, . . . , =, ; = 0, . . . , =. (B17)

From the definition of shifted Legendre polynomials, the (= + 1) × (= + 1) matrix D= defined as

(D=):+1,;+1 =
∫ A

A−1
%A
: (G)%

A
; (G)dG, : = 0, . . . , =, ; = 0, . . . , =, (B18)

is diagonal. Some particular examples of shifted Legendre polynomials are

%1
: (G) =

∑:
8=0 (−1):+8

(:
8

) (:+8
:

)
G8 , : = 0, . . . , =, (B19)

%
1/2

:
(G) =

∑:
8=02:+8

(:
8

) ( :+8−1
2

:

)
G8 , : = 0, . . . , =, (B20)

%0
: (G) =

∑:
8=0

(:
8

) (:+8
:

)
G8 , : = 0, . . . , =. (B21)

In general, for A ∈ {0, 1/2, 1} and all 0 ≤ B ≤ 1,
(
PB
=

)
8+1,:+1

=
∑:

9=8

(
PA
=

)
9+1,:+1

( 9
8

)
(A − B) 9−8 , 8 = 0, . . . , =, : = 0, . . . , =, (B22)
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since

%B
: (G) = %A

: (G + A − B) =
∑:

8=0

(
PA
=

)
8+1,:+1

∑8
9=0

( 8
9

)
G 9 (A − B)8− 9

=
∑:

8=0

(∑:
9=8

(
PA
=

)
9+1,:+1

( 9
8

)
(A − B) 9−8

)
G8 , : = 0, . . . , =. (B23)

From the definition of D=,

(D=):+1,;+1 =
∫ A

A−1

(∑=
9=0

(
PA
=

)
9+1,:+1

G 9
) (∑=

8=0

(
PA
=

)
8+1,;+1

G8
)

dG

=

(∑=
9=0

∑=
8=0

(
PA
=

)
9+1,:+1

(
GA

=

)
9+1,8+1

(
PA
=

)
8+1,;+1

)
, (B24)

which results in

D= = PA
=

T
GA

=PA
=. (B25)

This implies that

GA
= =

(
PA
=

T
)−1

D=

(
PA
=

)−1
, (B26)

AA
= = PA

= (D=)
−1 PA

=
T. (B27)

Consequently,

(
AA

=

)
8+1,<+1

=
∑=

:=0

(PA
=)8+1,:+1(P

A
=)<+1,:+1

(D=):+1,:+1

=
∑=

:=max (8,<) (2: + 1)
(
PA
=

)
8+1,:+1

(
PA
=

)
<+1,:+1

, 8 = 0, . . . , =, < = 0, . . . , =, (B28)

and, in particular,
(
A1

=

)

8+1,<+1
=
∑=

:=max(8,<) (2: + 1) (−1):+8
(:
8

) (:+8
:

)
(−1):+<

( :
<

) (:+<
:

)

= (−1)8+<
∏=

:=0 (=+8+1−:) (=+<+1−:)

(8+<+1) 8!(=−8) !<!(=−<)!
, (B29)

(
A

1/2
=

)

8+1,<+1
=
∑=

:=max(8,<) (2: + 1) 2:+8
(:
8

) ( :+8−1
2

:

)
2:+<

( :
<

) ( :+<−1
2

:

)

= 28+<
∏=

:=0 (=+8+1−2:) (=+<+1−2:)+
∏=

:=0 (=+8−2:) (=+<−2:)

(8+<+1) 8!(=−8) !<!(=−<)!
, (B30)

(
A0

=

)

8+1,<+1
=
∑=

:=max(8,<) (2: + 1)
(:
8

) (:+8
:

) ( :
<

) (:+<
:

)

=

∏=
:=0 (=+8+1−:) (=+<+1−:)

(8+<+1) 8!(=−8) !<!(=−<) ! , (B31)

for A ∈ {0, 1/2, 1}. In addition, for all 0 ≤ B ≤ 1,

(
AB

=

)
8+1, ?+1

=
∑=

:=0

(PB
=)8+1,:+1(PB

=) ?+1,:+1

(D=):+1,:+1
=
∑=

9=8

∑=
<=?

( 9
8

) (<
?

)
(A − B) 9−8+<−? ∑=

:=0

(PA
=) 9+1,:+1(PA

=)<+1,:+1

(D=):+1,:+1

=
∑=

9=8

∑=
<=?

( 9
8

) (<
?

)
(A − B) 9−8+<−? (

AA
=

)
9+1,<+1

, 8 = 0, . . . , =, ? = 0, . . . , =. (B32)

C PROOF OF LEMMA 3

One can prove that, for A ∈ {0, 1/2, 1} and all 0 ≤ B ≤ 1,

(c= (g))<+1 =
∑=

9=0

∑ 9

8=0

( 9
8

) (
g
ΔC

− 1 + B
) 8
(A − B) 9−8

(
AA

=

)
9+1,<+1

=
∑=

8=0

(
g
ΔC

− 1 + A
) 8 (

AA
=

)
8+1,<+1

, < = 0, . . . , =, (C33)

which implies that
(
c=,I (g)

)
?+1

=
∑=

8=0

(
g−I
ΔC

) 8 ∑=
9=8

∑=
<=?

( 9
8

) (<
?

) (
A − 1 + I

ΔC

) 9−8+<−? (
AA

=

)
9+1,<+1

=
∑=

<=?

(<
?

) (
I
ΔC

− 1 + A
)<−? ∑=

8=0

∑=
9=8

( 9
8

) (
g−I
ΔC

)8 ( I
ΔC

− 1 + A
) 9−8 (

AA
=

)
9+1,<+1

=
∑=

<=?

(<
?

) (
I
ΔC

− 1 + A
)<−? ∑=

8=0

(
g
ΔC

− 1 + A
) 8 (

AA
=

)
8+1,<+1

=
∑=

<=?

(<
?

) (
I
ΔC

− 1 + A
)<−?

(c= (g))<+1 , ? = 0, . . . , =. (C34)
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Note that, upon defining

(d= (g));+1 =
1
ΔC

(
g
ΔC

− 1 + A
) ;
, ; = 0, . . . , =, (C35)

the definition of c= (g) implies that
∫

ΔC

0
(d= (g));+1 (c= (g))<+1 dg =

∑=
8=0

1
ΔC

∫
ΔC

0

(
g
ΔC

− 1 + A
) 8+; (

AA
=

)
8+1,<+1

dg =
∑=

8=0

(
GA

=

)
;+1,8+1

(
AA

=

)
8+1,<+1

=

{
0, ; ≠ <

1, ; = <
, ; = 0, . . . , =, < = 0, . . . , =. (C36)

The previous equality results in

1
ΔC

∫
ΔC

0

(
g−I
ΔC

) ; (
c=,I (g)

)
?+1

dg =
1
ΔC

∫
ΔC

0

(
g−I
ΔC

) ; ∑=
<=?

(<
?

) (
I
ΔC

− 1 + A
)<−?

(c= (g))<+1 dg

=
1
ΔC

∫
ΔC

0

∑=
<=?

(<
?

) (
I
ΔC

− 1 + A
)<−?

(c= (g))<+1

∑;
9=0

( ;
9

) (
g
ΔC

− 1 + A
) 9 (

1 − A − I
ΔC

) ;− 9
dg

=
∑=

<=?

(<
?

) (
I
ΔC

− 1 + A
)<−? ∑;

9=0

( ;
9

) (
1 − A − I

ΔC

) ;− 9
∫

ΔC

0
(d= (g)) 9+1 (c= (g))<+1 dg

=

{
0, ; = 0, . . . , ? − 1
∑;

<=?

(<
?

) (
I
ΔC

− 1 + A
)<−? ( ;

<

) (
1 − A − I

ΔC

) ;−<
, ; = ?, . . . , =

=

{
0, ; = 0, . . . , ? − 1
∑;−?

<=0

(<+?
?

) (
I
ΔC

− 1 + A
)< ( ;

<+?

) (
1 − A − I

ΔC

) ;−?−<
, ; = ?, . . . , =

=

{
0, ; = 0, . . . , ? − 1

;!
?!(;−?)!

∑;−?

<=0

(;−?)!
<!(;−?−<)!

(
I
ΔC

− 1 + A
)< (

1 − A − I
ΔC

) ;−?−<
, ; = ?, . . . , =

=

{
0, ; = 0, . . . , ? − 1

;!
?!(;−?)!

0;−?, ; = ?, . . . , =

=

{
0, ; ≠ ?

1, ; = ?
, ; = 0, . . . , =. (C37)

Consequently,

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

?!

ΔC=+1

(g−Z )=−1

(=−1) ! dZdg =
?!

(=−1) !ΔC

∫
ΔC

0

(c=,I (g))?+1

ΔC=

∫ g

I
(g − Z )=−1 dZdg

=
?!

=!ΔC

∫
ΔC

0

(
g−I
ΔC

)= (
c=,I (g)

)
?+1

dg

=

{
0, ? = 0, . . . , = − 1

1, ? = =
. (C38)

From the fact that ỹ
(=−1)
2 is absolutely continuous,

H?,=,I (ỹ2 , C) =
?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

ỹ2 (C − ΔC + g)dg

=
?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

(∑=−1
;=0

ỹ
(;)
2 (C−ΔC+I)

;!
(g − I);

)
dg

+
?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )

(=−1)! (g − Z )=−1 dZdg

=
∑=−1

;=0 ỹ
(;)
2 (C − ΔC + I)

?!ΔC ;−?

;!ΔC

∫
ΔC

0

(
g−I
ΔC

) ; (
c=,I (g)

)
?+1

dg

+ ΔC−?
∫

ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

?!

ΔC=+1 ỹ
(=)
2 (C − ΔC + Z )ΔC=

(g−Z )=−1

(=−1)! dZdg, (C39)

which implies that, for ? = 0, . . . , = − 1,

H?,=,I (ỹ2 , C) = ỹ
(?)
2 (C − ΔC + I) + ΔC−?

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

?!

ΔC=+1 ỹ
(=)
2 (C − ΔC + Z )ΔC=

(g−Z )=−1

(=−1) !
dZdg

= ỹ
(?)
2 (C − ΔC + I) +

?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1) !
(g − Z )=−1 dZdg, (C40)
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and

H=,=,I (ỹ2 , C) = ΔC−=
∫

ΔC

0

(
c=,I (g)

)
=+1

∫ g

I
=!

ΔC=+1 ỹ
(=)
2 (C − ΔC + Z )ΔC=

(g−Z )=−1

(=−1) ! dZdg

= ỹ
(=)
D (C − ΔC + I) + =!

ΔC=+1

∫
ΔC

0

(
c=,I (g)

)
=+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1)! (g − Z )=−1 dZdg. (C41)

D PROOF OF LEMMA 4

Since ỹ
(=)
2 (C) = ỹ

(=)
D (C) + ỹ

(=)
0 (C) from (29) and, according to the Cauchy formula for repeated integration,

?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
2 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1)!
(g − Z )=−1 dZdg

=
?!

ΔC ?+1

∫
ΔC

0

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
D (C−ΔC+Z )+ỹ

(=)
0 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1) !
(g − Z )=−1 dZdg

= −
?!

ΔC ?+1

∫ I

0

(
c=,I (g)

)
?+1

∫ I

g

ỹ
(=)
D (C−ΔC+Z )+ỹ

(=)
0 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1) !
(g − Z )=−1 dZdg

+
?!

ΔC ?+1

∫
ΔC

I

(
c=,I (g)

)
?+1

∫ g

I

ỹ
(=)
D (C−ΔC+Z )+ỹ

(=)
0 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(=−1) !
(g − Z )=−1 dZdg

= −
?!

ΔC ?+1

∫ I

0

ỹ
(=)
D (C−ΔC+Z )+ỹ

(=)
0 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(−1)=−1

∫ Z

0

(Z−g)=−1

(=−1) !

(
c=,I (g)

)
?+1

dgdZ

−
?!

ΔC ?+1

∫
ΔC

I

ỹ
(=)
D (C−ΔC+Z )+ỹ

(=)
0 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(−1)=−1

∫ Z

ΔC

(Z−g)=−1

(=−1) !

(
c=,I (g)

)
?+1

dgdZ

=
?!

ΔC ?+1

∫ I

0

ỹ
(=)
D (C−ΔC+Z )+ỹ

(=)
0 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(−1)=
(
c
(−=)

=,I,1
(Z )

)
?+1

dZ

+
?!

ΔC ?+1

∫
ΔC

I

ỹ
(=)
D (C−ΔC+Z )+ỹ

(=)
0 (C−ΔC+Z )−ỹ

(=)
D (C−ΔC+I)

(−1)=
(
c
(−=)

=,I,0
(Z )

)
?+1

dZ

=
?!

ΔC ?+1

∫ I

0

(
c
(−=)

=,I,1
(g)

)
?+1

ỹ
(=)
D (C−ΔC+g)−ỹ

(=)
D (C−ΔC+I)+ỹ

(=)
0 (C−ΔC+g)

(−1)=
dg

+
?!

ΔC ?+1

∫
ΔC

I

(
c
(−=)

=,I,0
(g)

)
?+1

ỹ
(=)
D (C−ΔC+g)−ỹ

(=)
D (C−ΔC+I)+ỹ

(=)
0 (C−ΔC+g)

(−1)=
dg, (D42)

this lemma is a consequence of Lemma 3.

E PROOF OF LEMMA 5

The following equation is a consequence of Lemma 4:

D(ỹ2 , C) − ¤̃yD (C) =
1

ΔC2

∫
ΔC

0

(
c
(−1)

1,ΔC ,1
(g)

)
2

¤̃yD (C−ΔC+g)−¤̃yD (C)+¤̃y0 (C−ΔC+g)

−1
dg

=
∫

ΔC

0

( (
g
ΔC

) (
a1

1,1,ΔC

)

1
+
(
g
ΔC

)2
(
a1

1,1,ΔC

)

2

2

)
¤̃yD (C−ΔC+g)−¤̃yD (C)

−ΔC
dg

+
∫
ΔC

0

( (
g
ΔC

) (
a1

1,1,ΔC

)

1
+
(
g
ΔC

)2
(
a1

1,1,ΔC

)

2

2

)
¤̃y0 (C−ΔC+g)

−ΔC dg

=
∫

ΔC

0
6
(
g
ΔC

−
(
g
ΔC

)2) ¤̃yD (C−ΔC+g)−¤̃yD (C)

ΔC
dg +

∫
ΔC

0
6
(
g
ΔC

−
(
g
ΔC

)2) ¤̃y0 (C−ΔC+g)

ΔC
dg. (E43)

F PROOF OF LEMMA 6

The estimation of ŷ
(?)
2 (C), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C) in (47) and (48) uses the inputs ỹ2 (C) and ỹ

(=)
0 (C). Then, one applies

the Laplace transform to (47) and (48). Considering that Xỹ2 (C) = 0=2 and Xỹ
(=)
0 (C) = 0=2 for C < 0, that is, Xỹ2 (C) = � (C)Xỹ2 (C)
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and Xỹ
(=)
0 (C) = � (C)Xỹ

(=)
0 (C), where � (C) is the Heaviside step function, it holds that

Ŷ
(?)

2 (B) =
∫ ∞

0
Xŷ

(?)
2 (C) exp (−BC) dC

=
∫ ∞

0

(
H?,=,ΔC (Xỹ2 , C) −Z?,=,ΔC (Xỹ

(=)
0 , C)

)
exp (−BC) dC

=
∫ ∞

0

?!

ΔC ?+1

∫
ΔC

0

(
c=,ΔC (g)

)
?+1

Xỹ2 (C − ΔC + g)dg exp (−BC) dC

−
∫ ∞

0

?!

ΔC ?+1

∫
ΔC

0

(
c
(−=)

=,ΔC ,1
(g)

)
?+1

Xỹ
(=)
0 (C−ΔC+g)

(−1)=
dg exp (−BC) dC

=
∫ ∞

0

?!

ΔC ?+1

∫ C

C−ΔC

(
c=,ΔC (g − C + ΔC)

)
?+1

� (g)Xỹ2 (g)dg exp (−BC) dC

−
∫ ∞

0

?!

ΔC ?+1

∫ C

C−ΔC
(−1)=

(
c
(−=)

=,ΔC ,1
(g − C + ΔC)

)
?+1

� (g)Xỹ
(=)
0 (g)dg exp (−BC) dC

=
∫ ∞

0

?!

ΔC ?+1

∫ C

0
� (g − C + ΔC)

(
c=,ΔC (g − C + ΔC)

)
?+1

Xỹ2 (g)dg exp (−BC) dC

−
∫ ∞

0

?!

ΔC ?+1

∫ C

0
� (g − C + ΔC) (−1)=

(
c
(−=)

=,ΔC ,1
(g − C + ΔC)

)
?+1

Xỹ
(=)
0 (g)dg exp (−BC) dC, (F44)

with Ŷ
(?)

2 (B) replaced by Ŷ
(=)

D (B) if ? = =. Upon defining

6?,=,ΔC (C) =
?!

ΔC ?+1 � (ΔC − C)
(
c=,ΔC (ΔC − C)

)
?+1

, (F45)

6
(−=)

?,=,ΔC ,1
(C) = −

?!

ΔC ?+1 � (ΔC − C) (−1)=
(
c
(−=)

=,ΔC ,1
(ΔC − C)

)
?+1

, (F46)

and noting that

(
c=,ΔC (g)

)
?+1

=
∑=

8=0

(
g
ΔC

) 8 (
a1
?,=,ΔC

)

8+1
=
∑=

8=0

(
g
ΔC

) 8 ∑=
9=8

( 9
8

)
(−1) 9−8

(
A0

=

)

9+1, ?+1
, (F47)

(
c
(−=)

=,ΔC ,1
(g)

)
?+1

=
∑=

8=0

(
g
ΔC

) 8+= ΔC=8!
(8+=) !

(
a1
?,=,ΔC

)

8+1
=
∑=

8=0

(
g
ΔC

) 8+= ΔC=8!
(8+=) !

∑=
9=8

( 9
8

)
(−1) 9−8

(
A0

=

)

9+1, ?+1
, (F48)

it follows that, according to the properties of Laplace transforms with respect to convolution,

Ŷ
(?)

2 (B) =
∫ ∞

0

∫ C

0
6?,=,ΔC (C − g)Xỹ2 (g)dg exp (−BC) dC +

∫ ∞

0

∫ C

0
6
(−=)

?,=,ΔC ,1
(C − g)Xỹ

(=)
0 (g)dg exp (−BC) dC

=

(∫ ∞

0
6?,=,ΔC (C) exp (−BC) dC

) (∫ ∞

0
Xỹ2 (C) exp (−BC) dC

)

+
(∫ ∞

0
6
(−=)

?,=,ΔC ,1
(C) exp (−BC) dC

) (∫ ∞

0
Xỹ

(=)
0 (g) exp (−BC) dC

)

=
?!

ΔC ?+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8 ∑=
9=8

( 9
8

)
(−1) 9−8

(
A0

=

)

9+1, ?+1
exp (−BC) dCSỸ(B)

−
?!

ΔC ?+1

∫
ΔC

0

∑=
8=0

(
1 − C

ΔC

) 8+= ΔC=8!
(8+=) !

∑=
9=8

( 9
8

)
(−1)=+ 9−8

(
A0

=

)

9+1, ?+1
exp (−BC) dCỸ

(=)
0 (B), (F49)

with Ŷ
(?)

2 (B) replaced by Ŷ
(=)

D (B) if ? = =. The proof is similar for (49) and (50) and yields the second equality of the lemma,

with Ỹ
(?)
2 (B) removed if ? = =.

G OPEN-LOOP AND CLOSED-LOOP TRANSFER FUNCTIONS

We start by describing the plant in (1) in terms of deviation variables, which yields

X ¤x(C) = A?Xx(C) + B?Xu(C), (G50a)

Xy(C) = C?Xx(C), (G50b)

with

A? =
mf
mx

(
x̄, ū

)
, (G51a)

B? =
mf
mu

(
x̄, ū

)
, (G51b)

C? =
mg

mx

(
x̄
)
. (G51c)

The transfer function of the plant is computed as G? (B):

G? (B) = C?

(
BI=G − A?

)−1
B? . (G52)
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The computation of ỹ
(=)
0 (C) from ỹ(C) and ũ(C) implies

Xỹ
(=)
0 (C) = D

H
0Xỹ(C) + DD

0Xũ(C), (G53)

with

D
H
0 =

ms̃0
my

(
ȳ, ū

)
, (G54a)

DD
0 =

ms̃0
mu

(
ȳ, ū

)
. (G54b)

As shown in Lemma 6, the Laplace transform of ŷ
(?)
2 (C), for ? = 0, . . . , = − 1, and ŷ

(=)
D (C) in (47) and (48) is given by (53)

and (54). Since this Laplace transform includes exp (−BΔC), one can use the Padé approximation of order = + 1 of exp (−BΔC)

about B = 0 to express (53) and (54) as the rational function

Ŷ
(?)

2 (B) =

∑=

:=01
H

?,=+1−:
B:

B=+1+
∑=

:=00?,=+1−:B:
SỸ(B) +

∑=

:=01
0
?,=+1−:

B:

B=+1+
∑=

:=00?,=+1−:B:
Ỹ

(=)
0 (B), (G55)

with Ŷ
(?)

2 (B) replaced by Ŷ
(=)

D (B) if ? = =.

Hence, the derivative estimation can be described by the minimal realization of the transfer function (G55), which yields the

following linear system with =I = (= + 1 − ⌊U⌋) (= + 1) =2 states:

X¤z(C) = A4Xz(C) + B
H
4Xỹ(C) + B0

4Xỹ
(=)
0 (C), (G56a)

Xŷ
(?)
2 (C) = C4,?Xz(C), ? = ⌊U⌋, . . . , = − 1, (G56b)

Xŷ
(=)
D (C) = C4,=Xz(C), (G56c)

with

A4 = diag

[ A4,=

...
A4, ⌊U⌋

]

, A4,? =



−0?,1I=2 I=2 0=2×(=−1)=2

... 0(=−1)=2×=2 I(=−1)=2

−0?,=+1I=2 0=2×=2 0=2×(=−1)=2


, ? = ⌊U⌋, . . . , =, (G57a)

B
H
4 =



B
H
4,=

...
B
H

4, ⌊U⌋


, B

H
4,? =



1
H

?,1
S

...
1
H

?,=+1
S


, ? = ⌊U⌋, . . . , =, (G57b)

B0
4 =



B0
4,=

...
B0
4, ⌊U⌋


, B0

4,? =



10
?,1

I=2

...
10
?,=+1

I=2


, ? = ⌊U⌋, . . . , =, (G57c)

C4,? = [ 0=2×(=−?) (=+1)=2 I=2 0=2×==2 0=2×(?−⌊U⌋) (=+1)=2 ], ? = ⌊U⌋, . . . , =. (G57d)

In particular, if = = 1, the Laplace transform of ¤̂yD (C) in (51) is given by

¤̂YD (B) = 6
(BΔC+2) exp(−BΔC)+(BΔC−2)

B2ΔC3 SỸ(B) − 6
(BΔC+2) exp(−BΔC)+(BΔC−2)

B3ΔC3 Ỹ
(=)
0 (B). (G58)

Since this Laplace transform includes exp (−BΔC), one can use the Padé approximation

exp (−BΔC) =
1−

BΔC
2

+
B2ΔC2

12

1+
BΔC
2

+
B2ΔC2

12

(G59)

to express (G58) as the rational function

¤̂YD (B) =
12
ΔC2 BSỸ(B)−

12
ΔC2 Ỹ

(=)
0 (B)

B2+
6
ΔC

B+
12
ΔC2

. (G60)

Hence, the derivative estimation can be described by the minimal realization of the transfer function (G60), which yields the

following linear system with =I = 2=2 states:

X¤z(C) = A4Xz(C) + B
H
4Xỹ(C) + B0

4 Xỹ
(=)
0 (C), (G61a)

X ¤̂yD (C) = C4,1Xz(C), (G61b)
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with

A4 =

[
−

6
ΔC

I=2 I=2

−
12
ΔC2 I=2 0=2×=2

]

, (G62a)

B
H
4 =

[
12
ΔC2 S

0=2×=H

]
, (G62b)

B0
4 =

[
0=2×=2

−
12
ΔC2 I=2

]
, (G62c)

C4,1 = [ I=2 0=2×=2 ] . (G62d)

Furthermore, the feedback-linearizing controller in (13) and (14) can be written as

Xũ(C) =
∑=−1

?= ⌊U⌋D
4,?
D Xŷ

(?)
2 (C) + D4,=

D Xŷ
(=)
D (C) + D

H
DXỹ(C) +

∑=−1
?=0D

A ,?
D Xr(?) (C), (G63)

with

D
4,?
D = −B̃0

(
ȳ
)−1

(1 − U0?)
(=
?

)
g
?−=
2 , ? = ⌊U⌋, . . . , =, (G64a)

D
H
D = −B̃0

(
ȳ
)−1

(
SUg−=2 + ms̃0

my

(
ȳ, ū

))
, (G64b)

D
A ,?
D = B̃0

(
ȳ
)−1 (=

?

)
g
?−=
2 , ? = 0, . . . , = − 1. (G64c)

The combination of (G53), (G56), and (G63) leads to the state-space representation of the controller as

X¤z(C) = A:Xz(C) + B
H

:
Xỹ(C) +

∑=−1
?=0B

A ,?

:
Xr(?) (C), (G65a)

Xũ(C) = C:Xz(C) + D
H

:
Xỹ(C) +

∑=−1
?=0D

A ,?

:
Xr(?) (C), (G65b)

with

A: = A4 + B0
4DD

0

(∑=
?= ⌊U⌋D

4,?
D C4,?

)
, (G66a)

B
H

:
= B

H
4 + B0

4D
H
0 + B0

4DD
0D

H
D , (G66b)

B
A ,?

:
= B0

4DD
0D

A ,?
D , ? = 0, . . . , = − 1, (G66c)

C: =
∑=

?= ⌊U⌋D
4,?
D C4,? , (G66d)

D
H

:
= D

H
D, (G66e)

D
A ,?

:
= D

A ,?
D , ? = 0, . . . , = − 1. (G66f)

and D
H
0, DD

0 in (G54), A4, B
H
4 , B0

4 , C4,? in (G57), and D
4,?
D , D

H
D, D

A ,?
D in (G64).

The transfer functions of the actuator inputs ũ(C) with respect to the sensor outputs ỹ(C) (superscript H) and the setpoints r(C)

(A) are computed as G
H

:
(B) and GA

: (B):

G
H

:
(B) = C:

(
BI=I − A:

)−1
B
H

:
+ D

H

:
, (G67a)

GA
: (B) =

∑=−1
?=0C:

(
BI=I − A:

)−1
B
A ,?

:
B? +

∑=−1
?=0D

A ,?

:
B? . (G67b)

From these open-loop state-space representations and transfer functions, one can derive the closed-loop state-space

representation (102) with the matrices (99) and the closed-loop transfer functions

G
A→H

2;
(B) =

∑=−1
?=0C

H

2;

(
BI=G+=I − A2;

)−1
B
A ,?

2;
B? , (G68a)

G
3→H

2;
(B) = C

H

2;

(
BI=G+=I − A2;

)−1
B
3,0
2;

, (G68b)

G
F→H

2;
(B) = C

H

2;

(
BI=G+=I − A2;

)−1
B
F,0
2;

, (G68c)

GA→D
2; (B) =

∑=−1
?=0CD

2;

(
BI=G+=I − A2;

)−1
B
A ,?

2;
B? +

∑=−1
?=0D

A ,?

:
B? , (G68d)

G3→D
2; (B) = CD

2;

(
BI=G+=I − A2;

)−1
B
3,0
2;

+ I=D , (G68e)

GF→D
2; (B) = CD

2;

(
BI=G+=I − A2;

)−1
B
F,0
2;

+ D
H

:
. (G68f)
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