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ABSTRACT OF THE DISSERTATION 

 

Computational approaches for utilizing mutational signatures  
for cancer treatment and cancer prevention 

 
 

by 

 

Erik N. Bergstrom 

 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2022 

Professor Ludmil B. Alexandrov, Chair 
 

 

The genome of a cancer cell is replete with somatic mutations imprinted by the 

activities of different endogenous and exogenous processes. Each mutational process exhibits 

a characteristic pattern of mutations, termed mutational signature. Prior work has shown that 

mutational signatures can be deciphered from a set of cancer genomes, thus, providing insight 



xx 
 

into the mutagenic processes that have been operative throughout the lineage of the cancer 

cell. Analysis of mutational signatures has had three major applications: (i) leveraging 

mutational signatures to identify environmental mutagens that cause cancer, thus, providing 

opportunities for developing cancer prevention strategies; (ii) using mutational signatures to 

better understand the biological mechanisms of DNA damage and repair processes; (iii) 

utilizing mutational signatures of failed DNA repair as biomarkers for targeted cancer 

treatment. However, the universal deployment of mutational signatures has been limited 

mainly by a reliance on whole-genome sequencing and downstream expert interpretation.  

In this dissertation, we first develop three novel computational frameworks for 

exploring mutational signatures from large cohorts of cancer. We apply these approaches in a 

pan-cancer analysis to elucidate the mutational processes giving rise to clustered mutational 

events encompassing a plethora of operative endogenous and exogenous processes. 

Comprehensive characterization of these events reveals an enrichment within known driver 

genes. Importantly, clustered driver mutations are detectable from standard-of-care diagnostic 

tests and can serve as prognostic biomarkers for the overall survival of a cancer patient. 

Further, we introduce a novel form of oncogenesis, termed kyklonas, indicative of a repeated 

hypermutation of extrachromosomal circular DNA driven by the innate immune system.  

Lastly, we propose an alternative sequencing-independent and cost-effective method 

for detecting mutational signatures by applying a deep learning approach to digital images of 

histopathological cancer slides. We demonstrate both the ability of this novel approach for 

detecting homologous recombination deficiency within breast and ovarian cancers as well as 

its clinical utility for predicting sensitivity to platinum treatment in individual cancer patients.
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Chapter 1.  

Introduction 
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1.1. The genomes of somatic and cancer cells 

From the time of fertilization, each somatic cell in the human body will continuously 

acquire genetic mutations [1]. Most of these somatic mutations will have no effect on the relative 

fitness of a given cell but persist as “passengers” throughout the lineage of that cell [1-3]. A 

small proportion of these somatic mutations may confer a selective growth advantage for an 

individual cell leading to clonal expansions which could ultimately ‘drive’ the progression of a 

cancer [1]. Collectively, the accumulation of mutations across the genome of a somatic cell 

provides historical insight into the underlying mutational processes that have been active 

throughout the entire lineage dating back to the formation of the initial zygote [1]. In the case of 

cancer cells, subsets of these somatic mutations would have been generated prior to the 

occurrence of cancerous lesions while others could reflect mutator phenotypes triggered by 

neoplastic expansion [4, 5]. The relative mutation rates of most normal tissues are low; however, 

repeated exposures to potent mutagens such as ultraviolet radiation found in sunlight or 

benzo[a]pyrene found within tobacco smoke, can result in an elevated mutation rates, which in 

turn can lead to an increased risk for developing specific types of cancer indicative of individual 

lifestyle choices [6].  

Upon cancer progression, the failure of key cellular processes, such as those involved in 

DNA repair, may result in a further elevation of mutation rates leading to an accelerated cancer 

evolution [7, 8]. Subsequent exposures, including ones due to anti-cancer therapies, such as 

platinum-based chemotherapy, may also sculpt the final landscape of genomic alterations [9, 10]. 

Thus, the final mutational landscape of a cancer genome reflects the additive effects of all 

mutational processes that have been operative during the lineage of the cancer cell [1].  
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1.2. Mutational patterns and mutational signatures 

Each mutational process operative within a cell imprints a characteristic pattern of 

mutations, termed mutational signature, providing insight into the underlying etiology of a given 

cancer [4, 5]. Early studies focused on these patterns of mutations within the coding regions of 

TP53, the most mutated gene in human cancer [11], revealing distinct patterns of mutagenesis 

associated with exposure to ultraviolet radiation, smoking tobacco, ingestion of aflatoxin, and 

consumption of aristolochic acid, amongst others [12-15]. While these contributions were 

fundamental to our current understanding of mutational signatures, they had major limitations. 

For instance, these studies characterized the effects of specific mutagens but did not consider the 

activity of additional mutational processes that may be contributing to the final mutational 

pattern beyond the single process of interest [6]. Further, analyzing the mutations found within 

the coding regions of TP53, indicative of driver mutations, have likely been under strong 

selection throughout the evolution of the cancer and are ultimately superimposed on the 

associated mutational signature [1].  

 With the advent of next-generation sequencing technologies [16], the accumulation of 

large-scale cancer genomics datasets provided unprecedented opportunities for interrogating the 

mutational signatures across the spectrum of human cancers [4, 17-21]. Previous studies 

introduced a computational framework for deciphering the underlying mutational processes 

operative within large-scale genomic sequencing data by modelling the accumulation of somatic 

mutations in cancers as a blind-source separation problem using non-negative matrix 

factorization techniques [21]. This proposed solution was first applied to 21 whole-genome 

sequenced breast cancers [5] and subsequently to ~7,000 cancer genomes across 30 cancer types 

demonstrating the ability to extract the number of relevant processes operative within the cohort, 
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while estimating the relative contributions of each mutational signature within each sample [4]. 

These studies revealed over 20 unique mutational signatures of single base substitutions [4, 5]. In 

a recent study, we performed mutational signature extraction across a combined ~4,600 whole-

genome sequenced and ~19,000 whole-exome sequenced cancer genomes identifying 49 single 

base substitution, 11 doublet base substitution, and 17 small insertion and deletion signatures 

[18]. These findings implicated putative etiologies for a subset of these signatures including 

effects from both exogenous and endogenous processes in addition to processes unique to 

individual tissues. The details of each individual process is beyond the scope of this thesis; 

however, a detailed vignette for all single-base substitution, doublet-base substitution, small 

insertion and deletion, and copy number mutational signatures are found on the publicly 

available COSMIC website (https://cancer.sanger.ac.uk/signatures/).  

 

1.2.1. DNA damage, repair, and replication 

From a fundamental perspective, the mutational pattern observed in a cancer genome 

reflects the aggregated effects of the intrinsic infidelity of the DNA replication machinery and 

the combined result of DNA damage and repair [22]. While most damage inflicted on DNA by 

various mutagens is successfully repaired, a number of events are converted into permanent 

mutations that are found on the genome of a cell and the genomes of all offspring of that cell [1]. 

The local sequence context and topographical characteristics of each mutation are representative 

of the initial form of DNA damage and the subsequent process that acts upon it, which may 

include specific DNA replication and repair machinery [22-24]. Each of these mechanistic paths 

may result in various types of mutations. For instance, a damaged base pair may be depurinated 

leaving behind an abasic site [25]. While most of these sites will be successfully repaired through 
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the base excision repair pathway (BER) [26, 27], a subset can result in the misincorporation of a 

nucleotide during replication, which commonly results in the incorporation of an adenine [28]. 

Alternatively, error-prone replicative machinery such as REV1 may be recruited, which 

incorporates cytosines opposite of abasic sites [23].  

Depending on the initial form of damage, the resulting changes will leave behind a 

characteristic somatic mutation [22]. For example, if the initial abasic site was caused by the 

excision of a deaminated cytosine due to the activity of an APOBEC3 enzyme, the final 

mutational signature will be a combination of C:G>T:A transitions due to replication over an 

uncorrected abasic site (reflected by COSMIC signature SBS2) or C:G>G:C transversions due to 

the activity of REV1 (reflected by COSMIC signature SBS13) [23, 29]. Thus, extracting 

mutational signatures provides a lens to better understand the underlying processes that convert a 

specific type of DNA damage into the final mutation, which often includes the activity of 

multiple processes with alternative outcomes [22].  

These final signatures are also sculpted by the proclivity of DNA repair processes to 

preferentially target specific strands of the DNA [23]. For instance, within coding regions of the 

genome, the transcription-coupled component of the nucleotide excision repair process (TC-

NER) exclusively repairs damage that occurs on the transcribed strand [30]. This results in an 

increased mutational burden on the untranscribed strand, which is reflected in specific mutational 

signatures including exposure to carcinogens within tobacco smoke and exposure to ultraviolet 

radiation [4, 13, 18, 31]. A lack of transcriptional strand bias for these characteristic signatures 

may indicate a failure of transcription-coupled repair processes. 
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1.2.2. Environmental mutagens and somatic mutations 

Mutational signatures are also driven by a plethora of external mutagenic factors 

spanning across physical, chemical, and biological components [22, 32]. Prior studies attributed 

mutational signatures to specific carcinogenic exposures within individual cancer types and 

further demonstrated actionable opportunities for cancer prevention [20, 33, 34]. For example, 

previous studies revealed that exposure to aristolochic acid (AA), a natural compound used in 

Chinese traditional medicine, results in a unique mutational signature (known as COSMIC 

SBS22) which is found in the genomes of upper urinary tract urothelial cell carcinomas [35-38], 

hepatocellular carcinomas [37], and renal cell carcinomas [39, 40]. Importantly, more than 50% 

of all liver cancers in China and Southeast Asia have been attributed to AA exposure, suggesting 

methods of prevention through regulation and increased screening of at-risk individuals [33, 41]. 

Similar methods for avoiding exposures to certain exogenous mutagenic carcinogens, such as 

exposure to ultraviolet light, tobacco smoke, and aflatoxin B1, have informed public health 

policies for limiting exposures that can ultimately lead to reducing cancer incidence rates [20, 42, 

43].  

While the mutational signatures of a subset of these exogenous exposures are well 

understood, there are many commonly observed signatures with unknown or poorly understood 

etiologies [18, 24, 33, 37, 43-49]. For example, while lacking an assigned etiology, COSMIC 

signatures SBS12 is ubiquitously found in hepatocellular carcinomas from Southern Asia but is 

generally absent in most cancers from North America and Western Europe [50]. This indicates 

an existence of previously unknown and geographically localized carcinogens that cause somatic 

mutations and contribute to cancer risk. Elucidating the processes underlying such mutational 
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signatures can provide further opportunities for developing novel cancer prevention strategies 

[18, 51]. 

 

1.3. Mutational processes of clustered somatic mutations 

Previous studies that characterized mutational signatures across human cancer considered 

individual somatic mutations as independent events contributing to the overall activity of a given 

mutational process [4, 5, 18, 19]. In practice, this assumption holds true for the majority of 

somatic single-base substitutions and small insertions and deletions, however, there are a subset 

of observed events that tend to cluster in non-random fashion [52, 53]. Clustered events, which 

encompass two or more simultaneously occurring somatic mutations, and their respective 

mutational patterns were first described in the form of doublet-base and multi-base substitutions, 

which are two or more adjacent base-pairs that get mutated at the same time [5, 18, 54-56]. 

These early studies described the mutagenic effects of DNA cross-linking caused by various 

exogenous factors including acetaldehyde and ultraviolet radiation, which lead to tandem base 

substitutions also known as doublet-base substitutions [14, 54-56].  Recent studies have 

illuminated additional forms of clustered mutagenesis and hypermutation, which will be 

summarized in the proceeding subsections [4, 5, 52, 57]. This clustering of mutations is often 

attributed to a combination of heterogeneous mutation rates across the genomic landscape, 

biophysical characteristics of exogenous carcinogens, dysregulation of endogenous processes, 

and the occurrence of larger events associated with genomic instability; amongst other [5, 14, 52, 

57-65].  
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1.3.1. Variability of mutation rates across the genome 

The distributions of mutations across the genome are sculpted by a range of different 

genomic features that act at varying resolutions [61]. At the megabase scale, each chromosome 

can be divided into partitioned domains with characteristic mutation rates [53, 66]. From a more 

refined mesoscale resolution, the occupancy of nucleosomes and the propensity of DNA to form 

secondary structures reveal variations in mutation frequencies often specific to individual 

mutational processes [67-72]. Lastly, zooming into the primary sequence of DNA reveals context 

motifs that, in most cases, are associated with different mutational signatures [4, 5, 18].   

 

1.3.1.1. Chromosomal domains 

At the macroscale, individual chromosomes are organized into megabase-sized chromatin 

domains [73]. Canonically referred to as compartment A, this domain is enriched for 

topologically associating domains (TADs) that are highly transcribed and comprised of gene rich 

euchromatin [73]. Further, the majority of these regions are replicated early during mitosis [74, 

75]. In contrast, compartment B is full of TADs with gene-poor heterochromatin that are 

typically repressed from transcription and, in most cases, are replicated late [74, 75]. As a result 

of mismatch repair being coupled to DNA replication and preferentially active within early 

replicating, gene-rich regions, there is an enrichment of mutations found within compartment B 

[53, 57, 66]. However, inactivation of mismatch repair, such as in microsatellite unstable 

cancers, alleviates this discrepancy in mutation rate, indicating that the variability in mutation 

distribution is repair-dependent [76]. The increased availability of early replicating regions and 

the coupling of mismatch repair machinery to the replication fork is thought to account for the 

increased activity of repair within compartment A [76].   
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1.3.1.2. Mesoscale features and DNA secondary structures  

Recent studies have characterized the effects on mutation rate at the mesoscale resolution 

[61, 67-72]. Typically, this scale encompasses shorter tracts of DNA including larger motifs and 

formation of secondary structures. For instance, the mutation rate within nucleosomes follows a 

periodicity of approximately 10 base pairs in length reflecting the alternating major and minor 

grooves facing toward and away from each histone [67, 68]. The relative mutation frequencies 

across these DNA tracts are also dependent on the underlying mutational process and are 

reflected by a decreased activity of nucleotide excision repair around DNA-bound proteins [68].  

Additional variability of mutation rates at the mesoscale resolution is found around the 

formation of DNA secondary structures. For instance, regions that have a higher propensity to 

form non-canonical structures (non-B motifs), or those differing from the standard right-handed 

helical structure, have an increased rate of mutagenesis [24, 69, 77]. These regions are also 

enriched for recurrent hotspot mutations, which can bias downstream driver event detection 

algorithms [61]. Traditionally, recurrent hotspot events are implicated as being sites that have 

undergone positive selection in cancer development; however, the increased mutability of non-B 

motifs complicates the interpretability of recurrent events [69]. Specifically, palindromic 

sequences that have a higher propensity to form stems of hairpins and cruciforms result in an 

increased mutation rate mainly within the spacer sequences that form the loop structures [61]. 

These characteristic structures form single-stranded DNA (ssDNA) tracts that are easily 

damaged and accessible to enzymatic degradation resulting in the accumulation of a large 

number of passenger mutations that appear as hotspots across specific cancers [61].  
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Differences in mutation rate are also observed across complementary DNA strands 

associated with replication and transcription [70-72]. There is an enrichment of mutations found 

on the lagging strand during replication, which is driven by an increased availability of ssDNA at 

the replication fork [71, 72]. Damage caused to the ssDNA will be converted into permanent 

mutations in offspring cells given the lack of complementary strand information for correcting 

the DNA damage [71, 72]. As previously discussed, these strand asymmetries are lessened 

within early replicating regions due to the preferential activity of mismatch repair [57]. In 

comparison, mutation enrichments are also observed across the untranscribed strand within 

transcribed regions of the genome [4, 5, 18, 20, 23]. This asymmetry is attributed to the 

transcription-coupled nucleotide excision repair (TC-NER) complex that preferentially repairs 

actively transcribed genes containing bulky distortions of DNA [30]. Damage occurring on the 

untranscribed strand fails to halt the RNA polymerase likely escaping detection of the TC-NER 

complex and ultimately getting converted into a mutation after replication [30].  

 

1.3.1.3. Primary DNA sequence motifs 

The primary sequence of DNA also contributes to the variability of mutation frequencies 

across the genome. Specific mutational processes have a higher propensity of mutating DNA 

with a certain sequence context [4, 5, 19, 31]. For instance, aristolochic acid (AA) almost 

exclusively results in T:A>A:T transversions [33, 35]. This specificity of AA is further refined 

when considering the larger sequence context of the mutated base pair demonstrated by an 

enrichment of T:A>A:T transversions at CpTpG trinucleotides (mutated base underlined) [33, 

35]. The characteristic probability of a mutational process affecting certain sequence motifs is 

the underpinnings of transforming mutational patterns into mutational signatures [21].  
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Additionally, the distribution of methylated cytosines across the genome can affect the 

relative mutation rate [78]. For instance, the deamination of 5-methylcytosine to thymine occurs 

due to spontaneous endogenous processes that results in an enrichment of C:G>T:A mutations at 

NpCpG sites [78]. In comparison, enzymatic deamination attributed to the APOBEC family of 

enzymes also results in an enrichment of C:G>T:A transitions but these are enriched at TpCpN 

trinucleotides and depleted at methylated CpG motifs [72].  

 

1.3.2. Genome instability and large mutational events 

On a more transient level, the mechanisms underlying larger chromosomal mutational 

events and other forms of genomic instability can affect the regional mutation rate leaving 

behind long tracts of clustered mutations [5, 52, 57-59, 65]. One of the most common forms of 

transient DNA damage are double-stranded breaks (DSBs). These types of lesions occur through 

both physiologic and pathologic mechanisms [79]. From a physiological perspective, DSBs 

occur as a consequence of somatic recombination and class switching during T and B cell 

maturation, which are repaired through the error-prone non-homologous end joining (NHEJ) 

pathway [79]. From a pathological perspective, the formation of DSBs can arise from both 

endogenous and exogenous factors including ionizing radiation, reactive oxygen species, 

replication across an unresolved nick in the DNA, enzymatic activity around fragile sites, and 

other forms of replicative and mechanical stress (reviewed here [79]). The resulting breaks from 

exposure to such processes are typically repaired through homologous recombination (HR) 

during the late S phase and G2 phase of the cell cycle [80]. During the remainder of the S phase, 

these DSBs are preferentially repaired through microhomology-mediated end joining (MMEJ) 

[80]. Lastly, NHEJ is used during both the early S phase and the G0/G1 phase [80].  
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To initiate the repair of a DSB through the HR pathway, a 5’ to 3’ resection of the DNA 

ends occurs leaving behind ssDNA [81, 82]. Any damage that occurs to these tracts of ssDNA 

have the potential to persist as mutations after DNA synthesis without a complementary strand to 

use as reference for correcting the damaged base pair [65]. As a result, long tracts of clustered 

mutations are commonly observed around the ends of DSBs [5, 65]. A similar 5’ to 3’ resection 

occurs at uncapped telomeres leaving behind highly mutable ssDNA [83]. Further, stalling or 

uncoupling of the DNA replication forks can leave behind temporary ssDNA which increases the 

rate of mutagenesis on the lagging strand during replication [70-72]. Alternative forms of 

genomic instability have also been shown to co-localize and to precede the formation of 

clustered mutations via the formation of ssDNA. For instance, chromothripsis, which involves 

large genomic rearrangements that are often caused during a single event and localized to 

specific regions of a chromosome, can co-localize with APOBEC-mediated hypermutation 

known as kataegis [84-86]. However, this co-localization is only partial since chromothriptic 

double-stranded breaks are preferentially reassembled through NHEJ repair, which does not 

perform 5’ to 3’ resection as heavily as HR repair [84].  

 

1.3.3. Somatic mutations due to the AID/APOBEC deaminases 

Another source of clustered mutagenesis arises from the activity of the APOBEC family 

of cytosine deaminases [52, 57, 58, 61, 87-89]. Typically, APOBEC deaminases are responsible 

for the anti-viral cellular response and for limiting the mobility of retrotransposon elements [90-

96]. However, the APOBEC enzymes tend to also attack any available ssDNA, thus, making 

them a substantial contributor to the overall mutational burden of most human cancers [29, 57, 

58, 88]. Specifically, the APOBEC3 enzymes give rise to at least two forms of clustered events 
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requiring single-stranded DNA as a substrate including collections of long, processive mutations 

termed kataegis [5] as well as a more recently described collection of short, diffuse hypermutator 

events termed omikli [57]. These shorter omikli events are enriched in early replicating regions 

and are more prevalent in microsatellite stable (MSS) tumors indicating that mismatch repair 

(MMR) provides the opportunity for APOBEC3 mutagenesis by exposing short single-stranded 

DNA regions while processing mismatched bases during replication [57]. Further, the 

differential activity of MMR towards gene-rich regions results in an increased mutational burden 

of omikli mutations within common cancer driver genes [57].  

Larger kataegic events are less prevalent than omikli events as they are likely dependent 

on longer tracks of single-stranded DNA, which are typically available during the repair of DSBs 

[58, 59, 65]. As such, there is an enrichment for kataegic events within 10 kilobases (kb) of 

detected breakpoints and have been observed in both recurrent and non-recurrent genomic 

regions across most cancers [60]. While a proportion of these events associate near structural 

breakpoints, there are a large portion of events that occur without any nearby breakpoint 

suggesting that there are additional sources of kataegis [60]. 

Another member of the same family of cytosine deaminases is the activation-induced 

deaminase (AID), which has been shown to give rise to somatic hypermutation within the 

immunoglobulin loci of developing B cells [97]. This reflects a highly controlled mechanism 

responsible for diversifying antibody affinities and isotopes to combat foreign organisms [97]. 

These tracts of AID-induced somatic hypermutation have also been observed in B-cell 

lymphomas outside of the targeted immunoglobulin loci resulting in larger kataegic-like events 

[98]. Direct replication over AID-induced lesions results in an enrichment of C:G>T:A or 

C:G>G:C clustered mutations at WpRpCpY contexts, where W reflects an adenine or thymine 
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base, R reflects any purine base, and Y reflects any pyrimidine base [98]. This canonical AID-

induced signature demonstrates the off-target effects which preferentially targets transcriptional 

start sites of highly transcribed genes and is on-going throughout a tumor’s evolution reflecting 

characteristics of somatic hypermutation phenotypes [98]. Alternatively, AID-induced lesions 

can be processed by the mismatch repair pathway that recruits the error-prone DNA polymerase 

h resulting in non-canonical AID mutations, which tend to occur earlier in tumor evolution [98]. 

 

1.3.4. Exogenous exposures 

Additionally, exposures to various exogenous mutation-causing carcinogens including 

ultraviolet radiation, benzo[a]pyrene, and platinum chemotherapeutics have been shown to cause 

clustered somatic mutations including previously reported doublet-base and multi-base 

substitutions in addition to short diffuse hypermutated events similar to APOBEC-driven omikli 

events [18, 52, 57]. While the mutational burden of these processes is high in certain cancers 

such as doublet-base substitutions from ultraviolet radiation exposure in skin cancers [52, 57], 

these events appear to have a lower burden within oncogenic-associated events compared with 

AID/APOBEC-induced lesions [52, 57]. However, exposure to these exogenous factors is 

thought to promote the recruitment of error-prone repair directed towards active genes, thus 

indirectly contributing to oncogenesis [52]. 

 

1.4. Clinical applications of mutational signatures for cancer 

treatment 

Traditionally, the concept of precision oncology evolved around identifying individual 

mutations and other forms of genetic alterations at specific genomic coordinates that indicate 
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failures or alterations of the function(s) of a specific protein and/or a particular pathway [99]. 

While these approaches show benefit for identifying individuals who would benefit from a 

specific therapy, they have several limitations. Typically, the phenotype of a tumor is reflective 

of a concert of genetic modifications that influence the functionality of a given pathway [100, 

101]. These alterations can manifest as various forms of mutations as well as through epigenetic 

silencing or from interactions with peripheral pathways. When a deficiency arises in a DNA 

repair pathway, in most cases, a characteristic mutational signature develops based upon the 

inability of the cell to correct specific forms of DNA damage [22]. The detection of such 

signatures within a patient’s tumor can be leveraged as a biomarker for targeting these deficient 

repair processes independent of the underlying cause, ultimately informing and improving 

subsequent personalized treatments [22, 102-107].   

 

1.4.1. Somatic mutations due to mismatch repair deficiency 

Mismatch repair corrects mis-incorporated nucleotides that occur during replication, 

recombination, and after some forms of DNA damage [108, 109]. As discussed in the prior 

sections, this pathway is preferentially active within early replicating and gene-rich regions [76, 

110]. Tumors that are deficient in MMR are associated with the activity of multiple mutational 

signatures resulting in a strong inflammatory response due to a high burden of non-synonymous 

mutations known as microsatellite instability (MSI) [111]. These deficiencies can arise from 

inherited predispositions such as having germline variants within the MSH2 or MLH1 mismatch 

repair genes [112]. Alternatively, mismatch repair genes can be inactivated through sporadic 

somatic mutations or through methylation of regulatory regions [112]. Individuals with cancer 

exhibiting MSI mutational signatures benefit from treatment with immunotherapy, regardless of 
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the underlying cause of MMR deficiency [106, 107]. Thus, detectable MMR-associated 

signatures present an actionable clinical biomarker for these types of treatments. 

 

1.4.2. Somatic mutations due to deficiency of DNA polymerase epsilon 

Analogous to MSI tumors, defects within DNA polymerases, such as mutations in the 

proofreading exonuclease domain of polymerase epsilon (POLE), can result in a hypermutator 

phenotype associated with mutational signatures unique from other canonical signatures [113, 

114]. Specifically, defects in the exonuclease domain of POLE results in a hypermutation of 

C:G>A:T transversions almost exclusively at TpCpT contexts and C:G>T:A transitions at 

TpCpG contexts [4, 18]. In most cases, tumors harboring these defects also benefit from 

immunotherapy presenting an additional biomarker based on mutational signatures [115]. 

 

1.4.3. Homologous recombination repair deficiency 

As previously discussed, HR is responsible for maintaining the integrity of DNA after 

double strand breaks [82]. Specifically, HR relies on homologous regions with identical 

nucleotide sequences for accurate repair of double strand breaks [82]. Upon the loss of function 

in this repair pathway, the cell recruits other more error-prone mechanisms including NHEJ and 

MMEJ to repair DSBs, which leave behind characteristic patterns of somatic mutations [116]. 

These patterns manifest in the forms of single base substitutions, small insertions and deletions, 

structural variation, and copy number mutational signatures [4, 17, 18, 24].  

The detection of deficiencies within the HR pathway have traditionally been focused on 

the functional status of key genes including BRCA1 and BRCA2, amongst several others [47, 

103, 117]. Individuals with germline defects in these genes harbor a predisposition for 
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developing ovarian and breast cancers [118, 119]. From a clinical perspective, individuals who 

develop HR deficiency (HRD) benefit from treatment with compounds that increase the demand 

of DSB repair [120]. These compounds include PARP inhibitors or platinum chemotherapies, 

which lead to replication fork collapse or a direct increase in DNA damage leading to DSBs, 

respectively [121]. The accumulation of DSBs without the ability to repair these lesions results 

in selective cell death [122, 123]. The use of mutational signatures has shown promise as a more 

universal biomarker to detect HRD as the collection of associated signatures reflect the 

combined effects from all types of failures within the HR repair pathway [24, 47, 103]. These 

may include germline or somatic mutations to key genes, epigenetic silencing, or the alteration of 

genes of unknown relevance. 

 

1.5. Contributions 

Historically, analysis of mutational signatures has had three major applications: (i) 

leveraging mutational signatures to identify environmental mutagens that cause cancer, thus, 

providing opportunities for developing cancer prevention strategies; (ii) using mutational 

signatures to better understand the biological mechanisms of DNA damage and repair processes; 

(iii) utilizing mutational signatures of failed DNA repair as biomarkers for targeted cancer 

treatment. However, the universal deployment of mutational signatures within the clinical setting 

or for large-scale epidemiological studies has been limited by the reliance on whole-genome or 

whole-exome sequencing followed by extensive expert-performed bioinformatics analysis. In 

this dissertation, I introduce computational approaches that provide efficient, accurate, and cost-

effective frameworks for detecting mutational signatures from cancer patients. Specifically in 

Chapter 2, I describe a standardized framework for classifying and exploring mutational patterns 
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across small mutational events providing an essential preliminary step for deciphering the 

underlying mutational signatures. In Chapter 3, I outline a method for efficiently simulating 

synthetic and realistic background models of cancer genomes that can be used for downstream 

hypothesis testing. In Chapter 4, I introduce a method that seamlessly integrates the functionality 

of the tools from the previous two chapters for identifying and characterizing all classes of 

clustered single base substitutions and clustered small insertions and deletions. In Chapter 5, I 

demonstrate the applicability of these approaches across more than 2,500 whole-genome 

sequenced cancers spanning 30 different cancer types by providing a comprehensive map of 

clustered mutational signatures in human cancer. Additionally, I describe novel biomarkers of 

clustered mutations that are validated across ~10,000 whole-exome sequenced cancers and 

~60,000 targeted-sequenced cancers providing an immediate translation into existing standard-

of-care clinical platforms. Lastly, I introduce a novel form of oncogenesis characterized by the 

repeated attack of extrachromosomal circular DNA (ecDNA) via APOBEC3 deamination. In 

Chapter 6, I describe an alternative sequencing-independent method for detecting mutational 

signatures using routinely sampled histopathological slides from tumor samples, which 

circumvents the financial bottleneck of sequencing within the clinic. I demonstrate both the 

ability of this novel method for detecting homologous recombination deficiency within breast 

and ovarian cancers as well as its clinical utility for predicting sensitivity to platinum treatment 

in individual cancer patients. In Chapter 7, I summarize the main findings of this dissertation, 

while outlining the direct implications and current limitations of the work. Lastly, I discuss 

future work necessary to expand on the clinical implications underlying clustered mutagenesis 

and the applicability of deploying artificial intelligence-based methods within the clinic to detect 

mutational signatures. 
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Chapter 2.  

SigProfilerMatrixGenerator: a tool for visualizing and 

exploring patterns of small mutational events  
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Abstract 

 

Background: Cancer genomes are peppered with somatic mutations imprinted by 

different mutational processes. The mutational pattern of a cancer genome can be used to 

identify and understand the etiology of the underlying mutational processes. A plethora of prior 

research has focused on examining mutational signatures and mutational patterns from single 

base substitutions and their immediate sequencing context. We recently demonstrated that further 

classification of small mutational events (including substitutions, insertions, deletions, and 

doublet substitutions) can be used to provide a deeper understanding of the mutational processes 

that have molded a cancer genome. However, there has been no standard tool that allows fast, 

accurate, and comprehensive classification for all types of small mutational events. 

Results: Here, we present SigProfilerMatrixGenerator, a computational tool designed for 

optimized exploration and visualization of mutational patterns for all types of small mutational 

events. SigProfilerMatrixGenerator is written in Python with an R wrapper package provided for 

users that prefer working in an R environment. SigProfilerMatrixGenerator produces fourteen 

distinct matrices by considering transcriptional strand bias of individual events and by 

incorporating distinct classifications for single base substitutions, doublet base substitutions, and 

small insertions and deletions. While the tool provides a comprehensive classification of 

mutations, SigProfilerMatrixGenerator is also faster and more memory efficient than existing 

tools that generate only a single matrix. 

Conclusions: SigProfilerMatrixGenerator provides a standardized method for classifying 

small mutational events that is both efficient and scalable to large datasets. In addition to 

extending the classification of single base substitutions, the tool is the first to provide support for 

classifying doublet base substitutions and small insertions and deletions. 
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SigProfilerMatrixGenerator is freely available at 

https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an extensive documentation 

at https://osf.io/s93d5/wiki/home/. 

 

2.1. Background 

Analysis of somatic mutational patterns is a powerful tool for understanding the etiology of 

human cancers [124]. The examination of mutational patterns can trace its origin to seminal 

studies that evaluated the patterns of mutations imprinted in the coding regions of TP53 [125], 

the most commonly mutated gene in human cancer [11]. These early reports were able to identify 

characteristic patterns of single point substitutions imprinted due to smoking tobacco cigarettes, 

exposure to ultraviolet light, consumption of aflatoxin, intake of products containing aristolochic 

acid, amongst others [12-15]. The advent of massively parallel sequencing technologies [16] 

allowed cheap and efficient evaluation of the somatic mutations in a cancer genome. This 

provided an unprecedented opportunity to examine somatic mutational patterns by sequencing 

multiple cancer-associated genes, by sequencing all coding regions of the human genome (i.e., 

usually referred to as whole-exome sequencing), or even by interrogating the complete sequence 

of a cancer genome (i.e., an approach known as whole-genome sequencing). 

Examinations of mutational patterns from whole-genome and whole-exome sequenced 

cancers confirmed prior results derived from evaluating the mutations in the coding regions of 

TP53 [2]. For example, the cancer genome of a lung cancer patient with a long history of tobacco 

smoking was peppered with somatic mutations exhibiting predominately cytosine to adenine 

single base substitutions [31]; the same mutational pattern was previously reported by examining 

mutations in TP53 in lung cancers of tobacco smokers [13, 126]. In addition to confirming prior 
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observations, whole-exome and whole-genome sequencing data provided a unique opportunity 

for identifying all of the mutational processes that have been active in the lineage of a cancer cell 

[19]. By utilizing mathematical modelling and computational analysis, we previously created the 

concept of mutational signatures and provided tools for deciphering mutational signatures from 

massively parallel sequencing data [21]. It should be noted that a mutational signature is 

mathematically and conceptually distinct from a mutational pattern of a cancer genome. While a 

mutational pattern of a cancer genome can be directly observed from sequencing data, a 

mutational signature is, in most cases, not directly observable. Rather, a mutational signature 

corresponds to a mathematical abstraction (i.e., a probability mass function) derived through a 

series of numerical approximations. From a biological perspective, a mutational signature 

describes a characteristic set of mutation types reflecting the activity of endogenous and/or 

exogenous mutational processes [19]. By examining the directly observed mutational patterns of 

thousands of cancer genomes, we were able to identify 49 single point substitution, 11 doublet 

base substitution, and 17 small insertion and deletion signatures [18] in human cancer and to 

propose a putative etiology for a number of these signatures. 

Since we presented the very first bioinformatics framework for deciphering mutational 

signatures in cancer genomes [4, 21], a number of computational tools have been developed for 

the analysis of mutational signatures (recently reviewed in [127]). All of these tools perform a 

matrix factorization or leverage an approach mathematically equivalent to a matrix factorization. 

As such, each of these tools directly or indirectly requires generating a correct initial input matrix 

for subsequent analysis of mutational signatures. In principle, creating an input matrix can be 

examined as a transformation of the mutational catalogues of a set of cancer genomes to a matrix 

where each sample has a fixed number of mutation classes (also, known as mutation channels). 
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The majority of existing tools have focused on analyzing data using 96 mutation classes 

corresponding to a single base substitution and the 5′ and 3′ bases immediately adjacent to the 

mutated substitution. While this simple classification has proven powerful, additional 

classifications are required to yield greater understanding of the operative mutational processes 

in a set of cancer genomes [19]. 

Here, we present SigProfilerMatrixGenerator, a computational package that allows efficient 

exploration and visualization of mutational patterns. SigProfilerMatrixGenerator is written in 

Python with an R wrapper package provided for users that prefer working in an R environment. 

The tool can read somatic mutational data in most commonly used data formats such as Variant 

Calling Format (VCF) and Mutation Annotation Format (MAF) and it provides support for 

analyzing all types of small mutational events: single bases substitutions, doublet base 

substitutions, and small insertions and deletions. SigProfilerMatrixGenerator generates fourteen 

distinct matrices including ones with extended sequencing context and transcriptional strand 

bias, while providing publication ready visualization for the majority of these matrices. Further, 

the tool is the first to provide standard support for the classification of small insertions and 

deletions as well as the classification of doublet base substitutions that were recently used to 

derive the next generation of mutational signatures [18]. While SigProfilerMatrixGenerator 

provides much more functionality (Table 2.1), in almost all cases, it is more computationally 

efficient than existing approaches. Lastly, SigProfilerMatrixGenerator comes with extensive 

Wiki-page documentation and can be easily integrated with existing packages for analysis of 

mutational signatures. 
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Table 2.1: Matrix generation and visualization functionality of six commonly used tools. M 
corresponds to providing functionality to only generate a mutational matrix; MP corresponds to 
providing functionality to both generate and plot a mutational matrix. * indicates that a tool can 
perform only one of the actions in a single run; for example, Helmsman can either generate a 96 
or a 1536 mutational matrix but not both in a single run. 

Tool SBS ID DBS 

6 24 96 384 1536 6144 28 83 415 8628 78 186 1248 2976 

SigProfilerMatrixGenerator 
Language: Python & R 

MP MP MP MP MP M MP MP MP M MP MP M M 

Helmsman [128] 
Language: Python 

    M*   M*                   

deconstructSigs [129] 
Language: R 

    MP                       

mafTools [130] 
Language: R 

MP   MP                       

SomaticSignatures [131] 
Language: R 

    MP*   M*                   

signeR [132] 
Language: R 

    MP*   M*                   

 

2.1.1. Implementation 

2.1.1.1. Classification of Single Base substitutions (SBSs) 
 

A single base substitution (SBS) is a mutation in which a single DNA base-pair is 

substituted with another single DNA base-pair. An example of an SBS is a C:G base-pair 

mutating to an A:T base-pair; this is usually denoted as a C:G > A:T. The most basic 

classification catalogues SBSs into six distinct categories, including: C:G > A:T, C:G > G:C, 

C:G > T:A, T:A > A:T, T:A > C:G, and T:A > G:C. In practice, this notation has proven to be 

bulky and, in most cases, SBSs are referred to by either the purine or the pyrimidine base of the 

Watson-Crick base-pair. Thus, one can denote a C:G > A:T substitution as either a C > A 

mutation using the pyrimidine base or as a G > T mutation using the purine base. While all three 

notations are equivalent, prior research on mutational signatures [4, 5, 21] has made the 
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pyrimidine base of the Watson-Crick base-pair a community standard. As such, the most 

commonly used SBS-6 classification of single base substitutions can be written as: C > A, C > G, 

C > T, T > A, T > C, and T > G. The classification SBS-6 should not be confused with signature 

SBS6, a mutational signature attributed to microsatellite instability [4]. 

The simplicity of the SBS-6 classification allows capturing the predominant mutational 

patterns when only a few somatic mutations are available. As such, this classification was 

commonly used in analyzing mutational patterns derived from sequencing TP53 [13, 126]. The 

SBS-6 classification can be further expanded by taking into account the base-pairs immediately 

adjacent 5′ and 3′ to the somatic mutation. A commonly used classification for analysis of 

mutational signatures is SBS-96, where each of the classes in SBS-6 is further elaborated using 

one base adjacent at the 5′ of the mutation and one base adjacent at the 3′ of the mutation. Thus, 

for a C > A mutation, there are sixteen possible trinucleotide (4 types of 5′ base ∗ 4 types of 3′ 

base): ACA > AAA, ACC > AAC, ACG > AAG, ACT>AAT, CCA > CAA, CCC > CAC, 

CCG > CAG, CCT > CAT, GCA > GAA, GCC > GAC, GCG > GAG, GCT > GAT, TCA > TAA, 

TCC > TAC, TCG > TAG, and TCT > TAT (mutated based is underlined). Each of the six single 

base substitutions in SBS-6 has sixteen possible trinucleotides resulting in a classification with 

96 possible channels (Figure 2.1a). In this notation, the mutated base is underlined and the 

pyrimidine base of the Watson-Crick base-pair is used to refer to each SBS. Please note that 

using the purine base of the Watson-Crick base-pair for classifying mutation types will require 

taking the reverse complement sequence of each of the classes of SBS-96. For example, 

ACG:TGC > AAG:TTC can be written as ACG > AAG using the pyrimidine base and as 

CGT > CTT using the purine base (i.e., the reverse complement sequence of the pyrimidine 

classification). Similarly, an AGC:TCG > AAC:TTG mutation can be written as AGC > AAC 
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using the purine base and GCT > GTT using the pyrimidine base (i.e., the reverse complement 

sequence of the purine classification). In principle, somatic mutations are generally reported 

based on the reference strand of the human genome thus requiring converting to either the purine 

or the pyrimidine base of the Watson-Crick base-pair. Prior work on mutational signatures [4, 5, 

21] has established the pyrimidine base as a standard for analysis of somatic mutational patterns. 
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Figure 2.1:  Classifications of single base substitutions, doublet base substitutions, and indels. a 
Classification of single base substitutions (SBSs). The complete classification of an SBS 
includes both bases in the Watson-Crick base-pairing. To simplify this notation, one can use 
either the purine or the pyrimidine base. SigProfilerMatrixGenerator uses as a standard the 
pyrimidine classification. b Classification of doublet base substitutions (DBSs). The complete 
classification of a DBS includes bases on both strands. To simplify this notation, in most cases, 
SigProfilerMatrixGenerator uses the maximum number of pyrimidines. c Classification of small 
insertions and deletions. The complete classification includes the length of the indel and the 
number of repeated units surrounding the sequence. For deletions at microhomologies, the length 
of the homology, rather than the number of repeat units surrounding the indel, is used in the 
classification. 
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The SBS-96 has proven particularly useful for analysis of data from both whole-exome and 

whole-genome sequencing data [5]. This classification is both simple enough to allow visual 

inspection of mutational patterns and yet sufficiently complicated for separating different sources 

of the same type of an SBS. For example, mutational signatures analysis has identified at least 15 

distinct patterns of C > T mutations each of which has been associated with different mutational 

processes (e.g., exposure to ultraviolet light [34], activity of the APOBEC family of deaminases 

[58], failure of base excision repair [133], etc.). SBS-96 can be further elaborated by including 

additional sequencing context. Simply by including additional 5′ and 3′ adjacent context, one can 

increase the resolution. For example, considering two bases 5′ and two bases 3′ of a mutation 

results in 256 possible classes for each SBS (16 types of two 5′ bases ∗ 16 types of two 3′ bases). 

Each of the six single base substitutions in SBS-6 has 256 possible pentanucleotides resulting in 

a classification with 1536 possible channels. Since we first introduced SBS-1536 [21], this 

classification has found limited use in analysis of mutational patterns. The increased number of 

mutational channels requires a large number of somatic mutations, which can be generally found 

only in whole-genome sequenced cancer exhibiting a high mutational burden (usually > 2 

mutations per megabase). Nevertheless, SBS-1536 has been used to further elaborate the 

mutational patterns exhibited by several mutagenic processes, for example, the aberrant activity 

of DNA polymerase epsilon [18] or the ectopic action of the APOBEC family of cytidine 

deaminases [18, 21]. 

SigProfilerMatrixGenerator provides matrix generation support for SBS-6, SBS-96, and 

SBS-1536 using the commonly accepted pyrimidine base of the Watson-Crick base-pair. Further, 

the tool allows interrogation of transcriptional strand bias for each of these classifications and 

provides a harmonized visualization for all three matrices. 
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2.1.1.2. Classification of Doublet Base substitutions (DBSs) 
 

A doublet base substitution (DBS) is a somatic mutation in which a set of two adjacent 

DNA base-pairs is simultaneously substituted with another set of two adjacent DNA base-pairs. 

An example of a DBS is a set of CT:GA base-pairs mutating to a set of AA:TT base-pairs, which 

is usually denoted as CT:GA > AA:TT (Figure 2.1b). It should be noted that a CT:GA > AA:TT 

mutation can be equivalently written as either a CT > AA mutation or an AG > TT mutation (note 

that AG > TT is the reverse complement of CT > AA). Similar to the SBSs, the complete notation 

for DBS has proven bulky. As such, we have previously defined a canonical set of DBSs and 

used this set to interrogate both mutational patterns and mutational signatures [14]. In this 

canonical set, DBSs are referred to using the maximum number of pyrimidine nucleotides of the 

Watson-Crick base-pairs; for example, an AA:TT > GT:CA mutation is usually denoted as 

TT > AC as this notation contains three pyrimidine nucleotides rather than the alternative 

AA>GT notation, which contains only a single pyrimidine nucleotide. There are several DBSs 

with the equivalent number of pyrimidine nucleotide in each context (e.g., AA:TT > CC:GG), in 

such cases, one of these notations was selected. Further, it should be noted, that some DBSs are 

palindromic. For example, an AT:TA > CG:GC can be written only as AT>CG since the reverse 

complement of 5′-AT-3′ > 5′-CG-3′ is again 5′-AT-3′ > 5′-CG-3′. Overall, the basic classification 

catalogues DBSs into 78 distinct categories denoted as the DBS-78 matrix (Table 2.2). 
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Table 2.2: DBS classification. Double Base Substitutions are classified into 78 mutational 
channels. The complete list of possible DBS is bulky, therefore, previous studies use the 
maximum pyrimidine context to collapse the number of possible mutation types. Reproduced 
with permission from Alexandrov et al., doi:10.1101/322859. 

Original 
Rev 

Comp 
Maximum 

Pyramidine Context     
AA>CC TT>GG TT>GG  CA>TC TG>GA TG>GA 
AA>CG TT>CG TT>CG  CA>TG TG>CA TG>CA 
AA>CT TT>AG TT>AG  CA>TT TG>AA TG>AA 
AA>GC TT>GC TT>GC  CC>AA GG>TT CC>AA 
AA>GG TT>CC TT>CC  CC>AG GG>CT CC>AG 
AA>GT TT>AC TT>AC  CC>AT GG>AT CC>AT 
AA>TC TT>GA TT>GA  CC>GA GG>TC CC>GA 
AA>TG TT>CA TT>CA  CC>GG GG>CC CC>GG 
AA>TT TT>AA TT>AA  CC>GT GG>AC CC>GT 
AC>CA GT>TG AC>CA  CC>TA GG>TA CC>TA 
AC>CG GT>CG AC>CG  CC>TG GG>CA CC>TG 
AC>CT GT>AG AC>CT  CC>TT GG>AA CC>TT 
AC>GA GT>TC AC>GA  CG>AA CG>TT CG>TT 
AC>GG GT>CC AC>GG  CG>AC CG>GT CG>GT 
AC>GT GT>AC AC>GT  CG>AT CG>AT CG>AT 
AC>TA GT>TA AC>TA  CG>GA CG>TC CG>TC 
AC>TG GT>CA AC>TG  CG>GC CG>GC CG>GC 
AC>TT GT>AA AC>TT  CG>TA CG>TA CG>TA 
AG>CA CT>TG CT>TG  GA>AC TC>GT TC>GT 
AG>CC CT>GG CT>GG  GA>AG TC>CT TC>CT 
AG>CT CT>AG CT>AG  GA>AT TC>AT TC>AT 
AG>GA CT>TC CT>TC  GA>CC TC>GG TC>GG 
AG>GC CT>GC CT>GC  GA>CG TC>CG TC>CG 
AG>GT CT>AC CT>AC  GA>CT TC>AG TC>AG 
AG>TA CT>TA CT>TA  GA>TC TC>GA TC>GA 
AG>TC CT>GA CT>GA  GA>TG TC>CA TC>CA 
AG>TT CT>AA CT>AA  GA>TT TC>AA TC>AA 
AT>CA AT>TG AT>CA  GC>AA GC>TT GC>AA 
AT>CC AT>GG AT>CC  GC>AG GC>CT GC>AG 
AT>CG AT>CG AT>CG  GC>AT GC>AT GC>AT 
AT>GA AT>TC AT>GA  GC>CA GC>TG GC>CA 
AT>GC AT>GC AT>GC  GC>CG GC>CG GC>CG 
AT>TA AT>TA AT>TA  GC>TA GC>TA GC>TA 
CA>AC TG>GT TG>GT  TA>AC TA>GT TA>GT 
CA>AG TG>CT TG>CT  TA>AG TA>CT TA>CT 
CA>AT TG>AT TG>AT  TA>AT TA>AT TA>AT 
CA>GC TG>GC TG>GC  TA>CC TA>GG TA>GG 
CA>GG TG>CC TG>CC  TA>CG TA>CG TA>CG 
CA>GT TG>AC TG>AC  TA>GC TA>GC TA>GC 

       
 Original mutation same as Rev Comp mutation      
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While the prevalence of DBSs in a cancer genome is relatively low, on average a hundred 

times less than SBSs [18], we have previously demonstrated that a doublet base substitution is 

not two single base substitutions occurring simply by chance next to one another [18]. While 

such events are possible, across most human cancers, they will account for less than 0.1% of all 

observed DBSs [18]. Further, certain mutational processes have been shown to specifically 

generate high levels of DBSs. A flagship example is the exposure to ultraviolet light, which 

causes large numbers of CC > TT mutations in cancers of the skin [14]. Other notable examples 

are DBSs accumulating due to defects in DNA mismatch repair [18], exposure to platinum 

chemotherapeutics [134], tobacco smoking [20], and many others [18]. 

Similar to the classification of SBSs, we can expand the characterization of DBS 

mutations by considering the 5′ and 3′ adjacent contexts. By taking one base on the 5′ end and 

one base on the 3′ end of the dinucleotide mutation, we establish the DBS-1248 context. For 

example, a CC > TT mutation has 16 possible tetranucleotides: ACCA>ATTA, ACCC>ATTC, 

ACCG>ATTG, ACCT>ATTT, CCCA>CTTA, CCCC>CTTC, CCCG>CTTG, CCCT>CTTT, 

GCCA>GTTA, GCCC>GTTC, GCCG>GTTG, GCCT>GTTT, TCCA>TTTA, TCCC>TTTC, 

TCCG>TTTG, and TCCT>TTTT (mutated bases are underlined). With seventy-eight possible 

DBS mutations having sixteen possible tetranucleotides each, this context expansion results in 

1248 possible channels denoted as the DBS-1248 context. While this classification is provided as 

part of SigProfilerMatrixGenerator, it has yet to be thoroughly leveraged for analysis of 

mutational patterns. Further, it should be noted that for most samples, the low numbers of DBSs 

in a single sample will make the DBS-1248 classification impractical. Nevertheless, we expect 

that this classification will be useful for examining hypermutated and ultra-hypermutated human 

cancers. 
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SigProfilerMatrixGenerator generates matrices for DBS-78 and DBS-1248 by 

predominately using the maximum pyrimidine context of the Watson-Crick base-pairs. The 

matrix generator also supports the incorporation of transcriptional strand bias with an integrated 

display of the DBS-78 mutational patterns. 

 

2.1.1.3. Classification of small insertions and deletions (IDs) 
 

A somatic insertion is an event that has incorporated an additional set of base-pairs that 

lengthens a chromosome at a given location. In contrast, a somatic deletion is an event that has 

removed a set of existing base-pairs from a given location of a chromosome. Collectively, when 

these insertions and deletions are short (usually < 100 base-pairs), they are commonly referred as 

small insertions and deletions (often abbreviated as indels). In some cases, indels can be 

complicated events in which the observed result is both a set of deleted base-pairs and a set of 

inserted base-pairs. For example, 5′-ATCCG-3′ mutating to 5′-ATAAAG-3′ is a deletion of 

CC:GG and an insertion of AAA:TTT. Such events are usually annotated as complex indels. 

Indel classification is not a straightforward task and it cannot be performed analogously 

to SBS or DBS classifications, where the immediate sequencing context flanking each mutation 

was utilized to subclassify these mutational events. For example, determining the flanking 

sequences for deleting (or inserting) a cytosine from the sequence 5′-ATCCCCCCG-3′ is not 

possible as one cannot unambiguously identify which cytosine has been deleted. We recently 

developed a novel way to classify indels and used this classification to perform the first pan-

cancer analysis of indel mutational signatures (Table 2.3) [18]. More specifically, indels (IDs) 

were classified as single base-pair events or longer events. A single base-pair event can be 

further subclassified as either a C:G or a T:A indel; usually abbreviated based on the pyrimidine 
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base as a C or a T indel. The longer indels can also be subclassified based on their lengths: 2 bp, 

3 bp, 4 bp, and 5 + bp. For example, if the sequence ACA is deleted from 5′-ATTACA[GGCGC-

3′ we denote this as a deletion with length 3. Similarly, if a genomic region mutates from 5′-

ATTACAGGCGC-3′ to 5′-ATTACACCTGGGCGC-3′, this will be denoted as an insertion with 

length 4 (Figure 2.1c).  
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Table 2.3: ID classification. Small insertions and deletions are classified into 83 mutational 
channels. This classification considers the size of the ID and the repeat size surrounding the 
event. Events that are 1bp in length are classified by their pyrimidine base (C or T) and the 
number of repeated bases surrounding the event. Indels longer than 1bp are classified by the 
length of the event and the number of surrounding repeated units. Reproduced with permission 
from Alexandrov et al., doi:10.1101/322859. 

Mutation 
class 

number 

    
1bp deletions 

Type 
Base 
Pair 

Repeat 
Size Example 

1 Del T:A 1 ACCCC|T|CGCGGC (delete 1 T from a stretch of 1 Ts) 
2 Del C:G 1 ACCAA|C|TGCGGC 
3 Del T:A 2 ACCCC|T|TGCGGC (delete 1 T from a stretch of 2 Ts) 
4 Del C:G 2 ACCAA|C|CGCGGC 
5 Del T:A 3 ACCCC|T|TTGCGGC 
6 Del C:G 3 ACCAA|C|CCGCGGC 
7 Del T:A 4 ACCCC|T|TTTGCGGC 
8 Del C:G 4 ACCAA|C|CCCGCGGC 
9 Del T:A 5 ACCCC|T|TTTTGCGGC 

10 Del C:G 5 ACCAA|C|CCCCGCGGC 
11 Del T:A 6+ ACCCC|T|TTTTTGCGGC 
12 Del C:G 6+ ACCAA|C|CCCCCGCGGC 

     
 1bp insertion 

 Type 
Base 
Pair 

Repeat 
Size Example 

13 Ins T:A 0 ACCCC|T|CGCGGC (insert 1 T with no neighboring Ts) 
14 Ins C:G 0 ACCAA|C|TGCGGC 
15 Ins T:A 1 ACCCC|T|TGCGGC (insert 1 T with 1 neighboring T) 
16 Ins C:G 1 ACCAA|C|CGCGGC 
17 Ins T:A 2 ACCCC|T|TTGCGGC (insert 1 T with 2 neighboring Ts) 
18 Ins C:G 2 ACCAA|C|CCGCGGC 
19 Ins T:A 3 ACCCC|T|TTTGCGGC 
20 Ins C:G 3 ACCAA|C|CCCGCGGC 
21 Ins T:A 4 ACCCC|T|TTTTGCGGC 
22 Ins C:G 4 ACCAA|C|CCCCGCGGC 
23 Ins T:A 5+ ACCCC|T|TTTTTGCGGC 
24 Ins C:G 5+ ACCAA|C|CCCCCGCGGC 

     
 >=2bp deletions 

 Type 
Deletion 

size 
Repeat 

Size Example 

25 Del 2bp 1 
ACCAA|TC|AAGCGGC (delete a single 2-bp sequence with no 
microhomology) 

26 Del 2bp 2 
ACCCC|TC|TCGCGGC (delete a single 2-bp sequence from 
repeat of 2 2-bp units) 

27 Del 2bp 3 ACCCC|TC|TCTCGCGGC 
28 Del 2bp 4 ACCCC|TC|TCTCTCGCGGC 
29 Del 2bp 5 ACCCC|TC|TCTCTCTCGCGGC 
30 Del 2bp 6+ ACCCC|TC|TCTCTCTCTCGCGGC 
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Table 2.3: ID Classification (Continued). Small insertions and deletions are classified into 83 
mutational channels. This classification considers the size of the ID and the repeat size 
surrounding the event. Events that are 1bp in length are classified by their pyrimidine base (C or 
T) and the number of repeated bases surrounding the event. Indels longer than 1bp are classified 
by the length of the event and the number of surrounding repeated units. Reproduced with 
permission from Alexandrov et al., doi:10.1101/322859. 

 
31 Del 3bp 1 ACCAAA|TTC|AAAGCGGC 
32 Del 3bp 2 ACCAAA|TTC|TTCAAAGCGGC 
33 Del 3bp 3 ACCAAA|TTC|TTCTTCAAAGCGGC 
34 Del 3bp 4 ACCAAA|TTC|TTCTTCTTCAAAGCGGC 
35 Del 3bp 5 ACCAAA|TTC|TTCTTCTTCTTCAAAGCGGC 
36 Del 3bp 6+ ACCAAA|TTC|TTCTTCTTCTTCTTCAAAGCGGC 
37 Del 4bp 1 ACCAAAA|TCTC|AAAAGCGGC 
38 Del 4bp 2 ACCAAAA|TCTC|TCTCAAAAGCGGC 
39 Del 4bp 3 ACCAAAA|TCTC|TCTCTCTCAAAAGCGGC 
40 Del 4bp 4 ACCAAAA|TCTC|TCTCTCTCTCTCAAAAGCGGC 
41 Del 4bp 5 ACCAAAA|TCTC|TCTCTCTCTCTCTCTCAAAAGCGGC 
42 Del 4bp 6+ ACCAAAA|TCTC|TCTCTCTCTCTCTCTCTCTCAAAAGCGGC 
43 Del 5+bp 1 ACCAAAAA|TCATC|AAAAAGCGGC 
44 Del 5+bp 2 ACCAAAAA|TCATC|TCATCAAAAAGCGGC 
45 Del 5+bp 3 ACCAAAAA|TCATC|TCATTCATCAAAAAGCGGC 
46 Del 5+bp 4 ACCAAAAA|TCATC|TCATTCATTCATCAAAAAGCGGC 
47 Del 5+bp 5 ACCAAAAA|TCATC|TCATTCATTCATTCATCAAAAAGCGGC 
48 Del 5+bp 6+ ACCAAAAA|TCATC|TCATTCATTCATTCATTCATCAAAAAGCGGC 

     
 >=2bp insertions 

 Type 
Deletion 

size 
Repeat 

Size Example 
49 Ins 2bp 0 ACCAA|TC|AAGCGGC 
50 Ins 2bp 1 ACCCC|TC|TCGCGGC 
51 Ins 2bp 2 ACCCC|TC|TCTCGCGGC 
52 Ins 2bp 3 ACCCC|TC|TCTCTCGCGGC 
53 Ins 2bp 4 ACCCC|TC|TCTCTCTCGCGGC 
54 Ins 2bp 5+ ACCCC|TC|TCTCTCTCTCGCGGC 
55 Ins 3bp 0 ACCAAA|TTC|AAAGCGGC 
56 Ins 3bp 1 ACCAAA|TTC|TTCAAAGCGGC 
57 Ins 3bp 2 ACCAAA|TTC|TTCTTCAAAGCGGC 
58 Ins 3bp 3 ACCAAA|TTC|TTCTTCTTCAAAGCGGC 
59 Ins 3bp 4 ACCAAA|TTC|TTCTTCTTCTTCAAAGCGGC 
60 Ins 3bp 5+ ACCAAA|TTC|TTCTTCTTCTTCTTCAAAGCGGC 
61 Ins 4bp 0 ACCAAAA|TCTC|AAAAGCGGC 
62 Ins 4bp 1 ACCAAAA|TCTC|TCTCAAAAGCGGC 
63 Ins 4bp 2 ACCAAAA|TCTC|TCTCTCTCAAAAGCGGC 
64 Ins 4bp 3 ACCAAAA|TCTC|TCTCTCTCTCTCAAAAGCGGC 
65 Ins 4bp 4 ACCAAAA|TCTC|TCTCTCTCTCTCTCTCAAAAGCGGC 
66 Ins 4bp 5+ ACCAAAA|TCTC|TCTCTCTCTCTCTCTCTCTCAAAAGCGGC 
67 Ins 5+bp 0 ACCAAAAA|TCATC|AAAAAGCGGC 
68 Ins 5+bp 1 ACCAAAAA|TCATC|TCATCAAAAAGCGGC 
69 Ins 5+bp 2 ACCAAAAA|TCATC|TCATTCATCAAAAAGCGGC 
70 Ins 5+bp 3 ACCAAAAA|TCATC|TCATTCATTCATCAAAAAGCGGC 
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Table 2.3: ID Classification (Continued). Small insertions and deletions are classified into 83 
mutational channels. This classification considers the size of the ID and the repeat size 
surrounding the event. Events that are 1bp in length are classified by their pyrimidine base (C or 
T) and the number of repeated bases surrounding the event. Indels longer than 1bp are classified 
by the length of the event and the number of surrounding repeated units. Reproduced with 
permission from Alexandrov et al., doi:10.1101/322859. 

 
71 Ins 5+bp 4 ACCAAAAA|TCATC|TCATTCATTCATTCATCAAAAAGCGGC 
72 Ins 5+bp 5+ ACCAAAAA|TCATC|TCATTCATTCATTCATTCATCAAAAAGCGGC 

     
 >=2bp deletions at micro-homologies 

 Type 
Deletion 

size 
Homology 

Size Example 
73 Del 2bp 1bp ACCAA|TC|TAGCGGC or ACAAC|TC|AAGCGGC  
74 Del 3bp 1bp ACCCA|TTC|TAGCGGC or ACCCC|TTC|AAGCGGC  
75 Del 3bp 2bp ACCCA|TTC|TTAGCGGC or ACCCTC|TTC|AAGCGGC  
76 Del 4bp 1bp ACCCA|TATC|TTAGCGGC or ACCCAC|TATC|AAGCGGC  
77 Del 4bp 2bp ACCCA|TATC|TAAGCGGC or ACCCGTC|TATC|AAGCGGC  
78 Del 4bp 3bp ACCCA|TATC|TATAGCGGC or ACCCATC|TATC|AAGCGGC  
79 Del 5+bp 1bp ACCCA|TAGTC|TTAGCGGC or ACCCAC|TAGTC|AAGCGGC  
80 Del 5+bp 2bp ACCCA|TAGTC|TAAGCGGC or ACCCCTC|TAGTC|AAGCGGC  
81 Del 5+bp 3bp ACCCA|TAGTC|TAGAGCGGC or ACCCGTC|TAGTC|AAGCGGC  

82 Del 5+bp 4bp 
ACCCA|TAGTC|TAGTAGCGGC or 
ACCCAGTC|TAGTC|AAGCGGC  

83 Del 5+bp 5+bp 
ACCCA|TAGCCTC|TAGCCTAGCGGC or 
ACCCAGCCTC|TAGCCTC|AAGCGGC  

 

Indels were further subclassified into ones at repetitive regions and ones with 

microhomologies (i.e., partial overlap of an indel). Note that microhomologies are not defined 

for indels with lengths of 1 bp as partial overlaps are not possible. For indels with lengths of 

1 bp, the subclassification relied on repetitive regions that are stretches of the same base-pair 

referred to as homopolymers. The repeat sizes of insertions were subclassified based on their 

sizes of 0 bp, 1 bp, 2 bp, 3 bp, 4 bp, 5 + bp; while the repeat sizes of deletions were subclassified 

as 1 bp, 2 bp, 3 bp, 4 bp, 5 bp, 6 + bp (note that one cannot have a deletion with a repeat size of 

0 bp). For example, if the sequence ACA is deleted from 5′-ATTACA[GGCGC-3′, this will be 

denotated as a deletion with length 3 at a repeat unit of 2 since there are two adjacent copies of 

ACAACA and only one of these copies has been deleted. Similarly, if a genomic region mutates 
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from 5′-ATTACAGGCGC-3′ to 5′-ATTACACCTGGGCGC-3′, this will be denoted as an 

insertion with length 4 at a repeat unit of 0 since the adjacent sequences are not repeated. 

In addition to classifying indels as ones occurring at repetitive regions, a classification 

was performed to identify the long indels with microhomologies (i.e., partially overlapping 

sequences). Since almost no insertions with microhomologies were identified across more than 

20,000 human cancers [18], this classification was limited to long deletions at microhomologies. 

Microhomologies were classified based on the length of the short identical sequence of bases 

adjacent to the variation. For example, if TAGTC is deleted from the sequence 5′-ACCCA 

TAGTAGCGGC-3′, this will be classified as a deletion of length five occurring at a 

microhomology site of length four because of the identical sequence TAGT located at the 3′ end 

of the deletion. Similarly, if TAGTC is deleted from the sequence 5′- ACCCAGTC AAGCGGC-

3′, this will also be classified as a deletion of length five occurring at a microhomology site of 

length four because of the identical sequence AGTC located at the 5′ end of the deletion. The 

classification does not distinguish (i.e., subclassify) between 3′ and 5′ microhomologies since 

these tend to be dependent on the mutation calling algorithms. For example, 5′-ACCCA 

TAGTAGCGGC-3′ is the same event as 5′-ACCCATAG CGGC-3′ since in both cases a 5 bp 

sequence is deleted from a reference sequence 5′-ACCCATAGTCTAGTAGCGGC-3’and the 

result is 5′-ACCCATAGCGGC-3′. While somatic mutation callers may report different indels, 

our classification will annotate these indels as exactly the same mutational event. 

The classification of small insertions and deletions was developed to reflect previously 

observed indel mutational processes. More specifically, the large numbers of small insertions and 

deletions at repetitive regions were observed in micro-satellite unstable tumors [112] as well as 

the large numbers of deletions were observed in tumors with deficient DNA double-strand break 
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repair by homologous recombination [24]. Our classification was previously used to identify 17 

indel signatures across the spectrum of human cancers [18]. SigProfilerMatrixGenerator allows 

generation of multiple mutational matrices of indels including ID-28 and ID-83. Importantly, the 

tool also generates an ID-8628 matrix that extends the ID-83 classification by providing 

complete information about the indel sequence for indels at repetitive regions with lengths of less 

than 6 bp. While SigProfilerMatrixGenerator provides this extensive indel classification, ID-

8628 has yet to be thoroughly utilized for analysis of indel mutational patterns. Further, it should 

be noted that for most samples, the low number of indels in a single sample will make the ID-

8628 classification impractical. Nevertheless, we expect that this classification will be useful for 

examining cancers with large numbers of indels and especially ones with deficient DNA repair. 

The matrix generator also supports the incorporation of transcriptional strand bias for ID-83 and 

the generation of plots for most of the indel matrices. 

 

2.1.2. Incorporation of Transcription Strand bias (TSB) 

The mutational classifications described above provide a detailed characterization of 

mutational patterns of single base substitutions, doublet base substitutions, and small insertions 

and deletions. Nevertheless, these classifications can be further elaborated by incorporating 

additional features. Strand bias is one commonly used feature that we and others have 

incorporated in prior analyses [4, 5, 18, 21]. While one cannot distinguish the strand of a 

mutation, one expects that mutations from the same type will be equally distributed across the 

two DNA strands. For example, given a mutational process that causes purely C:G > T:A 

mutations and a long repetitive sequence 5′-CGCGCGCGCGCGCGCGCCG-3′ on the reference 

genome, one would expect to see an equal number of C > T and G > A mutations. However, in 
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many cases an asymmetric number of mutations are observed due to either one of the strands 

being preferentially repaired or one of the strands having a higher propensity for being damaged. 

Common examples of strand bias are transcription strand bias in which transcription-couple 

nucleotide excision repair (TC-NER) fixes DNA damage on one strand as part of the 

transcriptional process [135] and replicational strand bias in which the DNA replication process 

may result in preferential mutagenesis of one of the strands [70]. Strand bias can be measured by 

orienting mutations based on the reference strand. In the above-mentioned example, observing 

exclusively C > A mutations (and no G > A mutations) in the reference genome sequence 5′-

CGCGCGCGCGCGCGCGCCG-3′ may mean that: (i) the guanine on the reference strand is 

protected; (ii) the cytosine on the reference strand is preferentially damaged; (iii) the guanine on 

the non-reference strand is preferentially damaged; (iv) the cytosine on the non-reference strand 

is protected; or (v) a combination of the previous four examples. In principle, a strand bias 

reveals additional strand-specific molecular mechanisms related to DNA damage, repair, and 

mutagenesis. 

SigProfilerMatrixGenerator provides a standard support for examining transcriptional 

strand bias for single base substitutions, doublet base substitutions, and small indels. The tool 

evaluates whether a mutation occurs on the transcribed or the non-transcribed strand of well-

annotated protein coding genes of a reference genome. Mutations found in the transcribed 

regions of the genome are further subclassified as: (i) transcribed, (ii) un-transcribed, (iii) bi-

directional, or (iv) unknown. In all cases, mutations are oriented based on the reference strand 

and their pyrimidine context. 

To sub-classify mutations based on their transcriptional strand bias, we consider the 

pyrimidine orientation with respect to the locations of well-annotated protein coding genes on a 



40 
 

genome. For instance, when the coding strand (i.e., the strand containing the coding sequence of 

a gene; also known as the un-transcribed strand) matches the reference strand, a T:A > A:T will 

be reported as an untranscribed T > A (abbreviated as U:T > A; Figure 2.2). In this case, the 

template strand (i.e., the strand NOT containing the coding sequence of a gene; also known as 

the transcribed strand) will be complementary to the reference strand and a G:C > C:G mutation 

will be reported as a transcribed C > G (abbreviated as T:C > G; Figure 2.2). In rare cases, both 

strands of a genomic region code for a gene. Such mutations are annotated as bidirectional based 

on their pyrimidine context. For example, both a T:A > C:G and a A:T > G:C mutations in 

regions of bidirectional transcription will both be annotated as a bidirectional T > C (abbreviated 

as B:T > C). The outlined notations are applicable when describing mutations that are located 

within the transcribed regions of the genome. When a mutation is located outside of these 

regions, it will be classified as non-transcribed. For example, both a C:G > T:A and a G:C > A:T 

mutations in non-transcribed regions will be annotated as a non-transcribed C > T (abbreviated as 

N:C > T). 
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Figure 2.2: Classifications of transcriptional strand bias. a RNA polymerase uses the template 
strand to transcribe DNA into RNA. The strand upon which the gene is located is referred to as 
the coding strand. All regions outside of the footprint of a gene are referred to as non-transcribed 
regions. b Single point substitutions are oriented based on their pyrimidine base and the strand of 
the reference genome. When a gene is found on the reference strand an A:T > T:A substitution in 
the footprint of the gene is classified as transcribed T > A (example indicated by circle) while a 
C:G > G:C substitution in the footprint of the gene is classified as un-transcribed C > G (example 
indicated by star). Mutations outside of the footprints of genes are classified as non-transcribed 
(example indicated by square). Classification of single base substitutions is shown both in regard 
to SBS-24 and SBS-384. 

 
 

When considering doublet base substitutions or small indels in transcribed regions, for 

certain mutational events, it is not possible to unambiguously orient these mutations. More 

specifically, mutations containing both pyrimidine and purine bases cannot be unequivocally 

attributed to a strand. For example, a TA > AT doublet substitution or a 5′-CATG-3′ deletion 

cannot be oriented based on the pyrimidine context as both strands contain purine and pyrimidine 

bases. In contrast, a GG > TT doublet substitution or a 5′-CTTCC-3′ deletion can be oriented as 

one of the strands is a pure stretch of pyrimidines. Somatic mutations with ambiguous strand 
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orientation have been classified in a separate unknown category (e.g., a TA > AT doublet 

substitution in a transcribed region is abbreviated as Q:TA > AT). In contrast, the classification 

of somatic indels and DBSs with clear strand orientation has been conducted in a manner similar 

to the one outlined for single base substitutions. 

 

2.1.3. Generation of mutational matrices and additional features 

Prior to performing analyses, the tool requires installing a reference genome. By default, 

the tool supports five reference genomes and allows manually installing any additional reference 

genome. Installing a reference genome removes the dependency for connecting to an external 

database, allows for quick and simultaneous queries to retrieve information for sequence context 

and transcriptional strand bias, and increases the overall performance of the tool. 

After successful installation, SigProfilerMatrixGenerator can be applied to a set of files 

containing somatic mutations from different samples. The tool supports multiple commonly used 

input formats and, by default, transforms the mutational catalogues of these samples to the 

above-described mutational matrices and outputs them as text files in a pre-specified output 

folder. 

In addition to generating and plotting matrices from mutational catalogues, 

SigProfilerMatrixGenerator allows examining patterns of somatic mutations only in selected 

regions of the genome. The tool can be used to generate mutational matrices separately for: each 

individual chromosome, for the exome part of the genome, and for custom regions of the genome 

specified by a BED file. SigProfilerMatrixGenerator can also perform statistical analysis for 

significance of transcriptional strand bias for each of the examined samples with the appropriate 

corrections for multiple hypothesis testing using the false discovery rate (FDR) method. Overall, 
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the tool supports the examination of significantly more mutational matrices than prior tools 

(Table 2.1) while still exhibiting a better performance (Figure 2.3). 

 

Figure 2.3: Performance for matrix generation across six commonly used tools (mutations). Each 
tool was evaluated separately using 100 VCF files, each corresponding to an individual cancer 
genome, containing total somatic mutations between 1000 and 10 million. a CPU runtime 
recorded in seconds (log-scale) and b maximum memory usage in megabytes (log-scale). 
*SigneR was unable to generate a matrix for 107 mutations as it exceeded the available memory 
of 192 gigabytes. Performance metrics exclude visualization. 

 

2.1.4. Computational optimization 

In addition to its extensive functionality (Table 2.1), the performance of 

SigProfilerMatrixGenerator has been optimized for analysis of large mutational datasets. More 

specifically, as part of the installation process, each chromosome of a given reference genome is 

pre-processed in a binary format to decrease subsequent query times. This pre-processing 

reduces a genomic base-pair to a single byte with binary flags that allow immediately identifying 

the reference base, its immediate sequence context, and its transcriptional strand bias. A single 
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binary file is saved for each reference chromosome on the hard-drive; note that these binary files 

have similar sizes to ones of FASTA files containing the letter sequences of chromosomes. 

When SigProfilerMatrixGenerator is applied to a set of input files, the tool first reformats 

all input files into a single file per chromosome sorted by the chromosomal positions, e.g., for a 

human reference genome a total of 25 files are generated: 22 files are generated for the 

autosomes, two files for the sex chromosomes, and one file for the genome of the mitochondria. 

Then, the tool processes the input data one chromosome at a time. For example, for a human 

reference genome, it first loads the reference binary file for chromosome one (~ 250 megabytes) 

and all mutations located on chromosome one across all samples are assigned to their appropriate 

bins in the most extensive classification (e.g., SBS-6144 for single base substitutions). Note that 

the binary pre-processing of the reference chromosomes makes this a linear operation with 

identifying the appropriate category for each mutation being a simple binary check against a 

binary array. After processing all mutations for a particular chromosome, the tool unloads the 

chromosomal data from memory and proceeds to the next chromosome. When all chromosomes 

have been processed, the most extensive classification is saved and iteratively collapsed to all 

other classifications of interests. For example, for single base substitutions, the SBS-6144 is first 

saved on the hard-drive and then collapsed to SBS-1536 and SBS-384. Then, SBS-1536 and 

SBS384 are saved on the hard-drive and collapsed, respectively, to SBS-96 and SBS-24. 

Similarly, SBS-96 and SBS-24 are saved on the hard-drive with SBS-24 being also collapsed to 

SBS-6, which is also recorded on the hard-drive. Overall, the computational improvements in 

SigProfilerMatrixGenerator rely on binary pre-processing of reference genomes, iterative 

analysis of individual chromosomes, and iterative collapsing of output matrices. These 
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computational improvements have allowed computationally outperforming five other commonly 

used tools. 

 

2.2. Results 

The performance of SigProfilerMatrixGenerator was benchmarked amongst five 

commonly used packages: deconstructSigs [129], mafTools [130], SomaticSignatures [131], 

signeR [132], and Helmsman [128]. While some of these packages can perform various 

additional tasks (e.g., extraction/decomposition of mutational signatures), the benchmarking 

considered only the generation of mutational matrices. The performance was evaluated by 

measuring the CPU time and maximum memory necessary to generate mutational matrices based 

on randomly generated VCF files for 100 samples (one file per sample) with different total 

numbers of somatic mutations: 103, 104, 105, 106, and 107. To maintain consistency, each test 

was independently performed on a dedicated computational node with an Intel® Xeon® Gold 

6132 Processor (19.25 M Cache, 2.60 GHz) and 192GB of shared DDR4–2666 RAM. In all 

cases, the tools generated identical SBS-96 matrices. 

In addition to generating an SBS-96 matrix, SigProfilerMatrixGenerator also generates 

another twelve matrices including ones for indels and doublet base substitutions (Table 2.1). In 

contrast, all other tools can only generate a single mutational matrix exclusively for single base 

substitutions (Table 2.1). While offering additional functionality, SigProfilerMatrixGenerator 

exhibits an optimal performance and, in almost all cases, outperforms other existing tools (Figure 

2.3). For example, for more than one million mutations, the tool is between 1.5 and 2 times faster 

compared to the next fastest tool, deconstructSigs. With the exception of Helmsman, 

SigProfilerMatrixGenerator requires less memory than any of the other tools making it scalable 
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to large numbers of somatic mutations (Figure 2.3). Helmsman’s low memory footprint comes at 

a price of a significantly slower performance for larger datasets (Figure 2.3). 

Lastly, we evaluated whether the exhibited performance is independent of the number of 

samples by comparing the tools using a total of 100,000 somatic mutations distributed across: 10, 

100, and 1000 samples (Figure 2.4). SigProfilerMatrixGenerator, deconstructSigs, Helmsman, 

and mafTools demonstrated an independence of sample number with respect to both CPU 

runtime and maximum memory usage. The memory usage of SomaticSigs is independent of 

sample count, however, the runtime increases linearly with the number of samples. The runtime 

of SigneR is somewhat independent of sample count, however, the memory increases linearly 

with the number of samples. 

 

Figure 2.4: Performance for matrix generation across six commonly used tools (samples). Each 
tool was evaluated separately using 10, 100, and 1,000 VCF files, each corresponding to an 
individual cancer genome, containing a total of 100,000 somatic mutations A) CPU runtime 
recorded in seconds (log-scale) and B) maximum memory usage in megabytes (log-scale). 
Performance metrics exclude visualization. 
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2.3. Discussion 

SigProfilerMatrixGenerator transforms a set of mutational catalogues from cancer 

genomes into fourteen mutational matrices by utilizing computationally and memory efficient 

algorithms. Indeed, in almost all cases, the tool is able to outperform other tools that generate 

only a single mutational matrix. SigProfilerMatrixGenerator also provides an extensive plotting 

functionality that seamlessly integrates with matrix generation to visualize the majority of output 

in a single analysis (Figure 2.5). In contrast, most other tools have plotting capabilities solely for 

displaying an SBS-96 matrix (Table 2.1). Currently, SigProfilerMatrixGenerator supports only 

classifications of small mutational events (i.e., single base substitutions, doublet base 

substitutions, and small insertions and deletions) as we have previously demonstrated that these 

classifications generalize across all types of human cancer [18]. While classifications for large 

mutational events (e.g., copy-number changes and structural rearrangements) have been explored 

by us and others [24, 136, 137] such classifications have been restricted to individual cancer 

types and it is unclear whether they will generalize in a pan-tissue setting. 
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Figure 2.5: Portrait of a cancer sample. SigProfilerMatrixGenerator provides a seamless 
integration to visualize the majority of generated matrices. One such functionality allows the user 
to display all mutational plots for a sample in a single portrait. The portrait includes displaying of 
each of the following classifications: SBS-6, SBS-24, SBS-96, SBS-384, SBS-1536, DBS-78, 
DBS-186, ID-28, ID-83, and ID-415. Each of the displayed plots can also be generated in a 
separate file. Detailed documentation explaining each of the plots can be found at: 
https://osf.io/2aj6t/wiki/home/. 

 
Importantly, SigProfilerMatrixGenerator is not a tool for analysis of mutational 

signatures. Rather, SigProfilerMatrixGenerator allows exploration and visualization of 

mutational patterns as well as generation of mutational matrices that subsequently can be 

subjected to mutational signatures analysis. While many previously developed tools provide 

support for examining the SBS-96 classification of single base substitutions, 

SigProfilerMatrixGenerator is the first tool to provide extended classification of single base 

substitutions as well as the first tool to provide support for classifying doublet base substitutions 

and small insertions and deletions. 
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2.4. Conclusions 

A breadth of computational tools was developed and applied to explore mutational 

patterns and mutational signatures based on the SBS-96 classification of somatic single base 

substitutions. While the SBS-96 has yielded significant biological insights, we recently 

demonstrated that further classifications of single base substitutions, doublet base substitutions, 

and indels provide the means to better elucidate and understand the mutational processes 

operative in human cancer. SigProfilerMatrixGenerator is the first tool to provide an extensive 

classification and comprehensive visualization for all types of small mutational events in human 

cancer. The tool is computationally optimized to scale to large datasets and will serve as 

foundation to future analysis of both mutational patterns and mutational signatures. 

SigProfilerMatrixGenerator is freely available at 

https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an extensive documentation 

at https://osf.io/s93d5/wiki/home/. 

 

2.5. Availability and requirements 

Project name: SigProfilerMatrixGenerator. 

Project home page: https://github.com/AlexandrovLab/SigProfilerMatrixGenerator 

Operating system(s): Unix, Linux, and Windows. 

Programming language: Python 3; R wrapper. 

Other requirements: None. 

License: BSD 2-Clause “Simplified” License. 

Any restrictions to use by non-academics: None. 
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during the current study. 

 

2.7. Acknowledgements 

Chapter 2, in full, is a reprint of the material as it appears in BMC Genomics 2019. 

Bergstrom, Erik N.; Huang, Mi Ni; Mahto, Uma; Barnes, Mark; Stratton, Michael R.; Rozen, 

Steven G.; Alexandrov, Ludmil B., Springer Nature, 2019. The dissertation author was the 

primary investigator and author of this paper. 

  



51 
 

 

 

 

 

 

 

Chapter 3.  

Generating realistic null hypothesis of cancer mutational 

landscapes using SigProfilerSimulator 
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Abstract 

Background: Performing a statistical test requires a null hypothesis. In cancer genomics, 

a key challenge is the fast generation of accurate somatic mutational landscapes that can be used 

as a realistic null hypothesis for making biological discoveries. 

Results: Here we present SigProfilerSimulator, a powerful tool that is capable of 

simulating the mutational landscapes of thousands of cancer genomes at different resolutions 

within seconds. Applying SigProfilerSimulator to 2144 whole-genome sequenced cancers 

reveals: (i) that most doublet base substitutions are not due to two adjacent single base 

substitutions but likely occur as single genomic events; (ii) that an extended sequencing context 

of ± 2 bp is required to more completely capture the patterns of substitution mutational 

signatures in human cancer; (iii) information on false-positive discovery rate of commonly used 

bioinformatics tools for detecting driver genes. 

Conclusions: SigProfilerSimulator’s breadth of features allows one to construct a tailored 

null hypothesis and use it for evaluating the accuracy of other bioinformatics tools or for 

downstream statistical analysis for biological discoveries. SigProfilerSimulator is freely available 

at https://github.com/AlexandrovLab/SigProfilerSimulator with an extensive documentation at 

https://osf.io/usxjz/wiki/home/. 

 

3.1. Background 

Performing a statistical evaluation to determine whether an observation is seen by chance 

necessitates the construction of a null hypothesis corresponding with the expected default 

position. An observation is generally considered statistically significant if it reflects an unlikely 
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outcome of the null hypothesis. In most practical applications, observations seen in less than 5% 

of outcomes from a null distribution are considered statistically significant. 

Large-scale computational analyses of cancer genomes use background mutational 

models to evaluate driver mutations [53, 62, 138-141], mutational signatures [4], and 

topographical accumulation of somatic mutations [23]. In almost all cases, a null hypothesis 

model of the background mutation rate is implicitly incorporated into a bioinformatics tool [21, 

53, 142] and used to report statistically significant results. Here we present SigProfilerSimulator, 

a computationally efficient bioinformatics tool for generating sample specific mutational 

landscapes that match the mutational signatures operative in each sample (Figure 3.1a). 

SigProfilerSimulator provides a framework for generating a background mutational model for 

downstream statistical analyses and hypothesis testing. The tool supports generation of simulated 

single base substitutions (SBSs), small insertions and deletions (IDs), and doublet base 

substitutions (DBSs) while maintaining their patterns at different resolutions. 

SigProfilerSimulator is available as both a Python and an R package, provides support for 

commonly used data formats, and is extensively documented. To demonstrate the wide 

applicability of SigProfilerSimulator, we illustrate its basic functionality using a single cancer 

genome and then apply the tool to 2144 whole-genome sequenced cancers and to 1,024 whole-

exome sequenced breast cancers to address three different questions in cancer genomics. 
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Figure 3.1: High-level overview illustrating the functionality of SigProfilerSimulator. a 
Schematic depiction of SigProfilerSimulator’s general functionality. The tool transforms the real 
somatic mutational catalog of a cancer genome into a simulated mutational catalog, while 
maintaining the mutational burden and the mutational pattern at a preselected resolution. b 
Summary of SBS classifications with corresponding examples at each resolution. The guide 
summarizes how the number of mutational channels is derived for each classification. c 
Comparing the simulated catalogues of a single cancer genome at different resolutions. Adding 
additional sequence context to a simulation creates a more specific and complex mutational 
model (e.g., SBS-96 provides greater resolution than SBS-6). Similarly, one can preserve the 
number of mutations in both genic and intergenic regions as well as the transcriptional strand 
bias by simulating with either SBS-24, SBS-384, or SBS-6144 classifications. Simulating a more 
complex classification of the data results in matching catalogs for all collapsed versions of the 
higher matrix (i.e., simulating SBS-384 ensures that the SBS-6, SBS-24, and SBS-96 simulated 
catalogs match the original data). d Comparing the simulated catalogues of a single cancer 
genome at different resolutions for small insertions and deletions. One can preserve the number 
of small insertions and deletions in genic and intergenic regions as well as the transcriptional 
strand bias by simulating the ID-415 classification. 
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3.2. Implementation 

The mutational pattern of a cancer genome can be described using distinct classification 

schemes reflecting the activity of mutational processes at different resolutions [143]. For 

example, single base substitutions can be described using only the mutated base-pair (6 possible 

mutational channels; known as SBS-6 classification), or the mutated base-pair with ± 1 bp 

context (SBS-96), or the mutated base-pair with ± 2 bp context (SBS-1536), or the mutated base-

pair with ± 3 bp context (SBS-24576), etc. (Figure 3.1b) [18]. Each of these classifications can 

be subsequently elaborated by considering additional features [18, 143]. For example, SBS-24 

extends the SBS-6 classification by including four subtypes for the six possible single base 

substitutions: substitutions are first split into ones in non-transcribed/intergenic regions and ones 

in genic regions; substitutions in genetic regions are further subclassified as ones occurring on 

the transcribed strand, untranscribed strand, or in regions of bi-directional transcription [143]. 

Similarly, the SBS-384 and SBS-6144 classifications extend SBS-96 and SBS-1536, 

respectively, by subclassifying each mutational channel into four: non-transcribed, transcribed, 

untranscribed, and bi-directional [143]. Note that, conventionally, these classifications have been 

displayed using the mutations only on the transcribed and untranscribed strands (e.g., 192 

channel depiction for SBS-384) [4, 19, 21] since, historically, mutational patterns have been 

predominately investigated in whole-exome sequenced samples that provide little information 

about mutations outside of transcribed protein coding regions. 

By preserving the pattern of mutations at a preselected resolution, SigProfilerSimulator 

converts a set of real somatic mutations from a cancer genome into another set of randomly 

generated somatic mutations (Figure 3.1a). Maintaining the mutational pattern provides an 

assurance that the same mutational processes are observed in both the real and the simulated 
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cancer genome. By default, the tool projects these mutations as statistically independent events 

onto each chromosome by proportionately assigning mutations based on the observed rate of 

each mutational channel across the complete length of a preselected reference genome. The 

number of mutations is proportionally assigned to each chromosome based on the number of 

mutational channels (e.g., 96 channels reflecting trinucleotides) found on that chromosome. The 

tool also provides a variety of custom options for simulating mutations, including: (i) gender of 

the sample allowing appropriate incorporation of sex chromosomes; (ii) transcriptional strand 

bias allowing accurate distribution of mutations to account for the activity of transcription-

coupled nucleotide excision repair; (iii) considering mutations as dependent sequential events 

where each mutation updates the observed rate of a mutational channel for a preselected 

reference genome, e.g., a C > T mutation at ACT trinucleotide will reduce the number of ACT 

trinucleotides in the reference genome by one and increase the number of ATT trinucleotides in 

the reference genome by one, thus, each mutation will modify the overall observed rate of a 

mutational channel in the genome and affect subsequent mutations; (iv) preserving mutational 

burden and mutational patterns for each chromosome instead of the complete genome, thus, the 

number and type of mutations assigned to each chromosome match exactly the ones observed in 

the original sample (Figure 3.2); (v) exome simulations that generate mutations only in the 

protein coding regions of the genome; (vi) adding Poisson noise to the number of mutations in 

each mutational channel of the original data; (vii) allowing the use of a probability mask that can 

decrease or increase the opportunity for mutations in certain parts of the genome (Figure 3.3); 

and several other options.  
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Figure 3.2: Example of an additional resolution for simulating mutational patterns supported by 
SigProfilerSimulator. The example illustrates the resulting patterns when maintaining the 
mutational burden on each chromosome and when only relying on proportionate allocation based 
upon the nucleotide context distribution of the reference genome. Comparison is provided for a 
single breast cancer sample simulated at an SBS-1536 resolution. 
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Additionally, one can simulate the germline variants in a (matched-)normal sample(s), which can 

be used for subsequent comparisons against tumor samples. With this collection of features, one 

can easily tailor an appropriate background mutational model for testing different biological 

hypotheses or for evaluating existing bioinformatics tools. Importantly, SigProfilerSimulator is 

computationally efficient. For example, the tool can simulate ~ 37 million somatic mutations 

found in the 2144 whole-genome sequenced cancers generated by Pan-cancer Analysis of Whole 

Genomes (PCAWG) initiative [60] within 90 s. 
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Figure 3.3: Simulating cancer genomics data using a probability mask. An example rainfall plot 
visualization when simulating a single TCGA melanoma sample, TCGA-DA-A-A1I8, with and 
without a probability mask on chromosome 2. A) Distribution of single base substitutions across 
chromosome 2 as found in the original sample. B) Distribution of single base substitutions across 
chromosome 2 when simulating the sample with default parameters. C) Distribution of single 
base substitutions across chromosome 2 when simulating the sample using a probability mask 
with 90% probability for mutations on the p arm and a 10% on the q arm. D) Distribution of 
single base substitutions across chromosome 2 when simulating the sample with a probability 
mask that varies in weights across the chromosome. All rainfall plots generated using 
karyoploteR [144]. Y-axes reflect log-scaled distances between adjacent mutations. X-axes 
reflect positions on chromosome 2 in TCGA-DA-A-A1I8. Each dot reflects a single base 
substitution colored using the default coloring scheme of karyoploteR. 
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3.3. Results 

To illustrate several of SigProfilerSimulator’s features, we provide a detailed 

visualization for a single TCGA melanoma sample: TCGA-DA-A-A1I8. Simulating TCGA-DA-

A-A1I8 using the SBS-6 classification maintains the original sample’s pattern for the six 

possible types of single base mutations, however, it also results in completely different patterns 

for classifications at higher resolutions (Figure 3.1c). Simulating an extended sequence context 

(SBS-96; trinucleotides) results in a perfect match with the original landscape when including 

± 1 adjacent bases; however, it does not reflect the transcriptional strand bias observed in the 

sample (Figure 3.1c). As such, one can further elaborate these simulations by incorporating 

transcriptional strand bias (Figure 3.1c), by considering ± 2 adjacent bases (Figure 3.2), or by 

preserving the mutational burden and mutational patterns on each chromosome (Figure 3.2). 

Similarly, simulations can be performed for the different classification types for small insertions 

and deletions (ID-83 and ID-415; Figure 3.1d). Each of these simulations can be subsequently 

used to test different hypotheses. To demonstrate this capability, we applied SigProfilerSimulator 

to three questions in cancer genomics. 

First, we used simulations to evaluate whether doublet base substitutions (e.g., 

CC:GG > TT:AA mutations) are two subsequent single base substitutions occurring simply by 

chance in adjacent genomic positions. We constructed a null hypothesis by applying the tool to 

the 2144 PCAWG cancer genomes. Simulations were performed considering SBSs as both 

statistically independent events (non-updating—simulating with replacement; each mutation has 

no effect on the observed rate of mutational channels) and dependent events (updating—

simulating without replacement; each mutation updates the observed rate of mutational 
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channels). Each sample was simulated 1000 times providing a distribution of doublet base 

substitutions. After simulating the SBS-96 context for each PCAWG sample, we examined the 

number of single base substitutions occurring next to one another on the genome simply by 

chance. For example, in the sample SP99325 (LIRI), we observed on average approximately 23 

pairs of adjacent SBSs when considering mutations as statistically independent events and 14 

pairs of adjacent SBSs when considering mutations as dependent events (Figure 3.4a). In 

contrast, the actual sample contains 303 doublet base substitutions indicating a 22-fold and a 13-

fold enrichment compared to the null hypothesis, respectively.  
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Figure 3.4: Applying SigProfilerSimulator to three distinct cancer genomics problems. a 
Distribution of the expected number of doublet base substitutions (DBSs) due to the adjacent 
single base substitutions (SBSs) observed by chance for the PCAWG sample SP99325. The 
distributions represent the results from 1000 simulations of the mutational pattern of SP99325 
treating mutations as statistically independent events (blue) and 1000 simulations of the 
mutational pattern of SP99325 treating mutations as dependent events. b The fold increase of 
DBSs observed in the original PCAWG samples and the average number of DBSs observed in 
our simulations. The mutational pattern of each sample was generated 1000 times considering 
somatic mutations as statistically independent events. c Comparing the similarities of mutational 
patterns at ± 2 bp context (SBS-1536) between real and simulated PCAWG samples. Simulations 
were performed at SBS-6 and SBS-96 resolutions. d Comparing the similarities of mutational 
patterns at ± 3 bp context (SBS-24576) between real and simulated PCAWG samples. 
Simulations were performed at SBS-6, SBS-96, and SBS-1536 resolutions. e Evaluating the 
false-positive rates of MutSigCV1.41, MutSigCV2, and dNdScv driver detection tools using 
SigProfilerSimulator. All TCGA breast cancer WES samples were simulated 100 times and 
examined for driver mutations using both MutSigCV and dNdScv. The average number of 
significant driver genes are plotted using a recommended q-value cutoff of 0.10. 

 

The results indicate that it is highly unlikely that the majority of observed doublet base 

substitutions in SP99325 are the result of two adjacent SBS events. Applying the same approach 

to all PCAWG samples reveals between 10- and 1000-fold increase of the real number of DBSs 

compared to simulated data (Figure 3.4b, Figure 3.5). These results confirm the belief that the 
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vast majority of doublet base substitutions in human cancer are not due to adjacent single base 

substitutions. Rather, doublet base substitutions are likely due either to single genomic events or 

to higher mutagenic propensities of certain regions of the human genome. Indeed, we recently 

derived mutational signatures of doublet base substitutions across the PCAWG dataset [18]. 

Nevertheless, it is important to remember that, especially for hyper-mutated samples, some of the 

observed DBSs may be due to having two single base substitutions occurring by chance in 

adjacent positions (Figure 3.4a). 

 

Figure 3.5: Evaluating the expected rates of DBSs for mutations simulated as dependent events. 
The fold increase of DBSs observed in the original PCAWG samples and the average number of 
DBSs observed in our simulations. The mutational pattern of each sample was generated 1000 
times considering somatic mutations as dependent events. 

 

Second, we evaluated whether incorporating additional sequence context 5′ and 3′ of 

single base substitutions increases the specificity of the mutational patterns observed in cancer 

genomes [18]. Here, we considered two mutational patterns to be the same if their cosine 

similarity is more than 0.85 (Figure 3.6; Methods). Specifically, we simulated the PCAWG 

dataset at different resolutions (viz., SBS-6, SBS-96, and SBS-1536; Figure 3.1b) and compared 

them to the patterns of mutations observed in the real samples (Figure 3.4c,d). Comparing the ± 2 
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bp context of data simulated using SBS-6 to the ± 2 bp context of the real data demonstrated that 

for almost all samples the SBS-6 simulations do not capture the ± 2 bp context as 91% of 

samples exhibited a cosine similarity below 0.85. Similarly, only half of the samples simulated 

using SBS-96 (i.e., ± 1 bp) had consistent ± 2 bp context when compared to the real data (44% 

below 0.85; Figure 3.4c). This demonstrates that the mutational patterns of the examined cancer 

genomes exhibit additional specificity for ± 2 bp adjacent to single base substitutions; note that 

± 2 bp contains within itself the ± 1 bp classification. In contrast, comparing the ± 3 bp context of 

data simulated using SBS-1536 demonstrated that the ± − 2 bp context captures the patterns 

observed at ± 3 bp for almost all samples (only 6.5% of samples below 0.85; Figure 3.4d). 

Overall, these results suggest that the SBS-1536 classification is necessary to capture additional 

information for a set of signatures beyond SBS-6 and SBS-96. Moreover, extending this 

classification to ± 3 bp (SBS-24576) is likely not necessary as the SBS-1536 classification 

already captures the patterns of ± 3 bp for majority of the examined cancer samples. 

 

 

Figure 3.6: Evaluating the average similarity of random nonnegative vectors. A) Comparing the 
cosine similarities amongst 10,000 randomly generated nonnegative vectors, where each vector 
has 1536 mutational channels. B) Comparing the cosine similarities amongst 10,000 randomly 
generated nonnegative vectors, where each vector has 24,576 mutational channels. 
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Third, we evaluated the false-positive rates of tools commonly used for discovery of 

cancer driver genes. More specifically, we simulated the somatic mutations observed in the 1024 

whole-exome sequenced breast cancers reported in the TCGA MC3 release [145]. The 

simulations were repeated 100 times and each of these 100 repetitions was analyzed for driver 

genes using MutSigCV1.41 and MutSigCV2 [53] as well as dNdScv [142]. In principle, since 

SigProfilerSimulator randomly shuffles somatic mutations, one would not expect to find any 

genes under selection. However, each of the tools found significantly mutated genes within the 

simulations using the recommended cutoff threshold of q-value < 0.10 (Figure 3.4e). On average 

MutSig1.41CV found between 1.3 and 1.6 false-positive driver genes per simulation when 

examining data generated using the SBS-384 and SBS-6144 mutational classifications, 

respectively. In contrast, MutSig2CV found between 0.3 and 0.2 false-positive driver genes per 

simulation using SBS-384 and SBS-6144, respectively. Lastly, dNdScv found between 0.03 and 

0.02 false-positive driver genes per simulation using SBS-384 and SBS-6144, respectively. Note 

that by chance, when using a q-value cutoff of 0.1, one would expect to observe less than 0.1 

false-positive driver genes per simulation. Lowering the threshold for statistical significance to 

0.01 eliminates all false-positive results from dNdScv and MutSig2CV but not for 

MutSig1.41CV. 

 

3.4. Conclusions 

Increasingly, there is a need to develop reliable background models of cancer mutational 

landscapes to allow downstream statistical analysis for biological discoveries. Currently, to the 

best of our knowledge, there is no tool that allows explicitly simulating accurate background 
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mutational landscapes. This report presents SigProfilerSimulator, a method that allows fast 

generation of mutational landscapes at different resolutions. As demonstrated by our analyses, 

SigProfilerSimulator can be used to evaluate the accuracy of other bioinformatics tools or it can 

be leveraged for making novel discoveries. SigProfilerSimulator’s breadth of features allows one 

to construct a tailored null hypothesis of mutational landscapes and to identify significance levels 

of the subsequent results. Overall, SigProfilerSimulator will be a useful tool for any researcher 

that performs statistical analysis based on mutational data derived from the sequencing of cancer 

or normal somatic tissues. 

 

3.5. Methods 

Tool implementation: SigProfilerSimulator is developed as a computationally efficient 

Python package and it is available for installation through PyPI. Further, an R-wrapper is 

available through GitHub. The tool leverages a PCG random number generator that provides a 

simple, fast, and space-efficient algorithm for generating random numbers with high statistical 

quality [146]. The tool uses a Monte Carlo approach for randomly generating somatic mutations 

while considering the observed frequency of a preselected reference genome. More specifically, 

SigProfilerSimulator randomly shuffles mutations by using the precomputed observed rates of 

mutational channels in a reference genome. The tool works in unison with 

SigProfilerMatrixGenerator [143] to first classify a catalog of somatic mutations prior to 

simulating it. The final mutational catalog is outputted into commonly used mutation data 

formats including mutation annotation format (MAF) files and variant annotation format (VCF) 

files. SigProfilerSimulator is freely available and has been extensively documented. 

 



68 
 

Python code: https://github.com/AlexandrovLab/SigProfilerSimulator 

R wrapper: https://github.com/AlexandrovLab/SigProfilerSimulatorR 

Documentation: https://osf.io/usxjz/wiki/home/ 

 

3.6. Computational benchmarking 

The computational efficiency of SigProfilerSimulator was benchmarked by simulating 

the freely available PCAWG dataset, consisting of 2,144 samples with 36,876,213 single base 

substitutions, for a single iteration using the default parameters. Simulating the complete dataset 

took approximately 90 s. Simulations were performed on a dedicated computational node with a 

dual Intel® Xeon® Gold 6132 Processors (19.25 M Cache, 2.60 GHz) and 192 GB of shared 

DDR4-2666 RAM. 

 

3.6.1. Analysis of doublet base substitutions 

We simulated the PCAWG dataset using the SBS-96 classification. Each simulation was 

performed 1,000 times considering mutations as both statistically independent events (non-

updating; each mutation has no effect on the observed rate of mutational channels) and 

dependent events (updating; each mutation updates the observed rate of mutational channels). To 

calculate the number of DBS mutations occurring by chance in each sample, we generated the 

mutational catalogs for DBS-78 using SigProfilerMatrixGenerator [143]. The resulting counts 

for DBSs were used to plot the distributions of the expected number of DBSs due to two adjacent 

SBSs happening purely by chance. The fold change was calculated by dividing the mean DBS 

count observed across the simulations by the total number of DBSs found in the original sample. 

Derivation of q-values was performed by applying the Benjamini and Hochberg false discovery 
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rate correction to p-values calculated using z-tests based on the DBS distributions found in the 

simulations and the numbers of DBSs observed in the real data. 

 

3.6.2. Sequence context analysis for mutational signatures 

The PCAWG dataset was simulated using the SBS-6, SBS-96, and SBS-1536 

classifications while ensuring the respective mutational patterns and mutational burdens on each 

chromosome match the ones observed in the real data. SigProfilerMatrixGenerator was used to 

derive the mutational vectors for each sample including vectors incorporating three bases 5′ and 

three bases 3′ of each mutation, resulting in a classification with 24,576 mutational channels. To 

avoid comparisons of sparse binary vectors, only samples that had at least 2 mutations per 

mutational channel were included in the comparative analyses. The simulated and real 

mutational patterns of a cancer genome were considered the same if their cosine similarity was at 

least 0.85. Note that the average cosine similarity between two random nonnegative vectors is 

0.75 (Figure 3.6). The chance of two nonnegative vectors with 1,536 mutational channels or 

24,576 mutational channels to have a similarity of 0.85 simply by chance is less than 10–6 

(Figure 3.6). 

 

3.6.3. Benchmarking false-positive driver genes detected by MutSigCV and 

dNdScv 

All whole-exome sequenced breast cancer samples part of the TCGA MC3 release were 

simulated using SBS-384 and SBS-6144 contexts while maintaining the mutational burden on 

each chromosome. As recommended [142], 23 samples with more than 500 exonic mutations 

were excluded from the analysis. Each simulation was repeated 100 times with different random 



70 
 

seeds. The variant annotation predictor [147] was used to annotate simulated mutations with the 

appropriate gene name for compatibility with MutSigCV1.41 and MutSigCV2 [53]. We ran 

MutSigCV1.41 and MutSigCV2 using the recommended default parameters in conjunction with 

the genome reference sequence for hg19, mutation dictionary file, exome coverage file, and gene 

covariates file as found at https://software.broadinstitute.org/cancer/cga/mutsig_run. We ran 

dNdScv [142] using the default library parameters and filtered out the significant genes using the 

recommended q-value cutoff of less than 0.10. All rainfall plots were generated using 

karyoploteR [144]. 

 

3.7. Availability and requirements 

Project name: SigProfilerSimulator 

Project home page: https://github.com/AlexandrovLab/SigProfilerSimulator 

Operating system(s): Unix, Linux, and Windows 

Programming language: Python 3; R wrapper 

Other requirements: None 

License: BSD 2-Clause "Simplified" License 

Any restrictions to use by non-academics: None 

 

3.8. Availability of data and materials 

No novel data were generated as part of this study. All source code is freely available and 

can be downloaded from the links below. Python code: 

https://github.com/AlexandrovLab/SigProfilerSimulator. R wrapper: 
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https://github.com/AlexandrovLab/SigProfilerSimulatorR. Documentation: 

https://osf.io/usxjz/wiki/home/ 

 

3.9. Acknowledgements 

Chapter 3, in full, is a reprint of the material as it appears in BMC Bioinformatics 2020. 

Bergstrom, Erik N.; Barnes, Mark; Martincorena, Inigo; Alexandrov, Ludmil B., Springer 

Nature, 2020. The dissertation author was the primary investigator and author of this paper. 

  



72 
 

 

 

 

 

 
Chapter 4.  

Examining clustered somatic mutations with 

SigProfilerClusters 

  



73 
 

Abstract 

Motivation: Clustered mutations are found in the human germline as well as in the 

genomes of cancer and normal somatic cells. Clustered events can be imprinted by a multitude of 

mutational processes, and they have been implicated in both cancer evolution and development 

disorders. Existing tools for identifying clustered mutations have been optimized for a particular 

subtype of clustered event and, in most cases, relied on a predefined intermutational distance 

(IMD) cutoff combined with a piecewise linear regression analysis. 

Results: Here, we present SigProfilerClusters, an automated tool for detecting all types of 

clustered mutations by calculating a sample-dependent IMD threshold using a simulated 

background model that takes into account extended sequence context, transcriptional strand 

asymmetries and regional mutation densities. SigProfilerClusters disentangles all types of 

clustered events from non-clustered mutations and annotates each clustered event into an 

established subclass, including the widely used classes of doublet-base substitutions, multi-base 

substitutions, omikli and kataegis. SigProfilerClusters outputs non-clustered mutations and 

clustered events using standard data formats as well as provides multiple visualizations for 

exploring the distributions and patterns of clustered mutations across the genome. 

Availability and implementation: SigProfilerClusters is supported across most operating 

systems and made freely available at https://github.com/AlexandrovLab/SigProfilerClusters with 

an extensive documentation located at https://osf.io/qpmzw/wiki/home/. 

 

4.1. Introduction 

Mutations are found on the genomes of all cells in the human body [1, 148]. Most single-

base substitutions and small insertions and deletions (indels) accumulate independently across 
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the genome, but a subset of the mutations cluster in a non-random manner [52, 53]. Previous 

studies have revealed that clustered mutations are imprinted by a plethora of endogenous and 

exogenous mutational processes [5, 14, 18, 24, 52, 54, 56-61, 65, 89, 149-151]. Some clustered 

mutations have been implicated in cancer evolution [52, 57, 58, 60, 150, 152], while de novo 

clustered mutations have been identified in the human germline and shown to contribute to 

developmental disorders [153, 154]. In recent years, sets of simultaneously occurring clustered 

substitutions have been further subclassified into independent events [57, 152], including (i) 

doublet-base substitutions (DBSs); (ii) multi-base substitutions (MBSs); (iii) diffuse 

hypermutation termed omikli; (iv) longer strand-coordinated events termed kataegis and (v) 

recurrent hypermutation of extra-chromosomal DNA (ecDNA) termed kyklonas. 

Traditional methods separate clustered mutations based on a predefined inter-mutational 

distance (IMD) threshold typically between 1 and 2 kilobases [4, 18, 24, 58, 59, 85, 155]. Many 

of these approaches utilize a piecewise linear regression to segment each chromosome, which, in 

most cases, is optimized for calling larger strand-coordinated kataegic events (Figure 4.1) [4, 

156, 157]. Most existing methods have also ignored confounding effects attributed to localized 

differences in mutation rates, copy number alterations or the mutational burden across each 

chromosome within a given sample leading to an accumulation of false-positive clustered events 

(Figure 4.1). Further, the majority of existing tools focus on detecting only a specific class of 

clustered events including doublet-base substitutions and multi-nucleotide variants [54, 150, 

151], kataegis [58, 155, 156] or APOBEC3-associated events [5, 59] while ignoring the larger 

landscape of clustered mutations. For example, a recent study [57] developed an algorithm 

focused on the detection of APOBEC3-associated omikli and kataegis events in cancer genomes 

by incorporating simulations of somatic mutations and estimates of cancer cell fractions. 
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Figure 4.1: Benchmarking of existing tools for detecting clustered mutations. a) Assessing the 
degree of overlap between two tools that detect clustered mutations and SigProfilerCusters. P-
MACD locates regions of clustered mutations by implementing a negative binomial distribution 
to model the probability of observing a given cluster within a given window of the genome. 
When calculating p-values, this model assumes that all mutations occur randomly across the 
genome limiting clustered events to those that occur at most 10 kilobases (kb) from one another. 
Kataegis implement a piece-wise linear model with set thresholds requiring all clustered events 
to be composed of 6 or more mutations with an average inter-mutational distance of 1 kb 
between adjacent mutations. All tools were applied to 2,703 whole-genome sequenced samples 
from PCAWG and were split into low (TMB<1), intermediate (1<=TMB<10), and high 
(TMB>=10) TMB. b) The percentage of mutations overlapping each subclass of clustered events 
called by SigProfilerClusters (left), the percentage of mutations that were missed by each of the 
two tools that were called by SigProfilerClusters (middle), and the percentage of total mutations 
called by each tool that were missed by SigProfilerClusters separated by low, intermediate, and 
high TMB (right). c) Schematic workflow to assess the false positive rate of each tool using 
simulations of 211 breast cancer genomes from PCAWG. d) The average number of false 
positive mutations per simulated sample detected across the simulated breast cancer dataset from 
PCAWG. Kataegis did not detect any kataegic clustered events within the simulated data using 
the tools’ default parameters. Similarly, SigProfilerClusters did not detect any kataegic clustered 
events within these simulated data. 
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Separation and classification of clustered events are required to fully elucidate the 

mutational processes operating in cancer and normal somatic cells [52, 152]. Here, we present 

SigProfilerClusters, a tool to comprehensively characterize and subclassify clustered mutations 

from the complete catalog of mutations within the genome of a single sample (Figure 4.2a). 

SigProfilerClusters classifies all types of clustered mutations, including (i) doublet-base 

substitutions; (ii) multi-base substitutions; (iii) omikli; (iv) kataegis and (v) clustered small 

insertions and deletions (indels). The tool calculates a sample-dependent IMD threshold that 

considers regional differences in mutation rates, variant allele fractions and cancer cell fractions 

of adjacent mutations to reduce the false positive rate and provides visualizations for 

downstream analyses (Figure 4.2b and c; Figure 4.1). Further, SigProfilerClusters integrates 

within the larger suite of SigProfiler tools [143, 158, 159] to facilitate downstream mutational 

signature analysis of both non-clustered and clustered single-base substitutions and indels, thus, 

allowing the accurate detection of mutational processes giving rise to even low levels of 

clustered events (Figure 4.2d) [143, 158, 159]. 
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Figure 4.2: Detection and characterization of clustered mutations with SigProfilerClusters. (a) 
An example workflow used to detect clustered mutations in a single cancer genome. As an input, 
SigProfilerClusters accepts common formats for mutations, such as ones in the variant calling 
format (VCF), and the tool separates all clustered mutations from the complete mutational 
catalog of the provided sample. Final partitions of mutations in the sample are outputted as VCF 
files and visualized using the mutational spectra of all mutations, only clustered mutations and 
only non-clustered mutations along with a rainfall plot commonly used to show the distribution 
of inter-mutational distances across a cancer genome [4, 5, 152]. (b) Schematic demonstrating 
the process of calculating a sample-dependent IMD threshold to separate clustered from non-
clustered mutations across each genome. A binary search algorithm is used to efficiently detect 
the optimal global IMD threshold for each sample. Detection of the global IMD threshold is 
illustrated using gray arrows. Regional corrections are performed to identify local IMD 
thresholds based on variance of mutation rates across the genome. (c) Every clustered mutation 
is classified into a single subcategory of clustered event. (d) Rainfall plot illustrating the 
distribution of IMDs across a single glioblastoma sample (left). The mutational spectra for 
omikli and kataegic events reveal a different mutational pattern compared to the pattern of all 
non-clustered somatic mutations (right). 

 

4.2. Material and methods 

SigProfilerClusters derives an IMD cutoff that is unlikely to occur purely by chance 

given the observed mutational burden and the mutational patterns within the genome of a given 
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sample. To calculate the genome-dependent IMD, the tool leverages SigProfilerSimulator [158] 

to generate background models by randomizing the distribution of mutations across the genome. 

By default, the genome of each sample is simulated 100 times in order to derive 95% confidence 

intervals for the expected genomic mutational landscape, with every simulation maintaining the 

penta-nucleotide sequence context for each substitution, the ratio of all mutations in genic and 

inter-genic regions, the transcriptional strand asymmetries of all mutations in genic regions and 

the mutational burden on each chromosome [143, 158]. Importantly, this randomization 

procedure is highly customizable [158] and can be altered based on the needs of a given study 

design, thus, allowing the incorporation of other factors that affect the accumulation of mutations 

such as nucleosome occupancy, presence of histone modifications and many others. A binary 

search algorithm is implemented to efficiently derive the global IMD threshold for each genome. 

The final global IMD threshold is selected by ensuring that 90% of mutations below the chosen 

cutoff are unlikely to appear by chance given the simulated distribution of mutations (q-

value < 0.01; Figure 4.1) with a maximum global IMD cutoff of 10 kilobases. The algorithm also 

considers regional heterogeneities of mutation rates, generally associated with replication timing 

[75] or differential gene expression [53, 61, 160-162], by correcting for variance in clonality as 

well as variance in both mutation-dense and mutation-poor regions using a sliding genomic 

window (default size of 1 megabase). Specifically, an additional regional IMD cutoff is corrected 

within each genomic window based on the fold difference between the number of real and the 

number of simulated mutations, while maintaining the original criteria of <10% of mutations 

below the IMD cutoff appearing by chance (q-value < 0.01). Lastly, when data are available, 

SigProfilerClusters ensures that adjacent mutations are in the same cells by introducing a 

maximum difference in variant allele frequencies (VAF) or cancer cell fraction (CCF), which 
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incorporates copy number changes, below a certain threshold (default cutoff value of 0.10 and 

0.25; respectively). 

After identifying the set of clustered mutations, SigProfilerClusters subclassifies each 

clustered substitution into a single category of previously established clustered events [57, 152]. 

Briefly, all clustered substitutions with consistent VAFs or consistent CCFs are classified into 

one of four categories. Two mutations with an IMD of 1 are classified as doublet-base 

substitutions, while clusters of three or more adjacent mutations each with an IMD of 1 are 

classified as multi-base substitutions. Clusters of two or three mutations with IMDs less than the 

sample-dependent cutoff and with at least a single IMD greater than 1 are classified as omikli 

[152], while clusters of four or more mutations with IMDs less than the sample-dependent cutoff 

and with at least a single IMD greater than 1 are classified as kataegis [152]. All remaining 

clustered mutations with inconsistent VAFs or CCFs are classified as other. Clustered indels are 

not subclassified into different categories due to a lack of previously defined subtypes. 

 

4.3. Usage 

SigProfilerClusters is freely available as a Python package, distributed under the 

permissive BSD-2 clause license and can be used on most operating systems including Windows, 

MacOS and Linux-based machines. The tool is compatible with large-scale deployments on 

high-performance computing clusters as well as on cloud infrastructures such as Amazon Web 

Services. Input data can be provided in the form of common mutation formats including the 

Variant Call Format (VCF), the Mutation Annotation Format or in the form of a simple text file. 

The output of SigProfilerClusters results in the partitioning of all mutations into a clustered or 

non-clustered directory. All clustered mutations are then classified into distinct subcategories of 
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events and provided individually in VCF files for downstream visualization and analyses. The 

output for each subclass of the clustered event can be directly utilized by additional SigProfiler 

tools including SigProfilerExtractor for mutational signature analysis [159] and 

SigProfilerPlotting for examining patterns of somatic mutations [143]. The results for each 

sample are also summarized using two individual visualizations that include: (i) a rainfall plot 

depicting the minimum global IMD between all adjacent mutations, where each individual set of 

adjacent mutations is colored based on its clustered classification; and (ii) a multi-panel figure 

that displays the mutational patterns across all mutations, clustered mutations and non-clustered 

mutations, separately along with the distribution of IMDs across the real and simulated data for 

each sample (Figure 4.2a). 

 

4.4. Conclusion 

Elucidating the compendium of clustered somatic mutations in the genome of a sample 

allows further understanding of the mutational process that give rises to these events and can 

provide novel insights into disease etiology [52, 57, 152]. Previous studies have traditionally 

interrogated the complete mutational catalogs of cancer genomes, which can lead to the inability 

to detect processes active at low levels or those which have been transiently activated. Our prior 

analysis of clustered mutations [152] has revealed an enrichment of clustered mutations within 

known cancer driver events, hypermutation of extra-chromosomal DNA fueling the evolution of 

cancers, and ultimately, resulting in a differential patient outcome. Here, we provide 

SigProfilerClusters, an automated and freely available Python-based tool that comprehensively 

identifies and classifies clustered mutations enabling users to interrogate the mutational 

processes giving rise to such events. 
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Abstract 

Clustered somatic mutations are common in cancer genomes and previous analyses 

reveal several types of clustered single-base substitutions, which include doublet- and multi-base 

substitutions [5, 18, 54-56], diffuse hypermutation termed omikli [57], and longer strand-

coordinated events termed kataegis [5, 58, 59, 149]. Here we provide a comprehensive 

characterization of clustered substitutions and clustered small insertions and deletions (indels) 

across 2,583 whole-genome-sequenced cancers from 30 types of cancer [60]. Clustered 

mutations were highly enriched in driver genes and associated with differential gene expression 

and changes in overall survival. Several distinct mutational processes gave rise to clustered 

indels, including signatures that were enriched in tobacco smokers and homologous-

recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 

mutational processes, whereas most multi-base substitutions were generated by either tobacco 

smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to 

APOBEC3 activity [57], accounted for a large proportion of clustered substitutions; however, 

only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple 

mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are 

associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. 

Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas 

(Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic 

events were observed on most mutated ecDNA. ecDNA containing known cancer genes 

exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of 

clustered mutational processes in human cancer and the role of APOBEC3 in recurrently 

mutating and fuelling the evolution of ecDNA. 
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5.1. Main 

Cancer genomes contain somatic mutations that are imprinted by different mutational 

processes [4, 18]. Most single-base substitutions and small indels are independently scattered 

across the genome; however, a subset of substitutions and indels tend to cluster [52, 53]. This 

clustering has been attributed to a combination of heterogeneous mutation rates across the 

genome, biophysical characteristics of exogenous carcinogens, dysregulation of endogenous 

processes and larger mutational events associated with genome instability—amongst others [5, 

14, 52, 54, 57-62, 64, 65, 142]. Previous analyses of clustered mutations have focused on single-

base substitutions and revealed several classes of clustered events, including doublet- and multi-

base substitutions [5, 18, 54-56] (DBSs and MBSs, respectively), diffuse hypermutation (omikli) 

[57] and longer events (kataegis) [5, 58, 59, 149]. Most kataegic events were found to be strand-

coordinated, defined as sharing the same strand and reference allele [4, 5]. Previous studies have 

also revealed nine clustered signatures [52] and clustered driver substitutions due to APOBEC3-

associated mutagenesis [57] or carcinogenic-triggered POLH mutagenesis [52]. 

DBSs have been extensively examined, revealing multiple endogenous and exogenous 

processes that can cause these events, including failure of DNA repair pathways and exposure to 

environmental mutagens [4, 5, 18]. By contrast, MBSs have not been comprehensively 

investigated, presumably owing to their small numbers in cancer genomes. Moreover, only a 

handful of processes have been associated with omikli and kataegic events, with most processes 

attributed to the AID and APOBEC3 family of deaminases [5, 52, 57-59, 61, 87-89, 98]. 

Specifically, the APOBEC3 enzymes, which are typically responsible for antiviral responses [90-

96], give rise to omikli and kataegis by requiring single-stranded DNA as a substrate [57, 58, 85, 
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88]. Omikli were found to be enriched in early replicating regions and more prevalent in 

microsatellite stable tumours, indicating that mismatch repair has a role in exposing short single-

stranded DNA regions [57]. The differential activity of mismatch repair towards gene-rich 

regions results in increased omikli events within cancer genes [57]. Kataegis is less prevalent 

than omikli as it is likely to depend on longer tracks of single-stranded DNA [58, 59, 65]. Such 

tracks are typically available during the repair of double-strand breaks and most kataegis has 

been observed within 10 kb of detected breakpoints [60]. 

Amplification of known cancer genes is known to drive tumorigenesis in many types of 

cancer [163]. Studies have shown high copy-number states of circular ecDNAs, which often 

contain known cancer genes and are found in most cancers [163-166]. The circular nature of 

ecDNAs and their rapid replication mimic double-stranded DNA viral pathogens, which 

indicates that they could be substrates for APOBEC3 mutagenesis; this may contribute to the 

evolution of tumours that contain ecDNA through accelerated diversification of 

extrachromosomal oncoproteins. 

 

5.1.1. The landscape of clustered mutations 

To identify clustered mutations, a sample-dependent intra-mutational distance (IMD) cut-

off was derived in which mutations below the cut-off were unlikely to occur by chance (q-

value < 0.01). A statistical approach using the IMD cut-off, variant allele frequencies (VAFs) and 

corrections for local sequence context was applied to each specimen (Methods,   
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Figure 5.1a). Clustered mutations with consistent VAFs were subclassified into four 

categories (Figure 5.1b). DBSs and MBSs were characterized as two adjacent mutations (DBSs) 

and as three or more adjacent mutations (MBSs) (IMD = 1). Multiple substitutions each with 

IMD > 1 bp and below the sample-dependent cut-off were characterized as either omikli (two to 

three substitutions) or kataegis (four or more substitutions) (Figure 5.2). Clustered substitutions 

with inconsistent VAFs were classified as ‘other’. Although clustered indels were not 

subclassified into different categories, most events resembled diffuse hypermutation, with 92.3% 

of events having only two indels (Figure 5.1c). 
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Figure 5.1: Identification and clinical associations of clustered events. a. Schematic depiction for 
separating clustered mutations for a sample. b. Subclassification of clustered substitutions and 
indels. Expected IMD derived using steps 2 and 3 (a). c. Distribution of indels present in a single 
clustered event. d. Distribution of clustered substitutions (left) and indels (right) across cancers 
with less than 10 samples subclassified into different categories. e. Correlations between TMB of 
each sample, the TMB within the exome, or the TMB for each class of clustered substitutions 
(left) and indels (right). f. Distribution of VAFs for all clustered substitution classes (left; DBS: 
1,215 samples; MBS: 851; omikli:1,466; kataegis: 1,108; other: 335) with the average fold 
enrichment compared against non-clustered mutations (right). For each boxplot, the middle line 
reflects the median, the lower and upper bounds correspond to the first and third quartiles, and 
the lower and upper whiskers extend from the box by 1.5x the inter-quartile range (IQR). g. 
Kaplan–Meier curves between samples with high (top 80th percentile) and low (bottom 20th 
percentile) clustered substitution (left) or indel (right) burdens in PCAWG ovarian cancer. h. 
Cox regressions performed for PCAWG cancer types while correcting for age (n = 20 upper and 
n = 21 lower clustered substitutions; n = 49 upper and n = 49 lower clustered indels). i. Kaplan–
Meier survival curves for TCGA cancer types with a differential patient outcome associated with 
the detection of any clustered mutations. j. k. Cox regressions performed for TCGA samples 
while correcting for age (j) and total mutational burden (k) (OV: n = 111 upper, n = 159 lower 
clustered substitutions; UCEC: n = 322 upper, n = 64 lower; ACC: n = 24 upper, n = 67 lower). 
PCAWG ovarian cancers were included in k. Centre of measure for each Cox regression reflects 
the log10(Hazards ratios) with the 95% confidence intervals in h–k). 
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Examining 2,583 whole-genome-sequenced cancers from the Pan-Cancer Analysis of 

Whole Genomes (PCAWG) project revealed a total of 1,686,013 clustered single-base 

substitutions and 21,368 clustered indels (Figure 5.3, Figure 5.1d). DBSs, MBSs, omikli and 

kataegis comprised 45.7%, 0.7%, 37.2% and 7.0% of clustered substitutions across all samples, 

respectively, and their distributions varied greatly within and across cancer types. For example, 

melanoma had the highest clustered substitution burden, with ultraviolet light associated doublets 

(CC>TT) accounting for 74.2% of clustered mutations; however, these contributed only 5.3% of 

all substitutions in melanoma (Figure 5.3a). By contrast, 11.5% of all substitutions in bone 

leiomyosarcomas were clustered, and omikli and kataegis constituted 43.8% and 46.7% of these 

mutations, respectively (Figure 5.3a). Clustered indels exhibited similarly diverse patterns within 

and across cancer types (Figure 5.3b). For example, the highest mutational burden of clustered 

indels was observed in lung and ovarian cancers. Clustered indels in lung cancer accounted for 

only 2.6% of all indels and were characterized by 1-bp deletions. By contrast, clustered long 

indels at microhomologies were commonly found in ovarian and breast cancers and contributed 

more than 10% of all indels in a subset of samples (Figure 5.3b). Correlations between the total 

number of mutations and the number of clustered mutations were observed for DBSs and omikli 

but not for MBSs, kataegis or indels (Figure 5.1e). In most cancers, DBSs and omikli had VAFs 

consistent with those of non-clustered mutations, whereas MBSs and kataegis tended to have 

lower VAFs (Figure 5.1f). Kataegic events contained 4 to 44 mutations and 81% of events were 

strand-coordinated, indicative of damage or enzymatic changes on a single DNA strand. 
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Figure 5.2: Determining the number of mutations differentiating between omikli and kataegis. a) 
Modeling the number of mutations per event using a mixture of two Poisson distributions. The 
first component, representative of omikli, has an average IMD of 2.1, while the second 
component, representative of kataegis, has an average IMD of 4.4. The estimated contribution of 
mutations of each component are depicted as bars for each corresponding event size b) The 
distribution of IMDs per event across different sized events (n=199,912 events with 2 mutations; 
n=35,576 events with 3 mutations; n=15,320 events with 4 mutations; n=9,613 events with 5 
mutations). The chosen cutoff between omikli and kataegis was four mutations. For each 
boxplot, the middle line reflects the median, the lower and upper bounds of the box correspond 
to the first and third quartiles, and the lower and upper whiskers extend from the box by 1.5x the 
inter-quartile range (IQR).    

 

The overall survival was compared between patients with cancers containing high and 

low numbers of clustered mutations within whole-genome-sequenced PCAWG and whole-

exome sequenced The Cancer Genome Atlas (TCGA) cancer types [167]. Better overall survival 

was observed only in whole-genome-sequenced ovarian cancers that contained high-levels of 

clustered substitutions or clustered indels (q-values < 0.05) (Figure 5.1g,h). Conversely, whole-

exome-sequenced adrenocortical carcinomas containing clustered substitutions were associated 

with a worse overall survival (q-value = 7.2 × 10−5) (Figure 5.1i-k). 
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Figure 5.3: The landscape of clustered mutations across human cancer. Pan-cancer distribution of 
clustered substitutions subclassified into DBSs, MBSs, omikli, kataegis and other clustered 
mutations (a). Top, each black dot represents a single cancer genome. Red bars reflect the 
median clustered TMB (mutations (mut) per Mb) for cancer types. Middle, the clustered TMB 
normalized to the genome-wide TMB reflecting the contribution of clustered mutations to the 
overall TMB of a given sample. Red bars reflect the median contribution for cancer types. 
Bottom, the proportion of each subclass of clustered events for a given cancer type with the total 
number of samples having at least a single clustered event over the total number of samples 
within a given cancer cohort. b. Pan-cancer distribution of clustered small indels. The top and 
middle panels have the same information as a. Bottom, the proportion of each cluster type of 
indel for a given cancer type with the total number of samples having at least a single clustered 
indel over the total number of samples within a given cancer cohort. All 2,583 whole-genome-
sequenced samples from PCAWG are included in the analysis; however, cancers with fewer than 
10 samples were removed from the main figure and included in Figure 5.1d. For definitions of 
abbreviations for cancer types used in the figures, see 'Cancer-type abbreviations' in Methods. 
 

5.1.1.1. Determining the number of clustered mutations in omikli and kataegic events 

To determine the cutoff of the number of mutations in an omikli versus a kataegic event, 

we modelled the distribution of clustered event sizes (excluding DBSs, MBSs, and other 

clustered events with disagreeable variant allele frequencies) using a mixture of two Poisson 

distributions (Figure 5.2a). The modelling also excluded clustered mutations from skin 

melanomas, that contribute a disproportionate number of DBS events, and clustered mutations 
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from lymphomas, that contribute a large proportion of canonical and non-canonical AID 

kataegis. The first component, corresponding with omikli events (gold), had an average of 2.1 

mutations per event, while the second component, corresponding to larger kataegic events (teal), 

had an average of 4.4 mutations per events. Using the posterior probabilities of each distribution, 

we calculated the likelihood of a given clustered event belonging to a specific component. 

Events comprised of four or more mutations were attributed to the kataegic component with 

>95% probability. Further, we assessed the IMD distributions of different sized events revealing 

approximately a 2-fold increase in average IMD between events possessing 3 and 4 mutations 

supporting the activity of two separate mutational processes (Figure 5.2b). 

 

5.1.2. Signatures of clustered mutations 

Mutational signature analysis was performed for each category of clustered events, which 

enabled the identification of 12 DBS, 5 MBS, 17 omikli, 9 kataegic and 6 clustered indel 

signatures (Figure 5.4). Although DBS signatures have previously been described [18], previous 

analysis combined DBSs and MBSs into a single class [18]. Separating these events into 

individual classes showed that a multitude of processes can give rise to DBSs, whereas most 

MBSs are attributable to signatures associated with tobacco smoking (SBS4) or ultraviolet light 

(SBS7). Additional DBS and MBS signatures were found within a small subset of cancer types 

(Figure 5.5). 
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Figure 5.4: Mutational processes that underlie clustered events. Each circle represents the 
activity of a signature for a given cancer type. The radius of the circle determines the proportion 
of samples with greater than a given number of mutations specific to each subclass; the colour 
reflects the median number of mutations per cancer type. A minimum of two samples are 
required per cancer type for visualization (Methods). 
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In cancer genomes, omikli were previously attributed to APOBEC3 mutagenesis [57] 

with some indirect evidence from experimental models [88, 168, 169]. Our analysis of 

sequencing data [170] from the clonally expanded breast cancer cell line BT-474 with active 

APOBEC3 mutagenesis experimentally confirmed the existence of APOBEC3-associated omikli 

events (cosine similarity: 0.99) (Figure 5.6a). Only 16.2% of omikli events across the 2,583 

cancer genomes matched the APOBEC3 mutational pattern, suggesting that a variety of other 

processes can give rise to diffuse clustered hypermutation. Notably, our analysis revealed omikli 

due to tobacco smoking (SBS4), clock-like mutational processes (SBS5), ultraviolet light 

(SBS7), both direct and indirect mutations from AID (SBS9 and SBS85), and multiple 

mutational signatures with unknown aetiology in different cancer types (SBS8, SBS12, 

SBS17a/b, SBS28, SBS40 and SBS41) (Figure 5.4). Cell lines previously exposed to 

benzo[a]pyrene [171] and ultraviolet light [172] confirmed the generation of omikli events as a 

result of these two environmental exposures (cosine similarities: 0.86 and 0.84, respectively) 

(Figure 5.6a). 



95 
 

 

Figure 5.5: De novo signatures of DBS and MBS signatures. a. The activity of DBS de novo 
signatures (top) and the corresponding signatures extracted from prostate, skin, stomach, and 
uterine cancers that could not be accurately reconstructed using known COSMIC mutational 
signatures (bottom; Methods). b. The activity of MBS de novo signatures (top) and the 
corresponding signatures extracted from colon, oesophagus, and head and neck cancers that 
could not be accurately reconstructed using known COSMIC mutational signatures (bottom; 
Methods). 

 

Of the nine kataegic signatures, four have been reported previously, including two 

associated with APOBEC3 deaminases (SBS2 and SBS13) and two associated with canonical or 

non-canonical AID activities (SBS84 and SBS85) (Figure 5.4). SBS5 (clock-like mutagenesis) 
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accounted for 15.0% of kataegis, with most events occurring in the vicinity of AID kataegis 

within B cell lymphomas. The remaining four kataegic signatures accounted for only 8.9% of 

kataegic mutations and included SBS7a/b (ultraviolet light), SBS9 (indirect mutations from AID) 

and SBS37 (unknown aetiology). Most kataegic signatures were strand-coordinated (Figure 

5.6b). Some samples exhibited consistent whereas others exhibited distinct signatures of 

clustered and non-clustered mutagenesis (Figure 5.7). For example, in SP56533 (lung squamous 

cell carcinoma), most non-clustered and omikli substitutions were caused by tobacco signature 

SBS4, whereas kataegic events were generated by the APOBEC3 signatures (Figure 5.7a). By 

contrast, the pattern of non-clustered substitutions in SP24815 (glioblastoma) was due to clock-

like signatures SBS1 and SBS5, whereas omikli and kataegic events were mostly attributable to 

APOBEC3 (Figure 5.7a). 
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Figure 5.6: Experimental validation and epidemiological associations of clustered mutational 
processes. a. Experimental validation of three omikli processes. Specifically, APOBEC3-
associated omikli were validated using a clonally expanded BT-474 breast cancer cell line (top), 
omikli events resulting from exposure to benzo[a]pyrene were validated using iPS cells (middle), 
and omikli events resulting from exposure to ultraviolet light were validated using iPS cells 
(bottom). b. Mutational processes of strand-coordinated kataegic events. c. Epidemiological 
associations comparing the ratio of clustered TMB to the total TMB for a given sample between: 
drinkers (n = 25) and non-drinkers (n = 61); smokers (n = 68) and non-smokers (n = 11); 
homologous-recombination deficient (HR-deficient; n = 25) and homologous-recombination 
proficient samples (HR-proficient; n = 64). For each boxplot, the middle line reflects the median, 
the lower and upper bounds of the box correspond to the first and third quartiles, and the lower 
and upper whiskers extend from the box by 1.5x the inter-quartile range (IQR). P-values were 
calculated using a two-tailed Mann–Whitney U-test. d. Mutational processes of clustered events 
with inconsistent VAFs classified as other clustered substitutions. A minimum of two samples 
are required per cancer type for visualization (Methods). 
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The remaining ‘other’ clustered substitutions exhibited inconsistent VAFs that probably 

represent mutations at highly mutable genomic regions or the effects of co-occurring large 

mutational events such as copy number alterations (Figure 5.6d). 

 

 

Figure 5.7: Examples of clustered mutational signatures. a. Two samples depicting the intra-
mutational distance (IMD) distributions of substitutions across genomic coordinates, where each 
dot represents the minimum distance to adjacent mutations for a selected mutation coloured 
based on the corresponding subclassification of event (rainfall plot; left). The red lines depict the 
sample-dependent IMD threshold for each sample. Specific clustered mutations may be above 
this threshold based on corrections for regional mutation density. The mutational spectra for the 
different catalogues of clustered and non-clustered substitutions for each sample (right; MBS are 
not shown). b. Two samples illustrating the IMD distributions of indels across the given 
genomes, with the IMD indel thresholds shown in red (left). The non-clustered and clustered 
indel catalogues for each sample (right). 
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Different cancers showed distinct tendencies of clustered indel mutagenesis (Figure 5.4). 

For instance, clustered indels attributed to ID3 (tobacco smoking; characterized by 1-bp 

deletions) were found predominately in lung cancers and were significantly increased in smokers 

compared to non-smokers (P = 0.0014) (Figure 5.6c, Figure 5.7b). Clustered indels due to 

signatures ID6 and ID8—both attributed to homologous recombination deficiency and 

characterized by long indels at microhomologies—were found in breast and ovarian cancers and 

were highly increased in cancers with known deficiencies in homologous recombination genes 

(P = 4.9 × 10−11) (Figure 5.6c, Figure 5.7b). 

 
 
5.1.3. Panorama of clustered driver mutations 

The PCAWG project elucidated a constellation of mutations that putatively drive cancer 

development [60]. Our current analysis reveals significant enrichments of clustered substitutions 

and clustered indels amongst these driver mutations. Specifically, whereas only 3.7% of all 

substitutions and 0.9% of all indels are clustered events, they contribute 8.4% and 6.9% of 

substitution and indel drivers, respectively (q-values < 1 × 10−5; Fisher’s exact tests) (Figure 

5.8a,b). Omikli accounted for 50.5% of all clustered substitution drivers, whereas DBSs, kataegis 

and other clustered events each contributed between 14% and 18% (Figure 5.8c). Clustered 

driver substitutions varied greatly between genes and across different cancers (Figure 5.8c, 

Figure 5.9a) with a 2.4-fold enrichment of clustered events within oncogenes compared to 

tumour suppressors (P = 5.79 × 10−3) (Figure 5.9b,c). In some cancer genes, only a small 

percentage of driver events are due to clustered substitutions; examples include TP53 (4.5% 

clustered driver substitutions), KRAS (3.7%) and PIK3CA (2.2%). In other genes, most detected 
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substitution drivers were clustered events; examples include: BTG1 (73.1%), SGK1 (66.6%), 

EBF1 (60.0%) and NOTCH2 (38.5%). Notably, the contribution from each class of clustered 

events varied across driver substitutions in different genes (Figure 5.8c). For instance, 

ultraviolet-light-associated DBSs comprised 93% of clustered BRAF driver events, omikli 

contributed 63% of clustered BTG1 driver events and kataegis accounted for 100% of clustered 

NOTCH2 driver substitutions (Figure 5.8c). Similar behaviour was observed for clustered indel 

drivers, with 48.7% being single-base pair indels (Figure 5.8d). In some cancer genes, clustered 

indel drivers were rare (for example, 2.4% of indel drivers in TP53 were clustered), whereas in 

others they were common (for example, 76.6% in ALB) (Figure 5.8d). Clustered driver 

substitutions were enriched in stop-lost mutations (q-value = 1.9 × 10−2) and depleted in stop-

gained mutations (q-value = 3.3 × 10−3) when compared to non-clustered drivers (Figure 5.8e). 

Furthermore, driver genes that contained clustered events were often differentially expressed 

compared to those containing non-clustered events (Figure 5.9d). For instance, clustered events 

within CTNNB1 and BTG1 associated with an increased expression compared to both non-

clustered and wild-type expression levels for each gene (q-values < 0.05). Opposite effects were 

observed in STAT6 and RFTN1 (q-values < 0.05). Collectively, these driver events were induced 

by the activity of multiple mutational processes including exposure to ultraviolet light, tobacco 

smoke, platinum chemotherapy and AID and APOBEC3 activity; amongst others (Figure 5.9e). 
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Figure 5.8: Panorama of clustered driver mutations in human cancer. a, b. Percentage of 
clustered mutations (top) compared to the percentage of clustered driver events (bottom) for 
substitutions (a) and indels (b). c. The frequency of clustered driver events across known cancer 
genes. The radius of the circle is proportional to the number of samples with a clustered driver 
mutation within a gene; the colour reflects the clustered mutational burden. All clustered driver 
events are classified into one of the five clustered classes, with the number of clustered driver 
substitutions and the total number of driver substitutions shown on the right. d. Clustered indel 
drivers are shown in a similar manner to c, e. The odds ratio of clustered substitutions (top) and 
indels (bottom) resulting in deleterious (n = 192 clustered substitutions; n = 54 clustered indels) 
or synonymous changes (n = 5 clustered substitutions; n = 5 clustered indels) within a given 
driver gene compared to non-clustered driver mutations (n = 771 deleterious and n = 237 
synonymous substitutions; n = 111 deleterious and n = 50 synonymous indels). All events were 
overlapped with the PCAWG consensus list of driver events and were annotated using the 
ENSEMBL Variant Effect Predictor (VEP). The odds ratios are shown with their 95% 
confidence intervals. f. Kaplan–Meier survival curves comparing the outcome of samples with 
clustered versus non-clustered mutations in BRAF (top), TP53 (middle) and EGFR (bottom) 
across TCGA cohorts. Only cohorts with more than five samples containing a clustered mutation 
within the given gene were included. g. Kaplan–Meier survival curves comparing the outcome of 
samples with clustered versus non-clustered mutations in the same genes across the MSK-
IMPACT cohort. The log10-transformed hazards ratios (log10(HR)) are shown with their 95% 
confidence intervals in f, g. Cox regressions were corrected for age (TCGA only), mutational 
burden and cancer type (Methods). Q values in a, b, e. were calculated using a two-tailed 
Fisher’s exact test and corrected for multiple hypothesis testing. 
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The clinical utility of detecting clustered events in driver genes was evaluated by 

comparing the survival amongst individuals with clustered mutations versus individuals with 

non-clustered mutations within each driver gene across all whole-exome-sequenced samples in 

TCGA. For each of these comparisons, we performed Cox regressions considering the effects 

from age and tumour mutational burden (TMB) while correcting for cancer type and multiple 

hypothesis testing. These results were validated in targeted panel sequencing data from the 

Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-

IMPACT) cohort [173, 174]. These analyses revealed a significant difference in survival 

between individuals with clustered and individuals with non-clustered mutations detected in 

TP53, EGFR and BRAF. Specifically, individuals with clustered events within BRAF had a 

better overall survival compared to individuals with non-clustered events (q-values < 0.05) 

(Figure 5.8f,g). Conversely, in both TCGA and MSK-IMPACT, individuals with clustered 

mutations in TP53 or EGFR exhibited a significantly worse outcome compared to individuals 

with non-clustered mutations in each of these genes (q-values < 0.05) (Figure 5.8f, g). 
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Figure 5.9: Mutational processes of clustered driver events. a. The percentage of clustered driver 
substitutions and indels within each cancer type. All samples 2,583 whole-genome sequenced 
samples from PCAWG with a detected driver event are included; however, cancer types with 
fewer than 10 samples are not presented. b. The proportion of clustered driver mutations per 
cancer gene compared between oncogenes (n = 19 genes) versus tumour suppressor genes (n = 
30 genes) and genes with high numbers of isoforms (n = 17) versus genes with low numbers of 
isoforms (n = 23; upper and lower quartiles of isoforms across all cancer drivers). c. The 
proportion of clustered driver mutations for a given subclass per cancer gene compared between 
oncogenes (n = 17 genes with clustered substitutions and n = 13 with for clustered indels) versus 
tumour suppressor genes (n = 28 genes with clustered substitutions and n = 70 genes with 
clustered indels). d. The relative expression of driver genes containing clustered (copper) versus 
non-clustered events (green). All expression values were normalized using FPKM normalization 
and upper quartile normalization obtained from the official PCAWG release and were 
subsequently normalized using the average expression of the wild-type gene. A value of 1 
(dashed lined) reflects no difference in expression compared to the wild-type gene. e. The 
proportional activity of mutational signatures contributing to clustered driver events within each 
subclass. MBSs did not contribute to any reported driver events. For analyses in b–d, p-values 
were generated using a two-tailed Mann–Whitney U-test (*P < 0.05; p = 0.03 for STAT6; p = 
0.04 for CTNNB1; p = 0.02 for BTG1). For each boxplot, the middle line reflects the median, the 
lower and upper bounds of the box correspond to the first and third quartiles, and the lower and 
upper whiskers extend from the box by 1.5x the inter-quartile range (IQR). 

 

5.1.4. Kataegic events and focal amplifications 

In each sample, kataegic mutations were separated into distinct events on the basis of 

consistent VAFs across adjacent mutations and IMD distances greater than the sample-dependent 

IMD threshold (Methods). Our analysis revealed that 36.2% of all kataegic events occurred 
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within 10 kb of a structural breakpoint but not on detected focal amplifications (Figure 5.10a). In 

addition, 21.8% of all kataegic events occurred either on a detected focal amplification or within 

10 kb of a focal amplification’s structural breakpoints: 9.6% on circular ecDNA, 6.3% on linear 

rearrangements, 3.3% within heavily rearranged events and 2.6% associated with breakage–

fusion–bridge cycles (BFBs) (Figure 5.10a). Finally, 42.0% of kataegic events were neither 

within 10 kb of a structural breakpoint nor on a detected focal amplification. Modelling the 

distribution of the distances between kataegic events and the nearest structural variations 

revealed a multi-modal distribution with three components (Figure 5.10b): kataegis within 10 kb, 

around 1 Mb, or more than 1.5 Mb of a detected breakpoint. Of note, ecDNA-associated 

kataegis—termed kyklonas (Greek for cyclone)—had an average distance from the nearest 

breakpoint of around 750 kb, with only 0.35% of kyklonic events occurring both on ecDNA and 

within 10 kb of a breakpoint (Figure 5.10b). These results indicate that kyklonic events are not 

likely to have occurred because of structural rearrangements during the formation of ecDNA. In 

most cancer types, DBSs, MBSs, omikli and other cluster events were not found in the vicinity 

of structural variations (Figure 5.11a,b). 
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Figure 5.10: Kataegic events co-locate with most forms of structural variation. a. Proportion of 
all kataegic events per cancer type overlapping different amplifications or structural variations. 
b. Distance to the nearest breakpoint for all kataegic mutations (teal), kyklonas (gold) and non-
clustered mutations (red). Kataegic distances were modelled as a Gaussian mixture with three 
components (blue line). c. Left, volcano plot depicting samples that are statistically enriched for 
kyklonas (red; q-values from a false discovery rate (FDR)-corrected z-test; not significant (NS)). 
Middle left, proportion of samples with ecDNA co-occurring with kataegis. Middle right, 
mutational spectrum of all kyklonas. Right, proportion of kyklonic events attributed to SBS2 and 
SBS13. Cosine similarity was calculated between the kyklonic and the reconstructed spectra 
composed using SBS2 and SBS13 (P value from a Z-score test). d. Rainfall plots illustrating the 
IMD distribution for a given sample with the genomic locations of ecDNA breakpoints 
(maroon). e. Top, YTCA versus RTCA enrichments per sample with kyklonas, in which YTCA 
or RTCA enrichment is suggestive of higher APOBEC3A or APOBEC3B activity, respectively. 
Genic mutations were divided into transcribed (template strand) and coding mutations. The 
RTCA/YTCA fold enrichments were compared to those of non-clustered mutations (bottom). f. 
Relative expression of APOBEC3A and APOBEC3B in samples containing ecDNA (n = 157) 
compared to samples without ecDNA (n = 1,364) (left), and in samples with ecDNA that have 
kyklonas (n = 59) compared to samples without kyklonas (n = 98) (right). Expression values were 
normalized using fragments per kilobase of exon per million mapped fragment (FPKM) and 
upper quartile (UQ) normalization obtained from the PCAWG release. Q values in e, f. were 
calculated using a two-tailed Mann–Whitney U-test and FDR corrected using the Benjamini–
Hochberg procedure. For box plots, the middle line reflects the median, the lower and upper 
bounds of the box correspond to the first and third quartiles, and the lower and upper whiskers 
extend from the box by 1.5× the interquartile range. 
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Figure 5.11: Clustered events and structural variations. a. The proportion of all clustered events 
co-locating with structural variations across all cancer types (left) and across each cancer type 
(right). b. The distance to the nearest structural variation for each class of clustered mutations 
(teal), and non-clustered mutations (red). The distribution for each class of clustered events were 
modelled using a Gaussian mixture (blue line). DBSs and MBSs were modelled using a single 
distribution, whereas omikli, other, and indels were modelled using two components reflecting 
the minimal distribution of overlap with structural variations. c. The mutational signatures active 
in ecDNA clustered events. d. YTCA versus RTCA enrichments per sample within non-ecDNA 
kataegis (top) and non-SV associated kataegis (bottom), where YTCA and RTCA enrichment is 
suggestive of APOBEC3A or APOBEC3B activity, respectively. Genic mutations were divided 
into transcribed (template strand) and coding mutations. The RTCA/YTCA fold enrichments 
were compared to the fold enrichments of non-clustered mutations (p-values calculated using 
two-tailed Mann–Whitney U-tests and corrected for multiple hypothesis testing using the 
Benjamini–Hochberg FDR procedure). 

 

5.1.5. Recurrent kyklonic mutagenesis of ecDNA 

Although only 9.6% of kataegic events occur within ecDNA regions, more than 30% of 

ecDNAs had one or more associated kyklonic events (Figure 5.10c). The mutations within these 

ecDNA regions were dominated by the APOBEC3 patterns, which are characterized by strand-

coordinated C>G and C>T mutations in the TpCpW context and attributed to signatures SBS2 
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and SBS13 (P <1 × 10−5) (Figure 5.10c, d, Figure 5.11c). These APOBEC3-associated events 

contributed 97.8% of all kyklonic events, whereas the remaining mutations were attributed to 

clock-like signature SBS5 (1.2%) and other signatures (1.0%) (Figure 5.11c). Furthermore, 

kyklonic events exhibited an enrichment of C>T and C>G mutations at APOBEC3B-preferred 

RTCA compared to APOBEC3A-preferred YTCA contexts (underlining reflects the mutated 

nucleotide) [59], indicating that APOBEC3B is likely to have an important role in the 

mutagenesis of circular DNA bodies (Figure 5.10e). Similar levels of enrichment for RTCA 

contexts were also observed in both non-ecDNA kataegis and non-structural variant (SV)-

associated kataegis, suggesting that APOBEC3B generally gives rise to many of the strand-

coordinated kataegic events (Figure 5.11d). An increase in the expression of APOBEC3B—but 

not APOBEC3A—was observed in cancers with ecDNA compared to samples without ecDNA 

(3.1-fold; q-value < 1 × 10−5) (Figure 5.10f). Within cancers containing ecDNA, no differences 

were observed in the expression of APOBEC3A or APOBEC3B between samples with and 

without kyklonic events (Figure 5.10f). 

More recurrent APOBEC3 kataegis was observed across circular ecDNA regions 

compared to other forms of structural variation (Figure 5.12a). An average of 2.5 kyklonic events 

were observed within ecDNA regions (range: 0–64 kyklonic events; 0–505 mutations). Recurrent 

kyklonas was widespread across cancer types (Figure 5.13a,b). For example, glioblastomas and 

sarcomas exhibited an average of 5 and 86 kyklonic mutations, respectively. The average VAF 

of kyklonas was significantly lower than both non-ecDNA associated kataegis and all other 

clustered events (q-values < 1 × 10−5 Figure 5.12b). Notably, a subset of kyklonas exhibited 

VAFs above 0.80, which is likely to reflect early mutagenesis of genomic regions that have 

subsequently amplified as ecDNA. Moreover, kyklonic events with high VAFs occurred more 
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commonly on ecDNA that contained known cancer genes, suggesting a mechanism of positive 

selection (Figure 5.12b). Approximately 7.2% of kyklonas occurred early in the evolution of a 

given ecDNA population within a tumour (VAF > 0.80), whereas the majority of kyklonic events 

(around 82.5%; VAF < 0.5) have probably occurred after clonal amplification by recurrent 

APOBEC3 mutagenesis. 
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Figure 5.12: Recurrent APOBEC3 hypermutation of ecDNA. a. Number of clustered events 
overlapping a single amplicon or SV event; each dot represents an amplicon or SV (n = 84 
circular; n = 275 linear; n = 111 heavily rearranged; n = 62 BFB; and n = 11,139 SV). A 10-kb 
window was used to determine the co-occurrence of kataegis with SV breakpoints (**q < 0.01, 
****q < 0.0001). b. Left, normalized distributions of the VAFs for all clustered mutations 
excluding kataegis (orange), all non-ecDNA kataegis (teal), and kyklonas (red). Right, 
normalized VAF distributions for kyklonic ecDNA containing cancer genes and for kyklonic 
ecDNA without cancer genes. c. Frequency of recurrence for all kataegis (teal) and kyklonas 
(red) using a sliding genomic window of 10 Mb. d. Number of kyklonic events and kyklonic 
mutations per ecDNA region containing cancer genes (n = 137) or without cancer genes (n = 134; 
left and right, respectively). e. Total number of clustered and kataegic mutations found in 
samples with ecDNAs containing cancer genes (n = 67 samples) compared to samples with 
ecDNAs without cancer genes (n = 44; left and right, respectively). Q values in a, d, e. were 
calculated using a two-tailed Mann–Whitney U-test and FDR-corrected using the Benjamini–
Hochberg procedure. Box plot parameters as in Figure 5.10. 

 

Recurrent kyklonic events were increased within or near known cancer-associated genes 

including TP53, CDK4 and MDM2, amongst others (Figure 5.12c). These recurrent kyklonas 
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were observed across many cancers including glioblastomas, sarcomas, head and neck 

carcinomas and lung adenocarcinomas (Figure 5.13c,d). For example, in a sarcoma sample 

(SP121828), 10 distinct kyklonic events overlapped a single ecDNA region with recurrent 

APOBEC3 activity in proximity to MDM2, resulting in a missense L230F mutation (Figure 

5.13c). The same ecDNA region contained additional kyklonic events occurring within 

intergenic regions that have distinguishable VAF distributions, implicating recurrent mutagenesis 

(Figure 5.13c). Similarly, two distinct kyklonic events occurred on an ecDNA containing EGFR, 

resulting in a missense mutation D191N within a head and neck cancer (Figure 5.13d). Of note, 

ecDNA regions with known cancer-associated genes had significantly higher numbers of 

kyklonic events and mutational burdens of kyklonas compared to ecDNA regions without any 

known cancer-associated genes (q-values < 1 × 10−5) (Figure 5.12d). Furthermore, we observed 

a higher co-occurrence of kyklonas with known cancer-associated genes, which were mutated 

2.5 times more than ecDNA without cancer-associated genes (P = 1.2 × 10−5; Fisher’s exact 

test). Overall, 41% of kyklonic events were found within the footprints of known cancer driver 

genes (P < 1 × 10−5). These enrichments cannot be accounted for either by an increase in the 

overall mutations or by an increase in the overall clustered mutations in these samples (Figure 

5.12e). To understand the functional effect of kyklonas, we annotated the predicted consequence 

of each mutation. In total, 2,247 kyklonic mutations overlapped putative cancer-associated 

genes, of which 4.3% occur within coding regions (Figure 5.13e). Specifically, 63 resulted in 

missense mutations, 29 resulted in synonymous mutations, 4 introduced premature stop codons 

and 1 removed a stop codon. These downstream consequences of APOBEC3 mutagenesis 

suggest a contribution to the oncogenic evolution of specific ecDNA populations. 
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Figure 5.13: Recurrent mutagenesis and functional effects of kyklonas. a. The total number of 
recurrently mutated ecDNA displayed as a proportion of the total number of ecDNA with 
kyklonas for a given cancer type. The total number of ecDNA with kyklonas are displayed above 
each bar plot for each cancer type. All ecDNA with recurrent hypermutation were considered 
enriched for kyklonic events after correcting for multiple hypothesis testing (Z-score test; q-
values < 0.05). b. Proportion of samples containing ecDNA divided exclusively into those with 
co-occurring kataegis, no kataegis overlap, and no detected kataegis across the entire genome. 
The number of samples included in each cancer type are listed. For certain cancer types, as few 
as a single sample may represent the entire proportional breakdown (for example, Bone-
Osteosarc or Bone-Epith). c. A single sarcoma genome and d, a single head squamous cell 
carcinoma genome depicting the overlap of kataegis with ecDNA regions displayed as a rainfall 
(top left) with a single zoomed in ecDNA represented using a circos plot (top right). Bottom: 
Two regions of the ecDNA with overlapping kyklonic events. VAFs are shown per event 
(orange). e. Kyklonic substitutions resulting in recurrent coding mutations within known cancer 
genes. 
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5.1.6. Validation of kyklonic events in ecDNA 

Kyklonic events were further investigated across 3 additional independent cohorts, 

including 61 sarcomas [136], 280 lung cancers [175] and 186 oesophageal squamous cell 

carcinomas [176]. Comparable rates of clustered mutagenesis were found for both substitutions 

and indels to the rates reported in PCAWG, with a 2.4- and 5.0-fold enrichment of clustered 

substitutions and indels within driver events, respectively (Figure 5.14a). Across the three 

cohorts, 31% of samples with ecDNA exhibited kyklonas within the sarcomas, 14% within the 

oesophageal cancers and 28% within the lung cancers, supporting the rates observed in PCAWG 

(Figure 5.10c, Figure 5.13b, Figure 5.14c). Similar to the rate observed in PCAWG (36.2%), 

approximately 30.1% of all kataegis occurred within 10 kb of the nearest breakpoint in the 

validation cohort (Figure 5.15a). In addition, only 0.34% of kyklonic events in the validation 

dataset occurred closer to SVs than expected by chance, which closely resembles the 

observations in the PCAWG data (0.35%) (Figure 5.15b). Kyklonic mutations were 

predominantly attributed to APOBEC3 signatures SBS2 and SBS13 (P < 1 × 10−5) (Figure 

5.14b, Methods) with an enrichment of mutations at the RTCA context supporting the role of 

APOBEC3B (Figure 5.14d). A widespread recurrence of kyklonic events was observed across 

the sarcomas, oesophageal and lung cancers, with 45%, 28% and 46% of samples with ecDNA 

containing multiple, distinct kyklonic events (Figure 5.14e). An example from each cohort was 

selected to illustrate multiple kyklonic events occurring within single ecDNAs, validating the 

recurrent APOBEC3 hypermutation of ecDNA (Figure 5.16). 
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Figure 5.14: Validation of APOBEC3 hypermutation of ecDNA in three independent cohorts. a. 
Distribution of clustered substitutions (left) and clustered indels (right) across three validation 
cohorts. Clustered substitutions were subclassified into DBSs, MBSs, omikli, kataegis, and other 
clustered mutations. Top: Each black dot represents a single cancer genome. Red bars reflect the 
median clustered TMB and the percentage of clustered mutations contributing to the overall 
TMB of a given sample for each cancer type. Middle: The proportion of each subclass of 
clustered events for a given cancer type with the total number of samples having at least a single 
clustered event over the total number of samples within a given cancer cohort. Bottom: 
Percentage of clustered mutations compared to the percentage of clustered driver events for 
substitutions (left) and indels (right). P-values were calculated using a Fisher’s exact test and 
corrected for multiple hypothesis testing using Benjamini–Hochberg FDR procedure. b. Left: 
The mutational spectrum of all kyklonas across the validation cohorts. Right: The proportion of 
kyklonic events attributed to SBS2 and SBS13 (p-value determined using a Z-score test; 
Methods). c. The proportion of samples with ecDNA that co-occur with kataegis, do not co-
occur with kataegis, or do not have any detected kataegic activity across each cohort. d. YTCA 
versus RTCA enrichments per sample with kyklonas, where YTCA and RTCA enrichment is 
suggestive of higher APOBEC3A or APOBEC3B activity, respectively. The RTCA/YTCA fold 
enrichments were compared to the fold enrichments of non-clustered mutations (p-values 
calculated using a two-tailed Mann–Whitney U-test). e. The proportion of ecDNA with kyklonas 
that contain multiple kyklonic events. The total number of ecDNA with kyklonas are displayed 
above each bar plot for each cancer type. 
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Figure 5.15: Kyklonas occur distally from structural breakpoints across three independent 
cohorts. a. The distance to the nearest breakpoint for all kataegic mutations (teal), kyklonas 
(gold), and non-clustered mutations (red) across the three validation cohorts. b. Distances to the 
nearest SV breakpoints were normalized by calculating the expected distance a mutation would 
fall from a breakpoint given the number of breakpoints detected per chromosome and the overall 
length of the chromosome across the validation cohorts (left) and PCAWG (right). A value of 1 
(dashed line) reflects a distance that one would expect based on the random placement of a 
mutation across the chromosome, whereas a value less than 1 reflects a mutation occurring closer 
than what is expected by random chance. The distributions of kataegic mutations were modelled 
using Gaussian mixture models (blue lines) with an automatic selection criterion for the number 
of components using the minimum Bayesian information criteria (BIC). 

  



115 
 

 

Figure 5.16: Examples of kyklonas in three independent cohorts. a. A single undifferentiated 
sarcoma genome depicting the overlap of kataegis with ecDNA regions displayed as a rainfall 
(left) with a single zoomed in ecDNA represented using a circos plot (middle). The outer track of 
the circos plot represents the reference genome of the ecDNA with proximal known cancer 
driver genes. The middle track reflects a circular rainfall plot where each dot represents the IMD 
around a single mutation coloured based on the substitution change. The innermost track shows 
the average VAF for each kyklonic event. Right: Two smaller regions of the selected ecDNA 
including a single kyklonic event within ZNF536 region resulting in a plethora of missense and 
stop-gained mutations, and a single kyklonic event within a promoter flanking with the average 
VAFs per event (orange). b. A single lung adenocarcinoma genome depicting the overlap of 
kataegis with ecDNA regions (left) with a single zoomed in ecDNA containing TBC1D15 and 
two distinct kyklonic events represented using a circos plot (middle). Right: Two kyklonic events 
overlapping an upstream region and TBC1D15. c. A single oesophageal squamous cell 
carcinoma genome depicting the overlap of kataegis with ecDNA regions (left) with a single 
zoomed in ecDNA containing PRKAA2 and DAB1 and three distinct kyklonic events (middle). 
Right: Two kyklonic events overlapping DAB1. 

 

5.2. Discussion 

Clustered mutagenesis in cancer can occur through different mutational processes, with 

AID and APOBEC3 deaminases having the most prominent role. In addition to enzymatic 



116 
 

deamination, other endogenous and exogenous sources imprint many of the observed clustered 

indels and substitutions. A multitude of mutational processes can give rise to omikli events, 

including tobacco carcinogens and exposure to ultraviolet light. Clustered substitutions and 

indels were highly enriched in driver events and associated with differential gene expression, 

implicating them in cancer development and cancer evolution. Some clustered mutational 

signatures are associated with known cancer risk factors or the activity or failure of DNA repair 

processes. Notably, clustered mutations in TP53, EGFR and BRAF associated with changes in 

overall survival and can be detected in most types of sequencing data, including clinically 

actionable targeted panels such as MSK-IMPACT. 

A large proportion of kataegic events occur within 10 kb of detected SV breakpoints with 

a mutational pattern, suggesting the activity of APOBEC3. Multiple distinct kataegic events, 

independent of detected breakpoints, were observed on circular ecDNA; such events—termed 

kyklonas—suggest recurrent APOBEC3 mutagenesis. The circular topology of ecDNAs [177] 

and their rapid replication patterns are reminiscent of the structure and behaviour of the circular 

genomes of several double-stranded-DNA based, pathogens including herpesviruses, 

papillomaviruses and polyomaviruses [163-166]. Previous pan-virome studies have shown that 

these double-stranded DNA viral genomes often manifest mutations from APOBEC3 enzymes 

[178-180]. As such, recurrent APOBEC3 mutagenesis on ecDNA is likely to be representative of 

an antiviral response in which the ecDNA viral-like structure is treated as an infectious agent and 

attacked by APOBEC3 enzymes. ecDNAs contain a plethora of cancer-associated genes and are 

responsible for many gene amplification events that can accelerate tumour evolution. Repeated 

mutagenic attacks of these ecDNAs reveal functional effects within known oncogenes and 

implicate additional modes of oncogenesis that may ultimately contribute to subclonal tumour 
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evolution, subsequent evasion of therapy and clinical outcome. Further investigations with large-

scale clinically annotated whole-genome-sequenced cancers are required to fully understand the 

clinical implications of clustered mutations and kyklonas. 

 

5.3. Methods 

5.3.1. Data sources 

Somatic variant calls of single-base substitutions, small indels and structural variations 

were downloaded for the 2,583 white-listed whole-genome-sequenced samples from PCAWG 

along with the corresponding list of consensus driver events [60]. Epidemiological and clinical 

features for all available samples were downloaded from the official PCAWG release 

(https://dcc.icgc.org/releases/PCAWG). The collection of whole-exome-sequenced samples from 

TCGA along with all available clinical features were downloaded from the Genomic Data 

Commons (GDC; https://gdc.cancer.gov/). The MSK-IMPACT Clinical Sequencing Cohort 

[174] composed of 10,000 clinical cases was downloaded from cBioPortal 

(https://www.cbioportal.org/study/summary?id=msk_impact_2017). The subclassification of 

focal amplifications comprised circular ecDNA, linear amplifications, BFBs and heavily 

rearranged events, and their corresponding genomic locations were obtained for a subset of 

samples (n = 1,291) as reported [166]. 

Experimental models used to validate clustered events were derived from previous 

studies using primary Hupki mouse embryonic fibroblasts (MEFs) exposed to ultraviolet light 

[172], human induced pluripotent stem cells (iPS cells) exposed to benzo[a]pyrene [171], and a 

clonally expanded BT-474 human breast cancer cell line with episodically active APOBEC3 

[170]. 
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Independent cohorts used to validate kyklonic events were collected from multiple 

sources. The 61 undifferentiated sarcomas [136] and 187 high-confidence oesophageal squamous 

cell carcinomas [176] were downloaded from the European Genome-phenome Archive 

(EGAD00001004162 and EGAD00001006868, respectively). The 280 lung adenocarcinomas 

[175] were downloaded from dbGaP under the accession number (phs001697.v1.p1). Clustered 

mutations in validation samples were analysed using the same approach as the one used in the 

original cohort. 

 

5.3.2. Detection of clustered events 

SigProfilerSimulator (v.1.0.2) was used to derive an IMD cut-off [158] that is unlikely to 

occur by chance based on the TMB and the mutational patterns for a given sample. Specifically, 

each tumour sample was simulated while maintaining the sample’s mutational burden on each 

chromosome, the ±2 bp sequence context for each mutation and the transcriptional strand bias 

ratios across all mutations. All mutations in each sample were simulated 100 times and the IMD 

cut-off was calculated such that 90% of the mutations below this cut-off could not appear by 

chance (q-value < 0.01). For example, in a sample with an IMD threshold of 500bp, one may 

observe 1,000 mutations within this threshold with no more than 100 mutations expected based 

on the simulated data (q-value < 0.01). P values were calculated using z-tests by comparing the 

number of real mutations and the distribution of simulated mutations that occur below the same 

IMD threshold. A maximum cut-off of 10 kb was used for all IMD thresholds. By generating a 

background distribution that reflects the random distribution of events used to reduce the false 

positive rate, this model also considers regional heterogeneities of mutation rates, partially 

attributed to replication timing and expression, and variances in clonality by correcting for 
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mutation-rich regions and mutation-poor regions within 1-Mb windows. The 1-Mb window size 

has been used and established as an appropriate scale when considering the variability in 

mutation rates associated with chromatin structure, replication timing and genome architecture 

[61, 160, 162]. The 1-Mb window ensures that subsequent mutations are likely to have occurred 

as single events using a maximum cut-off of 0.10 for differences in the VAFs. The regional IMD 

cut-off was determined using a sliding window approach that calculated the fold enrichment 

between the real and simulated mutation densities within 1-Mb windows across the genome. The 

IMD cut-offs were further increased, for regions that had higher than ninefold enrichments of 

clustered mutations and where more than 90% of the clustered mutations were found within the 

original data, to capture additional clustered events while maintaining the original criteria (less 

than 10% of the mutations below this cut-off appear by chance; q-value < 0.01). Last, as VAF of 

mutations may confound the definition of clustered events in ecDNA, we calculated the 

distribution of inter-event distances within recurrently mutated ecDNA while disregarding the 

VAF of individual mutations. This resulted in the exact same separation of kataegic events using 

only the inter-event distances as a criterion for the grouping of mutations into a single event. 

Subsequently, all clustered mutations with consistent VAFs were classified into one of 

four categories (Extended Data Fig. 1a). Two adjacent mutations with an IMD of 1 were 

classified as DBSs. Three or more adjacent mutations each with an IMD of 1 were classified as 

MBSs. Two or three mutations with IMDs less than the sample-dependent threshold and with at 

least a single IMD greater than 1 were classified as omikli. Four or more mutations with IMDs 

less than the sample-dependent threshold and with at least a single IMD greater than 1 were 

classified as kataegis. A cut-off of four mutations for kataegis was chosen by fitting a Poisson 

mixture model to the number of mutations involved in a single event across all extended 
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clustered events excluding DBSs and MBSs (Figure 5.2). This model comprised two 

distributions with C1 = 2.08 and C2 = 4.37 representing omikli and kataegis, respectively. A cut-

off of four mutations was used for kataegis on the basis of a contribution of greater than 95% 

from the kataegis-associated distribution with events of four or more mutations. Note that there 

is certain ambiguity for events with two or three mutations. Although the majority of these 

events are omikli, some of these events are likely to be short kataegic events (Figure 5.2). All 

remaining clustered mutations with inconsistent VAFs were classified as other. Clustered indels 

were not classified into different classes. We also performed additional quality-checks to ensure 

that the majority of clustered indels were mapped to high confidence regions of the genome 

(Figure 5.17). Specifically, all clustered indels were aligned against a consensus list of 

blacklisted genomic regions developed by ENCODE [181] revealing that only 0.5% of all 

clustered indels overlapped regions with low mappability scores. 

 

Figure 5.17: The distribution of low confidence clustered indels. The number of clustered indels 
falling within regions of the genome with low mapping scores consists of approximately 1% of 
all clustered indels. Within these 1% of mutations with low mapping scores, only 30% of events 
have an inter-mutational distance less than 10 (0.3% of all clustered indels), while indels of lbp 
falling within low mapping regions comprise only 0.5% of all clustered indels. 
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5.3.3. Clustered mutational signatures analysis 

The clustered mutational catalogues of the examined samples were summarized in 

SBS288 and ID83 matrices using SigProfilerMatrixGenerator [143] (v.1.2.0) for each tissue type 

and each category of clustered events. For example, six matrices were constructed for clustered 

mutations found in Breast-AdenoCA: one matrix for DBSs, one matrix for MBSs, one matrix for 

omikli, one matrix for kataegis, one matrix for other clustered substitutions and one matrix for 

clustered indels. The SBS288 classification considers the 5′ and 3′ bases immediately flanking 

each single-base substitution (referred to using the pyrimidine base in the Watson–Crick base 

pair) resulting in 96 individual mutation channels. In addition, this classification considers the 

strand orientation for mutations that occur within genic regions resulting in three possible 

categories: (1) transcribed; pyrimidine base occurs on the template strand; (2) untranscribed; 

pyrimidine base occurs on the coding strand; or (3) non-transcribed; pyrimidine base occurs in an 

intergenic region. Mutations in genic regions that are bidirectionally transcribed were evenly 

split amongst the coding and template strand channels. Combined, this results in a classification 

consisting of 288 mutation channels, which were used as input for de novo signature extraction 

of clustered substitutions. The ID83 mutational classification has previously been described 

[143]. 

Mutational signatures were extracted from the generated matrices using 

SigProfilerExtractor (v.1.1.0), a Python-based tool that uses non-negative matrix factorization to 

decipher both the number of operative processes within a given cohort and the relative activities 

of each process within each sample [159]. The algorithm was initialized using random 

initialization and by applying multiplicative updates using the Kullback–Leibler divergence with 

500 replicates. Each de novo extracted mutational signature was subsequently decomposed into 



122 
 

the COSMIC (v.3) set of signatures (https://cancer.sanger.ac.uk/signatures/) requiring a 

minimum cosine similarity of 0.80 for all reconstructed signatures. All de novo extractions and 

subsequent decomposition were visually inspected and, as previously done1, manual corrections 

were performed for 2.2% of extractions (4 out of 180 extractions) in which the total number of 

operative signatures was adjusted ±1. Consistent with prior visualizations [60], we have included 

all cancer types within the PCAWG cohort, which may comprise as few as one sample for 

certain cancer types. Similarly, consistent with prior visualizations1, decomposed signature 

activity plots required that each cancer type have more than 2 samples and used mutation 

thresholds for each clustered category; 25 mutations per sample were required for DBSs, omikli 

events and other clustered mutations; 15 mutations per sample were required for MBSs and 

kataegic events; and 10 mutations were required per sample for clustered indels. 

 

5.3.4. Experimental validation 

A subset of clustered mutational signatures was validated using previously sequenced in 

vitro cell line models. As done for PCAWG samples, we generated a background model using 

SigProfilerSimulator [158] to calculate the clustered IMD cut-off for each sample and partitioned 

each substitution into the appropriate category of clustered events. Mutational spectra were 

generated for each subclass within each sample using SigProfilerMatrixGenerator [143] and 

were compared against the de novo signatures extracted from human cancer. The cosine 

similarity between the in vitro mutational spectra and de novo observed clustered signatures was 

calculated to assess the degree of similarity. The average cosine similarity between two random 

non-negative vectors is 0.75, and the cosine similarities above 0.81 reflect P values below 0.01 

(ref. [158]). 
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5.3.5. Associations with cancer risk factors 

Homologous recombination (HR) deficiency was defined for breast cancers using the 

status of BRCA1, BRCA2, RAD51C and PALB2 [47]. Samples with a germline, somatic or 

epigenetic alteration in one of these genes were considered HR-deficient, whereas samples 

without any known alterations in these genes were considered HR-proficient. The number of 

clustered indels was compared between HR-deficient and HR-proficient samples. The smoking 

status of lung cancers was determined using the clinical annotation from TCGA 

(https://portal.gdc.cancer.gov/repository). The number of clustered indels associated with 

tobacco smoking (ID6) was compared between samples annotated as lifelong non-smokers and 

samples annotated as current and reformed smokers. The status of alcohol consumption was 

determined using the annotations from the official PCAWG release 

(https://dcc.icgc.org/releases/PCAWG). The total number of clustered indels was compared in 

samples annotated with no alcohol consumption and those annotated as daily and weekly 

drinkers. 

 

5.3.6. Expression of driver genes 

All RNA-seq expression data were downloaded as a part of the official PCAWG release 

(https://dcc.icgc.org/releases/PCAWG). The relative expression data found within this release 

were normalized using FPKM normalization and upper quartile normalization. The relative 

expression of a gene was compared between those containing clustered or non-clustered events. 

Each distribution was then normalized to the average expression of the wild-type gene. Only 
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genes with at least 10 total events (that is, clustered and non-clustered mutations) including at 

least 5 clustered events were considered for examination. 

 

5.3.7. SVs and clustered events 

The distance to the nearest structural variation breakpoint was calculated for each 

mutation in each subclass using the minimum distance to the nearest adjacent upstream or 

downstream breakpoint. Each distribution was modelled using a Gaussian mixture with an 

automatic selection criterion for the number of components ranging between one and five 

components using the minimum Bayesian information criteria (BIC) across all iterations. 

Modelling of kataegic events resulted in an optimal fit of three components, which was used to 

separate kataegic substitutions into SV-associated and non-SV associated mutations. DBSs and 

MBSs were both modelled using a single Gaussian distribution relating to non-SV associated 

mutations, whereas omikli and other clustered mutations were modelled using a mixture of two 

components, probably reflecting leakage of smaller kataegic events contributing to a weak SV-

associated distribution. To account for the frequency of breakpoints across each sample, we 

normalized the minimum distance of each mutation to the nearest SV by calculating the expected 

distance between a mutation and SV for each sample using the total number of breakpoints and 

the overall length of a given chromosome (Extended Data Fig. 9a, b). After normalizing the 

kataegic events, we observed an optimal solution of two components with one SV-associated 

distribution (on average each mutation occurs within one-thousandth of the expected distance to 

nearest structural variation) and one non-SV associated distribution (on average occurring within 

the expected distance to the nearest structural variation). The normalized kyklonic events are 
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consistent with the non-SV associated distribution reflecting kataegic events that occur on 

ecDNA typically of lengths 1–10 Mb (ref. [165]). 

 

5.3.8. APOBEC3A and APOBEC3B enrichment analysis 

The enrichment score of RTCA and YTCA penta-nucleotides quantifies the frequency for 

which each TpCpA>TpKpA mutation occurs at either an RTCA or a YTCA context. To account 

for motif availability, this score is calculated using the ±20 bp sequence context around each 

mutation and normalized by the number of cytosine bases and C>N mutations within the set of 

41-mers surrounding each mutation of interest [59]. 

 

5.3.9. APOBEC3 gene expression and kyklonas 

All RNA-seq expression data were downloaded as a part of the official PCAWG release 

(https://dcc.icgc.org/releases/PCAWG). The relative expression data found within this release 

were normalized using FPKM normalization and upper quartile normalization. The 

APOBEC3A/B normalized expression was compared between samples containing ecDNA 

versus samples with no detected ecDNA and between samples with kyklonas and without 

kyklonas. All P values were generated using a Mann–Whitney U-test and were corrected for 

multiple hypothesis testing using the Benjamini–Hochberg FDR procedure. 

 

5.3.10. Circular ecDNA and kataegis 

The collection of ecDNA ranges was intersected with the catalogue of clustered 

mutations, which was used to determine the overlapped mutational burden for each subclass of 

clustered event and the mutational spectra of overlapping kataegic events. Enrichments of events 
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were calculated using statistical background models generated using SigProfilerSimulator [158] 

that shuffled the dominant mutation in each clustered event across the genome (that is, the most 

frequent mutation type in a single event). The decomposed kyklonic mutational spectra were 

generated using the decomposition module within SigProfilerExtractor [159]. Only mutational 

signatures that increased the overall cosine similarity by at least 0.01 were used. In both the 

original and validation cohorts, SBS2 and SBS13 were sufficient to explain the kyklonic 

mutational spectra with no other known mutational signature increasing the cosine similarity by 

more than 0.01. Comparisons between ecDNA with and without cancer genes were performed 

using the set of cancer genes from the Cancer Gene Census (CGC) [182]. All statistical 

comparisons and P values were calculated using a two-tailed Mann–Whitney U-test unless 

otherwise specified. For each set of tests, P values were corrected for multiple hypothesis testing 

using the Benjamini–Hochberg FDR procedure. The predicted effect of each overlapping variant 

was determined using ENSEMBL’s Variant Effect Predictor tool by reporting only the most 

severe consequence [147]. 

 

5.3.11. Overall survival and clustered mutations 

All survival analyses, including the generation of Kaplan–Meier curves, Cox regressions 

and log-rank tests, were performed using the Lifelines Python package (v.0.24.4). Across the 30 

distinct whole-genome-sequenced cancer types included in the PCAWG study, only 6 cancer 

types contained enough samples to examine the associations between survival and overall 

number of clustered mutations. The sufficient sample size criteria required more than 50 samples 

with survival end-points with at least 30 of the samples with an observed clustered event. Each 

cancer type was analysed separately by comparing the survival of samples with a high clustered 
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mutational burden (top 80th percentile across a given cancer type) to the survival of samples 

with a low clustered mutational burden (bottom 20th percentile across a given cancer type). 

Analysis of whole-exome-sequenced samples from TCGA was altered to reflect the 

limited resolution for identifying clustered mutations within the exome. Specifically, 

SigProfilerSimulator (v.1.0.2) [158] was used to derive an IMD cut-off for each sample based on 

the TMB within the exome and the mutational patterns for a given sample. Mutations were 

randomly shuffled while maintaining the mutational burden within the exome of each 

chromosome, the ±2 bp sequence context for each mutation and the transcriptional strand bias 

ratios across all mutations. Each sample was simulated 100 times and an IMD cut-off was 

calculated using the same methods as outlined for the detection of clustered events within 

PCAWG. Owing to the limited number of detected events, 22 cancer types had sufficient data to 

perform survival analysis. Each cancer type was analysed separately by comparing samples with 

at least a single clustered event to samples with no detected clustered events within the exome. 

For both PCAWG and TCGA analyses, survival distributions within a given cancer type 

were compared using a log-rank test. Cox regressions were performed to determine hazards 

ratios and to correct for age and total mutational burden. All P values were also corrected for 

multiple hypothesis testing using the Benjamini–Hochberg FDR procedure. 

To investigate differential survival associated with the detection of clustered events 

within cancer driver genes, Kaplan–Meier survival curves were compared between individuals 

with clustered versus non-clustered mutations within a given cancer driver gene. The 

distributions were compared using a log-rank test. Cox regressions were performed to determine 

the hazards ratios and to correct for age, total mutational burden and cancer type across TCGA. 

Cox regressions performed for the MSK-IMPACT cohort were corrected for total mutational 
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burden and cancer type. No corrections were performed for age as these metadata were not 

available for the MSK-IMPACT cohort. All P values were also corrected for multiple hypothesis 

testing using the Benjamini–Hochberg FDR procedure. 

 

5.3.12. Validation of kyklonas in three cohorts 

All three validation cohorts were analysed analogous to the PCAWG cohorts. 

Specifically, clustered mutations were classified by calculating a sample-dependent IMD 

threshold for clustered versus non-clustered mutations using a background model generated by 

SigProfilerSimulator [158]. All clustered mutations were subclassified into DBS, MBS, omikli, 

kataegis or other mutations. AmpliconArchitect (v.1.2) was used to determine regions of focal 

amplifications [183], which were used for subsequent validation of kyklonic events by 

overlapping kataegic events with all detected focal amplifications. The decomposed kyklonic 

mutational spectra were generated using the decomposition module within SigProfilerExtractor 

[159]. Only mutational signatures that increased the overall cosine similarity by at least 0.01 

were used. In both the original and validation cohorts, SBS2 and SBS13 were sufficient to 

explain the kyklonic mutational spectra with no other known mutational signature increasing the 

cosine similarity by more than 0.01. 

 

5.3.13. Cancer-type abbreviations 

Biliary-AdenoCA, biliary adenocarcinoma; Bladder-TCC, bladder transitional cell 

carcinoma; Bone-Epith, bone epithelioid; Bone-Leiomyo, bone leiomyosarcoma; Bone-

Osteosarc, bone osteosarcoma; Breast-AdenoCA, breast adenocarcinoma; Breast-LobularCA, 

breast lobular carcinoma; CNS-GBM, glioblastoma (central nervous system); CNS-Medullo, 
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medulloblastoma (central nervous system); CNS-Oligo, oligodendroglioma (central nervous 

system); CNS-PiloAstro, pilocytic astrocytoma (central nervous system); Cervix-AdenoCA, 

cervix adenocarcinoma; Cervix-SCC, cervix squamous cell carcinoma; ColoRect-AdenoCA, 

colorectal adenocarcinoma; Head-SCC, head and neck squamous cell carcinoma; Kidney-

ChRCC, chromophobe renal cell carcinoma; Kidney-RCC, renal cell carcinoma; Liver-HCC, 

hepatocellular carcinoma; Lung-AdenoCA, lung adenocarcinoma; Lung-SCC, lung squamous 

cell carcinoma; Lymph-BNHL, B-cell non-Hodgkin lymphoma; Lymph-CLL, chronic 

lymphocytic leukaemia; Lymph-NOS, metastatic lymphoma; Myeloid-AML, acute myeloid 

leukaemia; Myeloid-MPN, myeloproliferative neoplasm; Oeso-AdenoCA, oesophageal 

adenocarcinoma; Ovary-AdenoCA, ovary adenocarcinoma; Panc-AdenoCA, pancreatic 

adenocarcinoma; Panc-Endocrine, pancreatic neuroendocrine carcinoma; Prost-AdenoCA, 

prostate adenocarcinoma; Skin-Melanoma, malignant melanoma; Stomach-AdenoCA, stomach 

adenocarcinoma; Thy-AdenoCA, thyroid adenocarcinoma; Uterus-AdenoCA, uterine 

adenocarcinoma. 

 

5.4. Data availability 

No data were generated specifically for this study. All data were and can be downloaded 

from the appropriate links, repositories and references. Specifically, for the discovery cohort, all 

data and metadata were obtained from the official PCAWG release 

(https://dcc.icgc.org/releases/PCAWG). All data and metadata for TCGA samples were obtained 

from the GDC (https://gdc.cancer.gov/). Genomics data for clonally expanded cell lines were 

downloaded from the European Genome-phenome Archive (EGAD00001004201, 

EGAD00001004203 and EGAD00001004583). For the three validation cohorts, datasets were 
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downloaded as submitted by the original publications and genomics data were downloaded from 

their respective repositories: EGAD00001004162 for 61 undifferentiated sarcomas [136] 

(European Genome-phenome Archive); EGAD00001006868 for 187 high-confidence 

oesophageal squamous cell carcinomas [176] (European Genome-phenome Archive); and 

phs001697.v1.p1 for 280 lung adenocarcinomas [175] (dbGaP). Somatic mutations and metadata 

for the MSK-IMPACT Clinical Sequencing Cohort composed of 10,000 clinical cases [173] 

were downloaded from cBioPortal 

(https://www.cbioportal.org/study/summary?id=msk_impact_2017). 

 

5.5. Code availability 

The SigProfiler compendium of tools are developed as Python packages and are freely 

available for installation through PyPI or directly through GitHub 

(https://github.com/AlexandrovLab/). For all tools, each package is fully functional, free and 

open sourced distributed under the permissive 2-Clause BSD License and is accompanied by 

extensive documentation: (1) SigProfilerMatrixGenerator [143] (v.1.2.0; 

https://github.com/AlexandrovLab/SigProfilerMatrixGenerator); (2) SigProfilerSimulator [158] 

(v.1.0.2; https://github.com/AlexandrovLab/SigProfilerSimulator); and (3) SigProfilerExtractor 

[159] (v.1.1.0; https://github.com/AlexandrovLab/SigProfilerExtractor). Each SigProfiler tool 

also has an R wrapper available for installation through the GitHub repositories. 

AmpliconArchitect [166] (v.1.2) is also freely available and can downloaded from 

https://github.com/virajbdeshpande/AmpliconArchitect. The core computational pipelines used 

by the PCAWG Consortium for alignment, quality control and variant calling are available to the 
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public at https://dockstore.org/search?search=pcawg under the GNU General Public License 

v.3.0, which allows for reuse and distribution. 
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Chapter 6.  

Deep learning predicts response to platinum 

chemotherapy in breast and ovarian cancers 
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6.1. Main  

The advent of next-generation sequencing technologies resulted in an explosion of cancer 

genomics data, which provided unprecedented opportunities to interrogate the underlying 

molecular landscape of cancer [5, 24, 31, 60, 140, 167, 175, 176, 184-191]. The expansive 

exploration of these large consortiums such as the International Cancer Genome Consortium 

(ICGC) [60] and The Cancer Genome Atlas (TCGA) [167] led to key discoveries that provided 

insight into preventative strategies and potential therapeutic interventions when approaching 

cancer diagnosis and treatment. One such example includes the discovery of hereditary 

predispositions to breast and ovarian cancer attributed to germline mutations in the family of 

BRCA genes [118, 119, 192-194], which are involved in the repair of double-stranded DNA 

breaks through homologous recombination repair (HR) [195]. Complete inactivation of these 

genes results in deficiency of HR repair (HRD) ultimately leading to increased genomic 

instability [196]. Further investigations using large-scale cohorts of cancer genomes revealed 

unique mutational signatures of HRD which can be found in both germline and sporadic breast 

cancers in addition to other cancer types including ovarian, pancreatic, and prostate cancer, 

amongst others [4, 5, 24, 47, 102, 103]. From a clinical perspective, patients harboring these 

genomic scars of HRD are sensitive to certain therapeutics such as platinum chemotherapies and 

PARP inhibitors which increase the demand on double-stranded DNA break repair leading to 

selective tumor cell death [120, 122, 123].  

As a result of these seminal studies, a plethora of methods have been developed to detect 

the “BRCAness” HRD phenotype with the goal of treating a wider range of individuals beyond 

only those harboring germline predispositions [102, 103, 197-199]. Several of these approaches 

show potential for direct translation into the clinic; however, they rely heavily on whole-genome 
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or whole-exome sequencing for accurate predictions, which remains largely unavailable in most 

clinical settings across the world [200, 201]. To circumvent these limitations, additional methods 

are being developed to predict HRD using targeted sequencing panels but are still reliant on 

genomic sequencing and are rudimentary in deployment to the clinic [199]. Further, this 

dependence on sequencing is thought to be exacerbating known racial disparities in health care 

[202, 203].  

In fact, recent reports reveal that the incidence of breast cancer is similar between White 

and Black populations in the United States; however, Black women are more likely to die of 

breast cancer than any other ethnic group [204, 205]. This racial disparity is believed to be linked 

to several risk factors including genetic and molecular differences in the cancer, average age of 

screening and diagnosis, socioeconomic status, and differential accessibility of adequate health 

care associated with geographical and financial barriers [206, 207]. From a research perspective, 

there has been systemic omission of under-served populations during the accumulation of large-

scale genomics and medical data [202, 208, 209], which has compounded the racial biases of 

downstream algorithm development [210, 211]. Modern consortiums are seeking to alleviate 

some of these disparities; however, these studies are centered around sequencing and molecular 

diagnostics, which remain as a bottleneck both geographically and financially for many 

populations [212-216]. 

While the availability of sequencing-based diagnostics and personalized treatment 

regimens are limited in accessibility, tissue biopsies are routinely sampled for cancer diagnostics. 

In combination with recent advances in computer vision, artificial intelligence-based deep 

learning models allow for both prognostic and diagnostic predictions using only 

histopathological tissue slides [217]. Here we demonstrate the ability to detect HRD directly 
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from digitalized hematoxylin and eosin (H&E) tissue slides with direct implications of 

addressing these socioeconomic disparities in the diagnoses of breast and ovarian cancers.  

To train a downstream model capable of predicting HR status directly from digitalized 

tissues slides, we implemented a weakly supervised convolutional neural network architecture 

based upon the fundamental assumptions of multiple-instance learning (MIL; Figure 6.1) [218]. 

Specifically, all partitioned regions of a slide, or tiles, within a whole-slide image (WSI) are 

assigned a weak label based upon the slide-level classification for each sample. It is assumed that 

all tiles within a negatively labeled slide are HR-proficient (HRP), whereas at least a single tile 

must exhibit an HRD phenotype within a positively labeled slide. These assumptions allow the 

model to be trained using only a single classification label for an entire image or patient without 

the need for detailed manual annotations from a pathologist, which currently do not exist for 

characterizing HRD. HRD scores were calculated using the combined aggregated score of the 

telomeric allelic imbalance score (TAI), loss of heterozygosity score (LOH), and large-scale 

transitions score (LST) for each patient (Methods) [219]. Traditionally, an HRD score greater 

than 42 was used to determine eligibility for treatment with PARP in triple negative breast 

cancers to ensure a sensitivity of greater than 95% [219]. For our ground truth, we incorporate 

soft labelling during training to prevent the model from becoming overconfident with a single 

image by centering the HRD score cutoff at the median score across all breast cancer samples 

(HRD=30). All samples with an HRD score above 50 are considered deficient, while all samples 

with an HRD score below 20 are considered proficient. The remaining samples with an HRD 

score between 20 and 50 are modelled based upon a probability distribution centered at 30 where 

there is an equal probability of being deficient or proficient (Methods).  
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Figure 6.1: Multi-resolution convolutional neural network architecture to detect homologous 
recombination deficiency from histopathological tissue slides. For each whole-slide image 
(WSI), a single prediction score is estimated based on the detection of HRD. Specifically, each 
WSI undergoes preprocessing and quality control (1). This module consists of tissue 
segmentation, filtering for non-focused tissue, and final tiling of regions that contain tissue at a 
set resolution (i.e. 5x magnification). All tiles for a single image are processed through the first 
multiple instance learning (MIL) ResNet18 convolutional neural network (2). This architecture 
uses the average of the top 25 predicted tile scores as the WSI predicted score. Dropout is 
incorporated into the fully connected layers in the feature extraction module to reduce overfitting 
during training. The same dropout technique is also incorporated during inference to simulate 
Monte Carlo dropout used to calculate confidence intervals in the final WSI prediction. The tile 
feature vectors from the penultimate layer of the feature extraction are used to automatically 
select regions of interest (ROI) from the original WSI for additional assessment (3). The feature 
vectors are reduced in dimensions using principal component analysis and a custom k-means 
clustering module determines the optimal number of clusters per sample. The selected tiles are 
then resampled at a higher magnification (i.e. 20x; 4). These sets of tiles are used to train a 
second MIL-ResNet18 model (5) using an identical architecture to the one used previously in 
(2). The average predictions across both models are aggregated for a single WSI (6). The 
resulting distribution of scores are used to calculate confidence intervals and establish a 
threshold of confidence for a final prediction. 

 

Our proposed model is composed of a multi-resolution decision, which performs an 

initial prediction on a low magnification (i.e., 5x magnification) of localized regions of interest 

(ROI) that are automatically selected and performs a secondary prediction on an enhanced 

magnification within the selected ROIs (i.e., 20x magnification; Figure 6.1). The final model 

encompasses an ensemble of five identical architectures, which each produce multi-resolution 

prediction scores. The average of these scores is used to make a final prediction for each tissue 
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slide. Due to the computational cost associated with processing an entire WSI, each slide is first 

segmented into smaller tiles at a given resolution. For the first stage of the model, each slide is 

tiled at a 5x magnification with 256x256 pixels per tile with approximately 2µm of tissue per 

pixel. Blurred tiles and those with less than 80% of pixels containing tissue were removed from 

the analysis (Figure 6.1; Methods). For both stages of the model, ResNet18 convolutional neural 

networks were trained to extract features from the collection of tiles composing a single WSI. 

The resulting encoded features from the penultimate fully connected layer were used to 

automatically select ROIs at the 5x resolution. Specifically, Principal Component Analysis 

(PCA) was used to project the encoded features into a latent space encompassing the greatest 

variance. K-means clustering was then used to group each tile representation. The cluster 

containing the tile with the maximum prediction probability was selected along with all tiles in 

the same cluster having a Silhouette coefficient greater than the 95% quantile of all Silhouette 

scores across the WSI (Methods). The final ROIs were tiled at 20x magnification (0.5µm per 

pixel) and used to train and test the second model. The top 25 tiles were averaged to calculate a 

final prediction score at a given resolution during an inference pass of a WSI. 

During training, random dropout of nodes within the fully connected layers of the ResNet 

architecture was incorporated to prevent overfitting of the training dataset. This same dropout 

technique was applied during inference of each WSI, known as Monte Carlo dropout, to provide 

an estimation of the model uncertainty by performing multiple inference passes of a single WSI 

[220]. The resulting distribution of predictions were averaged to calculate a final score 

encompassing any epistemic uncertainty and were used to calculate confidence thresholds for a 

given sample (Figure 6.1; Methods). 
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Specifically, we trained a multi-resolution model to detect HRD using the collection of 

flash frozen tissue slides from the TCGA breast cancer cohort using 85% of the samples for 

training and the remaining 15% of samples to internally validate the final models (n=1,055 

samples; Figure 6.2a). Prior to training, the number of HRD and HRP samples in each cancer 

subtype were balanced to prevent the models from learning features specific to individual 

subtype histology rather than those directly associated with HRD. During training, a validation 

set composed of 15% of the samples was used to select the final models and to adjust the 

prediction threshold. The final models were then tested on the held-out internal test set to assess 

the overall performance resulting in an area under the receiving operating curve (AUROC or 

AUC) of 0.81 ([0.77-0.85] 95% CI; Figure 6.3a). 



139 
 

 

Figure 6.2: Training and testing workflow. a. The collection of breast cancer tissue slides 
comprised of either flash frozen or FFPE-derived images from TCGA were used to train the 
multi-resolution model. HRD scores are calculated from SNP6 sequencing data and used as the 
ground truth. The number of HRD/HRP samples within each breast cancer subtype were 
balanced within the training and validation set. The randomly under-sampled images were added 
to the held-out test set. b. Testing of the trained model was performed using the held-out TCGA 
samples along with two external validation cohorts. c. The final model was used to predict 
metastatic breast cancer responders (HRD) from non-responders (HRP) after treatment with 
platinum chemotherapy. The final prediction probabilities were used to stratify HRD from HRP 
patients and were used for downstream survival analysis.  

 
To assess the generalizability of the model, we performed an external validation using the 

collection of breast cancer slides from the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) [221] and the Molecular Taxonomy of Breast Cancer International Consortium 
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(METABRIC; Figure 6.2b) [222] resulting in an AUC of 0.76 ([0.71-0.82] 95% CI; Figure 6.3a). 

Using the aggregated prediction score from the Monte Carlo dropout, we can remove samples 

that the model was less confident in. For instance, after removing all predictions that fell within 

5% of the classification cutoff retained 72% of samples in TCGA resulting in an AUC of 0.83 

([0.78-0.88] 95% CI; Figure 6.3b). Applying this thresholding to CPTAC retained 59% of 

samples with an AUC of 0.83 ([0.76-0.89] 95% CI). This threshold can be made more stringent 

to provide confident predictions for a subset of patients. Specifically, removing predictions that 

fell within 10% of the prediction cutoff retained 42% of samples in TCGA with an AUC of 0.86 

([0.80-0.92] 95% CI) and 36% of samples in CPTAC with an AUC of 0.86 ([0.77-0.93] 95% CI; 

Figure 6.3c).  Further, HRD is enriched in luminal B, basal-like, and Her2 enriched breast 

cancers; however, our model distinguished HR deficiency and proficiency across all subtypes 

(Figure 6.3d).  

While flash frozen tissue slides are commonly used for downstream molecular analyses, 

formalin-fixed paraffin-embedded (FFPE) tissue slides are the standard for clinical diagnostics. 

Therefore, we trained an independent model to classify HRD directly from FFPE slides from the 

TCGA breast cancer cohort following the same procedure as previously described for training on 

flash frozen tissue images (Figure 6.2a&c; Methods). The final base model resulted in an AUC 

of 0.81 ([0.77-0.85] 95% CI; Figure 6.3e). Removing samples with a prediction that fell within 

5% of the classification threshold retained 72% of samples with an AUC of 0.83 ([0.77-0.85] 

95% CI; Figure 6.3c). These results indicate that the fixation procedure has minimal effect on the 

performance of predicting HRD status directly from breast cancer tissue slides. Further, the 

FFPE model was capable of distinguishing metastatic breast cancer (MBC) samples that had a 

complete response to platinum chemotherapy from those having only a partial or no response to 
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treatment with an AUC of 0.76 ([0.57-0.93] 95% CI; Figure 6.3e) [223]. Separating the MBC 

samples treated with platinum based upon the model prediction probabilities reveal a difference 

in survival between the HRD and HRP-predicted samples with a median survival of 23.4 months 

for HRD patients and 9.4 months for HRP patients (p-value=0.023, Log-rank test; Figure 6.3e). 

The model’s predictive value was consistent after correcting for the subtype and age of each 

cancer with a hazard ratio of 0.51 ([0.27-0.94] 95% CI, q-value=0.030; Cox Proportional 

Hazards regression). 

 

 

Figure 6.3: Performance of detecting HRD from breast cancer slides. a) The receiver operating 
characteristic curve (ROC) for classifying HRD in the TCGA test set, the CPTAC cohort, and 
the METABRIC cohort using the base model. b) ROC after removing the raw prediction 
probabilities that were within 5% of the classification threshold. c) The area under the ROC 
(AUC), F1-scores, and precision across the TCGA test set and CPTAC and METABRIC cohorts 
using varying confidence thresholds. Standard error bars are shown along with the number of 
HRD samples included after each filtering threshold (nHRD). d) Representative TCGA tissue 
slides are shown for both HRD and HRP samples across multiple breast cancer subtypes along 
with the resulting predictions for each segmented tile at the 5x and 20x stages of the model. e) 
ROC for the FFPE diagnostic base model, after removing samples within 5% of the threshold, 
and for classifying metastatic breast cancer responders (MBC). Bootstrapped 95% confidence 
intervals are provided for all ROC curves. f) Kaplan-Meier survival curves for MBC patients 
treated with platinum chemotherapy separated by the HRD model predictions (top). Cox 
regression showing the log10-transformed hazards ratios are shown with their 95% confidence 
intervals (bottom). 
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To assess the generalizability of the proposed method in application to other cancers, we 

performed transfer learning on the TCGA ovarian cancer cohort (n=589 samples). Previous 

studies show that patients with ovarian cancers have the highest median HRD score and those 

with a score greater than 63 have a better overall prognosis [224]. Further, individuals with 

ovarian cancer have traditionally received platinum chemotherapies as the first-line standard of 

care making this cohort ideal to test whether HRD predictions from tissue slides may have a 

direct clinical benefit. Specifically, we trained an independent model to predict HRD status 

(HRD score >63) from flash frozen slides using the TCGA ovarian cohort. Due to a smaller 

cohort size, the ovarian model was initiated using the pretrained weights and biases generated 

from the breast cancer model with the convolutional weights and biases frozen during training 

(Figure 6.4a). The final model was applied to a held-out test set of TCGA ovarian cancers to 

assess the ability of the model in separating individuals who benefit from treatment with 

platinum chemotherapy (Figure 6.4a). Of the 117 patients in the test set, 74 had a record of 

receiving platinum chemotherapy.  Separating these individuals by their multi-resolution HRD 

prediction resulted in a differential median survival between HRD and HRP predicted patients 

(Figure 6.4b). Specifically, patients predicted to be HRD had a median survival of 4.6 years, 

while those predicted to be HRP had a median survival of 3.2 years (q-value=0.034) with a 

hazard ratio of 0.49 after correcting for the stage of the cancer, age, and the HRD score ([.25-

0.96] 95% CI; Cox Proportional Hazards ratio; Figure 6.4b).  
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Figure 6.4: Transfer learning in ovarian cancer predicts response to treatment. a) Schematic 
demonstrating the transfer learning method to train an ovarian HRD model using a pretrained 
breast HRD model. The pretrained breast models are used to initiate the weights and biases of all 
parameters in the ovarian model. b) Kaplan-meier survival curves comparing the outcome of 
patients treated with platinum chemotherapy split by the HRD model prediction. Q-value is 
corrected for after considering stage, age, the HRD score (HRD-score), and the binary HRD 
classification score >63 (HRD-bin; *q<0.01). The log10-transformed hazards ratios (log10(HR)) 
are shown with their 95% confidence intervals. 

 

 The development of these HRD prediction models on both breast and ovarian cancers 

demonstrates the practicality of employing artificial intelligence-based guidance into clinical 

diagnostics. The models are generalizable across different cancers, subtypes, and tissue fixation 

procedures using routinely sampled tissue blocks and can predict overall patient outcome after 

treatment with chemotherapeutics. Further, each model is adjustable to ensure a specific level of 

confidence in the final patient prediction, ultimately circumventing the reliance on additional 

sequencing information when diagnosing HRD in ~75% of patients. Removing the sequencing 

bottleneck traditionally used for calculating an HRD score allows for this method to be more 

readily deployable into the clinic and provides greater accessibility to the standard of care for a 

larger proportion of the population across a diverse collection of socioeconomic groups. 
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6.2. Methods 

6.2.1. Data sources 

The collection of flash frozen and FFPE slides from TCGA along with all clinical 

features were downloaded from the Genomic Data Commons (GDC; https://gdc.cancer.gov/). 

The collection of flash frozen slides from CPTAC were downloaded from The Cancer Imaging 

Archive (TCIA) [225], and the genomics data was downloaded from the GDC. The collection of 

images from METABRIC and the associated SNP6 data were downloaded from EGA 

(EGAD00010000270 and EGAD00010000266). The predicted cancer subtype for a subset of the 

TCGA breast cancer cohort were obtained from the previous study using the 50-gene PAM50 

model [226]. HRD scores for the TCGA breast and ovarian cancers were obtained from the 

previous study [102]. The slides and clinical data for the metastatic breast cancers were obtained 

from SRA repository under BioProject accession number PRJNA793752 [223]. 

 

6.2.2. Data preprocessing 

Each WSI was segmented into 256x256 tiles at 5x and 20x magnifications containing 

2µm per pixel and 0.5µm per pixel, respectively. Blurry tiles and those with less than 80% of 

pixels representing tissue were removed from all training and testing cohorts. To filter blurry 

tiles, a Laplacian filter was applied to each tile using a 3x3 kernel, and all tiles with a variance 

less than 0.02 were removed from the remaining analysis. All green, red, and blue pen marks and 

other annotation artifacts were removed by thresholding on the RGB color channels within each 

pixel.  
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6.2.3. Calculating HRD scores 

HRD scores were calculated as previously reported [102] using scarHRD. Specifically, 

the HRD score is the summation of the loss of heterozygosity (LOH) [227], the telomeric allelic 

imbalance (TAI) [228], and the large-scale state transitions (LST) [229] scores calculated using 

copy number calls derived from SNP6 arrays using ASCAT. The HRD scores for the CPTAC 

breast cancer samples were calculated based on copy number calls derived from whole-exome 

sequencing using Sequenza [230], which has been shown to result in analogous distributions of 

HRD scores. HRD scores above 50 were considered HR-deficient and scores below 20 were 

considered proficient in the breast cancer cohorts. All intermediate scores were modelled as a 

probability of being deficient or proficient with an equal probability of both conditions at an 

HRD score of 30. Within the TCGA ovarian cohort, HRD scores about 72 were considered 

deficient and scores below 52 were considered proficient with the intermediate probabilities 

centered at 63.  

 

6.2.4. Model training and testing 

Prior to training, the number of HRD and HRP samples were balanced in all breast cancer 

subtypes using the PAM50 model classifications to normalize for specific subtypes enriched and 

depleted of HRD. All samples without annotated PAM50 subtype labels were considered as 

missing and were also balanced for the number of HRD and HRP cases. Soft labelling was 

incorporated to prevent overfitting during training and to account for ambiguity in the ability of 

the HRD score to classify true HRD samples. The entirety of training and testing was performed 

using the machine learning Python framework Pytorch (v.1.5.0). For both resolution models, the 

Adam optimizer was used for training with a learning rate of 1E-03, a weight decay of 1E-04, 
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and minibatches consisting of 64 tiles. Each model was initiated using the ResNet18 architecture 

that was pretrained on the ImageNet (http://www.image-net.org/) database and was trained for 

200 epochs. All convolutional weights were frozen during training. Early stoppage was 

incorporated to prevent overfitting.  

After training the 5x resolution models, a final inference pass is performed on all slides. 

All features from a single WSI were selected from the penultimate layer of the feature extractor 

and projected into a lower dimensional latent space using PCA. K-means clustering was used to 

automatically select ROIs for retiling at 20x magnification. The number of clusters was 

determined by selecting the solution with the maximum silhouette coefficient. The cluster 

containing the tile with the highest prediction probability was used to select the ROIs. All tiles 

belonging to this cluster, and which had a silhouette score greater than the 95% quantile of all 

silhouette scores for the given WSI were chosen as the final ROIs. Each ROI was then tiled into 

256x256 pixel sub-tiles at 20x magnification. This results in 16 tiles at 20x magnification for 

each ROI at a 5x magnification. To perform an inference pass of the model, a single WSI image 

is processed across 10 iterations with a random dropout probability of 0.2 for all nodes within the 

fully-connected layers. 

The weights collected from the final models trained to detect HRD from flash frozen 

breast slides were used to initiate the model weights for the ovarian model known as transfer 

learning. The held-out internal validation set was used to perform survival analysis based upon 

prior treatment with platinum chemotherapy. There were not enough FFPE slides for the ovarian 

cohort for training and testing (results not shown).  
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6.2.5. Survival analysis 

Survival analysis was performed using the Lifelines Python package (v.0.24.4.). For both 

the metastatic breast cancer (MBC) and the TCGA ovarian cohorts, samples were partitioned 

based upon the prediction probabilities from each respective model using the HRD threshold 

cutoff that gave the highest F1-score in the internal validation sets. Only samples that were 

treated with platinum chemotherapy were considered in the survival comparisons. Survival 

curves were compared using a log-rank test. Hazards ratios were calculated from Cox regressions 

after correcting for age and subtype within the MBC cohort and stage, age, and HRD score 

within the TCGA ovarian cohort. Median survival was calculated as the time at which the chance 

of surviving beyond that point is 50%.   

 

6.2.6. Statistics 

All performance metrics including AUCs for each ROC curve, F1-scores, and precision 

metrics were calculated using the scikit-learn Python package (v.0.22.1). Confidence intervals 

were calculated using non-parametric resampling. Standard error bars were calculated using the 

Numpy Python package (v.1.18.1).  
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Chapter 7.  

Conclusion and future work 
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In this dissertation I introduced three novel computational approaches to explore and 

decipher the mutational processes underlying the development of human cancer. These 

approaches seamlessly integrate providing a streamlined toolbox for reproducibility and large-

scale deployment within epidemiological studies and within the clinic. Through the application 

of this standardized framework, I provide a comprehensive characterization of clustered somatic 

mutations across human cancer revealing a plethora of mutational processes giving rise to such 

events. Several of these processes result in clustered mutations that are enriched within known 

driver genes providing prognostic biomarkers for patient survival in certain cancer types. The 

extensive characterization of these processes in coordination with the localization of different 

focal amplifications, revealed a novel form of oncogenesis reflecting the repeated hypermutation 

of ecDNA by APOBEC3 deaminases.  

While the analysis of mutational signatures provides insight into the underlying etiology of a 

given cancer, the universal application within the clinic is currently limited due to financial 

bottlenecks and due to the need for downstream expert analysis. To address these current 

limitations, this dissertation also proposed an alternative approach for detecting mutational 

signatures using artificial intelligence-based models applied to histopathological cancer slides 

that are routinely sampled for cancer samples within the clinic. The deep learning architecture 

was applied to breast and ovarian cancers demonstrating its ability to predict homologous 

recombination repair deficiency and ultimately differential patient response to platinum 

chemotherapy.  
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7.1. Implications 

The findings of this thesis provide insights into fundamental cancer biology and 

biomarker discovery while illuminating broader implications to motivate future studies. First, the 

comprehensive mapping of clustered mutagenesis across human cancer revealed a cancer-

dependent enrichment of clustered events implicating novel components of oncogenesis and 

tumor evolution. These findings demonstrate similarities between viral and ecDNA-driven 

cancers suggesting a direct role of the innate immune response in accelerating the evolution of 

some tumors.  

Second, exploration of clustered biomarkers and alternative diagnostic platforms 

implicates that mutational signature detection can be directly incorporated into existing clinical 

infrastructures. Specifically, the analysis of clustered mutations within whole-genome sequenced 

tumors revealed novel biomarkers attributed to an enrichment of clustered mutational events 

within known driver genes. Extensive validation of several of these biomarkers across both 

whole-exome and targeted sequencing panels demonstrates the applicability of using these 

prognostic biomarkers within a clinical setting. Specifically, the targeted sequencing cohorts 

were retrospectively collected and generated using cancer gene panels that are still used in 

contemporary clinical settings for precision medicine. Thus, the detection of clustered 

biomarkers can be easily incorporated into existing clinical pipelines. Additionally, the ability to 

detect mutational signatures directly from histopathological slides requires only the digitalization 

of a given tissue block using either an internal or tertiary scanning service. The algorithm itself is 

light-weight and can be deployed with minimal computational resources.  

Lastly, the adoption of these proposed artificial intelligence-based diagnostic platforms 

ideally removes the reliance on traditional sequencing technologies, which currently hinders 
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broad accessibility to the standard of care and compounds disparities observed across healthcare 

and, especially, across cancer diagnostics. The elaboration and careful incorporation of these 

tools can introduce state-of-the-art diagnostics to communities that have been historically 

underserved due to both geographical and/or financial barriers.  

 

7.2. Limitations 

While this thesis provides a standardized framework for the efficient and cost-effective 

analysis of mutational signatures, there are limitations to the current approaches and their 

subsequent implications. Mainly, clustered mutations are ubiquitous across human cancer; 

however, they occur at low numbers in each sample. This restricts the ability to decipher the 

mutational signatures of clustered events to data derived from whole-genome sequenced cancers, 

which are not as plentiful as whole-exome or targeted sequencing cohorts. Until whole-genome 

sequencing becomes more readily accessible, the current benefits of analyzing clustered 

mutations within the clinic will be limited to detecting single events within known driver genes 

as prognostic or predictive biomarkers. 

Further, the ability to expand on the oncogenic implications of hypermutated ecDNA is 

largely restricted by the dearth of detailed clinical annotations paired with whole-genome 

sequenced cancers. The pilot studied described in this thesis was unable to elaborate on the 

effects of observing kyklonic events on survival and patient outcome due to a lack of clinical 

endpoints for most cancer samples. These analyses were also limited by the current algorithmic 

approaches for detecting ecDNA, which also require whole-genome sequencing data. Significant 

efforts are ongoing to improve the stability of locating bona fide ecDNA regions, which are often 

missed due to the lack of concordance in copy number callers and ambiguity in the reconstructed 
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substructure graphs associated with short-read sequencing. Ideally, long-read sequencing 

technologies should be used to refine the resolution at which focal amplifications are located and 

resolved into their complete structures. This would enhance the accuracy of detecting ecDNA 

and ultimately provide a higher resolution of the mutational landscape for downstream signature 

analysis. 

Lastly, the development of alternative approaches for detecting mutational signatures 

presents a double-edged sword in terms of translational research. For example, deep learning 

technologies show promise in circumventing financially burdensome protocols and clinical 

testing; however, they are typically trained on retrospective datasets that lack patient diversity 

necessary for universal deployment. This issue stems from a systemic omission of underserved 

populations within previous large-scale sequencing efforts. Without careful considerations of the 

training framework and data inclusion criteria, technological advances can further exacerbate 

existing disparities in health care. Recent efforts from multiple consortia are now actively 

working to alleviate these disparities within medical records and public datasets; however, this 

will take time. For these reasons, it is essential to acknowledge the limitations and breadth of 

scope of existing algorithms.  

 

7.3. Future work 

Initial efforts outlined in this thesis revealed translational opportunities of leveraging the 

detection of mutational signatures and clustered events to further our understanding of cancer 

biology and to allow better clinical management of cancer patients. The proposed approaches 

were largely limited by the accessibility of large-scale datasets with extensive clinical 

annotations. Current efforts are being made to generate and collect additional better annotated 
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cohorts that will allow further interrogation of specific cancer types enriched for clustered events 

and for detecting additional mutational signatures from digitalized tissue slides from cancer 

tissues. 

 

7.3.1. Clinical integration of clustered mutations 

The ability to detect clustered mutations within known cancer genes sequenced through 

standard-of-care targeted panels allows for the immediate translation of any clustered mutations 

that predict response to drug treatment or that provide prognostic information about a patient’s 

overall survival. While this study utilized a large collection of samples that were sequenced with 

targeted cancer gene panels, the number of publicly available genomes are continuing to 

drastically increase. Since the publication of the initial study, the sequencing data for the cancers 

of over ~100,000 individual patients have become available including detailed survival 

annotations across most human cancers. The expansion of these cohorts will provide an 

opportunity to explore all forms of detectable clustered events with downstream prognostic value 

across the most common panels utilized in clinical settings.  

Further, there is now an opportunity to investigate the diagnostic potential of clustered 

mutations in coordination with specific treatments. As an exploratory study, the Genomics of 

Drug Sensitivity in Cancer (GDSC) dataset can be utilized to determine whether key clustered 

events associate with better overall survival probability after treatment across different types of 

compounds. The GDSC contains detailed screening of 1,000 human cancer cell lines with over 

600 different compounds that target 24 different molecular pathways. 
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7.3.2. Investigating the clinical implications of kyklonas 

This thesis introduced a novel type of clustered hypermutation that occurs on ecDNA, 

coined kyklonas. While these events appear to be the direct attack of enzymes involved in the 

innate immune response driving an accelerated diversification of the ecDNA mutational 

landscape, our understanding of this process remains limited. With current efforts to generate 

and collect additional whole-genome sequenced cancers including cohorts of pediatric cancers 

that are enriched for ecDNA, there will be opportunities to further expand our understanding of 

the mechanistic underpinnings of kyklonic events. This will include investigating the 

evolutionary trajectory of individual ecDNA populations using the occurrence of distinct 

kyklonic events, the effect of recurrently mutated ecDNA on overall patient survival, and the 

activity of APOBEC3 deaminases in response to treatment and subsequent therapeutic resistance 

in the presence of ecDNA. 

 

7.3.3. Detecting multiple mutational signatures from digital tissue slides 

The demonstration of detecting homologous recombination deficiency within breast and 

ovarian cancer using the proposed deep learning architecture revealed the ability to predict 

individual patient sensitivity to treatment. While breast and ovarian cancers have traditionally 

been associated with homologous recombination deficiency, pan-cancer studies have revealed a 

prevalence of mutated HRD genes across many different cancers, including pancreatic and 

prostate cancers, amongst others. The BRCAness phenotype found within additional cancers 

suggests that additional individuals may also benefit from the predictive capabilities of deep 

learning histology approaches; however, the publicly available datasets for these other cancer 

types are extremely limited in size. Additional efforts must be made in obtaining the relevant 
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digitalized slides necessary for training and validating additional models for extended 

applications. 

Further, while this study provided an initial proof-of-concept in detecting a clinically 

relevant mutational signature with actionable treatment options, there are additional diagnostic 

signatures that are of interest to detect. These include signatures associated with 1) microsatellite 

instability, which convey a sensitivity to immune checkpoint inhibitors; 2) signatures associated 

with mutations in the proofreading exonuclease domain of POLE, which are also sensitive to 

immune checkpoint inhibitors; and 3) signatures associated with the activity of APOBEC3 

deaminases, which typically occur later in the progression of a cancer and might induce 

resistance to certain therapeutics such as treatment with tamoxifen.  

This list is not comprehensive; however, it provides a logical progression of expanding 

on our ability to detect mutational signatures using alternative technologies. For instance, MSI 

and POLE deficient tumors are common across colon cancer, which have an ample collection of 

samples available for training and validation. This is also true for APOBEC3 activity that 

commonly occurs among tissues with growing public repositories including kidney, breast, and 

lung, amongst others. With the largest bottleneck simply being the digitalization of tissue slides, 

the potential for expanding on our repertoire of detectable signatures will continue to expand.   
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