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Standardized Measurement Error: A Universal Metric of Data 
Quality for Averaged Event-Related Potentials

Steven J. Luck1,2, Andrew X. Stewart1, Aaron Matthew Simmons1, Mijke Rhemtulla2

1Center for Mind & Brain, University of California, Davis

2Department of Psychology, University of California, Davis

Abstract

Event-related potentials (ERPs) can be very noisy, and yet there is no widely accepted metric of 

ERP data quality. Here we propose a universal measure of data quality for ERP research—the 

standardized measurement error (SME)—which is a special case of the standard error of 

measurement. Whereas some existing metrics provide a generic quantification of the noise level, 

the SME quantifies the data quality (precision) for the specific amplitude or latency value being 

measured in a given study (e.g., the peak latency of the P3 wave). It can be applied to virtually any 

value that is derived from averaged ERP waveforms, making it a universal measure of data quality. 

In addition, the SME quantifies the data quality for each individual participant, making it possible 

to identify participants with low-quality data and “bad” channels. When appropriately aggregated 

across individuals, SME values can be used to quantify the combined impact of the single-trial 

EEG noise and the number of trials being averaged together on the effect size and statistical power 

in a given experiment. If SME values were regularly included in published papers, researchers 

could identify the recording and analysis procedures that produce the highest data quality, which 

could ultimately lead to increased effect sizes and greater replicability across the field.
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1. INTRODUCTION

Event-related potentials (ERPs) are tiny signals, and they are embedded in noise that may be 

an order of magnitude larger. In theory, we can “average out” the noise by combining a large 

number of single-trial waveforms into an averaged ERP waveform. In practice, however, it is 

often difficult to obtain enough trials to adequately reduce the noise, and the remaining 

variability can dramatically reduce our power to detect significant differences. Moreover, the 

noise level may vary widely across recordings as a result of factors such as skin potentials, 

movement artifacts, poor electrode connections, and nearby electrical devices. The noise 

level may also be impacted by the experimental design, the recording procedure, and the 
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signal processing pipeline. As a result, the signal-to-noise ratio may differ considerably 

across studies, across participants within a study, and across data processing methods.

1.1. Desirable properties for a metric of ERP data quality

Although noisy ERP waveforms are a major practical impediment in ERP research, the field 

has not adopted a universal measure of data quality that can be used to quantify the noise 

level in individual participants. Some metrics have been proposed, such as the root mean 

square of the voltage in the prestimulus period (Luck, 2014) or the standard deviation of a 

plus/minus average (Picton, 2011; Wong & Bickford, 1980). However, these metrics are 

insufficient because they are not designed to capture the noise that is relevant for a given 

experiment.

As an example, Figure 1 shows how high-frequency noise can distort the peak amplitude of 

the P3 wave (or any other component), adding considerable variability and decreasing 

statistical power. This high-frequency noise has much less impact when P3 amplitude is 

quantified as the mean voltage from 300–500 ms, because the upward and downward noise 

deflections largely cancel out (see Clayson, Baldwin, & Larson, 2013; and Chapter 9 in 

Luck, 2014). Thus, the impact of noise depends on the algorithm used to quantify a given 

amplitude or latency value, and one cannot make a generic quantification of the extent to 

which an EEG recording is “clean” or “noisy” independent of the method used to score the 

ERPs.

Traditional measures of ERP data quality do not take into account the role of the scoring 

method, and a central goal of the present work was to develop a metric of data quality that 

reflects the impact of noise on the specific amplitude or latency measure that is the focus of 

a given study. We will use the term score to refer to the actual amplitude or latency value 

being used as the dependent variable in a given experiment. When we use the phrase data 
quality, we are using data to refer to these scores (because they are the data that we are using 

to test our scientific hypotheses).

Some ERP studies have quantified the data quality for a specific score by using correlation-

based measures of reliability (e.g., Boudewyn, Luck, Farrens, & Kappenman, 2018; Olvet & 

Hajcak, 2009; Thigpen, Kappenman, & Keil, 2017). However, this approach provides a 

single value for an entire group of participants rather than an individual data quality value 

for each participant1. Moreover, as described in detail in Section S1 of the online 

supplementary materials, correlation-based reliability measures are influenced by the range 

of true scores across individuals, so they do not provide a pure index of data quality.

We propose three criteria for a metric of data quality in ERP research: (a) the metric can be 

computed independently for each participant; (b) the metric quantifies the extent to which 

noise impacts the actual amplitude or latency scores that go into the statistical analyses and 

are used to test the scientific hypotheses; and (c) the metric represents the precision of the 

scores. Precision is defined as the degree to which repeated measurements under unchanged 

conditions yield similar results (Balazs, 2008). As discussed by Brandmaier et al. (2018) and 

1A new reliability metric has recently been developed for individual participants (Clayson, Brush, & Hajcak, 2020).
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illustrated in Figure 2, a metric of precision answers the question: If you were to obtain an 

ERP amplitude or latency score in a given participant multiple times in a given paradigm 

(assuming no learning, fatigue, etc.), how similar would the scores be across these repeated 

measurements? The importance of precision has been stressed more generally in statistical 

analyses by Vasishth et al. (2018).

As shown in Figure 2, a scoring method can be biased (shifted systematically in one 

direction away from the true value) independently of whether it is precise. This is typically a 

result of the signal processing methods or the algorithm used for scoring rather than the data 

per se, so we do not consider bias to fall under the umbrella of “data quality.” For example, 

heavy low-pass filtering will bias onset latencies toward lower values (see Chapter 7 in 

Luck, 2014), and peak amplitude is biased to overestimate the true amplitude when high-

frequency noise is present (see Chapter 9 in Luck, 2014). Thus, it is important that 

researchers consider whether the methods they are using to increase precision might also 

introduce or increase a bias.

1.2. Standardized measurement error (SME) as a universal measure of data quality for 
averaged ERPs

In this paper, we describe a simple but flexible metric of data quality for ERP research that 

meets these criteria. We call this metric the standardized measurement error or SME. The 

SME is a special case of the standard error of measurement that is designed to be well suited 

for ERPs. Specifically, the SME is defined as the standard error of measurement for an ERP 

amplitude or latency score, assuming that the score is obtained from a single participant’s 

averaged ERP waveform. Formally, this means that the SME is an estimate of the standard 

deviation of the sampling distribution for a given participant’s amplitude or latency score. 

Less formally, the SME indicates the extent to which the noise in the data has made an 

amplitude or latency score imprecise. The true SME is never known, but the following 

sections describe how it can be estimated, in which case we denote it as SME.

The SME can be used to quantify data quality for virtually any score that is obtained from an 

averaged ERP waveform, so it is a universal metric of data quality for averaged ERPs. 

However, it is specifically limited to scores obtained from averaged waveforms, and it is not 

designed for use with single-trial ERP analyses.

Widespread adoption of the SME would have many potential benefits for both individual 

researchers and the field as a whole. For example, individual researchers could use the SME 

to objectively and quantitatively determine whether data quality has been increased or 

decreased by a new recording procedure, signal processing method, or experimental design 

feature. If every ERP paper reported the SME, the field could objectively determine which 

recording and analysis procedures produce the cleanest data, and this would ultimately 

increase the number of true, replicable findings and decrease the number of false, 

unreplicable findings (Ioannidis, 2005; Vazire, 2018). Additional uses of the SME are 

described in Section 8.

To facilitate adoption of the SME, we have integrated it into version 8 of ERPLAB Toolbox 

(Lopez-Calderon & Luck, 2014; https://erpinfo.org/erplab), an open source Matlab package 
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for ERP processing and analysis. Because our code is open source, this metric of data 

quality could be easily added to other ERP analysis packages.

1.3. Structure of the paper

The remainder of this paper is structured as follows. Because the SME is a special 

application of the standard error of measurement, we begin by reviewing what a standard 

error actually quantifies and describing why it is ideal as a measure of data quality. Next, we 

describe how bootstrapping can be used to compute standard errors for virtually any 

amplitude or latency score that can be obtained from an averaged ERP waveform and how 

the SME allows us to define the signal-to-noise ratio in way that applies to even very 

complex scores (e.g., the onset time of a difference wave). Then we describe some practical 

considerations and assumptions involved in using the SME as a single-participant measure 

of data quality. Next, we describe how the SME can be aggregated across participants in a 

way that makes it possible to quantify the impact of data quality on the effect size and 

statistical power in a given study. Finally, we provide some preliminary recommendations 

about what constitutes a “good” SME value and how researchers could use the SME.

2. USING THE STANDARD ERROR AS METRIC OF DATA QUALITY

The SME is just a special application of the standard error of measurement. This section 

reviews what a standard error represents and then discusses why it is an ideal metric of data 

quality for averaged ERPs.

As an example of the general concept of a standard error, imagine a study in which we 

measured the height of 100 randomly selected women from the US and used the mean of 

this sample as an estimate of the mean of the entire population of US women. As illustrated 

in Figure 3A, we could estimate the standard error of this mean using an empirical approach. 

Specifically, we could repeat the study 10,000 times2, with a different random sample each 

time, giving us 10,000 sample means. The distribution of sample means across these 10,000 

samples would be an estimate of the sampling distribution of the mean, as shown in Figure 

3A. We could then quantify the amount of variation among these sample means by taking 

the standard deviation (SD) of the 10,000 sample means. This SD would be an estimate of 

the standard error of the sample mean (SEM)3. More generally, the standard error of a 

statistic is defined as the standard deviation of the sampling distribution for that statistic.

Now imagine that we had only 25 individuals in each sample. If we obtained 10,000 sample 

means with only 25 people per sample, as illustrated in Figure 3B, we would find much 

more variability across the sample means than we would find with samples of 100 people. 

The sampling distribution would therefore be broader, and the standard error would be 

larger. Thus, the standard error of a score reflects the precision4 of the score (i.e., the extent 

2In this and several subsequent examples, we consider what would happen with 10,000 replications of a study. There is nothing 
special about the number 10,000 in this context; it is just a convenient value for our examples because it is large enough to provide a 
very close approximation of what we would obtain with an infinite number of replications while being small enough to be within the 
bounds of imagination.
3Because we have a finite number of samples, this is only an estimate (SEM). To obtain the true standard error of the mean (SEM), 
we would need an infinite number of sample means.
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to which we would expect the score to vary among different samples from the same 

population). In the analogy shown in Figure 2, each bullet hole is analogous to one sample 

mean, and the distribution of bullet holes is analogous to the sampling distribution. The 

sample means (bullet holes) form a tighter cluster when each individual sample mean is 

based on a larger number of samples5.

Although the empirical approach for estimating the SEM is a useful mental exercise for 

explaining what a standard error represents, this approach is not typically used in practice 

because it requires obtaining many different samples to estimate the standard error. 

Fortunately, an analytic solution is available to estimate the SEM with the data from a single 

sample. Specifically, we simply compute the standard deviation (SD) of the single-

participant scores in the sample and divide by the square root of the number of observations 

(N) in the sample:

SEM = SD
N (Equation 1)

The value we would get by applying Equation 1 to the data from a single study (the analytic 
SEM) is, on average, equivalent to the value we would get from the empirical method 

illustrated in Figure 3 (the empirical SEM). Section 3.2 will discuss a third way of 

estimating the SEM, called the bootstrapped SEM. These are just three different ways of 

estimating the same quantity. Importantly, none of these approaches assumes a normal 

distribution.

In addition, the samples can be trials rather than people, allowing us to examine the standard 

error of a single participant’s mean score over trials. For example, when we construct an 

averaged ERP waveform for a single participant, we can think of this as the average of a set 

of single-trial EEG epochs that were sampled from an infinite hypothetical population of 

possible epochs for that one participant. In theory, we could repeat the recording session 

multiple times, each time obtaining a different sample of epochs and measuring an 

amplitude or latency score from the resulting averaged ERP waveform. The standard error of 

the score could then be estimated as the standard deviation of the scores obtained from the 

different recording sessions, and it would represent the precision of that score for that 

participant. This is illustrated in Figure 3C, which shows what would happen if we measured 

the peak amplitude of the P3 component from an ERP waveform created by averaging 

together 100 trials. If we repeated the recording session 10,000 times, obtaining a P3 

amplitude from the averaged ERP waveform in each session, we could estimate the standard 

error as the standard deviation of those 10,000 values. Figure 3D shows that the sampling 

distribution becomes wider if only 25 trials are used to create the averaged ERP waveform, 

leading to a larger standard error.

4It might be more accurate to say that standard errors and the SME quantify the imprecision of a score, because they become larger as 
the score becomes less precise. However, it is more convenient to say that they “reflect” the precision of a score.
5In this example, the shots are centered on the bullseye (the true value). However, some measures are consistently shifted away from 
the true value, which is called bias in the measure. Here we are considering only the precision and not the bias of an amplitude or 
latency score.
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In our height example, we took the mean height of a sample of 100 or 25 women, so our 

goal was to estimate the standard error of the mean (the SEM). In our P3 example, however, 

we measured the peak amplitude from a complex ERP waveform, which is not a mean. 

Thus, when we estimated the SD of the sampling distribution of our 10,000 repetitions, this 

value reflects the standard error of the peak amplitude rather than the standard error of the 

mean. As a result, we cannot estimate the standard error of this score using the data from a 

single session by using Equation 1.

Thus, we need a different method for estimating this standard error using the data from a 

single recording session. If we could accomplish this, the resulting standard error would 

meet the three criteria for a metric of ERP data quality described in Section 1.1: (a) it would 

be computed independently for each participant; (b) it would quantify the data quality for 

the specific scores that are entered into the statistical analyses; and (c) it would represent the 

precision of those scores. As the next section describes, the standard error can indeed be 

estimated for virtually any single-participant amplitude or latency score using the data from 

a single recording session. The standard error of a single-participant score can therefore 

serve as a universal metric of data quality for averaged ERPs. When the standard error of an 

ERP score is used in this way, we refer to it as the standardized measurement error (SME).

ERP waveforms are sometimes plotted with a shaded area showing the SEM at each time 

point (see Supplementary Figure S1). As discussed in Section S2 of the online 

supplementary materials, this is not the same as the SME.

3. ESTIMATING THE SME

3.1. Estimating the SME for time-window mean amplitude scores

Because the SME is the standard error of measurement for a particular score, and many 

different types of scores are used in ERP research, it is important to select the appropriate 

method for estimating the SME for a given score. In this subsection, we describe a 

particularly common and straightforward case, in which the amplitude of an ERP component 

is scored from a single participant’s averaged ERP waveform by calculating the mean 

voltage within a specific time window (e.g., 300–500 ms). We call this score the time-
window mean amplitude (to distinguish it from a mean across trials or across participants). 

The next subsection will consider other kinds of amplitude and latency scores.

As an example of the time-window mean amplitude, we will consider data from a simple 

oddball experiment with 80 standard trials and 20 oddball trials (see Section S3 of the online 

supplementary materials for additional details). Figure 4 shows the single-trial EEG epochs 

and the averaged ERP waveforms from a single participant in this experiment. In this 

example experiment, we scored the amplitude of the P3 wave as the time-window mean 

amplitude from 300–500 ms, measured from the averaged ERP waveforms separately for 

each participant.

To estimate the SME for this score for a single participant, we would simply obtain one 

score from each single-trial EEG epoch and apply Equation 1 to these single-trial scores. 

That is, we would compute the time-window mean amplitude from 300–500 ms on each 
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individual trial, calculate the SD of these scores, and divide by the square root of the number 

of trials. We would do this separately for the oddball and standard trials. For the participant 

shown in Figure 4, we obtained an SD of 4.96 μV and an SME of 0.56 μV for the standards 

and an SD of 5.73 μV and an SME of 1.28 μV for the oddballs. Note that the SD values 

were similar for the standards and the oddballs, but because Equation 1 requires us to divide 

the SD by the square root of the number of trials ( 80 for the standards and 20 for the 

oddballs), the SME was much larger for the oddballs than for the standards.

In this example, the precision of our estimate of the time-window mean amplitude was better 

(i.e., the SME was lower) for the condition with more trials, as one would ordinarily expect. 

Note that the data quality of the single-trial EEG was approximately the same for the 

standards and for the oddballs (i.e., the SD of the single-trial values were similar), but the 

data quality of the time-window mean amplitude scores obtained from the averaged ERPs 

was much better for the standard than for the oddballs (because of the difference in the 

number of trials in each average). This illustrates one of the fundamental goals of the SME, 

which is to provide a metric of data quality for the actual amplitude and latency scores that 

we obtain from averaged ERP waveforms and use as the dependent variables in our 

statistical analyses. The SME is sensitive to any factor that produces imprecision in these 

scores, including the number of trials in each average and the amount and type of noise in 

the single-trial EEG epochs.

3.2. Extension to other ERP amplitude and latency scores with bootstrapping

Equation 1 can be applied to the time-window mean amplitude score because this score has 

the same value whether we obtain it from the averaged ERP waveform (as is usually done) 

or by measuring it on each individual trial and then averaging those single-trial scores 

together. This is illustrated in Figure 5, which shows time-window mean amplitude scores 

obtained from a set of single trials and from the average of those trials. Because we get 

exactly the same value for the time-window mean amplitude whether we score the averaged 

ERP waveform or score the single-trial epochs and then average the single-trial scores 

together, the standard error of the mean of the single-trial scores is also the standard error of 

the score obtained from the averaged ERP waveform. That is, the two different ways of 

computing the time-window mean amplitude score always produce exactly the same value, 

so they have the same standard error.

Unfortunately, Equation 1 cannot be validly applied to most other amplitude or latency 

scores that are obtained from averaged ERP waveforms (e.g., peak amplitude or peak 

latency). For example, consider what would happen if we used the peak amplitude between 

300 and 500 ms as our score. If we measured the peak amplitude scores from the individual 

trials and then averaged those scores together, the result would not be the same as measuring 

the peak amplitude from the averaged ERP waveform (see Figure 5). Because the average of 

the single-trial scores is not the same as the score obtained from the averaged ERP 

waveform, the standard error obtained from the mean of the single-trial peak amplitude 

scores is not the same as the standard error of the peak amplitude score obtained from the 

averaged ERP waveform. They are different scores, so they have different standard errors. 

Thus, Equation 1 cannot be used for peak amplitude.
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The same issue applies to virtually every ERP amplitude or latency measure other than the 

time-window mean amplitude (including peak amplitude, peak latency, and every widely 

used measure of onset or offset latency6). Could we then just use the mean of the single-trial 

scores as our dependent variable (rather than obtaining the scores from the averaged ERP 

waveforms), so that we could use Equation 1 to estimate the standard error? Unfortunately, 

the answer is usually “no” for scores other than the time-window mean amplitude7, because 

these other scores are typically quite distorted by the single-trial noise. As a result, our 

statistical power would be dramatically reduced by using the average of the single-trial 

scores as the dependent variable. Consequently, scores other than the time-window mean 

amplitude are ordinarily obtained from averaged ERP waveforms, and we need a different 

method for estimating the standard errors for these scores.

Fortunately, we can use bootstrapping to estimate the standard error for the peak amplitude, 

the peak latency, or virtually any score that can be obtained from an averaged ERP 

waveform8. The logic behind bootstrapping is described in detail in Section S4 of the online 

supplementary materials, but we provide a brief overview and example here.

Bootstrapping provides a means of simulating the empirical procedure for estimating a 

standard error (see Figure 3B), in which we obtain the score in a large number of 

experiments and use the SD of these scores as our estimate of the standard error. Instead of 

repeating the experiment many times, we can simulate new experiments from an existing set 

of n trials9 by randomly sampling n trials from the existing data set with replacement. For 

example, if we have 20 trials in a given experiment, we would simulate a new experiment by 

sampling 20 trials at random with replacement from this set of trials and then averaging over 

those 20 trials. Because this procedure involves sampling with replacement, we get a 

different set of n trials and therefore a different averaged ERP waveform every time we 

simulate an experiment (assuming that n is sufficiently large). We can obtain our amplitude 

or latency score from the averaged waveform for each simulated experiment. This gives us 

one score for each simulated repetition of the experiment, and the SME is the SD of these 

scores (because the standard error is the SD of the sampling distribution). In other words, 

rather than having to repeat the recording session many times with each participant, we can 

simulate a large number of sessions by sampling with replacement, giving us an estimate of 

the sampling distribution so that we can compute the SD of this distribution. Moreover, this 

approach focuses on what a standard error actually represents, namely the SD of a sampling 

distribution10.

6More specifically, Equation 1 can be used only for scores that are computed by linear transformations of the ERP data (see the 
Appendix in Luck, 2014).
7Although it is rare, these scores are sometimes obtained from single-trial EEG epochs. In these cases, Equation 1 could be used to 
estimate the SME. However, the resulting SME value would reflect the precision of the mean of the single-trial scores, not the 
precision of the score that would be obtained from the averaged ERP waveform.
8It is possible that analytic solutions like Equation 1 will someday be developed (or may already exist) for estimating the standard 
error for these other scores. If that happens, these analytic solutions could potentially be used instead of bootstrapping. However, 
bootstrapping requires minimal assumptions, and it can be applied to the result of an arbitrary sequence of data processing operations 
(e.g., the onset latency of a low-pass filtered difference wave). Thus, we emphasize bootstrapping as the best practical solution in most 
cases at the present time.
9We are using n to refer to the number of trials and N to refer to the number of participants. Either n or N can be used in the 
denominator of Equation 1.

Luck et al. Page 8

Psychophysiology. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As an example, we used bootstrapping to compute the SME for the peak latency of the P3 

wave for oddballs and standards for the same participant shown in Figure 4B. Figure 6 

shows the data from this participant. The single-trial EEG epochs for the standards and the 

oddballs are shown in Figure 4B, and the conventional averaged ERP waveforms (i.e., the 

averages of the 80 standards and the 20 oddballs) are shown in Figure 6A. Panels B and C of 

Figure 6 show averaged ERP waveforms for two iterations of the bootstrapping procedure. 

On each iteration, 80 trials were selected at random with replacement from the set of 80 

standards, and 20 trials were selected at random with replacement from the set of 20 

oddballs. You can see that the resulting waveforms from these bootstrap iterations are 

similar but not quite identical to the conventional averaged ERP waveforms. Figure 6 also 

shows the peak latencies scored from these waveforms (the time of the maximum voltage 

between 300 and 500 ms).

We iterated this process a total of 10,000 times, each time creating new averaged ERP 

waveforms for the standards and for the oddballs from randomly selected sets of trials and 

then measuring the peak latencies from these new waveforms. This gave us 10,000 peak 

latency scores for both the standards and the oddballs. The SME for a given trial type is 

simply the SD of these 10,000 scores. For the standards, the peak latency from the 

conventional averaged ERP waveform was 345 ms, and we obtained an SME of 35.2 ms. 

For the oddballs, the peak latency was 459 ms, and we obtained an SME of 16.6 ms.

Note that the peak latency SME was actually worse (larger) for the standards than for the 

oddballs, even though there were many more trials for the standards than for the oddballs. 

By contrast, the SME for mean amplitude was approximately half as large for the standards 

as for the oddballs (see Section 3.1). The relatively large SME for peak latency in the 

standards is a result of the fact that the waveform for the standards was relatively flat in this 

participant, without a clear peak. As a result, noise in the data can cause fairly large 

variations in the time point at which the waveform reaches its maximum value. The oddball 

waveform had a much clearer peak, so noise had less impact on the latency score. Indeed, if 

you compare the peak latencies in Figure 6 for the two bootstrap iterations, you’ll see that 

the latencies are within 10 milliseconds for the two oddball waveforms but are nearly 100 

ms apart for the two standard waveforms. This is exactly what we would expect for this 

participant if we actually repeated the experiment multiple times: because the waveform for 

the standards has no clear peak, we would expect more variation in the peak latency for the 

standards than for the oddballs. This demonstrates how the effect of noise for a score like 

peak latency may depend on complex factors such as the shape of the waveform, making our 

bootstrap-based approach particularly valuable for such scores.

3.3. Additional SME examples

The example shown in Figure 6 illustrates how we obtained the bootstrapped SME for the 

peak latency in a single participant. We also obtained bootstrapped SME values for the other 

10Equation 1 and the bootstrapping method described here are two of many possible ways of estimating the standard error of 
measurement, and we are not wedded to these particular estimation approaches. The general logic of the SME is independent of the 
method used to estimate the standard error.
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11 participants in this study; the Matlab code, data, and results are provided at https://

doi.org/10.18115/D58G91. We also provide code, data, and results for the time-window 

mean amplitude from 300–500 ms (estimated using Equation 1 and also using 

bootstrapping) and for peak amplitude for the 300–500 ms time window (estimated using 

bootstrapping). The single-participant SME values for each of these scores are provided in 

Table 1, along with the actual amplitude and latency scores. Additional details, figures, and 

discussion are provided in Section S5 of the online supplementary materials.

Table 1 shows that the analytic and bootstrapped values for the time-window mean 

amplitude are typically very similar. Because the analytic SME is trivial to compute for the 

time-window mean amplitude score, ERPLAB Toolbox automatically computes the analytic 

SME whenever an averaged ERP is computed, using either default or custom time windows. 

The bootstrapped SME is more complicated to compute and currently requires simple 

Matlab scripting.

The bootstrapped SME can also be computed for scores that require multiple processing 

steps after averaging. For example, to determine whether an experimental manipulation 

influences the starting time of a cognitive process, it can be useful to measure the onset 

latency of a difference wave that isolates that process (Luck, 2014). This is particularly 

common in experiments that use the lateralized readiness potential to assess the onset of 

motor activation and experiments that use the N2pc component to assess the time at which 

visual attention has shifted to a target (Luck, 2012; Smulders & Miller, 2012). These 

components are isolated from the rest of the ERP waveform by means of a contralateral-

minus-ipsilateral difference wave, and the onset latency is typically measured from this 

difference wave. Bootstrapping can be used to estimate the SME for these onset latency 

measures by simply creating a contralateral-minus-ipsilateral difference wave on each 

iteration and then measuring the onset latency from that difference wave. To demonstrate 

this general approach, the code provided at https://doi.org/10.18115/D58G91 includes an 

example in which the peak latency of the P3 wave is measured from a rare-minus-frequent 

difference wave.

It may also be useful to score the time-window mean amplitude from a difference wave. The 

corresponding SME will quantify the precision of the difference in amplitude between 

conditions (see Thigpen et al., 2017 for an analogous application of Cronbach’s alpha). 

Other operations that might be performed prior to scoring an amplitude or latency would 

include averaging multiple electrodes into a cluster, filtering the waveforms, and application 

of the Laplacian transform.

4. INTERPRETATION OF THE SME

To reiterate, the SME is a metric of precision and therefore answers the question: If we 

repeated the experiment an infinite number of times with a given participant (with no 

learning, fatigue, etc.), and we obtained the participant’s amplitude or latency score on each 

repetition, how variable would those scores be? More precisely, the SME allows us to 

estimate the standard deviation of the values that would be obtained across repetitions of the 
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experiment. The units of the SME are on the same scale as the score (e.g., μV for a typical 

amplitude measure, ms for a typical latency measure).

Any source of trial-to-trial variability that influences a participant’s amplitude or latency 

score is considered a source of error. This includes induced electrical activity from the 

recording environment (e.g., line noise), biological artifacts (e.g., skin potentials), movement 

artifacts, EEG signals that are not phase-locked to the time-locking point (e.g., alpha-band 

EEG oscillations), and trial-to-trial variation in the amplitudes or latencies of the underlying 

ERP components. For example, alpha-band EEG oscillations can add substantial trial-to-trial 

variability to peak amplitude scores, so these oscillations are considered a source of 

measurement error with respect to these scores. In a different study, however, these same 

alpha-band oscillations could be the signal of interest rather than a source of measurement 

error. Similarly, trial-to-trial variability in the ERP component of interest might be of 

considerable theoretical interest, but it would be considered a source of measurement error if 

the component is scored from averaged ERP waveforms. Thus, when researchers obtain 

scores from averaged ERP waveforms (as in the vast majority of current ERP research), the 

SME reflects all sources of imprecision for that score (e.g., biological and nonbiological 

artifacts, mind wandering, lapses of attention). Consequently, the SME would not be suitable 

for determining whether neural variability varies across individuals, groups, or experimental 

conditions. Moreover, the SME is a metric of data quality for scores obtained from averaged 

ERP waveforms, and it was not designed for use in studies that focus on single-trial data.

Note that SME will be influenced by any signal processing operations that have been applied 

to the data before the score of interest has been obtained (e.g., filtering, re-referencing, 

artifact rejection). This is exactly what we want for a metric that quantifies the precision of 

the scores that are entered into our final statistical analyses. Indeed, the SME will be useful 

for determining whether a given signal processing operation increases or decreases the 

precision of the scores. The SME will also depend on the number of trials, which is again 

exactly what we want for a metric that quantifies the precision of our actual scores.

The SME can also be used to estimate the signal-to-noise ratio of a given ERP score. The 

score is our estimate of the signal, and the SME is our estimate of the noise for that score, so 

our estimate of the signal-to-noise ratio is simply the score divided by the SME. Additional 

details are provided in Section S6 of the online supplementary materials.

5. PRACTICAL ISSUES, ASSUMPTIONS, AND CAVEATS

Using the SME to quantify data quality requires some assumptions and raises some practical 

issues, which we will address in this section.

As a practical matter, we must deal with the fact that some trials may be rejected because of 

artifacts, leading to different numbers of trials per participant or per condition. The SME 

naturally takes the actual number of trials in each averaged ERP into account (e.g., as the 

denominator in Equation 1), so the SME values reflect the quality of the data that results 

from the actual number of trials in the averaged ERP waveform. Similarly, if the 
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experimental design yields more trials in some conditions than in others, the SME will be 

better (smaller) for the conditions with more trials (all else being equal).

You might wonder about the minimum number trials needed to use bootstrapping. If too few 

trials are available, you may sample exactly the same set of trials on different iterations. 

However, this is not typically a problem in practice if you have at least 8 trials (Chernick, 

2011). Also, you should keep in mind that both bootstrapping and Equation 1 merely 

provide an estimate of the standard error, and the precision of this estimate will be greater if 

you have more trials. In other words, both the data quality and your ability to accurately 

estimate the data quality may be poor when the number of trials is small11. It is difficult to 

quantify the number of trials needed for an acceptable estimate, but a practical approach is to 

determine whether multiple repetitions of the bootstrapping procedure converge on similar 

SME values (Chernick, 2011). We have found reasonably good convergence with 20 trials, 

but simulations with a broad set of experimental conditions are needed before firm 

recommendations can be provided.

Both Equation 1 and bootstrapping assume that the individual trials are independent of each 

other, but this assumption will typically be violated because the trials are actually obtained 

sequentially from a brain that may gradually change state over time and that adapts in 

response to experience. Section S7 of the online supplementary materials explains why 

violations of this assumption are unlikely to be a major problem in most cases and describes 

how the SME estimation procedure could be modified if sequential dependencies turn out to 

be problematic.

6. AGGREGATING ACROSS PARTICIPANTS TO PREDICT TRUE SCORE 

VARIANCE, EFFECT SIZES, AND STATISTICAL POWER

Up to this point, we have focused on using the SME to quantify data quality for individual 

participants, and we have shown that it meets the three criteria specified in Section 1.1. 

However, the SME has another virtue when it is aggregated across participants in a specific 

manner: the aggregated group SME can be used to estimate the portion of the total variance 

(VarTotal) across individuals that reflects measurement error and the portion that reflects true 

differences among individuals (much like traditional psychometric reliability measures). 

Using this information, you could determine how increasing or decreasing the number of 

trials would impact your effect size and statistical power (i.e., the probability of obtaining a 

significant effect if, in fact, a real effect exists). This aggregated SME value can also tell you 

how well the data quality in one experiment compares to the data quality in another 

experiment and how well your lab’s data quality compares with the data quality of other 

labs. Conventional measures of variability (e.g., the group SD) are insufficient to achieve 

these goals, because they are influenced both by measurement error (which can be modified 

by changing the number of trials, the filter settings, etc.) and true differences among 

individual participants.

11Both the analytic and bootstrapped SME estimates tend to underestimate the true standard error when the number of trials is small. 
However, the degree of underestimation is modest and should have little or no practical impact for the most common uses of the SME 
(as described in Section 8).
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6.1. Aggregating across participants with RMS(SME)

It would be possible to summarize the data quality from a given experiment with the mean 

of the single-participant SME values. However, there is a better approach that links the SME 

values directly to the effect size and statistical power of a given experiment. In this 

approach, the SME values obtained for the individual participants in a group are combined 

using the root mean square (RMS) of the values. We call the resulting value RMS(SME). 

When applied to the set of SME values obtained from each member of a group of N 

participants (SME1:N), RMS(SME) is defined12 as:

RMS SME1:N = SME1
2 + SME2

2 + SME3
2 + ⋯ + SMEN

2

N
(Equation 2)

We recommend reporting RMS(SME) to summarize the data quality from a given condition 

of an experiment. Like single-participant SME values, RMS(SME) is in the same units as 

the score (e.g., μV for most amplitude measures, ms for most latency measures). This makes 

it easy to compare with the actual scores (e.g., an RMS(SME) of 40 ms relative to a mean 

P3 peak latency of 426 ms). However, equations relating the SME to effect size and 

statistical power are simpler if you square the RMS(SME) value (or just don’t take the 

square root when computing the RMS(SME)). This would then be the mean square of the 

SME or MS(SME). That is, if you have N participants,

MS SME1:N = RMS SME1:N
2

= SME1
2 + SME2

2 + SME3
2 + ⋯ + SMEN

2

N
(Equation 3)

These values are no longer in the same units as the score itself (e.g., if RMS(SME) = 40 ms 

for a P3 peak latency score of 426 ms, then MS(SME) = 1600 ms2), making it a less natural 

descriptive statistic than RMS(SME). However, MS(SME) is more convenient for some of 

the equations found in the next section.

6.2. Decomposing variability across participants into true score variance and 
measurement error

We now turn to the relationships among MS(SME), number of trials, effect size, and 

statistical power. First, however, it necessary to briefly review how measurement error is 

treated by classical measurement theory. Imagine that you’ve conducted an ERP experiment, 

and you have measured P3 latency from each participant’s averaged ERP waveform. You 

12Some of the notation used in our equations is different from the conventions of the statistics literature. Our goal is to ensure that the 
equations are easily understood by individuals without a background in mathematical statistics, even if this makes the equations 
somewhat less compact and nonstandard. Anyone with a strong background in statistics should be able to translate these equations into 
more conventional formats. However, we do follow the convention of using an italicized variable name to represent a parameter of a 
population and the same name with a caret over it to represent an estimate of that parameter (e.g., SD for the standard deviation of a 
population and SD for the estimated standard deviation from a sample of this population).
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would calculate the sample mean of these scores across participants, and you could also 

calculate the estimated variance (Var) or the SD of the scores to quantify the variability 

across participants. This variability reflects a combination of two factors: true differences 

among individuals (i.e., differences that would be present even if we had an infinite number 

of trials per participant) and measurement error (i.e., differences among individuals that are 

a result of trial-to-trial variability in the data rather than stable differences between 

people13).

We call the total variance in scores14 across individuals VarTotal (which is the same as the 

square of the total SD, SDTotal). We call the variance that is caused by true differences across 

individuals the true score variance (VarTrue), and we call the variance that is caused by 

measurement error the measurement variance (VarMeasurement). Because variances simply 

sum together (for independent random variables), we can express the total variance as the 

sum of the true score variance and the measurement variance:

VarTotal = VarTrue + VarMeasurement (Equation 4)

Because single-participant SME values quantify measurement error, MS(SME) can be used 

to estimate VarMeasurement, and we can therefore rephrase Equation 4 in terms of estimates of 

the various terms:

VarTotal = VarTrue + MS SME (Equation 5)

We can then estimate the true score variance by simply rearranging the terms of Equation 5 

as:

VarTrue = VarTotal − MS SME (Equation 6)

We can convert VarTrue back into SD units by simply taking the square root:

SDTrue = VarTrue = VarTotal − MS SME (Equation 7)

In other words, we can now quantify how much of the variability across participants in our 

score (SDTotal or VarTotal) is a result of real differences among people (SDTrue or VarTrue) 

and how much is a result of measurement error (SDMeasurement or VarMeasurement)15.

13For the sake of simplicity, we are not taking into account variations in scores that are a result of variations in the testing conditions 
or the state of the participant.
14We would like to reiterate that we are using the term score to refer to an amplitude or latency value obtained from the averaged ERP 
waveform from a single participant.
15The amount of variability produced by participants and measurement error is more easily expressed in units of variance than units of 
SD. For example, VarMeasurement/ VarTotal can be used in a straightforward way to quantify the proportion of variance due to 
measurement error. However, SD values do not combine in an additive manner, so it would not be appropriate to use SDME/ SDTotal 
to quantify the proportion of the total SD that is explained by measurement error.
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This also makes it possible to quantify the psychometric reliability of our scores, where 

psychometric reliability is defined as the proportion of total variance that is accounted for by 

true score variance16:

Reliability =
VarTrue
VarTotal

This can be estimated as:

Reliability =
VarTotal − MS SME

VarTotal
= 1 −

MS SME
VarTotal

(Equation 8)

Thus, the SME has the advantage of being computed for individual participants but can also 

be converted into group-level psychometric reliability (yielding a value that would be similar 

to that produced by traditional approaches, such as split-half reliability). Note, however, that 

we recommend against using group-level psychometric reliability as a general metric of ERP 

data quality (see Section S1 of the online supplementary materials).

6.3. MS(SME), effect size, and statistical power

We will now briefly describe how MS(SME) makes it possible to predict effect sizes and 

statistical power. In a simple experiment with two groups, the effect size (Cohen’s d) is 

defined as the difference in means between the two groups divided by the pooled SDTotal 

values for the two groups. The effect size therefore depends directly on the SDTotal values. 

Equations 4–7 show how SDTotal is related to MS(SME), and we can use these equations to 

predict how SD will vary as we increase or decrease the measurement error.

We can then ask, for example, how the effect size would vary if we increased or decreased 

the measurement error (e.g., by increasing the number of trials or by decreasing the single-

trial EEG noise). Further, because statistical power is related to effect size, Equations 4–7 

make it possible to estimate how power will change if the number of trials is increased or 

decreased (under the assumption that the SME values will be proportional to the square root 

of the number of trials17). Indeed, Baker et al. (2020) have provided a power calculator that 

allows you to use the measurement error variance (which can be estimated by MS(SME)) 

and the true score variance (which can be estimated using Equation 6) to estimate how your 

statistical power will change as a joint function of the number of trials and the number of 

participants.

16Note that this is how reliability is typically defined in psychometrics, but the term reliability is defined quite differently in fields 
such as physics and engineering (see Brandmaier et al., 2018). We therefore use the term psychometric reliability to be clear that we 
are discussing this particular meaning of the term.
17Note that this “square root rule” is only an approximation. First, the noise level in the data may increase or decrease as the length of 
the experiment changes (due to factors such as learning and fatigue). Second, for scores other than the time-window mean amplitude, 
the standard error may not be linearly related to the square root of the number of trials. Third, even if the single-participant SME
values change linearly with the number of trials, the effect of the number of trials on the aggregated RMS(SME) value will depend 
on the distribution of single-participant SME values. However, it would still be reasonable to use this assumption to make educated 
guesses about the impact of changes in the number of trials.
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The use of MS(SME) to see the relationship between data quality and statistical power 

assumes that the amplitude or latency scores will be obtained from averaged ERP 

waveforms. However, time-window mean amplitude scores can be obtained just as well from 

the single-trial EEG epochs (see Section 3.1). The single-trial scores can then be analyzed 

using multilevel models, which have many advantages over conventional t tests and 

ANOVAs (Bürki, Frossard, & Renaud, 2018; Volpert‐Esmond, Merkle, Levsen, Ito, & 

Bartholow, 2018; Winsler, Midgley, Grainger, & Holcomb, 2018). In this single-trial 

analysis approach, the SME no longer reflects the precision of the dependent variable used 

in the statistical analysis, and MS(SME) is not directly related to the effect size and 

statistical power. However, this approach is not yet widely used in ERP research, and scores 

other than the time-window mean amplitude must usually be obtained from averaged ERP 

waveforms. Thus, the SME is well suited for most current ERP research. As the field moves 

toward multilevel models of single-trial data, it may be possible to quantify measurement 

error as the standard error of the single-subject slope or intercept values (see Bürki, Elbuy, 

Madec, & Vasishth, 2020).

7. WHAT IS A GOOD OR BAD SME VALUE?

We now consider the question of what would be considered a “good” or “bad” SME value in 

an actual experiment. This is not a simple question, and it will likely depend on the 

experimental design, the participant population, and the scientific hypothesis being tested. If 

SME values become widely reported, it will be possible to see what values are typical in 

various types of experiments, and these typical values will serve as anchor points for 

determining what values are “good” and “bad” in practice. In addition, individual 

laboratories can calculate SME values for previous experiments to see the range that is 

typical in their experiments. In the meantime, we provide some preliminary heuristics for 

defining “good” and “bad” SME values.

The first heuristic is to compare the RMS(SME) values to the SD of the observed scores 

across participants (SDTotal). If RMS(SME) is much smaller than SDTotal, this would 

indicate that the observed differences across individual participants are mainly driven by true 

individual differences, with relatively little impact of measurement error. By contrast, if the 

RMS(SME) is close to the SDTotal value, this indicates that most of the observed variability 

is a consequence of measurement error. Examples are provided in Section S5 of the online 

supplementary materials.

It may be useful to exclude participants with extreme SME values, because the measured 

scores for those participants are likely to be poor estimates of their true scores. There are 

many possible ways to define extreme SME values, but one heuristic would be to exclude 

participants whose SME values are so large that including them would be expected to 

decrease the effect size of comparisons between group means. A potential method for this is 

described in Section S8 of the online supplementary materials. However, excluding 

participants can potentially bias the results of a study, so extensive research would be 

necessary before deciding on a specific exclusion rule, and the rule for a given study should 

be determined before the data are seen.
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The SME could also be used to identify noisy electrode sites within individual participants, 

which could then be interpolated. For example, one could identify channels in which the 

SME value is more than two standard deviations away from the mean SME value for that 

participant and interpolate the data from those channels. Again, substantial research would 

be needed before choosing a specific rule.

Formal analyses of these heuristics is beyond the scope of this paper but would be a useful 

direction for future research.

8. SUMMARY AND POTENTIAL USES

A standardized and widely reported metric of data quality is long overdue in ERP research. 

The SME metric developed in the present paper meets three key criteria for a metric of data 

quality: a) it can quantify the data quality in individual participants; b) it reflects the quality 

of the actual amplitude or latency score being used as the dependent variable in a given 

experiment; and c) it quantifies the precision of that score. The SME has an additional virtue 

as well, namely that it can be aggregated across participants in a manner that makes it 

possible to quantify the contribution of measurement error to the overall observed variability 

across participants (much like traditional psychometric reliability measures). This makes it 

possible to estimate the reduction in effect size and statistical power being produced by the 

measurement error and to predict how much the effect size and statistical power would 

change as a result of a change in the number of trials or the single-trial noise level.

In some ways, there is nothing new about the SME. We have simply taken the widely used 

concept of the standard error of measurement and applied it to ERP amplitude and latency 

scores obtained from single-participant averaged ERP waveforms. However, we know of no 

previous work proposing that the standard error of measurement should be used as a general 

metric for ERP data quality, and we know of no previous work showing how single-

participant standard errors can be aggregated so that they can be directly related to effect 

sizes and statistical power in ERP research.

The SME has a large number of potential uses. You could use it to determine whether your 

data quality has increased or decreased when you modify a data analysis step or 

experimental design feature. It could indicate that a technical problem has arisen that is 

degrading the data quality (e.g., degraded electrodes, a poorly trained research assistant). 

You could use it to determine whether a given participant’s data are too noisy to be included 

in the analyses or whether a channel is so noisy that it should be replaced with interpolated 

values (but see section S8 in the online supplementary materials for some cautions). If a 

published paper or submitted manuscript provided SME values, you could use these values 

to objectively assess whether the data are unacceptably noisy.

Of course, you should not focus solely on the precision of your measures: changing the 

recording and analysis methods in a manner that creates bias, reduces the validity of the 

scores, or decreases the true differences in scores between conditions would not usually be a 

good idea even if these changes reduced the SME. For example, if you simply bridged all of 

your electrodes to the reference electrode to “flatline” the data on every trial, you would 
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have a near-zero SME but meaningless data. Similarly, extensive filtering can reduce trial-to-

trial variation and therefore decrease the SME, but it can also distort onset times and create 

artifactual peaks in the ERP waveforms (Acunzo, MacKenzie, & van Rossum, 2012; Tanner, 

Morgan-Short, & Luck, 2015; Yael, Vecht, & Bar-Gad, 2018). Thus, although a lower SME 

is better when all else is equal, all else is not always equal, and it will be important not to 

overemphasize the SME and disregard the many other factors that are important in drawing 

valid scientific inferences.

Currently, most claims about data quality are largely anecdotal and subjective, making it is 

difficult to know which ERP recording and analysis methods lead to the cleanest data. 

However, if ERP papers regularly reported RMS(SME) values, it would be possible to 

systematically and objectively compare data quality across experimental paradigms, across 

EEG recording systems, across signal processing methods, and across data analysis 

procedures. Researchers could then adopt whatever recording and analysis methods have 

been shown to produce the best data quality. This would, in turn, lead to increases in 

statistical power and replicability across the field. However, as discussed earlier, it is 

important to ensure that these methods for optimizing data quality do not have unintended 

side effects, such as introducing biases. Also, there are likely to be many factors that differ 

across studies that could potentially be responsible for differences in RMS(SME) values 

between any two studies (e.g., data collection procedures, experimental paradigm details, 

number of trials, and signal processing steps), making it difficult to ascertain the source of 

the differences in data quality. However, as more and more studies report SME values, it 

should be possible to isolate the key factors. Simulation studies will also be valuable for 

systematically assessing the factors that impact SME; because ground truth is known in 

simulations, they can also assess whether a given method for reducing SME also introduces 

biases (see Kiesel, Miller, Jolicoeur, & Brisson, 2008 for an excellent example of this 

approach).

We therefore recommend that the field move in the direction of consistently reporting 

RMS(SME) in published studies18. To facilitate this, ERPLAB Toolbox (beginning with 

version 8) makes it trivially easy to calculate the analytic SME for time-window mean 

amplitude scores. When you are preparing to compute the averaged ERP waveforms for a 

given participant, you merely indicate one or more time windows that will be used for 

scoring the mean amplitude (e.g., 300–500 ms). Default time windows are also provided. 

ERPLAB will then calculate the analytic SME for each condition during the averaging 

process (at each electrode site or cluster of electrode sites) by applying Equation 1 to time-

window mean amplitude scores obtained from the single-trial EEG epochs.

ERPLAB also includes functions that make it straightforward to calculate the SME for other 

measures using bootstrapping. Moreover, when you make a grand average across 

participants, ERPLAB will take the single-participant SME values and compute RMS(SME) 

across participants. This gives you everything you need to obtain the SME values. Section 

18It is certainly possible that even better metrics of data quality will be developed in the future, at which point the field could switch to 
those new metrics. However, any new metrics must satisfy the three criteria listed in Section 1.1 to be considered a replacement for the 
SME.
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S9 of the online supplementary materials provides recommendations for how these values 

should be reported for several common ERP experimental designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example ERP waveform without noise (A) and with substantial high-frequency noise (B). 

High-frequency noise adds significant variability to measurements of peak voltage (indicated 

by the red circles). However, it has relatively little effect on time-window mean amplitude 

measures (e.g., the mean voltage from 300–500 ms).
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Figure 2. 
Graphical depiction of measurement error and the concepts of precision and bias. The center 

of the bullseye represents the true value that we are attempting to measure (e.g., the true P3 

peak latency for a given participant, which is a theoretical quantity rather than an empirically 

determined value). Each “bullet hole” represents a single attempt to measure that value (e.g., 

the P3 peak latency observed in an averaged ERP waveform from that participant in a single 

recording session). A measure of an underlying value is precise to the extent that the values 

are similar across repeated attempts to measure the value (e.g., similar P3 latency values in 

averaged ERP waveforms recorded from the same participant in multiple sessions). A metric 

of precision therefore indicates the spread of values that would be expected across multiple 

measurement attempts. By contrast, bias reflects the extent to which the average across 

values is near the true value. A measurement procedure can be biased or unbiased 

independently of whether it is precise or imprecise. The present measure of data quality 

focuses solely on precision. Adapted with minor formatting changes from Brandmaier et al. 
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(2018, https://doi.org/10.7554/eLife.35718.002) under the terms of a Creative Commons CC 

BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
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Figure 3. 
Empirical approach to estimating the standard error of the mean (SEM) for the height of US 

women (A and B) and the peak amplitude of the P3 wave in the averaged ERP from a single 

subject (C and D). (A) In this example, mean height is obtained from a sample of 100 

individuals in a given study. The study is repeated 10,000 times, and the frequency 

distribution of these 10,000 mean height values is shown (which is the sampling distribution 

of the mean height). Most of the sample means are close to the population mean 

(approximately 163 cm), but there is some variability. (B) Same as (A) but with samples of 

25 people instead of 100 people. These means are more variable than those obtained with 

samples of 100 people. (C) Extension of the same principle to the P3 peak amplitude of a 

single participant, measured from an averaged ERP waveform based on 100 trials. The 

session is repeated 10,000 times, and the P3 peak amplitude is measured from the averaged 

ERP waveform for each repetition. Most of the measured amplitude scores are near the true 

score (10 μV), but there is some variability. (D) Same as (C) but with an ERP waveform 

created by averaging together 25 trials instead of 100 trials. The resulting P3 amplitude 

scores are more variable than those obtained with averages of 100 trials. In each of these 

four examples, the standard error ((SEM) ^) is estimated by taking the standard deviation of 

the 10,000 values in the sampling distribution.
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Figure 4. 
Example of the single-trial EEG epochs and corresponding averaged ERP waveforms from a 

single participant in an oddball experiment. Only a subset of the single-trial EEG epochs are 

shown. The blue boxes indicate the period used to compute the time-window mean 

amplitude (300–500 ms). This score is ordinarily obtained from the averaged ERP 

waveforms. The SME for this score is computed by obtaining the score from the single-trial 

EEG epochs and applying Equation 1.
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Figure 5. 
Example of scoring the time-window mean amplitude or the peak amplitude from single-

trial ERP epochs or from an averaged ERP waveform. Five single-trial EEG epochs are 

shown, along with the average of these 5 epochs. The time-window mean amplitude and 

peak amplitude measures were obtained (using a time window of 300–500 ms) from each 

single-trial epoch and also from the averaged waveform. The mean of the time-window 

mean amplitudes from the five individual trials is identical to the time-window mean 

amplitude measured from the averaged waveform. However, the mean of the peak 

amplitudes of the five EEG epochs is not the same as the peak amplitude of the averaged 

waveform.
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Figure 6. 
Example of measuring P3 peak latency using bootstrapped ERP waveforms from a single 

participant. There were 80 standard trials and 20 oddball trials, and (A) shows the averages 

of these 80 standards and 20 oddballs. Averages created from two bootstrap iterations are 

shown in (B) and (C). For each bootstrap iteration, 80 trials were selected at random with 

replacement from the set of 80 standards, and 20 trials were selected at random with 

replacement from the set of 20 oddballs. The peak latency is shown for each averaged ERP 

waveform.
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