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bUniversity of North Carolina at Chapel Hill, Chapel Hill, NC
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Abstract

We develop a multivariate analysis of brain anatomy to identify the relevant shape deformation 

patterns and quantify the shape changes that explain corresponding variations in clinical 

neuropsychological measures. We use kernel Partial Least Squares (PLS) and formulate a 

regression model in the tangent space of the manifold of diffeomorphisms characterized by 

deformation momenta. The scalar deformation momenta completely encode the diffeomorphic 

changes in anatomical shape. In this model, the clinical measures are the response variables, while 

the anatomical variability is treated as the independent variable. To better understand the “shape—

clinical response” relationship, we also control for demographic confounders, such as age, gender, 

and years of education in our regression model. We evaluate the proposed methodology on the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline structural MR 

imaging data and neuropsychological evaluation test scores. We demonstrate the ability of our 

model to quantify the anatomical deformations in units of clinical response. Our results also 

demonstrate that the proposed method is generic and generates reliable shape deformations both in 

terms of the extracted patterns and the amount of shape changes. We found that while the 

hippocampus and amygdala emerge as mainly responsible for changes in test scores for global 

measures of dementia and memory function, they are not a determinant factor for executive 

function. Another critical finding was the appearance of thalamus and putamen as most important 

regions that relate to executive function. These resulting anatomical regions were consistent with 

very high confidence irrespective of the size of the population used in the study. This data-driven 

global analysis of brain anatomy was able to reach similar conclusions as other studies in 

Alzheimer’s Disease based on predefined ROIs, together with the identification of other new 

patterns of deformation. The proposed methodology thus holds promise for discovering new 

patterns of shape changes in the human brain that could add to our understanding of disease 

progression in neurological disorders.
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1. Introduction

Recently, there has been widespread interest within the neuroimaging community about 

machine learning and shape analysis techniques. This has provided effective tools for 

learning patterns in morphological shape changes occurring in the human brain during 

healthy aging and disease progression. Some of these studies exhibit potential for prognosis 

and prediction of neurological diseases. Traditional brain imaging studies have used the 

brain anatomy as the outcome variable and have correlated changes in the brain anatomy to 

age, gender, and cognitive status. However, only recently, there have been very few attempts 

that try and predict cognitive function from brain MRI, specifically to determine the extent 

to which changes in the brain anatomical structure account for the variance of cognitive 

function in normal aging and Alzheimer’s disease.

Alzheimer’s disease is a neurological disorder that is characterized by severe cognitive 

decline and distinctive neuroanatomical shape changes. Cognitive decline is measured by 

clinical tests for neuropsychological function. The complex and subtle shape changes that 

occur during disease progression can be extracted from structural information available in 

MR brain images. In previous work, Large Deformation Diffeomorphic Metric Mapping 

(LDDMM) has been used for the characterization of anatomical changes associated with 

various diseases [Ashburner et al. (2003); Twining and Marsland (2003); Miller et al. 

(2005)], including the analysis of changes in anatomy with normative aging [Davis et al. 

(2007)]. Most of the earlier studies on characterization of neuroanatomical changes have 

focused on the statistical analysis of deformation maps, either using the associated Jacobian 

of the transformations, as in the now ubiquitous deformation-based morphometry 

[Ashburner et al. (1998); Mechelli et al. (2005)], or have done the analysis directly on the 

displacement maps. Most of the recent studies using large deformation diffeomorphic 

transformations have focused on the characterization of group differences in the shape of 

specific substructures, such as the hippocampus [Wang et al. (2007)]. In another substructure 

focussed study, Miller et al. (2012) performed statistical analysis on surface-based 

deformation markers to characterize differential atrophy in amygdala between the mild 

cognitive impairment (MCI) and the AD group. More recently, Li et al. (2012) studied 

variety of sparse regression methods on summary measures derived only from left and right 

hippocampus, such as volumes and surface deformations of hippocampi.

In this article, we present a multivariate analysis of diffeomorphic transformations of the 

whole brain for relating complex anatomical changes with neuropsychological responses, 

such as clinical measures of cognitive abilities, audio-verbal learning, logical memory, and 

measures of executive functions. Rather than using the associated Jacobian of 

transformations or the vector-valued velocity or deformation fields, we formulate the 

regression problem in terms of scalar initial momenta maps that completely encode the 
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geodesics on the manifold of diffeomorphisms. Deformation momenta are a scalar-valued 

signature that summarize the complete shape variability information for an individual 

[Vialard et al. (2011)]. The scalar momenta are comprised of both the local divergence and 

curl components of associated deformation fields and not only the local scaling represented 

by the Jacobians. We use kernel Partial Least Squares (kernel PLS) to study covariance of 

the anatomical structures in the entire brain volume without any segmentation or a priori 

regions of interest identification. The methodology helps us extract and identify shape 

deformation patterns in brain anatomy that relate to observed clinical scores depicting 

cognitive abilities. Furthermore, this regression scheme under the LDDMM framework 

enables us to visualize and quantify the amount of localized shape atrophy observed and 

relate it to attenuation in neuropsychological response. Another interesting question about 

the interpretation of relationship between variables in regression concerns the confounding 

effect of extraneous variables, which may lead to false interpretation in the statistical 

analysis. Frank (2000) gives a comprehensive account of such issues. Since we attempt to 

understand the “neuroanatomical shape—neurological response” relationship, this 

particularly is of considerable importance for our shape analysis and regression modeling. 

Both the anatomical shape and clinical response are well known to be affected by several 

demographic variables. We formulate a modeling approach that takes into account a control 

for these variables in order to avoid spurious interpretations of our results. We also report the 

prediction accuracy to understand the stability of the model and find the results comparable 

to some of those reported in previous attempts. Our results also show that anatomical 

measures, such as cortical thickness, hippocampal volume and atrophy in amygdala, 

putamen and thalamus emerge naturally as in previous studies of Alzheimer’s and related 

dementia.

The details about some of the closest works to this study are covered in the next section. We 

detail the specifics of our proposed methodology in Section 3. Section 4 details about our 

extensive experiments with the ADNI data and comparisons with other regression 

methodologies such as Relevance Vector Regression (RVR). Analysis of stability of the 

regression estimates and applications to multi-modal image analysis using our proposed 

method are also presented in this section. Finally, we summarize and conclude with the 

discussion about the scope and the impact of this study to neuroimaging community in 

Section 5.

2. Related Work

Several studies have used machine learning methodologies to predict cognitive and disease 

states from neuroimaging data. Some of these works in Alzheimer’s disease are by Vemuri 

et al. (2008), Davatzikos et al. (2008), Fan et al. (2008), Cuingnet et al. (2011), Zhang et al. 

(2011) and Li et al. (2012) (see Weiner et al. (2012) for detailed review on this ongoing 

research). Vemuri et al. (2008) used linear support vector machines (SVM) to build 

classifiers to discriminate Alzheimer’s disease from cognitively normal patients using tissue 

densities extracted from structural MR brain images. In another study, Davatzikos et al. 

(2008) used high-dimensional pattern classification to develop efficient classifiers on a 

smaller cohort comprising of individuals with AD and frontotemporal dementia (FTD). 

Disease categorization between AD and FTD was performed based on features summarizing 
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the amount of gray matter and white matter in brain tissues. Extensive analysis is presented 

in Cuingnet et al. (2011), summarizing disease categorization performances of classifiers 

targeting primarily the classification between AD, MCI (convertors and non-convertors) and 

control groups. This study evaluates multiple feature extraction methodologies such as voxel 

based summaries, cortical thickness and the hippocampus volume. Zhang et al. (2011) 

proposed a multi-kernel method to combine both structural and functional imaging 

modalities and evaluated their method on the classification of MCI group. Batmanghelich et 

al. (2013) have recently developed approximate inference algorithm to solve probabilistic 

models based on classification of disease phenotypes: AD, MCI and healthy controls, 

utilizing features derived from both the structural MRI as well as from genetic sequences in 

the form of single nucleotide polymorphisms (SNPs). However, this framework in its current 

form, is also not generalizable to regression with continuous clinical variables.

While many of above studies involve categorical classifications of disease, regression-based 

predictive analysis of continuous clinical measures have been given little attention. 

Modeling symptomatic measures of neuropsychological response as a function of anatomy 

has recently found increasing interest within the neuroimaging community. The progression 

of disease associated with aging such as the AD is characterized by gradual and continuous 

changes. Thus, regression analysis using continuous clinical response variables is a natural 

choice and more informative of disease progression than just the classification-based 

approach for the study of such neurological disorders. Cohen et al. (2011) give a 

comprehensive review of such techniques and covers a gamut of studies that relate 

continuous clinical variables with neuroimaging data in various neurological disorders. 

Another review article by Filipovych et al. (2011) also suggests the use of clustering-based 

approaches for categorical analysis and high-dimensional pattern regression approaches for 

understanding continuous clinical progression.

Some of the works to predict neuropsychological characteristics from imaging data in 

Alzheimer’s disease are from Duchesne et al. (2009) and more recently by Stonnington et al. 

(2010) and Wang et al. (2010). Duchesne et al. (2009) have used linear regression models on 

features derived from MRI data to predict clinical decline for the Mild Cognitive Impairment 

(MCI) disease group. The latter two works, however, are more closely related and 

comparable to our study. They have considered a continuum of disease states in Alzheimer’s 

and have used similar predictive modeling on the ADNI neuroimaging and 

neuropsychological data. For comparison, we report the correlation of predicted vs. actual 

value for test data (rtest) in leave-one-out cross-validation as reported in these studies. 

Stonnington et al. (2010) employed Relevance Vector Regression (RVR) techniques on the 

ADNI baseline MR scans and baseline clinical evaluation scores for a continuum of disease 

states, with the similar datasets as has been used in this study. They reported the best 

numbers for prediction to be around rtest = 0.48 for mmse (Mini Mental State Examination 

score). The estimated prediction accuracy using leave-one-out cross validation obtained in 

our work is: rtest = 0.52 for mmse (rtest = 0.53 after control for confounders). Wang et al. 

(2010) have employed regional-based clustering approach on tissue density maps (TDM) for 

feature selection, followed by RVR based bagging model. Although they report higher 

correlation, Wang et al. (2010) used only a subset of the baseline MRI scans from ADNI, 
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and their response variable was the average clinical score over timepoints. We perform a 

detailed comparison of our results with these related works in Section 5.

Deformation momenta have been previously used for statistical analysis. Singh et al. (2010, 

2012) used scalar deformation momenta to build models to explain covariance of shape and 

clinical data in the form of latent directions extracted in the two spaces but did not develop 

models summarizing functional relationship between anatomy and clinical variables. These 

models hence were not directly applicable for the prediction of continuous clinical response. 

Besides neuroimaging, momenta under the currents framework have been used as summary 

measure of shape changes in a cardiac study. Mansi et al. (2011) evaluate the regional 

impact of valve regurgitation and heart growth upon the end-diastolic right ventricle (RV) 

using shape changes summarized by deformation momenta. With the motivation of 

addressing problem of multicollinearity in high dimensional regression problem this work 

also employs partial least squares regression and reports improved predictions when 

compared to using principal component analysis (PCA) regression. This work applies the 

PLS method on moments using L2 scalar product between moments which is ill-defined. 

The regression coefficient thus obtained does not have a strict interpretation within the 

metric space of momenta and hence such an L2 based analysis is not intrinsic to the 

manifold.

Some of the other works that have recently provided more insights in the understanding of 

Alzheimer’s disease dynamics include those by Lorenzi et al. (2011), Lorenzi et al. (2012) 

and Niethammer et al. (2011); Hong et al. (2012). Lorenzi et al. (2011) have developed a 

hierarchical approach that combines subject specific tissue atrophy to obtain population level 

longitudinal changes. This framework is used to investigate the effects of positivity of CSF 

Aβ1–42 levels on brain atrophy in healthy aging. In the work that followed, Lorenzi et al. 

(2012) suggest a methodology to decompose individual’s brain atrophy into complementary 

components comprising of AD specific and healthy aging based on the projections defined 

under stationary velocity fields (SVF) framework. Niethammer et al. (2011) proposed a 

novel idea of generalizing the notion of least squares regression to manifold of 

diffeomorphisms that is effective in summarizing changes in atrophy along with age for a 

single individual. Hong et al. (2012) further extend geodesic regression to derive an 

approximate algorithm under metamorphosis framework. This method of geodesic 

regression, in its current form, is generally applicable to explaining atrophy with aging. The 

anatomical shape is treated as a response variable to independent aging progression. These 

methods are not applicable where neuropsychological characteristics are sought to be 

modeled as a functions of anatomy.

The focus of pattern recognition and machine learning methods for both classification and 

regression analysis in recent neuroimaging studies has primarily been to predict. Even 

though these approaches were able to extract and visualize the pattern-maps of brain atrophy 

that are most informative for prediction, none of the above studies answered questions about 

interpretation of the model in a way that would enable them to quantify the amount of 

anatomical shape changes. Our goal here is centered around quantifying the shape 

deterioration observed in brain tissue that would explain continuous clinical progression. An 

important statistical consideration towards this end is the need to control for the confounding 
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variables, such as age, gender, handedness, and patient education. Previous predictive-

modeling approaches have not included any explicit control for such confounding variables 

and does bring into question the biological interpretability of the patterns recognized by the 

regression coefficients obtained in these approaches. We address this by formulating a 

regression model between the residual in deformation momenta and residuals in clinical 

response, obtained after regressing out confounders such as age, gender, and education.

3. Methods

The focus of this work is to build regression models to study nonlinear geometry changes in 

the complex anatomy of human brain. In our proposed methodology, we use deformation 

momenta as signature representations of infinite dimensional diffeomorphic shape changes. 

Geometric regression models on brain anatomy using deformation momenta are formulated 

as kernel variants of high-dimensional regression methods such as the partial least squares 

(PLS) or the relevance vector regression (RVR). We further discuss the geometrical 

interpretation of regression estimates on the manifold of diffeomorphisms (Figure 1). Figure 

2 summarizes the key steps of this regression modeling.

3.1. Atlas building and deformation momenta

We use the general framework of computational anatomy by Dupuis et al. (1998) in which 

the anatomical variation within a population is characterized by a template or an atlas and 

the space of transformations that maps the atlas to each individual subject of the population. 

We follow the now well-established framework of large deformation diffeomorphic 

transformations. We briefly review the mathematical framework as it is central to the 

subsequent statistical analysis. Let Ω be the coordinate space of the atlas. Diffeomorphic 

transformations are continuously differentiable with a differentiable inverse. This definition 

implies that the set of all diffeomorphisms of Ω has a group structure. A convenient and 

natural machinery for generating diffeomorphic transformations is by the integration of 

ordinary differential equations (ODE) on Ω defined via the smooth time-indexed velocity 

vector fields v(t, y) : (t ∈ [0, 1], y ∈ Ω) → ℝ3. The function ϕv(t, x) given by the solution of 

the ODE  with the initial condition y(0) = x defines a diffeomorphism of Ω. In 

other words, y(t) denotes the path of each voxel along the flow while x denotes the starting 

location in the coordinate grid, Ω. Thus, ϕv(t, x) = y(t), represents the diffeomorphism of the 

entire grid as a function of time, t. One defines a Riemannian metric on the space of 

diffeomorphisms by inducing an energy via a Sobolev norm with the partial differential 

operator L on these velocity fields. The distance between the identity transformation and a 

diffeomorphism ψ is defined as the minimization

(1)

The distance between any two diffeomorphisms is defined as d(ϕ, ψ) = d(id, ψ ∘ ϕ−1).

This Riemannian metric defined on the space of diffeomorphisms can now be used to 

compute a deformation that matches two images. If the problem is to register an image I 
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over the target image J, then image at time t is defined as  , i.e., I0 = I. The goal is 

to generate the diffeomorphism ϕ parameterized by the ‘optimal’ time-varying velocity field 

v that best aligns It with J.

It has been shown in Miller et al. (2002); Miller and Younes (2001) that the distance metric 

in Equation (1) on diffeomorphisms also establishes the notion of distance between two 

anatomical images, I and J. The length of the shortest path on diffeomorphisms connecting 

images I to J defines a metric on the image orbit under the group action of diffeomorphisms. 

For exact matching where I ∘ ϕ−1 = J, the distance between images is written as,

(2)

Motivated from the above, for inexact matching, a penalization to force closeness of the 

match is usually added [Miller et al. (2002); Miller and Younes (2001)] resulting in the 

minimization problem:

(3)

where σ is a free parameter controlling the tradeoff between exactness of the match and 

smoothness of the velocity fields. The existence of a minimizer in Equation (3) is shown in 

Dupuis et al. (1998).

3.1.1. Shooting-based Image Matching and Deformation Momenta—The 

minimizer in Equation (3) solves the LDDMM image matching problem. An important 

consequence is that the Euler-Lagrange equations associated with the LDDMM problem 

coincide with the Euler-Lagrange equations of geodesics on the group of diffeomorphisms. 

As shown in Younes et al. (2009), the geodesic equations are completely determined via the 

initial momenta Lv0, and furthermore it is in the direction of the gradient of deforming 

image. The vector image, α0 ∇ I (or the scalar image, α0) is referred to as the initial 

momenta. The scalar quantity, α0 completely encodes the geodesic flow from the initial 

image to the final image for the metric defined by the choice of operator L as per Equation 

(1) and the gradient of the initial image, ∇ I.

A very effective and standard algorithm for the solution of above LDDMM problem was 

proposed by Beg et al. (2005). While the energy minimization of (v) over v is efficient in 

matching complex shapes, at convergence, this algorithm does not yield accurate estimates 

of the initial momenta. Vialard et al. (2011) has suggested another algorithm to accurately 

estimate the initial momenta. This shooting algorithm optimizes directly on scalar initial 

momenta by solving the adjoint system of Hamiltonian equations.

The minimization of the functional in Equation (3) can be done efficiently by ensuring the 

accuracy of estimated initial velocity, and thus the initial momenta, when the optimization is 
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carried over the set of geodesic flows as in Vialard et al. (2011). The time integral over 

velocity can be replaced by the Hamiltonian of the system at t = 0 expressed in terms of 

initial momenta, α(0). This leads to minimization of the functional, (a(0)) over initial 

momenta:

(4)

subject to the geodesic evolution constraints given by:

(5)

(6)

(7)

Equation (7) is the infinitesimal action of the velocity field v on the image, while (6) is the 

conservation of momenta.

The gradient for energy functional in (4) is expressed in terms of time-dependent Lagrangian 

multiplier over the path of geodesics. The gradient of  is given by:

(8)

α̂(0) is computed by solving the following system of adjoint equation by backward time-

integration:

(9)

(10)

(11)
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subject to initial conditions

and α(t) and It are the solution of the system of shooting equations (5)–(7). Thus, to estimate 

α(0) for matching image I to target image J, a gradient descent based iterative algorithm is 

implemented. Since the gradient of energy functional as per Equation (8) is dependent upon 

the values of the adjoint variable, α̂(0) at t = 0, the Equations (9) to (11) are integrated 

backward in time in every iteration. Thus, the gradient descent step on initial momenta is 

taken based on computed gradient of energy as per Equation (8) using these adjoints until 

convergence.

3.1.2. Atlas Construction—The empirical estimate of Fréchet mean of images, Ī can 

now be presented using the distance metric on images defined in Equation (2). The goal is to 

compute the unbiased atlas image, Ī that minimizes the sum of squared distances to the given 

population of images (Joshi et al. (2004)). Given a collection of anatomical images {Ii, i = 1, 

···, n}, the atlas can be defined as a solution to the minimum mean square energy criteria,

The minimum mean squared energy atlas construction problem is that of jointly estimating 

an image Ī and n individual deformations.

The algorithm described in Section 3.1.1 is effective for image matching but is numerically 

unstable when a template estimation is involved. The numerical instabilities of geodesic 

shooting-based template construction algorithms are studied in Singh et al. (2013). The 

problem of instabilities is not well understood and remains a key concern to investigate in 

future. Therefore, we present an alternative method to estimate the atlas and the geodesics 

emanating from it towards each of the contributing images. In our study, the atlas 

construction step is decoupled from the geodesic shooting-based image matching 

optimization because the template construction using scalar deformation momenta is known 

to suffer from numerical instabilities and is difficult to converge to a stable mean image. 

Therefore, for template construction, we have used the standard algorithm mentioned in 

Joshi et al. (2004) that does not involve geodesic shooting based optimization. The accurate 

shooting-based deformation momenta are estimated by solving N image matching problems 

as a secondary step. Following is the two-step approach used in this study to estimate 

deformation momenta that accurately encode geodesics:

1. Estimating the unbiased atlas, Ī using the truncated mean or the least-trimmed 

square minimization as per the framework of Joshi et al. (2004) and
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2. Estimating the initial momenta from this atlas by registering, Ī to all images 

individually using the iterative backward-integration based gradient descent 

algorithm as described in Section 3.1.1.

For the atlas construction step, we note that both the estimate of the mean anatomy and the 

stable convergence of the estimation algorithm can be affected by outliers, often resulting 

from errors during automated image preprocessing such as poor skull-stripping. As the 

number of images used in atlas construction increases, thorough hand-validation of each 

input image becomes prohibitive. To mitigate the effects of such outliers, we compute a 

truncated mean in place of the full mean, where at each iteration of the atlas estimation 

algorithm all deformations are updated, but the estimate of the mean is updated based on the 

current most-central 90% of the deformations using the distance metric, d(Ī, Ik) as per 

Equation (2).

For the second step, atlas image Ī is registered to each image to solve the n LDDMM image 

matching problems thereby resulting in the estimate of n geodesics emanating from the atlas 

towards each image. The geodesic equations are completely determined via the initial 

momenta, Lv0 corresponding to each individual image deformation direction. This implies 

that for each of the n image matching problems, the initial velocity is given by the equation 

. The quantity  completely encodes the geodesic flow from the 

atlas image to each of the individual images, i.e., ’s have all that we need to know to 

traverse the geodesic joining the atlas to the contributing images.

The two-step approach above not only improves the accuracy of the initial momenta 

computation but also decouples the individual subjects by recomputing deformation fields 

from the atlas to individual subjects. This allows separation between training and testing 

data, which is important for prediction-based regression modeling. Another benefit is that 

one can choose any atlas and model the shape variations from any coordinate system of 

choice.

3.2. GPU implementation

Two main challenges exist in implementing the LDDMM atlas building framework: the 

intensive computational cost and large memory requirements. Even with a very low-

resolution time discretization, and efficient multithreaded implementation, atlas generation 

takes lot of time and memory on a high-end, multi-core, shared-memory machine. This 

makes parameter tuning and cross-validation schemes impractical, and limits the size of the 

population for which an atlas can reasonably be generated.

We implemented the GPU version of the algorithm as in Joshi et al. (2004). For a fixed atlas 

image Ī, the n individual deformations are updated by performing a gradient step of (3). This 

is implemented as a parallel alternating algorithm by interleaving the updates of the optimal 

deformations and the estimate of the atlas image Ī. These deformations are completely 

independent of each other, naturally yielding to a distributed memory implementation. 

Further, the parallel nature of many of the image processing algorithms used in the 

deformation update process lend themselves to an efficient and massively parallel GPU-

based implementation. An implementation of LDDMM atlas building for use on a GPU 
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computing cluster was therefore developed, based on MPI and the GPU image processing 

framework by Ha et al. (2009). Individual deformation calculations are distributed across 

computing nodes, and nodes further distribute deformation calculations among GPUs. In this 

manner, the only inter-GPU and inter-node communication required is in the atlas update 

step. Inter-GPU atlas computation is done in host (node) shared memory, and inter-node 

atlas computation is efficiently done by a parallel-reduce summation MPI call.

The GPU cluster used consists of 64 8-core computing nodes and 32 NVIDIA Tesla s1070 

computing servers, each containing four GPUs. Each node controls two of the four GPUs 

contained in a s1070. Using 55 nodes of the GPU cluster, the resulting implementation 

generated the atlas of the population of 566 brain images with much higher time 

discretization in under 40 minutes.

3.3. Partial Least Squares (PLS) on manifold

The statistical analysis pertaining to data configuration with high dimensions but a small 

number of observations has been referred to as a ‘high dimensional low sample size’ 

(HDLSS) [Hall et al. (2005)] problem. This has also been popular in the probability and 

statistics literature as the ‘small n large p’ problem (Portnoy (1984), Bai and Yin (1993)). 

This characteristic property is typical to the neuroimaging data where the dimensionality of 

the acquired images far outpaces the number of subjects in the study. The statistical 

technique of Partial Least Squares (PLS) has been shown to be effective in the HDLSS 

regression setting where the problem is particularly susceptible to multicollinearities. There 

are several variants of PLS both for univariate and multiple response setting (Phatak and 

Jong (1997), Boulesteix and Strimmer (2007)). We review the PLS regression problem under 

the Euclidean setup and adopt this technique to model the regression in the tangent space of 

the manifold of the group of diffeomorphisms acting on images.

The PLS regression is a supervised dimensionality reduction technique based on a latent 

decomposition model. This is done by extracting a small number of latent components or 

projection scores that are linear combinations of the original variables to avoid 

multicollinearity. Unlike Principal Component Regression (PCR) [Jolliffe (1982)], where the 

dimensionality reduction of the data is carried out independent of the response variable by 

maximizing the variance within the regressors alone, PLS models the regression by 

maximizing the covariance between the regressors and response. The latent components are 

extracted in the independent and dependent data spaces such that the covariance between the 

two is maximum.

We discuss here the formulation of regression modeling to predict q-dimensional response 

variable, y1, y2 ···, yq represented by a vector y, using p predictor variables, x1, x2, ···, xp 

represented by a vector x. If we denote the n observations as (xi, yi)i=1, ···, n, the data matrices 

X and Y can be formulated as:

The matrix X is n × p where n ≪ p and the matrix Y is n × q.
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PLS decomposes the matrices, X and Y into latent components of the form:

(12)

where T and U are the matrices of extracted scores while the matrices P and Q represent the 

loadings. The matrices E and F are the error matrices respectively. In its classical form, PLS 

method is based on the nonlinear iterative partial least squares (NIPALS) algorithm due to 

Wold (1975) which solves the following optimization problem to estimate weight vectors w 
and c:

subject to wT w = 1, cT c = 1. The cov(t, u) denotes the sample covariance between score 

vectors, t and u. The above optimization problem can be solved by the Singular Value 

Decomposition (SVD) of the matrix XT Y by using the square root transformation resulting 

in the equivalent formulation:

(13)

subject to wT w = cT c = 1. NIPALS algorithm, based on similar principles as the power 

method, is a robust procedure for solving singular valued decomposition problems. The 

NIPALS algorithm initializes a random estimate of u and iteratively updates u until converge 

according to the sequence:

1.

2.

3. t = Xw

4.

5.

6. u = Yc

After convergence, the loading vectors, p and q are extracted by regressing out t and u from 

X and Y respectively as per regression equations in (12) using least-squares estimates such 

that:
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The above process for estimation of score and loading vectors is repeated on the rank-one 

deflation of matrices X and Y to compute the successive latent variables. There are several 

variants of PLS algorithm which primarily differ in the deflation step. For this study, we 

focus on the most widely used variant based on the assumption that PLS score vectors, 

 are good predictors of response, Y. This added asymmetry of predictor and response 

is encoded in the deflation scheme such that the component of the regression of Y on t is 

removed from Y at each iteration of PLS:

(14)

The regression problem for PLS can also be written in the form that relates the input data 

matrices X and Y as:

where B is the regression coefficient and F is the error matrix. The matrix B is of the form:

As derived in Rosipal and Trejo (2002) using the relations between W, T, U and P from 

Manne (1987), Höskuldsson (1988) and Rännar et al. (1994), the expression for B takes the 

form:

(15)

Notice that in this resulting expression, B, a) depends upon the data inner product matrix 

XXT and b) is invariant of scalings of score vectors in matrices T and U.

3.3.1. Kernel Partial Least Squares Regression—The kernel version of PLS 

algorithm as in Rosipal and Trejo (2002) attempts to find the relationship between 

datablocks when the dependent variable, xi is an element of the Reproducing Kernel Hilbert 

space,  equipped with the inner product. The goal is to formulate the PLS model in the 

Hilbert space, . We denote the matrix of inner products (Gram matrix) of the data points in 

 as G. The NIPALS algorithm described above can be extended to use this inner product 

matrix, G of the data points. This can be seen by merging steps 1 to 3 to give the following 

algorithm:

1. t = Gu

2.

3. c = YTt

4.
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5. u = Yc

6.

Similar to the deflation Equation 14 for the Euclidean case, the deflation of Gram matrix, G 
can be written as:

Moreover, we can write the regression coefficient for the regression with kernel Gram 

matrix, B̃ as:

(16)

For prediction on the test data we need to get the Gram matrix for test data that comprises of 

the inner products of test data points with the training data points. Also, the estimate of B as 

in Equation (15) can be obtained by linear combination of input data points i.e., the B = XT 

B̃.

3.3.2. On the manifold of diffeomorphisms—We utilize this machinery provided by 

the kernel PLS methodology and extend this idea to regression on a manifold (Figure 1). We 

do this by incorporating the innerproduct structure of the manifold of diffeomorphisms into 

the PLS framework. Given the Fréchet mean atlas of the image ensemble, the initial 

velocities ( , i = 1, ···, n) and corresponding initial momenta ( , i = 1, ···, n) for all 

contributing images defined in the tangent space at the atlas obtained as a consequence of 

solving the LDDMM energy minimization problem, we can construct a kernel formulation 

of the PLS algorithm.

The Sobolev operator mentioned in Section 3 which also relates to deformation momenta 

(Section 3.1.1) as Lv = −α ∇ I, defines the kernel function for the mapping. Here, L is the 

self-adjoint differential operator of the form:

(17)

where the first two terms controls the smoothness of the registration while the last term 

ensures the invertibility of the operator. These operators are borrowed from the theory of 

fluid mechanics and were introduced in image registration by Christensen et al. (1996). 

Holden (2008) review the class of such operators for fluid image registration in detail. The 

compact self-adjoint smoothing operator, K is thus related to operator L as:
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For a pair of geodesics emanating from the atlas towards each image, we can compute the 

inner product between initial velocities  and  in the tangent space at the atlas and relate it 

to the inner product between initial momenta as:

(18)

Now, if we were given only the initial deformation momenta,  and  and the common 

gradient image ∇ I, we represent this inner product between a pair of initial deformation 

momenta as:

(19)

where V* represents the space of deformation momenta.

As detailed in Section 3.3.1, for the kernel extension of the PLS formulation, the space,  is 

the Hilbert space of momenta maps, V* equipped with the inner product defined by Equation 

(18). The initial momenta,  capture the shape variations from the atlas in the form of the 

geodesic direction it encodes.

Now, we define the anatomical shape vs. clinical response regression on the manifold of 

diffeomorphism (in the space of momenta maps, V*). Specifically, the problem is to find a 

direction governing the geodesic flow that predicts the clinical response y. For single clinical 

measure represented by a univariate response variable, y, this can be modeled as per the 

regression set up:

(20)

for a given geodesic characterised by the initial momenta α0. Note that α0 ∈ V* is an initial 

momenta map image for the geodesic corresponding to the regressor shape data and y the 

univariate dependent response. βα ∈ V* is the regression coefficient that needs to be 

estimated under the PLS formulation. We use the subscript α with the regression coefficient 

to emphasize that it represents a deformation momenta map. To solve this, projection 

operations in the PLS formulation must all be carried out in the tangent space using the 

Sobolev inner product in the space of momenta as per Equation (19). We further define βα 

as a linear combination of input data points, , i = 1, ···, n and represent:

(21)

The regression problem in (20) becomes:
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This implies that the regression is formulated using only inner product evaluations of the 

input data points. Further, the kernel PLS algorithm can be written entirely in terms of the 

kernel Gram matrix G of inner products between all data points in vector space 

V*. For solving this kernel PLS problem, we use the kernel algorithm presented in Section 

3.3.1. Given the initial momenta maps for each individual, we can compute the Gram matrix, 

G of Sobolev innerproducts on the tangent space pairwise for all geodesics. The kernel PLS 

performed up to l latent vectors yields the estimate of β̃ which can then be transformed to 

βα, into the space of initial momenta using (21), and interpreted as a scalar momenta map 

image representing a geodesic direction for this regression.

We also note that this framework extends naturally for multivariate response using the kernel 

PLS when q > 1. This implies that we learn multiple clinical tasks simultaneously for 

prediction as per the kernel PLS formulation in Section 3.3.1. However, for multivariate 

response there in no direct interpretation of the regression coefficient, B on the manifold of 

diffeomorphisms without ignoring the correlations within the dependent outcome variable. 

The following section covers the details about interpretation of the PLS and the regression 

coefficient in the tangent space for univariate response.

3.4. Interpreting β: quantifying shape changes

To quantify the local anatomical deformations corresponding to the evolution of the atlas for 

changing clinical response, we interpret the regression coefficient as the direction governing 

the geodesic flow that best predicts the clinical response y.

In matrix notation, the inner product can be interpreted as:

where

and αi are vectorized into momenta ai for computations in matrix notation.

Note that  is never computed since the kernel algorithms utilize the pre-computed Gram 

matrix, G of innerproducts.

The regression problem in (20) can be written for training and test data in matrix notation as:
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where βa is the vectorized form of the regression coefficient βα (in image domain). Since, 

PLS gives the solution estimate β̃PLS to: ytest = Gtest β̃PLS +ε, or equivalently for the 

problem: , we have,

Here, the matrix Atrain is the matrix of all initial momenta for the training data (ai’s) 

augmented row-wise. The βa vector can further be converted back to the momenta map 

image, βα.

The regression coefficient, βα thus obtained lies in the space of momenta. βα can be 

interpreted as the initial momenta for the atlas image corresponding to a particular geodesic. 

Moreover, the direction represented by the initial velocity, vβ corresponding to initial 

momenta βα (obtained from the evolution EPDiff equation: Lv0 = −α ∇ I) is the direction 

for the geodesic flow, the magnitude of which can be interpreted as quantifying the units of 

the response variable with respect to units of deformation. Moving along the geodesic 

direction represented by βα, the response variable y can be directly related to the amount of 

deformation. We can shoot with βα to quantify change in response y per unit of deformation 

corresponding to the initial momenta for regression. Traveling along this geodesic, the atlas 

deforms along the direction of clinical progression and the distance traveled is related to the 

change in clinical response. Since the inner product (Equation (19)) is linear, this 

interpretation is analogous to the way we talk about regression coefficients as slope in 

classical linear regression.

4. Results

We performed a comprehensive analysis of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database for the baselines. The results section details our extensive study on the 

structural Magnetic Resonance Image (MRI) and clinical data from ADNI. The next section 

(4.1) begins with a description of the ADNI data. Section 4.2 explains the pipeline of our 

methodology. Section 4.3 reports the detailed analysis of the results of our method including 

the stability of regression estimates using bootstrap. We further report results of our 

proposed method on prospective applications such as prediction of rate of cognitive decline 

and multi-modal image analysis for detection of individuals at high risk of developing AD in 

Sections 4.4 and 4.5.

4.1. DATA: MRI and Clinical Variables

All the baseline and screening T1 weighted, bias-field-corrected and N3 scaled structural 

Magnetic Resonance Images were downloaded from the ADNI. The brainmasks for skull 

stripping and Talairach transforms that had passed ADNI QA were also retrieved and 

matched against the images. The corresponding neuropsychological data was also 

downloaded from ADNI. We included only the subjects for which the clinical scores were 

recorded within 3 months of their MRI scans. The above filtering procedure from the ADNI 

database resulted in a total of 566 subjects. The population of subjects downloaded primarily 
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consisted of three diagnostic groups: Healthy Individuals or Normals (NL, N=153), Mild 

Cognitive Impairment (MCI, N=265) and Alzheimer’s Disease (AD, N=132) and 16 

subjects without any diagnosis information. In this paper we consider the AD, MCI and NL 

subjects as a continuous class rather than discrete classes.

We used thirteen global cognitive and functional assessment test scores for the analysis 

(Table 1). The first two were variants of the modified Alzheimer’s Disease Assessment Scale 

modified cognitive battery (adas-cog) a) One that includes delayed word recall and number 

cancellation (adastotalmod); and b) The other that does not include delayed word recall and 

number cancellation (adastotal11). The next two were the Mini Mental State Examination 

(mmse) and the Clinical Dementia Rating scale, Sum of Boxes (cdrsb). Episodic memory 

was assessed using the Rey Auditory Verbal Learning Test (AVLT) and the Logical Memory 

test of the Wechsler Memory Scale-Revised. Both memory tests had immediate recall 

(avlt.imm, logic.imm) and 30 minute delayed recall (avlt.del, logic.del). Boston Naming Test 

score (bnt) is also included. Note the AVLT used the immediate recall after the 5th learning 

trial. The tests for executive functions: Trail Making Test (trailsA & trailsB), constructional 

ability: Clock Drawing Test (clock), and working memory: Digits Span Forward Test (digit) 

were also considered. Preprocessing the MRI involved skull stripping and registration to 

Talairach coordinates using Freesurfer [Dale et al. (1999)] as a part of ADNI preprocessing 

pipeline. We performed the tissue-wise intensity normalization for white matter, gray matter, 

and cerebrospinal fluid using the expectation maximization (EM) based segmentation 

followed by the histogram matching for each region.

4.2. Procedure

Figure 2 summarizes the key steps of our regression modeling framework. It starts from 

preprocessed MR brain images and follows three steps of processing. (A) The first step 

computes a stable and unbiased atlas and estimates the geodesics emanating from this 

estimated atlas towards each subject. This is analogous to shape feature-extraction such that 

the estimated initial deformation momenta are compact representations of anatomical shape 

variations corresponding to each subject.

(B) We compute the Gram matrix of pairwise inner products and solve the regression model 

for shape–clinical response regression using kernel PLS or kernel RVR to give the estimate 

of the regression coefficient that encodes a geodesic direction. (C) Finally, we deform the 

atlas image and segmented ROIs from the atlas along this estimated geodesic via geodesic 

shooting to quantify the amount of shape deformations.

PLS and RVR both work on the kernel Gram matrices of size N × N, where N is the number 

of subjects in the study. Thus, the running time of the entire procedure is dominated by the 

deformation momenta estimation step, Block A, that works on all p voxels of the image. 

Each gradient descent iteration for momenta computations involves forward integration of 

shooting equations (5)–(7) followed by backward integration of adjoint equations in (9)–

(11). These set of equations involve gradient and divergence computation operations that are 

linear in p. The integration is domination by convolution with the kernel, K, which is done in 

Fourier domain. Thus, the order of complexity for one gradient descent step for an 
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individual deformation is O(kp log p), where k is the number of intervals of discretized time 

for the integration.

Registration parameters—The registration parameters were fixed a priori in the 

beginning of the analysis. The smoothness and invertibility of deformation fields are 

controlled by the parameters of the fluid operator L as mentioned in Equation (17). In our 

experiments, these parameters are fixed to the standard values of α = 0.01, β = 0.01, and γ = 

0.001. These fluid parameters have been used in previous studies in Davis et al. (2007); 

Singh et al. (2010, 2012) and are known to ensure sufficient smoothness of deformations 

fields for registration of MRI brain images. The parameter σ that controls the trade-off 

between the exactness of the match and smoothness regularity term in Equation (3) was also 

set a priori to the least possible value that ensured successful registration and also resulted in 

smooth and invertible deformation fields. The σ = 1 was selected for the image intensity 

range between [0, 1]. Ten timesteps were used during integration of EPDIFF for forward and 

backward adjoints.

Using the framework discussed in Section 3.1.2, we generated the atlas with the 566 subjects 

on the GPU cluster. To assess the stability of atlas construction, we generated atlases using 

truncated mean with different percentage of outliers removed each time. Figure 3 shows the 

atlas obtained for first two trimming levels. The generated atlases were stable and did not 

change up to 30% of truncation. Thus, as a conservative estimate and with the assumption 

that there are no more than 10% outliers in the preprocessed imaging data, we selected the 

atlas with 10% trimming level. The difference in average image residuals with 10% 

trimming and without trimming was less than 3%. We did the accurate estimation of 

geodesics by computing initial momenta  via registering the atlas to each individual 

subjects MRI by the iterative gradient descent using shooting optimization and backward 

integration scheme as detailed in Section 3.1.1. We evaluated the underlying smooth 

deformations, ϕi corresponding to estimated momenta for stability and invertibility. We 

deformed the atlas forward using the estimated deformation field (ϕ) and the subject’s MRI 

backward using inverse of this deformation field (ϕ−1). The underlying Jacobian images for 

the deformation and the difference images for matching of the deformed images with the the 

corresponding target endpoints were confirmed visually for all the subjects.

Using the inner product (Equation (19)), we performed the kernel-PLS on initial 

deformation momenta with the smoothing kernel against the clinical response variables 

(Section 3.3.2). We assessed the stability of the model by evaluating the accuracy of 

prediction on the regression model using the leave-one- out cross-validation (LOOCV) 

scheme. The atlas, deformation momenta and regression model were recomputed each time 

using only the training data and the resulting regression model was tested on the left-out 

individual. Further, the stability of resulting regression coefficients were evaluated using 

bootstrap experiments. Finally, we quantified the deformations by shooting the atlas using an 

appropriately scaled regression coefficient (Section 3.4). The amount of deformation was 

visualized by overlaying the log of Jacobians of deformations over the atlas achieved at the 

end point of the geodesic. To further evaluate the stability of modeling we also did the 
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regression of initial momenta with clinical variables using RVR. For details about RVR, see 

Appendix B.

We controlled for confounding demographic variables using the regression procedure 

described in Appendix A. Table 2 details the demographic information such as age, gender, 

handedness, and years of education for the population under consideration. The effect of age 

for instance can be seen by visualizing the regression coefficient obtained from the 

regression of shape with age. In this case, we performed the linear regression of initial 

momenta and visualized the regression coefficient by shooting the atlas along the geodesic 

encoded by the coefficient (Figure 15 in Suppl.). Figure 16 (in Suppl.) shows the regression 

of individual clinical variables with demographic variables. In general, the ADAS, MMSE 

score and TrailsA score reported some correlation with years of education with p-values 

0.001, 0.000 and 0.004 (The significance test for correlation (null hypothesis, r = 0) while no 

such trend was observed with age. Table 3 details the residuals in the clinical response 

obtained after regressing out age, gender and education.

To control for confounders, we repeated the PLS and cross-validation analysis with the 

residuals in momenta and residuals in clinical scores; the residuals were from their 

respective regressions with confounding variables. We ensured the training and test data 

separation right at the first step, i.e., the residuals were computed under complete isolation in 

the cross-validation (refer Appendix A).

4.3. Analysis

The goal of our regression analysis is to relate anatomical shape changes and neurological 

response and to quantify the shape changes that are most predictive of clinical decline. Table 

4 reports the correlation of predicted vs. actual value, rtest, for test data in leave-one-out 

cross-validation for two independent regression schemes (PLS and RVR). The table also 

reports comparisons of the analysis done with and without the control for demographics. In 

terms of execution time PLS outperformed RVR for the same input—up to three orders of 

magnitude for all the clinical variables. For detailed analysis, we have focussed on the 

results obtained for regression with adas, mmse and trailsA. This is because the predicted 

adas reported best correlation with actual adas for regression with anatomical shape. The 

mmse score was selected since it reported the best improvement in prediction when 

compared to that reported in previous studies. Similarly, the trailsA test was selected since it 

reported the best numbers within all the regression results of shape with clinical scores for 

test of executive function.

The LOOCV predicted scores vs actual scores correlation plots for adas, mmse, and trailsA 

regression are shown in Figure 4 for PLS with residuals. Together with rtest, we also report 

the slope of correlation fit between actual clinical score and predicted score, m, and the 

normalized root mean squared error of cross-validation (NRMSE). Here,
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4.3.1. Cross-validation accuracies and regression geodesics—We noticed in 

general that predictive power in terms of cross-validation correlation values between actual 

and predicted response variables (rtest) improved after adding the control of confounding 

demographic variables in the regression. Moreover, the cross-validation performance results 

for PLS and RVR were comparable. The most stable regression results were obtained for 

regression with adas (adastotalmod: rtest = 0.60 for PLS, rtest = 0.59 for RVR after control 

for confounders).

For visualizing the direction and the amount of local anatomical deformations, we present 

the Jacobians of the deformation of the atlas image at different points along the regression 

geodesic for regression with residuals in Figure 5. Visualizations for these deformations 

without controlling for demographics are detailed in Figure 17 in Suppl. Selected slices from 

this 3D overlay capture relevant regions of the neuro-anatomical structures, such as 

hippocampus, amygdala and ventricles, pertinent to cognitive impairment in Alzheimer’s 

and related dementia. Figure 5 shows the local shape deformation patterns that overlay the 

atlas image for the kernel PLS regression geodesic shooting results for adas, mmse and 

trailsA. We notice the expansion of the lateral ventricles and CSF with increasing adas 

residual scores. The most critical observation is the clearly evident shrinkage of the 

hippocampus and amygdala along this geodesic direction. Such patterns of atrophy are 

known to characterize the disease progression in AD and related dementia.

The RVR analysis also resulted in very similar shape deformation patterns as were obtained 

with PLS. For comparison, Figure 6 shows the deformation patterns for the regression 

geodesic obtained for RVR analysis with adas. This suggests that our proposed methodology 

of regression on the shape manifold of diffeomorphisms is generic and generate reliable 

shape deformation patterns under different choices of regression schemes.

The other global measures of dementia such as mmse and cdrsb also reported good numbers. 

The mmse score regression particularly showed improvement in prediction accuracy over 

results reported by some of the previous work (refer Section 5). For mmse score, we found 

the rtest = 0.52 for PLS and rtest = 0.49 for RVR. The analysis with the mmse residuals 

reported rtest = 0.53 for PLS and rtest = 0.49 for RVR. We again noticed the corresponding 

shape changes obtained in traversing along mmse regression geodesic (Figure 17) for mmse 

showed patterns dominating in hippocampus, amygdala and CSF shape changes - the 

expansion CSF regions and the shrinking hippocampus and amygdala with decreasing mmse 

from the mean mmse of 26.58. The pattern maps looked very similar when this analysis was 

done with residuals in mmse (Figure 5 for mmse). Overall, in terms of predictive accuracy 

and shape deformation patterns extracted, our method fared well for regression with global 

measures of cognition and memory scores.

For regression with tests for executive function, the cross-validation correlation results were 

not very promising. Other than the tests for global measures of dementia and memory 

functions, our best results were for regression with the trailsA executive function score: 

correlation values for cross-validation, rtest = 0.35 for PLS, rtest = 0.34 for RVR, rtest = 0.40 

for PLS with residuals and rtest = 0.37 for RVR with residuals. However, we found 

interesting shape-changes trends for regression with trailsA. We noticed that no shape 
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variations in hippocampus or amygdala were reported when the atlas was deformed along 

the geodesic direction for the trailsA score (Figure 5). While the hippocampus and amygdala 

emerge as mainly responsible for regression with global measures of dementia and changes 

in memory function, they does not seem be a determinant factor for the executive function.

4.3.2. Region-of-interest based validations—To verify this observation further, we 

evolved the left and the right hippocampus and amygdala along the estimated regression 

geodesic encoded by deformation momenta. For this purpose, the atlas image, Ī was 

segmented for the hippocampus and the amygdala. The smooth segmented regions were then 

deformed along the geodesics represented by the regression coefficients for each clinical 

variable. Since v = K ★ (α∇I), such an evolution of segmentations effectively is governed 

by only the momenta at the boundaries of hippocampus and amygdala in the atlas, Ī. Table 7 

details the difference in the volume of these tissues obtained after traversing along the 

geodesic in the direction, one standard deviation away along the corresponding clinical 

variable and one standard deviation opposite to it. With clinical scores for global measures 

of Alzheimer’s dementia i.e., adas and mmse, we noticed clear trends in tissue atrophy while 

not much was seen for executive function score trailsA. Figure 7 also shows this comparison 

in hippocampus and amygdala atrophy for adas, mmse and trailsA score. The volume 

change is reported at multiple timepoints away from the atlas on the estimated geodesic, 

both in the direction of dementia and opposite to it. This also suggests the clear atrophy in 

right and left hippocampi and amygdalae with increasing adas and decreasing mmse as 

compared to that with trailsA. The changing shape of these substructures for along changing 

adas score is also visualized in Figure 18 in Suppl.

4.3.3. Stability of regression coefficient—An important consideration for regression 

analysis under the HDLSS regime is the effect of size of the population on the estimates of 

regression coefficient. To assess the robustness of the proposed method when population size 

is varied, bootstrap experiments were performed by sampling with replacement, the 

momenta and clinical response pair. The regression coefficient was estimated for each the 

bootstrap replicate. The 99% confidence bounds were computed based on the percentile of 

the empirical distribution of 1000 bootstrap replicates[Efron and Tibshirani (1993)]. Brain 

regions were extracted where regression coefficient is different from zero with 99% 

confidence i.e., the regions where zero does not lie within the 99% confidence interval. 

These maps represent anatomical regions that have high weights in regression coefficient 

with low standard error. It was observed that high regression weights were concentrated on 

boundaries of relevant regions even when the sample size was varied with N = 250, 300, 

350, 400, 450, 500. For instance, Figure 9 details the width of the confidence interval in 

these regions of high weight and high confidence of the regression coefficients for regression 

with ADAS score (adastotalmod). It clearly exhibits the consistent patterns around the 

boundaries of hippocampus and amygdala for different population size. More regions 

emerge when sample size is increased along with consistent appearance of hippocampus and 

amygdala. Bootstrap confidence results for stability of regression with mmse and trailsA are 

detailed in Figures 19 and 20 in Suppl.
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Figure 8 compares extracted regions with high regression weights and high confidence for 

PLS regression with adas, mmse and trailsA score. Hippocampus and amygdala are the most 

important regions among all the voxels in the brain for regression with adas and memory 

scores. However, neither the hippocampus, nor the amygdala regions are high weights 

regressors for the executive function score, trailsA. A critical finding was the appearance of 

thalamus and putamen as most important regions that relate to executive function. Atrophy 

in putamen and thalamus is known to be related to cognitive performance in 

neurodegenerative disorders such as the Alzheimer’s disease and the Huntington’s disease 

[de Jong et al. (2008); Braak and Braak (1991); Kassubek et al. (2005)]. These resulting 

anatomical regions were consistent with very high confidence irrespective of the size of the 

population used in the study (Figure 8 and Figure 20 in Suppl.).

Further, we extend the regression methodology with control for demographic confounders to 

learn all thirteen clinical variables simultaneously using multivariate kernel PLS as 

explained in Section 3.3.1. Table 5 details the cross-validation results. The results are similar 

to separate learning of clinical variables. We do not get any improvement in predictive power 

while predicting multiple variables together.

4.4. Extension to predicting rate of cognitive decline

The early detection of Alzheimer’s disease is of high clinical relevance. Timely detection of 

memory loss or cognitive impairment is important to assess the risk of AD and other 

dementia in elderly population. It is therefore important to not only relate the anatomical 

shape with current neuropsychological function at baseline but also to answer questions 

about the future trends of cognitive function decline. The anatomical shape regression 

framework presented in this work can be extended to relate the rate of change of clinical 

response using only the information available from baseline scans. For this purpose we 

extract the information that describes the linear trend in terms of the slope of the regression 

with cognitive decline for clinical measures obtained from measurements done on a subject 

for subsequent visits. The slope of the linear regression for clinical scores regression along 

time for each subject can be related to shape anatomical variation across the population of 

subjects. The “anatomical shape vs. rate of clinical decline” model thus learned on training 

data is used to predict the rate of the cognitive decline of the new subject using only the 

baseline MRI scan. The ADNI data consists of follow-up clinical measurements at an 

interval of 6 months from baseline for up to 48 months. For this part of the study, we 

selected all the subjects that had at least three or more clinical follow-ups recorded so as to 

get an estimate of the trend in linear least squares sense. The slope thus obtained was 

regressed against the corresponding deformation momenta using the kernel PLS (Section 

3.3.1) with the control of demographic confounders (Section Appendix A). Table 6 reports 

the correlation of predicted vs actual rates of clinical change residuals for leave-one-out 

cross-validation. In general, the baseline anatomical shape did not offer much predictive 

power for prediction of the rate of clinical decline. Relatively, we obtained the best 

correlation of predicted and actual rates of decline, rtest = 0.41 for regression with global 

measures of dementia i.e., adas, mmse and cdrsb.
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4.5. Extension to combining multiple imaging modalities and genetic risk factors for 
prediction of MCI conversion to AD

We further extend this analysis to combine high-dimensional imaging modalities with 

several other low-dimensional disease risk factors. The motivation is to discover new 

imaging biomarkers and use them in conjunction with other known biomarkers for prognosis 

of individuals at high risk of developing AD. This framework also has the ability to assess 

the relative importance of imaging modalities for predicting AD conversion. Mild cognitive 

impairment (MCI) is an intermediate stage between healthy aging and dementia. Patients 

diagnosed with MCI are at high risk of developing Alzheimer’s disease (AD), but not 

everyone with MCI will convert. Accurate prognosis for MCI patients is an important 

prerequisite for providing the optimal treatment and management of the disease. Decreased 

synaptic response and brain function can be measured using functional imaging modalities, 

such as [18F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET). Additional 

potential risk biomarkers include blood and cerebrospinal fluid (CSF) markers, including 

genetic susceptibility assessed by apolipoprotein E (APOE) genotype and plaque deposition 

assessed by concentration of Aβ-42 and ptau181. The challenge for predicting conversion is 

to combine these heterogeneous data sources, some of which are high-dimensional (MRI 

and PET) and some low-dimensional (clinical, CSF, APOE carrier), by selecting features 

that optimally weight the relative contribution from each modality.

This data-driven formulation finds the optimal combination of these high-dimensional 

modalities that best characterize the disease progression. The goal to assess the combined 

predictive capability of this model for early detection of conversion of MCI to AD by using 

only the information available at baseline.

Since the anatomical shape and neuronal metabolic activity are two separate measures 

obtained from independent imaging modalities, we combine the two to form a product space 

of the joint imaging modalities. To make pattern analysis robust, we propose a supervised 

dimensionality reduction to represent this high-dimensional data in terms of a few features, 

specifically selected to best explain factors relevant to dementia. Further, the extracted 

imaging features are used in conjunction with APOE genotype and/or CSF biomarkers for 

assessing the risk of conversion of an MCI individual to AD. Figure 10 summarizes our 

feature selection and classification framework.

4.5.1. Combining structure & function—The shape space represented by the space of 

deformation momenta, , and the space of neuronal metabolic activity represented by 3D-

SSP, , are both high-dimensional spaces. We define the combined space of imaging 

modalities,  such that: M =  × . Inner product between a pair mi = (αi, pi) ∈  and mj 

= (αj, pj) ∈  is defined via a their convex combination as:  = η  + (1 − η) . 

The factor, η is interpretable as a relative weight when both the modalaties are normalized to 

have unit variance.

4.5.2. Supervised Dimensionality Reduction via Partial Least Squares—The 

structural and functional information extracted from two imaging modalities results in a 

feature space with much higher dimension than the population size. We adapt the PLS 
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methodology for the purpose of extracting relevant features from the combination of shape 

and 3D-SSP data supervised by the clinical scores such as MMSE, ADAS, CDR and clinical 

cognitive status that are treated as global measures of dementia. The idea is to ensure that 

during dimensionality reduction we retain those dimensions in imaging data that not only 

explain variability within imaging data but also retain the variability that is relevant to 

dementia. We find directions m̂ in the combined product space of imaging modalities, , 

and directions ŷ in the clinical response space, , that explain their association in the sense 

of their common variance. The projections of shape and pet data along the directions, m̂i are 

treated as the features for the classifier. For the symmetric PLS, the maximum number of 

possible latent vectors are limited by the inherent dimensionality of the two spaces, i.e., by 

min(dim( ), dim( )).

The projection scores, thus obtained by PLS, have combined information of anatomical 

shape and glucose metabolic activity that is used as features together with low-dimensional 

modalities such as genetic biomarkers of APOE carrier status and/or CSF biomarker 

available from spinal tap tests.

4.5.3. APOE carrier status—genetic biomarker—A confirmed risk factor for 

Alzheimer’s disease is the status of apolipoprotein E (APOE) gene in an individual. APOE 

exhibit polymorphisms with three major isomorphisms or alleles: APOE ε2, APOE ε3 and 

APOE ε4. Majority of the population with late-onset of AD is found to be dominant in 

APOE ε4 allele. APOE carrier status is computed based on the allele copy inherited from 

parents in an individual. We consider the binary status for APOE genetic risk based on 

whether the individual has at least one copy of allele ε4 and treat those subjects as APOE-

carrier.

4.5.4. Prediction of conversion to AD—Distinguishing the probable convertors from 

the population of MCI is a binary classification problem. While there are several ways to 

look at this problem, we present here a formulation of the classifier supervised by the AD 

group and healthy control group (NL). In other words, the classifier is trained on the AD and 

NL but is used as a “recommender” for the test MCI subject. Based on the classification 

score obtained on the MCI subject, the prediction of the classifier is interpreted. We denote 

the test MCI subject as “AD-like” when the classifier recommends AD and treated as 

predicted MCI-C otherwise termed as “Stable-MCI” or predicted MCI-NC. The classifier 

accuracy is assessed by comparing the predicted MCI-C or MCI-NC status with the 

conversion status from the follow-up study for that test MCI subject. The proposed 

methodology is evaluated using the LDA, its quadratic variant–Quadratic Discriminant 

Analysis (QDA), and SVM as binary classifiers.

Figure 11 shows area under the receiver operating characteristic curve (AUC) as a function 

of the weighting factor, η, for the three separate classifiers discriminating MCI-C vs MCI-

NC. The accuracy of prediction of MCI to AD conversion and the associated η is given in 

Table 9. The reported numbers correspond to optimal η, based on AUC. QDA performed the 

best with accuracy of 66% and AUC of 0.72 at η = 0.8. Also, the optimal combination of 

PET and shape performed much better as compared to only using PET or anatomical shape 

information irrespective of the choice of classifier used (Figure 12). The analysis was 
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repeated using only the left and right hippocampus volumes for predicting MCI conversion. 

The AUCs and accuracies for prediction using hippocampus volumes obtained for three 

classifiers were: accuracy=60.7%, AUC=63.8% for LDA, accuracy=61.6%, AUC=63.8% for 

QDA and accuracy=58.9%, AUC=63.4% for SVM. Overall, our proposed method resulted 

in improved prediction when compared to using only the hippocampus volumes for 

predicting MCI conversion.

Besides APOE carrier status, the above analysis was also done after adding log transformed 

CSF-biomarkers: Aβ-42 and ptau181 concentration, which reduced the study sample-size to 

only: 29 NL, 36 AD and 59 MCI. With CSF-biomarkers, a slight increase in accuracy was 

observed for QDA: accuracy=68% and AUC= 0.72 (η = 0.8).

The log Jacobians of the deformation, overlaid on atlas image Ī, resulting from evolving Ī 
along the geodesic represented by the classifier weights are shown in Figure 13. The selected 

slices from this 3D overlay shown here capture relevant regions of the neuro-anatomical 

structures, such as hippocampus, pertinent to cognitive impairment in Alzheimer’s and 

related dementia. Similarly, the PET classifier weights are translated back in the Z-score 

space of 3D-SSP (Figure 14).

The spatial patterns of anatomical shape changes were primarily the expansion of lateral 

ventricles and CSF, together with the shrinkage of the cortical surface. Another critical 

observation was the clearly evident shrinkage of the hippocampus and cortical and sub-

cortical gray matter along the discriminating directions. Such patterns of atrophy are well 

known to characterize the disease progression in AD and related dementia. We observed that 

the shape component dominated the model with up to 80% contribution compared to only 

20% contribution from the PET component, irrespective of the classifier used.

5. Discussion and conclusion

This paper presents a novel approach to study the nonlinear changes in geometry of local 

anatomical regions in the brain and accounts for the shape variations that relate to clinical 

response for neuropsychological functions. More generally, the proposed methodology 

enables us to investigate high-dimensional, nonlinear trends in shape variations in an 

ensemble of complicated shapes that can be treated as regressors for the prediction of 

Euclidean response variables.

We utilize computational differential geometry to model shape variations on the manifold of 

diffeomorphisms and statistical machine learning techniques to model prediction-based 

shape regression on this manifold-valued shape data. We harness the properties of the 

Hilbert space of momenta, V* equipped with the inner product to compare geodesic trends. 

Kernel Partial Least Squares (kernel PLS) enables us to study the high dimensional 

covariance of the anatomical structures in the entire brain volume, without any segmentation 

or a priori regions of interest identification, directly on the tangent space at the atlas. 

Furthermore, this regression scheme under the LDDMM framework enables us to visualize 

and quantify the amount of localized shape atrophy observed and relate it to attenuation in 

neuropsychological response.
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Comparison to previous work

We compare the predictive accuracy results with some of the previous closest works (refer 

Section 2) that have formulated predictive models for clinical response using shape 

information extracted from the structural MRI. Using Relevance Vector Regression (RVR), 

Stonnington et al. (2010) has reported the best numbers for LOOCV predictive accuracy to 

be around rtest = 0.57 for ADAS-cog and rtest = 0.48 for mmse, using the ADNI baseline 

MRI scans and baseline clinical evaluation scores. The LOOCV accuracy of prediction 

attained by our kernel PLS modeling on manifold gives rtest = 0.60 for ADAS-cog. For 

mmse, we found further improved accuracy with rtest = 0.53. In another related work, Wang 

et al. (2010) has employed a regional based clustering approach on tissue density maps 

(TDM) for feature selections, followed by RVR-based machine learning bagging predictive 

models on subsampled ADNI data to give a much more successful model using the baseline 

MRI scans (rtest = 0.75), with average mmse over timepoints taken at an interval of 6-

months. It is important to note that the study in Wang et al. (2010) is done on the very 

different and sampled subset of the ADNI data. Moreover, the response variable that this 

RVR regression model predicts is different from our work and that of Stonnington et al. 

(2010). Their approach also differs fundamentally from ours at the bagging framework 

setup, where they build ensemble regressors derived from multiple bootstrap training 

samples. Thus, we stress that the numbers presented in Wang et al. (2010) are not directly 

comparable to that reported in our work. In contrast, the regression modeling and the 

independent and dependent data as presented in the work of Stonnington et al. (2010), are 

much closer in principle to our work and hence we can draw a direct comparison to their 

approach. Furthermore, both Stonnington et al. (2010) and Wang et al. (2010) use 

segmentation of individual tissue types—gray matter (GM), white matter (WM), cerebro 

spinal fluid (CSF) or Tissue Density Maps (TDM) and do subsequent feature extraction. 

However, in our study we consider raw MRI as a whole without any segmentation. This 

enables us to talk about anatomical shape changes more naturally since the results and its 

interpretability can be directly translated back to original structural MRI space.

Stability of modeling and generalizability properties: RVR vs. PLS

To answer the question about stability of our modeling in general and choice of regression 

schemes in particular, we have also reported results with the RVR style of formulation as 

used in both of the above related works under discussion. We also stress that the method of 

analysis proposed in this paper is generic. We can use any choice of regression analysis as 

long as it can be kernelized, i.e., valid regression schemes that can be formulated as inner 

products of the mapped data. We notice that in the comparative study for the choice of two 

such schemes, kernel PLS and kernel RVR, reported stable results. The pattern maps 

obtained using two independent regression methodologies yield very similar geodesics of 

regression coefficients for all the clinical response variables. The leave-one-out predictive 

accuracy obtained in both are also comparable. In terms of execution times we found PLS to 

be much faster than RVR; up to three orders of magnitude for all the clinical variables.

Singh et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Deformation based morphometry and LDDMM momenta

The scope of LD-DMM based methods is much beyond just their predictive capabilities and 

the potential to extract relevant deformation patterns. The LDDMM framework although 

computationally more intensive, has several advantages over conventional Jacobian based 

statistical analysis akin to deformation based morphometry (DBM)[Mechelli et al. (2005)]. 

Deformation momenta obtained in LDDMM are scalar-valued signatures that summarize the 

voxel-wise large deformation information about anatomical variability. The scalar momenta 

are comprised of both the local divergence and curl components of associated deformation 

fields and not just the local scaling represented by the Jacobians. Another important 

difference between these two approaches is the interpretation of the resulting coefficients in 

regression analysis. In DBM, even though the regression coefficients can be visualized to 

understand the patterns or weight maps of clusters important for prediction, the scaling of 

the regression coefficient does not tie with the inherent non-linearity of the underlying 

space. The scaled coefficients cannot be naturally interpreted under the nonlinear regression 

framework. In LDDMM, since the statistics are done on Riemannian manifold of 

diffeomorphism, the regression coefficient has a meaning as a mathematical quantity—it is 

an element of V*. The amount of scaling of the regression coefficient translates naturally to 

how far along the geodesic we intend to travel away from the Fréchet mean image in 

deformations—which correspond to scaled units of changes in clinical response.

The proposed modeling enables us to identify local shape deformation patterns by 

performing a global analysis of the structure of the human brain. We notice that the evolving 

atlas shows distinct trends in hippocampus and amygdala shape changes whenever the 

regressed response variable is a measure of memory and cognitive function, the determinants 

of Alzheimer’s Disease progression. Putamen and thalamus were found to be important to 

the regression with executive function. The results were consistent with both the PLS as well 

as the RVR. These resulting anatomical regions were consistent with very high confidence 

irrespective of the size of the population used in the study.

We stress the fact that no additional clinical prior on the hippocampus was added and no 

priori information about the disease state was used in modeling. This is unlike most of the 

contemporary shape analysis studies in AD and related dementia, where the statistics are 

performed on the specific region of interests already clinically known to be affected. The 

style of global analysis presented in this paper holds promise for discovering new patterns of 

shape changes in the human brain that could add to our understanding of disease progression 

in AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Propose PLS in tangent space of diffeomorphisms: methodology for global 

analysis of brain anatomy without apriori region of interest.

• Extract shape deformation patterns that predict clinical progression.

• Continuous geodesic evolution quantifies the shape changes in the units of 

clinical response.

• The model incorporates controls for counfounding variables in regression 

such as age, education.
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Figure 1. 
Tangent space at the atlas (Ī) and emanating geodesics towards contributing images. The 

geodesics in red and blue represent regression coefficient for clinical variables and need to 

be estimated.

Singh et al. Page 33

Med Image Anal. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Shape—clinical response regression modeling framework. Block A. represents initial shape 

feature extraction process, Block B. represents the regression on manifold and Block C. 

represents the interpretation of the estimated regression coefficient on the manifold and 

quantifying corresponding anatomical shape deformations.
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Figure 3. 
Stability of atlas using trimmed mean.
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Figure 4. 
PLS with residuals: Regression of LOOCV predicted residuals vs actual residuals (solid 

line) for the left-out test data. The correlation, r and slope, m are reported. The dashed line 

corresponding to slope 1 is shown for comparison. Normalized Mean Squared Error 

(NRMSE) for PLS cross-validation is also reported. The significance test for correlation 

(null hypothesis, r = 0) resulted in p-values < 10−15 for all.

Singh et al. Page 36

Med Image Anal. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
PLS WITH RESIDUALS: Deformation of atlas with changing clinical residual score. The 

middle column represents the atlas with zero average clinical residual. Red denotes the 

regions of local expansion and blue denotes the regions of local contraction.
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Figure 6. 
RVR WITH RESIDUALS: Deformation of atlas with changing adastotalmod residual score.
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Figure 7. 
Change in volume compared to change in clinical residual in terms of standard deviations 

(σ). To capture the tissue atrophy towards neurodegeneration, the X-axis for mmse score is 

reversed for comparison.

Singh et al. Page 39

Med Image Anal. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Bootstrap width of the 99% confidence interval (CI-width) for PLS. With 99% confidence, 

regions in red have regression coefficient different from zero. Coefficients are concentrated 

around hippocampus and amygdala that relate to test scores for memory: MMSE and ADAS. 

However, putamen and thalamus are more important for regression with executive function 

score, Trails.
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Figure 9. 
Bootstrap stability of regression coefficient as a function of sample size for PLS regression 

with ADAS. Red denotes regions where regression coefficient is different from zero with 

99% confidence. Regions with high confidence increase with sample size. Regression 

coefficient is consistent around hippocampus and amygdala regions with changing sample 

size.
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Figure 10. 
MCI-C/MCI-NC prediction framework. Block A: Feature extraction process from high-

dimensional imaging data. Block B: Classification.
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Figure 11. 
Shape and PET weighting factor, η for different classifiers based on AUC.
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Figure 12. 
Receiver operating characteristic curves (ROC) for MCI-C/MCI-NC classification with only 

shape information, only PET information and optimal combination of shape and PET as per 

ηOPT.
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Figure 13. 
Shape: Discriminating regions obtained from classifier weights for prediction of MCI 

conversion to AD. Log of Jacobians overlaid on atlas. Red denotes regions of local 

expansion and blue denotes regions of local contraction.
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Figure 14. 
FDG-PET: Discriminating regions obtained from classifier weights for prediction of MCI 

conversion to AD in 3D-SSP Z-score space.
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Table 1

Response Variables: Total of 566 MRI imaging data

n μ σ range

adastotal11 548 11.9276 6.6093 1.00 – 42.67

adastotalmod 544 18.7096 9.4361 1.67 – 54.67

mmse 565 26.6690 2.7564 18 – 30

cdrsb 566 1.8498 1.8754 0 – 9

trailsA 548 47.9854 26.9674 17 – 150

trailsB 539 135.1095 80.2142 0 – 300

clock 550 4.0745 1.1452 0 – 5

logicimm 566 8.1343 4.9335 0 – 22

logicdel 566 5.6961 5.4836 0 – 22

avltimm 549 32.1421 11.8276 0 – 69

avltdel 549 3.5883 3.9993 0 – 15

digit 546 37.1282 13.3481 0 – 80

bnt 544 25.2188 4.9519 1 – 30
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Table 2

Demographic Info

diagnosis 153 Normals, 265 MCI, 132 AD, 16 no diagnosis

education μ = 15.43 and σ = 3.14

age μ = 75.45 and σ = 7.01

gender 268 Females and 302 Males

handedness 530 Right and 36 Left
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Table 3

Residuals in clinical response after regressing out demographic variables

n σ range

adastotal11 548 6.5218 −10.3468 to 30.0943

adastotalmod 544 9.3098 −17.5333 to 35.1846

mmse 565 2.6859 −8.5865 to 5.0305

cdrsb 566 1.8554 −2.6515 to 7.4980

trailsA 548 26.7489 −32.5173 to 106.2147

trailsB 539 77.8597 −149.5055 to 194.6877

clock 550 1.1225 −4.0949 to 1.6570

logicimm 566 4.7171 −9.5218 to 13.2546

logicdel 566 5.2864 −8.8638 to 15.2274

avltimm 549 11.3933 −31.2308 to 37.6304

avltdel 549 3.9245 −5.0557 to 11.8789

digit 546 12.8555 −41.2448 to 42.7871

bnt 544 4.7129 −24.2047 to 9.1309
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Table 4

Leave one out cross-validation – correlation of predicted vs actual for test data

Without control Control for demographics

Kernel PLS (rtest) Kernel RVR (rtest) Kernel PLS (rtest) Kernel RVR (rtest)

adastotal11 0.53 0.52 0.56 0.55

adastotalmod 0.57 0.56 0.60 0.59

mmse 0.52 0.49 0.53 0.49

cdrsb 0.54 0.50 0.59 0.53

trailsA 0.35 0.34 0.40 0.37

trailsB 0.34 0.32 0.39 0.36

clock 0.30 0.29 0.32 0.29

logicimm 0.46 0.44 0.53 0.50

logicdel 0.45 0.43 0.50 0.48

avltimm 0.47 0.44 0.45 0.43

avltdel 0.37 0.34 0.38 0.34

digit 0.36 0.33 0.38 0.34

bnt 0.42 0.39 0.41 0.35
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Table 5

Leave one out cross-validation for multivariate kernel PLS with control for confounders

Kernel PLS (rtest)

adastotal11 0.56

adastotalmod 0.60

mmse 0.53

cdrsb 0.58

trailsA 0.32

trailsB 0.41

clock 0.32

logicimm 0.53

logicdel 0.52

avltimm 0.48

avltdel 0.40

digit 0.38

bnt 0.41

Med Image Anal. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Singh et al. Page 52

Table 6

Leave one out cross-validation for predicting rate of cognitive decline

Kernel PLS (rtest)

adastotal11 0.39

adastotalmod 0.40

mmse 0.41

cdrsb 0.41

trailsA 0.18

trailsB 0.16

clock 0.20

logicimm 0.23

logicdel 0.18

avltimm 0.26

avltdel 0.03

digit 0.18

bnt 0.21
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Table 7

Volume changes (mm3) in hippocampus and amygdala along extracted regression coefficient from −σ to +σ of 

change in clinical response.

Left Amygdala Right Amygdala Left Hippocampus Right Hippocampus

adastotalmod −105.47 −99.609 −76.172 −99.609

mmse 85.938 89.844 54.688 80.078

trailsA −1.9531 −7.8125 35.156 25.391
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Table 8

ADNI data details

Diagnosis 54 Stable NL controls, 127 MCI, 61 AD

Education μ = 15.27 and σ = 3.23

Age μ = 75.56 and σ = 6.65

Gender 98 Females and 144 Males

Handedness 229 Right and 13 Left

APOE positive 13 NL’s, 70 MCI’s, 41 AD’s

Follow-up From baseline up to 48 months

MCI-C/NC status 54 out of 127 MCI converted to AD
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