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Ion Juvina (ion.juvina@wright.edu)
Wright State University

Dayton, OH

Abstract

Groups of individuals need to coordinate in many real world
domains. However, coordination failure is common and not
well understood. There are few coordination measurements,
analyses focus on averaged data, and models lack coordination
strategies and clear correspondence to cognitive mechanisms.
Here, we present a thorough analysis of human data from a
difficult coordination scenario and a cognitive model imple-
mented within the ACT-R cognitive architecture to fit and ex-
plain the data. Data were explored to better understand coordi-
nation strategies and group dynamics. The cognitive model in-
cluded pre-game preferences, coordination strategies like sig-
naling, and other player choice predictions. This work high-
lights the need for deeper data explorations and presents chal-
lenges for modeling related to coordination dynamics, strate-
gies, and how players form beliefs about others.
Keywords: Coordination; Group dynamics; Signaling; Coor-
dination strategies; ACT-R; Cognitive model

Introduction
Humans often fail to coordinate in situations with com-
peting individual and group incentives (Cooper, DeJong,
Forsythe, & Ross, 1990, 1994; Camerer, 2003; Riechmann &
Weimann, 2008; Van Huyck, Battalio, & Beil, 1990, 1991),
which is often attributed to the lack of focal points or equally
salient choices leading to optimal outcomes for all players
(Blume, DeJong, Kim, & Sprinkle, 1998; Mehta, Starmer,
& Sugden, 1994). This failure can result from miscoordina-
tion and/or inefficient coordination (Riechmann & Weimann,
2008). Coordination is the degree players settle or converge
on a single choice and can be expressed numerically by cal-
culating variance of choices within groups (Hough, 2021;
Hough, O’Neill, & Juvina, 2021). Coordination efficiency in-
volves where the outcome falls on a hypothetical continuum
between worst and best possible outcomes.

Coordination often occurs over time, however, reaching
and increasing coordination efficiency over time is more dif-
ficult (Brandts & Cooper, 2006; Brandts, Cooper, & We-
ber, 2015; Brandts, Cooper, Fatas, & Qi, 2016; Chaudhuri,
Schotter, & Sopher, 2009; Van Huyck et al., 1991). Sev-
eral techniques were applied to this issue, but involve chang-
ing the game structure (Chaudhuri et al., 2009; Van Huyck,
Gillette, & Battalio, 1992; Van Huyck, Battalio, & Beil, 1993;
Brandts et al., 2016, 2015). There are less invasive meth-
ods that are more generalizable. For instance, counterfactual
thinking can increase coordination efficiency when it high-
lights outcomes that could have happened if choices were

more efficient (Hough et al., 2021). In addition, players can
nudge each other to make more efficient choices by signal-
ing or making choices that would result in better outcomes
for everyone if the counterparts also made that choice. Sig-
naling is more effective when it incurs a cost that others are
aware of (Spence, 1978) and when it’s persistent (Brandts
et al., 2015, 2016). However, signaling is risky (Cachon &
Camerer, 1996) and players often give up if it is not effec-
tive (Charness, Gneezy, & Henderson, 2018). Players also
form and update beliefs about others to predict future behav-
ior (Camerer, 2003), which can increase coordination.

To better understand coordination, coordination efficiency,
strategies, and group dynamics, experimental data were an-
alyzed and a cognitive model was developed to fit and ex-
plain the data. The experiment used a minimum effort game
(MEG) (Van Huyck et al., 1990) to simulate a coordination
scenario with: 1) simultaneous choices, 2) no communica-
tion, and 3) 20 rounds. Coordination is very challenging in
this ”weak link” game without an initial explicit focal point
(Blume et al., 1998; Mehta et al., 1994) and other play-
ers choices, particularly the minimum, can become the fo-
cal point and influence players to coordinate on an inefficient
choice (Brandts et al., 2015, 2016; Van Huyck et al., 1990).

The MEG
In the MEG, players make an effort choice between one and
seven, and each player’s payoff is determined by their choice
and the group minimum (Table 1).

Table 1: MEG payoff matrix.

Minimum Effort Choice in Group
1 2 3 4 5 6 7

Pl
ay

er
E

ff
or

tC
ho

ic
e 1 70

2 60 80
3 50 70 90
4 40 60 80 100
5 30 50 70 90 110
6 20 40 60 80 100 120
7 10 30 50 70 90 110 130

There are seven coordination points or Nash equilibria
(Nash, 1951), which specify what a rational player should
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select to maximize their own payoff regardless of counterpart
choices (Camerer, 2003). They are represented diagonally
from the payoff of 70 to 130. Nash equilibria are “Pareto
ranked” according to payoff. A Pareto equilibrium maxi-
mizes the sum of payoffs for all players (Camerer, 2003). In
terms of efficiency, Nash equlibria is efficient for the individ-
ual and Pareto for the group. In the literature and this paper,
efficiency refers to group efficiency.

van Huyck et al. (1990, 1991) suggested players start by
using risk or payoff dominant strategies, but deviate over time
due to learning. Payoff dominance is a high risk, high reward
strategy. The highest choice of seven can result in either the
highest or the lowest payoff. Risk dominance is a low risk,
low reward strategy. Choosing effort level one always results
in the same payoff regardless of other player’s choices. These
strategies serve as focal points, and in subsequent rounds, the
minimum may become a salient focal point or anchor (Leng,
Friesen, Kalayci, & Man, 2018; Van Huyck et al., 1990). This
is a simple explanation for the frequently observed negative
trend in effort over time across various manipulations like
outcome information and group size (Camerer, 2003; Leng
et al., 2018; Van Huyck et al., 1990, 1991).

MEG experiments (Bortolotti, Devetag, & Ortmann, 2016;
Leng et al., 2018; Van Huyck et al., 1990, 1991) typically
focus on effort and the minimum to analyze efficiency and
signaling behavior. Leng et al. (2018) went a step further
and identified signaling as alternating between the minimum
and higher effort and found small increases in efficiency or
the minimum. Bortolotti et al. (2016) identified weak links
and found they were the source of coordination failure, but
only early in the game. Despite these contributions, there is
a lack of effective measurements, little is understood about
coordination strategies and group dynamics, and no existing
model is capable of capturing complex coordination behavior
in the MEG. Specifically, player preferences, strategies like
signaling, and beliefs about other players. In the following
sections, a thorough data analysis and novel cognitive model
are presented to better understand behavior in the MEG.

The MEG Experiment
A MEG experiment was conducted at a Midwestern Univer-
sity with 18 four-person groups (Hough, 2021; Hough et al.,
2021). After all players made choices, they were shown all
player choices and counterfactuals for both lower and higher
choices and minimums. Players were not informed about the
20 round game length to reduce potential end effects.

Average effort and intra-group variance are plotted in Fig-
ure 1a. Averages were calculated per round for each group,
then averaged across groups. Average effort is typically used
to measure coordination efficiency and here, we use average
intra-group variance to measure coordination (Hough, 2021;
Hough et al., 2021). Notice variance is rather high and stable
across 20 rounds, suggesting players did not coordinate well.

Average payoff (Figure 1b) carries information about aver-
age effort and the minimum. Average effort is stable around 4

Figure 1: Average effort and variance (a), and Average payoff
(b). Error bars are 95% CIs.

and average payoff around 80. According to the payoff matrix
(Table 1), this means the minimum was around 3. The mini-
mum being one lower than the average suggests the presence
of signaling. Calculating the distance from the minimum for
individuals can indicate the presence and strength of signal-
ing, identify group weak links, and categorize players as sig-
nalers if they choose higher than the minimum for 5 consecu-
tive rounds (Hough, 2021; Hough et al., 2021). This signaler
categorization is based on literature suggesting that persistent
signaling is more effective (Brandts et al., 2015, 2016).

Figure 2: Average effort (a) and payoffs (b) for groups with
-2, 2, and 2+ signalers. Error bars are 95% CIs.

Effective signaling should result in increases in effort and
payoffs over time. This notion was explored by categoriz-
ing players as signalers (46% were signalers), then catego-
rizing groups with less than 2 (-2), 2, or more than 2 sig-
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nalers (2+). Here, a mixed effects model with random effects
for players nested within groups and groups (Hough, 2021;
Hough et al., 2021) was used to compare effort and payoff for
group categories (Figure 2). For effort, there was an interac-
tion effect with round for 2 (β =−.07, t(1434) =−4.16,p <
.001) and 2+ (β = −.06, t(1434) = −2.58,p = .01) signaler
groups, meaning -2 signaler groups had a more positive trend
across rounds. For payoff, there was an effect for round
(β = .51, t(1434) = 2.53,p = .01) and interaction effects with
round for 2 (β = −.56, t(1434) = −2.31,p = .02) and 2+
(β=−1.33, t(1434)=−4.06,p< .001) signaler groups. This
means there was a positive trend across rounds, which was
more positive for -2 signaler groups.

The literature suggests persistent signaling should be ef-
fective. Here, we see groups with the fewest signalers have
higher effort and payoffs. To better understand this, two
groups are shown in Figure 3, a group without signalers (a)
and a group with three signalers (b). The no signaler group (a)
has better coordination, fewer signals, lower signaling magni-
tude, and increases in efficiency. The group with 3 signalers
(b) is the opposite. Players appear to take turns signaling,
setting the minimum, and even choosing lower than the pre-
vious minimum. Players differ in signaling frequency, magni-
tude, persistence, and response to other’s signaling, suggest-
ing they have different strategies. To better understand this
complex behavior, a cognitive model was developed.

Figure 3: Average effort for players within a group with 0 (a)
and 3 signalers (b) and all signalers marked (*).

A Cognitive Model of the MEG
The cognitive model includes: player types, player choice
predictions, strategies, and counterfactual thinking, and
agents that simulate humans playing the MEG. The model,
referred to as the prediction, strategy, and simulation model
(i.e., PSS), was developed in ACT-R. ACT-R is a hybrid
cognitive architecture with both symbolic and sub-symbolic
structures (Anderson & Lebiere, 1998; Anderson, 2007).

There are perceptual-motor modules (e.g., goal and imagi-
nal) and two types of memory modules that represent sys-
tems of the mind. The PSS model uses the goal, imaginal,
declarative, and procedural modules. The goal module de-
termines the model’s current focus and the imaginal module
is used to temporarily store visual information. The declar-
ative memory module represents facts in long term memory
stored as chunks and a sub-symbolic component determines
the availability of the chunks. The procedural module rep-
resents knowledge about how to do things, represented as
condition-action rules. The pattern matcher of the procedu-
ral module determines which, if any, rules match the current
state. If the condition of the rule matches the current state,
then it “fires” and the action changes the state of the model.
The behavior of a model is represented as a series of rule fir-
ings and corresponding changes to the state of the model.

The PSS Model

The main components of the PSS model include: predictions
about other players, strategies, and learning. The instance-
based learning approach (Gonzalez, Lerch, & Lebiere, 2003)
is used as a framework for player choice predictions. How-
ever, the PSS model uses a slightly different approach
(Juvina, Lebiere, & Gonzalez, 2015). Instances are used
to make predictions about other players, decisions remain a
function of procedural memory, and there is no pre-decision
stopping rule for consideration of all possible decisions. A
strategy is chosen, which uses player choice predictions to
make a decision, then the unchosen strategies are simulated
to represent counterfactual thinking.

Player Choice Predictions In the MEG, players make
choices simultaneously and often have delayed reactions to
previous round choices. Therefore, instances (i.e., chunks)
contain player choices for two rounds: the previous (t − 1)
and reaction choice sets (t). Last round choices are retrieval
cues, previous choices (t − 1) are the target in the instance,
and reaction choices (t) in the instance are the values of
interest. Instances accumulate over time and the blending
mechanism (Lebiere, 1999) was used to aggregate informa-
tion to serve as player choice predictions. Every instance has
an associated activation, that determines its likelihood of re-
trieval. Activation is determined by the activation equation:
Ai = Bi +Si +Pi +εi. The activation of a chunk, Ai, is a func-
tion of the: 1) base level term, Bi, that represents recency
and frequency of chunk use, 2) spreading term, Si, that rep-
resents context effects, 3) partial matching term, Pi, that rep-
resents how well the chunk matches the retrieval cues, and 4)
noise term, εi, that represents variability in memory. The PSS
model uses blending instead of retrieval, so it only includes
the partial matching, Pi, and noise, εi, terms. The blending
mechanism retrieves a compromise value for all possible val-
ues of interest weighted by their probability of retrieval. The
equation, V = minΣiPi ∗ (1− sim(V,Vi))

2, produces a value
that minimizes the sum of all squared dissimilarities for val-
ues, (1− sim(V,Vi))

2, of each chunk, i, and weights it by its
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probability of retrieval, Pi = (eMi/t )/(Σ jeM j/t ). The probabil-
ity of retrieval is a function of the match score for a chunk,
eMi/t , that represents the degree of match between the retrieval
cues and the target information in the chunk. The match score
is normalized by the total match score of all retrieved chunks,
Σ jeM j/t . As player choices are integers, the compromise value
is the sum of all chunk values of interest weighted by their
probability of retrieval. Just like retrieval requests, blending
can fail if the activation for the blended chunk is below the ac-
tivation threshold (default of 0). If blending fails, the model
uses previous round choices as player choice predictions.

Player Choice Strategies In order to make a choice, play-
ers use some kind of strategy or rule based on preferences
or previous experience. The PSS model includes four strate-
gies that use player choice predictions to determine choices:
1) the min-strategy selects the minimum, 2) the ave-strategy
selects the average, 3) the max-strategy selects the highest,
and 4) the signal-strategy selects one higher than the average.
Note predictions included all players, so players included pre-
dictions of themselves. The model receives feedback and up-
dates the utility of the chosen strategy based on the actual out-
come. Strategy utility updates using the ACT-R utility learn-
ing equation: Ui(n) =Ui(n−1)+α[Ri(n)−Ui(n−1)]. In the
equation, utility for round n, Ui(n), is a function of the: 1)
previous utility, Ui(n− 1), 2) utility learning rate, α, and 3)
current reward value, Ri(n). There is an optional noise com-
ponent, ε, that can be added to utilities, to add some stochas-
ticity (Anderson, 2007). Starting utilities and the learning
rate are important as they influence which strategies are ini-
tially selected and how quickly utilities change over time. The
PSS model includes two patterns of starting utilities to repre-
sent risk and payoff dominant player types (Van Huyck et al.,
1990, 1991). A risk dominant player (i.e., RD) is motivated
to reduce risk or costs and would prefer choosing lower effort
or stick to the minimum. A payoff dominant (i.e., PD) player
is more willing to take risk and seek higher rewards. The
RD player type was approximated by organizing strategies by
risk (i.e., min, ave, max, and signal), setting the min-strategy
at the highest payoff (i.e., 130), and linearly decreasing util-
ities along this continuum. The PD player type is defined as
the opposite of risk dominant. In the PSS model, rewards are
the payoffs accrued by strategies. After the chosen strategy
receives a reward, the model engages in counterfactual think-
ing and simulates outcomes for the unchosen strategies in the
same manner. However, they receive a fraction of the forgone
payoff to better correspond to counterfactual thinking (Byrne,
2016; Kahneman & Miller, 1986) and the idea that it uses fic-
titious rather than actual outcomes (Camerer & Ho, 1999).

Model Overview There were two architectural parame-
ters for declarative memory: partial matching and activation
noise. Partial matching was a free parameter determined to be
1 through model fitting. There are no starting instances and
there are only 20 rounds, so setting partial matching at 1 min-
imized mismatch penalties so that all chunks influence player

choice predictions. Activation noise is required for blending
and was left at its default value of 1. For procedural mem-
ory, there were two fixed architectural parameters (i.e., learn-
ing rate and noise) and two parameters based on theoretically
justified assumptions (i.e., starting utilities and counterfactual
weight). The utility learning rate is set at the default value of
.2 and utility noise was scaled up to 7.5 (i.e., default is 1) dur-
ing model fitting to better correspond to payoff values (i.e., up
to 130). The counterfactual weight (i.e., cfw) parameter was
added to differentially weight payoffs for simulated strategies
during counterfactual thinking. The cfw parameter was set to
.75 so that counterfactual payoffs have 75% of the value as
actual payoffs. There are two player types that correspond to
a pattern of starting strategy utilities. In the final model run,
there were more PD player types (57%), suggesting that there
might be more PD than RD player types in the sample.

Figure 4: Simplified diagram of the PSS model processes.

During the first round, the model randomly selects a player
type, predicts choices for the three other players, and makes
a choice. Player choice predictions and the model’s choice
are randomly sampled from the first round choice distribu-
tion of the human data. The model skips situation recog-
nition and instance blending (i.e., declarative memory), and
strategy productions (i.e., procedural memory) in order to
move directly to the results. For all subsequent rounds, the
model goes through the same general process (Figure 4). The
model attempts to recognize the situation by making a blend-
ing request using last round choices in the goal buffer as re-
trieval cues. The best matching chunks carry more weight in
the blended choices and activation noise is added to the acti-
vation equation, which determines activation of the blended
chunk. If blending is successful, the blended choices replace
the last round choices in the goal buffer and represent player
choice predictions. If blending is not successful, then last
round choices serve as the player choice predictions. In both
cases a chunk is created in the imaginal buffer to store last
round choices in a new instance. Next, the model selects the
strategy that has the highest utility and uses player choice
predictions to make a choice. After all counterparts have
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made a choice, the model moves to the results and is “shown”
all player choices, its own payoff, and a reward is triggered
equal to that payoff. The utility of the chosen strategy is up-
dated using the utility equation: previous utility, the reward,
the learning rate (i.e., .2), and the utility learning noise (i.e.,
7.5). Player choices are also added to complete an instance
chunk in the imaginal buffer. However, the predicted player
choices remain in the goal buffer and the instance chunk re-
mains in the imaginal buffer so that counterfactual thinking
can take place. Next, the unchosen strategies are simulated
one at time using the player choice predictions. The forgone
payoffs are weighted by the cfw parameter (i.e., .75) and are
used as the reward to update the utility of the strategy pro-
ductions. Once all the unchosen strategies are simulated, the
model stops counterfactual thinking. The model replaces the
player choice predictions in the goal buffer with the actual
choices from the current round for the next round. The in-
stance chunk is then cleared from the imaginal buffer and is
added to declarative memory. At this point, the round ends,
and the model repeats the whole process for the next round.

Model Fit and Findings The PSS model was used to sim-
ulate 100 groups with four separate agents playing the MEG.
It was fit to effort and variance of the human data. For com-
parison, we included a competing model from the game the-
ory literature also fit to effort and variance, the Experience-
weighted Attraction model (EWA) (Camerer & Ho, 1999).

Figure 5: PSS and EWA model fit to average effort and vari-
ance (a), and average payoff (b). Error bars are 95% CIs.

EWA is based on forming and updating attractions to-
wards choices and features four parameters: 1) forgone pay-
off weight (δ) for all unmade choices in the same situation, 2)
past attraction decay (φ) and 3) experience decay (ρ) that con-
trol the growth rate of choice attractions and recency effects,
and 4) a discrimination sensitivity parameter (λ). EWA was
previously fit to the human data and compared to the PSS
model after the best fitting parameters were estimated (See

additional model comparisons in Hough (2021); Hough and
Juvina (2022)). Figure 5 shows the model fit to average effort,
variance, and payoff. The PSS model had a better fit to av-
erage effort, r(38) = .4,RMSE = .27, compared to the EWA
model, r(38) = .52,RMSE = .96. However, EWA had a bet-
ter fit to variance, r(38) = −.10,RMSE = .53, than the PSS
model, r(38) = −.14,RMSE = 1.62. The PSS had a slighly
better fit to payoff, r(38) = .34,RMSE = 10.4, than EWA,
r(38)= .64,RMSE = 11.26. Further inspection revealed 35%
of EWA players stuck to first round choices that were sam-
pled from the first round choice distribution of the human data
(like the PSS model). For comparison, only 1.4% of humans
displayed this behavior and 2% of PSS players. This choice
stickiness helps explain why EWA was better able to fit vari-
ance. Although the PSS model could not fit variance as well,
its amount of choice stickiness was more similar to humans
and it provided a better fit to effort and payoff. Note that the
PSS model was implemented in ACT-R making it inherently
more complex and it was not penalized for that here.

Figure 6: Average effort (a) and payoffs (b) for PSS model
groups with -2, 2, and 2+ signalers. Error bars are 95% CIs.

Next, we look at group dynamics and relate them to strat-
egy use. Model players were classified as signalers us-
ing the same technique as the human data. About 44%
of model players were classified as signalers (compared to
46% of humans) and most of them were payoff dominant
player types (64% compared to 17% for risk dominant).
Next, we ran the same linear mixed effects models for ef-
fort and payoff for comparison (Figure 6). Similar to the hu-
man data, we found interaction effects for round and both 2,
β=−.02, t(7994) =−4.98,p< .001, and 2+ signaler groups,
β =−.04, t(7994) =−7.33,p < .001, meaning both 2 and 2+
signaler groups had a greater negative trend than -2 groups.
For payoff, there were interaction effects for round and both
2, β = .22, t(7994) = 4.98,p < .001, and 2+ signaler groups,
β = .38, t(7994) = 7.33,p < .001, meaning 2 and 2+ signaler
groups had a more positive trend than -2 signaler groups. The
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PSS model payoff results contrast with the human data where
2 and 2+ groups had a more negative trend than -2 groups.
This suggests signaling was more effective for PSS model
groups. Next, we explore PSS model group dynamics for one
example group with 3 signalers (Figure 7).

Figure 7: Average effort and variance (a), and average payoff
(b) for a PSS model group with 3 signalers marked (*).

Player 1 was a payoff dominant signaler and consistently
choose higher effort up to round 9, then started choosing
lower and ended the game choosing the minimum. Player 3
was a risk dominant non-signaler and set the minimum for the
first 12 rounds, then gradually increased effort choices. Pay-
offs in Figure 7a show the benefits of these strategy shifts.
Player 3 increased payoffs by setting a higher minimum,
which increased payoffs for all other players. To better un-
derstand strategy shifts, Figure 8 shows strategy utility for
players 1 (a) and 3 (b). Here, we can see the influence of
counterfactual thinking and learning on strategy utilities over
time. Player 1 had the highest starting utility for signaling,
then the min- and ave-strategies started to compete, until the
min-strategy eventually dominated. On the other hand, player
3 started out with higher utility for the min-strategy, then
the min- and ave-strategy competed for the rest of the game.
Model players demonstrated dynamic behavior by shifting
from starting strategies based on group dynamics, counterfac-
tual thinking, and learning. Furthermore, we can peer into the
model to quantitatively understand and explain this behavior.

Discussion
We analyzed human MEG data under the assumptions that:
1) intra-group variance indicates coordination, 2) payoffs in-
dicate coordination efficiency, and 3) distance from the mini-
mum indicates signaling frequency and magnitude. We found
suggestive evidence that participants classified as signalers
used sophisticated strategies, beyond payoff and risk domi-
nance, which presents a potentially valuable addition to the
literature regarding signaling. However, it is still not clear

Figure 8: Strategy utilities for player 1 (a) and player 3 (b)
from Figure 7.

how to appropriately measure and classify signaling behav-
ior. The PSS model, implemented in ACT-R, was developed
to better understand and track behavior. The PSS model in-
cluded: player types, strategies, player choice predictions,
and counterfactual thinking. The model better fit average ef-
fort and payoff compared to a competing model, but could
not appropriately fit variance. PSS model players displayed
dynamic and interdependent behavior by switching strategies
over time based on group behavior and learning. The nature
of the model allowed for explanation of each players behav-
ior based on player choice predictions and changes in strategy
utility. However, there are several limitations. 1) Choice vari-
ation was approximated with four arbitrary strategies. One
strategy represented choosing the minimum predicted choice
and three strategies represented different types of signaling
behavior based on magnitude. There was no strategy for mak-
ing the same choice as last round (e.g., setting the minimum
again), which was handled by having players predict their
own choices. Future work could improve signaling behav-
ior, perhaps with a cost/reward function to control signaling
and its magnitude, and players being able to make repeated
choices. 2) The PSS model players were on average, more
sensitive to signaling and better able to coordinate. It’s not
clear why coordination was so poor in the human data. More
data would be helpful to better inform how to modify the
model. 3) The player choice predictions were based on re-
action choices from one round to the next. The literature
often refers to players forming beliefs about other’s player
types based on patterns of behavior, which could be added.
4) Further PSS model work is necessary to determine which
features are useful, how well it explains human behavior, and
re-assess its fit relative to its additional complexity over EWA.
Overall, this model served as a first step towards explaining
data in the MEG beyond average statistics and its strengths
and weaknesses can inform future modeling work.
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