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Definition

Titanium is a parallel programming language designed
for high-performance scientific computing. It is based
on Java™ and uses a Single Program Multiple Data
(SPMD) parallelism model with a Partitioned Global
Address Space (PGAS).

Discussion

Titanium is an explicitly parallel dialect of Java™
designed for high-performance scientific programming

[14, 15]. The Titanium project started in 1995, at a
time when custom supercomputers were losing mar-
ket share to PC clusters. The motivation was to cre-
ate a language design and implementation that would
enable portable programming for a wide range of paral-
lel platforms by striking an appropriate balance between
expressiveness, user-provided information about con-
currency and memory locality, and compiler and run-
time support for parallelism. The goal was to design a
language that could be used for high performance on
some of the most challenging applications, such as those
with adaptivity in time and space, unpredictable depen-
dencies, and sparse, hierarchical, or pointer-based data
structures.

The strategy was to build on the experience of
several Partitioned Global Address Space (PGAS) lan-
guages, but to design a higher-level language offering
object orientation with strong typing and safe memory
management in the context of applications requiring
high performance and scalable parallelism. Titanium
uses Java as the underlying base language, but is nei-
ther a strict superset nor subset of that language.
Titanium adds general multidimensional arrays, sup-
port for extending the value types in the language,
and an unordered loop construct. In place of Java
threads, which are used for both program structuring
and concurrency, Titanium uses a static thread model
with a partitioned address space to allow for locality
optimizations.

Titanium uses a Single Program Multiple Data (SPMD)
parallelism model, which is familiar to users of
message-passing models. The following simple Tita-
nium program illustrates the use of built-in meth-
ods Ti.numProcs() and Ti.thisProc(), which query the
environment for the number of threads (or processes)
and the index within that set of the executing thread.
The example prints these indices in arbitrary order.
The number of Titanium threads need not be equal
to the number of physical processors, a feature that is
often useful when debugging parallel code on single-
processor machines. However, high-performance runs
typically use a one-to-one mapping between Titanium
threads and physical processors.

class HelloWorld {
public static void main (String [] argv) {
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System.out.println("Hello from proc " +
Ti.thisProc() + " out of " + Ti.numProcs());

}

Titanium supports Javas synchronized blocks, which
are useful for protecting asynchronous accesses to
shared objects. Because many scientific applications use
a bulk-synchronous style, Titanium also has a barrier-
synchronization construct, Ti.barrier(), as well as a
set of collective communication operations to perform
broadcasts, reductions, and scans. A novel feature of
Ti- tanium’s parallel execution model is that barriers
must be textually aligned in the program - not only
must all threads reach a barrier before any one of them
may proceed, but they must all reach the same textual
barrier. For example, the following program is not legal
in Titanium:

if (Ti.thisProc() ==
//illegal barrier

0) Ti.barrier();

else Ti.barrier();//illegal barrier

Aiken and Gay developed the static analysis the com-
piler uses to enforce this alignment restriction, based on
two key concepts [1]:

e A single method is one that must be invoked by all
threads collectively. Only single methods can exe-
cute barriers.

o A single-valued expression is an expression that is
guaranteed to take on the same sequence of val-
ues on all processes. Only single-valued expressions
may be used in conditional expressions that affect
which barriers or single-method calls get executed.

The compiler automatically determines which meth-
ods are single by finding barriers or (transitively) calls
to other single methods. Single-valued expressions are
required in statements that determine the flow of con-
trol to barriers, ensuring that the barriers are executed
by all threads or by none. Titanium extends the Java
type system with the single qualifier. Variables of single-
qualified type may only be assigned values from single-
valued expressions. Literals and values that have been
broadcast are simple examples of single-valued expres-
sions. The following example illustrates these concepts.
Because the loop contains barriers, the expressions in
the for-loop header must be single-valued. The compiler
can check that property statically, since the variables

are declared single and are assigned from single-valued
expressions.

int single allTimestep = 0;

int single allEndTime = broadcast
inputTimeSteps from 0;

for (; allTimestep < allEndTime;
allTimestep) ++{
< read values belonging to other threads >
Ti.barrier();
< compute new local values >
Ti.barrier();

Barrier analysis is entirely static and provides compile-
time prevention of barrier-based deadlocks. It can also
be used to improve the quality of concurrency analysis
used in optimizations. Single qualification on variables
and methods is a useful form of program design docu-
mentation, improving readability by making replicated
quantities and collective methods explicitly visible in
the program source and subjecting these properties to
compiler enforcement.

The two basic mechanisms for communicating between
threads are accessing shared variables and sending
messages. Shared memory is generally considered eas-
ier to program, because communication is one-sided:
Threads can access shared data at any time without
interrupting other threads, and shared data structures
can be directly represented in memory. Titanium is
based on a Partitioned Global Address Space (PGAS)
model, which is similar to shared memory but with an
explicit recognition that access time is not uniform. As
shown in Fig. 1, memory is partitioned such that each
partition has affinity to one thread. Memory is also par-
titioned orthogonally into private and shared memory,
with stack variables living in private memory, and heap
objects, by default, living in the shared space. A thread
may access any variable that resides in shared space, but
has fast access to variables in its own partition. Objects
created by a given thread will reside in its own part of
the memory space.

Titanijum statically makes an explicit distinction
between local and global references: A local reference
must refer to an object within the same thread partition,
while a global reference may refer to either a remote or
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Titanium. Fig. 1 Titanium’s partitioned global address space memory model

local partition. In Fig. 1, instances of 1 are local refer-
ences, whereas g and nxt are global references and can
therefore cross partition boundaries. The motivation for
this distinction is performance. Global references are
more general than local ones, but they often incur a
space penalty to store affinity information and a time
penalty upon dereference to check whether communi-
cation is required. References in Titanium are global
by default, but may be designated local using the local
type qualifier. The compiler performs type inference to
automatically label variables as local [10].

The partitioned memory model is designed to scale
well on distributed memory platforms without the need
for caching of remote data and the associated coher-
ence protocols. Titanium also runs well on shared
memory multiprocessors and uniprocessors, where the
partitioned-memory model may not correspond to any
physical locality on the machine and the global ref-
erences generally incur no overhead relative to local
ones. Naively written Titanium programs may ignore
the partitioned-memory model and, for example, allo-
cate all data structures in one thread’s shared memory
partition or perform fine-grained accesses on remote
data. Such programs would run correctly on any plat-
form but would likely perform poorly on a distributed
memory platform. In contrast, a program that care-
fully manages its data-structure partitioning and access
behavior in order to scale well on distributed memory
hardware is likely to scale well on shared memory plat-
forms as well. The partitioned model provides the ability
to start with a functional, shared memory style code
and incrementally tune performance for distributed
memory hardware by reorganizing the affinity of key
data structures or adjusting access patterns in program
bottlenecks to improve communication performance.

Java arrays do not support sub-array objects that are
shared with larger arrays, nonzero base indices, or
true multidimensional arrays. Titanium retains Java
arrays for compatibility, but adds its own multidimen-
sional array support, which provides the same kinds of
sub-array operations available in Fortran 90. Titanium
arrays are indexed by integer tuples known as points and
built on sets of points, called domains. The design is
taken from that of a language for Finite Different Cal-
culations, FIDIL, designed by Colella and Hilfinger [7].
Points and domains are first-class entities in Titanium -
they can be stored in data structures, specified as liter-
als, passed as values to methods, and manipulated using
their own set of operations. For example, NAS multigrid
(MG) benchmark requires a 256° grid. The problem has
periodic boundaries, which are implemented using a
one-deep layer of surrounding ghost cells, resulting in
a 258’ grid. Such a grid can be constructed with the
following declaration:

double [3d] grida
= new double [[-1,-1,-1]:[256,256,256]11];
The 3D Titanium array gridA has a rectangular index
set that consists of all points [i, j, k] with integer coordi-
nates such that -1 < i,j, k < 256. Titanium calls such
an index set a rectangular domain of Titanium type
RectDomain, since all the points lie within a rectan-
gular box. Titanium also has a type Domain that rep-
resents an arbitrary set of points, but Titanium arrays
can only be built over RectDomains. Titanium arrays
may start at an arbitrary base point, as the example with
a [-1, -1, —1] base shows. In this example, the grid
was designed to have space for ghost regions, which are
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all the points that have either —1 or 256 as a coordi-
nate. On machines with hierarchical memory systems,
gridA resides in memory with affinity to exactly one
process, namely the process that executes the above
statement. Similarly, objects reside in a single logical
memory space for their entire lifetime (there is no trans-
parent migration of data), though they are accessible
from any process in the parallel program.

The power of Titanium arrays stems from array
operators that can be used to create alternative
views of an array’s data, without an implied copy of
the data. While this is useful in many scientific codes,
it is especially valuable in hierarchical grid algorithms
like Multigrid and Adaptive Mesh Refinement (AMR).
In a Multigrid computation on a regular mesh, there is
a set of grids at various levels of refinement, and the
primary computations involve sweeping over a given
level of the mesh performing nearest neighbor com-
putations (called stencils) on each point. To simplify
programming, it is common to separate the interior
computation from computation at the boundary of the
mesh, whether those boundaries come from partition-
ing the mesh for parallelism or from special cases used
at the physical edges of the computational domain.
Since these algorithms typically deal with many kinds
of boundary operations, the ability to name and operate
on sub-arrays is useful.

Titanium’s domain calculus operators support sub-
arrays both syntactically and from a performance stand-
point. The tedious business of index calculations and
array offsets has been migrated from the application
code to the compiler and runtime system. For exam-
ple, the following Titanium code creates two blocks that
are logically adjacent, with a boundary of ghost cells
around each to hold values from the adjacent block. The
shrink operation creates a view of gridA by shrinking
its domain on all sides, but does not copy any of its
elements. Thus, gridAInterior will have indices from
[0, 0, 0] to [255, 255, 255] and will share correspond-
ing elements with gridA. The copy operation in the last
line updates one plane of the ghost region in gridB by
copying only those elements in the intersection of the
two arrays. Operations on Titanium arrays such as copy
are not opaque method calls to the Titanium compiler.

The compiler recognizes and treats such operations spe-
cially, and thus can apply optimizations to them, such as
turning blocking operations into non-blocking ones.

double [3d] gridA =

new double [[-1,-1,-1]:[256,256,256]];
double [3d] gridB =

new double [[-1,-1,256]:[256,256,512]];
//define interior without creating a copy
double [3d] gridAInterior = gridA.shrink(1);
//update overlapping ghost cells

from neighboring block

//by copying values from gridA to gridB

gridB.copy(gridAInterior) ;

The above example appears in a NAS MG imple-
mentation in Titanium [4], except that gridA and gridB
are themselves elements of a higher-level array struc-
ture. The copy operation as it appears here performs
contiguous or noncontiguous memory copies, and may
perform interprocessor communication when the two
grids reside in different processor memory spaces. The
use of a global index space across distinct array objects
(made possible by the arbitrary index bounds of Tita-
nium arrays) makes it easy to select and copy the cells
in the ghost region, and is also used in the more general
case of adaptive meshes.

The foreach construct provides an unordered looping
construct designed for iterating through a multidimen-
sional space. In the foreach loop below, the point p plays
the role of a loop index variable.

foreach (p in gridAInterior.domain()) {
gridB[p] = applyStencil(gridAInterior, p);

}

The applyStencil method may safely refer to elements
that are one point away from p, since the loop is over
the interior of a larger array.

This one loop concisely expresses an iteration over
a multidimensional domain that would correspond to
a multi-level loop nest in other languages. A common
class of loop bounds and indexing errors is avoided
by having the compiler and runtime system automat-
ically manage the iteration boundaries for the mul-
tidimensional traversal. The foreach loop is a purely
serial iteration construct - it is not a data-parallel con-
struct. In addition, if the order of loop execution is
irrelevant to a computation, then using a foreach loop
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to traverse the points in a domain explicitly allows
the compiler to reorder loop iterations to maximize
performance - for instance, by performing automatic
cache blocking and tiling optimizations [12]. It also sim-
plifies bounds-checking elimination and array access
strength-reduction optimizations.

The Titanium immutable class feature provides lan-
guage support for defining application-specific primi-
tive types (often called “lightweight” or “value” classes),
allowing the creation of user-defined unboxed objects,
analogous to C structs. Immutables provide efficient
support for extending the language with new types
which are manipulated and passed by value, avoiding
pointer-chasing overheads which would otherwise be
associated with the use of tiny objects in Java.

One compelling example of the use of immutables is
for defining a Complex number class, which was used in
a Titanium implementation of the NAS FT benchmark.

Titanium also allows for operator overloading, a fea-
ture that was strongly desired by application developers
on the team, and was used in the FT example to simplify
the expressions on complex values.

Titanium also supports the construction of distributed
array data structures, which are built from local pieces
rather than declared as distributed types. This reflects
the design emphasis on adaptive and sparse data struc-
tures in Titanium, rather than the simpler “regular
array” computations that could be supported with sim-
pler flat arrays. The general pointer-based distribution
mechanism combined with the use of arbitrary base
indices for arrays provides an elegant and powerful
mechanism for shared data.

The following code is a portion of the parallel Tita-
nium code for a multigrid computation. It is run on

every processor and creates the blocks3D distributed
array, which can access any processor’s portion of
the grid.
Point< 3 > startcCell =
myBlockPos * numCellsPerBlockSide;
Point< 3 > endCell = startCell + (numCellsPerBlock
Side - [1,1,1]1);
double [3d] myBlock =
new double[startCell:endCell];
//"blocks" is used to create "blocks3D" array
double [1d] single [3d] blocks =
new double [0: (Ti.numProcs()-1)] single [3d];
blocks.exchange (myBlock) ;
//create local "blocks3D" array
double [3d] single [3d] blocks3D =
new double [[0,0,0] :numBlocksInGridSide -
[1,1,1]]1single [3d];
//map from "blocks" to "blocks3D" array
foreach (p in blocks3D.domain())

blocks3D[p] = blocks[procForBlockPosition(p)];

Each processor computes its start and end indices
by performing arithmetic operations on Points. These
indices are used to create a local myBlock array. Every
processor also allocates its own 1D array blocks. Then,
by combining the myBlock arrays using the exchange
operation, blocks becomes a distributed data structure.
As shown in Fig. 2, the exchange operation performs an
all-to-all broadcast and stores each processor’s contri-
bution in the corresponding element of its local blocks
array. To create a more natural mapping, a 3D processor
array is used, with each element containing a reference
to a particular local block. By using global indices in
the local block - meaning that each block has a differ-
ent set of indices that overlap only in the area of ghost
regions — the copy operations described above can be
used to update the ghost cells. The generality of Tita-
niuny’s distributed data structures is not fully utilized in
the example of a uniform mesh, but in an adaptive block
structured mesh, a union of rectangles can be used to

myBlocki myBlock myBlock: myBlock
: ‘ ;
t;_‘__; Lo /) | oy
Blocks 3D \\)/// Logical arrange-
- & ment of blocks
10 H 2 3 based on indices

Titanium. Fig. 2 Distributed 3D array in titanium’s PGAS address space. The pointers in the blocks3D array are shown only

for thread t1 for simplicity




2054

Titanium

fill a spatial area, and the global indexing and global
address space used to simplify much more complicated
ghost region updates.

The Titanium compiler translates Titanium code into C
code, and then hands that code off to a C compiler to be
compiled and linked with the Titanium runtime system
and, in the case of distributed memory back ends, with
the GASNet communication system [5]. The choice of
C as a target was made to achieve portability, and pro-
duces reasonable performance without the overhead of
a virtual machine. GASNet is a one-sided communi-
cation library that is used within a number of other
PGAS language implementations, including Co-Array
Fortran, Chapel, and multiple UPC implementations.
GASNet is itself designed for portability, and it runs on
top of Ethernet (UDP) and MPI, but there are optimized
implementations for most of the high-speed networks
that are used in clusters and supercomputers designs.
Titanium can also run on shared memory systems using
aruntime layer based on POSIX Threads, and on combi-
nations of shared and distributed memory by combin-
ing this with GASNet. Titanium, like Java, is designed
for memory safety, and the Titanium runtime system
includes the Boehm-Weiser garbage collector for shared
memory code. To handle distributed memory environ-
ments, the runtime system tracks references that leak
to remote nodes, but also adds a scalable region-based
memory management concept to the language along
with compiler analysis [5].

Aggressive program analysis is crucial for effective
optimization of parallel code. In addition to serial loop
optimizations [12] and some standard optimizations to
reduce the size and complexity of generate C code, the
compiler performs a number of novel analyses on paral-
lelism constructs. For example, information about what
sections of code may operate concurrently is useful for
many optimizations and program analyses. In combina-
tion with alias analysis, it allows the detection of poten-
tially erroneous race conditions, the removal of unnec-
essary synchronization operations, and the ability to
provide stronger memory consistency guarantees. Tita-
niun’s textually aligned barriers divide the code into
independent phases, which can be exploited to improve
the quality of concurrency analysis. The single-valued

expressions are also used to improve concurrency anal-
ysis on branches. These two features allow a simple
graph encoding of the concurrency in a program based
on its control-flow graph. We have developed quadratic-
time algorithms that can be applied to the graph in
order to determine all pairs of expressions that can run
concurrently.

Alias analysis identifies pointer variables that may,
must, or cannot reference the same object. The Tita-
nium compiler uses alias analysis to enable other anal-
yses (such as locality and sharing analysis), and to find
places where it is valid to introduce restrict qualifiers in
the generated C code, enabling the C compiler to apply
more aggressive optimizations. The Titanium compiler’s
alias analysis is a Java derivative of Andersen’s points-
to analysis with extensions to handle multiple threads.
The modified analysis is only a constant factor slower
than the sequential analysis, and its running time is
independent of the number of runtime threads.

A number of benchmarks and larger applications have
been written in Titanium, starting with some of the
NAS Benchmarks [4]. In addition, Yau developed a
distributed matrix library that supports blocked-cyclic
layouts and implemented Cannon’s Matrix Multiplica-
tion algorithm, Cholesky and LU factorization (without
pivoting). Balls and Colella built a 2D version of their
Method of Local Corrections algorithm for solving the
Poisson equation for constant coeflicients over an infi-
nite domain [2]. Bonachea, Chapman, and Putnam built
a Microarray Optimal Oligo Selection Engine for select-
ing optimal oligonucleotide sequences from an entire
genome of simple organisms, to be used in microarray
design. The most ambitious efforts have been appli-
cations frameworks for Adaptive Mesh Refinement
(AMR) algorithms and Immersed Boundary Method
simulations [6] by Tong Wen and Ed Givelberg, respec-
tively. In both cases, these application efforts have taken
a few years and were preceded by implementations
of Titanium codes for specific problem instances, e.g.,
AMR Poisson by Luigi Semenzato, AMR gas dynamics
[11] by Peter McCorquodale and Immersed Boundaries
for simulation of the heart by Armando Solar-Lezama
and cochlea by Ed Givelberg, with various optimization
and analysis efforts by Sabrina Merchant, Jimmy Su, and
Amir Kamil.
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The performance results show good scalability on
the applications problems on up to hundreds of sepa-
rate distributed memory nodes, and performance that
is in some cases comparable to applications written in
C++ or FORTRAN with message passing. The compiler
is aresearch prototype and does not have all of the static
and dynamic optimizations one would expect from
a commercial compiler, but even serial running-time
comparisons show competitive performance. No for-
mal productivity studies involving humans have been
done, but a variety of case studies have shown that the
global address space combined with a powerful multi-
dimensional array abstraction and the data abstraction
support derived from Java leads to code that is elegant
and concise.
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