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Abstract 
 
 

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells 
 
 

By 
 
 

Zeev R. Abrams 
 
 

Doctor of Philosophy in Applied Science & Technology 
 
 

University of California, Berkeley 
 
 

Professor Xiang Zhang, Chair 
 
 
 

For well over 50 years, the limits to photovoltaic energy conversion have been known and 
codified, and have played a vital role in the push for technological breakthroughs to reach – and 
even attempt to surpass – those limits. This limit, known as the Shockley-Queisser detailed-
balance limit, was found by using only the most basic of thermodynamic assumptions, and 
therefore provides an upper bound that is difficult to contest without violating the laws of 
thermodynamics. Many different schemes have been devised to improve a solar cell’s efficiency 
beyond this limit, with various benefits and drawbacks for each method. 
  
Since the field of solar cell research has been analyzed and dissected for so long by a large 
variety of researchers, it is quite hard to say or discover anything new without repeating the work 
of the past. The approach taken in this work is to analyze solar cells from the joint perspective of 
thermodynamics and information theory. These two subjects have recently been appreciated to 
be highly interrelated, and using the formalism of Missing Information, we can differentiate 
between different novel technologies, as well as devise new limits for new and existing 
methodologies.  
 
In this dissertation, the fundamentals of photovoltaic conversion are analyzed from the most 
basic of principles, emphasizing the thermodynamic parameters of the photovoltaic process. In 
particular, an emphasis is made on the voltage of the device, as opposed to the current. This 
emphasis is made since there is a direct relation between the open-circuit voltage of a solar cell 
and the fundamental equations of thermodynamics and the Free Energy of the system. Moreover, 
this relation extends to the entropy of the system, which subsequently relates to the field of 
Information Theory. By focusing on the voltage instead of the current, realizations are made that 
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are not obvious to the majority or researchers in the field, and in particular to efforts of 
surpassing the Shockley-Queisser limit, known as “3rd generation” concepts. 
 
After analyzing the standard single-junction cell, other forms of surpassing the detailed-balance 
limit are presented and discussed, from the viewpoint of entropy and its relation to the amount of 
information lost or produced in the photovoltaic conversion process. In addition to the well-
known 3rd generation methods: up- and down-conversion, carrier multiplication and intermediate 
band solar cells, other ideas are discussed such as using Feedback to shift the optimal bandgap of 
the cell, and the use of spectral splitting to completely utilize the solar spectrum. The focus on 
entropy (and the open-circuit voltage) as the primary variable of interest uncovers new 
limitations to these processes, and denotes preferences of certain technologies over others. 
 
Using this parallel approach provides insights into the field that were either neglected or not 
realized. This work thus provides a new set of guidelines for searching for and analyzing 
innovative techniques to maximize the power conversion efficiency from solar cells. 
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Preface 
 

The following Dissertation is a compilation of my work as a PhD student at the University of 
California, Berkeley. It is based on a number of papers that I wrote during this period, most of 
which were published in peer-reviewed journals. Despite the variety of topics I addressed during 
this time, a central theme ran throughout my research: that of approaching the topic of Solar 
Cells on the broadest and most fundamental possible level. In particular, this work is primarily 
theoretical, and delves into the most basic of premises used to define the workings and 
efficiencies of photovoltaic power generation.  

The title of the dissertation “Thermodynamics, Entropy, Information and the Efficiency of 
Solar Cells” concisely tackles the topics that will be covered in this work, with a focus on the 
generation of entropy and information lost in this process. The central theme of this work is a re-
analysis of solar cell efficiencies using the most streamlined version of the equations that govern 
the calculations for the power conversion efficiency of solar cells. This approach utilizes 
equations and concepts that are known to most undergraduates in Physics and Electrical 
Engineering, and is relatively simple, compared to other approaches. For this reason, this 
dissertation was written under the assumption that it must be accessible enough for nearly 
anyone (with a scientific background) to read. As such, it has been written from “scratch”, and 
does not use the original text from the cited papers written by myself in the lab of Prof. Xiang 
Zhang at UC Berkeley. I have taken special care to simplify all the preliminary Physics required 
to understand the workings of solar cells and photovoltaic power conversion to the barest of 
essentials. Furthermore, despite delving into topics of Information Theory and particularly 
“sticky” arguments regarding entropy generation in these systems, I have attempted to address 
these topics in such a way that nothing else is required to understand the arguments and results in 
this text. It is my hope that this work will be accessible to anyone in the sciences, despite the 
occasional foray into complex condensed-matter physics arguments. 

As with any technology, an appreciation of the history of the development of solar cells is 
generally needed in order to distinguish between ideas and prevent ideas from being repeated. 
This point is crucial in the field of photovoltaics, since unlike most other fields of Physics or 
Engineering (e.g., “optics”), the field of solar cells has been around for quite a long time, and has 
been discussed, argued over and dissected by some of the most prominent scientists of the 20th 
century. Therefore, before delving into the field of solar cells, it is sometimes worthwhile to read 
the basic textbooks on the field, some of which have been around for decades, in order to fully 
appreciate the plethora of ideas that have been generated, developed, disregarded, disbanded and 
even found to be incorrect, over the years. While the first working photovoltaic solar cells were 
produced by the 1950’s, a great deal of research was poured into the field in the 1960’s, in 
particular for use in extra-terrestrial satellites. Many of the pioneers in solar cell research were 
known from other fields, particularly the burgeoning field of solid-state physics and the nascent 
field of semiconductors. A great deal of research was implemented in the late 1970’s, due to the 
worldwide energy crisis, and carried some momentum into the early 1980’s. However, due to the 
fall in the price of oil in that period, much of the solar cell research was subsequently cut, and 
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many of these researchers then moved on to greener pastures. Many of the papers cited in this 
text come from that period, which was seen as almost a “golden era” of solar cell research.  

While efforts continued worldwide to improve the quality of solar cells, particularly in 
Europe and Australia, the political and economic crises of the early 21st century have once again 
brought the concept of solar energy back into the forefront of technological research in 
universities and research labs all over the world. Moreover, the issues of “climate change” have 
focused on the production of renewable, sustainable, and otherwise “green” technologies, which 
solar power neatly falls into the category of. As a result, some of the best and brightest minds are 
currently being pulled into researching solar cells once again, attempting to find new ways of 
generating power from sunlight, using both traditional technologies, brute-force computational 
power, as well as integrating newer technologies such as Nanotechnology into solar cells in an 
attempt to overcome the limits imposed by the more traditional approaches to building solar 
cells. 

In spite of the recent renewed interest in the field and concomitant increase in governmental 
funding, a basic question should be asked of anyone entering this field: Can we really think of 
anything that wasn’t thought of before? This question is not one of despair at arriving at new 
innovative ideas, but rather an identification of the severe limitations existing in the field: the 
limited scope and economic restrictions. In solar cell research, we are not looking for ways to 
produce power from artificial light sources such as a new-fandangle laser system, nor are we 
attempting to create a highly complex and expensive device to produce power. Instead, the goal 
is to create an economic (cheap) method of creating as much power as we possibly can out of our 
sun. The goal is to produce power at a reasonably cost-effective rate (grid parity). 

The limitation in both material systems (what we have today), and the source of power (the 
sun) makes the challenge of innovating in the field of Solar Cells all the more interesting, since 
we are given a well-defined “box”, and we must do our utmost to break the boundaries of that 
box. However, the clichéd idea of “thinking outside the box” must also be done within the realm 
of the physical reality, and deriving results that violate fundamental laws of physics must not be 
endorsed. Many of the new researchers in this field fail to remember that fact, and assume that 
using new engineering techniques will allow us to violate these fundamental rules. These are not 
innovative insights, but rather sloppy work. Some of the chapters in this work address such 
grandiose schemes and dismantle them. A particular theme that will also be addressed is that of 
the solar cell producing voltage in addition to current. 

The general approach of this work is thus to define the clichéd “box”, and find ways of 
thinking outside of that box. The approach I have taken is to attack the subject of solar cells not 
from the traditional viewpoint of semiconductors, diffusion and continuity equations, nor 
computational prowess, but rather by using a different mindset when thinking about the most 
fundamental aspects of what makes a solar cell work, and work well. I have used elements of 
basic thermodynamics and information theory to approach the problem of solar cell power 
generation with the fewest of possible equations and complications. It is my hope that this 
approach will be more widely used in the future when devising new (fandangle) ideas to make 
better use of our solar resources. 
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I. Introduction 
 

1. What is a Solar Cell? 
 

A solar cell is a device used for producing energy by absorbing sunlight. You can go out 
today, purchase a solar cell, have it installed on your roof, and quickly reap the benefits of 
generating power “for free” from the sun, thus offsetting your energy costs. In particular, a 
photovoltaic solar cell is one which produces electricity directly from the sunlight, and stands in 
contrast with thermal-photo devices that produce heat from the sunlight, which can then be used 
to heat water for residential use, or boil steam to rotate turbines for power generators. Since this 
work will focus on photovoltaic solar cells, there will be little discussion of thermal-solar (or, 
thermo-photo-voltaics), and the terms “solar cell” and “photovoltaics” (PV) will be used 
interchangeably. The ability to directly produce electricity from the sunlight, one of the most 
abundant and renewable of our natural resources, lies at the heart of photovoltaic research, and is 
viewed as becoming one of the primary sources of power in a “greener” future. Nevertheless, as 
a commodity, the questions regarding solar cell research today have less to do with the basic 
principles, and more to do with the costs of producing power.  

The cost of a solar cell is related to a great many parameters including materials, labor and 
politics. However, from an ultimate power production viewpoint, the major limitation is the 
efficiency of the solar cell, with higher efficiencies offsetting higher production costs. Since the 
PV system directly produces power, the efficiency of the system will be related to the product of 
the two most basic of measures related to electricity, the current and the voltage, with P=I×V. 
Since both of these cannot be maximized simultaneously, as will be shown in the following 
sections, an engineering trade-off will occur that provides a maximal efficiency, which cannot be 
surpassed.  

To appreciate how a solar cell works, a great deal of physics is typically required in order to 
follow the equations, mechanisms and complications of the process of photovoltaic power 
generation. In particular, a basic understanding of the fundamentals of semiconductor physics is 
generally required to understand the mechanism of PV power generation whereby sunlight 
generates electron-hole (e-h) pairs, which are then drawn out as electricity using a p-n diode 
configuration. Since a great deal of equations would be required to explain this, from the basic 
semiconductor equations [ 1, 2] to the workings of p-n junctions and solar cell models [ 3]. Instead, 
since this dissertation is not meant to be a textbook on the subject, a different approach will be 
taken that is more similar to the more basic direction used in thermodynamic approaches to solar 
energy conversion [ 4- 6].  

This Introduction chapter will therefore include all that is necessary to understand the 
equations and arguments used in the subsequent chapters. Since the use of continuity and 
diffusion equations are never used within the text, physical explanations of these processes will 
not be included, in deference to the better textbooks on the subject. Instead, a focus on only the 
essential concepts needed for solar energy conversion using a bandgap-containing material will 
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be used. This chapter will therefore focus less on what a solar cell is, and instead on what an 
ideal solar cell is required to be. The chapter will describe the solar spectrum and its relation to 
terrestrial illumination, the basic requirements of a solar cell material – in terms of the generation 
of e-h pairs, which leads to the description of the “Ultimate Efficiency” by Shockley and 
Quiesser (SQ) [ 7]. This efficiency limit is the first of its kind to provide an upper physical limit 
to the amount of power conversion that can be generated in the most simplistic of solar cells, 
using only the basic thermodynamics of the system to determine this limit. The importance of a 
thermodynamic limit, as first described by SQ, is of primal importance since it sets an external 
limitation to the efficiency of a PV system using the field of thermodynamics, as opposed to 
traditional semiconductor equations. This thermodynamic limit is more general, and therefore 
harder to devise methods of overcoming. Moreover, the importance of the SQ limit is in the more 
complex and physically valid “detailed balance” model, whose significance will be explained at 
the end of this chapter. An understanding of these concepts will allow the subsequent chapters to 
be understood, without delving into any other sets of equations.  

 

2. The Solar Spectrum 
 

Understanding the nature of the solar spectrum irradiating the cell provides ~50% of the 
information required for understanding the ideal solar cell converter, as will be fully detailed in 
Chapter  II.  

Solar radiation is split into a spectrum of either energy (E) or wavelength (λ), both being the 
reciprocal of each other as described by the following equation: 

 
]

≅==
μm[ 
24.1]eV[ 

λλ
hcνhE   I.1 

where h is Planck’s constant (h=6.26×10-34 J/sec or h=4.13×10-15 eV/sec when using units of 
electron volts – eV – as will be used throughout the text), v is the frequency of the photons, and c 
is the speed of light in vacuum (c=2.99×108 m/sec). The relation between energy and wavelength 
as inversely proportional with a constant of 1.24 [µm/eV] is a good rule-of-thumb that is useable 
so long as the light remains in free-space, which includes both the vacuum of space, and to a 
good approximation, air.  

 
The light emitted from the sun can be described as either individual photons or as an 

electromagnetic wave. Due to the wave-particle duality, we will use only the description of light 
as photons in this text. This usage has no loss in generality, since one can always view a single 
photon as a spatially isolated packet of electromagnetic radiation. However, using the photon 
description of light greatly simplifies the arguments to be used later in this text, and simplifies 
the reading, since it circumvents the usage of Maxwell’s equations in the thermodynamic 
description. This will be further detailed when describing the boundaries of the thermodynamic 
model in the SQ detailed balance model. It also greatly simplifies the description of flux as being 
a measure of number of photons, as opposed to a description based on the Poynting vector. 
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There are two ways of understanding the nature of the spectrum of the solar radiation. The 
first is the data-driven, brute force approach of measuring and examining the solar spectrum 
using the best of detection techniques. From this perspective, we need to know the exact 
radiation pattern and spectrum at each point in earth to best match the absorption capabilities of 
the solar cell. This can be plotted as either the number of photons per unit of energy, or per unit 
of wavelength, depending on the preference of those involved. Since we will be dealing with the 
bandgap of semiconductors, the natural unit of measurement is energy, and therefore only it will 
be used and discussed here.  

 

 I-1: Solar Spectrum Irradiating the Earth. Displayed is the spectrum of light, irradiance as 
a function of energy of the photons, for various illumination patterns: AM1.5 and AM0, 
and the Blackbody spectrum of a source at 6000 and 5777 °K. the area under the 5777 °K 
curve matches the area under the AM0 curve. 

The irradiation pattern on a solar cell is highly dependent upon the location of the cell. The 
solar illumination hitting a cell lying above the atmosphere will be higher than that lying beneath 
the cover of the atmosphere due to absorption of some of the photons by molecules in the 
atmosphere, and particularly resonant absorption peaks due to specific molecules in the 
atmosphere (such as H2O). This can be seen in Fig.  I-1 in the difference between the AM0 
spectrum (which is the extra-terrestrial one), and the AM1.5 spectrum, which is a calibrated 
measurement used by researchers worldwide and provided by the National Renewable Energy 
Lab [ 8] of the terrestrial radiation taken at an angle of the earth equivalent to the central United 
States (AM1.5 is at the angle of 1.5=1/cosθ, where θ is the zenith angle between the location of 
the central United States and the equator). The AM0 spectrum contains more high-energy 
components, which correspond to Ultra-Violet (UV) light as compared against the AM1.5 
spectrum, where much of this light is absorbed in the atmosphere. Furthermore, the absorption 
peaks of water, ozone and corbon dioxide can be seen in the AM1.5 spectrum, particularly in the 
low energy, Infra-Red (IR) regions (dips in the blue curve around an below 1 eV in Fig.  I-1).  



4 
 

The radiation spectrum emanating from the sun closely resembles that of a pure blackbody 
radiator. The blackbody radiation spectrum was found by Planck as a function of the modes of 
energy within an enclosed black-body, and as a function of the thermal energy describing the 
system, at a temperature of TS: 

 
1]/exp[

2

−
×=

S
S kTE

Egn   I.2 

where nS is the flux of photons emanating from the blackbody per energy interval (in units of 
photons per second), k is the Boltzmann constant (k=1.38×10-23 J/K=8.62×10-5 eV/K) and g is a 
constant that will be used throughout the text: 

 23
2
ch

g =   I.3 

     The units of the Boltzmann constant multiplied by the temperature (in degrees Kelvin) 
provide the energy metric of the system. For the sun, we can roughly estimate the temperature to 
be TS=6000 °K (from hence forward, the degree symbol, °, will be dropped for simplicity), such 
that the solar thermal energy is kTS=0.517 eV, or roughly half an eV.  

     The Planck distribution in Eq.  I.2 has very few variables and parameters, combining a few 
physical constants (h, c and k) as a function of the density of states of photons and the Bose-
Einstein distribution of energy modes, which is the distribution that photons, which are Bosons, 
follows [ 6]. The temperature of the blackbody is the most significant parameter, with the peak in 
the blackbody radiation spectrum defined by Wien’s law, and falls within the visible spectrum of 
light, which is why the human eye is designed to best visualize the yellow-green section of the 
spectrum, and why plants have green leaves to best match the peak solar intensity. It can be 
therefore stated that the source of the term “green energy” comes directly from the spectral 
maximum of the sun! 

     The blackbody spectrum of Eq.  I.2 is also displayed in Fig.  I-1, and appears above that of the 
AM1.5 spectrum, and mostly matches the AM0 spectrum. The blackbody radiation pattern is 
therefore a fairly good estimate of the solar spectrum, although it does not include the 
contributions of absorption peaks due to molecular absorption resonances. The primary 
advantage of describing the solar spectrum in terms of the Planck distribution lies in the ability to 
produce analytical solutions to the models described throughout the text. It is therefore this 
spectrum which will be utilized throughout this text.  

     Understanding the relation between the parameters in Eq.  I.2 is a critical step in 
understanding the solar radiation characteristics. Although the actual AM0/AM1.5 spectra are 
the ones used to emulate and calculate the actual power conversion efficiencies, from the basic 
Physics perspective, the essential aspects of the solar radiation can be gleaned almost entirely 
from the formula for the blackbody radiation, as will be shown in the subsequent chapter. The 
maximum in the curve for the blackbody spectrum, as was displayed in Fig.  I-1, can be explained 
by the interplay between the quadratic rise in modes of energy, signified by the “E2” term in the 
numerator of Eq.  I.2, in contrast to the Bose-Einstein distribution in the denominator, which is 
maximized at zero energy (degenerate state), where the distribution becomes a delta function 
(meaning a sharp peak at E=0). If we ignore the “-1” factor in the denominator, for large values 
of E, one can approach the Rayleigh-Jeans approximation for the blackbody spectrum, or, 
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assume that the distribution follows a Boltzmann distribution, instead of the Bose-Einstein 
distribution, and would be characterized by a factor of exp[-E/kTS]. This latter approximation 
will be used extensively later in the text, however, it is only valid for values of the energy, E, that 
are larger than the thermal energy, kTS, as stated above. Various attempts to develop the 
denominator of Eq.  I.2 can be used, including expanding it in Taylor series for low values of E, 
however the direct physical interpretation of these results become obfuscated, and with the 
computational abilities of today’s computers, these are no longer required to help solve equations 
involving these formulas. These Taylor expansions are therefore not included here, however 
supply an interesting exercise for examining the numerical accuracy of the approximations used. 

      

3. Étendue and Sunlight 
 

     The input solar spectrum is a function of the étendue of the incoming light, as well as its 
temperature. The concept of étendue [ 9, 10] can be briefly explained using the analogue from the 
Brightness Theorem. Imagine a flashlight with a projection beam expanding outwards. We can 
imagine that each photon is a “ray” of light within this beam (this follows the Eikonal 
approximation for electromagnetic waves, which is the foundation of the ray approximation for 
geometric optics [ 11]). Since the number of photons (rays) must remain constant in this beam, 
there is a limitation to how bright the beam spot will become after expanding out from the initial 
beam area to the final one. This is shown pictorially in Fig.  I-2 for a beam going through an 
optical element (a lens, or any other translucent object), and expanded to a larger area. It is quite 
intuitive to understand that the final beam will be less “bright” due to “fewer photons”. This 
intuitive understanding is quite close to the physical reality (so long as the ray approximation is 
used, and we are in the far-field of imaging). Furthermore, we can intuitively grasp the fact that 
the beam can be expanded no more than a 90° angle outward, since it will otherwise need to 
bend backwards.   

 

 I-2: Generic Pictogram Demonstrating the Concept of Optical Étendue. Photons leaving 
the initial beam area will expand outward, but retain the same number of rays. If the beam 
passes through an optical element (grey plane), this conservation of “rays” must still be 
maintained, despite the increase in beam size area. 
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     The optical étendue is therefore a geometrical factor that includes the area of the initial beam, 
A, the angle of the “cone” the beam initially began in, Ω, and the angle of propagation of the 
beam, cosθ. These terms can all be found in the definition of the étendue, ε: 

 Aδθδnδε Ω= cos2   I.4 
where the “δ” symbol is used to signify that the equation is in the differential form. The index of 
refraction, n, also appears in the equation for the étendue, since the angle of the rays is dependent 
upon the material properties. The index can also be visualized in Fig.  I-2 if we imagine the plane 
as being the surface of (e.g.) water, with a higher index of refraction (n≈1.5), such that the rays 
expand outward. The étendue must remain constant regardless of the material system, be it air, 
glass, or a semiconductor. A change in étendue can always occur, however it will induce a 
change in entropy, as will be discussed in the next chapter. 

      The beam of light extending out from the sun follows the same principal of étendue 
conservation, with the light traveling through vacuum, and then traversing the atmosphere. While 
there is only a nominal change in index of refraction between the vacuum of space and the air 
that can be neglected, there is an additional scattering of light in the atmosphere from molecules 
known as Rayleigh scattering, which predominantly scatters the higher energy – blue and UV – 
light, making the sky appear “bluer”. The absorption of the UV light also reduces the étendue 
term. This scattering of light distinguishes the solar radiation pattern between “direct” light, 
which only includes the component coming directly from the sun, and “diffuse”, or “global”, 
light, which includes the segment of light that is scattered in the atmosphere. The direct 
component of the sunlight will only comprise 70% of the light in clear sky areas, with the rest 
composed of the diffuse light [ 12]. For areas with large amounts of other scattering objects, such 
as clouds or haze, this variation can become even larger, emphasizing the diffuse light.  

     The predominant factor describing the étendue of light emanating from the sun is due to 
geometric considerations [ 13]. Since the sun is a giant sphere of diameter 1.4×109 m, sitting 
nearly 1.5×1011 m away from the earth, most of the light emitted radially outward is lost in 
space, and only a small fraction of it hits a square solar cell, with area Acell. Since there is only 
one sun in the sky, the solar cell effectively sees a light source sitting above it, illuminating it 
with a beam of light at a solid angle of ΩS, as is shown in Fig.  I-3. This solid angle is uniquely 
defined by the distance between the sun and the earth (ignoring variations of the elliptical orbit), 
and is a constant of the solar illumination pattern. Since the sun traverses the sky during the day, 
it makes up a solid angle with an azimuth component. Considering the half-angle of the solar 
disk in the sky, with an angular radius of ΔS=4.66 mrad, then the étendue of the light emitted 
from the sun is: 

 srπ SS
52 1085.6sin −×≅∆=Ω   I.5 

since the solid angle is defined for the whole sky, the π term appears.  

     This geometric relation between the amount emitted from the sun, and that absorbed in earth 
on an area of 1 m2 provides the solar constant, Io=1372 W/m2, which is the amount of power that 
can be obtained by the solar radiation. However, if we are interested in the flux of photons 
emitted from the sun, we must integrate over Eq.  I.2 to account for all the energies in interval dE. 
This provides the total number of photons absorbed. 
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 I-3: Geometric Relation Between the Sun and The Étendue. (a) A single sun in the sky 
emits light with an étendue of ΩS, which is defined by the distance between the earth and 
the sun. (b) If the sun were closer, for example, on Mercury, the solid angle would be 
increased. (c) A second sun in the sky would increase the incoming étendue by a factor of 2, 
regardless of the angle between them. 

     Solar cells are typically made from materials with an internal threshold for absorption of 
photons (as will be explained in the next section). To obtain the total number of photons 
absorbed in the semiconductor, we integrate from the threshold value of Eth to infinity: 

 ∫
∞

−
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  I.6 

with NS being the number of photons per unit area, flux, emitted from the sun, and counted from 
a threshold energy, Eth and up.  

     When the lower threshold is set to zero, we count all the photons absorbed. If we want to find 
the total power received (and thus, the solar constant), we replace the numerator in the integrand 
of Eq.  I.6 with the term E3, and integrate from Eth=0, which results in the Stefan-Boltzmann 
constant, and the temperature, related by PS≈σT4.  

 

4. Semiconductors, Simplified 
 

    This section will summarize the salient features of a semiconductor system used to absorb 
sunlight, and create a voltage on a per photon basis. Since the bulk of semiconductor formulas 
are not used in this text, they will not be presented here at all, and a simplified model of a 
semiconductor system will be used instead. While it is typically crucial to understand the internal 
workings of a semiconductor and a p-n diode to understand how a solar cell extracts the power 
from the sunlight, the purpose of this work is to simplify the concepts of solar cells down to the 
barest of assumptions and equations. It is in no means a replacement for the basic texts on 
semiconductors [ 1, 2]. 
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   We can simplify the workings of a solar cell as being a two level system (or, a two band 
system [ 14,  15]), with the levels being levels of energy within which electrons can exist. These 
two energy bands are the valence (lower) and conduction (upper) band, with a large surplus of 
electrons in the valence band, and a comparative dearth of electrons in the conduction band. This 
description is therefore more general, with the main distinction between a semiconductor and a 
conducting molecule (or quantum confined system) is that the former is comprised of bands of 
energy, whereas the latter has discreet levels (HOMO and LUMO), however, this distinction will 
not be described here [ 14].  

    Fig.  I-4 displays the simplified version of such a system. Higher energy photons (dark blue) 
are absorbed since their energy exceeds the bandgap energy, Eg, which is the difference between 
the conduction and valence energy bands. The excess energy (hv>Eg) is imparted to the 
semiconductor material in the form of phonons, which produce heat. Note that in this two band 
model, photons can be absorbed in this range, whereas a two level system can only absorb 
discrete sets of photons, whose energy exactly matches the energy difference between the levels. 
The system will absorb all photons with energies above the threshold, which is the bandgap, Eg 
(cyan). However, photons with energy below this threshold are not absorbed, and the material is 
transparent to these photons. This means that these photons will almost completely be lost 
(ignoring intra-band absorption processes, known as free-carrier absorption [ 1]). It is therefore 
obvious that the lower the bandgap, the more photons there are to be utilized. The absorption of 
photons in the system creates e-h pairs by imparting the photon’s energy to electrons in the 
valence band, thereby “bouncing” them up to the conduction band. These electrons can then be 
used in an external circuit (provided contacts are made at the edge of the bandgap energies to 
selectively extract them).  

 

 I-4: Simplified Version of the Absorption Capabilities of a Semiconductor. The left is a 
rotated version of Fig.  I-1, plotting photon flux per energy, overlaid with a grey box 
signifying the absorption region of a Silicon solar cell, Eg= 1.1 eV. To the right is the 
simplified model of the semiconductor: two energy bands, conduction and valence, are 
separated by a bandgap, Egap. This figure plots energy as a function of thickness. Higher 
energy photons (dark blue) are absorbed, and create an electron hole pair (full and empty 
circles), with the excess energy (yellow line) wasted as thermal energy (phonons). Photons 
that are matched to the bandgap (cyan) are the lowest threshold of photons absorbed, 
whereas lower energy photons (red) are completely transparent to the system. 
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     This description vastly simplifies the material characteristics of the semiconductor. For 
example, in reality the absorption of photons is not unity or uniform, with a functional 
dependence of the absorption per thickness as a function of the energy of the photons, which is 
incorporated into the absorptions coefficient αabs(E), which would be placed within the 
numerator of the integrand in Eq.  I.6. As an example. Fig.  I-5a shows the absorption coefficient 
for Gallium Arsenide (GaAs), one of the best semiconductors for use in PV. The absorption 
within this semiconductor would therefore be: 
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∞
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    For the purpose of simplification, we can consider the optimal absorption as being a unity step 
function (or Heaviside function) [ 7, 15], u(E), such that: 
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with Eg being the threshold for absorption. This approximation is good for many direct bandgap 
semiconductors (see below), such as GaAs. In this case, Eq.  I.8 becomes: 
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  I.9 

which is essentially Eq.  I.6, with the lower threshold set to Eg. The appearance of the bandgap 
therefore transforms the equation into a “photon counter”, counting the number of photons 
absorbed from the bandgap and up. The approximation of the bandgap threshold as being a unity 
step function, Eq.  I.8, is comparable for materials such as GaAs, but not as much for many other 
materials. Various technologies can be used to better match the actual absorption coefficient with 
this step function approximation (the difference between them is portrayed in Fig.  I-5a). 

     The appearance of the bandgap of the material within Eq.  I.9 thereby completes the required 
information for the input flux into a solar cell. It is a function of a few physical constants (h, c 
and k), as well as the étendue of the incoming light, the material’s bandgap, and the nominal 
temperature of the source. These parameters, as well as the functional form of Eq.  I.9 thus 
provide all the information needed to calculate the input flux – with the emphasis on the 
information, since the change of information is essentially the entropy of the system [ 16] , as will 
be described in the next chapter.  
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 I-5: (a) Absorption coefficient of GaAs as a function of energy; overlaid is a step function at 
the bandgap of 1.4 eV [source: Ref.  17]. (b) E-k diagram of a semiconductor bandgap (in 
black), perpendicular to an E-x diagram (in green). The E-k description includes the 
parabolic bands common to most direct bandgap semiconductors, and plots the energy as a 
function of photon momentum. 

     This simplified description of the absorption of photons in a semiconductor is practically 
enough to describe all the other mechanisms within this text; however two essential properties of 
a semiconductor system must also be added to complete this simplified description. The first is 
that while the bandgap is the difference in energy levels between the conduction and valence 
bands: Eg=Ec-Ev, the actual energy level of importance is not the bandgap directly but rather the 
ensemble energy difference between electrons and holes. Since these are ensemble parameters, 
they are statistical and thus thermodynamic in nature, and depend heavily on the temperature, as 
well as the concentrations (number) of electrons and holes in each band. The variable of 
importance is therefore the chemical potential, µ, which is the difference between the two 
populations of electrons and holes [ 4, 6, 7, 15]. This chemical potential is the difference in average 
chemical potentials of the electrons in the conduction band, and holes in the valence band. Since 
these populations are of Fermions (as opposed to photons, which are Bosons), their statistics 
follow the Fermi-Dirac distribution as opposed to the Bose-Einstein distribution, and the 
temperature of the lattice (i.e. the temperature of the solar cell itself) adds a ‘width’, or 
uncertainty, to the exact level of each of these bands. Therefore, the utilizable energy of e-h 
pairs, which is the voltage difference between the two populations, is the chemical potential 
difference between these two populations: µ=µc-µv. From here on forward, only the single 
function, µ, will be used, despite its relation to the band populations, and it assumed that some 
method is available to separate the potentials of each population (essentially the reason why a p-
n junction diode is used, as well as selective contacts). 

     An additional element that complicates the simplified band model used is the distinction 
between the energy-space description of a band, which is the E-x diagram shown on the left of 
Fig.  I-4, as opposed to the more correct energy-momentum diagram, E-k, which plots the energy 
of the electron bands as a function of the momentum of the photons/electrons. This is plotted in 
Fig.  I-5b, showing the traditional parabolic band diagram in k-space. In order for photons to be 
absorbed, and create e-h pairs, the momentum of the electron and hole (the “x-axis”) must match. 
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This offsets the energy of the photons both above and below the bandgap edge. The two bands 
are not necessarily symmetric about the horizontal axis, with the valence band typically wider 
than the conduction band, which leads to “heavier” mass of the holes in the system (the effective 
mass of the electrons/holes is proportional to the inverse of the second derivate of the band 
diagram about the bandgap).  

     The parabolic band diagram of Fig.  I-5b is that of a direct bandgap material, such as GaAs. 
However, indirect bandgap materials, such as Silicon (Si), will have the bottom tip of the 
conduction band offset from the top tip of the valence band. This offset prevents photons from 
being absorbed within these indirect bandgap materials, since the k-space momentum matching 
is harder to maintain, requiring carriers to already have momentum before absorbing photons. 
This feature of the bandgap, which distinguishes direct and indirect bandgap materials, is also the 
primary reason why certain materials are better for solar cells than others. In the indirect bandgap 
materials, more thickness must be used (viz. more material) to ensure the complete absorption of 
the photons within the semiconductor. 

 

5. The Ultimate Efficiency 
 

     The Ultimate Efficiency (UE) is a concept coined by Shockley and Queisser [ 7] to describe 
the maximal efficiency of a hypothetically ideal solar cell. The assumptions used in calculating 
the ultimate efficiency are the most fundamental that can be made. The approach used by SQ 
was quite distinct from all others that preceded them: instead of attempting to calculate the 
efficiency of a solar cell by using the equations that govern a semiconductor, including the 
continuity equation that provides the relation between generated and recombining light, SQ 
decided to find the maximal efficiency achievable using thermodynamic arguments. The 
difference is that the thermodynamic limit is approachable from below, and cannot be surpassed, 
whereas the empirical models based on the equations for semiconductors were constantly 
improving and raising the maximal efficiency limit for power conversion in PV. In other words, 
the traditional method was a bottom-up approach, and provided incrementally increasing 
efficiency bounds, whereas the SQ approach was top-down, and provided a definitive upper 
bound to PV conversion for a semiconducting PV system. 

     The UE can be found by making a few assumptions [ 7], delineated below. Each of these 
assumptions will be questioned and remarked upon in some form or other throughout this work. 
The assumptions are (in no particular order of importance): 

a) The solar cell consists of a single junction semiconductor, being the ideal material to split 
e-h pairs via the absorption of photons. 

b) The cell has no dimensions, acting as a thermodynamic body with no volume. The 
absorption within this body is infinite, following the step function of Eq.  I.8. All photons 
below the threshold of Eg are not absorbed. 

c) Photons absorbed with energy above the bandgap create e-h pairs with no detrimental 
loss involved in the heat loss due to the thermalization process. 

d) A single e-h pair is created per absorbed photon. 
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e) Each e-h pair contributes to the short-circuit current of the solar cell. No absorbed 
photons are thus “lost”. 

f) The mobility of the carriers is infinite, resulting in a constant value of the chemical 
potential throughout the device, which has only two dimensions, with no thickness, as per 
assumption b). 

g) No optics are used to help concentrate the light. 

     These assumptions are explicitly or implicitly noted in the original SQ paper, with some of 
the others, such as infinite mobility [ 18], and the lack of thermalization loss [ 15] more explicitly 
stated in other works. Implicit in assumption e) is the assumption that the material is completely 
lossless, as will be emphasized later. This particular assumption was already questioned in the 
original model itself. 

     Under these assumptions, we can calculate the UE of a single junction solar cell (assumption 
a) using the formulas already mentioned above. For an ideal cell, we can imagine that the current 
of the cell is provided by the incoming flux of photons, each creating a single e-h pair per photon 
absorbed, and extracted at the bandgap, which would be the maximal achievable voltage. 
Considering the argument stated above regarding the difference between the bandgap and the 
chemical potential, we can recognize from the outset that if there is a difference between the 
bandgap energy (the threshold above which photons are absorbed) and the chemical potential 
(the maximal difference in potential/voltage between the electron and hole populations), this 
maximal voltage will not be achievable. Nevertheless, the power extracted under the UE 
assumptions is the product of the current and voltage of the device, which is the bandgap energy, 
Eg, multiplied by the photon flux, given in Eq.  I.9. To calculate the efficiency, we must divide it 
by the incoming power flux, which is the Stephan-Boltzmann constant times the fourth power of 
the temperature (σT4), as well as multiplied by the fraction of sunlight hitting the cell, which is 
the étendue (ΩS). The étendue term thus cancels out, and if the integral is calculated in units of 
eV, we can simplify the formula for the UE efficiency as follows: 

 ∫
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with the value of the pre-factor, g2, given by: 

 4
2 )/(15 SkTπg =   I.11 

     The calculation of the UE given by Eq.  I.10 is presented in Fig.  I-6, providing a maximal 
efficiency of 44% for an optimal bandgap of 1.17 eV. This maximum is a thermodynamic limit, 
defined solely on the photon flux emitted from the sun and absorbed by the cell, as well as the 
bandgap of the semiconductor, which is assumed to be an unchangeable parameter of the system. 
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 I-6: Ultimate Efficiency Calculation. The optimal bandgap, using these assumptions, is at 
1.17 eV with 44% efficiency. 

    The reason there is a maxima in the UE is an interplay between the rising voltage obtained 
from the bandgap (V~Eg), multiplied by the solar spectrum current (I~NS), which is the 
blackbody spectrum in Fig.  I-1. It can also be explained using basic calculus as follows: at zero 
bandgap, the power out is zero (V~Eg=0), and at infinite bandgap the current out is zero (since 
no photons are absorbed, I~NS=0). Since the function in Eq.  I.10 is nonzero, there must be a 
maximum, which can be found analytically using an approximation of the integral. This 
approximation, first used by SQ, and using an approximation of the integral already existing in 
the literature [ 19] is extremely useful, and is worth presenting here since it will be used 
extensively in the text. The approximation is as follows, where the “-1” in the denominator is 
neglected: 
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where E’ and T are used for general parameters, and generally is only valid if E’>>kT, however 
is relatively accurate to values approaching kT. This can be shown by expanding the denominator 
in a Taylor series (not shown here). For the solar flux, this means that the approximation is valid 
for all values of bandgap above ≈0.5 eV. Considering the UE value for a bandgap of Eg=0.5 eV, 
which is well below the maximal value, low bandgap materials are frequently ignored as being of 
less value for PV. This assumption is generally correct for a single junction cell, however we 
provide an example where this assumption is broken even for a single-junction cell in 
Chapter  VI. Furthermore, it is no longer applicable for multi-junction cells, as will be addressed 
in Chapter  VII. 
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6. Detailed Balance  
 

     The true SQ limit is known as the Detailed Balance (DB) limit, and is more complex than the 
UE limit, also defined by SQ in the same eponymous paper [ 7]. The UE limit, while easy to 
understand, fails to comply with the fundamental principal of detailed balance, which is a 
concept initially used in quantum physics to describe the reciprocity and/or time reversal 
phenomenon seen on a single quantum scale. The principal of DB states that in addition to the 
input flux of photons impinging upon the surface of the solar cell, we must also account for what 
happens to these photons within the confines of the cell, particularly, their possible re-emission.  

     Assuming a two band system, as described for a semiconductor above, we must be able to 
reverse the action of every photon, and state that if a photon can be absorbed within the cell, it 
must be able to be (re-)emitted as well. From rather basic arguments dating back to Einstein 
[ 6, 15], we know that there is a rate of emission due to three processes in any two level (band) 
system. These are shown pictorially in Fig.  I-7. In Fig.  I-7a, a photon is absorbed in the system, 
generating an excited electron (i.e. an electron in the conduction band, in an unstable state); this 
is known as stimulated absorption, and occurs at a rate of rabs. Once the electron is excited, it 
prefers to lower its energy, and has two methods for doing so: the first is through spontaneous 
emission, at a rate of rspon, and is portrayed in Fig.  I-7b. This will occur ‘spontaneously’ after a 
specific lifetime that the electron stays in the excited (conduction band) state. The second 
process is more complicated, and is portrayed in Fig.  I-7c. here, we must reverse the process of 
stimulated emission completely, and say that if an electron is already in the excited state, and 
another photon with energy matching (or above) the bandgap arrives, there is the possibility that 
this excess energy will induce the electron to immediately recombine with a hole (reduce its 
energy by “falling”), in a process known as stimulated emission. This rate of this process, rstim, is 
dependent upon the concentration of electrons already in the excited (conduction) state, and 
therefore is not only dependent upon the input flux. In each of these processes, the conservation 
of energy, one of the most fundamental laws of physics, must apply. In spontaneous emission, or 
stimulated absorption, an exchange of energy between the photon and electron occur, such that 
Ephoton=hvphoton=Eg. Any excess energy in the absorption process is transferred to thermal 
photons in the semiconductor lattice. In the stimulated emission process, the input energy is both 
the photon’s energy, hv, as well as the excited electron’s energy, at Eg; whereas the output 
process has two photons at hv=Eg such that the total energy is conserved, however: the total 
number of photons is not conserved! 

     This final point is crucial to understanding the basic assumptions of the DB model. For any 
system at equilibrium (meaning that no other elements of energy are present), the rates of 
incoming and outgoing photons must match: 

 stimsponabs rrr +=   I.13 
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 I-7: Absorption and Emission in a Two Level System. In all panels, the time axis starts on 
the left. (a) Stimulated absorption of a photon excites an electron to the conduction band, 
exchanging photon energy for bandgap energy. (b) Spontaneous emission of the excited 
electron, whereby the electron recombines with its hole, results in the emission of a single 
photon. (c) Stimulated emission occurs when an excited electron interacts with an incoming 
photon, resulting in an immediate recombination event and the emission of an extra photon 
to the field. 

     However, for PV, the assumption is that the rate of stimulated emission is less relevant, since 
the carrier concentration in the conduction band will result in a near negligible coefficient of 
stimulated emission [ 6,  15]. We can associate the rate of stimulated emission to be similar to the 
emission from a pumped laser; this essentially states that we are very far from the regime of laser 
operation, since we are not pumping enough electrons into the system. As we will show in 
Chapters  VI and  VIII, this may not be the case under certain conditions of operation. Therefore, 
for PV, the DB model states that for a standard semiconductor, the stimulated emission term is 
negligible, and we are only interested in the following reduced DB relation: 

 sponabs rr ≅   I.14 
Eq.  I.14 will be restated more effectively and in depth in the next chapter, however, the SQ DB 
model essentially assumes that the only emission process that must be dealt with is the re-
emission of photons via the band-to-band (conduction-to-valence) recombination of e-h pairs.  

     The SQ DB model is a modification of the UE model, by including the physically required re-
radiative loss as the essential loss mechanism of photons from the solar cell. The term for 
radiative recombination from the semiconductor follows the von Roosbroeck-Shockley (vRS) 
relation [ 20,  21], which is quite similar to the Planck blackbody radiation, however accounts for 
the altered internal energy of the states as being a difference between the energy, E, and chemical 
potential, µ: 

 ∫
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where we have included the factor g as in Eq.  I.3, the index of refraction of the material, nc, as 
well as included the outgoing étendue of the emission, Ωo. The temperature of the cell is denoted 
Tc, and is usually at ambient temperatures, Tc=300 K. Also assumed is that the emission follows 
the same step function dependence on the bandgap as the absorption, as in Eq.  I.8, εemit=αabs. 
Eq.  I.15 appears nearly identical to Eq.  I.10, except for the difference in étendue, and the 
addition of the chemical potential. However, the two equations are actually extremely different, 
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since the addition of the chemical potential reduces the exponent in the integrand of Eq.  I.15, 
making the integrand function as a sharp, one-sided , delta function, about the bandgap energy. 
The emission line from the semiconductor is essentially the same as a Light Emitting Diode 
(LED), which radiates out a single color based on the bandgap of the semiconductor, however 
does not have nearly as sharp of a linewidth (meaning the amount of different colors/frequencies 
combined) as a laser. A laser, which utilizes stimulated emission, has a sharp linewidth that is 
more dependent upon the carrier concentration than the temperature. 

   For the DB model, we must reduce the incoming light impinging upon the solar cell by the 
outgoing light (re-)emitted from the solar cell itself, as a function of the chemical potential. The 
chemical potential is directly related to the voltage extracted from the solar cell, since: 

 qμV /=   I.16 
where q is the elementary electronic charge constant (q=1.6×10-19 C), and V is the voltage of the 
cell. This relation will be expounded upon in the next chapter. As stated above, the actual 
utilizable voltage of the cell will be lower than the bandgap, V<Eg, and will be reduced even 
further if a realistic load resistance is placed on it, which is essential for producing power from 
the cell. The SQ DB model therefore reduces the UE efficiency limit by a factor pertaining to the 
losses in re-emission, as well as finding the maximal power point of the product: P=I×V, with 
the current, I, given by the input flux of photons (times q) minus the outgoing flux of photons.  

     To calculate the DB, we must also know the value of the étendue parameter, as well as the 
concentration factor, which will be covered in the next section. Losses in the radiative 
recombination can be added by multiplying the recombination emission rate in Eq.  I.15 by an 
efficiency factor, 0≤κnr≤1, which can include nearly any loss process, such as non-radiative 
losses [1,2, 22, 23] (κnr=1 for a perfect material with no losses. Note that this term could equally 
have been defined as κrad, which is the inverse of κnr). This will transform the emission equation 
to: 
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The efficiency can then be calculated by subtracting Eq.  I.17 from Eq.  I.9, and searching for a 
maximal value of µ (a more detailed description of the calculation appears in the following 
section). This calculation is shown in Fig.  I-8, showing the maximum 30-31% efficiency 
expected from a PV system, assuming no losses other than radiative recombination. Adding 
losses will only reduce this maximal efficiency, which is what one would expect from a realistic 
system (see dashed line in Fig.  I-8). 

     For most systems analyzed in this text, we will ignore the contribution of the index of 
refraction of the material, which leads to reflections off the surface of the solar cell, since anti-
reflection coatings (ARCs) will reduce this factor. Furthermore, the inclusion of losses, as 
denoted by the κnr term, will only be included in certain sections of the text, and will be 
explicitly noted.  
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 I-8: Detailed Balance Efficiency Calculation Per Bandgap. Compared with Fig.  I-7, which 
is the Ultimate Efficiency, the maximal efficiency is reduced to ≈30.4%, at an optimal 
bandgap of 1.32 eV. The dashed line represents a lossy material that emits only 30% of the 
recombination light due to inefficiencies, lowering the maximal efficiency of the system.  

      

     Other models for maximal efficiency were developed concurrently with the SQ model, mostly 
based on semiconductor equations. In particular, a different set of upper-bounds was found by 
Wolf using semiconductor equations in conjunction with a thermodynamic approach [ 24, 25], and 
a convergence between the SQ thermodynamic model and the semiconducting models was found 
only more recently [ 26, 27]. Regardless, the SQ model has stood the test of time, and remains the 
efficiency limit for a single junction solar cell, with no concentration or any other technique that 
violates the assumptions listed above. The addition of concentration for solar cells will now be 
described in brief. 

 

7. Concentrating the Sunlight and Efficiencies 
 

     One of the assumptions in the SQ model was that the light was non-concentrated, and 
therefore there is a limiting factor matching the ‘impedance’ of the incoming sunlight absorbed 
from a solid angle of ΩS, and subsequently emitted out at a solid angle of Ωo from the cell. It is 
relatively easy to then deduce that using optics (such as a lens, or mirrors) to concentrate the 
light will improve the efficiency factor. We can also imagine that there is a limit to how much 
we can concentrate the sunlight, stemming simply from the Brightness Theorem as stated above, 
in which the rays of light cannot be ‘bent backwards’, and therefore they cannot be spread out by 
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more than an angle of 90°. This can be further proved via an implementation of the 2nd law of 
thermodynamics, as will be shown in Chapter  VIII [ 13, 28].  

      The solar cell geometry described above was for a flat plate, which can emit light out 
(radiative recombination) at a solid angle of Ωo=2π (a half angle of π, as well as emitting from 
both sides, adding a factor of two). However, it should be noted that the optimal geometry for a 
cell can in fact be spherical, in which case spherical coordinates should be used, and under this 
configuration, the cell can be illuminated by the entire spherical sky (as opposed to the 
hemisphere of the sky from above). The cell will then be able to absorb from a solid angle of 2π, 
as well as emit at a half angle of 4π (4π gives a spherical solid angle, which is then divided by 
two to provide the half angle, and then multiplied by two to account for radiation emitted in the 
negative radial coordinate).   

     To include the use of concentration, we must first define the concentration factor, fΩ, which 
provides information regarding how much the light was concentrated compared to the regular 
angular radius of the sun, with an incoming étendue of ΩS. This leads to the definition of the fΩ: 
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which is simply the ratio of étendues. Any additional concentration will multiply this term, as 
will be shown below, in order to match the outgoing and incoming étendues. Since the tracking 
of the sun is essentially along a single axis, the solid angle, which is πsin2θ, it is only tracked 
along the θ angle of the azimuth. If we assume that the concentrator can only concentrate onto a 
flat plate, then the maximal outgoing étendue is π, which leads to the definition of the maximal 
concentration (fΩ=1) as: 
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where ΔS was taken as ≈4.7 mrad, as above, and the value of Cmax was rounded upward. 

     The concentrated sunlight can be viewed as multiplying the “number of suns” irradiating the 
solar cell, such as that portrayed in Fig.  I-3c, or as increasing the incoming étendue of the 
sunlight, such as that portrayed in Fig.  I-3b. Typically, the former usage is employed, such that a 
concentrating system is described as being (e.g.) “C=200 suns” or “C=1.2 suns”. The merit of 
the physicality of the maximal concentration achievable, as described in Eq.  I.19 will be 
described in more detail in Chapter  VIII. It should immediately be noted that adding a back 
reflector to the cell from below will create an effective concentration of C=2. 

     When including the concentration of sunlight into the efficiency calculations, we must also 
modify the incoming spectrum equation. Instead of simply using the photon flux of Eq.  I.9, 
multiplied by the concentration, C, we must also include the ambient blackbody radiation, at a 
temperature of To – typically taken as To=300 K, which is the same as the cell’s temperature. The 
ambient blackbody temperature adds an additional photon flux term: 
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where the concentration factor, fΩ, is included, multiplied by the concentration itself, C. 

     Eq.  I.20 includes the portion of blackbody radiation from the ambient temperature and 
absorbed by the solar cell. The factor (1-CfΩ) appears since the portion of ambient blackbody 
étendue must not overlap that of the incoming sunlight étendue.  This ignores the contribution of 
the diffuse light, although it can comprise a large portion of the incoming light angle, for 
simplicity. Fig  I-9a displays the contribution of the ambient illumination for a system with no 
concentration. We must remove 1/46,000 of the hemisphere above the cell from the since that 
angle is taken up by the beam of incoming sunlight. For this system, the factor (1-CfΩ) is nearly 
unity, since C=1, and we can neglect the 1/46,000 term (with or without a back reflector). In 
contrast, when we begin increasing the concentration, effectively filling more of the sky with 
suns, we must reduce the contribution of the ambient blackbody, as show in Fig.  I-9b.   

 

 I-9: Concentrating Sunlight Versus the Ambient Blackbody Contribution. (a) For no 
concentration, the ambient blackbody fills the half angle of π-fΩ, which accounts for 
everything other than the direct sunlight. (b) When increasing the concentration, the 
amount of ambient blackbody contribution is diminished. 

     The total input flux including the contribution from the ambient blackbody becomes: 
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The difference between the two components is the étendue and the temperature. Since there is 
approximately a twenty-fold difference in temperatures between the solar and ambient 
blackbodies (TS/To=6000/300), the contribution of the rightmost term is generally negligible in 
comparison to the stronger solar irradiation term. Since the short-circuit current is directly 
proportionate to Eq.  I.21 via a multiplication by q, the ambient blackbody produces some e-h 
pairs. However, even with no concentration (C=1), the rightmost term is five orders-of-
magnitude lower the than the solar blackbody term, effectively making the contribution from the 
ambient negligible (this will be shown to be true for the open-circuit voltage as well in the next 
chapter). For this reason, the input flux that will be used throughout this text for analytical 
purposes will be Eq.  I.9, whereas for numerical results, Eq.  I.25 is used. 
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     The contribution of the ambient blackbody is important for finding the dark current of the 
solar cell, meaning the current that it provides when there is no solar input. In this case, the first 
integral in Eq.  I.21 is zero (C=0 suns), and the rightmost term is the only input term. This term is 
therefore important; otherwise there would be no definition for µ in this state [ 29].  

     The effect of adding concentration can be seen as effectively reducing the radiative re-
emission, in the same way that lowering the temperature, Tc→0 K would. In this sense, the UE is 
the same as the DB efficiency for a cell at 0 K, which is physically impossible to achieve, and 
thus provides a maximal upper limit for the energy conversion [ 7]. To find the maximal 
efficiency as a function of the concentration and voltage (P=I×V), we must maximize the 
following equation as a function of qV=µ: 
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where the first bracketed term comes from NTotal as in Eq.  I.9 (neglecting the ambient blackbody, 
for brevity), and the second bracketed term comes from Nout as in Eq.  I.17 above, and all other 
parameters are constants (TS, Tc, To, ΩS, Ωo). For maximal efficiency, we ignore the effects of 
non-radiative losses (κnr=0), and refractive index mismatches (nc=1). The division of the 
outgoing emission flux by the factor CΩS reduces the contribution of the second bracketed term 
in Eq.  I.22. Therefore, we can see that an increase in concentration effectively nullifies the 
contribution of the second term, and Eq.  I.22 approaches the UE limit of Eq.  I.10.  

     Fig.  I-10 displays both the current-vs.-voltage (I-V) curve for a solar cell with Eg=1 eV, and 
the efficiency for this cell with increasing concentration. The I-V curve, shown in black, is the 
bracketed term in Eq.  I.22, and displays the most critical parameters of this curve: the open-
circuit voltage, Voc, and the short-circuit current, Isc. The maximal output power is the maximum 
of the bracketed current term multiplied by the voltage, and provides the maximal power point, 
identified by the parameters Im and Vm. There is no analytical solution to the maximum of 
Eq.  I.22, being a transcendental equation, however these parameters are well defined. 
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 I-10: I-V Curve and Maximal Power Curves for a 1 eV Bandgap Cell. The left axis displays 
the black-curve I-V characteristic of a cell with no concentration, C=1. Displayed are the 
most important parameters of a solar cell, the short-circuit current, open-circuit voltage 
and maximal (voltage) power point: Isc, Voc and Vm, respectively. The curved right-hand 
corner of the I-V plot is a result of the diode-like characteristics of the two band model. In 
blue are the power point curves, P=I×V, normalized to the input solar current (the 
efficiency). Adding concentration increases the efficiency of the system (I-V curves not 
shown), with maximal concentration approaching the Ultimate Efficiency limit, which is 
portrayed by the red triangle. The more “triangular” the power curve – or “square” the I-
V curve – the higher the efficiency of the cell. 

     The difference between Eg and Voc will be described in detail in the next chapter, however, it 
should be noted that this difference results here entirely due to thermodynamic principles of flux 
and not due to semiconductor equations of carrier concentration. The “square-ness” of the I-V 
curve is measured as the Fill Factor: FF, which is a measure of the maximal power point, to the 
easily measureable parameters of the solar cell: Isc and Voc, and is defined as: 
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with FF→1 for maximal concentration, and for Tc→0 K, i.e. the UE case. For C=1, the FF can 
be approximated to a near-analytical solution, given by [ 30]: 
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where voc=Voc/kTc. The FF is mostly dependent upon the Voc of the system, as can be seen from 
Eq.  I.24. This emphasis on the voltage of the solar cell, as opposed to the more intuitive grasp of 
the current of the solar cell is one of the main themes of this work; while most of the equations 
listed so far had a direct relation with the current, it is the voltage that supplies more information 
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(literally), and therefore plays an important role, if not more important, than the current. The 
emphasis on voltage can be seen in the simplified efficiency equation that makes use of the FF: 

 ocsceff VIFFη ××=   I.25 
In this equation, the efficiency is dependent upon three factors, two of which are voltage 
dependent, as a function of Voc. This simplified equation, while always true, is useful for quick 
calculations of the efficiency using Eq.  I.24 for the FF. It is also important as it emphasizes the 
major measurable parameters of a solar cell, as can be seen from Fig.  I-10. However, it belies the 
complexity needed to calculate the actual efficiency using the transcendental equations to find 
the maximum power point. The approximation of the FF given in Eq.  I.24 is fine for no 
concentration, however higher concentration result in higher FFs, and calculations using the FF 
method will not be used any more throughout the text. 

     The addition of concentration to the efficiency calculations is therefore seen as the first added 
level of complexity to the PV system. While one can theoretically use extremely high 
concentration values to improve the efficiency of an existing cell, the reality of the PV design 
and materials typically imposes a realistic limit of ~C=1000, beyond which losses (particularly 
serial resistance losses) begin to reduce the overall efficiency [ 31, 32]. This will be detailed more 
fully in Chapter  VIII. 

 

8. Beyond the Shockley-Queisser Limit 
 

     The ≈31% efficiency limit for a single junction solar cell is one that is thermodynamically 
imposed, based on the assumptions listed in section  5. However, it was quickly noticed by many 
that this limit can be circumvented if any of the assumptions listed were violated in a manner that 
did not violate any physical principles. Each one of the assumptions listed has been questioned, 
using some combination of technology or another, in attempts to obtain higher efficiency PV 
systems, beyond the SQ DB limit. This is in addition to the general trend of the past 50 years of 
improving the efficiency of PV to approach the SQ upper limit from below.  

     There are many methods of improving the efficiency of PV beyond the SQ limit, while 
maintaining the laws of physics and not violating the laws of thermodynamics. Every one of the 
assumptions stated above can be questioned, and physical processes that counteract these 
limitations can be found. For example, the assumption that every photon will create a single e-h 
pair was known at the outset (in SQ’s original paper [ 7], in a footnote) to be false under certain 
circumstances. This possibility of creating more electrons from every photon is the foundation of 
the sub-field of Carrier Multiplication (CM) cells, as will be discussed in detail in Chapter  IV. 
There are a number of methods such as this that have been described in the literature, and a 
description of these methods in terms of what they attempt to accomplish, and their drawbacks 
and advantages, will be covered in some of the next few chapters. In particular, Chapter  Vdivides 
some of these methods in an easy to understand matrix.  

     The concept of surpassing the SQ limit was described and analyzed in detail by Green, and 
coined as “3rd Generation Photovoltaics” [ 4, 33]. The concept of 3rd generation PV is to go 
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beyond the SQ limit while simultaneously reducing the cost of the system. The 1st generation 
was described as simple, single junction cells, which were designed to improve up to the SQ 
limit. The 2nd generation was assumed to encompass the field of thin-film PV, where the same 
efficiencies could be gained while reducing the material usage and cost. The 3rd generation 
concept is to maintain the low cost, while exceeding the SQ limit for a single junction cell. This 
was summarized in a well-publicized graph showing the cost of the cell, in dollars per square 
meter, versus the efficiency, and is reproduced here in Fig.  I-11. 

 

 I-11 3rd Generation Photovoltaics, as a Function of Cost and Efficiency. The ‘Present 
Limit’ is the SQ limit for a single junction cell, and the ‘Thermodynamic Limit’ is the 
maximal possible efficiency achievable if concentration is used as well. Reproduced from 
Ref. [ 33]. 

     The goal of surpassing the SQ limit was immediately recognized to be possible if more than a 
single semiconducting junction was used [ 24]. Since each junction would be limited by the 
similar equations used to derive the SQ limit, by adding them together, one could increase the 
overall efficiency of the system. Since the SQ limit for a single junction cell has a maxima per 
bandgap, it is obvious that not every bandgap is can achieve the optimal efficiency; however, if 
we imagine each junction as an independent voltage supply, with a current running through it 
generated by the solar irradiation, we can connect these power supplies together to create a 
larger, more efficient power supply. How to connect these cells together is a different question, 
but for the existing architecture of multi-junction cells today, they are connected in series, such 
that the current is matched in each cell, by selecting the bandgaps of each junction to absorb the 
same number of photons (assuming each segment of absorbed photons produces the equivalent 
number of e-h pairs, and thus an equivalent current). This type of device architecture, known as a 
multi-junction cell will be analyzed more thoroughly in Chapter  VII. Regardless of the 
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architecture itself, the overall efficiency of such a multi-junction system can approach the 
thermodynamic limits of solar energy conversion [ 4, 6, 34- 39].  

     The number of materials used for PV has expanded over the years, as well as the device 
architectures and methods. In addition to the mainstream use of Si as the semiconductor material 
of the solar cell, the use of GaAs has recently become feasible due to scalable manufacturing 
techniques, and compound materials such as CIGS (Copper-Indium-Gallium-Selenide) are also 
being used by some manufacturers due to its ease of manufacturing as well. Each material 
system has its merits and drawbacks in terms of material abundance, costs and other issues. 
While Si currently controls most of the PV material market, the fact that it is an indirect bandgap 
material makes it less suitable than others; however its mature development in the information 
technology landscape has given it the largest head-start. Regardless, for a single junction cell, the 
material’s bandgap must be chosen so as to sit near the top of the efficiency curve of the DB 
limit in Fig.  I-8, which severely limits the number of materials available. This limitation will be 
addressed in Chapter  VII.  

     The use of multi-junction cells allows the use of more materials, however is generally limited 
by other material-science related issues of combining these materials together, without inducing 
losses. For a stack of multi-junction materials, the major constraint is the lattice growth of 
different materials upon one another, which if improperly matched, induce defects in the 
semiconductor crystal and make each segment of cell less efficient. The materials used for these 
multi-junction cells typically include a base of either Germanium (Ge) or Gallium Antimonide 
(GaSb), which have low bandgaps (0.67 and 0.73 eV, respectively), followed by layers of growth 
of GaAs and  Aluminum Gallium Arsenide (AlGaAs) derivatives, which can tune the bandgap of 
the layer, depending on the amount of materials interchanged. Typically, concentration is used to 
improve the efficiency of these devices, since the high cost of manufacturing can only be offset 
by the high efficiency made possible through the use of these multi-junction materials. 

     The efficiency of each design can be confirmed at a few internationally recognized locations, 
and the ‘champion cell’ efficiency of each design is released in a multi-variable graph on an 
annual basis by NREL, as is reproduced in Fig.  I-12 for the period up to mid-2011. Additional 
techniques exist to make solar cells, as referenced in the graph, and many companies, designs 
and materials are mentioned.  
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 I-12 Validated Solar Cell Efficiency Data from NREL. All data points show the peak 
efficiency of a specific solar cell design. Graph reproduced from NREL. 

     The remaining chapters of this text will focus on certain aspects of solar cell efficiency 
calculations, based entirely on the thermodynamic approach. In particular, the emphasis on the 
open-circuit voltage, and its relation to the entropy of the photons will be discussed in the 
following chapter. The relation between the maximal voltage and information will be the main 
topic discussed throughout all the following chapters. 
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II. Entropy, Transfer Functions and the Single 
Junction Solar Cell 

 

*Publication note1 

1. The Detailed Balance Model Revisited      
 

     The following chapter delves into the concept of entropy, and how it relates to the 
thermodynamic description of a solar cell. To account for the entropy, the most simplified 
version of the SQ DB limit is constructed, as first devised by Ruppel and Würfel [ 15]. The 
entropy arguments follow many other works in the field [ 35, 41- 43], with the entropy of photons 
described in many different variations [ 44, 45].  

     While the original SQ paper [ 7] described the DB limit as a function of the UE limit, 
multiplied by loss terms such as the ‘impedance mismatch’ and ‘voltage correction’, as well as 
using the diode approximation to described the outgoing flux of photons, the most simplified 
version of the DB limit can be described simply by the current flow in at short-circuit, and the 
voltage at open-circuit. This description was used in the preceding chapter to provide the 
equation for the DB limit, however, it was not the form used by SQ in their original paper. Part 
of this difference stemmed from the use of approximations by SQ to simplify their calculation in 
a time when computers were not available to calculate the maximal power point. While we use 
numerical techniques to find the maximal power point, the thermodynamically important 
parameters of the PV system were described as being Isc and Voc, as portrayed in Fig.  I-10. The 
Isc was described as being directly related to knowledge of the input flux: 
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  II.1 

where we have neglected the ambient blackbody contribution, and the chemical potential µ=qV 
was set at zero, which is the voltage at short-circuit. The Isc for a ‘regular’ single junction cell 
can therefore be taken as the input solar flux alone. 

     In contrast, the Voc of the system is not directly inferable, but can be found using the flux 
equilibrium method [ 15]. At open-circuit, the current must be zero, and therefore we can equate 
the incoming and outgoing light, since the flux of photons, meaning the number of photons 
impinging upon the surface, as well as emitted from the surface, must be equal at steady-state 
equilibrium. This statement is in fact a re-phrasing of Kirchhoff’s law of radiation, in which a 

                                                
1 The following chapter includes material from all of my publications, but in particular the description of the single 
junction transfer function was defined in Ref.  40. That publication, however adds more detail to the discussion, as 
well as includes the transfer functions of other 3rd generation techniques, which will be dealt with in Chapter  V. 
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material’s emissivity, εemit, is equal to its absorptivity, αabs, assuming no losses are incurred 
[ 6, 15]. For the simplified model, we take both absorptivity and emissivity as unit step functions: 

 )( gemitabs Euεα ==   II.2 
just as was done in Eq.  I.8. The difference between the regular description of Kirchhoff’s law of 
radiation, and the one used here for the flux equilibrium method, is that here we are describing 
an equation of total photon number, whereas the original law was stated for total energy flow. 
The flow of energy from the sun to the cell at open-circuit is not equal [ 6]. Furthermore, the 
emissivity and absorptivity are typically functions of the energy as well as the solid angle of flux, 
and we are here assuming that αabs=εemit under all angles and energies. These terms are therefore 
more correctly written in their form: αabs=αabs(E,Ω), including both the angular and energy 
terms. The idea of limiting the input and output emission will be discussed again in Chapter  VI. 

     At open-circuit, the cloud of photons emanating from the sun interacts with the solar cell, and 
generates electron hole pairs. While the chemical potential of blackbody photons is ill-defined 
(essentially zero), after the interaction with the solar cell (or matter in general), the photons can 
have a chemical potential ascribed to them. This non-intuitive fact has been noted by several 
authors [ 15, 46, 47], and can truly be defined only at open-circuit, where the chemical potential of 
the electrons, µoc(electrons), is wholly imparted to the outgoing recombination photons, 
µoc(photons). If we zero Isc in Eq.  II.1, and leave the chemical potential equal to the open-circuit 
voltage, µ=qVoc, we obtain the following flux equilibrium relation: 
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  II.3 

    Examining Eq.  II.3, it is obvious that the major differences preventing the two sides of being 
equal are the mismatch in étendues (Ω), as well as the variation in the exponent, as a function of 
temperatures. Since the concentration amount, C, can counter the étendue mismatch, the 
equivalence of the exponents relates the temperature and chemical potential of light: 
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However, this relation is deceptive, since Eq.  II.3 does not relate the integrands, but rather the 
full integral (the area below the integrands), as will be displayed below. Nevertheless, at 
maximal concentration (CΩS=Ωo), we can use Eq.  II.4 to find the maximal value of the open-
circuit voltage under normal operation: 
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where ηC is the Carnot efficiency between two sources of different temperature (ηC≈95% for the 
temperatures used here) [ 48, 49], and the replacement of E with Eg can be found by a finding the 
maximal value of Eq.  II.3 in terms of the energy as a function of a constant chemical potential 
[ 29]. This appearance of the Carnot efficiency signifies the thermodynamic relevance of the 
open-circuit voltage, as will be discussed in the next section. 
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     To find the value of Voc for all other values of C, we must solve Eq.  II.3 for Voc. This can be 
done numerically, for an exact solution, however the physical meaning of this solution can also 
be found by using the approximation of the integral from Eq.  I.12, for both sides of the equation. 
This approximation only holds under the following assumptions: E>>kTS and E-qVoc>>kTc. The 
approximation actually holds fairly well for values of E approaching these limits as well (as can 
be shown using a Taylor expansion). Using this approximation, Voc can be found as:  
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Where we have included the possible losses, and neglected the n2
sc term which can provide a 

total 4n2
sc enhancement [ 50]. The α terms are correction terms of the form: 

 2
1 )/(2/21 gSgSS EkTEkTα ++=   II.7 

which is due the integral expansion, and can be non-negligible for moderate bandgaps (e.g. 
αS1≈2.5 for Eg=1 eV), and: 

 1)/(2/21 2
1 ≈++= gcgcc EkTEkTα   II.8 

Which is typically negligible (unity) due to the small thermal energy: kTc|300 K=25.8 meV. If we 
ignore the losses, and the α terms, we can simplify Eq.  II.6 to: 
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This equation of the open-circuit voltage provides a closed form equation that relates this crucial 
parameter of a solar cell to the constants of the material and architecture. Furthermore, it will be 
shown in the next section that it has important ramifications regarding the thermodynamic state 
variables of the system. Plotted in Fig.  II-1 are Isc and Voc following the equations above. The 
approximate solution is nearly identical to the numerical solution.  
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 II-1 Short-Circuit Current and Open-Circuit Voltage of a Solar Cell. The Voc has a cutoff 
for low bandgaps due to the logarithmic term. 

   Due to the logarithmic term in the open-circuit voltage, there is a cutoff (or cut-on) for small 
bandgaps, below which the voltage is zero. This cutoff is highly dependent upon the parameters 
of the system, and becomes higher with losses, reflections (non-unity index) and different 
étendues; for these calculations, Ωo=2π and C=1. It should be noted that for C=Cmax, Voc→Eg, 
and not Eg×ηC; this discrepancy is discussed in Chapter  VIII. 

 

2. Entropy and the Reduction of Voltage 
 

     The chemical potential, and thus the voltage, at open circuit is a thermodynamic variable. At 
open-circuit equilibrium (with no current extracted), all the photons are absorbed and re-emitted, 
and the semiconductor solar cell has transformed the total energy of the photons in the most 
efficient manner. This is the essence of the DB model. From the fundamental equations of 
thermodynamics, we can relate the chemical potential to the Gibbs free energy of the system, G, 
which is related to the other thermodynamic variables by: 

 μSTUG =×−=   II.10 
where U is the internal energy and S is the entropy. Generally speaking, the Gibbs free energy 
also includes the pressure-volume product, which is what differentiates the Gibbs and Helmholtz 
free energies. While we will not associate any volume with the photon cloud, the étendue can be 
taken as a thermodynamic replacement for the volume expansion [ 10]. 

     The use of the term ‘entropy’ can better be explained if we interpret entropy as meaning a 
measure of the Missing Information of a system [ 16]. This measure is just as fundamental a 
property of the system as its temperature and internal energy, and is not arbitrary. The entropy is 
therefore a measure of information in the system, where the information is a measure of the 
distribution functions, W, of all the relevant parameters of the system [ 16, 51, 52]: 

 )ln(WkS ×=   II.11 
where the natural logarithm, ln, is used in place of the base-two logarithm, log2, typically used in 
information theory for binary variables, and the Boltzmann constant is taken as the units of 
physical entropy. Conversely, we can view the entropy as unit-less, and associate the temperature 
in units of energy, as kT, which is a factor that appears in all thermodynamic equations. The 
connection between the thermodynamic entropy and the entropy of information theory has been 
dealt with by many recent authors, and despite the common claim that the two are nominally 
unrelated, they are in fact one and the same [ 16].  

     We can recognize from Eq.  II.9 that the formula for Voc contains an entropic term of the form 
k×ln[]. The bracketed terms contain ratios of distributions, which we assume to simply be 
constants. As such, we can ascribe an entropic meaning to each of these terms, as has been done 
before [ 10, 43]. The first of these terms relates the étendues: 
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 )/ln( So CΩΩkS =Ω   II.12 
where the logarithm has been inverted due to the minus sign of the entropy in Eq.  II.10. This 
term therefore tells us that in the PV conversion process using a semiconductor, entropy is 
created from the emission of isotropic recombination from the semiconductor at an angle of Ωo, 
as compared with the small angular incoming irradiation at ΩS. From an information perspective, 
there is a loss of information when take a small solid angle cone of “ray” distributions, and 
convert it into a larger hemispherical radiation distribution. The Concentration factor is appended 
here to the incoming radiation étendue, ΩS, since it is a factor that can “match” the radiation 
distributions, and therefore nullify the entropy generation. At maximal concentration, this term is 
zero, since the term in the parentheses is unity, signifying that there is no loss of information 
when the incoming radiation distribution is the same as the outgoing one. For all other values of 
concentration, C<Cmax, this entropy term is positive, and in units of voltage produce a negative 
voltage. In particular, there is a ≈220 mV loss of open-circuit voltage for C=1 due to this term 
with Ωo=2π. The relation of the distribution of étendues to the probabilities stated in Shannon’s 
interpretation of the entropy is that we will here assume that the probability of finding any 
photon (or ray in the beam) is distributed uniformly over the entire solid angle, such that the 
probability, p, of a photon being at an angle of dΩS is pdΩ=1/ΩS. This probability distribution is 
valid as long as there is no dispersion relation between the energy of each photon and its position 
within the angular radius (i.e. p is not a function of E). It will not hold if there is any non-
uniformity in the beam, such as when the “blue” light is scattered more in the atmosphere due to 
Raleigh scattering. Nevertheless, the approximation is quite good even for regular diffuse 
sunlight. 

     The second entropic term is due to the temperature difference between the sun and the cell: 

 )/ln( ScT TTkS =   II.13 
This term is negative, producing a positive voltage gain. From an information perspective, the 
temperature is a measure of kinetic energy, which provides uncertainty (i.e. lack of information) 
of the location of the rays/electrons (since at open-circuit, the chemical potential of the photons 
is equal to that of the electrons, as stated above). Therefore, lowering the effective temperature of 
the photons, as per Eq.  II.4, provides us with more information, and thus lowers the uncertainty 
(missing information). 

     Both entropic terms described above relate to a ratio of distributions, and a sense of relative 
information loss in the conversion process. Since entropy is a measure of information, as per 
Shannon’s description of Information Theory, this ratio difference between the entropy of the 
photon gas after and before the conversion process provides us with a measure of the divergence 
of information between the two distributions. This is known as the Kullback-Liebler Distance in 
Information Theory, and is always related by a ratio of distributions [ 52]. This measure of 
missing information between two distributions will be used to compare other methods of PV in 
the other chapters. 

     The relation between the Information Theory use of entropy as a form of missing information, 
or uncertainty, and the traditional use of the second law of thermodynamics as describing the 
heat loss as a generator of entropy can be reconciled by taking a more exact form of the entropy 
from Eq.  II.6. Instead of simply “associating” the entropy term with that of the k×ln[] term, we 
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will use a more precise description of the entropy that stems from the use of the Gibbs free 
energy, as described in Eq.  II.10. In this relation, the exact form of the entropy is given by the 
partial differentiation of the Gibbs free energy, as a function of the temperature of the cell: 
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where we replaced G with µ using Eq.  II.10. For this calculation, we assume that Tc≠TS, as well 
as Tc≠To, meaning that the temperature of the cell is not necessarily related to the temperature of 
the ambient atmosphere. Using this formula to derive the entropy provides: 
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Where αS1 and αc1 are as defined in Eqs.  II.7 and  II.8, respectively, and αc2 is a constant that 
occurs due to the internal partial derivative: 
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Since kTc=25.8 meV, one can generally assume that both αc1 and αc2 are negligible and unity; 
however in Chapter  VIII we examine the case for low bandgaps, where this approximation does 
not necessarily hold. It should also be reminded that these approximations were a result of the 
approximation of the integral, as in Eq.  I.12, where it was assumed that E>>kTS and E+µ>>kTc. 
With these assumptions, we will simplify the writing of Eq.  II.15 to: 

 























++≅

S

c

S

o

S

g

T
T

CΩ
Ω

kT
E

k
S ln1   II.17 

in unit-less entropy values of S/k. The production of entropy in the PV conversion process must 
follow the second law of thermodynamics, which is ΔS≥0, and can be seen to hold for Eq.  II.17 
since the terms are almost always positive; Chapter  VIII deals with the extreme case where this 
no longer holds. The terms in Eq.  II.17 can be described using Information Theory for the 
rightmost term involving the k×ln[] components, as well as using the more classical description 
of entropy as the heat loss energy for the leftmost term, Eg/kTS. This form of the entropy includes 
all the relevant parameters of the system: TS, Tc, ΩS, Ωo, as well as the variables and Eg and C.  

     The information balance involved in the input and output of the PV conversion process can be 
described, at open-circuit equilibrium, as involving the change in distributions of the photon 
cloud before and after interaction with the solar cell. Fig.  II-2 contains all of the relevant 
information, in a graphical depiction. The incoming photon cloud has a wide distribution in 
energies, as shown in Fig.  II-2a, which is the integrand of the solar blackbody spectrum, 
Eq.  II.1. This wide dispersion of energies of photons can be considered as an uncertainty of the 
energy-per-photon of the incoming beam (after being absorbed by a material with Eg), and can 
be compared to the uncertainty of measuring any spectrum as a function of the Full Width at 
Half Maximum (FWHM) of the peak. Every photon absorbed by the cell has a wide array of 
possible energy levels to have been emitted from (as a function of the blackbody distribution), 
which is a function of the temperature of the source as well. In contrast, the incoming beam has a 
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low distribution of angles of absorption (neglecting the diffuse light contribution), as described 
above concerning the solar étendue, and as depicted in Fig.  II-2c.  

     During the PV conversion, the electrons generated by photons with energy exceeding the 
bandgap, Eph>Eg, thermalize down to the bandgap generating heat loss, Qlost, as depicted in 
Fig.  II-2c. The photons are then emitted with the narrow vRS distribution, as a function of 
µoc<Eg, and with a large solid angle. The FWHM of the vRS distribution for a given µ, as 
displayed in Fig.  II-2b, and is showed to closely resemble a one-sided delta function, with a very 
narrow linewidth. This narrow linewidth is associated with a very small uncertainty for the 
energy-per-photon distribution, since we can reliably say that the majority of the photons are 
emitted at the energy of the bandgap, with a tail of ≈kTc (or 3 to 4 kTc).  

 

 II-2 Graphical Representation of the Entropy Production in Photovoltaic Conversion. (a) 
The incoming solar spectrum follows the blackbody emission, which has a broadband 
distribution of energies. (b) The outgoing spectrum is similar to the emission from an LED, 
with a very narrow distribution of energies, following the vRS relation. (c) Pictorial 
representation of the process, showing the angular dispersion of the incoming and outgoing 
beams, as well as the production of heat loss, Qlost, due to the thermalization of energy from 
electrons generated above the bandgap. 

     The heat loss described in the entropy of Eq.  II.17 was not taken into account in the original 
Ruppel-Würfel description of the DB model, yet we can associate the term Eg/kTS≈Qlost, using 
the traditional description of the second law of thermodynamics. Furthermore, it should be stated 
once again that the entropy described here relates to the relative entropy of the process, and other 
additional entropy terms can be added to contain parameters that were not measured here. For 
example, we can include the polarization of the light as another parameter that can be analyzed 
as a source of (missing) information. The incoming solar flux is non-polarized, with an equal 
distribution of both polarizations; this can be attributed to the factor of “2” appearing in the 
blackbody distribution and here taken as a constant in the g term of Eq.  I.3. If we design a solar 
cell that only makes use of one of the polarization modes, or emits only one of the polarizations, 
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then a certain degree of information will be gained/lost, and will appear as an entropic term such 
as Eq.  II.11. 

     Finally, to complete this description of the entropy of a single junction cell, we will 
demonstrate that the effect of adding the ambient blackbody input contribution has a negligible 
effect on the entropy production, and therefore the Voc. Taking the full input flux as Eq.  I.21, and 
re-writing it as a function of the solar flux: 
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where we assume for generality that Tc≠To, and use C=1 as the case where the contribution from 
(1-CfΩ)≈1 is maximized, we can then use the approximation of the integrals to simplify to: 
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Where the term βo is: 
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The Carnot efficiency term appears here, as well as another small correction term: 

 1)/(2/21 1
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is similar to the α terms appearing above, and will be approximately equal to αc1 if Tc=To. 

The overall effect on Voc will be: 
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with Voc

reg being that of Eq.  II.6. The contribution of this added term is on the order of micro-
volts, and is therefore negligible. The ambient blackbody contribution is therefore shown to 
produce little important effect on both the short-circuit current, as well as the open-circuit 
voltage.  

 

3. The Single Junction Transfer Function 
 

     The flux equilibrium method described in section 1 of this chapter provided the most abridged 
version of the DB limit, being a simplification of the original SQ limit to include only the 
thermodynamic variables, and removing the diode model. In this section, an even more 
simplified version of the DB limit will be devised that places all of the thermodynamic equations 
within a “black box” – meaning, a box whose internal processes are unknown, and which can be 
measured strictly as a ratio of the input and output. In engineering terms, this form of black box 
is known as a Transfer Function (TF).  
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     If we were to attempt to simplify the entire workings of the solar cell as a TF, it would 
probably measure the outgoing photon flux, No, as a function of V, assuming a fixed solar photon 
flux, NS. The internal workings of the solar cell would be hidden inside the TF, but we would not 
need to know what occurs inside. A graphical representation of this TF, which will be called Hint, 
appears in Fig.  II-3a. The advantage of this TF is that it provides the internal workings of the 
cell, as well as a description of the DB process: we expect the ideal solar cell to act almost as an 
ideal LED, such that at open circuit (V=Voc) the outgoing flux is equal to the incoming one. 
Furthermore, it provides us with an understanding of the boundaries of the solar cell’s 
thermodynamic system (dashed line in Fig.  II-3), which is where me must be measuring the 
input and output flux. It should be recalled that the ideal solar cell, according to the SQ model, 
has no thickness dimension, and therefore is wholly defined by its surface [ 27]. However, it is 
not very helpful in directly calculating the parameters that we have defined as useful: Isc and Voc, 
which can only be indirectly calculated from these fluxes; the current is found by subtracting the 
two fluxes and multiplying by q. Nevertheless, we will return to this form of TF in Chapter  V, 
where the internal workings of the solar cell are to be modified. 

 

 II-3 Transfer Functions for a Single Junction Solar Cell. (a) This TF displays the internal 
and external fluxes of the cell, without knowledge of what occurs within the TF itself. (b) 
This TF, which will be used later in the text, assumes that all that is needed to understand 
the thermodynamic equations of the cell are defined by the input flux, and the measured 
current, with the TF defined in the text in Eq.  II.23. 

     An alternative form of the TF attempts to unify the internal action of the cell as a function of 
its input and output fluxes alone. This is the form of TF that will be utilized in the majority of the 
rest of this work. We do not need to know how the solar cell works, other than to make the 
following assumptions: 

a) The current is maximal at V=0. 
b) The current is zero at V=Voc. 
c) The only emission channel available for the semiconductor (two band system) follows the 

vRS relation. 

     These assumptions lead to the following definition of a TF, displayed in Fig.  II-3b: 
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where Nin is the incoming flux, and can be taken as NS, Ntotal or any other input flux. Note that the 
factor q divides the transfer function, to retain the units of flux. This input flux can be completely 
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changed, for example to model the flux from a white dwarf sun, or the AM0 spectrum, but the 
TF will remain the same. The TF should supply the information for the output as a function of 
the input: 

 )(qVHNI reginout ×=   II.24 
This definition, while seemingly circuitous, provides the needed parameters, Isc and Voc, using 
the following simple procedure: At short-circuit, to find the output current, we need to solve the 
equation for Hreg(0); for open-circuit, we need to solve the equation Hreg(µ)=0. These two simple 
procedures provide the necessary parameters. In particular, the equation Hreg(µ)=0 is the 
definition of the flux equilibrium. 

     The advantage of the TF method is that it simplifies the conceptual thermodynamic argument 
for what makes an ideal solar cell, and what the important parameters are. All that we are 
required to know is what the input flux is at the surface of the cell, and we should be able to 
obtain the important current and voltage characteristics from this information. This is assuming 
that the emission follows the vRS relation, as was stated above, and that no other complex 
physical processes occur inside the “black box”, other than internal losses. The other advantage 
of the TF is that we can replace the entire cell by a circuit, which can be connected to other 
circuits in a straightforward manner. Finally, non-idealities in the cell can be added by placing 
the non-radiative loss term, κnr, within the numerator of fraction in Hreg.  

     The TF method, with its emphasis on a simplified, graphic form, allows us to concentrate on 
the two most important elements controlling the efficiency of a PV system, the current and the 
voltage, which must be optimized almost independently while also being intrinsically linked. 
Maximizing the short-circuit current will only solve ~50% of the problem, since the open-circuit 
voltage is shown to be as important, if not more so. The TF method also allows a methodological 
viewpoint to view any PV system: we need to ascertain the incoming and outgoing fluxes, as a 
function of their surface (thermodynamic boundary) as well as their relevant parameters. 

     The TF is usually a useful element in linear system analysis. The definition of a linear system 
is that it follows the following relation: 

 )()()( yLbxLaybxaL ×+×=×+×   II.25 
where L is a generic linear operator, such as a TF. The definition states that a linear system must 
obey the laws of superposition (adding two different inputs, x and y), as well as scaling (a 
multiplication by a constant). For Hreg to be linear, it must follow this definition, yet it does not 
strictly do so. If we consider the output of the TF as being only the number of photons/electrons, 
then this definition holds. For example, if we double the number of incoming photons, then at 
open-circuit the outgoing photon flux must also be doubled. Or if we add a flashlight to the 
incoming flux, the outgoing flux should equal it. However, since Hreg contains the input inside 
the denominator it is almost by definition non-linear. This can be seen at short-circuit conditions: 
For any degree of concentration, C (which is similar to a multiplication scaling), the Isc increases 
only the flux input, but does not affect the outgoing emission, which follows the vRS relation 
(with µsc=0). Although we generally neglected the outgoing emission term at short-circuit, as in 
Eq.  II.1, it fails the scaling law for linear systems. If the approximation is made, then the scaling 
law holds. At open-circuit, Hreg is zero, regardless of the scaling law (by definition of the µoc cut-
off), however, if we insert a voltage slightly less than Voc, at V=Voc-δ, then the TF is nearly zero. 
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If we then increase the concentration, Voc must increase as well (by a factor of kTcln[C]), so the 
output current will be reduced, but not as much as when the voltage Voc- δ. The results of this 
argument once again show that Hreg does not strictly follow linear system theory. We can 
therefore call this TF a pseudo-linear system. 

     The conclusion of this section is that the TF method, while not strictly linear, allows a 
simplification of the thermodynamic parameters of the system to within a simplified “black box”. 
The major advantages of this method are that it allows the identification of the vRS relation as an 
unchangeable and internal specification of the PV system, as well the identification of the 
importance of the total input spectrum as being measured upon the (front) surface of the cell. 
Modifications to the spectrum must be viewed in the same way as the scaling or superposition of 
inputs, with the shifting of the Voc cutoff as a function of the inputs. This modification will be 
shown in the following chapter, where down-conversion is viewed as a modification of the input 
spectrum. 
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III. Down-Conversion: A Detailed Analysis 
 

*Publication note2 

     One of the methods of improving the efficiency of a single material solace cell is to make use 
of the excess energy imparted by photons with energies higher than the bandgap. Since we need 
at least 1Eg of energy per photon to create an e-h pair, we can imagine that any photon with 
hv>2Eg of energy will be able to produce more than a single e-h pair if it were split into two 
photons. This resulting two photons would conserve energy, as required by the 1st law of 
thermodynamics, such that hvoriginal=hv1+hv2. The photons with energy above 2Eg would then be 
used in a more efficient manner, and not produce the thermalization energy and heat loss 
typically associated with these higher energy photons. We can imagine an imaginary material 
that would split these photons before they reach the solar cell, such that the spectrum that the cell 
eventually sees (as per the argument of the preceding chapter), is better matched to the bandgap 
of the single junction cell. Such a configuration appears in Fig.  III-1, with the higher energy 
(blue) photons split into two lower energy (red) photons each, and then proceeding on to the cell. 

 

 III-1 Down-Conversion scheme. Higher energy photons (blue) are absorbed by a down-
converting layer that splits the photons into two lower energy photons each (red). This 
depicts the ideal down converting scheme. 

     The Down-Conversion (dc) process is designed to make use of a material whose properties 
are only to split, or quantum cut, the photons with energies hv>2Eg into two photons of energy 
Eg each, as depicted in Fig.  III-2a for imaginary particles (gold dots) placed on a transparent 
film. This scheme was first analyzed in 2002 [ 55, 54], with some basic of assumptions used, and 
resulting in a ≈9% efficiency increase over the SQ limit. This result does not violate any physical 
laws since it modifies the assumption that the solar radiation is constant, and is here modified by 

                                                
2 The following chapter follows the paper published in Ref. [ 53]. Nearly all of the figures were redone to correct 
minor errors in the original code, as well as plotting the figures for Ωo=2π instead of 4π. 
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the dc layer, as is demonstrated in Fig.  III-2b. The dc photons are essentially folded onto the 
bandgap, such that they appear as a spike in the number of photons impinging upon the solar 
cell, and better matched to the bandgap of the cell.  This modification of the spectrum is an 
essential aspect of the dc process. As was described in the previous chapter, as far as the solar 
cell is concerned, it is only interested in the makeup of the spectrum impinging upon it, as given 
by the TF, Hint. Since the dc process concerns a layer that is placed above the cell, the spectrum 
that the cell sees is different from the one it would have seen without this layer, which has an 
effect upon both Isc as well as Voc as will be shown in this chapter. 

 

 III-2 Down-Conversion process band diagram and spectrum shift. (a) The dc layer is 
modeled as a semiconductor with a bandgap of Eg,dc=2Eg of the underlying cell. A “trap 
state” on the output end of the dc layer allows the transition of electrons first to the mid-
level state, emitting the first photon with energy of Eg, and then a second radiative 
transition to the valence band, emitting the second photon. Depicted are the photons that 
can be absorbed by the dc layer, as well as those that may perhaps not be absorbed by it. 
(b) A graphical representation of the shift in the spectrum emitted from the dc layer, in 
comparison with the original blackbody spectrum emitted from the sun. The higher energy 
photons are folded over into a single spike at the bandgap (here taken as Eg=1 eV). 

 

1. Ideal DC Characteristics and Analysis 
 

     The original analysis of the dc process assumed that the dc layer was ideal, with no internal 
losses, and absorbed all photons with energy above 2Eg. In order to prevent double counting of 
the incoming photons, the model also assumed that the solar cell was a unique material that 
would only absorb from Eg to 2Eg, and would therefore be perfectly matched to the dc material. 
This type of semiconductor does not exist, and was used merely as a way for the authors to 
simplify their modeling. This model [ 54], as well as later improvements to the model that 
included the effect of the index of refraction on the impedance matching between the dc and 
solar cell layer [ 55, 56], also understood that there was a severe limitation of placing the dc layer 
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above the cell: that the photons could be backscattered away from the cell. Therefore, the 
conclusion of these previous authors was that the ideal placement if the dc layer was behind the 
cell, and then backed up by a rear reflector to reflect all photons back at the cell. This result 
counters the effect of the dc layer, since upon passing through the cell, the majority of higher 
energy photons are absorbed before reaching the underlying dc layer. This is a result of the Beer-
Lambert law for absorption in a material with an absorption coefficient αabs: 

 )exp()( xaNxN absSS −×=   III.1 

where x is the direction of propagation of light into the cell, in a simplified one-dimensional 
model. This absorption is even more critical for the higher energy photons, which are typically 
absorbed at the top surface of the material, since the absorption coefficient is energy (frequency) 
dependent, and is typically quite high for the higher energy photons [αabs=αabs(E)].  

     The problem of re-emission of the photons from the dc layer can be encapsulated into a 
geometric factor: Bdc, which accounts for the percentage of photons emitted towards the cell. 
This is shown in Fig.  III-3a, demonstrating the range of values for Bdc. Note that we define Bdc 
as being a function of both photons, so that Bdc=1 implies that both photons are emitted down 
towards the cell, Bdc=½ implies that only one photon is directed at the cell with the other being 
backscattered away, and Bdc=0 implying that both photons are backscattered. It is obvious that 
this latter case is not interesting, since this would result in the loss of photons impinging upon the 
cell. 

 

 III-3 Geometric Factor and System Diagram for a Down-Conversion cell design. (a) The 
scattering dc layer can either forward- or backward-scatter the down-converted photons, 
with a fraction Bdc defined in the figure. (b) The system diagram of a dc cell can be split 
into the sun-dc layer, and then use the output of System 1 as the input of System 2, which 
includes the solar cell.  

     Using the formalism of system diagrams, as we did with the TFs, we can split the problem of 
solving the equations of a dc system by first recognizing that the sun and the dc layer are in flux 
equilibrium with each other, and that the combined output of this layer is the input to the cell 
itself. This is shown in Fig.  III-3b, where the sun and the dc layer are in System 1, and the solar 
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cell in System 2 uses the output of System 1 as its input. For System 1, we can write the flux 
equilibrium for the dc layer as: 

 ∫∫
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Here, we have neglected the index of the dc layer [ 55, 56], and modeled the dc layer as emitting 
at twice the rate of the incoming flux, to accommodate the splitting of the photons, as well as 
assuming that the dc layer has an internal temperature, Tdc and chemical potential, µdc. 
Furthermore, in this analysis, we will account for the fact that some of the photons may go 
through the dc layer without being absorbed, as depicted in Fig.  III-2a, with a fraction fNA, with 
the complementary number of absorbed photons, fabs=(1-fNA). In addition, of those photons 
absorbed, not all of them may be down-converted, with some of the electrons recombining 
directly to the valence band and emitting a photons with energy 2Eg; therefore, we include 
another fraction, fdc to account for this. The étendue of the dc layer, Ωdc, does not include the 
geometric factor at this point, and is assumed to be isotropic, with Ωdc=2π. 

     Crossing to the solar cell system (System 2), we use the flux equilibrium again on the front 
surface of the solar cell. Once again, we are reminded that the solar cell is not interested in 
anything other than the input flux, as described by the TF, and ignoring near-field effects that 
may alter the directionality of flow of the fluxes. At equilibrium: 
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This equation is made up of several parts: the leftmost segment consists of photons that are 
entirely unaffected by the dc layer and are transparent to it, and the second term contains the 
photons not absorbed by the dc layer. These first two terms therefore constitute a fraction of 
photons from the original spectrum that remain unchanged. The next term includes the fraction 
of dc photons, where we have included the geometric factor, Bdc. Finally, the emission from the 
solar cell remains the same, on the right hand side, following the vRS relation. We have 
neglected the ambient blackbody contribution. Since Eq.  III.3 is quite large, we will condense it. 
First, we can replace the dc term with that of Eq.  III.2, since the dc system is in flux equilibrium 
at all times. Next, we can make use of the following relation for integrals: 
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 III.4 

Finally, we will simplify the temperature relations, and assume that the dc layer is in thermal 
equilibrium with the cell, such that Tdc=Tc, as well as ignore the possible directional emission 
from the dc layer [ 55, 56], such that Ωdc=Ωo. This results in: 



41 
 

 

∫

∫∫
∞

∞∞

−−
Ω=

−
Ω−+

−
Ω

g

gg

E coc
o

E S
Sdcdc

E S
S

kTE
dxE

kTE
dEEBf

kTE
dEE

1]/)exp[(

1]/exp[
)12(

1]/exp[
2

2

22

µ

  III.5 

Here, we have assumed that all those photons absorbed in the dc layer were converted, such that 
fdc=fabs=(1-fNA). The dc fraction is therefore a measure of those photons absorbed by the dc layer, 
and no non-idealities are assumed in this layer. The next section will include such losses. To 
simplify Eq.  III.5 even further, we will write the integrals as a function of the photon flux, N, 
and simplify the parameters into the parentheses: 

 },{}2{)12(}{ ocgogdcdcgS μENENBfEN =∞→−+∞→   III.6 

Using this notation, we can also write this as: 
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Using the approximation of the integrals as was done in the previous chapters, we can obtain a 
closed-form equation for qVoc=µoc: 
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and: 
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with αS1 defined as before, in Eq.  II.7. Once again, the index of refraction of the cell has not been 
included, nor have any other losses, which would appear as an additional kTcln[κnr] term. We 
could have additionally written the term β1 as: 
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     We can now examine these formulas. For the ideal case, where all the photons are dc, and 
they are all emitted directionally towards the solar cell, we have fdc=1 and Bdc=1. In this case, the 
term β1 in Eq.  III.8 and  III.11  is simply the ratio of photons above 2Eg to the photons above Eg, 
and counts the number of photons converted. If there is no dc layer, then fdc=0, and β1=0, 
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reverting Eq.  III.8 back to the open-circuit of a regular solar cell, as given in Eq.  II.6. If all the 
photons are backscattered, then Bdc=0 and β1 is negative, creating a voltage loss due to the 
kTcln[1+β1] term. 

     From the point of view of entropy, the voltage gain is due to an increase in information in the 
ideal dc process (for which fdc=Bdc=1). The information gain can be seen in the comparison 
between the two spectral distributions in Fig.  III-2, with the peak in the spectra at Eg 
corresponding to more information regarding the energy-per-photon, or the FWHM. Pictorially, 
we can describe this voltage gain to be: 

 

     The voltage gain is quite small, and is highly dependent upon the fraction of dc photons, fdc. 
Fig.  III-4a displays the Voc for the dc system, in comparison with the regular Voc  for a standard 
solar cell. The gain in voltage, up to a few tens of mV, is only visible if the dc fraction is unity, 
and the photons are emitted directionally. For higher bandgaps, this gain becomes negligible as 
the ratio of photons down-converted drops significantly. 

 

 III-4 Open-Circuit Voltage and Short-Circuit Current for a Down-Converting system. (a) 
Voc for the dc system, assuming that all the photons are directionally emitted towards the 
cell (Bdc=1 and fdc=1, in green), and compared with the Voc of a regular solar cell (black). 
(b) Isc for varying fractions of dc efficiency, fdc, including 0, 0.1, 0.2 and 1 (black, blue, red 
and green, respectively). The black line (fdc=0) signifies the current of a regular cell.     

     The short-circuit current uses the same formalism as the above equations, and can be written 
as: 
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The Isc does not simply “double” due to the dc layer, but increases as a function of the fraction of 
photons above 2Eg over the fraction of photons from Eg. In theory, the current would be doubled 
for a material with a bandgap Eg→0, as shown in Fig.  III-4b, but that material would also 
produce zero power, since the voltage would also be zero. The increase in current is the major 
improvement of a dc system, which is a function of the fraction converted, fdc, as well. 

     The overall efficiency increase can be calculated by finding the maximum P=I×V, and is 
calculated from the following equation: 

 [ ]( )},{1}{ 12 mgogSmdc qVμEqgNβENVgη =−+×∞→×=   III.13 

Using the formalism above, or calculated using the input Ntotal instead of NS. The efficiency is a 
function of both the geometric factor, Bdc, as well as the dc fraction, fdc, making this equation a 
multi-variable equation. Since we are not interested in the backscattering case, Bdc=0, Fig.  III-5 
displays the overall efficiency for the ideal dc system, using these parameters. The absolute ideal 
case holds fdc=Bdc=1, which is approximately the case originally analyzed in 2002 [ 54], and did 
not account for fractional dc efficiencies, or geometrical constraints.  

 

 III-5 Efficiency of the Down-Converting System, with No Losses. The efficiency is plotted 
for increasing degree of directive photon emission (Bdc, from panel a to c), as well as 
increasing down-conversion fraction, fdc: 0, 0.1, 0.2 and 1 (black, blue, red and green, 
respectively). Maximal efficiency increase is 8.3%, from the black to green curves in panel 
(c). 
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     The maximal efficiency of the dc system, assuming that all photons are both directionally 
emitted towards the cell, and all the photons above 2Eg are absorbed and down-converted (i.e. 
fdc=Bdc=1), is 38.7%, rising from 30.4% for a regular cell, being an 8.3% overall rise in 
efficiency. Realistic systems would have lower overall efficiency, since not all the photons 
would necessarily be down-converted, or received at the cell’s surface, as displayed in the 
various curves in Fig.  III-5. Furthermore, the difference between the results presented here, and 
those calculated in Ref. [ 53], is that here the calculation assumed no losses of reflection (nsc=1), 
whereas there, we assumed an index of nsc=4. This index would reduce the efficiency due to 
reflective losses, unless light-trapping techniques are used [ 50]. Also, here Ωo=2π and not 4π. 

     If we focus on the maximal efficiency only, then we can plot the maximum efficiency as a 
function of the down-conversion fraction, fdc, as well as the optimal bandgap for this efficiency, 
as shown in Fig.  III-6. The optimal bandgap is reduced from the regular DB calculation of 1.3 
eV down to nearly 1 eV, if the dc process is completely efficient. This range still remains within 
the region of material properties typically used for PV materials, including Si, GaAs and CIGS, 
so the addition of the dc layer would not alter the material choice for a solar cell. Furthermore, 
the 8.3% efficiency gain is seen to be strongly related to both fdc and Bdc, which are assumed to 
be ideal. If the photons are emitted isotropically, Bdc=0.5, then no gain will be seen, since the dc 
process does not produce any additional e-h pairs.  

 

 III-6 Optimal Bandgap and Efficiency for the Down-Converting System, as a Function of 
Fraction Down-Converted. (a) Optimal bandgap per fdc fraction, as calculated by the 
bandgap for which the optimal efficiency appears. (b) Optimal efficiency per fdc fraction. 
Both graphs were calculated for directional photons, with varying degrees of directional 
emission.  

     The preceding set of calculations and graphs considered only the lossless case, where all the 
photons absorbed were down-converted. The ratio fdc therefore could be considered a measure of 
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how dilute the dc particles are on the film depicted in Fig.  III-1, such that if it covers the entire 
surface, and is thick enough, the layer would absorb all the higher energy photons and down-
convert them. The next section will include more realistic material systems. 

 

2. Down-Conversion Including Losses 
 

     Adding losses to the dc layer is a simple process, comparable to the regular solar cell analysis, 
introducing an efficiency of dc:  
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where we have included another factor, fL, which is a loss factor, and counts the fraction 
absorbed by the dc layer and not emitting any photons, due to a non-radiative (thermalized) 
physical process. We must place this factor within the first use of the flux equilibrium between 
Systems 1 and 2, being the sun and dc layer:  
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If fL=0, we revert back to Eq.  III.2 above. Using this equation, we can re-write the Voc and Isc in 
their abbreviated form: 
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and: 
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The difference between β1 and β2 terms is the introduction of the loss term, as well as the use of 
fabs=1-fNA=fdc+fL. (Note: there is an error in Ref. [ 53] in this formula).  

     The introduction of losses via the κ term [ 22, 23] simplifies the equations, however, it adds 
another variable to the calculations such that the efficiency is now a function of fdc, fL and Bdc, 
with κdc uniquely defined by the choice of fdc and fL. Calculating the peak efficiency as a function 
of these two factors, as well as separately for different geometrical factors, is shown in Fig.  III-7 
for value of Bdc=0.75 and Bdc=1, with the isotropic (Bdc=0.5, as well as the backscattering, Bdc=0) 
cases being of less interest. 
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 III-7 Peak Efficiency for the Down-Conversion Process, Including Losses. The calculation 
is done for all values of loss fraction, fL, and down-conversion fraction, fdc, for two value of 
geometrical factors, (a) Bdc=0.75 and (b) Bdc=1. The threshold for the efficiency of a regular 
solar cell, at 30.4%, is plotted in dashed black lines. Arrows relate to the quantum 
efficiency, QE, shown in the next figure. 

     The efficiency of the cell is intrinsically linked to the efficiency of the dc layer to emit in a 
radiative manner, such that κdc→1. For this to occur, we need not only for the photons to be 
absorbed in the dc material (fabs=1 or alternatively, fNA=0), but also that the layer itself have no 
losses (fL=0). Assuming such a material is found, we can externally measure the efficiency of the 
dc process in this material using a spectrometer. However, this measurement will ignore the 
fraction of photons not absorbed, fNA, so that what would be measured is the quantum efficiency 
(QE) of the material. We can relate the QE of the material with the losses as:  

 }1|{ ==+= absLdcdc fffκQE   III.19 

meaning that no photons are not absorbed. This can be measured in Fig.  III-7 as the hypotenuse 
of the triangles of efficiency, as depicted by the arrows in  III-7a and b. Plotting these arrows as a 
function of the QE, we can measure the expected peak efficiency of a given material, as 
presented in Fig.  III-8.  
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 III-8 Efficiency as a Function of the Quantum Efficiency of the Down-Converting Material. 
The QE neglects the not-absorbed light (fNA=0), and is plotted for two different values of 
the geometrical factor, Bdc. Also plotted is the threshold of a regular single junction cell, 
without a dc layer. Below this threshold, there will be a net loss of efficiency. 

     The dc layer is required to be highly efficient at the dc process itself, as well as almost 
entirely lossless in order for the dc process to produce any benefit. As demonstrated by the 
dashed line in Fig.  III-8, the QE of the dc layer must be quite high in order for the overall system 
to achieve any efficiency gain, as well as not to lose efficiency, when compared with the same 
cell that doesn’t have a dc layer. Anything below the dashed line in Fig.  III-8, or to the right of 
the dashed lines in Fig.  III-7 will display a net loss, and therefore would be better off without the 
dc layer. This high degree of QE required for the DC layer is in addition to the requirement that 
the photons be emitted directionally towards the cell (Bdc→1). 

     The major two difficulties in employing a dc layer to improve the efficiency of a solar cell lie 
in the material science question of finding a highly efficiency dc system, as well as the geometric 
problem having the down-converted photons preferentially emit towards the cell. The only 
existing dc materials currently have very low internal dc conversion efficiency values, and have 
focused on using Lanthanide materials [ 57, 58]. Until a dc material is found with very high 
internal efficiency, the possible use of dc as an improvement method for solar cells will remain 
in theory alone. 

     A possible avenue for research of a dc material would be in using newer physical concepts to 
modify the properties of the band structure of materials. The major problem with finding a dc 
material is that if it were to follow the band structure of Fig.  III-2, it would require that the 
“trap” state allow the radiative transition of electrons and photons in two distinct, radiative steps. 
If the process is wholly non-radiative, then the material is just an absorber, and is not a useful dc 
layer. If only one of the transitions is radiative, then effectively the material acts as a fluorescent 
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material, with the single outgoing photons exhibiting a Stokes shift, which is a characteristic 
feature of fluorescence. This form of transition is known as down-shifting, and is quite separate 
from dc, since only one photon is re-emitted. There is an advantage to be had from this down-
shifting, and that is that the absorption inside the solar cell can be better tuned for these lower 
energy photons [ 59- 63]. This can be seen from the relation between the absorption coefficient 
and the depth absorption of Eq.  III.1, with the higher energy photons typically absorbed at the 
surface, and therefore not usually reaching the extraction depth required for most solar cell 
designs (as a function of the depletion width of a diode, or of the surface recombination rate). 
Nevertheless, down-shifting cannot achieve the same type of efficiency gain that dc can 
theoretically create, and is limited to improving the efficiency of cells to approach the SQ limit 
from below. One way to possibly obtain a doubly-radiative transition from a “trap” state is to 
create so many traps that their quantum states begin to coalesce into a single radiative state [ 64]. 
This has been theorized to be the case for the creation of Intermediate Band, or Impurity Band 
(IB) devices [ 64, 65] – which will be described in Chapter  V. This condition uses the reverse 
intuition of regular trap-state physics: typically these trap states induce non-radiative transitions, 
however, the theory predicts that when the number of these individually isolated trap states 
exceed a certain threshold (of concentration), then they will form a single radiative band.  

     Using the reverse concept of inducing more trap states in a semiconductor in order to create 
this form of doubly-radiative band, we can imagine that a material with a large number of 
surface trap states can achieve such a state. When a semiconducting particle’s dimensions are 
reduced to the nanometer (nm) level, the surface area of the material – which is typically where 
these surface trap states occur – may exceed the threshold of traps needed to create such a band. 
One can therefore hypothesize that creating nanoparticles covered in mid-level trap states will be 
the preferred material choice for a dc layer, as was depicted in the gold spheroids in Fig.  III-1. 
The concentration of these nanoparticles is also important, since it will directly relate to the 
amount of light absorbed, fabs, and will also need to be controlled.  

The use of nanoparticles for the dc layer can also help solve the geometric issue of preferred 
emission towards the solar cell. Instead of thinking only in terms of planar structures, as was 
shown schematically in the previous figures, we can envision a three-dimensional solar cell that 
would make use of these nanoparticles. Three examples of such a design are depicted in 
Fig.  III-9. The first design would simply have the dc nanoparticles embedded within the matrix 
of the cell. They could also be embedded within a transparent film above the cell, such that the 
total-internal-reflection will force the dc photons towards the underlying solar cell. A second 
type of design would make use of 3D solar cell designs such as micro- or nano-pillar arrays. In 
these designs, the light is absorbed in the direction normal to the sun’s rays, but then extracted in 
the orthogonal, horizontal, axis [ 66, 67]. For the micro-pillar designs, nanoparticles are already 
used to help scatter the light between the pillars, and achieve an isotropic emission rate within 
the pillar array. Instead of using non-functional scatterers, the dc nanoparticles could act as both 
functional roles, both scattering the light, as well as more efficiently converting it.  



49 
 

 

 III-9 Three-Dimensional Designs of Solar Cells Incorporating Down-Converting 
Nanoparticles. (a) Nanoparticles embedded within the cell itself, or (b) in a transparent 
layer above the cell. (c) Nanoparticles embedded within a pillar array of cells, acting as 
both light scattering objects, and a dc layer. 

     Both designs depicted above make use of the isotropic scattering from the nanoparticles to 
solve the issue of Bdc depicted in Fig.  III-3. This form of solution will allow the dc layer to be 
placed above, or within the cell, and not below the cell, as was needed in the original dc 
calculations [ 54- 56]. The model used here is both simpler, and more rigorous than the original 
calculation, since the original model included a solar cell that only absorbed light from Eg→2Eg, 
which is not what a regular solar cell does. The model described here therefore better mimics the 
effect of adding a dc layer to an existing cell. It also is the first to describe the possible entropic 
gain to be had if the dc layer emits preferentially towards the cell, with high internal efficiency. 
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IV. Carrier Multiplication and its Relation to Down-

Conversion 
 

*Publication note3 

     Carrier Multiplication (CM) is another conceived method of improving the efficiency of solar 
cells beyond the SQ limit. Like other 3rd generation techniques, it too changes one of the 
assumptions of the original DB model. For CM, the assumption that each photon can generate a 
single e-h pair is violated, since in certain materials, high energy photons can generate more than 
one e-h pairs [ 69- 71]. As in dc, the conservation of energy must be upheld, so in order for the 
CM process to work, these higher energy photons must have at least twice the bandgap energy to 
produce two e-h pairs. This process was known at the time of the original SQ paper, but was only 
seen in rare occasions in some crystalline materials under high energy illumination. A schematic 
of the CM process is shown in Fig.  IV-1. Recent advances in nanotechnology, specifically, in the 
development of colloidal quantum dot crystals, have improved the efficiency of some of these 
CM processes. In these types of material systems, the e-h pair is highly bound due to Coulomb 
interactions, and is known as an exciton; therefore, the CM process in these materials is also 
called the Multiple Exciton Generation (MEG) process [ 72]. Many quantum dot crystal systems 
have been found that can create MEGs, including SiGe [ 73], CdTe/CdSe [ 74] and PbS [ 75]. 
However, typically energies of up to 10 eV – which is far outside the range of the solar spectrum 
– are needed in order to efficiently generate these MEGs. This limitation is just one of the many 
that have been found for the MEG system, leading many recent authors to question the validity 
of the MEG concept for solar cell use [ 76]. Nevertheless, since the issues appear to be primarily 
a materials science question of finding the suitable material, some of which have been found 
[ 77], it is still an interesting opportunity to increase the efficiency of a single junction cell 
beyond the SQ limit.  

 

 IV-1 Schematic of the Carrier Multiplication Process. (a) Multiple e-h pairs can be created 
within the semiconductor by high energy photons (magenta), whereas lower energy photons 
generate a single e-h pair (blue). (b) Band diagram of the CM process: a high energy 
photon excites an electron to above 2Eg, which then transfers its excess energy to another 
electron excited to the bandgap. The dashed border indicates that the process occurs 
internally within the solar cell. 

                                                
3 The following chapter is a condensed version of the paper in Ref. [ 68]. The order has been changed in order to 
match the information of the previous chapters. 
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     Modeling the CM process using the thermodynamic method, where only the current and 
voltage are important, has produced a standard model for the MEG process. Since the MEG 
system is supposed to create a higher current from the higher energy photons, in the same way 
that the dc system does, it has been assumed that the two processes are equivalent [ 4]. In this 
chapter, the original model will be presented, followed by a newer model devised by us [ 68]. The 
model will then be compared against the dc system of the previous chapter, demonstrating the 
differences between the two. 

 

1. The Original Carrier Multiplication Model(s) 
  

     The CM process is expected to produce an increase in current due to the increase in the e-h 
pair generation rate. This process occurs internally within the semiconductor crystal, and is 
therefore a direct process. Since most models focus only on the current aspect of the solar cell, 
instead of also focusing on the voltage aspect, the first model to describe the CM process simply 
defined the current expected from an ideal CM system, and then maximized the power as a 
function of P=I×V [ 73, 78]. The current was modeled as: 
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The first term in Eq.  IV.1 includes the incoming spectrum that is below the 2Eg threshold for CM 
generation, and is therefore unaffected. The second term is the generation of 2 e-h pairs, at a rate 
proportionate to the quantity of photons above the 2Eg threshold. The last term is the standard 
vRS relation for the output emission of a semiconductor. We note that this equation for the 
current is exactly that of the current for a dc system, in Eq.  III.12 above, if we ignore the non-
idealities, setting fdc=Bdc=1. Although this was not done in the original models, we can simplify 
the first two terms by using the integral rule of Eq.  III.4 above, and obtain: 
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This form is once again, exactly that of the dc system, if we take the term fdc(2Bdc-1)→1. The 
efficiency of the CM system was then modeled as taking the product of I×V, maximized for Vm.  

     The relation between the dc and CM models was not pointed out in any of the original papers, 
since the first dc model was published 8 years later [ 54]. However, the authors of the original 
CM model paper understood that they may have a difficulty in their model, since it assumed that 
the CM process was not a reversible one: If the photons could be absorbed at discrete levels 
above the bandgap, they should perhaps be able to emit at these levels too [ 79, 80]. This process 
is also known as the inverse of Auger recombination. Auger recombination is a process that is 
disadvantageous for PV; in Auger recombination, an excited electron at the conduction band will 
non-radiatively recombine with a hole in the valence band and transfer its excess energy to 
another electron in the conduction band, which will then be excited even higher within the 
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conduction band. According to the inverse-Auger theory, if the electron is excited to the 
threshold state in a CM material, instead of merely thermalizing back down to the conduction 
band again, it will emit a photon at 2Eg. This process also conserves the energy of the system, as 
shown in Fig.  IV-2b. The inverse-Auger process is therefore assumed to be a form of time-
reversal process for the CM process.  

 

 IV-2 Recombination in a Carrier Multiplication System. (a) The original CM model posited 
that there would be only a single photon at the output end of the CM process, instead of the 
required 2 photons – second photon is in outline (in equilibrium, when no current is 
extracted). (b) The Auger recombination process: an electron recombines with a hole, and 
transfers its energy in a non-radiative manner to a second electron, which is excited higher 
into the conduction band, and then thermalizes back down to the conduction band edge. No 
photon is emitted. (c) The modified CM emission process, being the inverse of CM: the 
excited electron recombines directly with a hole from the threshold state, and emits a high 
energy photon. The green boxes denote the energy of the system both before and after the 
event, which is shown to be conserved. 

     The need for this inverse-Auger process was realized immediately after the publication of the 
original model, by essentially the same authors, and was explained in terms of a violation of 
detailed-balance: If the original model included 1 photons out for every 1 high energy photon in, 
as in Fig.  IV-2a, then there is a violation of the conservation of energy. Therefore, to account for 
the extra photon, they added a recombination term to the outgoing flux of the CM system, which 
was modeled as an inverse-Auger process, emitted from an extra energy level of the system, at 
2µ [ 79, 80]. The flux equilibrium at open-circuit then becomes: 
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Here, the first two terms are the same, and the last term includes the emission from the excited 
state, at 2Eg, and which is supposed to be at a separate chemical potential of 2µ. The term θ is the 
fraction of photons above 2Eg, and will be used from now on, and is defined as: 
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The parameter θ=1 only at Eg=0. This process is depicted in Fig.  IV-2c. Note that the last two 
terms cannot be combined in any way, since the integrands are different, with only the first 
emission term following the vRS formulation. Note that the term θ is equivalent to the gain term 
we found for the dc process, when the efficiencies were taken as optimal: 

 }1|{ 1 === dcdc Bfβθ   IV.5 

With β1 given by Eq.  III.9. One can isolate the chemical potential for this model, which will be: 
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With Voc
dc given previously in Eq.  III.8. However, this equation is not very useful, since it 

remains a transcendental equation for Voc
CM, and is thus unsolvable analytically. 

     Under Eq.  IV.3, the flux equilibrium of photons is now conserved, however, in addition to 
violating the DB assumption that only one e-h pair is generated per incoming photon (which is 
known to occur), another assumption is violated in that the chemical potential is no longer 
constant in the system, with two levels, µ and 2µ. This violation of a non-uniform chemical 
potential, which is a critical assumption in the SQ DB model, did not appear to be an issue for 
any of the earlier authors, who also assume that the emission from a CM material will follow the 
inverse-Auger spectrum [ 81].  

     The major issue of the original model for CM, as opposed to the modified one of Eq.  IV.3 
was that it was shown that the original model violated the second law of thermodynamics under 
maximal concentration, since it produced negative entropy [ 45, 82]. This can be explained in a 
hand-waving argument as being due to the violation of Kirchhoff’s law of radiation (flux 
equilibrium) in the original model, as described above. However, by the same argument, it could 
be argued that the inclusion of a second chemical potential in the cell at 2µ is both arbitrary [i.e. 
why should the level be at 2µ, and not 2Eg or 2(µ+δ)?], as well as lacking in thermodynamic 
meaning, since the Gibbs Free Energy, G, is a uniquely defined variable of the system, and is 
equivalent to the (single) chemical potential. We have already associated the chemical potential 
with the entropy of the photon cloud in a well-defined manner in the proceeding chapters, yet by 
adding another chemical potential at 2µ, we must then assume that the amount of entropy for the 
threshold level is somehow related to the properties of the étendue, temperature, and energy 
dispersion. Furthermore, we showed quite clearly that the original CM model was, in fact, the 
correct model for a dc system, and there is no thermodynamic problem associated with the dc 
entropy creation, as was described in depth in the previous chapter. Therefore, there must be a 
distinction between these two models that was not taken into account.  
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2. A New Model for CM 
 

     Due to the issues described above, a new model for the CM process was created by us [ 68] in 
order to account for both the thermodynamic description of the system, as well as account for 
Kirchhoff’s law of radiation at the surface of the cell. This newer model accounts for the flux 
equilibrium in a direct manner, without the introduction of an artificial second chemical potential 
in the system. 

     The CM system, at open-circuit, can be split into two distinct systems: The first describes all 
the photons with energies from Eg to 2Eg, and are absorbed and emitted on a one-to-one fashion, 
according to Kirchhoff’s law of radiation. In this regime of energies, the material is a linear 
system (pseudo-linear, as defined in Chapter  3, Eq.  II.25). The second system consists of all the 
higher energy photons, above 2Eg, which undergo the CM process, in this system, the material 
should absorb a photon, create two electrons, which then recombine to create two photons, and 
thus the flux equilibrium is broken. In this regime of energies, the system acts as a nonlinear 
system! We would expect to get photon doubling if we shone a 2Eg energy laser at this kind of 
material (assuming that the CM process is 100% efficient), receiving twice the number of 
photons that we input. This does not violate the conservation of energy, and non-linear optical 
materials are quite often used in many applications; however it does appear to violate 
Kirchhoff’s law of radiation! The reason this is not truly a violation, is that Kirchhoff’s law of 
radiation explicitly only relates to linear materials, and is known to be violated in any nonlinear 
material. A CM material is obviously such a nonlinear material, as is easily demonstrable using 
the laser experiment just described.  

     The new model for CM therefore relates the flux at open-circuit for both segments of the 
energy regime simultaneously, and we assume that the chemical potential is uniform throughout 
the semiconductor. However, since we have shown that the flux-equilibrium is nonlinear, we do 
not equate the flux, but rather the current, just as we did with the TF, where the input was the 
current in photons, and the output was the current in electrons. Using this terminology, the 
electron current increases by a factor of (1+θ), and therefore the output photon current must 
increase by that same amount:    
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Combining the linear and nonlinear terms in Eq.  IV.7 allows us to equate the number of photons 
in to the number of electrons created, and is therefore the closest one can get to achieving 
Kirchhoff’s law of radiation for this nonlinear material. However, we see that using this 
formalism, and extracting the Voc, we obtain for the CM system: 

 reg
occc

reg
oc

CM
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For the CM system, following this model, the open-circuit voltage remains the same as for a 
regular solar cell, since the gain in entropy of the process (the term kTcln[1+θ]) is then lost at the 
emission end. This difference will be described in section  5 of this chapter.  
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     While the Voc of the CM system may not have any gain, the efficiency gain expected from the 
CM system – like the dc system – is in the rise in current due to the increase in electrons 
generated. The efficiency is once again a function of the product P=I×V, which will be linearly 
proportional to the additive term: (1+θ). We will first generalize the equations to include 
multiple splitting processes. 

 

3. Generalization to Multiple Splitting Systems 
 

     The formula for the CM process, as well as those for the DC process, can be generalized for 
multiple splitting levels, using the formalism described here, as a function of the fraction of 
photons above each threshold level. Fig.  IV-3 displays the simplified band diagrams for a CM 
and DC system with 2 splitting levels. For the CM system, this would mean that a photon with 
3Eg units of energy will produce 3 electrons, and that a dc system will split the photons twice, 
eventually producing 3 electrons as well.  

 

 IV-3 Multiple Splitting Processes for Carrier Multiplication and Down-Conversion. In all 
three processes shown here, a photon with energy of at least 3Eg is incident on the device. 
(a) A three-electron generating process, whereby the higher energy photon surpasses two 
threshold levels, and non-radiatively transfers the excess energy to excite another two 
electrons. (b) A dc process with two different splitting materials, such that the incident 
photon is first split into two photons, with different energies, and the higher-energy photon 
is then split again by a second dc layer, ultimately generating three electrons. (c) A dc 
process where the dc layer splits the high energy photon three times via two radiative trap 
states. 

     The splitting process for both of these systems can be continued indefinitely, providing the 
photons have enough energy to be split. In particular, provided that they have enough free energy 
to be split, since the lower energy photons have less free energy associated with them, due to the 
entropic losses of the photon cloud after the PV process. We will show below that this can 
modified using concentration. Since the left hand side of the flux equilibrium method is the same 
for both the CM and dc processes (though describing different things, the former described the 
electron generation, and the latter the photon flux), we can write the input side of the equations 
for a level of splitting multiplicity, M, as follows: 
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where the concentration factor, C, has been included as well. Note that M=1 provides the regular 
solar cell case, so that a single dc or CM system will be from M=2 and up using this formalism. 
Also included is an internal efficiency factor for each stage in the splitting, 0≤fm≤1, which is 
similar to the term fdc from the previous chapter. 

     Eq.  IV.9 can be simplified if we collect each overlapping segment of the integrals, we can 
simplify the summation to: 
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Using the formalism used for defining the term θ, we can simplify this formula to account for the 
major segment of the spectrum (as defined by the bandgap of the cell), from Eg→∞, and write 
this as: 
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Where each θm is defined by the relation: 
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Note that the term θ described in Eq.  IV.4 is for a multiplicity of M=2 (θm=2=θ), and θm=1=1. 

     The emission from the CM and dc systems, however, differ considerably; while the CM 
system increases the number of vRS emitted photons, by a fraction proportionate to Σθm, the dc 
system retains the single vRS emission factor, since there is nothing internally modified in the dc 
cell. It must be remembered that the dc system applies to an existing cell, which follows the vRS 
relation, and does not have any internal threshold levels from which to emit from. As a result, 
when calculating the total efficiency from the cell, the dc and CM system will consist of slightly 
different equations. For the dc system, it will be 
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whereas the CM system will be: 
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For both of these sets of equations, we have included the term fm as an efficiency term, however, 
it should be noted that this term for the dc system will also include the geometric factor 
[fm=fdc×(2Bdc-1)]. The difference between the two sets of equations is that the dc system includes 
the term Σfmθm within the brackets, and therefore will affect the calculated value of Vm, whereas 
the CM system has the Σfmθm term outside the brackets, and will be ignored when maximizing 
the efficiency for Vm. This difference also appears in the generalized relation for the Voc, which 
can easily be seen to simplify to: 
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These equations demonstrate the slight advantage of the dc system over the CM system, so long 
as the efficiency factor, fm is positive – which may not be the case if Bdc<0.5. 

 

 IV-4 Efficiency Comparison between the Down-Converting and Carrier Multiplication 
Systems. The efficiency is plotted for multiple splitting levels, as described in Fig.  IV-3. A 
single splitting level starts with M=2. After M=3, the peak efficiency begins to converge. For 
this calculation the outgoing étendue was taken as Ωo=2π. Inset: The peak efficiency as a 
function of multiplicity for both systems. Compare this inset with Fig.  IV-7 below. 
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     Fig.  IV-4 displays the efficiency for the CM and dc systems, as a function of increasing 
multiplicity levels, M→10, and no concentration, C=1. These curves were calculated assuming 
that the dc and CM conversion efficiencies were unity, with absolutely no losses included: fm=1. 
Due to the small advantage of the dc process, primarily visible in the open-circuit voltage gain, 
the dc system outperforms the CM system for all values of multiplicity, by a small amount. The 
peak efficiency can be up to 1% more efficient for the dc system than the CM system using these 
models. The overall efficiency saturates after a few multiplicity levels, as shown in the inset of 
Fig.  IV-4, since the number of photons in the spectrum segment m×Eg is constantly reduced, and 
is limited from above by the drop in the number of photons above 4-5 eV. This saturation 
suggests that it is only worthwhile to produce a single, or perhaps double, splitting layer, as will 
also be shown below. 

     Including losses in the dc/CM conversion efficiency fm factor will also reduce the efficiency 
of each method, relative to the ideal case. As in the previous chapter, we can assume that not all 
of the higher energy photons will be converted via the dc or CM process, with some of them 
absorbed directly in the direct semiconductor bandgap. The reduction of converted photons will 
reduce the overall efficiency; however an efficiency increase is still achievable. This is plotted in 
Fig.  IV-5 for the dc/CM systems under no concentration, C=1, a single splitting multiplicity, 
M=2, and including a fraction fm=0.5 for both methods. The Isc is reduced for each method, 
which leads to an overall efficiency loss. There is essentially no difference between the plots in 
Fig.  IV-4 and  IV-5 since the factor fm appears directly in association with the multiplicity factor, 
M, so that the two factors play a nearly identical role.  

 

 IV-5 Characteristics of a Non-Ideal Converter. Plotted are the short-circuit current and 
efficiency for a dc and CM system assuming no concentration, and a single splitting level, 
with a conversion efficiency of fm. The short circuit current is reduced at lower conversion 
factors, as well as the efficiency, with the same trend as in the previous figure. 



59 
 
     The peak efficiency can be tracked for each method, as a function of the multiplicity level, as 
well as when adding concentration. The original models predicted a maximal efficiency of ≈86% 
for infinite multiplicity levels and maximal concentration [ 78, 83, 84]. In addition, the optimal 
bandgap for such a device for CM was predicted to drop to zero. Since a zero bandgap device 
will proved no power, an optimal, minimal bandgap was found to be Eg(min)=0.048 eV 
[ 79, 83, 84]. This low bandgap is well below the 3kTc≈75 meV limit typically used by electronic 
device engineers as a rule of thumb for when the device properties will fail due to thermal 
effects. Furthermore, it assumes that the bandgap of the device is physically existent at that 
range. The models for dc and CM described here uphold the same prediction for large 
multiplicity levels, as shown in Fig.  IV-6a. The same rise in efficiency is seen, with an 
advantage for the dc system over the CM system, as described above. The high peak efficiencies 
at extremely low bandgaps, approaching kTc=25.8 mV were found using the models here as well, 
but without resorting to any approximations of the integrals, as was done in earlier works 
[ 83. 84]. Since multiplicity levels beyond M=3 are probably physically difficult to create, plotted 
in Fig.  IV-6b are only the optimal bandgap values up to M=10. The formulas tend to break-
down at the limit of high concentration and low bandgaps, such that the numerical results are 
affected by the choice of starting point and variable distributions in the code. This variability 
occurs once the energies are of the order of kTc, and particularly when E-µ≈kTc.  

 

 IV-6 Peak Efficiency as a Function of the Levels of Multiplicity. (a) Peak efficiency as a 
function of multiplicity, and (b) optimal bandgap as a function of multiplicity. Both dc and 
CM are plotted, with a slight efficiency advantage for the dc system, regardless of the 
multiplicity level, or concentration. The curves begin to diverge at high concentration levels 
due to the disappearing of the entropy completely. Concentration levels are as marked in 
panel (b). 
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     The exponential growth of the peak efficiency cannot be found using strict analytical tools, 
since the equations that must be solved for the peak efficiency are transcendental. However, we 
can approximate the curves to follow the following empirical relation: 

 [ ] 0m )/exp(1(m) =∞→ +−−= mpeak ηXmηη   IV.16 

where m is the multiplicity variable and X is the average of the peak bandgap for m=1 to m→∞, 
divided by kTS (0.517 eV). The value of X can be approximated assuming that the summations in 
the formulas for the current given in Eq.  IV.9 can be approximated by a geometric series. If the 
common ratio of the series is assumed to be exp(-m/X), where this ratio can be evaluated using 
the Fundamental Theorem of Calculus when finding the derivative of the efficiency as a function 
of bandgap, such that: 
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This approximation of the curve is quite accurate, despite its course assumptions, yet is still only 
an approximation, whose importance is of empirical value alone. 

    As shown in Fig.  IV-6, the peak efficiency for dc converges to a higher level than the 
traditionally held limits for thermodynamic conversion! The breakdown in the efficiency limits 
for dc and CM models at maximal concentration can be seen using our knowledge of entropy 
that stated that at maximal concentration, the DB limit of a solar cell should approach the UE 
limit. This statement is true for 3rd generation ideas as well, with higher UE efficiencies possible. 
The UE efficiency for a CM system was thought to approach the Carnot efficiency, which is 
traditionally held as the highest thermodynamically possible efficiency limit [ 85]. However, if 
we push the models for the UE of a CM or dc system – which are identical since the input term is 
the same for both, and the UE model ignores the output – we find that at increasing multiplicity, 
the efficiency actually hits 100%. This is shown in Fig.  IV-7, with the peak UE approaching 
100% for extremely high levels of multiplicity, as demonstrated in the inset. The near unity 
efficiency at near zero bandgap is a clear signal of a breakdown in the thermodynamic 
assumptions, however, if the UE maximum value is taken as the limit for when Tc→0, then the 
Carnot efficiency also approaches unity. The carriers are then extracted regardless of their 
temperature. 

     The possibility of having a material with 300, or even 1000 internal splitting bands borders on 
being non-physical. If 1000 bands are considered, the UE reaches 99.64% (not shown) at the 
very first interval of bandgap considered (e.g., 0.01 eV, which is a function of the discretization 
choice used in the numerical calculation); this would also require meaningless 10 eV photons to 
be present, and is therefore irrelevant to the solar spectrum. Moreover, since it is assumed that 
photons can only be absorbed from the valence band up to the multiplicity level, and no internal 
absorption process (say, from 5Eg to 10Eg) occur; this internal process would be akin to free-
carrier, or intra-band, absorption. The material would therefore act as a one-way optical diode, 
only absorbing light into the multiplicity levels, but then emitting it from the bandgap alone. This 
issue is problematic for both dc and CM systems.  
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 IV-7 Ultimate Efficiency with Near-Infinite Multiplicity. Plotted is the UE of a dc or CM 
system (which are equivalent for the UE model) with up to 300 levels of multiplicity. The 
peak UE reaches 99.26% for a bandgap of 0.02 eV (or 99.64% at ≈0.01 eV for M=1000) 
Inset: peak efficiency as a function of multiplicity, showing the approach to unity efficiency 
at higher multiplicity. 

     The concept of a diode-like material has been considered for the CM process, and has been 
thought to be possible using the process of singlet fission [ 70, 86]. In this process, the diode-like 
function is provided by the absorption of photons into the ‘singlet’ state of a molecule, which is a 
quantum-mechanics-defined isolated energy state, and this energy state then decays into two 
‘triplet’ states. This transition cannot occur optically, since the singlet and triplet state transition 
is quantum-mechanically forbidden. The use of the singlet fission process to provide a CM 
improvement has been analyzed before [ 70], providing the same enhancement to the efficiency. 
However, it could be argued based on the analysis above that the singlet fission material would 
be useful as a dc material, as ohpposed to an actual cell material, with the eventual emission 
from the triplet states providing the two lower energy photons. 

 

4. Comparison of Heat Generation  
 

     Comparing the two methods, dc and CM, from a generalized perspective of heat generation in 
the cell itself also provides a qualitative description for why the dc method has some advantages 
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over the CM method. Using the same terminology from Chapter  II, and Fig.  II-2, we can 
associate a heat loss due to the excess energy of the absorbed photons, as measured in relation to 
the bandgap, Eph=Eex+Eg. Since at open-circuit equilibrium, photons with approximately Eg 
worth of energy are also emitted from the solar cell, that excess energy can be said to have been 
transformed into heat via thermalization losses. 

     The situation for a dc or CM system however is different, since the amount of thermalization 
losses is reduced. Fig.  IV-8 displays the sequence of absorption, heat loss, and re-emission for a 
single photon event in each system. In either the dc or CM system, high energy photons with 
E>2Eg are absorbed at either the dc layer or above the internal threshold level (step 1), and then 
create two dc photons or two immediate electrons (step 2). The two generated electrons can 
radiatively recombine and create to re-emission photons at the bandgap (step 3). The total 
amount of heat loss amounts to the excess energy: Qlost

1=Eex, and the ‘thermal entropy’ produced 
amounts to Qlost

1=Eex/Tc in this first stage. In addition to the dc or CM process, photons with 
energy below the threshold, meaning with energies: Eg<E<2Eg, will be absorbed regularly in the 
solar cell (step 4), and generate the usual amount of thermalization loss, Qlost

2.  

     The major difference between the two systems is that the first loss factor, Qlost
1 occurs in a 

material system external to the cell in the dc system, whereas it occurs internally in the CM 
system (see dotted lines in Fig.  IV-8). Since we know from broad thermodynamic arguments that 
the generation of heat (and entropy, according to the classical view of the 2nd law of 
thermodynamics) is associated with a reduction in the amount of free energy utilizable in the 
system, the dc design is advantageous since this heat loss does not directly affect the free energy 
(and thus the Voc). While the temperature of the dc layer and the cell will be the same if they are 
thermally coupled, with heat transferred from the dc layer to the cell is not the factor that reduces 
the free energy, rather it is the generation of heat in the solar cell that can reduce the free energy. 
The CM system is still advantageous in comparison to a regular cell from the heat generation 
perspective, since the current is increased, without generating a linear increase in thermalization 
losses. For every photons with E>2Eg, a total of Qlost

1 is generated, and creates two electrons, 
whereas a regular solar cell would only create a single electron, and Qlost

1+ Qlost
2 amount of heat. 
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 IV-8 Heat loss in the Down-Conversion and Carrier Multiplication Systems. (a) A dc 
system, and (b) a CM system. Photons with energy exceeding 2Eg are absorbed in the dc 
layer in (a), or above the CM threshold in (b), and generate a small amount of heat loss, 
Qlost

1 (step 1, violet). The dc system creates two bandgap-energy photons (cyan), whereas 
the CM system directly produces two electrons via a non-radiative energy transfer 
mechanism (step 2, cyan). These ‘cooler’ photons can then be emitted at the bandgap (step 
3, cyan). Photons with energies between the bandgap and the threshold of 2Eg are absorbed 
directly within the solar cell (step 4, blue), producing a concomitant amount of heat loss 
due to thermalization, Qlost

2. These electrons will also be able to be re-emitted as a single 
photon from the bandgap (step 5, cyan). Dotted lines represent the boundaries of the solar 
cell, with the dc layer in (a) being external to the cell itself. 

 

5. The Entropy Difference 
 

     The major difference between the two models for dc and CM described in this chapter related 
to the entropy term in the Voc. The dc model was shown to have a ‘gain’ term due to the spectrum 
splitting of the dc layer, which better matched the incoming spectrum to the single bandgap of 
the underlying cell. However, we began this chapter by describing the original models for CM 
[ 78], which we demonstrated was identical to the dc model, yet said that it was shown that this 
model violates the 2nd law of thermodynamics! This problem must be reconciled, since there is 
seemingly no reason why the 2nd law should be violated in the dc system, which was derived 
‘from scratch’ in the previous chapter, and had fewer assumptions associated with it than the CM 
model. It is therefore surprising that there is an entropic issue with the original CM model, which 
was developed 8 years before the first dc model (which is different from the model described in 
the previous chapter, since the original dc model did not assume a regular semiconductor as the 
solar cell [ 54]). 
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     The violation of the 2nd law was shown to occur at maximal concentration, producing a net 
negative amount of entropy [ 45, 82]. The case of maximal concentration, itself a somewhat 
precarious physical notion questioned later in Chapter  VIII, assumes that the light is 
concentrated to the maximal ≈90° angle that is comparable to stretching the incoming beam from 
the small angular radius to a full hemisphere above the cell. For a regular solar cell, or for a CM 
cell, this is the maximal concentration possible. However, for a dc solar cell, the flux absorbed 
by the cell is not the same as that absorbed by the regular cell, since the spectrum is different, as 
well as the angular distribution of the dc converted photons. Since the photons emitted from the 
dc layer are emitted isotropically (in fact, with Ωdc up to 4π, instead of just 2π), the segment of 
spectrum above 2Eg should not be included into the maximal concentration ratio.  

     From the perspective of the formulas for Voc, we showed that the gain term for the dc layer 
was proportionate to the segment of converted photons in the spectrum: 
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For the maximal concentration case, C=Cmax≈46,000, this term (which will be negative for 
entropy, and positive for voltage) can surpass the amount of positive entropy produced by the 
cell, if no losses are included, amounting to a net negative entropy generation.  

     The issue can be resolved if we look at the total étendue of the light actually absorbed by the 
cell as being the combined étendue of the solar beam, sans the spectrum of energy above 2Eg, in 
addition to the isotropically emitted dc beam. This dc beam therefore ‘expands’ the beam emitted 
onto the cell, even at maximal concentration, such that the total étendue of beam absorbed can 
actually surpass the full hemisphere above the cell. This situation is demonstrated in Fig.  IV-9 
for both a regular flat cell, and a dc cell, at full concentration. The dc layer will emit extra 
photons into the initial étendue of the beam, in an isotropic manner (Bdc). These extra ‘rays’ in 
the incoming beam can be expanded beyond the initial distribution of rays, since the spectrum 
had been changed by the dc layer. The maximal concentration term should therefore be modified 
to include this contribution. This can easily be done by combining the gain term of Eq.  IV.18 
into the term for the concentration, since the logarithmic terms can be combined, producing an 
effective concentration for the dc system: 
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     The effective concentration term for the dc system described the entopic gain for dc in terms 
of the modification of the étendue. This description is different from the one used in the previous 
chapter, which explained the entropy difference in terms of the spectrum and distribution of 
energy of the incoming beam, but is in no means contradictory. The information theory approach 
to entropy, which describes it as a measure of missing information or uncertainty, is objective to 
the exact quality of the information measured. The gain term in the voltage (loss term for 
entropy) of Eq.  IV.18 is completely compatible with the descriptions given in Eqs.  III.8 
and  III.11, and is an objective measure of information change in the dc system. The violation of 
the 2nd law found for the “old” CM model [ 78, 45, 82], was not valid for the dc system since it 
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assumed that the maximal concentration was limited to Cmax=π/ΩS, whereas here we showed that 
the étendue is increased in the dc layer. The argument is however valid for a CM system, since 
the multiplication occurs internally, and does not modify the beam’s étendue properties (recall 
that the thermodynamic boundary is at the cell’s surface). This once again highlights the 
difference between the dc and CM systems, with the spectral splitting occurring externally in the 
dc system, which provides it with an entropic benefit. Essentially the fact that the dc layer is 
“doing work” to split the spectrum first can be used informatively by the solar cell to increase its 
utilization of free energy. This, of course, assumes that the systems are lossless (κnr=0), and that 
the geometric factor is optimal (Bdc→1). This distinction between external and internal 
conversion will be again emphasized in the next chapter. 

 

 

 IV-9 Expansion of the Incoming Beam for a Down-Conversion Cell. (a) The maximal 
concentration for a regular solar cell is made possible when the full hemisphere above the 
cell is filled with suns, effectively creating an incoming étendue at an angle of 90°. (b) For a 
dc cell, the solar spectrum is first filtered through the dc layer, which produces more 
photons, in an isotropic manner. 
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V. Transfer Function Comparison between 3rd 
Generation Methods 

 

*Publication note4      

     The previous two chapters provided a detailed look at two of the processes to improve the 
efficiency of a cell beyond the SQ limit, while only changing a few basic assumptions used in the 
DB model. The principal rules for deriving the maximal thermodynamic efficiency were to 
concentrate on the flux into the surface of the solar cell, as well as focus on the emission 
emanating from that same surface at open-circuit equilibrium. These concepts were directly 
manifested in the TF method of Chapter  II, for a regular solar cell. This chapter will generalize 
the method for other 3rd generation techniques, and provide a simple, graphical way of 
comparing them using circuit and signal diagrams. Since the previous chapters provided an 
ample introduction to the concepts of 3rd generation ideas, the formulas and derivations of this 
chapter will be truncated. In the interest of simplicity, only a single splitting layer will be added 
for each method. 

 

1. TFs for Down-Conversion and Carrier Multiplication 
 

     Using the notations and descriptions of the dc and CM systems of the previous two chapters, 
we can easily devise a diagram for the dc system. The dc solar cell is a regular solar cell, with an 
added layer “on top” of it that affects the incoming spectrum. The actual location of the dc layer 
is not as important in the sense that it affects the incoming spectrum. Since signal diagrams are 
read from left to right, the dc layer should therefore be placed before the solar cell itself, in a 
serial process: first the dc occurs, and then the new spectrum is inputted into the solar cell. The 
TF of the regular solar cell, as described in Chapters  II was a pseudo-linear system, and was a 
function of the input spectrum. Since the TF is indifferent to the exact spectrum, we can 
externally modify the spectrum as much as we want, and the TF of the dc system will remain the 
same. This situation is similar to the effect of adding concentration, which we have described in 
Chapter  I to be adequately described as multiplying the number of suns in the sky by a factor of 
C. This is portrayed in the most basic signal diagram of Fig.  V-1a. If the concentration is 
increased, we expect the TF of the regular sun to internally change only via the internal shift of 
the µ factor within the numerator of Eq.  II.23. Specifically, under increased concentration, the 
chemical potential shifts closer to the bandgap, so that the factor E-µoc is reduced making the 
linewidth of the emission spectrum sharper. The effect of modifying the spectrum therefore 
indirectly changes the TF of the regular solar cell, Hreg(µ) by changing the internal parameter, µ. 
The only important thing for the solar cell itself is the actual input flux entering the dashed line 
of Hreg, which in this case is Nin

C in Fig.  V-1a. 

                                                
4 The following chapter is a continuation of the conference proceedings paper in Ref. [ 40]. This chapter also 
includes material that was not included within that reference, as well as new TFs for the techniques described. 
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 V-1 Transfer Function of a Concentrator Solar Cell and a Simplified Down-Conversion 
Cell. (a) The effect of adding concentration to a regular solar cell can be thought of as 
adding a multiplicative term, C, at the input side of the solar spectrum. The new spectrum 
that the cell effectively “sees” has been changed from Nin

C=C×Nin
S. (b) A simplified version 

of the TF for a dc system. The dc layer modifies the input spectrum, producing a spectrum 
Nin

dc for the underlying cell. The internal working of the dc system is not important, and is 
itself a “black box”. 

     The dc layer can be thought of in the same way, since as far as the solar cell is concerned, the 
important aspect is the spectrum that it can utilize for PV conversion, which is the final spectrum 
incident on the solar cell. We can imagine the dc layer to be another “black box”, with an 
internal TF that is unknown, which produces a final spectrum Nin

dc that the solar cell then 
absorbs, in a similar fashion to the concentrating system, and as presented in Fig.  V-1b. While 
this description of the dc system is useful in its simplicity, it does not help us analyze the 
efficiency of a dc system since we do not know the workings of the dc layer. This description 
would be useful only if we were given the output spectrum of a ‘mystery’ dc layer material, and 
asked what its affect would be when placed on a solar cell. However, it does not provide any 
analytical information that can be used for theoretical analysis. 

     Instead of simplifying the internals of the dc layer’s TF, we can write out the internal 
functions of the dc layer as a function of energy filters: Low Pass Filters (LPFs) that allow 
photons with energy up to ELPF to pass; High Pass Filters (HPFs) that allow photons with 
energies above EHPF to pass; and Band Pass Filters (BPFs) that allow photons with energies 
between an upper and lower threshold to pass. Note that using this description we are discussing 
the photons that pass through the filter, as opposed to those that are absorbed or reflected away 
(This appear in the opposite form as that appearing in Ref. [ 40]). Effectively, the filters affect the 
limits of integration: the step-function absorptivity of Eq.  I.8, where the solar cell only absorbed 
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from Eg and up, can be described as multiplying the solar spectrum by a HPF with a lower 
threshold of Eg. The rest of the spectrum is then “passed” to the cell, and then absorbed. 

     Using these concepts, we can re-write the TF of the dc system as portrayed in Fig.  V-2a. The 
dc segment of the circuit is split into an upper branch that deals with all the photons below 2Eg to 
pass through, being the unconverted photons. The lower branch first removes all the photons 
below the dc threshold of 2Eg via a HPF, which effectively provides the numerator of the term θ 
from the previous chapter (Eq.  IV.4); it then uses the internal TF described in Chapter  II, Hint, 
which effectively transforms this cut-off spectrum into an LED-like emission, which it then 
transmits via a multiplier of 2 to consider the doubling of photons, and adds a conversion 
efficiency factor, fm, as in the previous chapters to account for inefficiencies. The transformation 
of the solar spectrum to LED spectrum occurs at a chemical potential of µoc

dc, which is a constant 
formed by the flux equilibrium of Eq.  III.2. The signal diagram of Fig.  V-2a is thus more of an 
exercise in spectrum slicing, to understand which parts goes where, and then to recombine them 
into the input spectrum to the cell itself, Nin

dc. 

     The TF for a CM system is more complex, since the process is internal. Recall from the 
previous chapter that the original model for CM (the modified one, that was supposed to correct 
the ‘entropy problem’), in Eq.  IV.3, assumed that there were two separate chemical potentials 
(for M=2), in order for the photon flux to be matched. In fact, another model for CM that was 
derived using first-principals of Gibbs free energy, G, [ 41] conceived of the CM process as being 
akin to two separate voltage supplies in parallel, each with a voltage defined by the chemical 
potential. However, the problem with such a description (which was used for modeling an IB cell 
as well, see below), is that two separate voltage supplies cannot be connected in parallel unless 
they have identical voltages. If they have different voltages, the voltage out of the circuit will be 
limited by the lower of the two supplies (assuming one of them doesn’t explode first). This type 
of process, which is limited by the lowest of the parallel processes is quite common in circuit 
theory. The authors of this first-principles model claimed that the supplies will become equal at 
maximal concentration conditions, when the entropic voltage loss in each branch (supply) is 
equivalent. This does not provide a solution for more realistic cases when the concentration is 
smaller than maximal. Moreover, the other model described for CM in the previous chapter [ 79] 
required setting the second voltage as equal to twice the first, namely that µ1=µ2/2, using the 
inverse-Auger model. In our newer model of the previous chapter, we set a requirement that the 
voltage (chemical potential) across the entire solar cell be constant and consistent, as per the 
original assumptions of the DB model.  
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 V-2 Transfer Functions for dc and CM. (a) The Internal TF for the dc layer includes an 
upper branch that is unaffected, and is cut-off from above at 2Eg using a LPF. The lower 
branch includes the segment above 2Eg, which is converted into two ‘cool’ photons at the 
bandgap using the internal TF, Hint, and then multiplied by two (and the conversion 
efficiency factor, fm). These branches are then added together to create the new spectrum 
irradiating the cell, Nin

dc. (b) A CM cell internally creates the two branches, which are 
theoretically fed into two parallel processes, with two TFs at µ1 and µ2. The upper branch is 
similar to the upper dc branch in (a). The lower branch only includes the fraction of 
photons above 2Eg: θ, and multiplied by a similar factor of fm. The fraction θ can itself be 
described in (c) as a devisor of the two relevant segments of the input spectrum. 

     Fig.  V-2b displays the internal TF for a CM system, with two internal separate branches that 
can be compared to the internal branches within the dc system of Fig.  V-2a. The upper branch 
acts like the upper branch of the internal dc system, and accounts for the photons that are 
unaffected by the existence of the CM process, between Eg and 2Eg. This is described here as 
multiplied by the factor (1-θ), with θ given previously in Eq.  IV.4, instead of using the LPF, and 
accounts for the first of the electrons generated in the CM process (and not the multiplied 
carrier). The other difference is that this segment of spectrum immediately feeds into an internal 
TF for the CM, HCM

1(µ1), since these photons create a voltage by themselves, as regulated by the 
vRS relation. HCM

1(µ1) is thus equivalent in action to the regular Hreg(µ), other than the index of 
the branch for the chemical potential. This branch of the CM system acts in a linear mode, with 
input equaling output fluxes at open-circuit equilibrium. The lower branch could have been taken 
directly from the lower branch of the dc internal system, since the CM process effectively creates 
another ‘cool’ electron at the bandgap. However, it is more accurately modeled as another, 
parallel, circuit where the input current/signal is the fraction of photons undergoing CM, given 
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previously by the fraction θ from Eq.  IV.4, and multiplied by a conversion efficiency factor fm 
for consistency. The factor θ itself can be described using signal diagrams, as is shown in 
Fig.  V-2c, with θ being the division of the original spectrum after a HPF with threshold at 2Eg, 
by the original spectrum with an HPF threshold at Eg (this threshold occurs due to the bandgap, 
which acts as a HPF). The output of this branch also feeds into an internal TF, which can 
theoretically be held at a different voltage, with HCM

2(µ2). The total re-emission from the cell is 
the combined output of HCM

1+HCM
2. Since these occur internally, we are interested in the total 

TF of the system, as delineated by the dashed line in Fig.  V-2b. This can be found by adding the 
two internal TFs together. If we further argue that the chemical potential must be uniform, then 
µ1=µ2, resulting in a total TF of: 

 )()1(|)()(
212

2
1

1 μHθfμHμHH regmμμCMCM
total
CM +=+= =   V.1 

Using this formalism, we can see why the CM process with this model provides no gain for the 
Voc, since the Voc is derived and defined at Hreg(µoc)=0; the added factor, (1+fmθ), cancels out. 

     The advantage of the TF method for these 3rd generation concepts is that they allow one to 
easily recognize where the losses that can occur in the system will affect the overall 
characteristics of the PV conversion. Each branch of the diagrams can be considered as a 
separate impedance, or voltage/current supply, and dismantling one of them will directly affect 
the circuit. In the case of dc, an inefficiency in the dc conversion branch will result in a less 
favorable spectrum irradiating the cell; however it will not directly create losses in the cell, other 
than a slight drop in current and voltage if fm=0. In contrast, in the CM system this branch is 
internal, and will affect the Voc directly. This can be seen if the bottom branch is ‘ruined’ (open-
circuited, or short-circuited): we required that µ1=µ2, but this can no longer be maintained if the 
CM process (the multiplication process itself) is cut off. From a material perspective, it becomes 
clear that anything affecting the internal CM process will detrimentally affect the entire crystal 
structure of the solar cell, whereas in the dc system, this loss is outside the solar cell itself. Once 
again, we emphasize that the losses in the CM process are internalized, whereas in the dc 
process, they are externalized, essentially outsourcing the losses to a spate material system.  

 

2. Transfer Functions of Up-Conversion and Intermediate 
Band Cells 

 

     Until now, we have only described dc and CM as methods of improving the efficiency of 
solar cells beyond the SQ limit. Those methods address the problem of the higher energy photons 
whose excess energy is “wasted” through thermalization. An alternative approach is to make use 
of the lower energy photons, whose energy is below the bandgap of the semiconductor and are 
therefore transparent. There are two popular concepts to improve the efficiency using these 
photons: Up-Conversion (uc) and IB cells, whose simplified band diagrams are depicted in 
Fig.  V-3. 
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 V-3 Band Diagrams of the Up-Conversion and Intermediate Band Cell. (a) The uc cell 
accepts two lower energy photons (with energies below the bandgap), and excite an electron 
to the conduction band via a trap or virtual state. The two photons must be absorbed 
nearly simultaneously by the same electron for this to occur. (b) The uc system with an 
intermediate layer, whereby the lower energy photons are first absorbed in a layer with a 
midlevel trap, and then converted to a single, bandgap energy photon that is absorbed by 
the cell. (c) The IB cell has an isolated band within the bandgap, that can absorb photons 
both directly (blue) at the bandgap, or into the intermediate bands (orange and green), 
with the cumulative effect of absorbing the lower energy photons. 

     The uc cell [ 87- 89] makes use of lower energy photons by having two lower energy photons 
absorbed simultaneously at the bandgap, such that an electron is excited via a trap, or virtual 
state in the middle of the bandgap. This process can immediately produce an electron for the cell 
(Fig  V-3a), or be used to produce another photon at the bandgap (Fig.  V-3b). This process does 
not violate the conservation of energy, since (in its most simplified form), the energy of the two 
photons together adds up to the energy of the bandgap. However, the uc process is an intensity 
dependent process, since there is a very low probability that the second photon will come along 
at the same time and place as the first photon to help excite the electron to above the bandgap. 
For the process to occur, there should be a large number of photons within the cell, with the 
correct energies for the process to occur, and is therefore a function of the intensity of the 
incoming radiation. It should be noted that the uc process is not the mirror image of the dc 
process: the dc process is not an intensity related effect, and is a matter of the material 
parameters. Furthermore, the uc process relies on an increased lifetime of the electron within the 
trap/virtual state so that the second photons can be absorbed in a reasonable (finite) amount of 
time; the dc process merely requires that the trap state allow the electron to recombine in a 
radiative manner. 

     The IB cell [ 65] employs a unique form of material that has a ‘trap’ state that has coalesced 
into a single band lying within the bandgap [ 64]. This band is essentially a non-zero density of 
states within the bandgap of the semiconductor, which is a ‘paradox’ considering the meaning of 
the term ‘bandgap’. Nevertheless, there have been multiple theories for how to create such a 
band, and what its characteristics would need to be for it to be useful as a solar cell material [ 90-
 92]. In fact, there has recently been work showing that such a material is possible, using 
specially designed structures [ 93]. The band structure of an IB device appears in Fig.  V-3c. The 
IB cell can absorb all the photons above the bandgap, just as a regular cell can, but can also 
utilize the lower energy photons by having them first be absorbed by the lower band, and then 
have another set of photons excite them further to the bandgap. The electrons are connected to a 
circuit only via the larger bandgap, with the internal band isolated from the circuit (a technically 
challenging feat). The IB cell is therefore designed to work at the larger potentials of bandgap, 
while increasing the current via the internal band. This band must be filled with electrons at all 
times in order for the effect to work [ 92], and it also must have internal absorption coefficients 
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that only allow absorption of light to occur for the correct set of bands [ 91]. These and other 
limitations make the concept of IB bands quite difficult to achieve, however the feasibility of the 
IB technique will not be related here.  

     The uc and IB devices ostensibly vie for the same goal: to utilize the lower energy photons 
more effectively. Since the band structures in momentum-space are relatively symmetric (as in 
Fig.  I-5), the first-second/upper-lower photons in the uc/IB models should also be symmetric in 
energies. This simplification is used to both shorten the derivation below, but also to point out 
that the uc/IB techniques are also process limited to the lower of the two photon rates: if there are 
1000 photons at hv1 and 2000 photons at hv2>hv1, then the number of electrons at the conduction 
band will be limited by the smaller of these two numbers. Since the photon rate follows the 
Planck spectrum and is non-uniform, we expect the photon rates to be different for each energy 
segment, and the maximal rate of electron excitation generation (for photons below the bandgap) 
will be maximized when the two rates of photons (first-second/upper-lower) are equal, meaning 
that the trap state (intermediate band) is in the center of the bandgap. This ignores the ‘thickness’ 
in energy of the trap state itself, which is assumed to be negligible.  

     The TF of the uc and IB systems will be here taken as nearly identical, since they only affect 
a portion of the incoming spectrum that would otherwise not have been utilized. The TF is 
displayed in Fig.  V-4, with the IB cell contained within the dashed lines, including both internal 
branches, and the uc section isolated by the dotted lines, which emphasize the fact that the uc 
layer has a separate thermodynamic boundary than the solar cell itself. The upper branch of the 
TF contains the photons above Eg, which are unaffected. This is shown as passing through a HPF 
at Eg but this is not strictly necessary, since the solar cell itself will limit the absorption to above 
Eg via the absorption coefficient, αabs, as in Eq.  I.8. The lower branch only utilizes the photons 
with energies from half the bandgap up to the bandgap, as characterized by the BPF from 
½Eg→Eg. It is then passed through an internal TF, which is similar to the internal TF from 
above, and which is characterized at open-circuit equilibrium (since the uc layer, or the internal 
band carry no current) by the equation: 

 ∫∫
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This equation is quite similar to the dc layer’s equilibrium from Eq.  III.2, however, the factor of 
½ is placed on the left hand side since every outgoing photon at Eg is supplied by 2 photons from 
the sun in the range ½Eg→Eg. Eq.  V.2 thus defines the internal production of the outgoing uc 
emission, without needing to understand how it occurs (whether by a trap or virtual state), as 
long as it follows the vRS emission on the output end. Finally, we add a conversion efficiency 
factor, fm, for possible inefficiencies. These two branches are recombined, to create the new 
spectrum irradiating the solar cell, with TF Hreg.  
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 V-4 Transfer Function of the uc and IB Cells. The upper branch controls the photons 
above the bandgap, and the lower branch transforms some of the lower energy photons 
into higher energy ones, at a rate of half the incoming rate. The difference between the two 
techniques is demonstrated by the dashed/dotted lines, which encompass the boundaries of 
the IB/uc segments.  

     An additional perspective of viewing the uc/IB cells is to only focus on the absorption 
coefficient of the semiconductor alone. Instead of viewing the uc/IB cell as a linear material 
following Kirchhoff’s law of radiation, with αabs=εemit, we can say that the uc/IB system emits at 
the bandgap, such that: 
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with u being the Heaviside/step function, but in contrast the absorption is: 
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Note that the contribution from u(Eg/2) adds up with the contribution from u(Eg) after the step at 
Eg. 

     The formulas and TF above allow us to calculate the efficiencies of the uc/IB system, as well 
as isolate the contribution of the extra charge density to the Voc. Following the procedure used to 
derive the dc and CM systems, the Voc can be found using the approximations of the previous 
chapters (E>>kTS and E-µ>>kTc), to obtain: 
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with Voc
reg as defined in Eq.  II.6, αS1 as defined in Eq.  II.7, and a new small correction term: 
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Eq.  V.5 contains a ‘gain’ term, similar to the dc system, which is a function of the bandgap. 
However, since the exponent contains a fraction of 2kTS≈1 eV, for most values of bandgap, this 
contribution is quite small, and almost entirely negligible. Furthermore, for values of fm<1, this 
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contribution will be even more negligible. While the entropy change has the same meaning as the 
dc case, as being the change in ration between the new and original spectra, this change is nearly 
meaningless since the number of photons in the blackbody spectrum below Eg is not that large. 
This is particularly true after being multiplied by a factor of ½ due to the conversion process of 
two photons in, and one photon out. 

     The efficiency can be calculated for the uc/IB processes for different values of concentration, 
as well as fm, the uc/IB conversion efficiency. The plot in Fig.  V-5 displays the efficiency values 
for a regular solar cell for comparison (black), as well as the efficiency for an ideal uc/IB system 
(fm=1, blue) and a system with some inefficiencies (fm=0.5, red), under different concentration 
conditions. The efficiency of the uc/IB system improves the efficiency to 46.57% at an optimal 
bandgap of 1.95 eV (up from 30.4% at 1.32 eV), under no concentration (solid blue curve), and 
up to 55.61% at a maximal concentration of Cmax=46,000 and an optimal bandgap of 1.69 eV 
(dashed blue curve). From this simple model, it is nearly as efficient to have a uc/IB layer with 
an internal conversion efficiency of fm=0.5 with no concentration (solid red curve) as having 
maximal concentration for a regular cell (dashed black curve, and which will be claimed in 
Chapter  VIII to be nearly impossible to achieve). However, this maximum will occur at a 
slightly higher bandgap. 

 

 V-5 Efficiency of the uc/IB Systems. Plotted is the efficiency of the uc/IB system under 
different ranges of concentration: C=1, solid line; C=1000, dotted line; C=46,000, dashed 
line. The black curves represent the regular solar cell efficiency, with fm=0. The blue curves 
represent the idea uc/IB performance, with fm=1. The red curve represents the non-ideal 
performance, with fm=0.5. 

     The high efficiencies reported as possible using uc or IB (which are slightly different from 
those given here, since the uc/IB model here is a near ideal model) include a logical fault, in that 
they assume that all the photons between ½Eg→Eg are absorbed within the uc or IB system, yet 
no description of the momentum matching is used. For example, for the IB band diagram of 
Fig.  V-3b only displays the x-space component of the intermediate band and is completely 
straight, however, it does not include the k-space component, which may be curved (as in 
Fig.  I-5b). This curvature will prevent photons from being absorbed in a uniform fashion 
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throughout the semiconductor, and will cause the system to be process limited by the number of 
absorbed photons on the top layer alone. Likewise for the uc system, single trap states 
interspersed within the bandgap will require a highly momentum matched second photon to be 
absorbed to excite the electron up to the conduction band. Moreover, both systems will require a 
long lifetime of the electrons in the mid-level state. Note that these considerations are not 
relevant for the dc and CM systems. Finally, the difference between the uc and IB methods in 
terms of losses is the same as in the difference between the dc and CM methods: by combining 
all the spectral splitting within the boundaries of the solar cell in the IB system, any internal 
losses to one of the branches will immediately effect the entire solar cell, as opposed to having a 
separate layer do the spectral combination. 

 

3. General Comparison between 3rd Generation Methods 
 

     The four concepts described until now for improving the efficiency beyond the SQ limit were 
described in pairs. This distinction emphasizes the two segments of the solar spectrum that are 
either un-utilized or not utilized as effectively as possible. The single-junction paradigm for a 
solar cell assumes an optimal bandgap that is best suited for both absorbing the spectrum, and 
producing enough voltage to create maximal power. The 3rd generation methods described until 
now have retained that paradigm of a single junction, which is why a single, optimal bandgap 
was found for each method. The choice of the bandgap immediately splits the solar spectrum into 
two (unequal) parts: transparent photons and excess-energy photons, or thermalized photons and 
unused photons. Furthermore, of the four techniques described until now, they were either a 
separate layer (dc and uc), or a new form of semiconductor that made use of a physical 
phenomenon that better utilized the spectrum internally. We can split these into an optical 
category, which spectrally modifies the incoming spectrum, and a solid-state category, which 
creates internal bands and multiplications. These categories are described in Fig.  V-6, in a 
“square” matrix.  
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 V-6 Categorizing 3rd Generation Methods. The columns depict the segment of the solar 
spectrum that can be improved, and the rows depict the method of improving, either 
external or internal. Other metrics can be added to these rows, whereas adding another 
column can be done by using a multi-junction cell. 

     The arguments made in this chapter – that the external methods of producing an efficiency 
improvement are better than internal ones – is in general the opposite trend of current research in 
PV, where the bulk of research is attempting to find all-in-one solutions to beating the SQ limit. 
While there is an advantage to having a single material do both the splitting/combining as well as 
the PV conversion itself, it creates many complexities that can create losses. These losses were 
contended to reduce the efficiency of the entire solar cell directly, as opposed to the external, 
multi-material/layer methods, which outsourced the possible losses to a different material 
system. Since solar cells today are quickly approaching the SQ limit, pushing the efficiency 
beyond that by using an added layer (as in dc and uc) seems to be more economically viable than 
building a new form of solar cell from scratch, using exotic materials.  

     The multi-junction solar cell is an obvious solution to many of these issues, since it replaces 
the single-junction paradigm, and allows better usage of the solar spectrum, while electronically 
coupling the cells together to have better voltage control. The multi-junction cells theoretically 
use more traditional materials, as opposed to the exotic CM and IB materials, but typically 
require extreme precision and high costs to produce good cells. Further examination of the multi-
junction system will be done in Chapter  VII. 

     There are other methods of 3rd generation that were not described so far. Chief amongst these 
is the method of hot-carrier solar cells [ 94]. These cells also attempt to solve the thermalized 
photon issues using the internal, all-in-one approach. The method attempts to slow the 
thermalization of photons, and particularly, to produce a bandgap of phonons so that the excited 
(hot-carrier) electrons generated by high energy photons cannot transfer their excess energy to a 
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phonon in the crystal. This method also has many internal requirements, some of which are in 
contrast of the typically characteristics of an ideal solar cell [ 95]. For hot-carrier devices, special 
electrodes must be used to extract the higher energy electrons from high within the conduction 
band, without extracting the electrons from the bandgap itself. A second set of electrodes can be 
used to extract those (regular) electrons, resulting in a device that uses a single junction material, 
but produces multiple voltages and current. This technique therefore retains the single-junction 
paradigm, while encroaching onto the territory of multi-junction cells. It should be noted that the 
internal structure of the hot-carrier cell results in a different internal TF, Hint, than the one 
described until now. Specifically, it may not rely on the simple vRS relation as its output 
emission (just as the original CM model did not). Consequently, it can be generally stated in this 
chapter that methods attempting to change the internal functions of the regular TF of a solar cell, 
Hint or Hreg, are more complicated than ones which leave the basic physics of the solar cell intact 
(such as the dc, uc or multi-junction cell systems). 

     Other methods may be found that tackle these two columns of categories (in Fig.  V-6), while 
retaining the single-junction paradigm. In particular, other physical mechanisms can be found 
that modify the internal TF in a simple way, such that it changes one of the basic assumptions for 
the SQ DB model. The more assumptions that are broken, the more difficult the solar cell is to be 
made, but small changes to the assumptions can sometimes provide enough of an efficiency 
change to be worthwhile. For example, instead of increasing the étendue of the incoming beam 
via concentration, we can limit the outgoing étendue using optical means. 

     The next chapter addresses such a modification, by using feedback to modify the internal TF 
of a solar cell, such that the SQ DB limit does not strictly apply.  
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VI. Feedback Method of Shifting the Optimal 
Bandgap  

 

*Publication note5 

     The internal TF, Hint, presented in Chapter  II assumed that the semiconductor was a “black 
box” that would emit LED-like radiation (following the vRS relation), as a function of the input. 
This TF was essentially a description of all of the assumptions made in the DB model, with the 
amount of outgoing flux equal to the incoming flux for a perfect cell. While it was less useful for 
developing models for other 3rd generation techniques, for which we used the TF Hreg, there are 
nevertheless still changes that can be made to this TF to adjust the characteristics of the SQ DB 
limit. The uc and dc methods involved a shift of the optimal bandgap of the underlying 
semiconductor caused by a shift in the input spectrum onto the solar cell. This also involved an 
efficiency gain due to breaking one of the assumptions used in the DB model: that the input 
spectrum is that of the sun (the CM and IB methods break other assumptions). The assumptions 
in the DB model did not even include the possibility of concentration, which utilizes optical 
means to modify the spectrum, and can increase the efficiency; however it easily can include it. 
In this chapter, another optical method is used, that similarly changes the optimal bandgap of the 
solar cell, and doesn’t require any exotic materials to be used. 

 

1. Optical Feedback Theory 
 

     The input and output spectrum in Hint from Fig.  II-3a were assumed to be unchanged. A 
simple technique that is obvious to use when drawing system/signal diagrams is the feedback 
technique, where the output is fed back into the input. This is typically done by reducing the 
input by the output, in what is known as a negative feedback loop, and which prevents a system 
from losing its equilibrium. Feedback techniques are generally used to increase the stability of an 
electronic or mechanical system. The system will reach a new equilibrium point when the output 
is fed back into the system, and a new steady state will be reached. This feedback loop can be 
seen in Fig.  VI-1, with the output added to the input in a positive feedback loop signified by the 
“+” sign. Usually, a positive feedback loop is unstable, since the system will continuously build 
up a current or voltage that will exceed the material (or system) limits allowed. For the solar cell, 
in open-circuit equilibrium, the semiconductor relieves the “pressure” of the incoming flux by 
emitting photons at the bandgap, as a function of qVoc=µoc. We saw that in the dc system, and in 
a concentrating system, the increase in photon flux was associated with a shift in the chemical 

                                                
5 The following is taken mostly from Ref. [ 96]. This chapter includes much that was not included in that paper; in 
particular, it includes the description of the selective reflector as a feedback system, and many new figures. The 
interpretation of the system as a feedback system was hinted at in the original paper, but this chapter has been re-
written to fit with the preceding chapters in terms of transfer functions and input/output diagrams. Furthermore, 
since this dissertation only includes portions of the work done by myself, it does not include “Figure 3c” from that 
paper.  
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potential, to increase the linewidth of the outgoing emission. Therefore, we would expect such a 
shift to occur if we increase the illumination flux in any way. 

 

 VI-1 Feedback Loop Design of a Solar Cell. The output flux is fed back into the input, in a 
positive feedback loop. The equilibrium voltage, Voc, will change as a result of the different 
input. 

     The feedback loop design of Fig.  VI-1 is possible only if there is some method of optical 
feedback that can allow the outgoing emission to be diverted back into the cell. Optical 
confinement designs for solar cells have been thought of, particularly optical cavities [ 32, 97], but 
typically have the problem that if the output is completely confined by (e.g.) mirrors, then it will 
prevent the incoming light from being absorbed as well. However, we can make use of the 
disparity between the spectrum of the incoming and outgoing fluxes to block as much of the 
outgoing light as possible. It should be noted that the thermodynamic boundary of the cell 
remains the dashed line in Fig.  VI-1, and it denotes that the properties of the emission must 
follow the vRS relation, unless some other exotic physical principal is used. 

     It can be recalled from Fig.  II-2 that the outgoing emission is tightly confined around the 
bandgap and chemical potential, so if we were to place an energy selective reflector around that 
emission bandwidth (the linewidth of the emission peak), we can block most of the outgoing 
light. By placing a reflector there the outgoing light is then reflected back into the cell. However, 
it will easily be noticed that if such a reflector is placed around the cell (or above it), it will also 
block some of the input light from being absorbed, which is detrimental to the current 
generation. Fig.  VI-2a displays a conceptual cell with an optical feedback reflector design. The 
selective reflector allows higher energy photons to pass through it (blue and green, acting 
essentially a HPF or a BPF, as will be described below), and blocks lower energy photons (red). 
This includes the band-to-band recombination flux (red), which is confined within the cell-
reflector system. Only higher energy photons (green) are allowed to exit the system. 

     The equilibrium condition is set when the incoming and outgoing fluxes are equal (assuming 
the material remains in the linear regime), just as with any other solar cell. Since the 
recombination photons are not allowed to escape, they will continuously be re-absorbed and 
emitted within the optical cavity, creating a build-up of electrons at the conduction band. This 
build up will shift the chemical potential slightly higher, by an amount µoc

new=µoc+δ. Electrons 
at this slightly elevated energy level will also be emitted, but if the bandwidth of the selective 
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reflector is Δ, as shown in the band diagram of Fig.  VI-2b, then they too will be reflected. Only 
when the population of electrons in the conduction band is elevated enough such that the Fermi 
level (chemical potential) is shifted to the height of the barrier, will photons be allowed to 
escape, and the build-up will stop. In Fig.  VI-2b, this is portrayed as an absorption of all the 
photons with high energies down to the top of the selective reflector edge (violet-green), and 
then emitted once the Fermi level is shifted to the top of the reflector height (green). 

 

 VI-2 Schematic of the Selective Reflector Design and Band Diagram. (a) Simplified 
drawing of the selective reflector design, with an energy selective reflector placed above a 
theoretical cell with a back reflector. High energy photons (blue, green) are transmitted, 
whereas lower energy photons (red), including the recombination photons, are reflected. 
The only light that can escape the cell-reflector system must be of higher energy (green). (b) 
Band diagram of the system, with the same color scheme as in (a). The recombination 
photons are fed back into the bandgap, such that there is a build-up of electrons at the 
band edge that are continuously emitted and re-absorbed. This build-up will induce an 
upward shift of the chemical potential, such that the photons emitted from the cell will be 
shifted to higher energies and escape. 

     The amount of light to be blocked by the reflector, Δ, is critical, since it both creates the 
feedback loop, but also reflects some of the incoming light. Blocking too much light will result 
in a drop in efficiency, since the current will drop to zero, despite the rise in chemical potential. 
Ideally, only light around the bandgap needs to be blocked, from Eg to Eg+Δ, being a BPF; 
however, since the light below Eg is transparent to the semiconductor, using a HPF up to Eg+Δ 
would work as well. These combinations are shown in Fig.  VI-3, including also the possibility of 
using a BPF whose lower threshold, EL, lies somewhere within the bandgap. The advantage of 
using a HPF is that it blocks light that may create thermal phonons via absorption within the 
conduction band (free carrier absorption), however may be difficult to manufacture such a wide 
bandwidth HPF. The BPF option allows more freedom in the reflector design.  

     Note that although the term “filter” is used here in the HPF/BPF, it must be a reflector in 
order for the design to work. The reflectance of the photons constitutes the optical feedback 
design, and an absorptive material will simply result in less absorption current, since the 
thermodynamic boundary is at the surface of the semiconductor, as portrayed in the dashed line 
in Fig.  VI-1, and not at the surface of the reflector/filter. Furthermore, the feedback design is 
what controls the stability of the cell-reflector system: If the reflectors are suddenly removed, the 
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entire systems will emit a large number of photons (in the range Eg→Eg+Δ), in a single burst, 
until the original equilibrium state is returned, with the incoming emission equaling the standard 
vRS re-emission. Furthermore, when current is extracted from the system, the feedback loop 
retains the elevated chemical potential, thus maintaining the stability of the system. 

 

 VI-3 Bandwidth Characteristics of the Selective Reflector. (a) HPF, reflecting all light 
below Eg+Δ. (b) BPF blocking light from the bandgap up until Δ. (c) BPF with a lower 
threshold within the bandgap. 

     The elevated chemical potential can be found analytically by using the flux equilibrium 
method on the new system. The flux equilibrium condition is met when the incoming and 
outgoing emission rates are equal. Since the solar cell has remained unchanged (without any 
internal modifications, as in the CM system), its output characteristics are retained within the 
vRS relation. However, the input flux must now include the portion of the reflected light: 

 

∫

∫∫
∞

∆+∞

∆+

−−
=

−−
+

−

g

g

gg

E coc
o

E

E coc
o

E S
S

kTE
dEEΩ

kTE
dEEΩ

kTE
dEEΩ

1]/)exp[(

1]/)exp[(1]/exp[
2

22

µ

µ
  VI.1 

The incoming spectrum (leftmost term) is limited from below by the selective reflector edge, at 
Eg+Δ, but now also includes the feedback re-emission from the semiconductor (using the vRS 
relation), from Eg→Eg+Δ. By rearranging Eq.  VI.1, we can simplify the equation to: 
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This equation is quite similar to the equilibrium condition for a regular cell, apart from the lower 
limits of integration. The similarity between the equations could lead one to assume that the only 
modification between the two systems is that the absorptivity and emissivity of the 
semiconductor have been changed from αabs=εemit=u(Eg) to a new step function, u(Eg+Δ), 
however, this is only an effective shift in the absorptivity/emissivity as can be seen from 
Eq.  VI.1, if the second term for the feedback re-emission is modified to include losses, or if the 
angular dependence of the re-emission is not the same as the emission from the solar cell: Ωo. 
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     The Voc for the system can be isolated from Eq.  VI.2 using the regular assumptions (E>>kTS 
and E-µ>>kTc), to obtain the shift: 

 ( ) ( )( )( )[ ]cΔSΔcSoScCg
SR

oc TTkTΔEqV ααη ///ln ΩΩ++≅   VI.3 
with small correction terms αΔ and αcΔ given by:  
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with αc1 given in Eq.  II.8, and αS1 given before in Eq.  II.7. The shift in open-circuit voltage from 
that of a regular cell is therefore: 
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In contrast, the short-circuit current is reduced due to the reduced absorption, to: 
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    The efficiency of the device with the selective reflector is found in the usual way, by 
maximizing the product P=I×V, and is presented in Fig.  VI-4 for varying bandgaps, as well as 
varying bandwidths of the reflector. As is shown, for rising values of Δ, the optimal bandgap is 
shifted to lower energies on the left, in relation to the regular SQ DB curve given by Δ=0. 

 

 VI-4 Efficiency Calculation for a Selective Reflector System. The efficiency is calculated for 
various bandgaps and reflector bandwidths, Δ. To the right are the cross-section curves, 
beginning from the regular SQ DB curve on the bottom (Δ=0), and demonstrating the shift 
to the left for increasingly high bandwidths. 
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      The concept of confining the outgoing photon flux was thought of by other authors, mainly 
as a way of improving the efficiency of a given system as close to the SQ limit as possible 
[ 98, 99]. Particularly, as a means of reducing the thickness (amount) of the material needed for 
the solar cell, by using the light confinement technique to increase or optimize the absorption 
characteristics. In addition, this concept has been thought of for use in multi-junction systems 
[ 100], and even IB cells [ 101]. However, it was generally assumed that the maximal voltage that 
this shift can achieve is limited to the bandgap, such that Voc

max=Eg [ 102, 7]. Anything above this 
value was assumed to induce such a high concentration of carriers that the assumption in Eq.  I.14 
that the spontaneous emission can be neglected is no longer valid [ 103,  32]. The stimulated 
emission will therefore probably become a limiting factor for this process, and may prevent the 
build-up of electrons to the height of the reflector barrier. Additional limiting factors may occur 
as well, due to the high concentration of light in the confined cell-reflector system. For example, 
this high intensity may induce a refractive index change in the solar cell, or induce other 
nonlinear effects [ 104]. Finally, Auger recombination will provide another limiting process [ 102,  105], 
regardless of how high the chemical potential is shifted, as will be shown below. 

      

2. High Carrier Concentration Limiting Factors 
 

     The shifting of the Fermi level in the material by a factor of Δ, as appearing in Eq.  VI.5, is 
similar to another optical effect known as the Burstein-Moss (BM) shift [ 104, 106, 107]. This 
well-known effect causes the effective absorption coefficient of a semiconductor to “blue-shift”, 
meaning to shift to higher energies, when the carrier concentration in the conduction band is 
increased. The carrier concentration increase can be created by heavily doping the 
semiconductor. The cause for this shift is that if the conduction band is full, photons with 
energies at the bandgap cannot excite electrons from the valence band to the conduction band, 
and require a slightly higher energy to be absorbed. More specifically, the dynamic BM shift 
[ 108, 109] is the same effect, where the carrier concentration increase is induced by an external 
optical source (e.g. a laser pulse) that excites the carriers. The major difference between the two 
effects is that the dynamic BM effect can be implemented in a pristine (intrinsic) material. The 
dynamic BM effect has been shown to create large shifts in the effective bandgap of the material, 
even hundreds of meV, in various semiconductor materials [ 109, 110]. The analogy between the 
dynamic BM effect and the effect described for the selective reflector design is clear, however it 
has yet to be shown that real semiconductor materials can handle the large shifts predicted. 

     The major advantage of the feedback design is that it allows the shift in the optimal bandgap 
of the cell to lower energies. The traditional materials used to make solar cells is typically 
limited to those that can achieve as close to the SQ limit as possible, and therefore lies in the 
range of ≈1-1.5 eV. These materials include Si, GaAs and CdTe, as shown superimposed on the 
SQ curve in Fig.  VI-5. Using the optical feedback, this curve can be shifted to the left, and other 
materials, such as FeS2 (Pyrite), GaSb and Ge can then be considered for use as optimal 
materials. While GaSb and Ge are used in multi-junction cells (bandgaps of 0.73 and 0.67 eV, 
respectively), a material like FeS2 – which is an earth-abundant material [ 111] – and has a non-
optimal bandgap (≈0.9-0.95 eV), can begin to be considered for use as solar cell materials. FeS2, 
despite being an indirect bandgap material [ 112], has an extremely high absorption coefficient, 
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making it an interesting possibility for a PV material. In contrast, Ge is also an indirect bandgap 
material, whose absorption coefficient is more similar to Si, and is therefore typically limited to 
inefficient PV conversion due to non-radiate trap states, known as Shockley-Read-Hall (SRH) 
recombination [ 113].  

 

 VI-5 Shifting of the Optimal Bandgap for Solar Cells. The SQ curve has a maximum at 
around 1.3 eV, limiting the number of materials that are near optimal for use as solar cells, 
such as Si, GaAs and CdTe. A shift of Δ=0.5 eV using a reflector can allow other materials 
to be considered, since their efficiencies could reach the optimum. 

     Other than stimulated emission limiting the shifting of the optimal bandgap, there is also the 
non-radiative Auger loss mechanism that typically reduces the possibility of ideal efficiency 
conversion, particularly under high carrier concentration densities such as those seen in 
concentrator systems [ 114]. Modeling the Auger, using the simplified thermodynamic relations, 
can be done by adding an additional “emission” term to the right hand side of Eq.  VI.2 [ 105]. 
This term includes the intrinsic concentration of carriers, ni, as well as a measured Auger 
recombination coefficient, CAug, as a function of voltage and thickness of the device:  

 ]2/3exp[3
ciAugAuger kTqVnLCN =   VI.7 

The volume dependence of the Auger recombination is here only dependent upon the thickness, 
L, since the area (in m2) is divided out in equations such as Eq.  VI.2, which is a measure of flux 
per unit area. The third power of the intrinsic carrier concentration is due to the interaction 
between three types of carriers (e.g. two electrons and a hole), as was shown in Fig.  IV-2. Direct 
bandgap materials such as GaAs and GaSb typically have much lower Auger coefficients than 
indirect bandgap materials, by a factor of 10-1

 or more.  
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     The Auger recombination was added to the calculation of the efficiencies, as a function of 
both thickness, L=0.1-10 µm, and bandwidth, Δ=0-0.3 eV, and displayed in Fig.  VI-6 for the 
materials described above. Ge was calculated with Eg=0.67 eV, CAug=10-31 cm6/s, and ni=2×1013 
cm-3 [ 113]. Despite the fact that SRH recombination is the dominant recombination mechanism 
in Ge, we could expect a ≈2% increase if the SRH recombination is suppressed, leaving the 
Auger recombination alone. GaSb was calculated with Eg=0.73 eV, CAug=5×10-30 cm6/s, and 
ni=1.5×1012 cm-3 [ 115]. The efficiency increase does not quite reach the ≈31% optimum due to 
the strong Auger recombination even in thin devices, and is limited to 24.5%; however that still 
suggests an overall increase of over ≈4%. FeS2 was calculated with Eg=0.9 eV, CAug=10-29 cm6/s, 
and ni=2.78×1012 cm-3 [ 112]. The strong Auger recombination effectively suppresses the effect 
described, regardless of the bandwidth shift. If the Auger recombination coefficient is improved 
(e.g. to CAug<10-31 cm6/s [ 112]), the overall efficiency may increase. In all these calculations, the 
absorption was taken as unity to emulate the best-case scenario that can be achieved using 
various light trapping techniques.  

 

 VI-6 Efficiency of Specific Materials Including Auger Recombination. (a) Ge, (b) GaSb and 
(c) FeS2. The efficiency is plotted as a function of both thickness (in logarithmic scale from 
0.1-10 µm) and bandwidth shifts (up to Δ=0.3 eV). All plots are on the same efficiency scale. 

     The Auger recombination effectively curtails most of the benefit of shifting the bandgap to 
lower bandgap materials. However, as was stated above, the inclusion of stimulated emission is a 
more fundamental loss process for this design. The Auger recombination rate can be suppressed 
using various techniques, and in fact the Auger recombination is typically known to be reduced 
in the BM effect [ 116]. The approximate Auger recombination rate of Eq.  VI.7 may therefore not 
be correct in this format at such high carrier concentrations. 

     The use of selective reflectors is not only limited to selectively reflecting the spectrum based 
on energy, but can also be used to reflect the angular dispersion of beams [ 117- 119]. We noted in 
Chapter  II, and in particular in Fig.  II-2, that there is a mismatch between the small angular input 
beam and the isotropic output beam, which creates an entropic loss to the Voc. Therefore, if one 
could restrict the outgoing emission back out of the solar cell at a smaller angle, this loss would 
be lowered. This concept of selective angular emission is quite similar to the concept of selective 
spectral emission, but would achieve a different goal: angular selectivity attempts to raise the 
efficiency of the cell above the DB limit to approach the UE limit, and is effectively the inverse 
of concentration [ 120]. The ability to selectively reflect the emission of light based on the 
angular emission has been attempted using various gratings, mirrors and Bragg reflectors, as well 
as photonic crystals [ 118- 120]. It should be noted that there is a subtle difference between using 
a photonic crystal to selectively reflect the light externally, and using a photonic crystal to inhibit 
emission internally. The use of a photonic crystal within the lattice of the semiconducting solar 
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cell is designed to inhibit the spontaneous emission of the semiconductor, effectively reducing 
the vRS contribution. This can also be done by reducing the temperature of the cell to zero, 
which was described as the main difference between the UE and DB models. However, creating 
a photonic crystal within the semiconductor will also detrimentally affect many of the other 
parameters of the material (since there will be many recombination sites at the increased internal 
surface areas), and will generally ruin the material for use as a solar cell [ 121]. In contrast, using 
a photonic crystal outside the cell can reflect the light both angularly, and spectrally; however its 
properties must be tuned accordingly [ 122].  

     The use of the optical feedback cavity in the design described here is also different from the 
mechanism of photon recycling. Photon recycling accounts for the recombination of photons 
within the cell, which can then be re-absorbed by the cell before escaping outside the 
(thermodynamic) boundaries of the cell [ 123]. The photon recycling model adds an additional 
layer of complexity to the analysis of semiconductor solar cells, since it does not simply assume 
that every photon absorbed is utilized, since every generated e-h pair has a lifetime before it 
recombines (radiatively). However, as stated in Chapter  I, the ideal UE/DB models assumed no 
thickness of the cell, and therefore did not consider any internal processes or lifetimes, thus it 
provided an upper bound for PV conversion. The photon recycling model therefore was 
developed to close the distance between the traditional solid-state approach to modeling 
semiconductor solar cells, and the DB model [ 124, 125]. After including the photon recycling in 
the equations for carrier concentrations, the divergence between the two sets of models has been 
properly solved.  

     The production of entropy in the photon recycling model is zero. That is because the re-
emitted photons are “cool”, and the absorption and emission of band-to-band photons have the 
same energy and chemical potential, thereby making the process completely reversible. 
However, for the selective reflector design, we only noted a small change in the derivation of the 
Voc on the order of αΔ. If we are more exact in the definition of entropy, we should be using the 
derivate of the chemical potential, as was done in Eq.  II.15. We can therefore see an entropy 
difference, ΔS, between the two methods: 
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The term “S/T” was described in Chapter  II to be a heat loss entropy, and was Eg/kTS for the 
regular cell. Here, we see that increasing the amount of photons circulating within the cell, by 
containing them within a reflector bandwidth of Δ, increases the heat loss by a proportionately 
similar amount. This heat loss, when coupled with the other fundamental limiting factors, will 
also contribute to preventing the feedback cell from improving the efficiency by a large amount. 
Note that the increase in entropy in the feedback system does not directly reduce the voltage 
since the internal energy, U, is increased by a similar amount, Δ, such that the two factors cancel 
out. Note however, that the increase in entropy, which typically lowers the overall efficiency of 
the cell due to its decrease of the open-circuit voltage, does not play the same role here, due to 
the effective increase in the bandgap. This reminds us that the overall efficiency is always a 
function of the product between the current and the voltage, and cannot be deduced directly from 
the formula for Voc alone. 
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     The I-V curve for the feedback design cell is shifted so that the Isc is slightly reduced, whereas 
the Voc is greatly increased. This is shown in Fig.  VI-7a, comparing the cell before the addition 
of the reflector (black), and after (blue), using a bandwidth of Δ=0.5 eV. The cell before the 
reflector is added (here with Eg=0.73 eV) has a Voc≈0.51 V (due to the constant entropy loss of 
220 mV), and after has Voc≈0.97 V. This improvement by approximately the bandwidth of the 
filter results in the total area underneath the I-V curve being increased relative to the case 
without the reflector. This is in spite of the reduction in short-circuit current. However, due to the 
arguments above concerning the voltage limited to the bandgap (Voc<Eg) [ 102, 103], we can 
imagine that it is possible that the efficiency improvement described here might be curtailed at 
the bandgap. This is shown (graphically only) in the red curve in Fig.  VI-7a, which has a Voc 
cutoff at the bandgap. This cell will not have any efficiency gain since the reduction in Isc is 
larger than the increase in Voc, when taken as a product (this can be calculated manually). There 
would therefore be a maximal value of bandwidth beyond which the efficiency begins to drop. It 
should again be noted that this red curve is an assumption that the voltage cannot exceed the 
bandgap at all, which the BM effect was shown to contradict. Therefore, it is yet unknown 
whether the selective reflector design will have the required benefit. If this cutoff is real, then the 
maximal bandwidth would be the amount of entropic loss: Δmax≈0.22 eV. 

 

 

 VI-7 I-V Curve for the Feedback Cell and Diagram Describing the Selective Contact. (a) 
The I-V curve for the cell shows an improvement in overall efficiency (area under the 
curve) for the cell with a filter (blue) compared to one without (black). Here Eg=0.73 eV 
and Δ=0.5 eV. Due to the possibility of a cutoff at the bandgap of the open-circuit voltage, 
the actual I-V curve may be shifted to the left (red), with a Voc cutoff at the bandgap (this 
curve was hand-drawn). (b) A selective contact is needed at the shifted Fermi level in order 
to extract the electrons at the higher potential. Electrons at the bandgap would effectively 
see a barrier preventing them from reaching the energy height of the contact. 

     A final critical element in this design is the requirement of having selective contacts that can 
connect to the elevated Fermi level of the cell, to extract the excited electrons, as shown in 
Fig.  VI-7b. A regular solar cell has an “Ohmic” contact at the edge of the bands so that there is 
no energy difference between the electrons at the band edge and within the metallic contact [ 2]. 



88 
 
However, the selective contacts here create a “Schottkey Barrier” so that the electrons at the 
conduction band cannot be extracted, and only the higher energy electrons can. These selective 
contacts are similar to the ones needed in hot-carrier devices [ 4, 94], and while making the design 
more complex, are not a fundamental limitation. It would, however, prevent the implementation 
of the feedback design on existing cells, which have existing, pre-matched, contacts. 
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VII. The “Sliver of Energy” Cell 
 

*Publication note6 

1. Using Spectral Splitting to Maximize Efficiency 
 

     To fully utilize the solar spectrum, the central assumption of the original SQ model that can 
be broken is to use more than a single semiconductor junction. Since the choice of the bandgap 
for a single junction cell defines the ratio of absorbed, thermalized and unused photons, as 
described in Chapter  V, changing the assumption regarding the single bandgap will 
fundamentally change the DB limit, on a per-bandgap basis. The use of a multi-junction cell was 
envisioned from the outset of solar cell research [ 24], with higher photon absorption per junction 
for increasing number of bandgaps. Since adding a second junction to the cell would improve the 
overall efficiency, it was clear that continuing to add bandgaps to the cell would continue to 
improve the total efficiency. This calculation was done for a set of infinite bandgaps [ 35, 36], 
with and without concentration, and was shown to approach the theoretical thermodynamic 
limits for energy conversion [ 37]. Each junction in this stack would absorb a small “sliver” of 
energy from the solar spectrum, with a bandwidth of dE=Δ, and each sliver would be maximally 
efficient for this small sliver of energy, since the amount of thermalization losses would be 
negligible in the conduction band from Eg to Eg+Δ. The number of unused photons would also 
drop to zero, since the multi-junction array would be staggered from high to low energy 
bandgaps, such that each segment of the solar spectrum would be absorbed from 0 eV to infinity. 
In practice, since ~5 eV is the energy cutoff for the solar spectrum (AM0 or AM1.5) these 
junctions would only need to be spaced within this range. As we have shown in the Chapter  II, 
there is a near constant entropy penalty for the open-circuit voltage of a cell due to étendue 
losses, so that the maximal efficiency limit can only be achieved at maximal concentration 
[ 36, 37]. 

     For the infinite junction array analysis, it is assumed that each sliver of energy, represented by 
the absorption within a semiconductor with a bandwidth of Eg→Eg+Δ, will be independently 
isolated to maximize the power onto each sub-cell. However, a practical issue that must first be 
solved is how to geometrically stack this array. The most basic design consists of a multi-
junction stack of cells, with the highest bandgap material on top, and the lowest on the bottom, 
such that each cell in the stack absorbs from above only those photons that are best tuned for the 
bandgap, with the photons for the segment below it being transparent (with energies below the 
bandgap). This is graphically shown in Fig.  VII-1a for a simplified system with 3 bandgaps, 
such that each cell absorbs “a third” of the solar spectrum. In this figure, cell #3 has the largest 
bandgap, such that Eg3>Eg2>Eg1. This form of spectral splitting occurs “naturally” in the stacked 
multi-junction array, since it makes use of the same top aperture for absorbing the light. 

                                                
6 The following chapter is based on work that has yet to be published, and is currently in submission [ 126]. 
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 VII-1 Spectral Splitting Multi-Junction Arrays. (a) A Stacked combination, with each cell 
absorbing the segment of the spectrum matched to the bandgap, and transparently passing 
the lower energy photons. (b) A spectrum splitting array, with an external optical spectral 
splitter, segmenting the incoming spectrum to the appropriate bandgaps in the array. 

     In contrast, the light can be spectrally split before encountering the cells, as is shown 
graphically in Fig.  VII-1b. The spectral splitter is any material system that can guide the light of 
the appropriate bandwidth (Eg#+Δ#) to the appropriate underlying cell. The idea of externally 
splitting the spectrum was devised early on [ 127], but the ease at which the spectral splitting 
occurs in the multi-junction stack, as in Fig.  VII-1a, pushed the research in the field to that 
simpler geometry.  

     For a multi-junction array, the other critical factor for designing the system is the circuit 
configuration of the cell. Since the cell is a power device, and can be roughly considered as a 
voltage supply or battery, it should produce a constant amount of either voltage or current. For 
this to occur in the stacked array, each cell must be connected in series as voltage supplies with 
different voltages (proportionate to the bandgap), and the current through each cell must be 
matched by having them absorb the same number of photons from the solar spectrum. This 
means that the bandgap spacing between each cell (the bandwidth Δ#) must first account for the 
number of photons in the solar spectrum within that bandwidth, so that the number of e-h pairs 
produced in each will be the same. Since the solar spectrum changes throughout the day, 
particularly in terms of angular dispersion when no solar tracking is used [ 13], the current 
through each cell will change throughout the day. This process limiting issue once again limits 
the overall current from the cell to the lowest current in the stack, such that the entire stack is 
extremely dependent upon the other layers. Furthermore, in a stacked array, each cell must be 
consecutively grown (e.g., epitaxially) on the underlying layer, with a thin tunnel junction 
between each stack. The tunnel junction allows the current to flow from one cell to the next, as 
they are connected in series. However, this produces an extreme materials limitation, as not all 
materials can grow on each other due to crystalline lattice mismatches. These mismatches will 
produce defects in the interfaces between each layer, and prevent the flow of current from one 
cell to the next. Due to these many technological difficulties, multi-junction cells are typically 
limited to 2-3 layers, with up to 5-6 layers currently being tested today. Furthermore, the high 
cost of these cells, and the current-carrying limitations primarily consign these types of cells to 
extraterrestrial and concentrated solar applications.  
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     The adjacent spectral splitting design, such as the one in Fig  VII-1b, would need to be 
connected in a more complex electronic circuit, since the current cannot easily be transferred 
from cell to cell. However, the major technological difficulty with this design is the spectral 
splitting layer itself. Over the past three decades, various techniques have been devised for 
creating such a layer [ 128], including directional mirrors [ 129] filters [ 130], and even 
holographic films [ 131, 132]. Some of these designs have been reaching the same efficiencies as 
some of the best stacked cells [ 133], in a more economical design.  

     A basic question that can be asked about the two different designs is whether there is any 
thermodynamic advantage to either? Moreover, is there a fundamental issue regarding the 
assumptions that have been made regarding the trend of these cells to continuously improve their 
efficiency as the bandwidths are made continuously smaller? 

      

2. Geometry Dependent Photon Management 
 

     Each cell in the multi-junction structure absorbs the light from the bandgap and up to its 
bandwidth, Eg→Eg+Δ, but also emits light at its band-edge at open-circuit. Even when the cell is 
operated at its maximal potential, Vm, it still emits light out. This light can radiate isotropically, 
and for a flat cell this emission can be out of both the front and back sides, neglecting the 
emission from the side edges. The emission for the stacked cell geometry is obviously preferred 
in the direction of the cells below it, since these re-emitted photons can be re-used by the lower 
gap cells below. For a simple tandem cell (two junctions), as shown in Fig.  VII-2a, the upper 
cell (#2) has a larger bandgap than the lower cell (#1), Eg1>Eg2, and the re-emitted photons are 
preferentially emitted towards the lower cell and are therefore not lost. We will denote this 
situation by a geometric emission parameter, B=1, which describes 100% of the re-emitted 
photons being recycled by the lower cell. This geometric factor is identical in concept to the one 
used in the dc layer in Chapter  III, Eq.  III.5.  

     While the preferential downward emission with B=1 is the ideal case, the most general case is 
where the cell emits isotropically, both above and below, such that only 50% of the photons are 
recycled by the cell below. In this case, depicted in Fig.  VII-2b, B=½, since we are only 
interested in the cells emitted “downward”. In the same vein, the cell may backscatter all the re-
emitted photons away from the lower cell, such that B=0, as shown in Fig.  VII-2c. [Note again 
the comparison with the description of the dc layer in Chapter  III and Fig.  III-3; in the dc 
system, we were not interested in the complete backscattering case]. The geometric factor B=0 
can also be described for the adjacent cell system, as shown in Fig.  VII-2d, since the re-emitted 
photons will not reach cell #1 (neglecting the edges), regardless of the direction of emission from 
cell #2. The parameter B thus provides a distinction between the two multi-junction designs, and 
can describe the full range of geometries for each cell pair, 0≤B≤1, depending on the exact 
geometry. 
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 VII-2 Schematic of the Geometric Parameter, B, for a multi-junction cell. (a-c) A stacked 
tandem cell geometry, with cell #1 having a smaller bandgap than cell #2. The arrows 
denote the direction of band-to-band re-emission of photons from cell #2, which can be re-
used by cell #1. The geometric parameter is shown for each configuration: (a) forward, 
B=1; (b) isotropic, B=½; and (c) backward, B=0, emission. (d) An adjacent tandem cell 
configuration has B=0, assuming that the edge emission is negligible, regardless of the 
emission direction from cell #2. (e) In a stacked multi-junction cell configuration, each 
underlying cell receives a contribution from the re-emission from the cells above it, as a 
fraction of the parameter B for each pair. In any emission characterized by B<1 per pair, 
the bottom cell will see less and less of the contribution from the cells above it. 

     The stacked multi-junction cell array will further amplify the geometric parameter’s 
significance. This is shown for a 4-layer junction in Fig.  VII-2e, assuming isotropic emission 
from each layer to the next. Since the geometric parameter B is typically less than unity, unless 
all the photons are completely emitted directionally towards the lower bandgap cell, the lowest 
cell in the stack (cell #1) will only receive half of the contribution from the cell above it, which 
had only received half of the contribution from the cell above it as well, ad infinitum. 
Effectively, in the isotropic emission case, a factor of half of the re-emission is lost between each 
pair of cells, resulting in the lower cells “seeing” less and less of the contributions from the cells 
above it. This analysis will be shown explicitly for a 3-junction (and more) cell below. 

     For the stacked cell, the directionality of emission can be controlled by index matching, or 
impedance matching, the cells to one another. This will require a careful balance of the indices of 
refraction, with the rule-of-thumb that lower bandgap materials have higher indices of refraction, 
which works in the opposite trend of what is desired (light is better matched to enter higher 
indices of refraction, as a function of Snell’s law and the critical angle of total internal 
reflection).  

     The re-emission of the photons from each junction in the cell to the next was assumed to 
occur in all previous multi-junction analyses [ 35- 37], and directional emission was assumed as 
well, with B=1 between each layer. In fact, selective reflectors, such as the one described in the 
previous chapter, were described as well as a method to confine the re-emission to the correct 
bandgap cells [ 38, 134]. The effect of the directional parameter on the cell’s performance is one 
important factor added in the next sections on multi-junction cell analysis. 
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3. Tandem Cell Analysis 
 

     In addition to the geometric parameter contribution to the photon fluxes between cells, the 
effect of limiting the bandwidth of absorbed photons to each cell should be included as well. For 
a cell with bandgap Eg, sitting “below” (in a stacked configuration) a cell with bandgap Eg+Δ, 
there will be fewer photons in the solar spectrum to absorb. This is shown in Fig.  VII-3, for a 
cell with Eg=1 eV, and a bandwidth of Δ=1 eV as well. The lower the bandwidth of absorbed 
photons for this cell is, the lower the number of e-h pairs generated within it. Consequently, the 
electron density within the junction is lowered as well, which produces the voltage within the 
cell. We should therefore expect a dependence of the open-circuit voltage on the bandwidth, Δ. 
This dependence should also involve the geometric parameter, B, since at open-circuit, all the 
recombination photons are re-emitted (ideally), and for a tandem cell with B=1, we would expect 
the loss of incoming photons to be completely compensated by the re-emission from cell #2, 
such that the total number of photons reaching cell #1 would remain the same. 

 

 VII-3 Bandgap Diagram of a Tandem Cell Geometry. (a) A solar cell with bandgap Eg 
within a stack of tandem cells (cells #1 and #2, as in Fig.  VII-2) will only absorb photons 
from the bandgap up to the lower level of the cell above it, signified by a difference of Δ. 
The cell “above” is shaded in grey. (b) The window of absorption of the solar spectrum, 
with Δ=1 eV, of a semiconductor with Eg=1 eV. 

     The analysis of this tandem cell at open-circuit is similar to that of the dc layer in Chapter  III. 
We first use the flux equivalence methodology on the upper cell, #2, which itself is at open-
circuit flux equilibrium. This can be written as: 
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where we have included the possibility of non-idealities in the non-radiative term, κnr2, as well as 
taking the bandgap as Eg+Δ. This flux equilibrium equation has no geometric parameter 
involved, since it absorbs light directly from the sun, and emits it at an étendue of Ωo2=Ωo, which 
we take here as a constant for generality. 

     Cell #1 lies “below” cell #2, and includes the absorption within the bandwidth of Δ, as well as 
the contribution of emission from cell #2 when under open-circuit conditions: 
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The emission from the cell above is multiplied by the geometric parameter, B, since we should 
only include the contribution from that cell. Note that this derivation is quite similar for that of 
the dc system in Chapter  III, as well as the selective reflector from the previous chapter. The 
derivation continues in the same format, by first replacing the second term in Eq.  VII.2 with the 
right hand side of Eq.  VII.1, as well as shifting the integration limits, to obtain: 
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Eq.  VII.3 is similar to the equation for a dc system, as well as bearing a relationship to the 
equation for the feedback selective reflector. The geometric parameter can be generalized to 
include the lossy contribution of the non-radiative term, to become: B’=B×κnr2. This effective 
geometric parameter, B’, is almost certainly lower than unity, since nearly every material has 
some non-radiative losses. The equation above cannot be contracted any further; however using 
the same approximations as used in the previous chapters we can obtain a formula for Voc as a 
function of the bandwidth, Δ: 
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Here, αΔ is the same as in the previous chapter, Eq.  VI.4, and the regular geometric parameter 
was used to explicitly show the dependence upon the upper junction’s material properties. The 
non-radiative losses of the underlying cell (#1, κnr1) were already included in the term for Voc

reg 
appearing in Eq.  II.6. The term in the brackets is smaller than unity, for all values of B, due to 
the appearance of the exponential dependence on the bandwidth. Since 0≤B≤1 (as well as B’), the 
bracketed term will reduce the open-circuit voltage for all cases except when all photons are 
emitted preferentially towards the bottom cell, as well as the upper cell containing no non-
radiative losses. As the bandwidth drops to zero, Δ→0, which is the situation for an infinite 
junction cell, the exponent in the brackets will reduce the Voc even further. Furthermore, as B→0, 
the bracketed term will reduce the voltage even more, as was shown to be the case for the 
lowermost cell in the stack of Fig.  VII-2e. The existing theoretical calculations for infinite stacks 
therefore considered only cases where B=1 and κnr=1, which is the perfectly ideal case only. 

     The Voc is plotted in Fig.  VII-4 for a GaAs cell with varying bandwidths blocking the 
incoming spectrum, as well as varying degrees of geometric parameters, assuming a pristine 
semiconductor (κnr2=1) placed above it. The exponential falloff at smaller bandwidth gaps, Δ, 
follows the natural logarithm in Eq.  VII.4. The directional emission case, B=1 (red line), 
represents the case of constant Voc

reg. Since each cell already begins with a ≈300 mV reduction of 
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the maximal open circuit voltage in comparison to the bandgap, this further reduction becomes 
more critical as the bandgap of the segment approaches zero. This is shown in the inset of 
Fig.  VII-4, for a theoretical semiconductor with Eg=0.4 eV, with the Voc approaching zero for 
smaller bandwidths. This loss will occur solely due to the bracketed bandwidth term in 
Eq.  VII.4, and will be reduced even further for a lossy material. The reduction in maximal open 
circuit voltage will therefore reduce the efficiency of even the highest quality solar cell, since the 
power is proportional to Voc. 

 

 VII-4 Open-Circuit Voltage as a Function of Sliver Bandwidth. The graph is for a GaAs 
cell with Eg=1.4 eV, assuming no other non-radiative losses (κnr1,2=1). The geometric 
parameter, B, is varied over the possible ranges of directional emission, with B=1 being the 
traditional case where all photons are recycled. The voltage drops from its bulk value of 
≈1.16 V to below 1 V with smaller slivers of bandwidth. Inset: For a smaller bandgap 
material of Eg=0.4 eV, the voltage drop can approaches zero, when no other losses are 
included. 

     The entropy term derived from Eq.  VII.4 can be described in nearly identical terms to that of 
the dc system. The physical meaning is best seen when B=0, showing the extreme of the 
backscattered loss case. The bracketed term is simply the ratio of the photons removed from the 
original spectrum to that of the original spectrum: 
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The entropy (difference) increases for a smaller distribution of incoming photons, when 
compared to the original distribution. This term is simply the Kullback-Leibler divergence 
between the original and bandwidth-limited spectra. There is less free energy in the system when 
there are fewer photons absorbed. 

 

4. Generalization to Multi-Junctions 
 

     The formulas above can be generalized to more than a tandem cell configuration, and include 
multiple junctions. For the case of multiple junctions in Fig.  VII-2e, each pair of cells will have 
its own geometric parameter, Bi, as well as bandwidth spacing, Δi, and associated non-radiative 
loss terms, κnri. To simplify the derivation in order to obtain as close to a closed-form solution as 
possible, we will assume that the bandwidths are equal, Δi=Δ, and that the geometrical 
parameters are also identical: Bi=B. While the first assumption will not necessarily be true for 
current-matching stacked array configurations, it will approach this equality for increasing 
numbers of junctions within the array.  

     To obtain the open-circuit condition for cell #1, which is at the bottom of the array, we must 
first find the open-circuit conditions for the cells above it, in a recursive algorithm. The 
algorithm is identical to the tandem junction analysis, with the topmost cell solved first, and then 
inserted as an input term into the cell below it. This process is repeated until we find the open-
circuit condition of the cell being analyzed (#1), which is: 

 ∫∫∫∫
∞∞

∆+

∞

∆+

∞

−−
Ω

=











+−+Ω

gggg E cocnr

o

EEE
S kTqVE

dEE
κ

BB
1]/)exp[(

......)1(...
1

2

12

  VII.6 

where the Planck blackbody integrands were truncated for clarity, and all non-radiative losses of 
the above cells were taken as unity, or similarly, included within the B term. The bracketed term 
supplies the number of reduced photons from the solar spectrum due to absorption by cells 
stacked above it, and inefficiently re-emitted towards the underlying cell; or for spectrum 
splitting cells, the reduction of the solar spectrum absorbed due to the spatial divergence of the 
spectrum.  

Eq.  VII.6 is a recursive function, depending upon the number of cells lying above the one being 
analyzed (cell #1). A closed form for the Voc will be meaningless in this context, and can only be 
compared with that of the tandem cell, which provides most of the important physical 
phenomenon encountered in this configuration. Nevertheless, it is instructive to examine the 
contribution of the bracketed term in Eq.  VII.6 for different values of B. As was stated above, an 
averaged value of B=½ can be assumed for each layer, given an isotropic emission from each 
layer. In comparison, B=¼ would provide the case of preferred back-scattering, and B=¾, the 
case of preferential forward-scattering. The leftmost term in Eq.  VII.6 consists of the absorption 
of the solar spectrum of a single-junction cell (at Eg), and the middle term provides the amount of 
photons to be removed from that spectrum. If we over-estimate the contribution of the integral 
from N{Eg+2Δ→∞} as being N{Eg+Δ→∞}, we can then combine the two terms in the brackets, 
as a function of B. For B=¼, this will reduce -15/16 of the integral N{Eg+Δ→∞}; For B=½, this 
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will reduce -12/16 of the integral; and for B=¾, this will reduce -7/16 of the integral. Therefore, 
for cell #1, lying below a stack of other cells, the combined re-emission spectrum of all the other 
cells will see a “total effective geometric parameter”: Btotal, which we see approaches the value of 
½ from below, since what was calculated was (B-1). Therefore, for increasing layers of junctions 
within the stack, even with optimal photon re-emission, the value of Voc will slowly transition 
from the blue to green to black curves in Fig.  VII-4, as a function of the number of cells above it. 
This is what was meant by “seeing less” of the cells above it in Fig.  VII-2e. 

 

5. Experimental Verification 
 

     The verification of Eq.  VII.4 was done on a GaAs cell provided by Alta Devices, which 
produce the highest quality solar cells today [ 135]. GaAs has the lowest amount of non-radiative 
losses due to a high internal fluorescent yield [ 136], which makes it an ideal solar cell material, 
as well as the material most closely following the equations described here.  

     Long Pass Filters (long wavelength, essentially a LPF) were placed above the cell within a 
solar simulator setup, such that light from Eg→Δ was blocked off, for different values of Δ.  
Since the cell has some non-radiative losses, there is an offset of the Voc from the pure theoretical 
value of 1.16 eV to 1.09 eV due to the non-radiative loss term, k×ln[κnr] (essentially, κnr 
≈94.2%, meaning the radiative efficiency was 5.8%, which is high for a solar cell material). This 
creates an offset of the Voc, regardless of the bandwidth measured. Fig.  VII-5 plots the 
theoretical curves, with and without the κnr offset, as well as the measured data points. As can be 
seen, the data points perfectly match the case where B=0, which is the case when the light is 
completely blocked off by the filter, and no re-emission occurs (since the filter is not a 
semiconductor). The error bars appearing include both possible errors in measuring the Voc using 
the electronic setup (a two-point probe only), which was averaged over 3 experiments each in the 
y-axis, as well as adding a bandwidth uncertainty of the LPFs in the x-axis, which was added by 
measuring the bandwidth of transition of 10% transmission to 90% transmission. 

     A further set of experiments is currently being examined in order to emulate the effect of 
having 0<B<1 (This set of experiments is currently being done in the lab of Prof. H. Atwater, 
and will appear in Ref. [ 126]). To do this, the emission profile of the radiative recombination 
from the slab sitting “above” the cell must be mimicked, and then added to the input spectrum 
illuminating the GaAs cell. Thus, if a slab with bandgap of 1.5 eV is placed above the GaAs cell 
in a tandem cell structure, a fraction of the spectrum from 1.5 eV to ∞ is re-emitted out towards 
the GaAs cell (and effectively creating Δ=1.5-1.43=0.07 eV). By changing the intensity of this 
reduced source, which must be added in the same light path as the direct source, data points for 
various different values of B can be simulated. This can also be produced by physically taking 
various slabs of semiconductor, with various bandgaps each, and placing them in the lightpath 
above the cell. However, that will add more variables to the equations, since we must then 
include the factors κnr,2 as well as the possibility of further reflections and deflections of the light 
away from the GaAs cell, which will reduce our knowledge of the effective geometric parameter, 
B’.  
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     In addition, another set of experiments will be done to verify that this reduction in the Voc 
caused by the lack of recycled photons can be improved upon by concentrating the light. In the 
original analysis of the infinite multi-junction cell [ 36, 37], the use of maximal concentration was 
used almost implicitly in order to prevent such differences between the bandgap and the Voc. 
Therefore, we would expect that the exponential drop in voltage due to the lack of recycled 
photons will disappear at maximal concentration since the “impedence mismatch” between the 
incoming and outgoing light beams does not exist, and all photons are fully utilized. While 
theoretically, this is true, as can be seen by adding the concentration factor into these equations, a 
good question to ask is how it is possible to concentrate the light into each slab in such an 
effective manner. The next chapter addresses this issue, and asks whether the concept of 
“maximal concentration”, which would be needed to achieve near-Carnot efficiencies, is 
thermodynamically valid. 

 

 VII-5 Experimental Verification of the Sliver Cell Analysis for a GaAs Solar Cell. The Voc 
is plotted for a high quality GaAs cell (Eg=1.43 eV), measured under the illumination of a 
solar simulator, with Long Pass Filters placed in the optical light path (red dots, semi-
logarithmic x-axis). Also plotted is the theoretical curve of Eq.  VII.4 (solid black), as well as 
the theoretical curve including non-radiative losses (dashed black), which is offset from the 
original curve by 25.8mV×ln[κnr]. [Graph courtesy of C. Eisler, Caltech]. 

     The limitation on the open circuit voltage due to the decrease in photons absorbed within each 
segment of a stack of tandem cells provides an additional parameter which must be optimized for 
each stack. This will depend on the material parameters of each segment, as is represented by the 
κnr term, as well as the energetic distribution of the bandgaps, as represented in the Δ term. 

     While concentration can help improve the loss in Voc due to the smaller bandwidth of 
absorption, it does not address the more fundamental issue of geometry and photon management, 
which provides an advantage to designs that best utilize the absorption and re-emission aspects 
of each sub-cell in the multi-junction system.  
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VIII. A New Limit to Concentration? 
 

*Publication note7 

1. Maximum Concentration Overview 
 

     The maximal concentration, Cmax, described in Chapter  I was described as being a result of 
the application of the 2nd law of thermodynamics and the reciprocity relations, as well as 
described using the argument of the impossibility of bending light backwards. We will succinctly 
repeat that derivation here, following the derivation in Refs. [ 13, 28]. The amount of radiation the 
sun emits is a function of the temperature, TS, the Stefan-Boltzmann constant, σ: σTS

4. The 
amount of radiation reaching the front aperture of a solar concentrator with an area Aconc is a 
fraction of the area of the sun’s surface, given by the sun’s radius: 4πrs

2, divided by the area of 
the total radiation at a distance of the sun-earth distance: 4πRS-E

2. This is shown in Fig.  VIII-1.  

 

 VIII-1 Diagram Describing the Transfer of Heat from the Sun to the Aperture of a 
Concentrating Solar Cell. All parameters are as defined in the text. 

     The amount of heat transferred between these surfaces is thus: 
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     It is assumed that the aperture of the concentrator is flat, just like the differential surface area 
of the sphere with radius RS-E. Note that the reciprocity relation is used to relate the area between 
the concentrator aperture, Aconc, and the source aperture.  

     The solar cell, with surface area Asc and index of refraction, nc, emits heat given by: 

                                                
7 This chapter is based on a paper that is currently in submission [ 137]. 
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 42

ccscsc TσnAQ =   VIII.2 
where a material with any index of refraction emits more radiation by a factor of nc

2.  

     The 2nd law of thermodynamics then states that the heat transfer between two objects of equal 
temperature must be zero (essentially zero entropy). This means that the two equations above 
must be equal.  
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Using the simple trigonometric identity relating the angular radius of the sun and the distances 
for small angles by tanΔS≈sinΔS=RS-E/rS, and assuming that the transfer of heat can be no larger 
than the amount occurring at equal temperatures (due to the 2nd law), we can find the 
concentration maxima is the ratio of apertures: 
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If we ignore the index of refraction, nc=1, we re-obtain Eq.  I.19. The application of the 2nd law 
of thermodynamics here was based on the Clausius definition of the 2nd law, where in the 
absence of external work, the flow of heat must be from hot to cold bodies. In mathematical 
form, using the concept of entropy, S, this is stated as ΔS=ΔQ/T≥0. Given that the flow of heat is 
from the concentrator to the cell, this defines ΔQ≡QS-E-Qsc. Clearly the minimum possible 
entropy generation is found for the case of equal temperatures, such that QS-E-Qsc=0 when 
TS=Tc≡T.  

     For useful cases when the temperature of the solar cell does not reach that of the sun (which 
would be untenable), we can find the relation between the temperatures as a function of the 
efficiency of heat extraction, ηext. Assuming no heat is lost to any other sources, the transmission 
of the heat/light is perfect, and that the absorptivity is equal to the emissivity (αabs=εemit), we can 
equate the heat into the cell with the heat out of the cell as: 

 ESextscES QηQQ −− +=   VIII.5 
This relation holds since the total emission out of the cell (right hand side) must equal the 
thermal emission plus whatever heat extraction (including possible losses) occur in the system. 
By plugging into Eq.  VIII.5 the values for QS-E and Qsc from above, and using the relation for the 
angle sinΔS, we get: 

 442 )1(sin cscextSSconc TσAηTσΔA =−×   VIII.6 
Further, by using the maximal concentration of Eq.  I.19 (as well as Eq.  VIII.4 with nc=1), we 
can find the temperature of the absorber, assuming some form of extraction efficiency: 

 
4/1

max)1( 



 −≅

C
CηTT extSc   VIII.7 

Note that the extraction efficiency ηext is not the same as the PV conversion efficiency, ηeff, and 
includes losses due to other processes, as well as being generalized for photo-thermal processes 
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as well. This relation states that the temperature of the cell will depend upon the concentration of 
the system, with temperatures being equal at maximal concentration. 

     The maximal concentration is therefore found to be no higher than Cmax (assuming the 
geometries described above, and not for spherical systems), due to a simple application of the 2nd 
law of thermodynamics. However, this limit has no dependence upon the material parameters of 
the system (if αabs=εemit), particularly the limited absorption from the bandgap of a 
semiconductor. Nevertheless, it has been assumed that the maximal concentration, Cmax≈46,000 
is an invariant parameter of any PV system. 

 

2. Bandgap Dependence of the Maximal Concentration 
 

     Using the formalism of the generation of entropy in the PV conversion, we can apply a more 
general version of the 2nd law of thermodynamics to the process, and require that: 

 0≥∆ PVS   VIII.8 
This is the most general form of the 2nd law, stating that the entropy must always increase (or 
remain zero) for any spontaneous process, such as the PV energy conversion process.  

     First, we will re-write the open-circuit equilibrium condition, for an input source that is 
concentration dependent, Nin(C), being either the blackbody or AM (0 or 1.5) spectra: 
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We then apply the regular approximation of the integral, which only assumes that E-µoc>>kTc: 
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We note that even in the case of maximal concentration, where µoc=Eg×ηC→Eg, this 
approximation generally holds for most bandgaps above the thermal energy kTc=25.8 meV [ 138]. 
We can then find the entropy, as was done for Eq.  II.15, by finding: S=-∂µ/∂Tc: 
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where αc1 and αc2 were defined in Chapter  II. The entropy in Eq.  VIII.11 is bandgap dependent, 
even when ignoring the α correction terms, as well as concentration dependent. If we now apply 
Eq.  VIII.8, requiring that the entropy production always be positive, we can find a functional 
dependence of the concentration on the bandgap: 

 ]/exp[)( 121
2

ccccgoin αααkTEΩCN ≤   VIII.12 
We do not ignore the α correction terms, which can be quite large at smaller bandgaps.  



102 
 
     The entropy limitation can be simplified by only taking the bracketed term in Eq.  VIII.11, 
which can be seen directly in the formula for µoc in Eq.  VIII.10, which leads to: 
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This approximation is imprecise, and leads to errors in the calculation of the entropy for other 
systems, such as what was shown in Chapter  VI, in Eq.  VI.8. Instead, a more compact formula 
for the maximal concentration can be found when plugging in the analytical formula for Nin(C), 
neglecting the ambient radiation, as was done in Chapter  I. This will result in the equation for the 
entropy found previously in Eq.  II.15, and we can similarly require that the entropy production is 
positive, resulting in: 
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Eq.  VIII.14 is more simplified than Eq.  VIII.12, and is differentiated by requiring that E>>kTS 
as well as E-µ>>kTc. This difference in approximations may appear to be great, however are 
shown in Fig.  VIII-2 to be relatively negligible. Fig.  VIII-2 shows the entropy production from 
Eqs.  VIII.12 (solid line) and  VIII.14 (dashed line) for no concentration, C=1,000 and C=46,000. 
The zero-entropy threshold is depicted by the dotted line, demonstrating that the entropy 
production can be negative for rising values of concentration, as a function of the bandgap. 

 

 VIII-2 Entropy Production vs. Bandgap for Rising Concentration. The entropy is plotted 
using both Eq.  VIII.12 and Eq.  VIII.14, which is slightly more precise (dashed line). The 
entropy is plotted for three different values of concentration, as labeled, and the threshold 
for negative entropy production is demarcated by the dotted line at S=0. 
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We can then isolate the concentration, C, obtaining: 
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This formula requires that E>>kTS, which is a stronger requirement than that used to derive 
Eq.  VIII.12. However, it provides a clearer physical view of the system, for larger bandgap 
materials (e.g. with Eg=1 eV), particularly if we ignore the α correction terms (which is not 
strictly correct). The maximal concentration was found above when the temperatures of the sun 
and cell were equal. Plugging this requirement into the above equation will result in the 
simplified formula: 
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Note that here we used the outgoing emission only from the top half of the surface, as was done 
in the original SQ paper for a flat plate cell [ 7], such that Ωo=π. 

     The simplified functional dependence of the maximal concentration on the bandgap is explicit 
in Eq.  VIII.16, and the original maximal concentration, C0. Note that this definition of a 
modified maximal concentration is similar to that used in Eq.  IV.19 in Chapter  IV regarding the 
description of the dc gain term. Eq.  VIII.16 reverts back to Eq.  VIII.4 for a material with zero 
bandgap, Eg=0, such that it absorbs all the incoming light. In a semiconductor, not all of the light 
is absorbed, as a function of the bandgap. Eq.  VIII.16 therefore states that the concentration that 
is absorbed in the smaller subset of energy levels (from Eg and up) us therefore more limited than 
the case when all the light is absorbed uniformly. Furthermore,  VIII.16 necessitated Tc=TS, 
which is a situation that would be impractical.  

     The concentration dependence on the bandgap is plotted in Fig.  VIII-3, for different values of 
outgoing emission (with/without a back reflector, which effectively acts as a concentration of 
C=2). The maximal concentration value of 46,000 is plotted in a dashed line for reference. The 
plot in Fig.  VIII-3 provides a maximal concentration function of the bandgap, which is in direct 
contrast to the accepted invariance of the concentration limit. The graph follows the more precise 
calculation of the entropy limit from Eq.  VIII.12. In comparison, Eq.  VIII.13 is plotted in the 
inset of Fig.  VIII-3, for Ωo=2π, and is quite similar to the main plot, other than at small 
bandgaps, where the approximation is less valid, regardless. 
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 VIII-3 Maximal Concentration as a Function of the Solar Cell Bandgap. Plotted is the 
maximal concentration from the inequality in Eq.  VIII.12, for two different values of 
outgoing emission étendue. Inset: The same relation when taking only the bracketed term 
in Eq.  VIII.13. 

     Using the less-approximated version of the concentration limit in Eq.  VIII.12, we can show 
that one of the flaws in the argument above is that the temperature of the cell remains constant. It 
was noted in Eq.  VIII.7 that the temperature of the cell must rise as a function of concentration, 
C, and extraction efficiency, ηext. However, this was not taken into account, and the temperature 
was taken as a constant Tc=300 K. However, if we allow the temperature of the cell to rise, the 
entropy limitation of the maximal concentration is reduced. Cooling the cell using external 
power will be needed to maintain any form of PV efficiency. Moreover, the assumption that 
Tc≠To, which was made earlier, will be more realistic.  

     Fig.  VIII-4 plots the maximal concentration from Eq.  VIII.12 using rising cell temperatures. 
As can be seen, the maximal concentration limitation is pushed upwards for higher temperatures. 
At these temperatures, the first application of the 2nd law of thermodynamics, which was applied 
in the beginning of this chapter to obtain C0

max will become relevant, and as plotted in the dashed 
line. The allowance of a rise in temperature of the cell is therefore an obvious breakdown in the 
assumptions used in the SQ model, wherein Tc was held constant. However, once the 
temperatures are allowed to rise above ≈2,000 K, the bandgap dependent limitation of the 
maximal concentration disappears even for small bandgaps. 
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     VIII-4 Maximal Concentration for Rising Cell Temperatures. The graph is plotted only 
for Ωo=2π, and shows the concentration dependent limit become less relevant at 
temperatures above 2,000 K. 

     The limits of concentration appearing here make the claim that the maximal concentration is 
not an invariant number, but rather is bandgap dependent. This results from a few simple 
applications of the 2nd law of thermodynamics to the equations of PV conversion. Whether this 
result is a consequence of the breakdown in the two-band model [ 14, 15], or an actual physical 
result is an interesting conundrum. However it would appear that the addition of the bandgap to 
the concentration maximum, as was simplified in Eq.  VIII.16, would make sense in the sense 
that the étendues should not be the only factor limiting the concentration. In fact, similar 
concentration limits using an application of Eq.  VIII.8 were found for fluorescent (down-
shifting) systems, where the energy is converted before reaching the solar cell [ 139, 140]. The 
results for fluorescent systems were simpler, since they dealt with monochromatic light. Here, 
we have applied the 2nd law to the full solar spectrum, thereby obtaining a result that is 
dependent upon the average energy of the photons, Eg/kTS.  

     The results of this chapter should be compared with the “maximal efficiency” curves for the 
3rd generation techniques in Chapters  III to  V. Since we here have seen that the assumed 
maximal efficiency of 46,000 is not necessarily correct for a regular cell, it should not be used to 
analyze other 3rd generation techniques without taking into account the possible entropy 
violation.  
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IX. Summary & Future Work 
 

     The work presented in this thesis followed a set methodology: for every method described for 
PV conversion, isolate the thermodynamic boundaries, define the input and output fluxes, and 
find the equations for Isc and Voc. This algorithm can be simplified graphically using the TF 
approach. Whether the system is designed to match the SQ limit, or surpass it, using this 
methodology allows a clear and concise path for identifying the primary measureable parameters 
of interest, as well as the possible loss mechanisms that can detrimentally affect the PV 
conversion process.  

     The general perception in the PV field is that the power is mostly provided by the current. 
Although the simplest formula for the power is seemingly evenly split between the current and 
the voltage: P=I×V, the current factor is typically thought of as being more important. In 
contrast, the voltage factor is generally estimated using a rule-of-thumb formula as a function of 
the bandgap, with qVoc≈Eg-300 meV. This formula is typically used in tandem with the formula 
for the FF (a derivative of Eq.  I.24) to obtain the efficiency when using measurements from an 
actual cell.  Focusing on the current requirements of the solar cell appears as a straightforward 
task of maximizing the absorption of all the photons from the solar spectrum. This must be 
implemented in parallel with devising a way of extracting the photo-generated electrons (and 
holes) from the cell. However, many methods of increasing the extraction of carriers, such as by 
shrinking the dimensions of the cell to nanometer sizes, will also reduce the voltage of the device 
due to loss mechanisms associated with non-radiative recombination at the surfaces of a 
semiconductor.  

     The reduction of the Voc by 300 (or 400) mV is an implicit recognition of the entropic loss of 
information that was written in closed form in Eq.  II.6. However, by assuming that this loss term 
is a constant (invariant), that cannot be directly modified, information is lost, in both the literal 
and figurative form. The use of Information Theory to describe the entropy in PV conversion has 
not been a recognized form of analysis for describing the reduction in voltages for a solar cell. In 
fact, there has been nearly no formal connection between the fields [ 141], with only few authors 
recognizing the usefulness of isolating the entropic contribution to the reduction of voltage from 
an ideal solar cell [ 22, 41, 43, 122]. Part of the reason for this may be the distancing of the 
“esoteric” concept of entropy from traditional intuitive thinking and teaching. There is nothing 
unintuitive about entropy, once one thinks in terms of distributions of parameters [ 16, 51]. The 
basic form for the entropy is given by Eq.  II.11: S=k×ln[W], and more appropriately for the 
issue of PV conversion is given by the Kullback-Leibler divergence, which compares the 
information distance or difference between two distributions. Eq.  II.15 provided a closed-form 
analytical formula for the entropy in the PV conversion process for a solar cell. This formula can 
be generalized for losses and can include the contribution for the case of a multi-junction cell, 
limited by a bandwidth of incoming light, Δ, as in Eq.  VII.4. We can write this form of the total 
entropy of conversion in the “unit-less” units of S/k, and ignore all the correction factors α: 
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     We here repeat the physical meaning of each contribution. The first bracketed term includes 
the ratio of distributions between outgoing and incoming étendues and average temperature of 
the photons. The next bracketed term is a negative term for concentration, C, which reduces the 
entropy since we are using optical means to “fight” against the natural tendency of the photons to 
expand their étendue, and we have shown in Chapter  VIII that this factor can possibly lead to a 
violation of the 2nd law of thermodynamics. This term should technically be included as a 
multiplication of the factor for the incoming étendue, ΩS, since the factor CΩS more correctly 
describes the incoming distribution of angles of the photons. The next term includes the non-
radiative loss term, κnr, which can be considered as a ratio of distribution of photons contributing 
to the PV conversion, with those lost to thermalization. The final term includes the bandwidth 
dependent factor we had found for a multi-junction cell, with f(Δ) being the bracketed term in 
Eq.  VII.4, and can be ignored for a regular single-junction cell. We could also add contributions 
of the dc process here, which was also shown to have an entropic loss (voltage gain) term in 
Eqs.  III.16 and  IV.15. Both the dc and f(Δ) terms describe a ratio of photons compared to an 
initial distribution as we have described in detail in the previous chapters.  

     The only terms in Eq.  IX.1  that were not described directly as a ratio of distributions (ln[W]) 
are the constant of “1”, which can be described as a baseline unit for converting the units of 
natural entropy (base “e”, instead of base “2”), and the first term, with Eg/kTS. This term should 
be describable using a ratio of distributions within a logarithm: 
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     While it would at first appear that the ratio in the equation above is simply a Boltzmann 
factor, which can describe the ratio of carriers in the conduction/valence bands with the intrinsic 
carrier concentration of a semiconductor [ 1, 2], it should be noted that the temperature appearing 
in Eq.  IX.2 is TS and not Tc. Nevertheless, the similarity between this equation and that of the 
carrier concentrations in a semiconductor (intrinsic carrier concentration) can be interpreted as a 
description of the entropy produced by shifting the Fermi level of the semiconductor due to the 
generation of carriers (at temperature TS) relative to the bandgap. Alternatively, we can say that 
the amount of excited carriers in the solar cell (in a semiconductor: ln[ni

2/n×p]=Eg/kTo) is now 
proportionate to the ratio of energies between the bandgap and the solar temperature, in kTS.  

     The most interesting aspect of the entropy term for the case of PV is that the value of the 
entropy is something directly quantified via the measurement of the open-circuit voltage, and its 
relation to the Gibbs free energy of the system. Therefore, we can invert the equation for Voc that 
we have found, and ignoring the factor of S/k=1, and measure the entropy of the system nearly 
directly by measuring the bandgap of the cell as well as the Voc. The agreement between the 
theoretical formula for Voc and the measured value of the voltage from an actual cell 
demonstrates the validity of this indirect measurement of the entropy. Returning to Fig.  VII-5, 
we can concentrate on the far right of the graphs, which describes the Voc for a bulk material 
without the bandwidth dependence. There, we showed a constant offset of kTcln[κnr] that appears 
between the theoretical value of the Voc and the measured set of values (between the solid line 
and the dashed line). This allows us to directly infer the internal radiative fluorescence efficiency 
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of the GaAs to be >95%, as expected for this high-grade material. The theoretical value of 
Voc=1.09 eV for the bulk cell when including the effects of the non-radiative losses matches the 
theory exactly, allowing the direct inference of the entropy from the difference between this 
value of Voc and the bandgap (1.43 eV). 

     The measured value of the entropy from the open-circuit voltage of any given cell with a 
known bandgap provides an upper bound for the entropy of the conversion process. Since we 
have found an analytical expression for this entropy generation, which matches the measured 
value exactly, we know that there are no other contributions from other parameters of the system 
that we had perhaps forgotten to include. For example, we know that if we add a polarizer to the 
input of the cell, we will reduce the incoming spectrum by half (since the solar spectrum is un-
polarized). This will reduce the Isc by half, but only reduce the Voc by a factor of kTcln[2] (as 
described in Chapter  II). There are no other “hidden parameters” of the system that we have not 
yet found, which means that the primary factors affecting the value of the open-circuit voltage 
(and the entropy) are the étendue factor of the incoming radiation, and the non-radiative loss 
term, which is a function of the choice of material. For a multi-junction cell, we must also add 
the component of the bandwidth of light, which reduces the voltage by another factor of 
kTcln[f(Δ)]. Since the concentration factor can affect the incoming étendue term directly, we can 
control this loss factor externally by using optics. However, the other two terms, κnr and Δ, are 
based on the choice of material systems used to build the cell, and thus are extremely important 
factors for optimizing the efficiency of any type of solar cell system from the perspective of the 
open-circuit voltage. These parameters are different for each choice of semiconductor, and for a 
multi-junction cell, they must be optimized on a per-segment basis, in order to optimize the Voc 
as well as the Isc. Any algorithm for calculating the overall efficiency must take these parameters 
into account. 

     While it was just claimed that the measured value of the entropy is precise, based off of the 
measurement of the Voc and Eg of the cell, there is an amount of error that was not included in 
this description. For example, the efficiency calculation was done for the direct component of the 
sunlight, and simulated experimentally using a solar simulator that mimics the AM1.5 spectrum. 
While this calculation is correct in laboratory settings, it should be recalled that the actual solar 
irradiation is broken into direct and diffuse components [ 12], such that only 70% of the actual 
illumination spectrum is direct. Furthermore, the effects of Rayleigh scattering in the 
atmosphere, which “preferentially” scatters the higher energy (bluer) photons, should be 
included into this scattered spectrum. Therefore, the incoming étendue parameter should no 
longer be a constant, ΩS, but rather should be a function of the photon’s energy: ΩS(E). This 
energy (frequency) dependence would mean that the étendue term will not be outside the integral 
for the incoming solar irradiation (Eq.  I.9), but will be within the integrand. The outgoing 
étendue should follow a similar path, with the factor Ωo=Ωo(E). Furthermore, the index of 
refraction, which was taken at near constant until now, particularly when an AR coating is used, 
should be placed within the integrand as well, as a function of the energy. The use of AR 
coatings greatly reduces the mismatch between indices of refraction, as well as the outgoing 
emission characteristics of the cell. Nevertheless, a precise description of the entropy losses in 
the PV conversion should account for all of these functional characteristics of the parameters if 
the solar cell is to be completely optimized. Such an inclusion of the parameters within the 
integrals will prevent a closed-form analytical formula for the entropy to be found, but can be 
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evaluated numerically. This numerical solution can also include the effects of the thickness and 
absorption coefficient of the material, as well as any optical elements attached to the cell (or cell 
segment in a multi-junction system). A full algorithm for finding the optimal distribution of 
bandgaps of the semiconductors while including optical methods, material properties would be 
an interesting next step of research in this field. This should include the choice of circuit that the 
solar cell utilizes, whether placing the cells in series or in parallel, as well as combinations of 
these two basic configurations. 

      The work described here therefore provides a first step in finding ways to optimize the 
conversion efficiency of any PV system in the most thorough way possible. All factors must be 
individually isolated, optimized, and not neglected if we are to extract as much power as we 
possibly can from the solar illumination. In addition, to surpass the SQ DB limit, we can attempt 
to find amongst the few parameters characterizing the PV process modifications that lie outside 
the set of assumptions listed in Chapter  I and throughout this work. Methods of improving the 
voltage are just as important as methods of improving the current, and new paradigms of 
generating power from the solar spectrum might yet be found that have maximal absorption and 
minimal entropic losses.  
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