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 Sepsis is a life-threatening condition that results from a severe immune 

response to a bloodstream infection. Identifying sepsis-causing organisms 

rapidly and accurately within a clinically relevant time-frame remains a 

significant challenge. To properly identify sepsis-causing pathogens, the ideal 
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diagnostic should be: (a) rapid, (b) broad-based, (c) capable of polymicrobial 

detection, (d) highly sensitive and specific, (e) minimally invasive, (f) easily 

integrated into clinical workflow, (g) able to detect antibiotic resistance 

determinants, (h) and able to identify new and unknown pathogens. The 

current gold standard for pathogen detection is blood culture which has limited 

sensitivity and detection capabilities and requires a significant amount of time. 

Other technologies have been developed to address some of the ideal sepsis 

criteria; although many meet several of the criteria for the ideal sepsis 

diagnostic, none have successfully fulfilled them all. We have developed a 

novel device that meets each of these criteria; it can identify sepsis-causing 

bacteria at a clinically relevant load for neonatal sepsis within four hours 

through an integrated system which incorporates universal PCR amplification, 

High Resolution Melt across a 20,000 well microfluidic chip and a machine 

learning algorithm. The bacterial DNA is separated by digitization across the 

picoliter-sized wells and the 16S gene is targeted and amplified using 

universal primers. This device fingerprints each well simultaneously and 

compares them to a library of characterized curves by utilizing a machine 

learning algorithm. This technology could be a valuable clinical addition as an 

ideal sepsis diagnostic.  
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CHAPTER 1: INTRODUCTION 

 
1.1 Current status of sepsis  

1.1.1 Incidence & consequence 

Sepsis is a serious and life-threatening clinical condition that generally 

results from a primary bacterial infection or more rarely a fungal and/or viral 

infection. Septic patients usually present with malaise, fever, chills, and 

leukocytosis, which often prompts care providers to evaluate for the presence 

of bacteria in the bloodstream (bacteremia) using blood culture analysis. 

Considered a medical emergency, bacteremia can rapidly progress to organ 

dysfunction and death despite immediate and aggressive medical therapies1. 

Because of the high mortality rate associated with bacteremia, the dangers of 

undertreating some infections, or concerns about using inappropriate 

antibiotics, physicians tend to order blood cultures liberally1. However, bacteria 

are isolated in only 4-12% of processed blood culture tests and this occurs 

days to weeks after the patient has been treated1–4.   

Alarmingly, the incidence of bloodstream infections is increasing, with a 

rise of 17% in documented cases between 2000 to 20105, while sepsis-related 

deaths have surged 31% between 1999 and 20146. In the United States, the 

incidence of adult bacteremia is approximately 10 per 1000 hospital 

admissions7–9. Mortality rates are associated with approximately 30,000 

deaths annually with particularly high rates in critically ill patients admitted to 
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intensive care units1,5,10. Septicemia, a severe form of bacteremia, affects 

nearly 1 out of every 23 hospitalized patients (4.2%) and is the sixth most 

common reason for hospitalization5,11. At present, septicemia is the most 

expensive condition treated in U.S. hospitals with an aggregate cost of $15.4 

billion in 2009, or 4.3% of all hospital expenditures5,11, whereas non-specific 

diagnoses of sepsis account for another $23.7 billion each year12,13. Almost 

two-thirds of patients will contract their primary infection outside the hospital 

and the majority will have one or more pre-existing comorbidities1. 

Additionally, survivors of sepsis may experience substantial long-term 

complications including prolonged length of stay, discharge to a long-term care 

setting, or death12. 

Neonates, or infants within 28 days of life, comprise an additional at-risk 

group for infection due to the relative deficiency of their adaptive immune 

responses from lack of antigen exposure in utero as well as immaturity of 

innate immune responses; impairments which are directly related to their 

gestational age at birth. Worldwide, infectious disease is the second leading 

cause of neonatal mortality and results in the loss of one million newborns 

annually (half in the first week of life)14,15. In the United States, sepsis is the 

fifth leading cause of neonatal mortality, surpassed only by complications 

related to prematurity and pregnancy16. Low birth weight premature infants 

have a 10-fold increased risk of serious infection or sepsis compared to their 

full-term counterparts with a 30% mortality rate17–19. Devastatingly, 25% of all 
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neonates in the U.S. admitted to the Neonatal intensive Care Unit (NICU) will 

be diagnosed with sepsis and 18-35% (21,000/year) will die from their 

infection14,20,21. Pathogen detection by blood culture methods is unfortunately 

worse in this vulnerable patient population when compared to older children 

and adults. Although more than 60% of sepsis evaluations will occur in the first 

three days of life, less than 1% of blood culture tests will detect an organism. 

Even in symptomatic neonates, blood culture methodologies can detect the 

offending microorganism in only 10-15% after contaminants are excluded22,23. 

This burden is even more dire in underserved communities. For example, in 

the U.S., black preterm neonates have the highest incidence of and case 

fatality from neonatal sepsis24. Around the world, newborns born in low and 

middle income countries suffer the greatest rates of sepsis due to 

disproportionately high rates of home births in unsanitary conditions25. 

Critically, resistant bacterial strains are implicated in the majority of cases 

highlighting the need for rapid susceptibility testing. Survivors of neonatal 

sepsis are at an increased risk for poor neurodevelopmental outcomes 

including cerebral palsy, deafness, blindness, and cognitive delays14,26.  

 

1.1.2 Clinical challenges 

Under-recognition of illness in addition to the emergence of resistant 

pathogens, delay in diagnosis, and the inability to access or afford specialized 

medical care contribute to the high mortality and morbidity associated with 
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sepsis27. The likelihood of surviving sepsis decreases with each hour that a 

patient goes undiagnosed and/or is inadequately treated28. Unfortunately, the 

current diagnostic methods used in clinics are not able to influence clinical 

decision making within this critical time frame. Blood cultures take 2-5 days to 

finalize results. Other, faster adjunct standard hematological analysis used in 

clinics, have low sensitivity and specificity29. Recently, biomarkers such as C-

reactive protein, Procalcitonin, CD64 neutrophil markers have made their way 

into clinics with limited success due to limited sensitivity or specificity. 

 Clinically, sepsis presents as a complex multifactorial syndrome, yet 

most diagnostic approaches that are currently employed rely on individual 

biomarkers, with binary, yes or no, answers. There remains a significant need 

for a diagnostic strategy that incorporates multiple sensitive biomarkers 

instead of using single binary modalities. The absence of a such a robust 

diagnostic fosters empiric antibiotic treatment that is not evidence-based and 

relies instead on a clinician’s best judgement. In the case of the vulnerable 

neonate population, clinical signs related to sepsis can be similar to other non-

infectious life threatening conditions in neonates, such as perinatal asphyxia 

and respiratory distress syndrome. Hence, the accurate diagnosis of infectious 

disease is imperative to limit antibiotic exposure in non-infected neonates, 

while appropriately and aggressively treating those who are truly septic. The 

use of immediate broad spectrum and highly potent antibiotic treatment in 

patients suspected of having sepsis has given rise to a practice that is 
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implicated in the emergence of drug-resistant organisms and atypical 

pathogens. The correct initial choice of antibiotic therapy alone has been 

shown to save more lives than any other medical intervention30–33. For these 

reasons, the Surviving Sepsis Campaign advocates for diagnostic 

identification of a pathogen within one hour and prior to the administration of 

antibiotics30. Additionally, diagnostics that can profile antimicrobial resistance 

markers can assist with antibiotic stewardship, but must integrate easily into 

the clinical work flow. To be useful in a clinical setting, sepsis diagnostics 

should be easy to use and require low technical expertise to both run and 

interpret results. 

 

1.2 The ideal sepsis diagnostic 

Based on the current clinical challenges and to impact clinical 

progression towards targeted treatment, the ideal technology should include 

the following characteristics: 

(a) Rapid detection, the pathogen needs to be identified within 1-3 hours; 

(b) Broad-based detection, including bacteria, viruses and fungi; 

(c) Minimally invasive clinical samples with acceptable volumes. For 

pediatric patients, if using blood, the volume should be under 1mL (for adults, 

5-10mL of blood is acceptable); 
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(d) Have high sensitivity and specificity to influence empiric antibiotic use in 

the presence of signs for systemic inflammation. Diagnostic should not 

compromise on sensitivity with low levels of pathogen in the specimen; 

(e)  Able to detect polymicrobial infection or pathogens in the presence of 

contaminants across a wide range of pathogen loads;  

(f) Incorporate detection of antibiotic resistance determinants; 

(g) Integrate into clinical work flow: Be easy to use, require low technical 

expertise to run diagnostics and interpret results; 

(h) Be able to identify new and unknown pathogens and continue to 

expand detection capabilities without compromising on the robustness of 

detection and required specimen volume.   

 

1.3 Limitations of diagnostic blood culture  

Robert Koch first described the use of agar culture plates for the 

purification and identification of disease-causing bacteria in the early 1880’s, 

forming the foundation of modern blood culture technology34. Today, the use 

of standard culture techniques for the detection and isolation of pathogenic 

organisms from a sterile body fluid is considered the “Gold Standard” for the 

diagnosis of infection and sepsis. However, this technology is plagued by 

many complicating factors. 

First, the quantity of microbes present in circulation during a 

bloodstream infection is usually low, ranging only from 1 to 1 X 104 
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CFU/mL26,35–37. Although current laboratory protocols can capture the 

causative organism in 73 – 96% of cases, large blood sample volumes are 

routinely required. Presently, blood culture tests in older children and adults 

are drawn in timed sequences, including up to four separate replicates that 

contain approximately 40 to 80 mL of blood volume each37–39. Pathogen 

detection improves with increasing numbers and volumes of blood samples 

analyzed. Small sample volumes can, conversely, lead to false-negative 

results40–42.  

False-negative results can also occur secondary to infectious etiologies 

not readily recovered by routine blood culture techniques and blood collection 

after initiation of antibiotic therapy, which affects 28-63% of adults with 

suspected sepsis30,37,42–44. Exposure to antimicrobials prior to blood culture 

testing is magnified in neonatal patients, as an estimated 30-35% of laboring 

women receive empiric intrapartum antibiotics for the prevention of neonatal 

Group B Streptococcus (GBS) disease19. Subsequently, compliance with the 

Center of Disease Control and Prevention (CDC) GBS guidelines exposes an 

estimated 65% of very low birth weight infants (VLBW, birth weight < 1500 

grams) to antibiotics prior to birth45–47. Decreased total blood volume, 

especially in VLBW premature infants, also restricts blood collection to a single 

sample with minimal volume (1 mL), which can further hinder pathogen 

capture, particularly when bacteremia is low48–50. Prolonged delays in 

pathogen identification and antibiotic sensitivity testing, which can take up to 
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4-5 days, also causes neonates to be unnecessarily exposed to broad-

spectrum antibiotics, leading to bacterial antibiotic resistance in non-infected 

neonates while preventing targeted antimicrobial therapy in septic neonates. 

Additionally, prolonged broad-spectrum antibiotics exposure in neonates can 

lead to invasive fungal (Candida) infection, necrotizing enterocolitis, and/or 

death20,21,51.  

Failure to adhere to standard antiseptic procedures during sample 

collection can also lead to contaminated, or false-positive, blood culture 

results. In 2005, The College of American Pathologists reported an overall 

mean blood culture contamination rate of 2.89% in 356 institutions, with 2.08% 

noted in neonatal and 2.92% for non-neonatal patients52. Contamination rates 

for individual institutions in this study ranged from 2.15% to 3.67% and 

contributed to an additional estimated cost of $5,506 per patient52. Thus, 

contaminated samples can have enormous financial and clinical ramifications 

in adult populations in the U.S. including 1,372 to 2,200 extra hospital days 

and an extra $1.8 to $1.9 million in medical costs each year53,54. In pediatric 

patients, these tainted samples are associated with readmission rates of 14 – 

26%42,55,56 and increased length of stay from 1 to 5.4 days42,54,57. In low and 

middle income countries, where there is a dearth of trained medical staff and 

quality health care services, blood culture contamination is not uncommon and 

can have grave consequences. Notably, almost half of patients with false-

positive blood cultures are treated with antimicrobials as compared to those 
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with true positive test results42,58–60. Additionally, 40 - 50% of adult patients 

with bacteremia (and 70% with fungemia) received incorrect antimicrobial 

therapy during their empiric treatment period before the microbiology culture 

result was available5,7,61. This misuse of antimicrobial agents and delays in 

pathogen identification cause prolonged exposure to broad spectrum 

antibiotics, which can also result in an increased number of Clostridium difficile 

infections, antibiotic allergic reactions and drug toxicity, antimicrobial-resistant 

bacterial strains, prolonged length of stay, and medical costs5,42,62–64. 

In summary, routinely used blood culture methods are not an ideal 

“Gold Standard”, as the results often come too late, are incomplete or not 

sensitive enough, and can be misleading and relatively labor-intensive. There 

is a crucial unmet need to shorten as well as improve current laboratory 

procedures for the detection and identification of microorganisms. In the last 

decade, various engineering innovations have generated promising pathogen 

detection approaches that incorporate sample preparation, molecular 

detection, automation, miniaturization, multiplexing, and high-throughput 

analysis towards the development of an effective diagnosis technology. The 

following sections give an overview of current and emerging detection systems 

designed for rapid, sensitive, and cost-effective diagnosis of bloodstream 

infections. 
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CHAPTER 2: CURRENT AND EMERGING TECHNOLOGIES FOR RAPID 

DIAGNOSIS OF MICROBIAL INFECTIONS WITHOUT CULTURE 

 
 Molecular diagnostics used in the United States are primarily post-

culture technologies. Several diagnostic methods have been developed in the 

past few years that permit targeted identification of the microorganism(s) in 

post-growth, positive blood cultures within 20 minutes to 2 hours with high 

sensitivity and specificity. However, the time required for routine bacterial 

culture and growth before analysis limits their influence on antibiotic 

stewardship programs to de-escalate empiric antibiotic therapy and encourage 

timely targeted treatment. Furthermore, most are not broad-based and leave 

antibiotic sensitivity testing for evaluation by conventional methods. Recent 

reviews by Opota et al.37,65, Kothari et al.66, Afshari et al.67 and Ecker et al.68, 

describe the state of the art for such BSI diagnostic technologies in more 

detail. In this review, we focus on emerging technologies for identification of 

microbes without the need for culture. All described technologies in the 

following paragraphs are summarized in Table 1.  
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Table 1: Emerging technologies for rapid diagnosis of bacterial 
infections directly from blood 

 

 
 

 

  



 13 

 

2.1 Nucleic Acid Amplification Technologies 

2.1.1 Pathogen targeted PCR-based technologies  

 In this section, we review five Nucleic Acid Amplification Technologies 

(NAAT). These technologies rely on an initial multiplexed or universal 

amplification reaction in either a large volume or small volume digital reaction 

format to increase low-level pathogen DNA to a detectable amount. This is 

subsequently followed by identification of the microbial species represented by 

the DNA sequence. The second step is accomplished by using electrospray 

ionization (ESI) with Mass Spectroscopy (MS), in-situ probe hybridization with 

melt analysis, sanger sequencing, nanopore sequencing, or digital amplicon 

melt analysis, with varying degrees of success in achieving the goals of the 

ideal sepsis diagnostic. 

 

2.1.1.1 IRIDICA BAC BSI (Abbott Molecular) 

 The IRIDICA platform (Abbott Molecular, Des Plaines, IL)68 is a 

commercially available (in the EU) broad-based microbial identification test 

with whole blood37,69. It can identify up to 780 bacteria and Candida, as well as 

four antimicrobial resistance markers (mecA, vanA/B, and blaKPC) within six 

hours from a 5 mL whole blood sample37,70,71. This technology is not yet 

approved by the U.S. Food and Drug Administration (FDA) but is Conformité 

Européenne (CE) marked, meaning that it complies with the European In-Vitro 

Diagnostic Devices Directive69.   



 14 

 

 IRIDICA integrates multiplexed real-time PCR with ESI/MS. The 

process includes cell lysis, and automated DNA extraction from a whole blood 

sample, PCR-amplification using multiple broad range primers, amplicon 

purification and ESI-MS for species identification. The PCR-amplification 

targets conserved regions including the16S and 23S rRNA genes for bacteria 

and Candida, respectively. The primers have been optimized with reaction 

mixtures to limit interference due to human DNA. Post-PCR, amplicons are 

selectively enriched by removing over 98% of human DNA. Species 

identification is then performed on the amplicons using base composition data 

from ESI-MS36,72. Limits of detection on the IRIDICA platform ranges from 

0.25-128 CFU/mL for bacteria depending on the target species and 4 CFU/mL 

for Candida spp36,72. IRIDICA has been evaluated in a limited number of 

clinical studies across patients with suspected sepsis, systematic inflammatory 

respiratory syndrome (SIRS) and febrile neutropenia36,71–74. These report a 

sensitivity, specificity and negative predictive value (NPV) ranging from 45% to 

83%, 69% to 94%, and 80% to 97%, respectively, against conventional culture 

methods. The contamination rates observed with IRIDICA are slightly worse 

than blood culture71–73. By excluding the contaminants and using estimated 

true positives rates, improved sensitivity and specificity ranging from 77% to 

91% and 87% to 99%, respectively, were achieved. True positive rates were 

estimated by matching pathogens in PCR test replicates or by using clinical 

chart and culture results from other specimens 36,71. Significant differences 
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have been reported in sensitivity across ICU and ER patients (p=0.005) with 

higher sensitivity seen in ICU patients71. More clinical validation across patient 

population is needed to explain the variability in specificity and sensitivity 

reported by IRIDICA.  We found only one study which investigated 

polymicrobial specimen where IRIDICA detected four of the nine blood positive 

polymicrobial infection, identifying only one of the causative organisms for 

each74. 

 This broad-based semi-quantitative technology shows promise by using 

whole blood (sterile or non-sterile sample) to detect a high number of 

pathogens. It can detect four antibiotic resistance markers, to date, and 

benefits from the ability to expand this in future. IRIDICA can detect a mixed 

pathogen population, but its utility in the clinic is currently inconclusive. It is an 

end-to-end diagnostic solution with structured and easy to use workflow. 

Individual steps are automated, thus reducing labor load and time to six to 

eight hours with only 30 minutes of hands-on time72,74. However, it fails to 

meet the ideal turnaround time of 1-3 hours. The use of 5 mL blood is 

promising for adult patients but limits feasibility for use in pediatric patients75. 

In addition, while there is no need for trained personnel dedicated to running 

the system, the technology may fall short in non-centralized clinical settings 

due to dependence on multiple bulky devices and high upfront costs of about 

$200,00067.  
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2.1.1.2 LightCycler SeptiFast Test MGRADE (Roche Diagnostics) 

 SeptiFast is a commercially available (in the EU), broad-based microbe 

identification test for whole blood76. It can identify 25 bacteria and fungi within 

six hours from a 1.5 mL whole blood sample. In addition, it can detect the 

mecA antibiotic resistance gene after a sample test positive for 

Staphylococcus aureus. The technology is CE-marked and commercially 

available in Europe but not yet FDA approved. 

 The SeptiFast test integrates multiplexed real-time PCR with in-situ 

hybridization and melt analysis. The test uses whole blood for nucleic acid 

extraction under a contamination-controlled workflow. This is followed by real-

time PCR amplification using either universal or specific primers targeting the 

internal transcribed spacer (ITS) regions between the 16S and 23S for 

bacterial rRNA and between 18S and 5.8S regions of rRNA genes of fungi in 

three parallel reactions for Gram-positive and Gram-negative bacteria and 

fungi77. PCR products are detected in real-time via four detection channels 

using species-specific fluorescent probes. Species identified in the same 

detection channel are subsequently differentiated using melting temperature 

analysis77,78. It has a reported sensitivity between 3 and 100 CFU/mL, 

depending on the microorganism77. In patient populations with suspected 

sepsis, SIRS, and febrile neutropenia, this resolved to a 43% to 80% 

sensitivity range against blood culture. It has higher reported specificity 

ranging from 86% to 98%78–83. A meta-analysis of 41 studies reported a 
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summary sensitivity and specificity of 68% (95 % CI 63%–73%) and 86% 

(95% CI 84%–89%) on a total of 10,493 SeptiFast tests compared against 

blood culture84.  Low sensitivity has prevented SeptiFast from identifying 

culture-positive organisms in 20-30% of the cases85. SeptiFast Identification 

Software provides an integrated cut-off for isolating contaminants 78. However, 

a 4-fold higher sensitivity for true CoNS detection was achieved by ignoring 

the software cut-off79. SeptiFast has been reported to resolve polymicrobial 

infections with higher detection rates (χ2 = 4.50, P = 0.0339) than blood 

culture86–90. 

 SeptiFast may be considered broad-based with coverage of the 25 

most relevant pathogens for sepsis with the ability to detect mixed pathogen 

population. The technology reports covering 90% of the most common 

pathogens causing blood stream infections; however, it is missing pathogens 

highly relevant to neonatal sepsis. The integrated cut-off offers ways to 

differentiate between possible contaminants and pathogens but may require 

further evaluation78,79. The technology considerably lowers the blood volume 

need for testing compared to conventional technologies which could be 

beneficial for pediatric patients78. However, 1.5 mL of blood is still excessive 

for neonates with typical samples of 1mL. SeptiFast, when used with 

automated DNA extraction with MagNA (Roche), shortens the complete 

workflow to 3.57 hours91 and reduces labor load. This may not be a realistic 

estimate for decentralized systems where 4-fold higher mean sample to result 
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time of 15.9 hours have been reported92. The diagnostic may be of added 

value in the management of patients with suspected sepsis who are SeptiFast 

positive but blood culture negative93,94. However, low sensitivity deems 

negative results not actionable. Other limitations include limited antibiotic 

resistance information, and the inability to expand due to a limited number of 

detection channels. 

 

2.1.1.3 SepsiTest™-UMD (Molzyme)  

 SepsiTest is a commercially available (in the EU) broad-based 

microbial identification test with whole blood. It can identify over 345 bacteria 

and fungi in 8-12 hours from a 1 mL whole blood sample95. The technology is 

CE-marked and commercially available in Europe, but not yet FDA approved. 

 SepsiTest integrates universal PCR with sanger sequencing. This test 

uses a unique methodology to remove background human DNA to improve the 

sensitivity of PCR tests by selective lysis and degradation of over 90% human 

DNA96. After DNA is isolated, PCR is performed with a universal primer 

targeting the 16S and 18S rRNA genes for bacteria and fungi, respectively. 

This takes under four hours to report for bacteremia or fungemia. Purification 

and sanger sequencing follows for species detection, which takes an 

additional 4-6 hours. It can detect as low as 10-80 CFU/mL with some 

organism bias97,98. SepsiTest has reported sensitivity ranging from 11% to 

87% and higher specificity from 85% to 96% when compared to blood culture 
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in adult and pediatric patients with SIRS, sepsis, febrile neutropenia and 

infectious endocarditis.99–104. Multiple studies reported promising NPV close to 

97% against blood cluture101,104. Similar sensitivities ranging from 37.5% to 

78.6% and specificity from 86.8% to 94.4% were observed in studies adjusting 

for clinical context by excluding contaminants102,103. Additionally, as many as 

45% of PCR positive test were reported as contaminents103. Pathogens 

detected in the mixed population were often identified as a contaminant. In a 

patient population with 12.5% polymicrobial detection rate, only one organism 

was identified in three of the four blood culture positive polymicrobial 

specimen101.  

 SepsiTest is a broad-based test that requires a small amount of blood, 

appropriate for both adult and pediatric patients. It can, in principle, detect 

polymicrobial infections; however, its ability to inform clinical decision needs to 

be studied. SepsiTest provides the option to automate the DNA extraction 

(SelectNA plus, Molzyme), making it easy to integrate into clinical workflow. 

However, it does not provide any information on antibiotic sensitivity. In 

addition, it still requires multiple steps that are not integrated into one platform, 

increasing the risk of contamination and turnaround time. This limits its utility 

for informing clinical decisions regarding targeted antimicrobial therapy. The 

use of sanger sequencing is the main time-limiting step for SepsiTest. Hence, 

it may be appropriate to combine universal PCR with a faster sequencing 

technology along with antibiotic resistance information. Faster next generation 
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sequencing technologies such as MinION by Nanopore Sequencing may be 

an ideal candidate. 

 The MinION, is a portable, real-time, USB powered DNA/RNA 

sequencer. It was released to researchers for alpha testing as part of an early 

access program in 2014105,106. It is a generic sequencing system, that has 

shown the potential for use in rapid identification of pathogen directly from 

blood when used with the 16S Rapid Amplicon Sequencing kit105. For 

sequencing, an ionic current is passed through the nanopore by applying a 

voltage across its membranes; characteristic disruptions in current are 

triggered by DNA nucleotides as they pass through the pores106,107. The 

technology has been validated for viral pathogen identification from 140uL 

whole blood in under 40 minutes with 100% sensitivity and specificity108,109. 

For bacteria, so far it has only been validated in urine and feces109,110.  Mixed 

population identification was validated in a study with a genomic DNA mixture 

of 20 bacterial strains111,112. By using specific primers that amplify a wide 

range of bacterial 16S rRNA gene, 90% of the full-length 16S rRNA could be 

reconstructed. However, pathogen assignment could be completed for only 8 

of the pathogens from the DNA mix of bacterial strains due to low coverage. 

This was attributed to challenges with PCR to amplify 16S amplicons despite 

the use of universal primers111. This points to the need for optimization and 

validation in whole blood, a step that is already fairly optimized by PCR-based 

technologies. The MinION also shows promise to identify resistances of 
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cultivated bacteria110,113,114 and can complement PCR tests such as 

SepsiTest.  

 

2.1.1.4 Universal digital High Resolution Melt (U-dHRM) and machine 

learning on pathogen DNA fingerprints for molecular diagnosis 

 The Universal-digital High Resolution Melt (U-dHRM) platform is a 

broad-based microbial identification technology with whole blood. It can 

currently detect 37 bacterial pathogens with single-cell sensitivity and resolve 

polymicrobial infections in under four hours using less than 1 mL whole blood 

115,116. This technology is in the validation phase and not yet commercially 

available. 

 U-dHRM integrates universal digital PCR (dPCR) with high resolution 

melt (HRM) across a microfluidic chip containing 20,000 picoliter-sized 

reactions to enable single cell, probe-free differentiation and quantification of 

multiple bacteria in a single sample116. The test procedure includes DNA 

extraction followed by universal dPCR-amplification targeting the 16S rRNA 

gene. Subsequently, precise heating and simultaneous imaging are performed 

on all reactions for HRM analysis. This generates sequence specific melt 

curves by unwinding DNA amplicons in the presence of a fluorescent double-

stranded intercalating dye117–120. Each distinct DNA sequence melts uniquely, 

generating a loss-of-fluorescence signature as a function of temperature that 

is then used for species identification. A Support Vector Machine (SVM) 
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classifier automatically identifies the microbial species by its melt curve [Figure 

1]. U-dHRM has reported a classification accuracy of 99.9% for the 37 

pathogens tested with load quantification for individual pathogens116. The 

technology was validated in a mock blood sample, demonstrating its ability to 

identify pathogens in the presence of excessive human DNA116 [discussed in 

more detail in Chapter 3]. 

 

 

Figure 1: U-dHRM process schematic 
 

 U-dHRM is a rapid, broad-based test to detect multiple organisms in a 

blood sample of less than 1mL, which is suited for pediatric patients and 

neonates. While it is currently limited to 37 bacteria relevant to neonatal 

sepsis, it has the potential to expand to include additional bacteria, fungi, and 

viruses in the future. Since this technology is probe-free and digitized, it has 

the potential to detect all sepsis-causing organisms in its library from a single 

sample, including polymicrobial infections. Early studies show promising 



 23 

 

single-cell sensitivity and 99.9% specificity, but further evaluation with clinical 

blood samples is warranted. The system is easy to use and can incorporate 

detection of antibiotic resistance determinants. Its machine learning framework 

provides the potential identification of new and unknown pathogens and allows 

for an expanding library. The speed and simplicity of U-dHRM along with its 

integrated technology platform suggest a promising first-pass screening 

method for neonatal sepsis. The technology also shows the potential to deliver 

on the promise of bench-to-bedside. The ability to move towards a portable, 

inexpensive system can be of immense value to non-centralized systems in 

low resource settings.  

 

2.1.1.5 Summary of Pathogen-targeted PCR-based Technologies 

 In summary, the results from clinical studies using PCR technologies 

are heterogeneous and need to be evaluated for improving clinical outcome. 

For the most part, the results are reported in comparison with the gold 

standard test of blood culture, which is far from ideal. Hence, it is important to 

interpret these results in conjunction with clinical context. Figure 2 compares 

the processes of these technologies.  
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Figure 2: Comparison of the processes of the pathogen-targeted PCR-
based technologies 

 

2.1.1.5.1 Interpreting false positives against blood culture  

 One of the major advantages of a PCR-based technology is its ability to 

detect non-viable, fastidious and unculturable organisms that would otherwise 

be missed by blood culture. A PCR-positive, blood culture negative specimen 

may reflect a real pathogen, yet detecting them would lead to a biased lower 

sensitivity and specificity value of the PCR test. It should be noted that false 

positives could also be due to cell-free pathogen DNA circulating in the blood, 

from an old or controlled infection or contamination121. Both IRIDICA and 

SepsiTest have reported higher rates of contamination than blood culture73,103. 

First, PCR tests with broad range and universal primers are more likely to 

amplify and detect contaminants due to increased sensitivity. With SepsiTest, 
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increased handling further increases the risk of contamination103. SeptiFast 

uses a cut-off value that represents the number of PCR cycles at which DNA 

is adequately amplified to identify contaminants79,122. IRIDICA also uses 

similar thresholds based on the number of genomes per well to limit 

contaminant and reduce false positives. However, these may conversely lead 

to false negatives in SeptiFast and IRIDICA and may need further 

evaluation71. Absolute load quantification in conjugation with clinical 

characteristics may allow improved identification of pathogens122.  

 An emerging theme is a need for supplementing quantitative results 

with clinical context, potentially provided by a machine learning framework. For 

example, a diagnostic algorithm using the CD64 index as a decision maker to 

perform SepsiTest showed improved detection of pathogens in patients with 

suspected BSI123. U-dHRM overcomes these challenges by managing 

contamination through the use of small reaction volumes and absolute 

quantification without affecting the detection sensitivity115. It also integrates the 

dPCR and HRM steps on a single closed system. This eliminates a sample 

transfer and reduces hands-on time and risk for contamination with several 

other technologies115. Importantly, this technology could enable further 

assessment of the appearance and removal of bacterial DNA during BSI and 

antibiotic treatment which could lend deeper insights into the progression of 

sepsis. Having the ability to repeat tests over time to study disease dynamic 

may also help in understanding pathogen detection inconsistencies that often 
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arise in technology comparison studies. Moreover, the effect of adequate 

antibiotic treatment could be monitored with decreasing relative bacterial DNA 

load over successive tests. U-dHRM holds promise to address this challenge 

as it is geared towards a point-of-care diagnostic, whereas commercially 

available PCR tests typically need bulky equipment and are not suited for 

decentralized systems.  

 

2.1.1.5.2 Interpreting false negatives against blood culture  

 While false positives may result in the inaccurate overuse of antibiotics 

and contribute to the generation of resistant organisms, false negatives and 

the inaccurate withholding of antibiotic treatment are more immediately 

threatening to patient welfare124. Accurately withholding empiric antibiotic use 

will require an improved sensitivity of PCR technologies (>98% negative 

predictive value)125. PCR tests can be limited in their ability to detect 

pathogens for a variety of reasons, including the need for effective lysis across 

a broad range of microbes, the interference of human DNA or other inhibitory 

substances carried over from blood into the PCR reactions, the effect of off-

target interactions, and amplification bias126–128. It is interesting to note that 

even though all the above technologies rely on an initial PCR amplification 

step for microbe detection followed by a secondary step for species, they differ 

in their diagnostic sensitives. All the commercially available PCR tests have 

optimized their workflow to improve pathogen amplification using DNA, yet 
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none show promise to replace blood culture due to limited sensitivity in clinics. 

Blood volumes, and blood draw sites can also impact sensitivity. The IRIDICA 

platform has recently increased sample volumes 5-fold, from 1 mL to 5 mL, 

under the assumption of uneven distribution of the pathogen36. The enhanced 

sensitivity of U-dHRM is attributed to the diluting effect of the digital reaction 

format on inhibitory substances and the optimized dPCR reaction conditions 

ensuring amplification of single copies of DNA. U-dHRM has been shown to 

significantly reduce false negative error rates compared to traditional dPCR, 

indicating that amplification errors can be reliably identified and accounted 

for115. In addition, U-dRHM is the only test that provides absolute load 

quantification, to enable resolution of polymicrobial infections and 

contamination. Still, further investigation in clinical samples is needed. 

 

2.1.2 Host-targeted PCR-based technologies 

2.1.2.1 SeptiCyte LAB (Immunexpress Inc, Seattle, Washington) 

 SeptiCyte LAB is the first RNA-based technology which uses specific 

markers from 2.5 mL whole blood to quantify host response for same-day 

detection of sepsis in under 4-6 hours129. It has 510(k) clearance from U.S. 

Food and Drug Administration (FDA) for use as an aid in differentiating 

infection-positive (sepsis) from infection-negative (SIRS) systemic 

inflammation in critically ill patients on their first day of ICU admission. 
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 SeptiCyte LAB is a host response, RT-qPCR-based test that quantifies 

the relative expression levels of four RNA biomarkers (CEACAM4, LAMP1, 

PLA2G7, and PLAC8) known to be involved in innate immunity and host 

response to infection. In the discovery phase, microarray analysis was used to 

identify the relevant RNA biomarkers in a cohort of patients with sepsis and 

post-surgical infection-negative systemic inflammation130. The output of the 

Septicyte LAB classifier was then converted from a microarray to a reverse 

transcription quantitative polymerase chain reaction (RT-qPCR) format130.  

SeptiCyte Lab has been shown to be rapid, robust and accurate for the tested 

classifier across gender, race, age and date of ICU admission130. It is 

suggested to be an indicator of the probability and not the severity of 

sepsis131,132. In a pilot study using 2.5 mL of blood, SeptiCyte LAB test 

effectively discriminated between two groups of critically ill pediatric patients 

(40 children with clinical severe sepsis syndrome versus 30 children with 

congenital heart disease). Area-under-curve (AUC) in receiver operating 

characteristic (ROC) curve analysis was used to discriminate between the two 

cohorts using RNA transcript data generated by both next-generation 

sequencing and RT-qPCR (Applied Biosystems 7500 Fast Dx Real-Time PCR 

system, Thermo Fisher Scientific). In both cases, AUC value > 0.9 was 

obtained (0.99 vs 0.95). In another prospective observational study with 129 

adult ICU patients, AUC of 0.88 was obtained to discriminate SIRS from 

sepsis. SeptiCyte Lab scores have shown the ability to classify sepsis better 
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than individual or a combination of other clinical, demographic, and laboratory 

markers 133.   

 SeptiCyte is a promising, novel, broad-based diagnostic for sepsis. The 

current 4-6 hours of turnaround time can potentially be reduced to a targeted 

1.5 hours by optimizing the RT-qPCR platform on which the test is 

implemented. One drawback is the requirement of 2.5 mL of blood, which is 

not feasible for children and neonates. In addition, it does not provide any 

information about the pathogen or antibiotic resistance. Nonetheless, it can 

reduce inappropriate empirical antibiotic use and can add tremendous value 

considering the recent antibiotic resistance epidemic. More clinical studies 

across patient population are needed to confirm its ability to improve outcomes 

in the clinic. It would be synergistic to see Septicyte combined with a 

promising PCR test for pathogen identification and antimicrobial resistance. 

Sepicyte has the potential to not only provide diagnostics information, but also 

basic information about the progression of infection in individuals or 

populations of patients.  

 

2.1.3 Loop-mediated Isothermal Amplification (LAMP) 

 LAMP techniques have been used extensively in the development of 

rapid and sensitive diagnostic assays for detection of individual bacterial 

species and show potential for use in molecular point-of-care diagnostics. A 

typical LOOP reaction can be completed in under 60 minutes132,133 and can 
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amplify from a sample volume as small as a finger prick (~30 µL) up to the 

milliliter range of blood136. Compared to conventional PCR methodologies, 

which require thermocycling, LAMP eliminates this step through isothermal 

(typically 60-66 °C) amplification of nucleic acids, which potentially reduces 

energy costs and could enable greater access of use137. LAMP has the ability 

to amplify target nucleic acid sequences from samples that often contain 

substances that can inhibit PCR reactions, such as blood components of 

hemoglobin137. 

 This method is based on autocycling strand-displacement DNA 

synthesis performed by the large fragment of Bst DNA polymerase. Typically, 

four different primers are used to identify six distinct regions of the target DNA. 

The inner set of primers initiates target amplification, while a second, outer set 

of primers, begin a round of strand-displacement DNA replication, 

regenerating a single-stranded template without the need for heat 

denaturation138. An additional pair of loop primers can further accelerate the 

reaction134,135. The use of multiple recognition sites greatly increases 

specificity in comparison to traditional PCR techniques. There are about nine 

research-based products on the market which use LAMP techniques for 

detecting pathogens, such as bacteria and viruses137. With some LAMP kits, 

amplicon products can be detected by the naked eye by the use of 

fluorescence or turbidity138. However, none of these are approved for clinical 

use. In a study of methicillin-resistant Staphylococcus aureus, a LAMP-based 
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technique demonstrated a sensitivity of 92.3%, 100% specificity, and NPV of 

96.9% when applied to positive blood culture samples139.  

 LAMP has been shown to be very fast, easy to use, and highly 

sensitive. LAMP-based microchip strategies have great potential for functional, 

portable devices that may be particularly useful for infectious disease 

diagnosis in low and middle-income countries140. It can potentially amplify 

medium-to-long-range template strands of nucleic acids and has a very high 

specificity due to the use of four or six different primers that bind to specific 

sites on the template strand. However, this approach is very specific, targeting 

only a single bacterial species; expanding the breath of detection may 

decrease its sensitivity significantly. While this technology can detect a wide 

range of pathogens separately, it cannot detect all the sepsis-causing 

pathogens at once; multiple samples would need to be run for broad-based 

detection, which would require a larger sample volume. Some studies suggest 

the use of as little as a 30 µL blood volume for detection136. Most sepsis cases 

in children are considered low-level bacteremia (≤10 CFU/mL)75. Detection 

from a 30 µL volume of blood does not seem viable and may lead to false-

negative results. None of the LAMP-based techniques developed for pathogen 

detection thus far have demonstrated the ability to detect antibiotic resistance 

or to identify new or unknown pathogens. 
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2.2 Amplification-Free Technology 

2.2.1 Droplet digital detection technology 

 A new platform technology termed “Integrated Comprehensive Droplet 

Digital Detection” (IC 3D) that can selectively detect individual bacterial 

species directly from small quantities of whole blood within 1-4 hours141. In a 

one-step, culture- and amplification-free process, the IC 3D method provides 

quantitative bacterial detection at single-cell sensitivity.  

 IC 3D combines DNAzyme-based sensors with real-time droplet 

microencapsulation and particle counter. It converts blood samples directly 

into billions of micrometer-sized droplets containing bacteria and fluorescent 

DNA sensor solution. The solution contains a DNA probe conjugated to a 

fluorescent reporter that is cleaved upon hybridizing with a target sequence. 

The droplets with bacterial markers can be identified by fluorescence. A three-

dimensional particle counter is then used to rapidly, robustly, and accurately 

quantify the fluorescent bacteria142,143. Distribution of the blood sample into 

many small droplets minimizes the interference of other components of blood, 

making it possible to directly detect target bacteria without purification144. In a 

study with blood infused with bacteria, the IC 3D identified E. coli and 

confirmed the presence or absence of target bacteria within an hour, whereas 

about 3.5 hours are typically needed to provide quantitative measurements 

about the number of bacteria in the samples. The assay detected bacterium 

about 77% of the time from samples containing 1 cell per mL141.  
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 This technology shows promise by its ability to detect pathogens rapidly 

with a small blood volume at single-cell sensitivity. Also, it is relatively easy to 

use and antibiotic resistance could be possible in the future by introducing 

additional fluorescent markers. However, the current system design is limited 

by its ability to detect only one bacteria species (e.g. E. coli) per analysis, but it 

has the potential to expand the sensor set and develop a multiple-wavelength 

detection system for multiple bacteria or pathogen detection141. It should be 

noted that the extent of this expansion would be limited by the number of 

fluorescent channels and could not include previously uncharacterized 

pathogens. The specificity has not yet been determined; this technique has yet 

to be validated using clinical samples.  

  

2.3 Machine learning applied to molecular detection patterns and clinical 

data for diagnosis 

 The predictive power of machine learning techniques applied to the 

clinical data gathered for patients can be a valuable tool to improve diagnosis 

and management of sepsis. Even though it is difficult to discuss purely 

electronic medical record (EMR) based machine learning algorithms in light of 

the characteristics for ideal sepsis diagnostics, we think it is worth 

summarizing some of the promising machine learning approaches that have 

been evaluated in a clinical cohort. The addition of EMR machine learning 
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approaches could provide valuable information to impact clinical progression 

when used with any of the above diagnostics.  

 

2.3.1 HeRO score (MPSC)  

 Recently, heart rate characteristics (HRC) have been used in clinics as 

a commercially available system, known as the HeRO score145. The 

technology uses machine learning to identify subtle irregularities in heart rate 

variability to provide an “early warning” of patient distress. The HRC index 

used by HeRO was shown to reduce mortality from 10% to 8% in a 

randomized controlled clinical trial of 3,003 very low birth weight infants146. 

However, this study was industry sponsored and the mechanism for mortality 

reduction remains unclear. An independent, academic study of HRC 

monitoring in VLBW infants reported a higher utilization of antibiotics and more 

sepsis evaluations in the cohort with HRC monitoring as compared to controls 

without monitoring. This study also demonstrated no differences in the rates of 

blood culture positive sepsis or clinically suspected sepsis, stating that the 

effectiveness of this technology was “no better than a coin flip”147. An 

additional single-center retrospective study reported that elevated HRC scores 

had limited ability to detect bloodstream infection among neonates in the 

NICU, emphasizing that HRC alone may not be adequate148.  
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2.3.2 Other machine learning approaches for sepsis diagnostics 

 Unlike the HeRO score, which uses a single modality, heart rate 

variability, a machine learning framework also allows the incorporation of 

multiple diagnostic markers from large clinical datasets. One study reported 

the use of canonical correlation analysis (CCA) and sparse support vector 

machine (SSVM) classifiers to select the best subset biomarkers, such as 

band neutrophils, platelets, neutrophil CD64, white blood cells, and segmented 

neutrophils on a dataset of 1,383 sepsis evaluations from 749 neonates with 

suspected sepsis in the NICU149. Another research group developed predictive 

models for late-onset neonatal sepsis using EMR data from 1,826 NICU 

infants with 299 sepsis evaluations150. They developed a variety of machine 

learning algorithms and their models matched the treatment sensitivity and 

specificity of clinicians. These algorithms need to be validated in a prospective 

study, but present a promising opportunity for improving early diagnosis and 

antibiotic management practices in the NICU.  

 The recently developed targeted real-time early warning score is a 

targeted real-time early warning score that predicts which patients will develop 

septic shock151. The score incorporates a variety of physiological inputs, 

including platelets, ratio of blood urea nitrogen (BUN) to creatinine, arterial pH, 

temperature, bicarbonate, respiratory rate (RR), white blood cell count, systolic 

blood pressure (SBP), heart rate, and heart rate/SBP (shock index). These 

machine learning techniques allow the use of heterogeneous datasets to 
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inform clinical decisions. However, none included broad-based diagnostics. 

Additionally, the use of a Bayesian framework further allows incorporation of 

EMR data along with broad-based detection technologies, increasing the 

reliability of the diagnostics. In the era of large-scale data integration in 

electronic health records, combining broad-based techniques with EMR 

presents tremendous opportunities for timely and accurate diagnosis and 

management of sepsis.  

  

2.4 Summary of emerging molecular diagnostic technologies 

 An exciting new era of molecular diagnostics for bloodstream infections 

is emerging through innovations in sequencing, sample 

partitioning/preparation, and other single-molecule detection methods, which 

have the potential to identify microorganisms and provide relevant subspecies 

information in a shorter time compared to blood culture [Figure 3]. Integration 

of these technologies with each other and machine learning approaches 

incorporating EMR data is a promising new frontier. Current commercially 

available PCR technologies may not be able to replace blood culture but they 

offer added advantages when used with other clinical markers for infection to 

facilitate targeted antibiotic use. U-dHRM shows promise by addressing the 

challenges with requirements of blood volume, higher sensitivity and the ability 

to resolve polymicrobial infections in a platform that can be portable. 

Innovation in the scalability of emerging technology areas of LAMP and IC 3D 
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could be valuable if they are able to scale to a broad-based platform without 

increasing the requirement for specimen volume. They may be of value in 

target identification for outbreaks in public health settings. With the 

requirement of little blood volume, LAMP could be more useful in conjunction 

with another device for a fast approach to detecting antibiotic resistance. FDA 

approval of SeptiCyte provides the clinicians a robust way to detect host 

response to a pathogen. A definitive yes/no on pathogen by SeptiCyte or via 

universal PCR tests such as SepsiTest or U-dHRM for fungi, viruses and 

bacteria can potentially improve clinical outcome. In the era of big data, 

advances in the field of machine learning can provide additional context to 

increase the sensitivity of any of the above-mentioned molecular diagnostics. 

The translation of these results from the lab to the end user or clinician in an 

easy and cost effective way would have to be effectively evaluated, but in 

general, clinical microbiology will help for the future goals to provide an 

effective sepsis diagnosis directly from clinical samples. 
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Figure 3:  Sepsis detection technologies time-to-results compared to 

blood culture 
 

  

 Chapter 2, in full, is currently being prepared for submission for 

publication of the material. Sinha, Mridu; Jupe, Julietta; Mack, Hannah; 

Lawrence, Shelley; Fraley, Stephanie. The thesis author was a co-author of 

this material. She worked on the LAMP, IC3D and U-dHRM sections. She also 

edited the whole document, assisted in the organization of the text and 

formatting, and Table 1. She also created Figures 1-3. 

 

  



 

 39 

CHAPTER 3: MASSIVELY PARALLEL DIGITAL HIGH RESOLUTION MELT 

FOR RAPID AND ABSOLUTELY QUANTITATIVE SEQUENCE PROFILING 

 
3.1 Introduction   

The rapid and accurate profiling of pathogen genotypes in complex 

samples remains a challenge for existing molecular detection technologies. 

Currently, the identification of bacterial infections relies primarily on culture-

based detection and phenotypic identification processes that require several 

days to weeks to complete. The practical application of molecular profiling 

technology is limited by several factors. To replace culture, molecular 

approaches must capture an equally wide array of pathogens while also 

providing specific and sensitive identification in a turnaround time fast enough 

to impact clinical decision making152–154. Studies also suggest that 

quantification of pathogen load may offer added benefits beyond what culture 

can offer155. However, the number of microbial genomes present in a clinical 

sample may be extremely low and/or the sample may be comprised of several 

different microbes. Current bacteria-targeted rapid screening technologies 

suffer from non-specific hybridization (e.g. microarrays, FISH), non-specific 

protein signals (e.g. protein mass spectrometry), or limited resolution of 

species (e.g. nucleotide mass spectrometry)156–158. Sequencing with 

conserved primers targeting the 16S or rpoB genes is the most useful 

molecular approach for detecting a wide range of bacteria with broad 



 40 

 

sensitivity, but is a time-consuming process that requires non-trivial technical 

expertise, computational resources, and analysis time. Moreover, recent 

studies report that several NGS platforms for microbial detection approach the 

analytical sensitivity of standard qPCR assays154. For applications where 

turnaround time is critical, high-level multiplexing of PCR-based identification 

strategies remain an active area of research. 

High resolution melt (HRM) has gained popularity as a rapid, 

inexpensive, closed-tube DNA sequence characterization technique. Precisely 

heating and unwinding post-PCR DNA amplicons in the presence of a 

fluorescent intercalating dye119,120,159 or sloppy molecular probes160,161 loss-of-

fluorescence melt curves are generated, providing unique DNA sequence 

signatures. Several researchers have proposed the expansion of HRM into a 

broad-based profiling technology by preceding it with universal PCR162. 

Priming conserved DNA regions flanking genetic variation sites or mutations, 

genetic locus sequence differences can be identified by changes in the gene 

amplicon melt curve signature. This universal HRM technique replaces the 

need for targeted primers or probes and relies only on the intrinsic melting 

properties of the amplified sequence. Universal HRM methods have been 

developed for several applications, including identification of oncogenic 

mutations163, gene methylation patterns164,165, and bacterial identification166–

171. We previously advanced universal HRM to enable single nucleotide 

specificity for the discrimination of microRNA in the Lethal-7 family and for 
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species-level identification of bacteria using the 16S gene172,173. However, if 

multiple sequence variants are present, as often occurs in clinical samples, 

individual sequences cannot be identified in the conventional universal HRM 

format consisting of a single bulk reaction162,174. Likewise, although generally 

reproducible melt curves are obtained, in-run template standards are typically 

required to overcome run-to-run variability and enable curve matching by user 

intensive curve identification procedures. These shortcomings have restricted 

the application of universal HRM to primarily pure homogeneous samples, 

constrained the breadth of profiling to only a few sequence variants, and 

limited the technique’s specificity, since single nucleotide changes often 

manifest as very slight temperature or curve shape changes. 

We previously developed an approach called universal digital high 

resolution melt (U-dHRM) by integrating universal amplification strategies and 

temperature calibrated HRM with limiting dilution digital PCR (dPCR) in a 96-

well plate format172. We demonstrated that this approach, in principle, could 

overcome many limitations of current profiling technologies to achieve single 

nucleotide specificity, broad-based detection, single molecule sensitivity, and 

absolute quantification simultaneously. Separately, we’ve developed machine 

learning approaches using nested, linear kernel, One Versus One Support 

Vector Machines (OVO SVM) to automatically identify sequences by their melt 

curve signatures despite inherent experimental variability173,175. Through these 

approaches, we’ve shown that U-dHRM is capable of automatically identifying 
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multiple distinct genotypes in a mixture with single molecule sensitivity and 

single nucleotide specificity. Others have also demonstrated the ability of U-

dHRM to sensitively detect rare mutants/variants176,177 and also novel 

variants178. These findings suggest that U-dHRM has the potential to offer 

desirable features for several profiling applications that require a combination 

of speed, sensitivity, quantitative power, and broad profiling ability. However, 

no platform exists for accomplishing U-dHRM in a high-content format required 

to reach a clinically relevant dynamic range of detection. 

 The sensitivity and quantification power of U-dHRM profiling relies on 

full digitization of the sample, i.e. spreading the sequence mixture across 

many reactions so each target molecule is isolated from others. Since the 

process of loading DNA into wells is stochastic at limiting dilutions, the 

dynamic range of single molecule detection follows a Poisson distribution, 

requiring the total number of reactions to be approximately 10 to 100 times the 

number of sequence molecules. That is, the average occupancy (λ) across all 

reactions must be 0.1 to 0.01 copies of DNA per well. The probability of DNA 

occupancy in any well, i.e. the fraction of wells having 1, 2, 3, etc. copies, is 

given by the Poisson probability distribution P = (e−λ*λn)/n!, where n is the total 

number of wells. U-dHRM is currently performed in traditional PCR multi-well 

plates using HRM enabled qPCR machines. In this format, only about 9 

molecules in a sample can be profiled at the single molecule level per 96-well 

plate (Fig. 4A, left). Therefore, a major challenge to the advancement of HRM-
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based profiling is the need for an exponential increase in the number of 

reactions to achieve scalability for realistic sample concentrations. To this end, 

a microfluidic U-dHRM system could offer the necessary scalability. Although 

several reports have documented the use of microfluidic chambers or droplets 

for dPCR, these platforms cannot accomplish U-dHRM. Microvalve-based 

dPCR devices (e.g. Fluidigm’s qdPCR) do not have high resolution heating 

blocks necessary for high resolution melt curve generation and moreover are 

not programmed to capture fluorescence during heat ramping or identify 

sequence-specific curve signatures. Microfluidic droplet-based digital PCR 

devices (e.g. Bio-Rad’s ddPCR) perform endpoint PCR detection in a 

continuous flow format without temperature control, one droplet at a time, 

which prevents in-situ, real-time monitoring of fluorescence in droplets, as is 

needed by U-dHRM. To address these challenges, we developed a platform 

that accomplishes massively parallelized microfluidic U-dHRM and integrated 

this platform with our machine learning curve identification algorithm. Our 

technology achieves single molecule sensitive detection and absolute 

quantification of thousands of bacterial DNA molecules in polymicrobial 

samples in less than four hours. We show proof of principle in mock blood 

samples that highly sensitive, specific, and quantitative bacterial identification 

is achieved in samples containing a high background of human DNA. 
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Figure 4: Massively parallel U-dHRM device.  
(A) Poisson distribution of DNA in a 96-well plate versus a 20,000 well 

digital PCR chip, showing the distribution of molecules per 
well. (B) Schematic of the U-dHRM platform. (C) Image of the actual U-

dHRM heating setup. (D) Fluorescent image of a small portion of chip where 
background dye (red) and intercalating dye (green) are overlaid. 3D intensity 

plot of the green channel is shown in inset. 
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3.2 Results 

3.2.1 Digital HRM Device Concept 

We developed our proof-of-concept U-dHRM platform for the clinical 

application of neonatal bacteremia diagnosis. Clinically relevant bacterial loads 

are estimated from culture techniques to be between 1 to ~2,000 colony 

forming units (CFU) per blood sample (1 mL), where 76% of samples 

have  ≤50 CFU179,180. This load requires 20,000 reactions to provide a dynamic 

range of detection up to 1,810 bacterial genomic DNA molecules at the single 

molecule level (Fig. 4A, right). A digitizing chip fitting this scale of reactions is 

commercially produced for traditional endpoint dPCR applications (see 

Methods), and was chosen as a robust and reliable digitizing device. To 

identify digitized bacterial DNA, universal primers targeting the 16S rRNA 

gene were used. The 16S harbors conserved sequence regions flanking 

hypervariable regions that are unique to different genus and species of 

bacteria181. Primers targeting conserved regions generate bacteria-specific 

amplicons for U-dHRM profiling. Specifically, our long amplicon (~1,000 bp) 

16S bulk universal HRM assay173 was adapted (see Methods) to enable 

successful digital amplification and reliable U-dHRM in each of the 725 

picoliter volume reactions on-chip, a 99.995% volume reduction compared to 

the typical HRM reaction format. To enable massively parallel U-dHRM across 

the 20,000 reactions, we developed a custom high resolution heating device 

and imaging system. A schematic of our design is shown in Fig. 4B. Precise 
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chip heating was accomplished using a thermoelectric heater/cooler with 

Arduino controller, power supply, and heat sink. A copper plate was attached 

between the thermoelectric device and the dPCR chip and between the heat 

sink and the thermoelectric device to evenly distribute heat. A custom adapter 

was designed to secure the chip-heating setup onto an automated x,y stage 

for rapid imaging of the 20,000 reactions as four tiled images at each 

temperature point during the U-dHRM heat ramp. Figure 4C shows an image 

of the integrated heating device and stage adapter. The imaging system was 

equipped with a 4x objective as well as red and green LED-based 

fluorescence channels. An image analysis program was developed to align 

reaction well centroids and overcome image drift during heat ramping as well 

as extract raw fluorescence data from each reaction simultaneously (Fig. 4D). 

Our previously developed OVO SVM algorithm was adapted to classify and 

quantify U-dHRM curves after being trained on melt curves generated on-chip. 

The digital chip, chip heating device, fluorescent imaging system, control 

electronics, and analysis algorithms for image processing and melt curve 

identification were integrated to enable massively parallel U-dHRM and 

absolutely quantitative bacterial profiling. 
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Figure 5: On-chip U-dHRM process characterization and optimization. 
(A) Image of a portion of a chip, which has been saturated with synthetic DNA 
such that nearly all wells exhibit green fluorescence of intercalating dye. Upon 
controlled heating, fluorescence is lost as DNA denatures. (B) Melting of three 

synthetic temperature calibrator sequences (pre-made and applied in high 
concentration to the chip, not PCR amplified) containing different GC content. 

Optimized ramp rate on-chip compared to bulk qPCR HRM. The mean and 
standard deviation of the calibration sequence melt curves are shown. (C) A 

plot of the relationship between voltage and temperature for 5 runs, showing it 
remains linear throughout the HRM temperature range of interest. Standard 

deviation reaches a maximum of 1.22 °C at 91.6 °C. 
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3.2.2 System Characterization and Optimization 

The challenge of generating high quality U-dHRM curves in picoliter-

scale reactions was first approached by tuning fluorescent intercalating dye 

concentrations to maximize signal-to-noise ratio. An EvaGreen dye 

concentration of 2.5X was found to be the highest concentration that did not 

inhibit amplification on-chip. Next, the simultaneous imaging and heating 

process of melt curve generation (Fig. 5A) was tuned using three synthetic 

DNA sequences containing 0% GC, 12% GC, and 76% GC with different 

predicted melting temperatures (Tms) (Fig. 5B). The greater the GC content, 

the higher the temperature required to melt the DNA due to higher bond 

strength. After loading mixtures of these three sequences onto a chip, we 

performed preliminary calibrations of our device, optimizing imaging exposure 

time to minimize photobleaching while maintaining the highest possible signal-

to-noise ratio. We also used these initial readings to develop our image 

analysis algorithm (see Methods). Figure 5B shows the normalized 

fluorescence versus temperature and derivative melt plots for the three 

calibrator sequences in traditional qPCR HRM and U-dHRM formats. The 

temperature calibrators are predicted to melt at 57.3 °C, 62.8 °C, and 92.9 °C 

by melt curve prediction software, uMELT120. The average Tms given by 

qPCR HRM were 56.9 °C, 67.4 °C, and 90.5 °C, respectively, while U-dHRM 

Tms were 55.5 °C, 64.6 °C, and 83.4 °C. These readings indicated that further 

temperature ramp optimization was necessary. Improved temperature 
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resolution was achieved by varying the heating ramp rate until a linear and 

repeatable relationship between voltage and temperature could be maintained 

throughout our temperature range of interest, 45–95 °C. For highest accuracy, 

temperature was monitored during the ramp by placing a thermocouple inside 

a surrogate oil-filled chip and placing this chip next to the calibrator loaded 

chip. A ramp rate of 0.02 oC/sec was found to give optimal linearity and 

repeatability of the voltage and temperature relationship, with maximum 

standard deviation of 1.22 °C occurring at a temperature of ~91.6 °C over 5 

runs (Fig. 5C). 

Next, bacterial DNA from clinical isolates of Listeria 

monocytogenes and Streptococcus pneumoniae, two common pathogens 

causing neonatal bacteremia182, were used to further optimize signal-to-noise 

ratio and melt curve shape resolution (i.e. temperature resolution). First, HRM 

optimization was carried out on a standard qPCR HRM machine. In this 

format, melt curve shape, a key discriminating feature of bacterial 16S melt 

curves173, was found to be highly dependent on imaging rate. A low imaging 

rate of 1 image per 0.3 °C smoothed melt curve shape features (Fig. 6A, 

circle), but a faster imaging rate of 1 image per 0.1 °C captured small shape 

differences known to be identifiable by our machine learning algorithm173 (Fig. 

6C, circle). Using the optimized chip heating ramp rate described above, we 

next optimized imaging rate on the standard qPCR HRM machine and 

validated these settings on our U-dHRM system (Fig. 6B and D). The low 
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calibrator sequence (first peak from left in Fig. 6 melt curves) was included in 

all amplification reactions to align curves and overcome temperature variation 

across reaction wells. First, the chip imaging rate was adjusted to replicate the 

default qPCR machine of 1 image taken every 0.3 °C. Imaging the chip every 

15 seconds at the optimal heat ramping rate of 0.02 °C/sec on our U-dHRM 

platform allowed us to achieve this rate. Melt curves generated from these 

settings constitute the low imaging rate data in Fig. 6B. With these settings, 

the average peak-to-baseline ratio of the 16S amplicon derivative melt curves 

(after min-max normalization of raw melt data) was 0.1096 ± 0.0024 on the 

qPCR HRM machine versus 0.0660 ± 0.0034 for U-dHRM. We then increased 

the imaging rate on our U-dHRM system to image every 5 seconds, matching 

the high imaging rate of 1 image per 0.1 °C on the qPCR HRM machine (Fig. 

6D). At the high imaging rate, the average peak-to-baseline ratio of the 16S 

amplicon derivative melt curves was 0.1759 ± 0.0073 on the qPCR machine 

versus 0.1225 ± 0.0066 for U-dHRM, demonstrating that our device achieves 

comparable signal-to-noise performance. Small shape differences in melt 

curves were also identifiable on-chip but to a lesser degree than in the 

standard qPCR HRM machine (Fig. 6A–D, circles). However, higher 

background noise on-chip caused this detail to occasionally be lost during 

curve processing and normalization (Fig. 7A, bottom). Tm reproducibility was 

almost identical between the two optimized platforms, as demonstrated by the 

Tm standard deviation of the temperature calibrator sequence (~0.3 °C, Fig.6). 
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Because this deviation still existed under optimized conditions, temperature 

calibrator sequences were included in all reactions for aligning melt curves 

prior to further analysis.  

We then integrated our automated OVO SVM melt curve identification 

approach with our U-dHRM platform to enable automated identification of 

bacteria based on their melt curve signatures. A training database of bacterial 

melt curves was generated on-chip to enable automatic curve identification. 

Bacterial DNA from L. monocytogenes and S. pneumoniae were loaded onto 

separate chips in excess, λ of 223 and 141, respectively, as calculated from 

spectrometer readings. This ensured each of the 20,000 reactions would be 

positive for amplification and would generate a training melt curve for the 

bacterial isolate. Each sample underwent U-dHRM using the optimized ramp 

and imaging rates described above. Figure 7A shows the U-dHRM training 

curves generated on-chip for S. pneumoniae and L. monocytogenes after 

processing with our image analysis, normalization, and alignment algorithms 

(see Methods). The processed curves were entered into our OVO SVM 

algorithm as training data (see Methods). Leave One Out Cross Validation 

(LOOCV) reached a maximum classification accuracy of 99.9% within the 

training dataset with 1,500 training curves. 
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Figure 6: U-dHRM sampling and ramp rate optimization on chip.  
(A,B) L. monocytogenes melt curves generated with a low imaging rate on 

qPCR HRM and U-dHRM platforms respectively. (C,D) L. 
monocytogenes melt curves generated using a high imaging rate on qPCR 

HRM and U-dHRM platforms respectively. The synthetic temperature 
calibrator sequence mean melting temperature and standard deviation are 
shown in all. Black circle highlights a melt curve shape feature unique to L. 

monocytogenes 16S sequence, which is dependent on sampling rate. 
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Figure 7: OVO SVM classification of L. monocytogenes and S. 
pneumoniae. 

(A) Two-thousand normalized S. pneumoniae (top) and L. 
monocytogenes (bottom) U-dHRM melt curves aligned to 0.1 –dF/dT, 

respectively. These curves were used to train the OVO SVM to classify each 
bacteria. (B) Histogram of fluorescence intensity values of digital reaction 

wells with PDF overlay and the intensity value chosen to classify positive from 
negative marked by dotted line (top). Histogram showing the Tm of each 

digital reaction with PDF overlay and the Tm value chosen to classify positive 
from negative marked by dotted line (bottom). Both graphs correspond to a 
concentration of 458 genomes of L. monocytogenes per chip. (C) U-dHRM 
dilution series of L. monocytogenes with U-dHRM measured values plotted 
against spectrometer measured values for DNA content. The sample mean 

and sample standard deviation are shown. (D) In blue: qPCR melt curve 
generated from a 1:1 mix of 20 ng total DNA input of S. pneumoniae and L. 

monocytogenes. In red: qPCR melt curve generated from a 1:1 mix of 0.02 ng 
total DNA input of S. pneumoniae and L. monocytogenes. This concentration 

and reaction mixture is similar to that used for digital chip experiments. In grey: 
qPCR melt curve generated from a negative template control (NTC) with no 

bacterial DNA added. (E) U-dHRM and OVO SVM classification of L. 
monocytogenes and S. pneumoniae in two distinct mixture compositions, 

demonstrating polymicrobial detection capability. Table 3shows enumeration 
of detected curves in panel E. 
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3.2.3 Absolute Quantification of Bacterial DNA 

Digital quantitative power relies on the ability to specifically identify true 

positive amplification from non-specific background amplification. To assess 

the absolute quantitative power of our platform, we compared U-dHRM melt 

curve quantification to intercalating dye-based endpoint dPCR quantification. A 

chip was loaded with a monomicrobial DNA sample of L. 

monocytogenes according to the concentrations described in the lower panel 

of Table 2 and U-dHRM was conducted. Then, true positive amplification was 

quantified two ways. For the first quantification method, we followed the typical 

endpoint PCR enumeration approach (top graph in Fig. 7B), which is based on 

measuring the fluorescence of all wells at room temperature, fitting the 

distribution of well fluorescence values to a probability density function (PDF), 

and applying a fluorescence threshold that best separates the high intensity 

population (positive) from the low intensity population (negative). For the 

second method, we used our U-dHRM melt curve readout to identify the 

number of digital reactions having specific bacterial melt curves. The Tm for a 

bacterial amplicon, 1,000 bp long, was expected to be centered at 86.5 °C, 

based on data collected from the overloaded training chips (Fig. 7A). To 

automate identification of reactions that specifically generated bacterial melt 

curves, we fit a PDF to the distribution of individual reaction Tm values and 

applied a fluorescence threshold that best separated the high Tm population 

(positive, specific amplification) from the low Tm population (non-specific or 
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negative for amplification), shown in the bottom graph of Fig. 7B. This novel 

analysis is uniquely enabled by our platform. The melt curves identified as 

positive or negative by this method are shown in Supplementary Fig. 1B and 

C, respectively. A no template control (NTC) sample was also run on a 

separate chip to characterize the Tm of non-specific amplification products. 

The Tm of the NTC chip reactions were significantly lower than the Tm of the 

1,000 bp amplicon (Supplementary Fig. 1). Comparable NTC reactions carried 

out in a qPCR format generated a non-sense amplicon that is 200 bp or less 

(data not shown). This amplicon size difference is likely the reason for the 

significant difference in melt curve Tm between the NTC and true positive 

reactions. The results of the typical dPCR enumeration method and our novel 

melt curve enumeration method were then compared by direct visual 

observation (manual analysis) of the reactions. Visual melt curve observation 

is used frequently after qPCR to determine whether an amplification reaction 

was specific or non-specific. This analysis showed that the dPCR enumeration 

approach gave a Type I (false positive identification of reactions having non-

specific melt curves) error rate of 22.6% and Type II (false negative 

identification of reactions having bacteria-specific melt curves) error rate of 

1.19% (average across 3 chips), resulting in a lower limit of detection of ~238 

genomes per chip. Our automated melt curve enumeration method based on 

Tm gave Type I and II error rates of 0.07% and 0.00%, respectively (average 

across 3 chips) compared to manual analysis, which enables a single copy 
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detection limit. This suggests that our platform could enable general 

intercalating dye-based dPCR quantification to perform more reliably, even for 

difficult-to-optimize or partially inhibited reactions that can occur with clinical 

samples. We then analyzed a ten-fold dilution series of monomicrobial DNA 

samples of L. monocytogenes on-chip using the melt curve enumeration 

method of Tm thresholding. This showed a linear relationship across the 

monomicrobial DNA dilution series having an r2 value of 1 and high 

measurement precision demonstrated by the low sample standard deviations 

at each dilution (Fig. 7C).  

Next, we compared the number of curves quantified by our melt curve 

Tm enumeration method with the sample DNA concentrations calculated from 

spectrometer readings and qPCR standard curve methods (Supplementary 

Fig. 2). Table 2 shows that our U-dHRM platform and melt curve enumeration 

method detects total DNA concentrations at similar levels as the other two 

technologies. However, our approach suggests that U-dHRM is able to 

distinguish target DNA from background amplified DNA based on melt curve 

Tm. 
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Table 2: Comparison of Genomic DNA Quantification Techniques 
The concentration of genomic DNA isolated from both S. pneumoniae and L. 

monocytogenes was measured using an Eppendorf Biospectrometer, by 
qPCR standard curve method, and using U-dHRM. Total U-dHRM values are 

the sum of reactions identified as having specific amplification of bacterial 
DNA plus the reactions having off-target amplification. Reactions having no 

amplification, i.e. no melt curve, were classified as true negatives and make up 
the remainder of the 20,000 total reactions per U-dHRM chip (not represented 
in this table). QPCR standard curves are shown in Suppl. Fig. 2. Absorbance 
measurements were made on stock DNA, then the DNA was serially diluted. 
The calculated concentration of the dilution used on chip is reported here for 

each measurement modality. 
 

 

 

3.2.4 Identification and Quantification in Polymicrobial Samples 

To begin to test the specificity and breadth of profiling of our U-dHRM 

platform, mock polymicrobial samples were generated to represent 

challenging detection scenarios where one organism vastly outnumbers 

another. Defined mixtures of S. pneumoniae and L. monocytogenes DNA were 

prepared at two different ratios, 1:1 and 3:1, respectively (Table 3). These 

mixtures were applied separately to two chips at concentrations nearing the 
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low and high end of a typical clinical pathogen load for neonatal bacteremia 

(50–2,000 copies). Importantly, this dynamic range cannot be assessed by 

any current HRM format (Fig. 4A). The heterogeneous samples were 

subjected to U-dHRM followed by automated Tm thresholding for true-

positives and subsequent OVOSVM analysis. Figure 7E shows the OVO SVM 

identified melt curves for the 1:1 and 1:3 ratios, respectively. Yellow melt 

curves represent those identified as L. monocytogenes and blue as S. 

pneumoniae. Table 3 displays the bacterial composition of the sample 

reported by the OVO SVM output, i.e. total number of curves classified into 

each bacterial identity category. The same 1:1 mixture was analyzed by qPCR 

HRM for comparison, (Fig. 7D). Bulk qPCR HRM fails to indicate the presence 

of two distinct bacterial species (blue curve) or, in cases of very low DNA 

input, the presence of any bacteria at all (red curve) due to overwhelming 

background amplification that results in a melt curve matching the NTC melt 

curve. This is a common problem for PCR reactions involving universal 

bacterial primers, since fragments of contaminating bacterial DNA are often 

present in reagents and liquid handling disposables183,184. Extensive pre-

treatment of all reagents and supplies with DNase can help to improve this. 

However, contamination of the actual sample cannot be dealt with in the same 

way, and must be overcome by the detection methodology. 
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Table 3: OVO SVM Classification of Mixed Genomic DNA Samples 
DPCR chips were loaded with polymicrobial samples containing 

different proportions (ratios) of S. pneumoniae DNA to L. 
monocytogenes DNA to mimic challenging detection scenarios where 
one organism dominates a test sample. The targeted mixture ratios 

were created based on absorbance measurements of individual 
bacterial DNA concentrations using an Eppendorf Biospectrometer 

and then analyzed by U-dHRM and OVO SVM classification. 
 

 

 

3.2.5 Detection and Quantification of Microbial DNA in Mock Clinical 

Samples 

A mock experiment was conducted to test whether the large amount of 

human DNA associated with a clinical blood sample would inhibit U-dHRM 

pathogen identification. Human DNA, extracted directly from a clinical blood 

sample of a healthy patient, was mixed with DNA from L. monocytogenes in 

the range of a typical pathogen load (<2,000 bacterial genomes/ml blood). 

This mixture was loaded onto the chip and U-dHRM was performed using our 

integrated platform. A Tm threshold value was calculated (Fig. 8A) for 

separating reactions positive for bacterial amplicons (Fig. 8B) from negative 
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reactions (Fig. 8C). This Tm threshold was higher than the one calculated 

previously for bacteria-only samples due to a distinct background amplification 

profile, presumably originating from the human DNA. Human DNA background 

was associated with more noise in non-specific melt curves, as shown in Fig. 

8C, compared to samples that did not include human DNA (Supplementary 

Fig. 1C). This higher level of noise resulted in slight adjustments to the 

threshold values used to delineate background from true melt curves (Fig. 8B 

and C, also see Methods). Nonetheless, 121 L. monocytogenes genomes per 

20,000 reactions were identified. Figure 8D shows the bacterial melt curves 

identified in the mock clinical sample by our U-dHRM platform with automated 

analyses. 
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Figure 8: Identification of L. monocytogenes in mock blood sample. 
(A) Histogram showing the Tm of each digital reaction with PDF overlay and 

the calculated Tm threshold (dotted line) used to classify true positive from off-
target amplification. (B) Bacterial DNA melt curves from reactions identified as 

positive using the Tm and peak height thresholds adjusted for human DNA 
background. (C) Melt curves from reactions identified as negative using 

thresholds specific for human DNA background. This plot highlights the high 
background noise associated with the addition of human DNA to our 

sample (D) L. monocytogenes melt curves from panel B normalized and 
aligned to 0.1 − dF/dT. 
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3.3 Discussion 

Our integrative U-dHRM platform advances HRM profiling by enabling 

the absolute quantification and identification of multiple genotypes in 

heterogeneous samples and at clinically relevant concentrations. By achieving 

HRM curve generation in 0.005% of the traditional HRM volume, and by 

massive parallelization of HRM across 20,000 reactions simultaneously, we 

achieve over a 200-fold increase in the dynamic range of detection compared 

to current HRM formats. Reduction in the size of reactions allows smaller 

volumes of reagents to be used while maintaining optimal reagent 

concentrations. Partitioning heterogeneous mixtures across 20,000 picoliter-

scale reactions is also expected to overcome environmental microbial DNA 

contamination that may occur in real-world samples by spatially diluting, i.e. 

contaminating DNA and target DNA are partitioned from each other for 

discrimination and quantification115. An increased number of reactions also 

permits rapid generation of a large training curve database for each organism. 

Incorporating reference temperature calibrator sequences into each reaction 

helps normalizes against reaction condition variations for improved reliability. 

Automated melt curve identification is accomplished by removing non-specific 

melt curves by Tm thresholding and subsequently matching the remaining 

melt curves to a training database using our OVO SVM machine learning 

algorithm173,175. Together, these approaches comprise our microfluidic U-



 63 

 

dHRM system and enable the quantitative characterization of complex 

samples containing multiple bacterial organisms. 

Intercalating dye-based dPCR is typically used to detect a single, 

specific amplification product from one bacteria. Probe-based dPCR can be 

used to specifically identify up to four bacteria by multiplexing fluorescent 

probes, or a universal probe can be designed to detect the presence of 

bacteria non-specifically. By incorporating HRM and universal amplification 

into dPCR, our platform enables probe-free differentiation of multiple bacteria 

in a single sample. In our previous work, we showed that 37 clinically relevant 

organisms could be distinguished by general intercalating dye-based melt 

curves173. We anticipate that our U-dHRM platform will achieve at least this 

level of multiplexing and potentially more, since we were able to accomplish a 

signal to noise ratio and temperature resolution on-chip that matched standard 

qPCR HRM machines. 

While a direct comparison of our U-dHRM detection method to a 

universal probe-based dPCR detection method was not feasible, due to 

different polymerase and reaction chemistry requirements, a comparison to 

typical intercalating dye-based dPCR techniques suggested that our platform 

and automated analysis approach may offer specificity and sensitivity 

improvements. Standard intercalating dye-based dPCR relies on thresholding 

total fluorescence intensity of digital reactions to determine whether they are 

positive or negative for amplification. Inhibitors that reduce amplification 
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efficiency or non-specific background amplification could result in fluorescence 

intensities that are misclassified, giving rise to false positives and false 

negatives. However, melt curve analysis may offer a more reliable way to 

resolve these two conditions. For our reaction chemistry, we found that the 

typical dPCR approach of applying an intensity threshold to remove false 

positives left a significant number of reactions misclassified. Bacteria-specific 

melt curves were observed in several reactions classified as negative by this 

technique, and non-specific melt curves were observed in several reactions 

classified as positive. Our platform enabled Tm thresholding, which improved 

accuracy by 99% and 94%, respectively, in the Type I and II error rates based 

on manual observation of melt curves. Our approach could help to ensure that 

true single molecule sensitivity is attained for optimal lower limit of detection. 

One reason dPCR total fluorescence thresholding performed poorly in our 

study could be that we thermocycled significantly longer than most dPCR 

protocols recommend. A typical dPCR cycle number is kept to ~35, but we find 

that 70 cycles ensures full endpoint amplification from single molecules115. 

While this extended cycling improves accuracy of single-molecule target 

detection, it also allows off-target amplification to fluoresce more prominently 

in negative reactions. 

Indeed, U-dHRM experiments showed evidence of two kinds of non-

template amplification: non-template bacterial DNA amplification 

(contamination) and off-target amplification. Bacterial contamination produced 
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distinct melt curves within the Tm range of 84–90 °C (Suppl Fig. 1C). Given 

their high Tm, these melt curves are only likely to arise from amplification of 

the bacterial 16S gene long amplicon (~1 kbp). Sources of bacterial PCR 

contamination, which broad-based 16S amplification is highly sensitive to, 

include molecular biology grade water, PCR reagents, the environment, and 

DNA extraction kits185. Many studies have identified DNA polymerase 

preparations as the primary source of PCR contamination. The contamination 

of commercially available polymerase preparations is estimated at 10–1000 

genomes/U enzyme186. Thus for our system, we would expect between 2.9 

and 290 contaminating bacterial genomes per reaction, which is consistent 

with our observations (Suppl. Fig. 1C). 

Off-target amplicons were observed to melt at lower temperatures 

(Suppl. Figs 1C and 4D, Tm of ~81 °C). In U-dHRM, these products only arose 

in wells that were negative for bacterial DNA (Suppl. Fig. 1B and C). In qPCR, 

this off-target product was present in low-template and water control reactions 

and out-competed bacterial DNA in these conditions (Fig. 7D and Suppl. Fig. 

3). Based on Sanger sequencing analysis, this amplification product was non-

specific (data not shown) and ~150 bp long by gel electrophoresis analysis 

(Suppl. Fig. 3). Low reaction efficiency associated with long amplicon PCR 

and increased cycling time likely contributed to this non-specific amplification. 

An amplicon size <200 bp is ideal for qPCR. However, our goal is to 

discriminate numerous bacteria by their 16S sequences, where 
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hypervariability occurs over ~1 kbp. Thus, for specific bacterial identification, 

we require a 1000 bp amplicon, which can reduce qPCR efficiency 

significantly187,188. In highly efficient qPCR reactions, unintended amplification 

products usually amplify at a lower efficiency than that of the target, and so are 

out-competed. However, long amplicon targets suffer from low amplification 

efficiency187, allowing off-target amplification to more readily overtake target 

amplification when the amount of template is relatively low. This reduces the 

sensitivity of qPCR assays for low-level targets. Our standard curves show 

that we experience low amplification efficiency comparable to that reported by 

others in the literature (e.g. 60%, Suppl. Fig. 2A)188. This explains the poor 

sensitivity of qPCR to low target concentrations (Suppl. Fig. 2A). 

Importantly, it also highlights a strength of U-dHRM. Because digital reaction 

partitioning (1) reduces the effect of inhibitors, (2) reduces the effective 

concentration of contaminating DNA molecules that give rise to off-target 

amplification, and (3) allows for extended cycling to overcome low efficiency of 

amplification, since quantification is an endpoint measurement, it is not 

surprising that we achieve greater sensitivity in the dHRM format (Fig. 7C) 

than in a qPCR format (Suppl. Fig. 2A). Critically, our integration of HRM with 

dPCR allows for detection of target, contaminant, and off-target amplification 

products, and our OVO SVM approach for melt curve signature identification 

and quantification enables broad-based, automated identification of bacterial 

organisms. 
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However, some foreseeable limitations exist. Improvements to the 

temperature ramp reliability will be critical to ensure a larger database of melt 

curves are reliably resolved by U-dHRM. Here, calibrator sequences were 

used to align curves for initial Tm thresholding, but subsequently aligned to 

their derivative fluorescence value of 0.1 for shape comparison. This second 

alignment had the effect of ignoring Tm differences in bacteria-specific 

amplicons, and was required due to fluctuations in the temperature ramp from 

run-to-run. Insulation from environmental temperatures, an improved chip 

design with lower thermal mass, and incorporation of a PID controller are 

expected to overcome this issue. These improvements could also to lead to 

reduced background noise in the melt curve signal. This would improve our 

ability to resolve small changes in melt curve shapes generated on the U-

dHRM platform, which are occasionally removed by our curve processing 

algorithms due to background noise. 

The capabilities of our microfluidic U-dHRM system could impact 

infectious disease detection applications like neonatal bacteremia, where 

speed, breadth of detection, and sensitivity are critical factors. Clinical 

microbiology relies on lengthy culture-based assays to diagnose bacteremia, 

which has a high mortality rate that increases with every hour a patient goes 

undiagnosed and imprecisely treated. Polymicrobial bacteremia is associated 

with an even higher mortality rate than monomicrobial infection, highlighting 

the need to detect multiple organisms sensitively, and simultaneously. 
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Immediate conservative treatment with broad-spectrum intravenous antibiotic 

therapy is typically initiated without any diagnostic information, leading to 

inaccurate and overtreatment as well as misuse of multiple antibiotics giving 

rise to the emergence of drug resistant pathogens. The ability to identify 

bacterial organisms in a blood sample within hours could change clinical 

practice by providing diagnostic information in time to alter treatment 

decisions. Retrospective studies also suggest that absolute quantification of 

bacterial genomic load in patients may be useful to assess severity of infection 

and to predict prognosis4. The detection of microbial DNA in clinical samples 

is typically challenged by the excess of human DNA compared to pathogen 

DNA, which can contribute to PCR reaction inhibition30,65,155,189. DPCR has 

been shown to decrease the impact of inhibitory substances190. Likewise, we 

find that U-dHRM detection of microbial DNA in mock blood samples is not 

inhibited by high human DNA background or inhibitors carried over in the DNA 

extraction from blood. This suggests that our device could have exciting 

implications in the clinical setting. Future work will focus on optimizing and 

validating our U-dHRM technology on patient-derived clinical samples. 

Finally, computational approaches for anomaly detection are being 

explored by our group to identify bacterial melt curves that are not represented 

in our database. Currently, a 16S amplicon that melts above the Tm threshold 

will be automatically classified by our OVO SVM as the organism to which the 

melt curve is most closely matched. For undefined samples, where 
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significantly more organisms may arise and unexpected emerging pathogens 

could be present, it will be crucial to identify whether a melt curve is a poor 

match to the database curves. Indeed, other groups have discovered new 

species of bacteria by observing alterations in bulk HRM curves by eye178. 

Automation of this ability would represent a significant advancement for HRM 

profiling technology and is under development by our group. 

 

3.4 Methods 

3.4.1 High-Content U-dHRM Chip 

In order to achieve high-content digital partitioning, the sample is 

loaded into a commercially available QuantStudio 3D Digital PCR 20 K Chip v2 

(Applied Biosystems, Foster City, CA). The chip contains 20,000 picoliter-

scale wells manufactured from silicon with a hydrophilic treatment that allows 

high efficiency sample loading. A PCR-grade oil is deposited onto the loaded 

chip to prevent sample evaporation during cycling. The chip is sealed with an 

adhesive lid containing an optical window, which allows for imaging and the 

generation of melt curves. We chose to use a commercially manufactured chip 

for performance reliability. We coupled the dPCR chip to our custom designed 

master mix. The master mix is optimized to consistently amplify full length 

~1,000 bp templates of the 16S gene, hypervariable regions V1-V6, and 

produce high fluorescence signal intensity for melt curve analysis while 

maintaining optimal surface tension for easy loading. An MJ Research PTC-
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200 Thermal Cycler (MJ Research Waltham, MA) is used for endpoint 

amplification. The thermal cycler is tilted at a 30-degree angle to collect the 

bubbles generated at high temperatures in the PCR-oil. These bubbles are 

trapped in an air pocket located outside of the chip’s sample region, 

preventing sample evaporation from the small volume reactions. 

 

3.4.2 Bacterial DNA Isolation and PCR 

Wizard Genomic DNA Purification Kit (Promega Corporation, Madison, 

WI) was used to isolate DNA from an overnight culture of bacteria, and diluted 

in PCR water to the desired concentration. Absorbance measurements were 

made on stock DNA at concentrations within the working range of the 

spectrophotometer. Then, the DNA was serially diluted, and the expected 

concentration of the dilution used for dHRM was reported in the Tables and 

Figures for direct comparison of the different measuring modalities. The 

optimum PCR master mix for chip amplification, contained in a 14.5 μL 

reaction, was found to be 1X Phusion HF Buffer containing 1.5 mM MgCl2 

(Thermo Fisher Scientific, Waltham, MA), 0.15 uM forward primer 5′-

GYGGCGNACGGGTGAGTAA-3′ (Integrated DNA Technologies, Coralville, 

IA), 0.15 uM reverse primer 5′-AGCTGACGACANCCATGCA-3′ (Integrated 

DNA Technologies, Coralville, IA), 0.2 mM dNTPs (Invitrogen, Carlsbad, CA), 

2.5X EvaGreen (Biotium, Freemont, CA), 2X ROX (Thermo Fisher Scientific, 

Waltham, MA), 0.02 U/μL of Phusion HotStart Polymerase (Thermo Fisher 
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Scientific, Waltham, MA), 1 μL of sample, and ultra pure PCR water (Quality 

Biological Inc., Gaithersburg, MD) to bring the total volume to 14.5 μL. The 

dPCR chip was cycled on a flatbed thermocycler with the following cycle: an 

initial enzyme activation (98 °C, 30 s), followed by 70 cycles (95 °C, 30 s, 59 °C, 

30 s, 72 °C, 60 s). Temperature calibrator sequences with varying GC content 

used for system optimization are as follows: 0% GC 

(TTAAATTATAAAATATTTATAATATTAATTATATATATATAAATATAATA-C3), 

12% GC 

(TTAATTATAAAGGTATTTATAATATTGAATTATACATATCTAATATAATC-

C3), and 76% GC 

(GCGCGGCCGGCACCCGAGACTCTGAGCGGCTGCTGGAGGTGCGGAAG

CGGAGGGGCGGG-C3)172. 

 

3.4.3 Chip Heating Device 

The U-dHRM device consists of a thermoelectric heating/cooling device 

(TE Technology, Unc. Traverse City, MI) controlled via an Arduino-based 

interface that uses pulse width modulation (PWM) to generate a temperature 

ramp (Fig. 4B and C). The thermoelectric device is in direct contact with a 

copper plate onto which the dPCR chips coated with a thin layer of thermal 

paste are clamped. This allows for even heat distribution and optimal surface 

contact. On the reverse side of the thermoelectric chip, an aluminum heat sink 

is attached to enable fast excessive heat dissipation. A type K thermocouple 



 72 

 

(OMEGA Engineering, Stamford, CT) is used to measure the temperature for 

each image taken during the temperature ramping. The thermocouple is fixed 

inside a surrogate chip, which is attached alongside the sample chip to the 

copper plate. The temperature readings are acquired by the microscope 

imaging software (Nikon NIS-Elements) and are embedded in the image file 

metadata for offline analysis. The complete chip-heating setup is placed in a 

custom designed 3D printed stage adapter to securely mount the device on 

the microscope for imaging. 

 

3.4.4 Fluorescent Imaging 

Fluorescent imaging is accomplished using a Nikon Eclipse Ti platform 

customized for our dHRM system. A Nikon Plan/Fluor 4X objective with a 

numerical aperture of 0.13 and a working distance of 16.5X minimizes the 

number of images and time required to scan the entire chip. A Lumencor 

SPECTRA X LED Light Engine capable of producing 3–4 W of visible light 

from 380 nm to 680 nm is used as a light source. Images of the loading control 

dye, ROX, and melt curve intercalating dye, EvaGreen, are captured with 

488/561 nm and 405/488 nm excitation/emission filters using an exposure time 

of 100 milliseconds. Images are captured every five seconds using a 

Hamamatsu digital camera, C11440 ORCA-Flash4.0. NIS-Elements software 

is programmed to automatically image the chip as the heating device ramps 

using the following workflow: define the capture settings for the ROX and 
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EvaGreen channels, set the stage area to the chip’s sample area, generate 

points within that stage area to image, and run time lapse to image each 

location for every time point. A Prior Scientific NanoScanZ (Rockland, MA) 

motorized stage is used to scan and image the entire chip automatically via 

the software. For every image, the microscope automatically records the 

temperature registered by our temperature probe within the metadata of the 

image. This allows for continuous scanning of the chip and recording of the 

fluorescence intensity in each well while concurrently heating the chip to 

generate 20,000 melt curves. 

 

3.4.5 Image analysis and SVM 

3.4.5.1 Fluorescence and Tm thresholding for negative reaction removal 

Two approaches to thresholding reaction fluorescence for the 

identification and removal of negative reactions were compared. The typical 

dPCR approach of thresholding total reaction fluorescence was accomplished 

by first plotting a histogram in MATLAB of the total fluorescence intensities at 

room temperature of all chip reactions. The probability density function (PDF) 

for a mixture of two normal distributions was then applied to identify negative 

and positive reaction distributions. A threshold was identified at the lowest 

point of intensity where the two distributions intersected (Fig. 7B, top). This 

was performed for each sample type (i.e. DNA extracted from pure bacterial 
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culture versus mock blood sample) to identify the appropriate threshold given 

unique background distributions. 

A second approach was developed to identify a Tm threshold that 

separated off-target amplified reactions from true positives more accurately. 

First, raw melt curves were converted to derivative melt curves. On fully 

loaded chips where all reactions were positive (2 training chips) all reactions 

contained 16S amplicons, which were observed to melt with an average Tm of 

89 °C. On digitized chips (3 chips, testing data), off-target amplicons were 

observed to melt at much lower temperatures, average Tm of 81 °C, while 

positive 16S amplicons melted reproducibly in the same range as the training 

chips. For thresholding analysis, the maximum peak height (Tm) above 

−d(Fluorescence)/dT = 0.01 was found for each derivative melt curve between 

the range of 75 °C and 93 °C. Then a histogram of the Tms was plotted in 

MATLAB, and the PDF for a mixture of two normal distributions was applied 

(Fig. 7B, bottom). Finally, the Tm threshold was chosen at the minima 

between the two distributions. Reactions melting below this Tm threshold were 

identified as negatives, while those melting above the threshold were identified 

as positives. The Tm threshold for samples of DNA extracted from pure 

bacterial cultures was identified and held constant at 84 °C. 
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3.4.5.2 Melt curve data generation 

In order to generate melt curves from the acquired fluorescent images 

of the dPCR chip, we implement an automated image processing algorithm in 

MATLAB. The algorithm generates a binary mask for each temperature point 

to identify the centroid corresponding to each digital reaction well in the field. 

Then records the pixel intensity of the 441 neighboring pixels from the images 

of both the EvaGreen channel and the ROX channel. Each well’s average 

pixel intensity is plotted against the measured temperature to generate the raw 

melt curve. Each melt curve is normalized to the ROX channel to account for 

any differences due to unequal loading. The Tm threshold described above is 

then applied to remove negative reactions and all incorrectly identified 

centroids. A Gaussian filter is then used to smooth the curves and the 

derivative is taken with respect to temperature to obtain −dF/dT. Finally, the 

curves are aligned via a temperature independent melt curve alignment at 0.1 

−dF/dT. This allowed the differences in melt curve shape to be maximized for 

later identification using a previously developed OVO SVM algorithm173. 

Briefly, an OVO SVM creates a maximal margin separating hyperplane 

between two data classes (i.e. melt curve signatures) using the Least Squares 

Method (linear kernel). OVO SVMs were created for all binary combinations of 

organisms with the training data generated from melt curves of known origin. 

During classification, a scoring method is applied and the most frequently 

called classification is chosen as the final melt curve identity. 
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3.4.6 Clinical Blood Sample Purification and Analysis 

DNA from a clinical blood sample, which was known to be negative for 

bacterial infection, was extracted and purified using a High Pure PCR 

Template Preparation Kit (Roche Diagnostics Corporation, Indianapolis, IN). 

The purified blood DNA was eluted in a 20 μL volume. DNA of L. 

monocytogenes was isolated using the protocol described above in the 

methods section. Approximately 2,000 genomes of L. monocytogenes were 

added to the purified blood extraction. The maximum amount of the blood and 

bacterial DNA mixture (8.63 μL) was added to the PCR master mix. The final 

mass ratio of human DNA to bacterial DNA on chip was 12,172:1. The master 

mix was then loaded onto the chip and U-dHRM was performed following 70 

amplification cycles. The full chip was imaged as four tiles. Changes were 

made to the Tm thresholding script to account for the increased and oscillatory 

noise introduced by the blood DNA extract. First, the peak height for the 

derivative melt curve was raised to −dF/dT = 0.015 to threshold noisier non-

specific melt curves from true bacterial amplicons. Second, a lower threshold 

for melt curve troughs was added at −0.004 −dF/dT, which aided in removing 

highly oscillatory and anomalous curves. 
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3.4.7 Cell Culture 

Clinically isolated S. pneumoniae and L. monocytogenes were grown 

separately overnight in Luria-Bertani (LB) broth. Sterile conditions were used 

to ensure uncontaminated growth of each bacteria. 

 

 Chapter 3, in full, is a reprint of the material as it appears in Scientific 

Reports 2017. Velez Ortiz, Daniel; Mack, Hannah; Jupe, Julietta; Hawker, 

Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, 

Shelley; Fraley, Stephanie I. Macmillan Publishers Limited, 2017. The thesis 

author was a researcher and co-author of this material. She assisted in 

developing the experimental procedure and conducted the experiment with the 

mock blood sample. She also generated Figure 8 and did the final edits of the 

text for submission. 

 



 

 78 

CHAPTER 4: HARDWARE OPTIMIZATION 

 Previously, an Arduino was used to control the heating of the device. 

Any variability in the environment or starting temperature would affect the heat 

ramp. Consistent heating was vital to our system, which relies on temperature-

dependent melt curves being identified by a machine learning algorithm. 

Heating differences between runs could affect where and how the bacterial 

DNA melts along the temperature axis of our –dF/dT melt plots. A feedback 

controller was implemented and optimized to provide repeatable controlled 

heating. A temperature sensor was installed in the center of the copper block 

between the thermoelectric device (Peltier chip) and the imaging and dummy 

chips. This temperature provided real-time feedback which the controller used 

to adjust the ramp rate accordingly. Two different controllers (Meerstetter, 

TEC-1089-SV and TEC-1122-SV) were tuned and optimized. The controllers 

were auto-tuned once a day at 98°C and then cooled to 22°C. During each 

run, the device was heated from room temperature to 45°C, stabilized at 45°C 

and then ramped 45-98°C at a ramp rate of 0.1°C/s. Simultaneous heating 

and imaging is initiated at 45°C and carried out to 98°C; a low temperature 

calibrator, which melts around 59°C, is used as a control to account for 

potential bacterial melt curve peak shifts and to ensure the chip is heated 

uniformly; the long bacterial amplicon completes its melting process by 98°C. 

The stability and repeatability of the heat ramp was improved significantly with 

the use of the feedback controller; figure 9 shows that a maximum error of 
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0.005°C was achieved over multiple days using two separate controllers. 

Figure 10 displays estimates of the temperature profile at the center of the 

chip. The temperature profile of a single run and the repeatability between 

runs was significantly improved. With the use of the Arduino, the slope of the 

ramp would vary between runs at the higher temperatures where the bacterial 

DNA melts. These slope differences caused the same DNA to appear to melt 

at slightly different temperatures. The ramp and imaging rates of the system 

are currently being optimized in the digital format to determine if sequence 

resolution can be enhanced further.  

 

 

Figure 9: System error characterization across days with two standalone 
systems 
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Figure 10: Melt well temperature profile in region of interest (~88-93°C) 
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CHAPTER 5: CONCLUSION 

 Sepsis is a life-threatening condition where a patient’s mortality rate 

increases with every hour of incorrect diagnosis or treatment. Rapid and 

accurate diagnostics are essential to patient survival. The current diagnostic 

method of blood culture is far from ideal. The ideal sepsis diagnostic should 

be: (a) rapid, (b) broad-based, (c) capable of polymicrobial detection, (d) highly 

sensitive and specific, (e) minimally invasive, (f) easily integrated into clinical 

workflow, (g) able to detect antibiotic resistance determinants, (h) and able to 

identify new and unknown pathogens. New technologies have been developed 

to address the problems of blood culture; however, they have not yet achieved 

all of these ideal characteristics. We have developed the proof-of-principal U-

dHRM platform to address this need and have improved its reliability towards 

future clinical testing and validation; this technology can include all the 

characteristics of an ideal sepsis diagnostic. Preliminary testing shows that it is 

currently able to identify 37 sepsis-causing bacteria in a 1 mL blood sample 

within four hours with single-cell sensitivity and 99.9% specificity. With further 

optimization, the detection time could be improved to meet the clinically 

relevant time frame of 1-3 hours. By using a microfluidic chip containing 

20,000 reaction wells, each genome of bacteria is separated from one 

another, allowing for detection of polymicrobial samples. Future work will 

include development of an anomaly detection algorithm, which would identify 
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melt curves that are not in the library as novel pathogens. This would allow for 

the detection and further testing of new and unknown pathogens. 

 Before this device can be made available for clinical use, a clinical 

validation study must be conducted; we have shown proof-of-concept using a 

mock blood sample, but further optimization is required for real clinical 

samples. Ideally, in the future, the lysis and nucleic acid extraction would be 

automated by a readily available sample preparation system, such as Roche’s 

MagNA Pure System. Universal primers for viruses and fungi could also be 

multiplexed so all sepsis-causing pathogens could be determined in a single 

test; such primers have been previously used in the HRM platform, but they 

have not been tested and optimized for the digital format.  
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