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Abstract

Divisible load applications consist of a load,

that is input data and associated computation,

that can be divided arbitrarily into independent

pieces. Such applications arise in many fields

and are ideally suited to a master-worker exe-

cution, but they pose several scheduling chal-

lenges. While the “Divisible Load Schedul-

ing” (DLS) problem has been studied exten-

sively from a theoretical standpoint, in this pa-

per we focus on practical issues: we extend

a production Grid application execution envi-

ronment, APST, to support divisible load ap-

plications; we implement previously proposed

DLS algorithms as part of APST; we evaluate

and compare these algorithms on a real-world

two-cluster platform; we show in a case study

how a user can easily and effectively run a real-

world divisible load application; and we un-

cover several issues that are critical for using

DLS theory in practice effectively. To the best of

our knowledge the software resulting from this

work, APST-DV, is the first usable and generic

tool for deploying divisible load applications on

distributed computing platforms.

1 Introduction

The divisible load application model corre-

sponds to computations that can be arbitrar-

ily divided into independent pieces (i.e., they

can be executed in any order). This applica-

tion model is a good approximation of many

real-world applications in scientific computing

[26, 35, 2, 36, 49, 10, 21, 46, 16, 4, 24, 18].

Divisible load applications are amenable to the

simple master-worker programming model and

can in principle be easily executed on platforms

ranging from one single cluster to large dis-

tributed Grids.

Two key challenges faced by users for exe-

cuting parallel applications on distributed plat-

forms are easy deployment and high perfor-

mance, and divisible load applications are no ex-

ceptions. The deployment challenge arises on

Grid platforms as they contain heterogeneous

resources with various access methods and poli-

cies. The current Grid middleware infrastruc-

ture [23] provides most of the required function-

ality for Grid application deployment, but it is

complex and not designed to be used directly by

end users. A successful approach has been to

provide so-called “application-level tools” that
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isolate the user from the middleware infrastruc-

ture and take on the burden of all application de-

ployment logistics. A taxonomy of such tools

is available in [7]. Previous work on divisible

load applications, including our own, has been

either purely theoretical or specific to a single

application. Our first contribution in this pa-

per is to provide a generic application-level tool

for the easy deployment of these applications on

Grid platforms. We build on an existing Grid

application-level tool, APST [14, 5], which is

currently used in production for several Grid ap-

plications [31, 34, 47, 30], and to which we add

support for divisible load applications. With this

new tool, which we call APST-DV, users can de-

ploy applications on a wide variety of resources

completely automatically and transparently. We

use a case study to demonstrate how users can

do this easily and effectively.

The challenge of divisible load application

performance has received a lot of attention in the

literature and many authors have proposed divis-

ible load scheduling (DLS) algorithms. Conse-

quently, we have implemented some of the most

recent and efficient DLS algorithms in APST-

DV. Our second contribution in this paper is

a practical evaluation and comparison of these

algorithms, obtained by running APST-DV on

a real-world platform. Beyond demonstrating

APST-DV’s functionality, these experiments al-

low us to identify issues relevant to the use of

divisible load theory in practice.

This paper is organized as follows. We

present background on divisible load applica-

tions and research in Section 2. Section 3 briefly

describes the APST software and highlight the

key aspects of our implementation of APST-DV,

including the DLS algorithms. We present our

experimental results in Section 4, followed by

our case study in Section 5. Section 6 concludes

the paper with future directions.

2 Divisible Load: Applica-

tions and Scheduling Algo-

rithms

In this section we define the divisible load

model, give examples of real-world divisible

load applications, and provide a small survey

that highlights the spectrum of application char-

acteristics. We then review relevant previous

work in the area of DLS.

2.1 Divisible Load Applications

The input to a divisible load application con-

sists of many small independent parts, and the

processing time of each part is small compared

to the time to process the whole input. So the

total input can be divided into chunks of arbi-

trary sizes, which may be processed in any or-

der (and each chunk may itself contain an ar-

bitrary number of small parts). Correspond-

ingly, the computation can be easily decom-

posed into sub-tasks and can thus be easily de-

ployed on distributed computing platforms in a

master-worker fashion. Divisible load applica-

tions are similar to many so-called “embarrass-

ingly parallel applications”, but we use the “di-

visible load” term to emphasize that these appli-

cations are data-intensive and that communica-

tion takes a non-negligible amount of time. In

fact, a large part of the difficulty of achieving

high performance for these applications comes

from the need to orchestrate communication and

computation.

Many real-world applications fit the divisi-

ble load model, including pattern searching ap-

plications in computational biology [26], video

compression applications [35, 2], volume ren-

dering applications that are used for scien-

tific computing and biomedicine [36, 49, 16,

10, 21, 46, 16], and even data mining appli-

cations [4, 24, 18]. These applications have
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different characteristics, in terms of total run-

ning time, total data size, and computation-

communication ratio (which we denote by r
throughout). To get an idea of this diversity,

we conducted simple experiments for three spe-

cific applications: (1) HMMER [26], a bioin-

formatics application that compares a given

protein profile to a database using a Hidden

Markov Model technique (we used the example

profile globin.hmm generated from the HM-

MER tutorial dataset against the nr database

from the National Center for Biotechnology

Information [38]); (2) MPEG4 compression,

using the divx4 library and mencoder fron-

tend [35] to compress an MPEG2 source file;

and (3) VFleet [45], a volume rendering applica-

tion (we rendered the 256x256x167 “bigbrain”

dataset from the VolPack site [48], scaled to

512x512x334, which is more representative of

today’s volume rendering requirements).

Table 1 shows for each of these three ap-

plications the input size in MB, the running

time in seconds on an Athlon 1.8GHz, and the

computation-communication ratio r computed

assuming a 100 Mb/s data transfer rate. The

table also shows data for the Data Mining ap-

plication presented in [43]. The main point to

draw from the data is that these applications ex-

hibit different characteristics, and in particular a

wide range of values for r (differences of more

than one order of magnitude).

The fifth column in Table 1 shows the coef-

ficient of variance (i.e., standard deviation di-

vided by the mean, in percentage) of the amount

of computation per unit of load, which we call

γ. We can see that some applications exhibit

a γ value up to approximately 10%, due to

data-dependent and/or non-deterministic com-

putation. In terms of scheduling, this implies

that there will be some uncertainty when pre-

dicting the computation time of a chunk of

load, which can negatively impact the sched-

ule. While at first glance 10% may seem rela-

tively low, it can cause significant load imbal-

ance. The last column of Table 1 shows the

value (max−min)/mean, where max and min
are the maximum and minimum running time

for each unit of load, respectively, and mean is

the mean running time. We see that for MPEG4

compression, the slowest work unit may take

30% longer than the fastest unit, and for HM-

MER, the ratio is 2700%. We can then conclude

that, for some divisible load applications, using

the mean load unit execution time as a predic-

tion of the compute time of a unit of load may

lead to considerable performance prediction er-

rors. In fact, in many situations no good pre-

diction can be performed and a scheduling algo-

rithm would have to be designed to tolerate such

uncertainty.

2.2 Divisible Load Scheduling

An important problem whose solution holds the

key to high performance for divisible load ap-

plications on distributed computing platforms

is Divisible Load Scheduling (DLS): the de-

cision process by which the load is divided

and assigned to compute resources, with the

goal of minimizing application “makespan”,

i.e. execution time. While the divisible na-

ture of the load makes DLS more tractable

than other scheduling problems (e.g., ones with

fixed-size tasks) and some optimality results are

known in a few cases, many challenging issues

must be addressed for efficient scheduling [9].

The first proposed DLS algorithms were One-

Round algorithms, so called because they as-

sign each worker exactly one chunk of the load.

These algorithms were studied for many plat-

form topologies (e.g., Linear Networks, Single-

level Trees, Meshes, Hypercubes) and we refer

the reader to [9] for references to specific pa-

pers. Most of these algorithms assume purely

linear cost for transfer and computation, that is

the time to transfer some amount of data is pro-
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Application input size (MB) running time (sec) r γ max−min

mean

HMMER 802.0 534 6.7 9% 2700%

MPEG 716.8 2494 34.8 10% 30%

VFleet 87.5 600 68.0 1% 2%

Data Mining 400.0 3150 78.0 N/A N/A

Table 1: Characteristics of 4 divisible load applications: input data size, running time on a 1.8GHz

Athlon, communication/computation ratio (r) assuming a 100Mb/sec network, coefficient of vari-

ation of the running time of a unit of load (γ), and percentage spread of the running time of a unit

of load (max−min

mean
).

portional to the data size. The most recent ones

consider communication start-up costs, i.e. they

assume an affine communication cost model,

which is known to be more realistic as real net-

works do experience start-up costs (e.g., laten-

cies, overhead for establishing connections).

One clear limitation of One-Round algo-

rithms is that they do not overlap communica-

tion with computation well, which led to the de-

velopment of Multi-Round algorithms that as-

sign multiple chunks to each worker in rounds

and increase chunk size throughout applica-

tion execution in an attempt to pipeline com-

munication and computation. Much fewer re-

sults are available for Multi-Round algorithms

than for One-Round algorithms and they are all

on single-level tree topologies. The algorithm

in [11] proposes a multi-round algorithm that as-

sumes purely linear communication and compu-

tation costs. [51] extends this algorithm to affine

costs for both communications and computa-

tions, which is more representative of real-world

platforms. Both these algorithms assume that

the number of rounds is magically fixed and are

only applicable to homogeneous platforms. By

contrast, the UMR algorithm in [52] computes a

near-optimal number of rounds with affine com-

munication and computation costs and is appli-

cable to heterogeneous platforms, which rep-

resents a major advance for using multi-round

DLS in practice.

Finally, the recently proposed RUMR algo-

rithms [52] extends UMR and attempts to mit-

igate the effects of uncertainty on chunk com-

munication and computation times, which can

be caused by the platform (e.g., when resources

are non-dedicated and time-shared) or by the

application (i.e., when the computation is data-

dependent). The RUMR approach is to first in-

crease chunk size for better pipelining, as UMR,

but decrease chunk size towards the end of

the application execution to tolerate uncertainty.

The notion of decreasing chunk size for better

robustness to uncertainty was pioneered by the

GSS and Factoring approach [27, 25, 28].

In this work we focus on Multi-Round algo-

rithms, as they achieve better performance than

One-Round algorithms. We target distributed

Grid platforms that aggregate multiple paral-

lel computing platforms, typically commodity

clusters. These platforms can be easily modeled

as single-level trees in which each leaf is a clus-

ter and the root is the master holding the appli-

cation’s input data, which makes Multi-Round

algorithms applicable. We refer the reader to re-

cent surveys [12, 40], to the special issue of the

Cluster Computing journal [1], and to the Web

page collecting related literature [41] for more

details about DLS research.
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3 The APST-DV Software

3.1 APST Background

APST is a Grid application execution environ-

ment originally targeted to “Parameter Sweep

Applications” that consist of a fixed number

of independent tasks. The APST software was

designed with the goal of fully automated and

transparent deployment of applications on Grid

platforms, as well as high performance via ef-

ficient scheduling. APST runs as two distinct

processes: a daemon and a client. The dae-

mon is in charge of deploying and monitoring

applications. Its central component is a sched-

uler that makes all resource allocation decisions.

The client is essentially a console (several APIs

are also available) that can be used by the user

to interact with the daemon (e.g., to submit re-

quests for computation). The user interface is

XML-based and no modification of the applica-

tion is required.

APST relies on deployed services to access

and monitor storage, compute, and network re-

sources. Compute resources can be accessed

via the Globus toolkit [23], or via Ssh as a de-

fault. APST can use the above mechanisms to

access batch-scheduled resources via PBS [39],

LoadLeveler [33], Sun Grid Engine [42], Con-

dor [32], etc. APST can read, copy, transfer, and

store application data among storage resources

with GASS [19], GridFTP [3], or SRB [8]. As

defaults, APST can also use Scp or FTP. Finally,

APST can obtain static and dynamic informa-

tion from the MDS [17], NWS [50], and Gan-

glia [20] information services. APST also learns

about the performance of available resources by

keeping track of their past performance when

computing application tasks or transferring ap-

plication data.

APST is currently used in production for a

number of applications, including the MCell

neuroscience application [13], the Encyclo-

pedia of Life (EOL) bioinformatics applica-

tion [31], the Vizport visualization portal [47],

and the discrete-event simulation application

SIMGRID [30]. We refer the reader to [15, 5]

for more details about APST.

3.2 APST-DV: Motivation and De-

sign

APST is not well-suited to divisible load appli-

cations as it expects a finite and complete list

of application tasks as input. As a result, cur-

rent divisible load application users are forced

to divide the load manually into some number of

sub-tasks. However, the field of DLS research

shows that load division is a difficult problem

and that simple solutions (e.g., divide the load

in many small identical pieces) are bound to

achieve poor performance. So while APST im-

plements good scheduling algorithms and does

the best it can with the divided load submitted

by the user, different division schemes that ac-

count for both application and resource charac-

teristics would inherently allow higher perfor-

mance.

The success of APST is mostly due to the fact

that it does not require modification of the appli-

cation, requires only a minimal understanding

of XML, and can be used immediately within

a small local-area network with default mech-

anisms. Users can then easily and progres-

sively transition to larger scale Grids because

APST transparently builds on the base Grid soft-

ware infrastructure. We wish to build on these

strengths and extend APST to support divisible

load applications. We call this extension APST-

DV.

APST-DV needs to accomplish the following.

It must provide a way for the user to specify a di-

visible load application in XML. It needs to di-

vide the load into individual tasks (or “chunks”).

This must be done according to a DLS algo-
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rithm. Such algorithms typically require infor-

mation about the application and the resources

(e.g., how fast one unit of load runs on a given

resource), and APST-DV must obtain such in-

formation automatically. The chunks must then

be sent out to storage resources and computation

must be initiated on remote compute resources,

which can be accomplished easily as APST al-

ready provides mechanisms for accessing a wide

range of resources. Finally, output from chunk

computation needs to be returned to the users

and, most likely, “glued” together. This last step

is typically application-specific and we leave it

to the user. We briefly review interesting aspects

of our implementation of APST-DV below.

3.3 XML Divisible Load Specifica-

tion

We have added a new XML element to APST,

divisibility, within the existing task

construct. See Figure 1 for a sample divisible

load specification, and the APST webpage [5]

for a complete description of APST’s XML

schema. The input attribute specifies the

file(s) that contain the load’s input data that must

be divided. The method attribute specifies

the method used for dividing the input file(s),

which will be described in more detail in Sec-

tion 3.4. In this example the method used is

uniform, which is defined by the following

three attributes: the start attribute specifies

the starting offset in the load, that is not to be

used in a chunk of load; the steptype at-

tribute specifies the type of load unit, for exam-

ple bytes; and the stepsize attribute is used

to indicate how many load units can go in a

chunk. In the sample XML the input file can

be divided at each 10-byte boundary starting at

byte 0 (meaning that the size of each load chunk

in bytes will be a multiple of 10). Note that

APST-DV divides the load on-the-fly, thereby

<task

executable="a_divisible_app"

input="bigfile"

>

<divisibility

input="bigfile"

method="uniform"

start="0"

steptype="bytes"

stepsize="10"

algorithm="rumr"

probe="probefile"

/>

</task>

Figure 1: Sample APST-DV XML specification

of a divisible load application.

avoiding creating a prohibitive number of files

for each individual chunk.

In our current prototype the algorithm at-

tribute specifies which DLS algorithm to use for

scheduling the applications (rumr in the exam-

ple). Eventually this could be determined auto-

matically by APST. The meaning of the probe

attribute will be explained in Section 3.5.

3.4 Load Division Methods

In the ideal divisible load model the input can be

divided continuously, exactly as the scheduling

algorithm dictates. However, depending on the

application, some cut-off points in a load would

be valid, and some would not. To enable the

user to specify where the load can be divided,

APST-DV implements three methods to deter-

mine what the closest valid cut-off point is to the

cut-off point that is requested by the scheduling

algorithm.

Uniform – With the uniform division method

a cut-off point can be at some number of

load units from the beginning of the load.

There are two types of load unit, specified by

the steptype attribute, which are bytes
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separator. A valid cut-off point is measured

in the number of steps from the beginning of

the load, where a step is a number of load units.

This step size is specified by the stepsize at-

tribute (see Figure 1). If the load unit is bytes,

and the step size is 10, it means that the load

can be cut at every 10 bytes from the start. For

the separator type a valid cut-off point is in-

dicated by the occurrence of a special separator

character or characters in the load. This separa-

tor character is specified in the APST-DV XML

specification by the separator attribute.

Index – With the index division method, the

user supplies an index file, containing an entry

for every valid cut-off point. For every desired

cut-off point the scheduling algorithm consults

the index file to find the nearest valid cut-off

point. Cut-off points are specified as number of

bytes from the beginning of the load file. The

index file is specified in the XML specification

by the indexfile attribute.

Callback – In some cases, the uniform and in-

dex division methods are not flexible enough.

For instance, it may be that to extract chunks

out of the load some additional work is needed

beyond just extracting bytes (e.g. prepend each

chunk with some header, do some application-

specific formatting). In other cases, even when

such additional work is not needed, the user may

have at his/her disposal a convenient tool that

can be used to extract chunks efficiently. For

such cases, APST-DV provides the callback di-

vision method, which allows the user to supply

a program to perform load division. APST-DV

can call this program, passing it an offset and

a chunk size, both specified in terms of num-

ber of “work units” whose sizes are application-

specific (by contrast with a fixed number of

bytes as in the Uniform method for instance).

Note that the total number of work units in the

load is given in the XML application specifica-

tion via the load attribute. The callback pro-

grams then extracts the chunk data from the load

and places it into a temporary file that APST-DV

can send to remote resources to initiate chunk

computation. The callback program and its pos-

sible command line arguments (for instance a

typical callback program would take the name

of the input file containing the entire load as

a command-line argument) are specified in the

XML specification by the callback and the

arguments attributes.

3.5 Collection of Resource Informa-

tion

DLS algorithms, like most scheduling algo-

rithms, make their decisions based on applica-

tion and resource information. There are two

approaches to gather such information. The first

approach is to rely on application performance

models and on resource information provided

by services such as MDS [17], NWS [50], Gan-

glia [20]. Some of this information can be dy-

namic and must be retrieved periodically. The

advantage of this approach is that it is light-

weight. The drawback is that it requires an in-

frastructure to be installed, and that it is often

difficult in practice to obtain accurate estimates

of computation and transfer times for a particu-

lar application based on monitored resource in-

formation. The second approach is to just ob-

serve application performance for a few appli-

cation tasks and data transfers, and use this ob-

servation to estimate the performance of all ap-

plication components. This approach is more

costly as real work needs to be done to obtain

performance information, although this work

can be useful to the application, but more ac-

curate as the performance delivered by the re-

sources is experienced directly at the application

level.

Since our target applications typically exhibit
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long execution times, we opted for the second

approach. This approach has actually been ex-

plored in the context of DLS in [22]. The idea

is to “probe” the resources by sending out a rel-

atively small chunk of the overall load to each

available resource and observing chunk transfer

time and chunk execution time. We use a very

simple probing strategy in our current APST-DV

implementation: we do a round of probing, and

then start the real application execution. The

load we use for probing is not part of the ac-

tual load, but instead consists of a separate, user-

specified small input file that is representative

of the application’s load. “Representative” may

mean “close to the average case” for scenarios

in which there is uncertainty on the computa-

tional cost of a unit of load (see Section 2.1).

The input file used for probing is specified by

the probefile attribute in the XML specifi-

cation of a divisible load application. The work

in [22] proposes sophisticated probing strategies

that overlap probing with application execution,

which we could explore in future work to further

increase performance.

Finally, some of the scheduling algorithms

implemented in APST-DV require estimates for

communication and computation start-up costs.

APST-DV obtains these estimates periodically

by launching no-op jobs on each worker and

transferring empty files to storage resources.

3.6 Scheduling in APST-DV

The current APST-DV prototype implements

the following four DLS scheduling algorithms:

SIMPLE-n – uniformly divides the input

among the workers, and divides the data for each

worker into n chunks. No probing is used. This

is the simplistic “static chunking” approach that

is currently used by divisible load application

users who use APST. We used SIMPLE-1 and

SIMPLE-5 in our experiments.

Uniform Multi-Round (UMR) [53] –

a recently proposed DLS algorithm that

(i) is designed to maximize communica-

tion/computation overlap; (ii) uses multiple

rounds; (iii) accounts for communication and

computation start-up costs; (iv) computes a

near-optimal number of rounds; and (v) can

be used on heterogeneous platforms. Points

(iii)-(v) above represent significant advances

over previously proposed algorithms and make

multi-round DLS feasible in practice. (See

Section 2.2 for a brief discussion of multi-round

DLS.) UMR increases chunk size geometrically

throughout execution to achieve good pipelin-

ing of communication and computation. This

algorithm uses probing.

Weighted Factoring [28] – divides the load

into chunks in rounds, and decreases chunk

size by 2 between rounds (down to a minimal

chunk size). Chunks are sent out to workers

in a greedy fashion. The algorithm is called

“weighted” because the size of a chunk assigned

to a worker is proportional to the worker’s

speed, which is known to achieve better load-

balancing than plain factoring. Our implemen-

tation of weighted factoring uses probing. It

also observes chunk execution times through-

out application execution to refine its estimates

of worker speeds. None of the other algorithms

performs such adaptation. The factoring method

was specifically designed to deal with uncer-

tainty in computation times: application exe-

cution ends with small chunks, which makes it

easier to do load-balancing. However, Factoring

was not designed to maximize overlap of com-

munication and computation.

Robust Uniform Multi-Round (RUMR)

[52] – One problem with UMR is that, unlike
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Factoring, it was not designed to tolerate

uncertainty on chunk transfer/execution times

(execution ends with large chunks). To achieve

the best of both worlds, the RUMR algorithm

splits application execution into 2 phases.

During the first phase chunk size is increased

using the UMR algorithm, and during the

second phase chunk size is decreased using

Weighted Factoring. The RUMR algorithm uses

a heuristic to determine when to start the second

phase. We also experiment with a version of

RUMR called Fixed-RUMR presented in [52]

that always schedules 80% of the load in the

first phase. RUMR uses probing.

Some of the above algorithms have been eval-

uated in simulation in previous work. For in-

stance, in [53] it was shown that UMR out-

performs competing multi-round algorithms and

largely outperforms SIMPLE-n. In [52] it was

shown that RUMR outperforms both UMR and

Factoring for a wide range of uncertainty on

chunk compute and transfer time. While these

results are valuable, our goal here is to run

these algorithms in the real world and observe

what truly happens. In fact, just going through

the process of implementing these algorithms as

part of usable software has highlighted several

interesting practical issues.

4 Experimental Evaluation

4.1 Methodology

Application – We have seen in Section 2.1 that

the fundamental characteristics of divisible load

applications span a range of values. Rather than

picking one single application, which would

limit the space of our evaluation, or trying to run

a large number of different applications, which

would require a lot of unnecessary effort, we

opted for using a synthetic application. Note

that we have tested APST-DV with the real-

world applications mentioned in Section 2.1,

and that we present a case study with a real ap-

plication in Section 5. Our synthetic applica-

tion reads in an input file and does some float-

ing point operations in a loop, l times. This syn-

thetic application can be tuned to exhibit spe-

cific application characteristics. In particular,

the communication/computation ratio, r, and

the uncertainty on load unit computation time,

γ (we use a Normal distribution for generating

random computational costs for units of load).

In our experiment we experiment with several

values for l and on different platforms, which

leads to different values for r, and with γ = 0%
and γ = 10% to look at applications that do not

or do exhibit inherent uncertainty (these values

are the two extremes of the range of values with

have seen with real-world applications).

Computing Platform – We used a small Grid

consisting of two clusters: the Meteor cluster at

the San Diego Supercomputer Center (SDSC),

which consists of 57 dual-processor Pentium III

790∼996MHz nodes; and the DAS-2 cluster

at Vrije Universiteit in Amsterdam, the Nether-

lands, which consists of 72 dual-processor 1Ghz

Pentium-III nodes. We access the clusters via

the SGE [42] and PBS [39] batch schedulers.

The APST-DV daemon and initial input for

the divisible load application were located in

the Grid Research and Innovation Laboratory

(GRAIL) at UCSD, about 1/2 mile from SDSC.

Our focus on platforms whose processors are

dedicated during application execution is repre-

sentative of most production environments. Ex-

plicitly accounting for delays incurred to ac-

quire these resources (e.g., batch queue wait-

ing time) is difficult. In our experiments we

just wait for all batch resources to be allocated.

This is so that we can ignore the effects of queue

waiting time and perform deterministic and fair

comparisons among experiments. In practice,

the APST-DV implementation just treats a set of

9



batch-scheduled clusters as a dynamically grow-

ing and shrinking pool of processors.

Uncertainty – We wish to study the effect of

uncertainty, which causes performance predic-

tion errors, on divisible load scheduling. In-

deed, some of the DLS algorithms described

in Section 3.6, namely RUMR and Factoring,

have been specifically designed to tolerate per-

formance prediction errors, and we wish to eval-

uate how robust they are in practice. Uncertainty

can come from two sources: the application it-

self, and the compute platform. As seen above,

we experiment with γ = 0% and γ = 10%, with

the latter generating inherent uncertainty in the

chunk execution time. By contrast, our work-

ers are dedicated, as they are batch-scheduled,

and do not lead to (significant) uncertainty. This

is required to enable reproducible, scientifically

valid, real-world experiments (in our previous

work we experimented with uncertainty in sim-

ulation [52]). Another source of uncertainty

was the network, but we witnessed stable net-

work conditions during our experiments. Con-

sequently, the only significant source of uncer-

tainty in our setup is the application itself which

allows us to control our experiments.

Note that the uncertainty due to fluctua-

tions in availability of compute and network re-

sources likely have different statistical proper-

ties than the uncertainty that we model in our

application, and that results obtained in an en-

vironment in which the source of uncertainty

comes from resources could differ from the ones

presented in this paper. It is outside the scope

of this paper to study the impact of the spe-

cific statistical properties of uncertainty on di-

visible load scheduling, but APST-DV would be

an ideal platform for such an investigation.
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Figure 2: DAS-2, 16 nodes

4.2 Experimental Results

We ran APST-DV with all the DLS algorithms

described in Section 3.6, back-to-back. Each

data point corresponds to an average over 10 dis-

tinct runs. Each application run lasted between

68 minutes and 178 minutes, depending on the

resources and the scheduling algorithm used.

DAS-2, 16 nodes, r = 37, γ = 0, 10 – We first

ran our application only on the DAS-2 clus-

ter. For each algorithm we compute the (av-

erage) application makespan achieved. Results

are shown in Figure 2 for γ = 0 and γ = 10.

For γ = 0 we found expected results. The

RUMR and UMR algorithms (note that in this

case we have no uncertainty and RUMR degen-

erates to pure UMR) lead to the best perfor-

mance as they overlap communication and com-

putation well and account for the large start-

up costs for communication and computation

(around 6.4s and 0.7s respectively in this case).

The second closest algorithm is SIMPLE-5 (5%

slower), while SIMPLE-1 is 26% slower. The

10



factoring algorithms are roughly 10% slower

than UMR/RUMR, due to poor overlap of com-

munication with computation. These results

confirms the simulation results presented in [53,

52].

For γ = 10 something surprising hap-

pens. With more uncertainty we would expect

Weighted Factoring to perform relatively better

than UMR, which is the case (e.g., Weighted

Factoring is about 8% faster than UMR). How-

ever, the simulation results in [52] indicate that

RUMR should outperform Weighted Factoring

as it strives to both overlap communication and

computation, and to mitigate the effects of un-

certainty. However, RUMR exhibits poor per-

formance when compared to Weighted Factor-

ing. After looking into the detailed execu-

tion report generated by APST-DV, this is what

we found: the RUMR algorithm as developed

in [52] assumes that the value for γ is known

in advance and, using this value, pre-determines

when the second phase (i.e., the factoring phase)

should begin. However, in our experiments, the

value of γ is “discovered” throughout applica-

tion execution. We found that in most cases,

when RUMR discovers that it should switch

to its factoring phase, it is too late and the

last round (which is large since UMR increases

chunk size) has already been started. This pre-

vents RUMR from doing a late switch to its sec-

ond phases, meaning that factoring is in fact

never used. This is a good example of an as-

pect of DLS theoretical research that does not

translate well to practice. This observation high-

lights a major limitation of the RUMR algo-

rithm (although it may be argued that uncer-

tainty could be learned from past application

executions). Importantly, we can see that the

Fixed-RUMR algorithm does the best in our

experiments, therefore justifying that RUMR’s

two-phase approach is sound, provided there is

a mechanism for switching to the second phase

in time.
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Figure 3: Meteor, 16 nodes

Meteor, 16 nodes, r = 46, γ = 0, 10 – Using

only the Meteor cluster we have a higher value

for r and obtained the results shown in Figure 3.

For γ = 0 we can see that all algorithms

achieve comparable performance, except for

SIMPLE-1 and SIMPLE-5, which are 21%

and 24% slower than the best algorithm. In

this environment start-up costs are low (around

0.7s for communication and 0.1s for computa-

tion) since the Meteor cluster is close to the

APST daemon. (The network bandwidth is also

marginally higher: around 116 kB/sec com-

pared to 92 kB/sec to the DAS-2 cluster.) As

a result, the UMR approach does not lead to any

advantage as it is really designed to handle sit-

uations in which start-up costs are significant.

The SIMPLE-n algorithms do not perform well,

as expected.

For γ = 10, the only thing that matters for

performance in this environment is adaptation to

uncertainty and clearly the Weighted Factoring

approach is the best. UMR and RUMR (20%
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Figure 4: Meteor+DAS-2, 16 nodes

and 23% slower) suffer from the same problems

as discussed above for the DAS-2 experiments.

But, importantly, Fixed-RUMR leads to roughly

the same performance as Weighted Factoring.

These results show that if the platform is a

nearby dedicated cluster, then a simple factoring

approach is sufficient, which is not surprising.

DAS-2 (8 nodes) + Meteor (8 nodes), γ =

0, 10 – In these experiments we used nodes

from the two clusters, so the communica-

tion/computation ratio was a mix of the ones

for the two previous experiments. Results are

shown in Figure 4. The results here show

that with no uncertainty (γ = 0), UMR and

RUMR lead to the best performance (again,

they are identical in this case) and SIMPLE-

1 and SIMPLE-5 have poor performance (25%

and 17% slower). When there is uncertainty

(γ = 10), Weighted Factoring and Fixed-RUMR

lead to the best performance. Once again, the

SIMPLE-1 and SIMPLE-5 algorithms do not

perform well (28% and 14% slower).

4.3 Discussion

From the experimental results above (we also

ran experiments with different subsets of our

clusters and different values of l but did not learn

anything different) we draw the following broad

conclusions:

1. The SIMPLE-n algorithm, which is what

current APST users are using for running

divisible load applications, is always ineffi-

cient (on average SIMPLE-1 and SIMPLE-

5 are 28% and 18% slower than the best al-

gorithm). As a result, our work on APST-

DV has already significantly improved the

state of practical deployment for these ap-

plications.

2. The UMR approach is best when uncer-

tainty is low, as it accounts for communi-

cation and computation start-up costs, and

overlaps communication with computation

well. Its performance is poor when uncer-

tainty becomes significant (on average 17%

slower than the best algorithm).

3. Expectedly, when the platform consist of a

single, nearby cluster, then a simple factor-

ing approach is sufficient.

4. The general RUMR approach is the most

effective across the board for low and high

uncertainty, but the algorithm as it was pro-

posed in [52] does not do well in prac-

tice. Indeed, it does not switch to its sec-

ond phase in time. This was shown by the

good performance exhibited by the Fixed-

RUMR version. A key direction for further

RUMR development is to solve this prob-

lem and in the meantime Fixed-RUMR can

be used by APST-DV users.
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5 Case Study: MPEG-4 En-

coding

In this case study we use APST-DV to run a

parallel MPEG-4 [37] encoding application to

compress a DV [29] format video file, shot with

a digital video camera. There are many MPEG-

4 encoders available and we use mencoder [35],

which is an open source command line tool for

decoding, filtering, and encoding video and au-

dio files. One of the merits of APST-DV is that

it can deploy readily available applications, such

as mencoder, without the need to modify them.

5.1 APST-DV Usage

APST-DV needs to be able to divide the input

file’s load into chunks, which in the case study

is done using the callback division method. This

method uses an external program to create the

load chunks. It is up to the end user to provide

this callback program, but APST-DV provides

two example callback programs (written in C

and Perl) that are easily modified and adapted to

a particular application. In our setup we mod-

ified the Perl example callback program. We

managed to keep the modifications to the Perl

script very simple, because we use a readily

available tool called avisplit to do the actual

work. This tool can be used to divide any AVI

[6] file into smaller files, and the Perl script is

just a wrapper around the avisplit program. An-

other tool named avimerge can be used by the

end user to merge all the output files together.

Both these tools are part of the open source

transcode [44] video stream processing toolkit.

In Figure 5 we can see step by step how the

divisible load application is run:

1. The user provides the APST-DV daemon

with the input file(s) and the XML speci-

fication of the divisible load application.
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Figure 5: Case study scenario.

2. The APST-DV daemon uses the callback

program, which uses the avisplit tool, to

create the load chunks.

3. The APST-DV daemon sends the chunks to

the workers on the Grid, and starts and en-

coding task on each worker.

4. The workers use the mencoder program to

encode their chunk of load.

5. The APST-DV daemon downloads the out-

put files from the workers.

6. The end user retrieves the output files from

the APST-DV daemon.

7. The end user uses the avimerge tool to

merge the output files together into one out-

put file.

This shows how APST-DV makes it straightfor-

ward for the end user to run a real-world divisi-

ble load application. All the end user has to do
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<task

executable="run_mencoder.sh"

arguments="input.avi mpeg4.avi"

input="input.avi"

output="mpeg4.avi"

>

<divisibility

input="input.avi"

method="callback"

load="1830"

callback="callback_avisplit.pl"

arguments="input.avi"

algorithm="rumr"

probe="probe.avi"

probe_load="21"

/>

</task>

Figure 6: APST-DV XML application specifica-

tion used in the case study.

to setup the system is to create the XML spec-

ification file and modify the example callback

program to create a wrapper around an existing

tool. We describe the XML specification in what

follows.

As far as APST-DV is concerned, the applica-

tion consists of a specification of input and out-

put files, an executable with command-line ar-

guments, and a specification of the application’s

divisibility. Figure 6 shows the task part of the

XML specification file that is used in the case

study. Both the input file (input.avi) and

the probe file (probe.avi) are DV encoded

movies, and the output file (mpeg4.avi) is an

MPEG-4 encoded movie. The input.avi file

is 209 MB in size, and contains 1,830 frames,

which comes down to about 1 minute of video

footage. The probe.avi file is 2.4 MB in

size, and contains 21 frames, which is 0.7 sec-

onds of video footage.

The load division method that is used is

the callback method, and the callback pro-

gram that is used is a Perl script called

callback avisplit.pl. As described

earlier, this script uses the avisplit tool to cre-

ate chunks by specifying the desired range of

frames. Note that the load in this case study is

measured in frames instead of bytes (see the de-

scription of the callback division method in Sec-

tion 3.4). This alternative load size is specified

in the XML specification, shown in Figure 6, us-

ing the load and probe load attributes. The

number of frames in the divisible input file that

we use (input.avi) is 1830, and the probe

file (probe.avi) contains 21 frames. Note

that a movie file containing an hour of footage

has a load of 108,000 frames and is about 12 GB

in size. The callback division method enables us

to use the avisplit tool, rather than developing

our own tool. This demonstrates that APST-DV

provides a flexible way for users to define their

loads, and integrates well with tools that may be

at the user’s disposal.

5.2 Experimental Runs

For this case study we used a platform consist-

ing of 6 hosts at the Grid Research and Innova-

tion Laboratory (GRAIL) at UCSD. It is a col-

lection of non-dedicated Linux workstations on

a single 100Mb/sec LAN. Because one of the

hosts has two CPUs, this comes to a total of 7

processors, with speeds of 700MHz (1 x AMD

Athlon) and 1.73 GHz (6 x AMD Athlon XP). In

this run all compute resources are accessed via

Ssh and files are moved using Scp. This con-

figuration is easily described to APST-DV using

the traditional APST XML resource description

schema [5].

We ran 10 runs of the application for each

scheduling algorithm, and each run lasted be-

tween 12 and 21 minutes. As the hosts that were

used for this experiment were not dedicated to

our application, there is some uncontrolled un-

certainty in chunk execution time, and the re-

sults comparison of the different scheduling al-

gorithms are not as dependable as the results of
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the experiments described in Section 4. The av-

erage value for γ (the coefficient of variance of

the amount of computation per unit of load) that

was measured in this experiment is 20%, and the

communication/computation ratio r is 13.5.

Because of the fluctuation of resource avail-

ability, it was to be expected that the more

adaptive algorithms would work best in this en-

vironment. Furthermore, due to the fast net-

work, overlap of communication with computa-

tion is not critical. And Indeed, Weighted Fac-

toring leads to the best performance. Interest-

ingly, RUMR’s performance is roughly the same

(within 2%). By contrast to the other experi-

ments that we ran, the RUMR algorithm suc-

cessfully switches to its second phase in every

one of the ten runs, due to the fact that the γ
value was higher than in the experiments in the

previous section. This may indicate that the

phase switching problem identified in the pre-

vious section is only faced for moderate uncer-

tainty, which we will confirm with further ex-

perimentation. UMR and Fixed-RUMR perform

very similarly, around 7% slower than Weighted

Factoring, as they do not account for uncertainty

sufficiently. As expected, Simple-5 and Simple-

1 do not perform well, 38% and 52% slower

than Weighted Factoring.

6 Conclusion

In this paper we have presented and evalu-

ated APST-DV, an extension to the APST Grid

application-level tool to support Divisible Load

Applications. These applications are common-

place, as seen in Section 2.1, and to the best

of our knowledge our work provides the first

generic software environment to deploy them

on current distributed computing platforms. We

have demonstrated the use of APST-DV with

an MPEG-4 encoding case study, showing that

a user can easily and effectively use readily

available tools together with APST-DV to run

real-world divisible load applications. APST-

DV embeds a scheduler that currently imple-

ments four Divisible Load Scheduling (DLS) al-

gorithms. We experimentally evaluated these al-

gorithms on a real-world testbed consisting of

two geographically distant clusters. Our exper-

iments show that the simplistic “static chunk-

ing” approach used by current APST users to

run divisible load applications is not effective.

Among other results, we have found that the

RUMR approach proposed in [52], which uses

UMR in a first phase followed by factoring in

a second phase, is the most effective across the

board (i.e., it is never significantly worse than

any competing algorithms, and it was signifi-

cantly better than each in at least one set of

experiments). One limitation of this approach,

however, is that a better mechanism for switch-

ing between the two phases of its execution is

needed. This was not an issue in the uncon-

trolled experiments we performed in our case

study as the uncertainty was large enough (γ
around 20%) that the second phase would be

started early in the execution. However, in our

controlled experiments with more limited un-

certainty (γ around 10%) we observed that by

the time RUMR decides to switch to its second

phase it is already too late and the last round is

already under way. For now we have addressed

this problem with a simple version of the algo-

rithm, Fixed-RUMR, that performs well in prac-

tice.

We will extend this work in several directions.

First, we will investigate new ways in which

RUMR can switch to its second phase appropri-

ately. We will also implement an adaptive ver-

sion of RUMR that updates its view of the plat-

form after each sub-task completes (note that

our version of Weighted Factoring performed

such adaptation and thus has somewhat of an un-

fair advantage over RUMR). The results in this

paper validate our prototype implementation of
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APST-DV, and we will release the software as

part of the APST v2.3 distribution.
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41, LIP, École Normale Supérieure de Lyon,

September 2003.

[10] W. Bethel, B. Tierney, J. lee, D. Gunter, and

S. Lau. Using high-speed WANs and network

data caches to enable remote and distributed vi-

sualization. In Proceedings of Supercomputing

(SC’00), 2000.

[11] V. Bharadwaj, D. Ghose, and V. Mani. Multi-

Installment Load Distribution in Tree Net-

works With Delays,. IEEE Trans. on Aerospace

and Electronc Systems, 31(2):555–567, 1995.

[12] V. Bharadwaj, D. Ghose, and T. Robertazzi.

A new paradigm for load scheduling in dis-

tributed systems. Cluster Computing, 6(1):7–

18, 2003.

[13] H. Casanova, T. Bartol, J. Stiles, and

F. Berman. Distributing MCell Simulations on

the Grid. International Journal of High Per-

formance Computing Applications, 14(3):243–

257, 2001.

[14] H. Casanova and F. Berman. Parameter Sweeps

on The Grid With APST, chapter 26. Wiley

Publisher, Inc., 2002. F. Berman, G. Fox, and

T. Hey, editors.

[15] H. Casanova and F. Berman. Grid Comput-

ing: Making the Global Infrastructure a Real-

ity, chapter 33. John Wiley & Sons Publisher,

Inc., 2003.

[16] Y.-J. Chiang, R. Farias, C. T. Silva, and B. Wei.

A unified infrastructure for parallel out-of-core

16



isosurface extraction and volume rendering of

unstructured grids. In Proceedings of the IEEE

Symposium on Parallel and Large-data Visual-

ization and Graphics, pages 59–66, 2001.

[17] K. Czajkowski, S. Fitzgerald, I. Foster, and

C. Kesselman. Grid Information Services for

Distributed Resource Sharing. In Proceed-

ings of the 10th IEEE Symposium on High-

Performance Distributed Computing (HPDC-

10), August 2001.

[18] David Skillicorn. Strategies for Parallel Data

Mining. IEEE Concurrency, 7(4):26–35, 1999.

[19] I. Foster, C. Kesselman, J. Tedesco, and

S. Tuecke. GASS: A Data Movement and Ac-

cess Service for Wide Area Computing Sys-

tems. In Proceedings of the Sixth workshop on

I/O in Parallel and Distributed Systems, May

1999.

[20] The Ganglia Project.

http://ganglia.sourceforge.net.

[21] A. Garcia and H.-W. Shen. Parallel volume

rendering: An interleaved parallel volume ren-

derer with PC-clusters. In Proceedings of

the Fourth Eurographics Workshop on Paral-

lel Graphics and Visualization, pages 51–59,

2002.

[22] D. Ghose, H. J. Kim, and T. H. Kim.

Adaptive Divisible Load Scheduling Strate-

gies for Workstation Clusters with Unknown

Network Resources . Technical Report

KNU/CI/MSL/001/2003, Department of Con-

trol and Instrumentation Engineering, Kang-

won National University, Korea.

[23] The Globus Project. http://www.

globus.org.

[24] S. Goil and A. Choudhary. High performance

multidimensional analysis of large datasets.

In Proceedings of the 1st ACM international

workshop on Data warehousing and OLAP,

pages 34–39, 1998.

[25] T. Hagerup. Allocating Independent Tasks to

Parallel Processors: An Experimental Study.

Journal of Parallel and Distributed Computing,

47:185–197, 1997.

[26] HMMER Webpage. http://hmmer.

wustl.edu/hmmer-html/.

[27] S. Hummel. Factoring : a Method for Schedul-

ing Parallel Loops. Communications of the

ACM, 35(8):90–101, August 1992.

[28] S. F. Hummel, J. Schmidt, R. N. Uma, and

J. Wein. Load Sharing in Heterogeneous Sys-

tems via Weighted Factoring. In Proceedings

from 8’th Symposium on Parallel Algorithms

and Architectures, pages 318–328, 1996.

[29] International Electrotechnical Commission.

Recording - Helical-scan digital video cassette

recording system using 6,35 mm magnetic tape

for consumer use (525-60, 625-50, 1125-60

and 1250-50 systems). IEC 61834, 2001.

[30] A. Legrand, L. Marchal, and H. Casanova.

Scheduling Distributed Applications: The

SIMGRID Simulation Framework. In Proceed-

ings of the Third IEEE International Sympo-

sium on Cluster Computing and the Grid (CC-

Grid’03), May 2003.

[31] W. Li, R. Byrnes, J. Hayes, V. Reyes, A. Birn-

baum, A. Shabab, C. Mosley, D. Pekurowsky,

G. Quinn, I. Shindyalov, H. Casanova, L. Ang,

F. Berman, M. Miller, and P. Bourne. The En-

cyclopedia of Life Project: Grid Software and

Deployment. Journal of New Generation Com-

puting on Grid Systems for Life Sciences, 2004.

to appear.

[32] M. Litzkow, M. Livny, and M. Mutka. Con-

dor - A Hunter of Idle Workstations. In Pro-

ceesings of the 8th International Conference

of Distributed Computing Systems, pages 104–

111, June 1988.

[33] IBM LoadLeveler User’s Guide, 1993. IBM

Corporation.

17



[34] MCell Webpage. http://www.mcell.

cnl.salk.edu/.

[35] Mencoder media player. http://www.

mplayerhq.hu.

[36] G. Miller, D. G. Payne, T. N. Phung, H. Siegel,

and R. Williams. Parallel Processing of Space-

borne Imaging Radar Data. In Proceedings

from Supercomputing (SC’95), 1995.

[37] Overview of the mpeg-4 standard. http:

//www.chiariglione.org/mpeg/

standards/mpeg-4/mpeg-4.htm.

[38] National Center for Biotechnology Information

(NCBI). www.ncbi.nlm.nih.gov/.

[39] The Portable Batch System Webpage. http:

//www.openpbs.com.

[40] T. Robertazzi. Ten reasons to use divisible load

theory. IEEE Computer, 36(5):63–68, 2003.

[41] T. G. Robertazzi. Divisible Load Schedul-

ing. http://www.ece.sunysb.edu/

˜tom/dlt.html.

[42] Sun Grid Engine. http://gridengine.

sunsource.net/.

[43] T. Tamura, M. Oguchi, and M. Kitsuregawa.

Parallel database processing on a 100 Node PC

cluster: cases for decision support query pro-

cessing and data mining. In Proceedings of the

1997 ACM/IEEE conference on Supercomput-

ing, pages 1–16, November 1997.

[44] The transcode project. http://www.

theorie.physik.uni-goettingen.

de/˜ostreich/transcode.

[45] Vfleet volume rendering package.

http://www.psc.edu/Packages/

VFleet_Home.

[46] Visible human project. http:

//www.nlm.nih.gov/research/

visible/visible_human.html.

[47] The Scalable Vizualiation Toolkit VizPortal

project. https://gpadev.sdsc.edu/

dev/swhitmor/visPortal/.

[48] Volpack volume rendering package.

http://graphics.stanford.edu/

software/volpack/.

[49] A. Watt. 3D Computer Graphics, chapter 13.

Addison-Wesley.

[50] R. Wolski, N. Spring, and J. Hayes. The

Network Weather Service: A Distributed Re-

source Performance Forecasting Service for

Metacomputing. Future Generation Computer

Systems, 15(5-6):757–768, 1999.

[51] Y. Yang and H. Casanova. Extensions to

The Multi-Installment Algorithm: Affine Costs

and Output Data Transfers. Technical Re-

port CS2003-0754, Dept. of Computer Science

and Engineering, University of California, San

Diego, July 2003.

[52] Y. Yang and H. Casanova. RUMR: Robust

Scheduling for Divisible Workloads. In Pro-

ceedings of the 12th IEEE Symposium on High-

Performance Distributed Computing (HPDC-

12), June 2003.

[53] Y. Yang and H. Casanova. UMR: a Multi-

Round Algorithm for Scheduling Divisible

Workloads. In Proceedings of the International

Parallel and Distributed Processing Sympo-

sium (IPDPS 2003), April 2003.

18


