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Abstract

How do humans get better at planning? Previous work pos-
tulated that the improvement of cognitive strategies occurs
through feedback-based metacognitive reinforcement learning
(MCRL). However, it is not clear whether and, if so, how peo-
ple can learn planning strategies without reinforcement. To an-
swer these questions, we experimentally investigated the effect
of frequency of feedback on people’s ability to learn adaptive
planning strategies. We found that participants receiving feed-
back only 25% of the time nonetheless learned about as well
as participants receiving constant feedback. Quantitative mod-
elling of the data revealed that state-of-the-art MCRL models
cannot explain this finding. However, extending these mod-
els by a mechanism generating an additional learning signal
through self-evaluation of plan quality can account for peo-
ple’s ability to learn planning strategies without feedback. The
findings of this research have implications for the design of
learning environments and enabling people and machines to
self-sufficiently improve their strategies in naturalistic settings.

Keywords: metacognitive learning; strategy learning; cogni-
tive skill acquisition; reinforcement learning; decision-making

Introduction
People have been shown to use adaptive cognitive strategies
across diverse scenarios (Anderson, 2013; Lieder & Griffiths,
2020; Callaway et al., 2022). By employing a variety of
strategies, humans can meet the demands of environments
that differ vastly in structure and constraints. But people
are not endowed with all the concrete strategies required to
overcome specific challenges. Instead, some of these cogni-
tive skills are acquired through learning from trial and error
(VanLehn, 1996; Siegler, 1999; Siegler & Jenkins, 2014).

One such mechanism is learning from feedback (Brinko,
1993). An obvious example is the feedback of an experi-
enced teacher, who evaluates the appropriateness of a stu-
dent’s strategies. For example, a medical student, tasked with
diagnosing a patient based on certain symptoms, receives a
score about the quality of their diagnosis, and likely also ex-
plicit feedback on improving their process of investigation.

Recent work on metacognitive learning, the cognitive pro-
cess of adaptively improving cognitive skills, supports the
presence of feedback-driven reinforcement learning mecha-
nisms in the human brain for this type of adaptive learning
(Krueger, Lieder, & Griffiths, 2017; Lieder, Shenhav, Mus-
slick, & Griffiths, 2018; Jain et al., 2019; He & Lieder, 2022).
Computational models of this type of learning postulate mul-
tiple ways in which the brain represents planning strategies,

and how the brain uses feedback from the environment to it-
eratively adjust these strategies to improve performance.

However, it is not clear that metacognitive learning from
feedback is sufficient to capture the robustness of people’s
ability to learn adaptive cognitive strategies. Most real-world
scenarios do not provide explicit feedback on people’s ac-
tions, let alone their cognitive strategies. For example, a stu-
dent practicing writing timed essays for a standardized test
may not get detailed feedback on each attempt, but can still
consistently improve the quality and the efficiency of their
writing.

The existence of this latter type of learning motivates the
present study. Existing work within the paradigm of meta-
cognitive reinforcement learning (MCRL) does not address
the question of whether and, if so, how people learn planning
strategies in the absence of explicit feedback.

To answer this question, we investigated how people learn
planning strategies from trial and error. We administered sev-
eral rounds of a game that requires planning, while varying
whether and how often participants receive feedback about
their plan quality on each round. Our experiment revealed
that participants improve their strategies comparably well in
both feedback-scarce and feedback-rich environments. To
quantitatively capture this phenomenon, we extended upon
the state-of-the-art MCRL models to develop the first MCRL
models that generate self-evaluation signals to learn in the ab-
sence of feedback. Finally, we leveraged the experiment data
to quantitatively compare these extended models against the
previous state of the art, and answer the question of how par-
ticipants might have been able to learn better planning strate-
gies. This brings us one step closer to answering important
practical questions, such as “How can we teach human and
computational agents to self-sufficiently improve their strate-
gies in more naturalistic settings?”

The remainder of the paper is structured as follows: the
next section details the experiment and its results. The sec-
tion after describes the computational models tested to ex-
plain the learning mechanisms of the participants, how those
models were quantitatively compared, and the results of those
comparisons. Finally, the results from the experiment and
the comparison of models are discussed in light of the bigger
question addressed by this study - how do people adaptively
acquire cognitive skills?
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Experiment
Methods
Participants 208 participants were recruited for the online
experiment through the recruitment platform Prolific. The
ages of the participants ranged from 17 to 66, with the average
participant age being 27.8 (SD = 8.7). Of the 208 participants,
125 identified as male, 82 as female, and 1 as ‘other.’

Participants were paid a base amount of £4.50 for complet-
ing the full experiment. In addition, they were eligible for a
bonus of up to £2 proportional to their final score at the end
of the 3-step planning task. The average bonus earned was
£1.39 (SD = 0.54)

Experimental Design Participants were randomly as-
signed to be either in the feedback-scarce (scarcity) condition
(N=105) or in the feedback-rich (control) condition (N=103).
In both of the conditions, the main task was to complete sev-
eral trials of slightly different versions of the 3-step planning
task, a sequential planning task which is described later in
detail.

Materials To trace participants’ planning strategies during
each trial of the experiment, the planning task was adminis-
tered using the Mouselab-MDP paradigm (Callaway, Lieder,
Krueger, & Griffiths, 2017). Mouselab-MDP is a paradigm
for sequential planning tasks that represents people’s beliefs
and planning operations in the form of states and actions in
the environment. People’s interaction with the environment
externalizes their planning behavior, and is therefore diag-
nostic of the planning strategy employed on each iteration of
the task (Callaway et al., 2017, 2022; Jain et al., 2022).

Each trial of the standard 3-step planning task involves nav-
igating a spider through a web consisting of nodes and edges
that are arranged as a directed graph of depth 3. Each of the
nodes contains an integer monetary value.

At the beginning of a trial, all the node values are obscured.
The participant can click any number of nodes to reveal their
values in exchange for a fixed cost of $1 that is deducted from
the participant’s trial score, for each click made. This click-
ing action corresponds to the planning operation of collecting
information about a future state, and thus incurs a cognitive
cost, such as when a doctor uses effort and resources to con-
duct a certain medical test when devising a treatment plan for
a patient’s symptoms. Participants are therefore encouraged
to use their clicks strategically.

After revealing the node values, the participant moves the
spider from the starting node to a leaf node of the web in
3 steps. The participant may not click to reveal information
about a node after the spider has begun moving. Whenever
the spider passes through a node, the value present at that
node is added to the participant’s score for that trial. This
step represents the execution of the participant’s plan, and the
score they receive at the end of the trial is indicative of the
quality of their employed strategy. This sequence is then re-
peated for several trials, so that participants have an opportu-
nity to improve their planning strategy in structurally similar

Figure 1: The 3-step planning task implemented in the
Mouselab-MDP paradigm. Distributions of the node rewards
at every level are shown on the right.

environments. The participant’s total score for the experiment
is the sum of the scores obtained on all the individual trials
(including deducted costs.) The task of the participant is to
maximize the total score obtained while minimizing the total
costs incurred over all the trials of the experiment. The par-
ticipant’s total experiment score is shown to them only after
completion of all the trials.

On every trial, the values at a node are sampled uniformly
from a distribution of 4 different values, centered around 0.
Sampling rewards ensures structural similarity of the envi-
ronment across trials while varying the rewards presented to
the participant. For the nodes at the first level (one step away
from the starting node), the distribution has the lowest vari-
ance, with the lowest and highest possible values being -$4
and +$4 respectively. For the nodes at the second level, the
extreme values of the distribution were ±$24, and for the
nodes at the third level, ±$48 (see Figure 1). These reward
distributions, where the most valuable nodes are the furthest
ones, were chosen to encourage learning of far-sighted plan-
ning behavior.

Procedure In both conditions, participants were given in-
structions and completed two example trials of the 3-step
planning task. Then, everyone had 3 attempts to achieve a
perfect score on a 6-question quiz about the task instructions
before they were allowed to proceed to the actual task.

In the scarcity condition, participants completed 120 trials
of a slightly modified 3-step planning task over the course
of four equally sized blocks. In this modified version of the
task, the trial score was displayed at the end of only 25% of
the trials (30 trials), distributed evenly over the blocks. On
the remaining 90 trials, the participants were told, at the end
of the round, that the spider forgot to count how much money
was collected on that trial, and that the trial score was there-
fore unknown. Until the end of the trial, it was not made
known to the participant whether they would receive a score
on that trial or not. Nonetheless, costs for each of the clicks
were still deducted on every trial. To compensate for the lack
of rewards contributing to their overall score for the experi-
ment, the cost of each click was proportionately decreased to
$0.25. This ensured that the expected experiment score and
the optimal click strategy on a given trial remained constant
across both conditions.

In the control condition, participants completed 30 trials of

3152



the standard 3-step planning task described above, in a single
block. To ensure that the overall experiment duration was the
same across both conditions, participants in the control con-
dition were additionally given two sets of trials of the Stroop
task (Stroop, 1935), which served as task-irrelevant filler tri-
als. Each set consisted of 450 trials grouped into 5 blocks
of 90 trials each. The first set was completed before the 3-
step planning task, and the second set was completed after
it. The participant’s performance on these filler trials did not
contribute to their total score.

Data Analysis The pre-registration for the statistical anal-
ysis of participant data is available at https://osf.io/n6x5k/.

The outcome measure expected trial score was calculated
as the expectation of the total rewards obtained along the
best path from start to end, given the information that was
revealed, minus the costs incurred by clicking to reveal that
information.

We investigated the temporal evolution of the average out-
come measures in each condition, and found that both groups
exhibited a steep increase in performance in the first few tri-
als, while slowing down over the remainder of the experi-
ment. To make the data adhere to the linearity assumption of
our Linear Mixed Model (LMM) regression analyses, we di-
vided each condition into two phases: the fast learning phase
and the slow improvement phase. We identified the best par-
titions for these phases by finding a general linear model of
best fit that captures two linear relationships in each dataset.
We thus defined the fast learning phase as lasting from trials
1-9 and 1-13, and the slow improvement phase as lasting from
trials 10-30 and 14-120, in the control and scarcity conditions
respectively (Figure 2).

Results

Increase in Performance Over Time Our analysis of the
increase in the expected trial score over time revealed that
the scores of participants in both groups improved signifi-
cantly over time in both the fast learning phase (β = 1.52;
p < .001) and slow improvement phase (β = 0.22; p < .001).
Despite less feedback in the scarcity condition, there was no
significant difference between the two conditions in the in-
crease in performance over time in the fast learning phase
(β=−0.319; p= 0.119). However, during the slow improve-
ment phase, participants’ performance improved significantly
faster in the control condition than in the scarcity condition
(β =−0.172; p < .001).

Effect of Feedback versus No Feedback We assessed the
effect of number of previous trials with feedback and number
of previous trials without feedback on the increase in out-
come measures in each phase using linear mixed models. We
found that, in the fast learning phase, both trials with feed-
back (β = 1.515; p < .001) and without feedback (β = 1.143;
p < .001) significantly increased participants performance in
both conditions. Participants in the scarcity condition did not
learn significantly differently from trials with feedback com-

Figure 2: Improvement of long-term expected trial score over
time, with 95% CI. Partitions between fast learning phase
and slow improvement phase in each group marked by dotted
lines.

Table 1: Results of t-contrast tests for differences between
effects. Significant effects are marked in bold.

No. Null Hypothesis

1 Feedback - No Feedback
2 Feedback + Feedback × Scarce - No Feedback

Phase Hypothesis No. T-test
β p

Fast Learning 1 0.3720 0.163
2 0.1935 0.757

Slow
Improvement

1 0.2623 < 0.001
2 0.3662 0.006

pared to participants in the control condition (β = −0.179;
p = 0.73). Furthermore, it was not evident that participants in
either condition learned more from trials with feedback than
from trials without feedback or vice versa. According to con-
trast tests, the difference between the corresponding LMM
coefficients were not significantly different (see Table 1).

In the slow improvement phase, on the other hand, partic-
ipants in both conditions learned only from trials with feed-
back (β = 0.217; p < .001). The effect of learning from trials
with feedback was furthermore significantly greater than the
effect of learning from trials without feedback, both within
and between conditions (Table 1).

Difference in Experiment Performance Surprisingly, we
found that the participants in the scarcity condition were able
to achieve a similar level of performance in the full experi-
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ment as participants in the control condition. The distribu-
tions of the participants’ average expected scores in the slow
improvement phases of the scarcity and the control conditions
had means 32.01 (SD = 12.38) and 30.27 (SD = 13.65), re-
spectively. These distributions were not significantly differ-
ent (Mann–Whitney U = 5230.0, P = 0.662, two-tailed).

Modelling
Methods
Motivated by the results reported in the previous section, we
pursued the question of which specific learning mechanism
best explains the pattern of learning in feedback-scarce en-
vironments observed in participants. Particularly, we aimed
to explain the finding that people can improve their strate-
gies even after trials without explicit feedback. To this end,
we selected state-of-the-art metacognitive learning models,
and further added extensions that allow these models to learn
in the absence of feedback. We then performed a series of
systematic Bayesian model comparisons (Raftery, 1995) to
find the most plausible learning mechanism underlying hu-
man performance.

MCRL Models Metacognitive reinforcement learning
(MCRL) models postulate that the brain approaches the task
of metacognitive learning as finding the optimal solution to a
meta-level Markov Decision Process (Griffiths et al., 2019):

Mmeta = (B,C ∪{⊥},Tmeta,rmeta), (1)

where belief states bt ∈ B represent the participant’s beliefs
about the values of different courses of actions. The be-
lief states (b1,b2...bt ,bt+1) temporally evolve according to
the meta-level transition probabilities Tmeta(bt ,ct ,bt+1). Each
meta-level action ct ∈C corresponds to a planning operation,
with the additional action ct =⊥ being the decision to termi-
nate planning. Finally, rmeta(bt ,ct) encodes either the cost of
performing the planning operation ct while in belief state bt ,
or the expected reward for terminating planning, if ct =⊥.

REINFORCE Models MCRL models approximate the op-
timal solution to the meta-level MDP using reinforcement
learning (Krueger et al., 2017). The types of models we
exclusively considered, REINFORCE models, do this by as-
suming that people directly adjust their planning strategy by
using gradient ascent to learn a soft-max policy, which se-
lects actions based on weighted combinations of a set of 56
neuroscience-informed features of planning strategies (He,
Jain, & Lieder, 2021). Concretely, the policy is defined as:

πθ(c|b) =
exp( 1

τ
·∑56

k=1 θk · fk(b,c))

∑c∈Cb
exp( 1

τ
·∑56

k=1 θk · fk(b,c))
(2)

where c ∈Cb is the action being considered out of all possi-
ble actions in belief state b, fk are the values of the strategy
feature for that action in that belief state. The weights θk of
the features, representing the planning strategy of the brain,
are updated each trial according to the learning rule:

θ←− θ+α ·
O

∑
t=1

γ
t−1 · rmeta(bt ,ct) ·∇θ lnπθ(ct |bt) (3)

where α is the learning rate, γ is the discount factor, and O
is the number of planning operations performed on that trial
(number of clicks c1, ...,cO−1 ∈C plus one for cO =⊥). Both
α and γ are treated as free parameters and fit separately for
each participant.

Extended Models In environments where feedback is
present, the final meta-level reward, rmeta(bt ,ct =⊥), is equal
to the reward collected from traversing the chosen path, Renv.
In feedback-scarce environments, however, this environmen-
tal feedback is often non-existent, causing the models to per-
form fewer parameter updates and learn less. To explain how
people learn in the absence of feedback, we considered sev-
eral extensions of the REINFORCE models that can make
appropriate parameter updates on non-feedback trials. Con-
cretely, we postulate two ways in which people might learn
without feedback: pseudo-rewards, which indicate the value
of information obtained after each individual planning oper-
ation (click); and a single, self-generated meta-reward at the
end of a trial either in the absence of, (or in addition to) Renv.

The pseudo-reward (He et al., 2021) of performing a cer-
tain click ct in belief state bt and transitioning to the belief
state bt+1 measures the improvement in the model’s policy
due to the information revealed by ct . It is computed as the
difference between the expected returns of the paths favored
in the new belief state (bt+1) versus the previous belief state
(bt ). The expected returns are computed with respect to the
new belief state. Pseudo-rewards are used to update the model
parameters according to Equation 3 after each click. Con-
cretely, the pseudo-reward is

PR(bt ,ct ,bt+1) = E[Rπbt+1
|bt+1]−E[Rπbt

|bt+1]. (4)

The self-evaluation, Rself, on the other hand, is the feed-
back that a rational agent would expect to receive at the end
of the trial after the plan has been executed. Intended to rep-
resent the self-assessed quality of the plan, the self-evaluation
was computed as the expected value of the total rewards col-
lected from traversing the best path, evaluated based on the
final belief state. The final meta-level reward for terminat-
ing planning, rmeta(bt ,ct =⊥) (abbreviated as Rfm), was then
re-defined using this self-evaluation in the following way:

Rfm =

{
β ·Renv +(1−β) ·Rself, if Renv present
Rself, if Renv absent,

(5)

where β is the weight the model assigns to feedback when it
is present. Different choices for β lead to different models
(see Table 2). Models with β = 0 rely exclusively on self-
evaluation, even in the presence of explicit feedback. Models
with β = 1 use self-evaluations to update parameters only in
the absence of explicit feedback. In addition, we also tested
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Table 2: Table of considered model families and key fea-
tures: how the environmental feedback is prioritized in the
final meta-reward and how the model handles missing feed-
back (feedback-scarce trial). Type “Vanilla” represents the
previous state-of-the-art. The three other types are extensions
that use self-evaluation. Bold letters represent the abbreviated
family name.

Model Type β Renv absent?
“Vanilla” fixed at 1 No parameter update

“Prioritize Self” fixed at 0 Rfm = Rself
“Prioritize Env” fixed at 1 Rfm = Rself
“Combination” free parameter Rfm = Rself

models where β was treated as a free parameter, making the
final meta-level reward a weighted average of Renv and Rself.

The families of models considered are described in Table 2.
Further, models within each of these families differed from
each other in one or more of the following features with bi-
nary feature values (v f ): (1) whether they generated pseudo-
rewards for each meta-action (v f = 1); (2) whether the priors
for the feature weight parameters (θk) were initialized with
the weights of the features of the participant’s strategy as in-
ferred by the method from Jain et al. (2022) (v f = 1) or with
standard normal distributions (v f = 0); and (3) whether the
absence of Renv was construed as Renv = 0 (v f = 1) or simply
as an absent learning-signal (v f = 0). All plausible combina-
tions of these features were considered, resulting in a total of
28 models across all families.
Model Fitting The parameters of the models were the
learning rate α, the decay factor γ, the inverse temperature 1

τ
,

and the priors on the strategy feature weights θk. For models
that used pseudo-rewards, an additional free parameter for the
weight of the pseudo-reward was fit. Finally, for models in
which the weight of the meta-level reward, β, was not fixed, β

was an additional free parameter. All free parameters were fit
individually to each participant’s process-tracing data. This
entailed using the TPE algorithm (Bergstra, Bardenet, Ben-
gio, & Kégl, 2011) to minimize the negative log likelihood of
clicks performed by the participant. To assess reproducibil-
ity, we fitted two sets of parameters independently for each
participant for each model.
Model Comparison To compare the relevance and ex-
planatory power of particular features of models in explaining
the participants’ data, we used family-level Bayesian model
selection (Penny, Stephan, Mechelli, & Friston, 2004) to
compare groups of models that are defined by certain char-
acteristic features.

For each model or family of models, Bayesian model se-
lection outputs (1) the estimate of the proportion of partici-
pants whose data is best explained by that model (P̂), and (2)
the exceedance probability (px), which is the probability that
more participants are best explained by this particular model

or family of models than any other.
To assess the reproducibility of our results, we repeated the

model selection procedure on 8800 data sets we bootstrapped
by sampling random combinations of the two sets of fits we
obtained for each model (Wehrens, Putter, & Buydens, 2000).

Results
Here, we report on the results averaged over the 8800 repeti-
tions of model selection. The 95% confidence intervals of all
reported statistics have a width of less than 0.002 (or 0.2%,
where these are reported as percentages.)

We first compared the family of models that learn only
from explicit feedback with models that use self-evaluation
to some extent. We found that, in the control condition, the
models that solely rely on feedback best explained more par-
ticipants (P̂ = 0.70, px = 1.0) than the models that used some
self-evaluation (P̂ = 0.30, px = 0.0). Contrary to this finding,
the models that learn from self-evaluation provided the best
explanation for 82.6% of the participants (P̂= 0.83, px = 1.0)
in the scarcity condition.

Having determined the importance of self-evaluation to
learning without feedback, we asked how self-evaluations
are used for learning. For this, we compared four fam-
ilies of models: state-of-the-art models that use only ex-
plicit feedback (type “Vanilla”), models that always learn ex-
clusively from self-evaluation (type “Prioritize Self”), mod-
els that use self-evaluation only in the absence of feed-
back (type “Prioritize Env”), and models that always use a
weighted combination of feedback and self-evaluation (type
“Combination”). See Table 2 for a technical description of
the model families and the abbreviations of their names.

We found that, in the scarcity condition, the most common
way participants used self-evaluation was as an addition to
external feedback. Namely, the “C” models best explained
35.2% of the participants in this condition (px = 0.763). The
second most common learning mechanism was to use self-
evaluation only in the absence of feedback, with “PS” mod-
els best explaining 26.3% of the participants (px = 0.175).
“PE” models best explained only 21.6% of participants in the
scarcity condition (px = 0.052), while “V” models, which
don’t use self-evaluation, accounted for only 16.9% of par-
ticipants (px = 0.01). In the control condition, on the other
hand, models that learned only from feedback (“V” and
“PE”) best explained a majority of the participants, namely
69.0% (px = 1.0). The remainder of the participants were
explained almost evenly by the families of models that used
self-evaluation even in the presence of feedback: “C” models
explained 15.7% of participants (px = 0.0) and “PS” models
15.3% (px = 0.0). Figure 3 visually depicts the differential
use of self-evaluation signals within and between conditions.

According to these results, self-evaluation enabled partic-
ipants to learn better strategies even in the absence of feed-
back. On trials with no feedback, 83.1% of the participants
in the scarcity condition used self-evaluation in some way.
By contrast, on trials with feedback, only 56.7% of these par-
ticipants used self-evaluation. Compared to this, even fewer
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Figure 3: Proportions of participants in each condition best
explained by different self-evaluation mechanisms. Only
model type “V” does not use self-evaluations. When feed-
back is always present (Control condition), “PE” models are
functionally similar to “V” models and are therefore included
in the latter family. Refer to the text and Table 2 for descrip-
tions of the model families and meanings of the abbreviations.

participants in the control condition used self-evaluation in
the presence of feedback, namely only 29.7%.

Finally, we found that the other potential mechanism for
learning in the absence of feedback – pseudo-rewards for
gaining information – was not predominantly used by par-
ticipants, though it was slightly more frequently used in the
absence of feedback. The use of pseudo-rewards best ex-
plained the behavior of 40.2% (px = 0.06) of participants in
the scarcity condition but only 24.8% (px = 0.0) in the control
condition.

Discussion
How do people acquire cognitive skills? Previous work
on metacognitive learning suggested simple reinforcement
learning mechanisms (He et al., 2021). Our findings indicate
that people rely on more sophisticated learning mechanisms,
since the lack of feedback did not interfere with their ability
to learn planning strategies through trial and error.

Consistent with previous findings on simpler forms of
learning (Bandura, 1976), our model comparisons support
the hypothesis that people boost their metacognitive learn-
ing by generating their own learning signals through self-
evaluation (Andrade & Valtcheva, 2009). In our experiment,
self-evaluation, though particularly important when feedback
was absent, also contributed to strategy improvement even in
the presence of feedback.

Overall, consistent with computational models of cogni-
tive development (Rule, Tenenbaum, & Piantadosi, 2020;
Shrager & Siegler, 1998), our results suggest that cognitive

skill acquisition is more than simple reinforcement learn-
ing. Humans seem to learn more efficiently by giving them-
selves feedback on their own performance. In our exper-
iment, they generated this feedback by estimating the ex-
pected utility of executing their plans from relevant infor-
mation. These findings have implications for understand-
ing and improving learning in humans as well as in com-
putational agents. Firstly, we can use this knowledge to
create learning environments that incentivize strategy im-
provement by facilitating self-evaluation, for example, by
prompting people to engage in systematic reflection about
their performance, their decisions, or their cognitive strate-
gies (Wolfbauer, Pammer-Schindler, & Rosé, 2020; Becker,
Wirzberger, Pammer-Schindler, Srinivas, & Lieder, 2023).
Secondly, we could equip self-learning agents with methods
for self-evaluation to make machine learning more sample-
efficient and more robust in domains where feedback is
scarce. Actor-critic reinforcement learning (Grondman, Bu-
soniu, Lopes, & Babuska, 2012) could be seen as an example
of that approach, but human self-evaluation is more sophis-
ticated. Therefore, reverse-engineering people’s capacity to
boost their (metacognitive) learning through self-evaluation
could be a promising way to advance artificial intelligence
(Lake, Ullman, Tenenbaum, & Gershman, 2017).

The work presented in this article is only a first step toward
understanding the computational mechanisms of how people
discover adaptive cognitive strategies in feedback-scarce en-
vironments. Firstly, learning from self-evaluation in our ex-
periment was straightforward. Whether self-evaluation plays
a similarly prominent role in more naturalistic environments,
where accurate self-evaluation is more challenging, remains
to be seen. We expect that the importance of explicit feedback
increases with the increase in the difficulty of assessing the
quality of one’s own plans (Kahneman & Klein, 2009). One
such example is of doctors being uncertain about the effec-
tiveness of their treatment plans when patients do not return
or pass away in the short term (Omron, Kotwal, Garibaldi, &
Newman-Toker, 2018).

Secondly, our models, which assume a single learning
mechanism throughout the experiment, do not explain the ad-
ditional finding that participants in the later stages of the ex-
periment learned more from feedback trials than from non-
feedback trials and learned more slowly in the feedback-
scarce environment. This suggests that, while participants
rapidly developed adaptive strategies through conceptual,
insight-like learning in the first part of the experiment, they
later relied on a more practice-based learning mechanism that
is reliant on feedback (VanLehn, 1996).

Finally, we found that people are capable of a more sophis-
ticated form of metacognitive learning than we had expected.
Yet, a large proportion of participants didn’t engage in it. This
reinforces our hope that helping people tap into their capacity
for deliberate metacognitive learning is a promising approach
to improving their decision-making (Becker et al., 2023).
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