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ABSTRACT OF THE DISSERTATION

Learning in Safety-critical, Lifelong, and Multi-agent Systems: Bandits and RL Approaches

by

Sanae Amani Geshnigani

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Lin Yang, Chair

Sequential decision-making problems arise at every occasion that agents repeatedly interact

with an unknown environment in an effort to maximize a certain notion of reward gained

from interactions with this environment. Examples are abundant in online advertising,

online gaming, robotics, deep learning, dynamic pricing, network routing, etc. In particular,

multi-armed bandits (MAB) model the interaction between the agent and the unknown

environment as follows. The agent repeatedly acts by pulling arms and after an arm is pulled,

she receives a stochastic reward; the goal at the end of this process is to select actions that

maximize the expected cumulative reward without knowledge of the arms’ distributions.

Albeit simple, this model is widely applicable. On the other hand, many sequential decision

making occasions deal with more complicated environments modeled through Markov Decision

Processes (MDPs) where the environment’s status constantly changes as a result of taking

actions and makes learning even more challenging. The field of reinforcement learning (RL)

defines a principled foundation for this methodology, based on classical dynamic programming

algorithms for solving MDPs.

Our research goal is to expand the applicability of bandit and RL algorithms to new

application domains: specifically, safety-critical, lifelong and distributed physical systems,

such as robotics, wireless networks, the power grid and medical trials.
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One distinguishing feature of many of such “new” potential applications of bandits and

RL is their safety-critical nature. Specifically, the algorithm’s chosen policies must satisfy

certain system constraints that if violated can lead to catastrophic results for the system.

Importantly, the specifics of these constraints often change based on the interactions with

the unknown environment; thus, they are often unknown themselves. This leads to the

new challenge of balancing the goal of reward maximization with the restriction of playing

policies that are safe. We modeled this problem through bandits and RL frameworks with

linear reward and constraint structures. It turns out that even this seemingly simple safe

linear bandit and RL formulations are more intricate than the original setting without safety

constraints. In particular, simple variations of existing algorithms can be shown to be highly

suboptimal. Using appropriate tools from high-dimensional probability and exploration-

exploitation dilemma, we were able to design novel algorithms and to guarantee that they

not only respect the safety constraints, but also have performance comparable to the setting

without safety constraints.

Recently, there has been a surging interest in designing lifelong learning agents that can

continuously learn to solve multiple sequential decision making problems in their lifetimes.

This scenario is in particular motivated by building multi-purpose embodied intelligence,

such as robots working in a weakly structured environment. Typically, curating all tasks

beforehand for such problems is nearly infeasible, and the problems the agent is tasked with

may be adaptively selected based on the agent’s past behaviors. Consider a household robot

as an example. Since each household is unique, it is difficult to anticipate upfront all scenarios

the robot would encounter. In this direction, we theoretically study lifelong RL in a regret

minimization setting, where the agent needs to solve a sequence of tasks using rewards in

an unknown environment while balancing exploration and exploitation. Motivated by the

embodied intelligence scenario, we suppose that tasks differ in rewards, but share the same

state and action spaces and transition dynamics.

Another distinguishing feature of the envisioned applications of bandit algorithms is

that interactions involve multiple distributed agents/learners (e.g., wireless/sensor networks).

This calls for extensions of the traditional bandit setting to networked systems. In many
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such systems, it is critical to maintain an efficient communication among the network while

achieving a good performance in terms of accumulated reward, usually measured as network’s

regret. In view of this, for the problem of distributed contextual linear bandits, we prove a

minimax lower bound on the communication cost of any distributed contextual linear bandit

algorithm with stochastic contexts that is optimal in terms of regret. We further propose an

algorithm whose regret is optimal and communication rate matches this lower bound, and

therefore it is provably optimal in terms of both regret and communication rate.
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CHAPTER 1

Introduction

Sequential decision making under uncertainty has received enormous attention in recent years.

It specifically refers to occasions where an agent/learner repeatedly interacts with an unknown

environment in an effort to maximize a certain notion of reward obtained throughout these

interactions. The multiarmed bandit (MAB) problem and reinforcement learning (RL), in

which a decision maker allocates a single resource by repeatedly choosing one among a set

of competing alternative options, exemplify the explore vs. exploit trade-off, i.e., choosing

between the most informative and the most rewarding actions trade-off. Sequential hypothesis

testing concerns the speed-accuracy trade-off: deciding quickly versus reliably on a set of

alternatives. One way of determining a bandit/RL algorithm is efficient in terms of this

tradeoff, is to keep track of its regret, which is defined as the difference between accumulated

reward by the algorithm and that of the best algorithm in the hindsight in expectation.

Our goal is to expand the applicability of bandit and RL algorithms to new application

domains: specifically, safety-critical and distributed physical systems, such as robotics, wireless

networks, the power grid and medical trials. In particular, it is desirable to theoretically

study and design algorithms that are provably efficient and have descent regret performances.

In the following sections of this chapter, we specify what “descent regret” mathematically

refers to.

In the rest of this chapter we establish notation and a few necessary concepts and

definitions used in chapters 2, 3, 4, 5, and 6. The results presented in chapters 2, 3, 4, 5 and

6 have been published as [11], [14], [17], [16], and [12], respectively.
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1.1 Notation

Throughout this dissertation, we use lower-case letters for scalars, lower-case bold letters for

vectors, and upper-case bold letters for matrices. The Euclidean norm of x is denoted by∥x∥2
and the spectral norm of a matrix M is denoted by ∥M∥. We denote the transpose of any

column vector x by x⊤. For any vectors x and y, we use ⟨x,y⟩ to denote their inner product.

We denote the Kronecker product by A⊗B. Let A be a positive semi-definite d× d matrix

and ν ∈ Rd. The weighted 2-norm of ν with respect to A is defined by ∥ν∥A =
√
ν⊤Aν.

For square matrices A and B, we use A ⪯ B to denote B−A is positive semi-definite. We

denote the minimum and maximum eigenvalue of A by λmin(A) and λmax(A). The maximum

of two numbers α, β is denoted α ∨ β. For a real number α, we denote {α}+ = max{α, 0}.

For a positive integer n, [n] denotes the set {1, 2, . . . , n}, while for positive integers m ≤ n,

[m : n] denotes the set {m,m+ 1, . . . , n}. We use ei to denote the i-th standard basis vector.

I(X;Y ) denotes the mutual information between two random variables X and Y . Finally,

we use standard Õ notation for big-O notation that ignores logarithmic factors.

1.2 Stochastic Linear Bandit

In a stochastic linear bandit setting, at each round t, the agent is given a decision set Dt ⊂ Rd

1. At each round t, the agent chooses an action xt ∈ Dt and observes reward yt = ⟨θ∗,xt⟩+ηt,

where θ∗ ∈ Rd is an unknown vector and ηt is random additive noise.

1.3 Cumulative Regret in Stochastic Linear Bandit

Let T be the total number of rounds. We define the cumulative regret of the entire network

as:

RT :=
T∑
t=1

⟨θ∗,x∗⟩ − ⟨θ∗,xt⟩. (1.1)

1Dt may be fixed or changing throughout the learning horizon.
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The optimal action x∗ is defined with respect to Dt as argmaxx∈Dt
⟨θ∗,x⟩. The goal is to

minimize the cumulative regret and achieve regret that is sublinear in T .

1.4 Finite-horizon Markov decision process

A finite-horizon Markov decision process (MDP) is denoted by M = (S,A, H,P, r), where S

is the state set, A is the action set, H is the length of each episode (horizon), P = {Ph}Hh=1

are the transition probabilities, and r = {rh}Hh=1 are the reward functions. For each time-step

h ∈ [H], Ph(s
′|s, a) denotes the probability of transitioning to state s′ upon playing action a

at state s, and rh : S ×A → [0, 1] is the reward function. We consider the learning problem

where S and A are known, while the transition probabilities Ph and rewards rh are unknown

to the agent and must be learned online. The agent interacts with its unknown environment

described by M in episodes. In particular, at each episode k and time-step h ∈ [H], the agent

observes the state skh, plays an action akh ∈ A, and observes a reward rkh := rh(s
k
h, a

k
h).

A deterministic policy is a function π : S × [H]→ A, such that π(s, h) is the action the

policy π suggests the agent to play at time-step h ∈ [H] and state s ∈ S. A randomized

policy π : S × [H]→ ∆A maps states and time-steps to distributions over actions such that

a ∼ π(s, h) is the action the policy π suggests the agent to play at time-step h ∈ [H] when

being at state s ∈ S.

For each h ∈ [H], the cumulative expected reward obtained under a π during and after

time-step h, known as the value function V π
h : S → R, is defined by

V π
h (s) := E

 H∑
h′=h

rh′
(
sh′ , π(sh′ , h′)

)∣∣∣∣∣∣ sh = s

 , (1.2)

where the expectation is over the environment. We also define the state-action value action

Qπ
h : S ×A → R for a policy π at time-step h ∈ [H] by

Qπ
h(s, a) := E

 H∑
h′=h+1

rh′
(
sh′ , π(sh′ , h′)

)∣∣∣∣∣∣ sh = s, ah = a

 . (1.3)
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To simplify the notation, for any function f , we denote [Phf ](s, a) := Es′∼Ph(.|s,a)f(s
′). Let π∗

be the optimal policy such that V π∗
h (s) := V ∗

h (s) = supπ V
π
h (s) for all (s, h) ∈ S × [H]. Thus,

for all (s, a, h) ∈ S ×A× [H] and a ∈ A, the Bellman equations for a deterministic policy π

and the optimal deterministic policy are:

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a), V π

h (s) = Qπ
h(s, π(s, h)), (1.4)

Q∗
h(s, a) = rh(s, a) + [PhV

∗
h+1](s, a), V ∗

h (s) = max
a∈A

Q∗
h(s, a), (1.5)

where V π
H+1(s) = V ∗

H+1(s) = 0.

The Bellman equations for a randomized policy π and the optimal randomized policy are:

Q̃π
h(s, a) = rh(s, a) + [PhṼ

π
h+1](s, a), Ṽ π

h (s) = Ea∼π(s,h)

[
Q̃π

h(s, a)
]
, (1.6)

Q̃∗
h(s, a) = rh(s, a) + [PhṼ

∗
h+1](s, a), Ṽ ∗

h (s) = max
θ

Ea∼θ

[
Q̃∗

h(s, a)
]
, (1.7)
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CHAPTER 2

Safety in Linear Stochastic Bandits

2.1 Introduction

The stochastic multi-armed bandit (MAB) problem is a sequential decision-making problem

where, at each step of a T -period run, a learner plays one of k arms and observes a corre-

sponding loss that is sampled independently from an underlying distribution with unknown

parameters. The learner’s goal is to minimize the pseudo-regret, i.e., the difference between

the expected T -period loss incurred by the decision making algorithm and the optimal loss if

the unknown parameters were given. The linear stochastic bandit problem generalizes MAB

to the setting where each arm is associated with a feature vector x and the expected loss of

each arm is equal to the inner product of its feature vector x and an unknown parameter

vector µ. There are several variants of linear stochastic bandits that consider finite or infinite

number of arms, as well as the case where the set of feature vectors changes over time. A

detailed account of previous work in this area will be provided in Section 2.3.

Bandit algorithms have found many applications in systems that repeatedly deal with

unknown stochastic environments (such as humans) and seek to optimize a long-term reward by

simultaneously learning and exploiting the unknown environment (e.g., ad display optimization

algorithms with unknown user preferences, path routing, ranking in search engines). They are

also naturally relevant for many cyber-physical systems with humans in the loop (e.g., pricing

end-use demand in societal-scale infrastructure systems such as power grids or transportation

networks to minimize system costs given the limited number of user interactions possible).

However, existing bandit heuristics might not be directly applicable in these latter cases. One

critical reason is the existence of safety guarantees that have to be met at every single round.
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For example, when managing demand to minimize costs in a power system, it is required

that the operational constraints of the power grid are not violated in response to our actions

(these can be formulated as linear constraints that depend on the demand). Thus, for such

systems, it becomes important to develop new bandit algorithms that account for critical

safety requirements.

Given the high level of uncertainty about the system parameters in the initial rounds,

any such bandit algorithm will be initially highly constrained in terms of safe actions that

can be chosen. However, as further samples are obtained and the algorithm becomes more

confident about the value of the unknown parameters, it is intuitive that safe actions become

easier to distinguish and it seems plausible that the effect of the system safety requirements

on the growth of regret can be diminished.

In this chapter, we formulate a variant of linear stochastic bandits where at each round t,

the learner’s choice of arm should also satisfy a safety constraint that is dependent on the

unknown parameter vector µ. While the formulation presented is certainly an abstraction of

the complications that might arise in the systems discussed above, we believe that it is a

natural first step towards understanding and evaluating the effect of safety constraints on the

performance of bandit heuristics.

Specifically, we assume that the learner’s goal is twofold: 1) Minimize the T -period

cumulative pseudo-regret; 2) Ensure that a linear side constraint of the form µ⊤Bx ≤ c is

respected at every round during the T -period run of the algorithm, where B and c are known.

See Section 2.2 for details. Given the learner’s uncertainty about µ, the existence of this

safety constraint effectively restricts the learner’s choice of actions to what we will refer to as

the safe decision set at each round t. To tackle this constraint, in Section 2.4, we present

Safe-LUCB as a safe version of the standard linear UCB (LUCB) algorithm [40, 2, 104]. In

Section 2.5, we provide general regret bounds that characterize the effect of safety constraints

on regret. We show that the regret of the modified algorithm is dependent on the parameter

∆ = c − µ⊤Bx∗, where x∗ denotes the optimal safe action given µ. When ∆ > 0 and is

known to the learner, we show that the regret of Safe-LUCB is Õ(
√
T ); thus, the effect of

the system safety requirements on the growth of regret can be diminished (for large enough
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T ). In Section 2.6, we also present a heuristic modification of Safe-LUCB that empirically

approaches the same regret without a-priori knowledge of the value of ∆. On the other

hand, when ∆ = 0, the regret of Safe-LUCB is Õ(T 2/3). Technical proofs and some further

discussions are deferred to the appendix provided in the supplementary material.

2.1.1 Key Contributions

Bandit algorithms have various application in safety-critical systems, where it is important

to respect the system constraints that rely on the bandit’s unknown parameters at every

round. In this chapter, we formulate a linear stochastic multi-armed bandit problem with

safety constraints that depend (linearly) on an unknown parameter vector. As such, the

learner is unable to identify all safe actions and must act conservatively in ensuring that

her actions satisfy the safety constraint at all rounds (at least with high probability). For

these bandits, we propose a new UCB-based algorithm called Safe-LUCB, which includes

necessary modifications to respect safety constraints. The algorithm has two phases. During

the pure exploration phase the learner chooses her actions at random from a restricted set of

safe actions with the goal of learning a good approximation of the entire unknown safe set.

Once this goal is achieved, the algorithm begins a safe exploration-exploitation phase where

the learner gradually expands their estimate of the set of safe actions while controlling the

growth of regret. We provide a general regret bound for the algorithm, as well as a problem

dependent bound that is connected to the location of the optimal action within the safe

set. We then propose a modified heuristic that exploits our problem dependent analysis to

improve the regret.

2.2 Safe Linear Stochastic Bandit Problem

Cost model. The learner is given a convex compact decision set D0 ⊂ Rd. At each round

t, the learner chooses an action xt ∈ D0 which results in an observed loss ℓt that is linear on

the unknown parameter µ with additive random noise ηt, i.e., ℓt := ct(xt) := µ
⊤xt + ηt.
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Safety Constraint. The learning environment is subject to a side constraint that restricts

the choice of actions by dividing D0 into a safe and an unsafe set. The learner is restricted

to actions xt from the safe set Ds(µ). As notation suggests, the safe set depends on the

unknown parameter. Since µ is unknown, the learner is unable to identify the safe set and

must act conservatively in ensuring that actions xt are feasible for all t. In this chapter, we

assume that Ds(µ) is defined via a linear constraint

µ⊤Bxt ≤ c, (2.1)

which needs to be satisfied by xt at all rounds t with high probability. Thus, Ds(µ) is defined

as,

Ds(µ) := {x ∈ D0 : µ⊤Bx ≤ c}. (2.2)

The matrix B ∈ Rd×d and the positive constant c > 0 are known to the learner. However,

after playing any action xt, the value µ
⊤Bxt is not observed by the learner. When clear from

context, we drop the argument µ in the definition of the safe set and simply refer to it as Ds.

Regret. Let T be the total number of rounds. If xt, t ∈ [T ] are the actions chosen, then

the cumulative pseudo-regret ([22]) of the learner’s algorithm for choosing the actions xt is

defined by RT =
∑T

t=1µ
⊤xt − µ⊤x∗, where x∗ is the optimal safe action that minimizes the

loss ℓt in expectation, i.e., x∗ ∈ argminx∈Ds(µ)µ
⊤x.

Goal. The goal of the learner is to keep RT as small as possible. At the bare minimum, we

require that the algorithm leads to RT/T → 0 (as T grows large). In contrast to existing

linear stochastic bandit formulations, we require that the chosen actions xt, t ∈ [T ] are safe

(i.e., belong in Ds (2.2)) with high probability. For the rest of this chapter, we simply use

regret to refer to the pseudo-regret RT .

In Section 2.4.1 we place some further technical assumptions on D0 (bounded), on Ds

(non-empty), on µ (bounded) and on the distribution of ηt (subgaussian).

8



2.3 Prior Work

Our algorithm relies on a modified version of the famous UCB algorithm known as UCB1,

which was first developed by [23]. For linear stochastic bandits, the regret of the LUCB

algorithm was analyzed by, e.g., [40, 2, 104, 105, 38] and it was shown that the regret grows

at the rate of
√
T log(T ). Extensions to generalized linear bandit models have also been

considered by, e.g., [50, 83]. There are two different contexts where constraints have been

applied to the stochastic MAB problem. The first line of work considers the MAB problem

with global budget (a.k.a. knapsack) constraints where each arm is associated with a random

resource consumption and the objective is to maximize the total reward before the learner

runs out of resources, see, e.g., [25, 9, 136, 26]. The second line of work considers stage-wise

safety for bandit problems in the context of ensuring that the algorithm’s regret performance

stays above a fixed percentage of the performance of a baseline strategy at every round during

its run [68, 138]. In [68], which is most closely related to our setting, the authors study a

variant of LUCB in which the chosen actions are constrained such that the cumulative reward

remains strictly greater than (1− α) times a given baseline reward for all t. In both of the

above mentioned lines of work, the constraint applies to the cumulative resource consumption

(or reward) across the entire run of the algorithm. As such, the set of permitted actions

at each round vary depending on the round and on the history of the algorithm. This is

unlike our constraint, which is applied at each individual round, is deterministic, and does

not depend on the history of past actions.

In a more general context, the concept of safe learning has received significant attention in

recent years from different communities. Most existing work that consider mechanisms for safe

exploration in unknown and stochastic environments are in reinforcement learning or control.

However, the notion of safety has many diverse definitions in this literature. For example,

[93] proposes an algorithm that allows safe exploration in Markov Decision Processes (MDP)

in order to avoid fatal absorbing states that must never be visited during the exploration

process. By considering constrained MDPs that are augmented with a set of auxiliary cost

functions and replacing them with surrogates that are easy to estimate, [7] purposes a policy
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search algorithm for constrained reinforcement learning with guarantees for near constraint

satisfaction at each iteration. In the framework of global optimization or active data selection,

[106, 28] assume that the underlying system is safety-critical and present active learning

frameworks that use Gaussian Processes (GP) as non-parametric models to learn the safe

decision set. More closely related to our setting, [114, 113] extend the application of UCB

to nonlinear bandits with nonlinear constraints modeled through Gaussian processes (GPs).

The algorithms in [114, 113] come with convergence guarantees, but no regret bounds as

provided in our work. Regret guarantees imply convergence guarantees from an optimization

perspective (see [110]), but not the other way around. Such approaches for safety-constrained

optimization using GPs have shown great promise in robotics applications with safety

constraints [95, 10].With a control theoretic point of view, [56] combines reachability analysis

and machine learning for autonomously learning the dynamics of a target vehicle and [21]

designs a learning-based MPC scheme that provides deterministic guarantees on robustness

when the underlying system model is linear and has a known level of uncertainty. In a very

recent related work [128], the authors propose and analyze a (safe) variant of the Frank-Wolfe

algorithm to solve a smooth optimization problem with unknown linear constraints that are

accessed by the learner via stochastic zeroth-order feedback. The main goal in [128] is to

provide a convergence rate for more general convex objective, whereas we aim to provide

regret bounds for a linear but otherwise unknown objective.

2.4 A Safe-LUCB Algorithm

Our proposed algorithm is a safe version of LUCB. As such, it relies on the well-known

heuristic principle of optimism in the face of uncertainty (OFU). The algorithm constructs

a confidence set Ct at each round t, within which the unknown parameter µ lies with high

probability. In the absence of any constraints, the learner chooses the most “favorable”

environment µ from the set Ct and plays the action xt that minimizes the expected loss in

that environment. However, the presence of the constraint (2.1) complicates the choice of

the learner. To address this, we propose an algorithm called safe linear upper confidence
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bound (Safe-LUCB), which attempts to minimize regret while making sure that the safety

constraints (2.1) are satisfied. Safe-LUCB is summarized in Algorithm 1 and a detailed

presentation follows in Sections 2.4.2 and 2.4.3, where we discuss the pure-exploration and

safe exploration-exploitation phases of the algorithm, respectively. Before these, in Section

2.4.1 we introduce the necessary conditions under which our proposed algorithm operates

and achieves good regret bounds as will be shown in Section 2.5.

2.4.1 Model Assumptions

Let Ft = σ(x1,x2, . . . ,xt+1, η1, η2, . . . , ηt) be the σ-algebra (or, history) at round t. We make

the following standard assumptions on the noise distribution, on the parameter µ and on the

actions.

Assumption 1 (Subgaussian noise). For all t, ηt is conditionally zero-mean R-sub-Gaussian

for fixed constant R ≥ 0, i.e., E[ηt |x1:t, η1:t−1] = 0 and E[eληt | Ft−1] ≤ exp(λ2R2/2), ∀λ ∈

R.

Assumption 2 (Boundedness). There exist positive constants S, L such that ∥µ∥2 ≤ S and

∥x∥2 ≤ L,∀x ∈ D0. Also, µ
⊤x ∈ [−1, 1], ∀x ∈ D0 .

In order to avoid trivialities, we also make the following assumption. This, together with

the assumption that C > 0 in (2.1), guarantee that the safe set Ds(µ) is non-empty (for

every µ).

Assumption 3 (Non-empty safe set). The decision set D0 is a convex body in Rd that

contains the origin in its interior.

2.4.2 Pure Exploration Phase

The pure exploration phase of the algorithm runs for rounds t ∈ [T ′], where T ′ is passed as

input to the algorithm. In Section 2.5, we will show how to appropriately choose its value to

guarantee that the cumulative regret is controlled. During this phase, the algorithm selects
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Algorithm 1 Safe-LUCB

1: Pure exploration phase:

2: for t = 1, 2, . . . , T ′ do

3: Randomly choose xt ∈ Dw (defined in (2.3)) and observe loss ℓt = ct(xt).

4: end for

5: Safe exploration-exploitation phase:

6: for t = T ′ + 1, 2, . . . , T do

7: Set At = λI +
∑t−1

τ=1 xτx
⊤
τ and compute µ̂t = A−1

t

∑t−1
τ=1 ℓτxτ

8: Ct = {ν ∈ Rd : ∥ν − µ̂t∥At ≤ βt} and βt chosen as in (2.7)

9: Ds
t = {x ∈ D0 : ν

⊤Bx ≤ c,∀ν ∈ Ct}

10: xt = argminx∈Ds
t
minv∈Ct ν

⊤x

11: Choose xt and observe loss ℓt = ct(xt).

12: end for

random actions from a safe subset Dw ⊂ D0 that we define next. For every chosen action xt,

we observe a loss ℓt. The collected action-loss pairs (xt, ℓt) over the T ′ rounds are used in

the second phase to obtain a good estimate of µ. We will see in Section 2.4.3 that this is

important since the quality of the estimate of µ determines our belief of which actions are

safe. Now, let us define the safe subset Dw.

The safe set Ds is unknown to the learner (since µ is unknown). However, it can be

deduced from the constraint (2.1) and the boundedness Assumption 2 on µ, that the following

subset Dw ⊂ D0 is safe:

Dw := {x ∈ D0 : max
∥v∥2≤S

ν⊤Bx ≤ c} = {x ∈ D0 : ∥Bx∥2 ≤ c/S}. (2.3)

Note that the set Dw is only a conservative (inner) approximation of Ds, but this is inevitable,

since the learner has not yet collected enough information on the unknown parameter µ.

In order to make the choice of random actions xt, t ∈ [T ′] concrete, let X ∼ Unif(Dw) be a

d-dimensional random vector uniformly distributed in Dw according to the probability measure

given by the normalized volume in Dw (recall that Dw is a convex body by Assumption 3).

During rounds t ∈ [T ′], Safe-LUCB chooses safe IID actions xt
iid∼ X. For future reference, we
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denote the covariance matrix of X by Σ = E[XX⊤] and its minimum eigenvalue by

λ− := λmin(Σ) > 0. (2.4)

Remark 1. Since D0 is compact with zero in its interior, we can always find 0 < ϵ ≤ C/S

such that

D̃w := {x ∈ Rd | ∥Bx∥2 = ϵ} ⊂ Dw. (2.5)

Thus, an effective way to choose (random) actions xt during the safe-exploration phase for

which an explicit expression for λ− is easily derived, is as follows. For simplicity, we assume

B is invertible. Let ϵ be the largest value 0 < ϵ ≤ c/S such that (2.5) holds. Then, generate

samples xt ∼ Unif(D̃w), t = 1, . . . , T ′, by choosing xt = ϵB−1zt, where zt are i.i.d samples

on the unit sphere Sd−1. Clearly, E[ztz⊤t ] = 1
d
I. Thus, Σ := E[xtx

⊤
t ] =

ϵ2

d

(
B⊤B

)−1
, from

which it follows that λ− := λmin(Σ) =
ϵ

d λmax(B⊤B)
= ϵ2

d∥B∥2 .

2.4.3 Safe Exploration-Exploitation Phase

We implement the OFU principle while respecting the safety constraints. First, at each

t = T ′ + 1, T ′ + 2 . . . , T , the algorithm uses the previous action-observation pairs and obtains

a λ-regularized least-squares estimate µ̂t of µ with regularization parameter λ > 0 as follows:

µ̂t = A−1
t

t−1∑
τ=1

ℓτxτ , where At = λI+
t−1∑
τ=1

xτx
⊤
τ .

Then, based on µ̂t the algorithm builds a confidence set

Ct := {ν ∈ Rd : ∥ν − µ̂t∥At ≤ βt}, (2.6)

where, βt is chosen according to Theorem 1 below ([2]) to guarantee that µ ∈ Ct with

high probability.

Theorem 1 (Confidence region, [2]). Let Assumptions 1 and 2 hold. Fix any δ ∈ (0, 1) and

let βt in (2.6) be chosen as follows,

βt = R

√
d log

(
1 + (t− 1)L2/λ

δ

)
+ λ1/2S, for all t > 0. (2.7)
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Then, with probability at least 1− δ, for all t > 0, it holds that µ ∈ Ct.

The remaining steps of the algorithm also build on existing principles of UCB algorithms.

However, here we introduce necessary modifications to account for the safety constraint (2.1).

Specifically, we choose the actions with the following two principles.

Caution in the face of constraint violation. At each round t, the algorithm performs

conservatively, to ensure that the constraint (2.1) is satisfied for the chosen action xt. As

such, at the beginning of each round t = T ′ + 1, . . . , T , Safe-LUCB forms the so-called safe

decision set denoted as Ds
t :

Ds
t = {x ∈ D0 : ν

⊤Bx ≤ c,∀v ∈ Ct}. (2.8)

Recall from Theorem 1 that µ ∈ Ct with high probability. Thus, Ds
t is guaranteed to be

a set of safe actions that satisfy (2.1) with the same probability. On the other hand, note

that Ds
t is still a conservative inner approximation of Ds(µ) (actions in it are safe for all

parameter vectors in Ct, not only for the true µ). This (unavoidable) conservative definition

of safe decision sets could contribute to the growth of the regret. This is further studied in

Section 2.5.

Optimism in the face of uncertainty in cost. After choosing safe actions randomly at

rounds 1, . . . , T ′, the algorithm creates the safe decision set Ds
t at all rounds t ≥ T ′ + 1, and

chooses an action xt based on the OFU principle. Specifically, a pair (xt, µ̃t) is chosen such

that

µ̃⊤
t xt = min

x∈Ds
t ,v∈Ct

ν⊤x. (2.9)

2.5 Regret Analysis of Safe-LUCB

2.5.1 The Regret of Safety

In the safe linear bandit problem, the safe set Ds is not known, since µ is unknown. Therefore,

at each round, the learner chooses actions from a conservative inner approximation of Ds.
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Intuitively, the better this approximation, the more likely that the optimistic actions of

Safe-LUCB lead to good cumulant regret, ideally of the same order as that of LUCB in the

original linear bandit setting.

A key difference in the analysis of Safe-LUCB compared to the classical LUCB is that x∗

may not lie within the estimated safe set Ds
t at each round. To see what changes, consider

the standard decomposition of the instantaneous regret rt, t = T ′ + 1, . . . , T in two terms as

follows (e.g., [40, 2]):

rt := µ
⊤xt − µ⊤x∗ = µ⊤xt − µ̃⊤

t xt︸ ︷︷ ︸
Term I

+ µ̃⊤
t xt − µ⊤x∗︸ ︷︷ ︸

Term II

, (2.10)

where, (µ̃t,xt) is the optimistic pair, i.e. the solution to the minimization in Step 10 of

Algorithm 1. On the one hand, controlling Term I, is more or less standard and closely follows

previous such bounds on UCB-type algorithms (e.g., [2]); see Appendix A.2.2 for details.

On the other hand, controlling Term II, which we call the regret of safety is more delicate.

This complication lies at the heart of the new formulation with additional safety constraints.

When safety constraints are absent, classical LUCB guarantees that Term II is non-positive.

Unfortunately, this is not the case here: x∗ does not necessarily belong to Ds
t in (2.8), thus

Term II can be positive. This extra regret of safety is the price paid by Safe-LUCB for

choosing safe actions at each round. Our main contribution towards establishing regret

guarantees is upper bounding Term II. We show in Section 2.5.2 that the pure-exploration

phase is critical in this direction.

2.5.2 Learning the Safe Set

The challenge in controlling the regret of safety is that, in general, Ds
t ≠ Ds. At a high

level, we proceed as follows (see Appendix A.2.3 for details). First, we relate Term II with a

certain notion of “distance” in the direction of x∗ between the estimated set Ds
t at rounds

t = T ′ + 1, . . . , T and the true safe set Ds . Next, we show that this ”distance” term can be

controlled by appropriately lower bounding the minimum eigenvalue λmin(At) of the Gram

matrix At. Due to the interdependency of the actions xt, it is difficult to directly establish

such a lower bound for each round t. Instead, we use that λmin(At) ≥ λmin(AT ′+1), t ≥ T ′+1

15



and we are able to bound λmin(AT ′+1) thanks to the pure exploration phase of Safe-LUCB .

Hence, the pure exploration phase guarantees that Ds
t is a sufficiently good approximation to

the true Ds once the exploration-exploitation phase begins.

Lemma 1. Let AT ′+1 = λI+
∑T ′

t=1 xtx
⊤
t be the Gram matrix corresponding to the first T ′

actions of Safe-LUCB (pure-exploration phase). Recall the definition of λ− in (2.4). Then,

for any δ ∈ (0, 1), it holds with probability at least 1− δ,

λmin(AT ′+1) ≥ λ+
λ−T

′

2
, (2.11)

provided that T ′ ≥ tδ :=
8L2

λ−
log(d

δ
).

The proof of the lemma and technical details relating the result to a desired bound on

Term II are deferred to Appendixes A.1 and A.2.3, respectively.

2.5.3 Problem Dependent Upper Bound

In this section, we present a problem-dependent upper bound on the regret of Safe-LUCB in

terms of the following critical parameter, which we call the safety gap:

∆ := c− µ⊤Bx∗. (2.12)

Note that ∆ ≥ 0. In this section, we assume that ∆ is known to the learner. The next

lemma shows that if ∆ > 0 1 , then choosing T ′ = O(log T ) guarantees that x∗ ∈ Ds
t for all

t = T ′ + 1, . . . , T .

Lemma 2 (x∗ ∈ Ds
t). Let Assumptions 1, 2 and 3 hold. Fix any δ ∈ (0, 1) and assume a

positive safety gap ∆ > 0. Initialize Safe-LUCB with (recall the definition of tδ in Lemma 1)

T ′ ≥ T∆ :=

(
8L2∥B∥2β2

T

λ− ∆2
− 2λ

λ−

)
∨ tδ. (2.13)

Then, with probability at least 1− δ, for all t = T ′ + 1, . . . , T it holds that x∗ ∈ Ds
t .

1We remark that the case ∆ > 0 studied here is somewhat reminiscent of the assumption αrℓ > 0 in [68].
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In light of our discussion in Sections 2.5.1 and 2.5.2, once we have established that x∗ ∈ Ds
t

for t = T ′ + 1, . . . , T , the regret of safety becomes nonpositive and we can show that the

algorithm performs just like classical LUCB during the exploration-exploitation phase 2. This

is formalized in Theorem 2 showing that when ∆ > 0 (and is known), then the regret of

Safe-LUCB is Õ(
√
T ).

Theorem 2 (Problem-dependent bound; ∆ > 0). Let the same assumptions as in Lemma

2 hold. Initialize Safe-LUCB with T ′ ≥ T∆ specified in (2.13). Then, for T ≥ T ′, with

probability at least 1− 2δ, the cumulative regret of Safe-LUCB satisfies

RT ≤ 2T ′ + 2βT

√
2d (T − T ′) log

(
2TL2

d(λ−T ′ + 2λ)

)
. (2.14)

Specifically, choosing T ′ = T∆ guarantees cumulant regret O(T 1/2 log T ).

The bound in (2.14) is a contribution of two terms. The first one is a trivial bound on

the regret of the exploration-only phase of Safe-LUCB and is proportional to its duration T ′.

Thanks to Lemma 2 the duration of the exploration phase is limited to T∆ rounds and T∆ is

(at most) logarithmic in the total number of rounds T . Thus, the first summand in (2.14)

contributes only O(log T ) in the total regret. Note, however, that T∆ grows larger as the

normalized safety gap ∆/∥B∥ becomes smaller. The second summand in (2.14) contributes

O(T 1/2 log T ) and bounds the cumulant regret of the exploration-exploitation phase, which

takes the bulk of the algorithm. More specifically, it bounds the contribution of Term I

in (2.10) since the Term II is zeroed out once x∗ ∈ Ds
t thanks to Lemma 2. Finally, note

that Theorem 2 requires the total number of rounds T to be large enough for the desired

regret performance. This is the price paid for the extra safety constraints compared to the

performance of the classical LUCB in the original linear bandit setting. We remark that

existing lower bounds for the simpler problem without safety constraints (e.g. [104, 40]),

show that the regret Õ(
√
Td) of Theorem 2 cannot be improved modulo logarithmic factors.

The proofs of Lemma 2 and Theorem 2 are in Appendix A.2.

2Our simulation results in Appendix A.6 emphasize the critical role of a sufficiently long pure exploration
phase by Safe-LUCB as suggested by Lemma 2. Specifically, Figure 2.1b depicts an instance where no
exploration leads to significantly worse order of regret.
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2.5.4 General Upper Bound

We now extend the results of Section 2.5.3 to instances where the safety gap is zero, i.e.

∆ = 0. In this case, we cannot guarantee an exploration phase that results in x∗ ∈ Ds
t , t > T ′

in a reasonable time length T ′. Thus, the regret of safety is not necessarily non-positive and

it is unclear whether a sub-linear cumulant regret is possible.

Theorem 3 shows that Safe-LUCB achieves regret Õ(T 2/3) when ∆ = 0. Note that

this (worst-case) bound is also applicable when the safety gap is unknown to the learner.

While it is significantly worse than the performance guaranteed by Theorem 2, it proves that

Safe-LUCB always leads to RT/T → 0 as T grows large. The proof is deferred to Appendix

A.2.

Theorem 3 (General bound: worst-case). Suppose Assumptions 1, 2 and 3 hold. Fix any

δ ∈ (0, 0.5). Initialize Safe-LUCB with T ′ ≥ tδ specified in Lemma 1. Then, with probability

at least 1− 2δ the cumulative regret RT of Safe-LUCB for T ≥ T ′ satisfies

RT ≤ 2T ′ + 2βT

√
2d(T − T ′) log

(
2TL2

d(λ−T ′ + 2λ)

)
+

2
√
2∥B∥LβT (T − T ′)

c
√

λ−T ′ + 2λ
. (2.15)

Specifically, choosing T ′ = T0 :=
(

∥B∥LβTT

c
√

2λ−

) 2
3 ∨ tδ , guarantees regret O(T 2/3 log T ).

Compared to Theorem 2, the bound in (2.15) is now comprised of three terms. The first

one captures again the exploration-only phase and is linear in its duration T ′. However, note

that T ′ is now O(T 2/3 log T ), i.e., of the same order as the total bound. The second term

bounds the total contribution of Term I of the exploration-exploitation phase. As usual, its

order is Õ(T 1/2). Finally, the additional third term bounds the regret of safety and is of the

same order as that of the first term.

2.6 Unknown Safety Gap

In Section 2.5.3 we showed that when the safety gap ∆ > 0, then Safe-LUCB achieves

good regret performance Õ(
√
T ). However, this requires that the value of ∆, or at least a
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(non-trivial) lower bound on it, be known to the learner so that T ′ is initialized appropriately

according to Lemma 2. This requirement might be restrictive in certain applications. When

that is the case, one option is to run Safe-LUCB with a choice of T ′ as suggested by Theorem

3, but this could result in an unnecessarily long pure exploration period (during which regret

grows linearly). Here, we present an alternative. Specifically, we propose a variation of

Safe-LUCB refered to as generalized safe linear upper confidence bound (GSLUCB). The

key idea behind GSLUCB is to build a lower confidence bound ∆t for the safety gap ∆ and

calculate the length of the pure exploration phase associated with ∆t, denoted as T ′
t . This

allows the learner to stop the pure exploration phase at round t such that condition t ≤ T ′
t−1

has been met. While we do not provide a separate regret analysis for GSLUCB, it is clear

that the worst case regret performance would match that of Safe-LUCB with ∆ = 0. However,

our numerical experiment highlights the improvements that GSLUCB can provide for the

cases where ∆ ̸= 0. We give a full explanation of GSLUCB, including how we calculate the

lower confidence bound ∆t, in Appendix A.5.

Figure 2.1a compares the average per-step regret of 1) Safe-LUCB with knowledge of

∆; 2) Safe-LUCB without knowledge of ∆ (hence, assuming ∆ = 0); 3) GSLUCB without

knowledge of ∆, in a simplified setting of K-armed linear bandits with strictly positive safety

gap (see Appendix A.3). The details on the parameters of the simulations are deferred to

Appendix A.6.

2.7 Future Directions and Summary

We have formulated a linear stochastic bandit problem with safety constraints that depend

linearly on the unknown problem parameter µ. While simplified, the model captures the

additional complexity introduced in the problem by the requirement that chosen actions

belong to an unknown safe set. As such, it allows us to quantify tradeoffs between learning the

safe set and minimizing the regret. Specifically, we propose Safe-LUCB which is comprised

of two phases: (i) a pure-exploration phase that speeds up learning the safe set; (ii) a safe

exploration-exploitation phase that optimizes minimizing the regret. Our analysis suggests
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Algorithm 2 GSLUCB

1: Pure exploration phase:

2: t← 1 , T ′
0 = T0

3: while
(
t ≤ min

(
T ′
t−1, T0

))
do

4: Randomly choose xt ∈ Dw and observe loss ℓt = ct(xt).

5: ∆t = Lower confidence bound on ∆ at round t

6: if ∆t > 0 then

7: T ′
t = T∆t

8: else

9: T ′
t = T0

10: end if

11: t← t+ 1

12: end while

13: Safe exploration exploitation phase:

14: Lines 6 - 12 of Safe-LUCB for all remaining rounds.
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(a) Average per-step regret of Safe-LUCB and

GSLUCB with a decision set of K arms.
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(b) Per-step regret of Safe-LUCB with and with-

out pure exploration phase.

Figure 2.1: Simulation of per-step regret.
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that the safety gap ∆ plays a critical role. When ∆ > 0 we show how to achieve regret Õ(
√
T )

as in the classical linear bandit setting. However, when ∆ = 0, the regret of Safe-LUCB is

Õ(T 2/3). It is an interesting open problem to establish lower bounds for an arbitrary policy

that accounts for the safety constraints. Our analysis of Safe-LUCB suggests that ∆ = 0 is a

worst-case scenario, but it remains open whether the Õ(T 2/3) regret bound can be improved

in that case. Natural extensions of the problem setting to multiple constraints and generalized

linear bandits (possibly with generalized linear constraints) might also be of interest.
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CHAPTER 3

Safe Reinforcement Learning with Linear Function

Approximation

3.1 Introduction

Reinforcement Learning (RL) is the study of an agent trying to maximize its expected

cumulative reward by interacting with an unknown environment over time [117]. In most

classical RL algorithms, agents aim to maximize a long term gain by exploring all possible

actions. However, freely exploring all actions may be harmful in many real-world systems

where playing even one unsafe action may lead to catastrophic results. Thus, safety in RL has

become a serious issue that restricts the applicability of RL algorithms to many real-world

systems. For example, in a self-driving car, it is critical to explore those policies that avoid

crash and damage to the car, people and property. Switching cost limitations in medical

applications [27] and legal restrictions in financial managements [3] are other examples of

safety-critical applications. All the aforementioned safety-critical environments introduce the

new challenge of balancing the goal of reward maximization with the restriction of playing

safe actions.

To address this major concern, the learning algorithm needs to guarantee that it does not

violate certain safety constraints. From a bandit optimization point of view, [11, 96, 13, 94]

study a linear bandit problem, in which, at each round, a linear cost constraint needs to be

satisfied with high probability. For this problem, they propose no-regret algorithms that with

high probability never violate the constraints. There has been a surge of research activity

to address the issue of safe exploration in RL when the environment is modeled via the

more challenging and complex setting of an unknown MDP. Many of existing algorithms

22



model the safety in RL via Constrained Markov Decision Process (CMDP), that extends the

classical MDP to settings with extra constraints on the total expected cost over a horizon.

To address the safety requirements in CMDPs, different approaches such as Primal-Dual

Policy Optimization [99, 98, 112], Constrained Policy Optimization [7, 145], and Reward

Constrained Policy Optimization [120] have been proposed. These algorithms come with either

no theoretical guarantees or asymptotic convergence guarantee in the batch offline setting. In

another line of work studying CMDP in online settings, [48, 127, 54, 154, 42, 100, 43, 141, 67]

propose algorithms coming with sub-linear bounds on the number of constraint violation.

Additionally, the safety constraint considered in the aforementioned papers is defined by the

cumulative expected cost over a horizon falling below a certain threshold.

In this chapter, we propose an upper confidence bound (UCB)- based algorithm – termed

Safe Linear UCB Q/V Iteration (SLUCB-QVI) – with the focus on deterministic policy

selection respecting a more restrictive notion of safety requirements that must be satisfied

at each time-step an action is played with high probability. We also present Randomized

SLUCB-QVI (RSLUCB-QVI), a safe algorithm focusing on randomized policy selection

without any constraint violation. For both algorithms, we assume the underlying MDP has

linear structure and prove a regret bound that is order-wise comparable to those of its unsafe

counter-parts.

Our main technical contributions allowing us to guarantee sub-linear regret bound while

the safety constraints are never violated, include: 1) conservatively selecting actions from

properly defined subsets of the unknown safe sets; and 2) exploiting careful algorithmic

designs to ensure optimism in the face of safety constraints, i.e., the value function of our

proposed algorithms are greater than the optimal value functions. See Sections 3.4,3.5, and

3.6 for details.

3.1.1 Key Contributions

Safety in reinforcement learning has become increasingly important in recent years. Yet,

existing solutions either fail to strictly avoid choosing unsafe actions, which may lead to
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catastrophic results in safety-critical systems, or fail to provide regret guarantees for settings

where safety constraints need to be learned. In this chapter, we address both problems by

first modeling safety as an unknown linear cost function of states and actions, which must

always fall below a certain threshold. We then present algorithms, termed SLUCB-QVI and

RSLUCB-QVI, for finite-horizon Markov decision processes (MDPs) with linear function

approximation. We show that SLUCB-QVI and RSLUCB-QVI, while with no safety violation,

achieve a Õ
(
κ
√
d3H3T

)
regret, nearly matching that of state-of-the-art unsafe algorithms,

where H is the duration of each episode, d is the dimension of the feature mapping, κ is a

constant characterizing the safety constraints, and T is the total number of action played.

We further present numerical simulations that corroborate our theoretical findings.

3.2 Problem formulation

Finite-horizon Markov decision process. We consider a finite-horizon Markov decision

process (MDP) denoted by M = (S,A, H,P, r, c), where S is the state set, A is the action

set, H is the length of each episode (horizon), P = {Ph}Hh=1 are the transition probabilities,

r = {rh}Hh=1 are the reward functions, and c = {ch}Hh=1 are the safety measures. For each

time-step h ∈ [H], Ph(s
′|s, a) denotes the probability of transitioning to state s′ upon playing

action a at state s, and rh : S ×A → [0, 1] and ch : S ×A → [0, 1] are reward and constraint

functions. We consider the learning problem where S and A are known, while the transition

probabilities Ph, rewards rh and safety measures ch are unknown to the agent and must

be learned online. The agent interacts with its unknown environment described by M in

episodes. In particular, at each episode k and time-step h ∈ [H], the agent observes the state

skh, plays an action akh ∈ A, and observes a reward rkh := rh(s
k
h, a

k
h) and a noise-perturbed

safety measure zkh := ch(s
k
h, a

k
h) + ϵkh, where ϵkh is a random additive noise.

Safety Constraint. We assume that the underlying system is safety-critical and the

learning environment is subject to a side constraint that restricts the choice of actions. At

each episode k and time-step h ∈ [H], when being in state skh, the agent must select a safe
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action akh such that

ch(s
k
h, a

k
h) ≤ τ (3.1)

with high probability, where τ is a known constant. We accordingly define the unknown safe

action sets as

Asafe
h (s) := {a ∈ A : ch(s, a) ≤ τ}, ∀(s, h) ∈ S × [H].

Thus, after observing state skh at episode k and time-step h ∈ [H], the agent’s choice of

action must belong to Asafe
h (skh) with high probability. As a motivating example, consider a

self-driving car. On the one hand, the agent (car) is rewarded for getting from point one to

point two as fast as possible. On the other hand, the driving behavior must be constrained

to respect traffic safety standards.

Goal. A safe deterministic policy is a function π : S× [H]→ A, such that π(s, h) ∈ Asafe
h (s)

is the safe action the policy π suggests the agent to play at time-step h ∈ [H] and state

s ∈ S. Thus, we define the set of safe policies by

Πsafe :=
{
π : π(s, h) ∈ Asafe

h (s), ∀(s, h) ∈ S × [H]
}
.

For each h ∈ [H], the cumulative expected reward obtained under a safe policy π ∈ Πsafe

during and after time-step h, known as the value function V π
h : S → R, is defined by

V π
h (s) := E

 H∑
h′=h

rh′
(
sh′ , π(sh′ , h′)

)∣∣∣∣∣∣ sh = s

 , (3.2)

where the expectation is over the environment. We also define the state-action value action

Qπ
h : S ×Asafe

h (.)→ R for a safe policy π ∈ Πsafe at time-step h ∈ [H] by

Qπ
h(s, a) := E

 H∑
h′=h+1

rh′
(
sh′ , π(sh′ , h′)

)∣∣∣∣∣∣ sh = s, ah = a

 . (3.3)

To simplify the notation, for any function f , we denote [Phf ](s, a) := Es′∼Ph(.|s,a)f(s
′). Let π∗

be the optimal safe policy such that V π∗
h (s) := V ∗

h (s) = supπ∈Πsafe V π
h (s) for all (s, h) ∈ S×[H].
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Thus, for all (s, h) ∈ S × [H] and a ∈ Asafe
h (s), the Bellman equations for an arbitrary safe

policy π ∈ Πsafe and the optimal safe policy are:

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a), V π

h (s) = Qπ
h(s, π(s, h)), (3.4)

Q∗
h(s, a) = rh(s, a) + [PhV

∗
h+1](s, a), V ∗

h (s) = max
a∈Asafe

h (s)
Q∗

h(s, a), (3.5)

where V π
H+1(s) = V ∗

H+1(s) = 0. Note that in classical RL without safety constraints, the

Bellman optimality equation implies that there exists at least one optimal policy that is

deterministic (see [30, 118, 117]). When considering solving the Bellman equation for the

optimal policy, the presence of safety constraints is equivalent to solving it for an MDP

without constraints but with different action sets for each (s, h) ∈ S × [H], i.e., Asafe
h (s).

Let K be the total number of episodes, sk1 be the initial state at the beginning of episode

k ∈ [K] and πk be the high probability safe policy chosen by the agent during episode k ∈ [K].

Then the cumulative pseudo-regret is defined by

RK :=
K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1). (3.6)

The agent’s goal is to keep RK as small as possible (RK/K → 0 as K grows large)

without violating the safety constraint in the process, i.e., πk ∈ Πsafe for all k ∈ [K] with high

probability.

Linear Function Approximation. We focus on MDPs with linear transition kernels,

reward, and cost functions that are encapsulated in the following assumption.

Assumption 4 (Linear MDP [31, 142, 64]). M = (S,A, H,P, r, c) is a linear MDP

with feature map ϕ : S × A → Rd, if for any h ∈ [H], there exist d unknown mea-

sures µ∗
h := [µ∗

h
(1), . . . , µ∗

h
(d)]⊤ over S, and unknown vectors θ∗h,γ

∗
h ∈ Rd such that

Ph(.|s, a) =
〈
µ∗

h(.),ϕ(s, a)
〉
, rh(s, a) =

〈
θ∗h,ϕ(s, a)

〉
, and ch(s, a) =

〈
γ∗
h,ϕ(s, a)

〉
.

This assumption highlights the definition of linear MDP, in which the Markov transition

model, the reward functions, and the cost functions are linear in a feature mapping ϕ.
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3.3 Prior Work

Safe RL with randomized policies: The problem of Safe RL formulated with Constrained

Markov Decision Process (CMDP) with a focus on unknown dynamics and randomized policies

is studied in [48, 127, 54, 154, 42, 100, 43, 141, 67]. In the above-mentioned papers, the

goal is to find the optimal randomized policy that maximizes the reward value function

V π
r (s) (expected total reward) while ensuring the cost value function V π

c (s) (expected total

cost) does not exceed a certain threshold. This safety requirement is defined over a horizon,

in expectation with respect to the environment and the randomization of the policy, and

consequently is less strict than the safety requirement considered in this chapter, which must

be satisfied at each time-step an action is played. In addition to their different problem

formulations, the theoretical guarantees of these works fundamentally differ from the ones

provided in our work. The recent closely-related work of [42] studies constrained finite-

horizon MDPs with a linear structure as considered in our work via a primal-dual-type

policy optimization algorithm that achieves a O(dH2.5
√
T ) regret and constraint violation

and can only be applied to settings with finite action set A. The algorithm of [48] obtains

a O(|S|H2
√
|S||A|T ) regret and constraint violation in the episodic finite-horizon tabular

setting via linear program and primal-dual policy optimization. In [100], the authors study

an adversarial stochastic shortest path problem under constraints with O(|S|H
√
|A|T ) regret

and constraint violation. [43] proposes a primal-dual algorithm for solving discounted infinite

horizon CMDPs that achieves a global convergence with rate O(1/
√
T ) regarding both the

optimality gap and the constraint violation. In contrast to the aforementioned works which

can only guarantee bounds on the number of constraint violation, our algorithms never

violate the safety constraint during the learning process.

Besides primal-dual methods, in [37] Lyapunov functions are leveraged to handle the

constraints. [149] proposes a constrained policy gradient algorithm with convergence guarantee.

Both above-stated works focus on solving CMDPs with known transition model and constraint

function without providing regret guarantees.
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Safe RL with GPs and deterministic transition model and policies: In another line

of work, [126, 29, 130, 129] use Gaussian processes to model the dynamics with deterministic

transitions and/or the value function in order to be able to estimate the constraints and

guarantee safe learning. Despite the fact that some of these algorithms are approximately

safe, analysing the convergence is challenging and the regret analysis is lacking.

3.4 Safe Linear UCB Q/V Iteration

In this section, we present Safe Linear Upper Confidence Bound Q/V Iteration (SLUCB-QVI)

summarized in Algorithm 3, which is followed by a high-level description of its performance

in Section 3.4. First, we introduce the following necessary assumption and set of notations

used in describing Algorithm 3 and its analysis in the next sections.

Assumption 5 (Non-empty safe sets). For all s ∈ S, there exists a known safe action a0(s)

such that a0(s) ∈ Asafe
h (s) with known safety measure τh(s) :=

〈
ϕ
(
s, a0 (s)

)
,γ∗

h

〉
< τ for all

h ∈ [H] .

Knowing safe actions a0(s) is necessary for solving the safe linear MDP setting studied in

this chapter, which requires the constraint (3.1) to be satisfied from the very first round. This

assumption is also realistic in many practical examples, where the known safe action could be

the one suggested by the current strategy of the company or a very cost-neutral action that

does not necessarily have high reward but its cost is far from the threshold. It is possible to

relax the assumption of knowing the cost of the safe actions τh(s). In this case, the agent

starts by playing a0(s) for Th(s) rounds at time-steps h in order to construct a conservative

estimator for the gap τ − τh(s). Th(s) is selected in an adaptive way and in Appendix B.1.4,

we show that 16 log(K)
(τ−τh(s))2

≤ Th(s) ≤ 64 log(K)
(τ−τh(s))2

. After Th(s) rounds, the agent relies on these

estimates of τh(s) in the computation of estimated safe set of policies (discussed shortly).

Notations. For any vector x ∈ Rd, define the normalized vector x̃ := x
∥x∥2

. We define the

span of the safe feature ϕ
(
s, a0 (s)

)
as Vs = span

(
ϕ
(
s, a0 (s)

))
:=
{
αϕ
(
s, a0 (s)

)
: α ∈ R

}
and the orthogonal complement of Vs as V⊥

s := {y ∈ Rd : ⟨y,x⟩ = 0, ∀x ∈ Vs}. For any

28



Algorithm 3 SLUCB-QVI

1: Input: A, λ, δ, H, K, τ , κh(s)

2: A1
h = λI, A1

h,s = λ
(
I − ϕ̃

(
s, a0 (s)

)
ϕ̃

⊤ (
s, a0 (s)

))
b1
h = r1h,s = 0, ∀(s, h) ∈ S ×

[H], Qk
H+1(., .) = 0, ∀k ∈ [K]

3: for episodes k = 1, . . . , K do

4: Observe the initial state sk1.

5: for time-steps h = H, . . . , 1 do

6: Compute Ak
h(s) as in (3.9) ∀s ∈ S.

7: Compute Qk
h(s, a) as in (3.10) ∀(s, a) ∈ S ×Ak

h(.).

8: end for

9: for time-steps h = 1, . . . , H do

10: Play akh = argmaxa∈Ak
h(s

k
h)
Qk

h(s
k
h, a) and observe skh+1, r

k
h and zkh.

11: end for

12: end for

x ∈ Rd, denote by Φ0(s,x) :=
〈
x, ϕ̃

(
s, a0 (s)

)〉
ϕ̃
(
s, a0 (s)

)
its projection on Vs, and, by

Φ⊥
0 (s,x) := x− Φ0(s,x) its projection onto the orthogonal subspace V⊥

s . Moreover, for ease

of notation, let ϕk
h := ϕ(skh, a

k
h).

3.4.1 Overview

From a high-level point of view, our algorithm is the safe version of LSVI-UCB proposed

by [64]. In particular, each episode consists of two loops over all time-steps. The first loop

(Lines 5-8) updates the quantities Ak
h, estimated safe sets, and Qk

h, action-value function,

that are used to execute the upper confidence bound policy akh = argmaxa∈Ak
h(s

k
h)
Qk

h(s
k
h, a) in

the second loop (Lines 9-11). The key difference between SLUCB-QVI and LSVI-UCB is

the requirement that chosen actions akh must always belong to unknown safe sets Asafe
h (skh).

To this end, at each episode k ∈ [K], in an extra step in the first loop (Line 6), the agent

computes a set Ak
h(s) for all s ∈ S, which we will show is guaranteed to be a subset of the

unknown safe set Asafe
h (s), and therefore, is a good candidate to select action akh from in
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the second loop (Line 10). Construction of Ak
h(s) depends on an appropriate confidence set

around the unknown parameter γ∗
h used in the definition of safety constraints (see Assumption

4). Since the agent has knowledge of τh(s) :=
〈
ϕ
(
s, a0 (s)

)
,γ∗

h

〉
(see Assumption 5), it

can compute zkh,s :=

〈
Φ⊥

0

(
s,ϕk

h

)
,Φ⊥

0

(
s,γ∗

h

)〉
+ ϵkh = zkh −

〈
ϕk

h,ϕ̃(s,a0(s))
〉

∥∥∥ϕ(s,a0(s))∥∥∥
2

τh(s), i.e., the cost

incurred by akh along the subspace V⊥
s , which is orthogonal to ϕ

(
s, a0 (s)

)
. Thus, the agent

does not need to build confidence sets around γ∗
h along the normalized safe feature vector,

ϕ̃
(
s, a0 (s)

)
. Instead, it only builds the following confidence sets around Φ⊥

0

(
s,γ∗

h

)
which is

along the orthogonal direction of ϕ̃
(
s, a0 (s)

)
:

Ckh(s) :=

{
ν ∈ Rd :

∥∥∥ν − γk
h,s

∥∥∥
Ak

h,s

≤ β

}
, (3.7)

where γk
h,s :=

(
Ak

h,s

)−1

rkh,s is the regularized least-squares estimator of Φ⊥
0

(
s,γ∗

h

)
computed by the inverse of Gram matrix Ak

h,s := λ
(
I − ϕ̃

(
s, a0 (s)

)
ϕ̃

⊤ (
s, a0 (s)

))
+∑k−1

j=1 Φ
⊥
0

(
s,ϕj

h

)
Φ⊥,⊤

0

(
s,ϕj

h

)
and rkh,s :=

∑k−1
j=1 z

j
h,sΦ

⊥
0

(
s,ϕj

h

)
. The exploration factor β

will be defined shortly in Theorem 4 such that it guarantees that the event

E1 :=
{
Φ⊥

0 (s,γ∗
h) ∈ Ckh(s), ∀(s, h, k) ∈ S × [H]× [K]

}
(3.8)

i.e., Φ⊥
0

(
s,γ∗

h

)
belongs to the confidence sets Ckh(s), holds with high probability. In the

implementations, we treat β as a tuning parameter. Conditioned on event E1, the agent is

ready to compute the following inner approximations of the true unknown safe sets Asafe
h for

all s ∈ S:

Ak
h(s) =

a ∈ A :

〈
Φ0

(
s,ϕ(s, a)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a)

)〉

+β
∥∥∥Φ⊥

0

(
s,ϕ(s, a)

)∥∥∥(
Ak

h,s

)−1 ≤ τ

}
. (3.9)

Note that

〈
Φ0(s,ϕ(s,a)),ϕ̃(s,a0(s))

〉
∥∥∥ϕ(s,a0(s))∥∥∥

2

τh(s) is the known cost of action a at state s along

direction ϕ̃
(
s, a0 (s)

)
and maxν∈Ck

h(s)

〈
Φ⊥

0

(
s,ϕ(s, a)

)
,ν
〉

=
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a)

)〉
+
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β
∥∥∥Φ⊥

0

(
s,ϕ(s, a)

)∥∥∥(
Ak

h,s

)−1 is its maximum possible cost in the orthogonal space V⊥
s . Thus,〈

Φ0(s,ϕ(s,a)),ϕ̃(s,a0(s))
〉

∥∥∥ϕ(s,a0(s))∥∥∥
2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a)

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a)

)∥∥∥(
Ak

h,s

)−1 is a high

probability upper bound on the true unknown cost ⟨ϕ(s, a),γ∗
h⟩, which implies that

Ak
h(s) ⊂ Asafe

h (s).

Proposition 1. Conditioned on E1 in (3.8), for all (s, h, k) ∈ S × [H]× [K], it holds that〈
ϕ(s, a),γ∗

h

〉
≤ τ, ∀a ∈ Ak

h(s).

Thus, conditioned on E1, the decision rule akh := argmaxa∈Ak
h(s

k
h)
Qk

h(s
k
h, a) in Line 10 of

Algorithm 3 suggests that akh does not violate the safety constraint. Note that Ak
h(s) is always

non-empty, since as a consequence of Assumption 5, the safe action a0(s) is always in Ak
h(s).

Now that the estimated safe sets Ak
h(s) are constructed, we describe how the action-

value functions Qk
h are computed to be used in the UCB decision rule, selecting the action

akh in the second loop of the algorithm. The linear structure of the MDP allows us to

parametrize Q∗
h(s, a) by a linear form ⟨w∗

h,ϕ(s, a)⟩, where w∗
h := θ∗h +

∫
S V

∗
h+1(s

′)dµ(s′).

Thus, a natural idea to estimate Q∗
h(s, a) is to solve least-squares problem for w∗

h. In fact,

for all (s, a) ∈ S ×Ak
h(.), the agent computes Qk

h(s, a) defined as

Qk
h(s, a) =min

{〈
wk

h,ϕ(s, a)
〉
+ κh(s)β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1 , H

}
, (3.10)

where wk
h :=

(
Ak

h

)−1
bk
h is the regularized least-squares estimator of w∗

h com-

puted by the inverse of Gram matrix Ak
h := λI +

∑k−1
j=1 ϕ

j
hϕ

j
h

⊤
and bk

h :=∑k−1
j=1 ϕ

j
h

[
rjh +maxa∈Ak

h+1(s
j
h+1)

Qk
h+1(s

j
h+1, a)

]
. Here, κh(s)β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1 is an exploration

bonus that is characterized by: 1) β that encourages enough exploration regarding the

uncertainty about r and P; and 2) κh(s) > 1 that encourages enough exploration regarding

the uncertainty about c. While we make use of standard analysis of unsafe bandits and MDPs

[2] and [64] to define β, appropriately quantifying κh(s) is the main challenge the presence of

safety constraints brings to the analysis of SLUCB-QVI compared to the unsafe LSVI-UCB

and it is stated in Lemma 3.
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3.5 Theoretical Guarantees of SLUCB-QVI

In this section, we discuss the technical challenges the presence of safety constraints brings

to our analysis and provide a regret bound for SLUCB-QVI. Before these, we make the

remaining necessary assumptions under which our proposed algorithm operates and achieves

good regret bound.

Assumption 6 (Subgaussian noise). For all (h, k) ∈ [H] × [K], ϵkh is a zero-mean σ-

subGaussian random variable.

Assumption 7 (Boundedness). Without loss of generality,
∥∥ϕ(s, a)∥∥

2
≤ 1 for all (s, a) ∈

S ×A, and max
(∥∥µ∗

h(S)
∥∥
2
,∥θ∗h∥2 ,

∥∥γ∗
h

∥∥
2

)
≤
√
d for all h ∈ [H].

Assumption 8 (Star convex sets). For all s ∈ S, the set D(s) :=
{
ϕ(s, a) : a ∈ A

}
is a

star convex set around the safe feature ϕ
(
s, a0 (s)

)
, i.e., for all x ∈ D(s) and α ∈ [0, 1],

αx+ (1− α)ϕ
(
s, a0 (s)

)
∈ D(s).

Assumptions 6 and 7 are standard in linear MDP and bandit literature [64, 96, 11].

Assumption 8 is necessary to ensure that the agent has the opportunity to explore the feature

space around the given safe feature vector ϕ
(
s, a0 (s)

)
. For example, consider a simple

setting where S = {s1},A = {a1, a2}, H = 1,µ∗(s1) = (1, 1),θ∗ = (0, 1),γ∗ = (0, 1), τ = 2,

a0(s1) = a2, and D(s1) = {ϕ(s1, a1),ϕ(s1, a2)} = {(0, 1), (1, 0)}, which is not a star convex

set. Here, both actions a1 and a2 are safe. The optimal safe policy always plays a1, which

gives the highest reward. However, if D(s1) does not contain the whole line connecting (1, 0)

and (0, 1), the agent keeps playing a2 and will not be able to explore other safe action and

identify that the optimal policy would always select a1. Also, it is worth mentioning that the

star convexity of the sets D(s) is a milder assumption than convexity assumption considered

in existing safe algorithms of [11, 94].

Given these assumptions, we are now ready to present the formal guarantees of SLUCB-

QVI in the following theorem.

Theorem 4 (Regret of SLUCB-QVI). Under Assumptions 4, 5, 6, 7, and 8, there ex-

ists an absolute constant cβ > 0 such that for any fixed δ ∈ (0, 0.5), if we set β :=
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max

σ

√
d log

(
2+ 2T

λ

δ

)
+
√
λd, cβdH

√
log(dT

δ
)

, and κh(s) :=
2H

τ−τh(s)
+ 1, then with prob-

ability at least 1 − 2δ, it holds that RK ≤ 2H
√
T log(dT

δ
) + (1 + κ)β

√
2dHT log

(
1 + K

dλ

)
,

where κ := max(s,h)∈S×[H] κh(s)

Here, T = KH is the total number of action plays. We observe that the regret bound

is of the same order as that of state-of-the-art unsafe algorithms, such as LSVI-UCB [64],

with only an additional factor κ in its second term. The complete proof is reported in the

Appendix B.1.3. In the following section, we give a sketch of the proof.

3.5.1 Proof Sketch of Theorem 4

First, we state the following theorem borrowed from [2, 64].

Theorem 5 (Thm. 2 in [2] and Lemma B.4 in [64]). For any fixed policy π, define V k
h (s) :=

maxa∈Ak
h(s,a)

Qk
h(s, a), and the event

E2 :=
{∣∣∣⟨wk

h,ϕ(s, a)⟩ −Qπ
h(s, a) + [Ph(V

π
h+1 − V k

h+1)](s, a)
∣∣∣ ≤ β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1

,∀(a, s, h, k) ∈ A× S × [H]× [K]
}
,

and recall the definition of E1 in (3.8). Then, under Assumptions 4, 5, 6, 7, and the definition

of β in Theorem 4, there exists an absolute constant cβ > 0, such that for any fixed δ ∈ (0, 0.5),

with probability at least 1− δ, the event E := E2 ∩ E1 holds.

As our main technical contribution, in Lemma 3, we prove that when κh(s) :=
2H

τ−τh(s)
+

1, then optimism in the face of safety constraint, i.e., Q∗
h(s, a) ≤ Qk

h(s, a) is guaranteed.

Intuitively, this is required because the maximization in Line 10 of Algorithm 3 is not over the

entire Asafe
h (skh), but only a subset of it. Thus, larger values of κh(s) (compared to κh(s) = 1

in unsafe algorithm LSVI-UCB) are needed to provide enough exploration to the algorithm

so that the selected actions in Ak
h(s

k
h) are -often enough- optimistic, i.e., Q∗

h(s, a) ≤ Qk
h(s, a).

Lemma 3 (Optimism in the face of safety constraint in SLUCB-QVI). Let κh(s) :=
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2H
τ−τh(s)

+ 1 and Assumptions 4,5,6,7,8 hold. Then, conditioned on E, it holds that

V ∗
h (s) ≤ V k

h (s),∀(s, h, k) ∈ S × [H]× [K].

We report the proof in Appendix B.1.2. As a direct conclusion of Lemma 3 and on event

E2 defined in Theorem 5, we have

Q∗
h(s, a) ≤

〈
wk

h,ϕ(s, a)
〉
+ β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1 + [PhV

∗
h+1 − V k

h+1](s, a) (Event E2)

≤ Qk
h(s, a). (Lemma 3)

This is encapsulated in the following corollary.

Corollary 1 (UCB). Let κh(s) :=
2H

τ−τh(s)
+ 1 and Let Assumptions 4,5,6,7,8 hold. Then,

conditioned on E, it holds that Q∗
h(s, a) ≤ Qk

h(s, a),∀(a, s, h, k) ∈ A× S × [H]× [K].

After proving UCB nature of SLUCB-QVI using Lemma 3, we are ready to exploit the

standard analysis of classical unsafe LSVI-UCB [64] to complete the analysis and establish

the final regret bound of SLUCB-QVI.

3.6 Extension to Randomized Policy Selection

SLUCB-QVI presented in Section 3.4 can only output a deterministic policy. In this section,

we show that our results can be extended to the setting of randomized policy selection,

which might be desirable in practice. A randomized policy π : S × [H]→ ∆A maps states

and time-steps to distributions over actions such that a ∼ π(s, h) is the action the policy π

suggests the agent to play at time-step h ∈ [H] when being at state s ∈ S. At each episode k

and time-step h ∈ [H], when being in state skh, the agent must draw its action akh from a safe

policy πk(s
k
h, h) such that

Eakh∼πk(s
k
h,h)

ch(s
k
h, a

k
h) ≤ τ (3.11)

with high probability. We accordingly define the unknown set of safe policies by

Π̃safe :=
{
π : π(s, h) ∈ Γsafe

h (s), ∀(s, h) ∈ S × [H]
}
,
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where Γsafe
h (s) :=

{
θ ∈ ∆A : Ea∼θch(s, a) ≤ τ

}
. Thus, after observing state skh at time-step

h ∈ [H] in episode k, the agent’s choice of policy must belong to Γsafe
h (skh) with high probability.

In this formulation, the expectation in the definition of (action-) value functions for a policy

π is over both the environment and the randomness of policy π. We denote them by Ṽ π
h

and Q̃π
h to distinguish them from V π

h and Qπ
h defined in (3.2) and (3.3) for a deterministic

policy π. Let π∗ be the optimal safe policy such that Ṽ π∗
h (s) := Ṽ ∗

h (s) = supπ∈Π̃safe Ṽ π
h (s) for

all (s, h) ∈ S × [H]. Thus, for all (a, s, h) ∈ A× S × [H], the Bellman equations for a safe

policy π ∈ Π̃safe and the optimal safe policy are

Q̃π
h(s, a) = rh(s, a) + [PhṼ

π
h+1](s, a), Ṽ π

h (s) = Ea∼π(s,h)

[
Q̃π

h(s, a)
]
, (3.12)

Q̃∗
h(s, a) = rh(s, a) + [PhṼ

∗
h+1](s, a), Ṽ ∗

h (s) = max
θ∈Γsafe

h (s)
Ea∈θ

[
Q̃∗

h(s, a)
]
, (3.13)

where Ṽ π
H+1(s) = Ṽ ∗

H+1(s) = 0, and the cumulative regret is defined as RK :=
∑K

k=1 Ṽ
∗
1 (s

k
1)−

Ṽ πk
1 (sk1). This definition of safety constraint in (3.11) frees us from star-convexity assumption

on the sets D(s) :=
{
ϕ(s, a) : a ∈ A

}
(Assumption 8), which is necessary for the deterministic

policy selection approach. We propose a modification of SLUCB-QVI which is tailored to

this new formulation and termed Randomized SLUCB-QVI (RSLUCB-QVI). This new

algorithm also achieves a sub-linear regret with the same order as that of SLUCB-QVI, i.e.,

Õ
(
κ
√
d3H3T

)
.

While RSLUCB-QVI respects a milder definition of the safety constraint (cf. (3.11))

compared to that considered in SLUCB-QVI (cf. (3.1)), it still possesses significant su-

periorities over other existing algorithms solving CMDP with randomized policy selection

[48, 127, 54, 154, 42, 100, 43, 141, 67]. First, the safety constraint considered in these

algorithms is defined by the cumulative expected cost over a horizon falling below a certain

threshold, while RSLUCB-QVI guarantees that the expected cost incurred at each time-step

an action is played (not over a horizon) is less than a threshold. Second, even for this

looser definition of safety constraint, the best these algorithms can guarantee in terms of

constraint satisfaction is a sub-linear bound on the number of constraint violation, whereas

RSLUCB-QVI ensures no constraint violation.
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3.6.1 Randomized SLUCB-QVI

We now describe RSLUCB-QVI summarized in Algorithm 4. Let ϕθ(s) := Ea∼θϕ(s, a). At

each episode k ∈ [K], in the first loop, the agent computes the estimated set of true unknown

set Γsafe
h (s) for all s ∈ S as follows:

Γk
h(s) :=

θ ∈ ∆A : Ea∼θ


〈
Φ0

(
s,ϕ(s, a)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s)

+ max
ν∈Ck

h(s)

〈
Φ⊥

0

(
s,Ea∼θ

[
ϕ(s, a)

])
,ν

〉
≤ τ


=

θ ∈ ∆A :

〈
Φ0

(
s,ϕθ(s)

)
, ϕ̃
(
s, a0 (s)

)〉
∥∥∥ϕ (s, a0 (s))∥∥∥

2

τh(s) +

〈
γk
h,s,Φ

⊥
0

(
s,ϕθ(s)

)〉

+β

∥∥∥∥Φ⊥
0

(
s,ϕθ(s)

)∥∥∥∥(
Ak

h,s

)−1
≤ τ

 . (3.14)

Note that due to the linear structure of the MDP, we can again parametrize Q̃∗
h(s, a) by

a linear form ⟨w̃∗
h,ϕ(s, a)⟩, where w̃∗

h := θ∗h +
∫
S Ṽ

∗
h+1(s

′)dµ(s′). In the next step, for all

(s, a) ∈ S ×A, the agent computes

Q̃k
h(s, a) =

〈
w̃k

h,ϕ(s, a)
〉
+ κh(s)β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1 , (3.15)

where w̃k
h :=

(
Ak

h

)−1
b̃k
h is the regularized least-squares estimator of w̃∗

h computed by the

Gram matrix Ak
h and b̃k

h :=
∑k−1

j=1 ϕ
j
h

[
rjh +min

{
maxθ∈Γk

h+1(s
j
h+1)

Ea∼θ

[
Q̃k

h+1(s
j
h+1, a)

]
, H

}]
.

After these computations in the first loop, the agent draws actions akh from distribution Γk
h(s

k
h)

in the second loop. Define Ṽ k
h (s) := min

{
maxθ∈Γk

h(s)
Ea∼θ

[
Q̃k

h(s, a)
]
, H

}
, and

E3 :=
{∣∣∣⟨w̃k

h,ϕ(s, a)⟩ − Q̃π
h(s, a) + [PhṼ

π
h+1 − Ṽ k

h+1](s, a)
∣∣∣ ≤ β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1

,∀(a, s, h, k) ∈ A× S × [H]× [K]
}
.

It can be easily shown that the results stated in Theorem 5 hold for the settings focusing

on randomized policies, i.e., under Assumptions 4, 5, 6, and 7, and by the definition of β in

Theorem 4, with probability at least 1− 2δ, the event Ẽ := E1 ∩ E3 holds. Therefore, as a

direct conclusion of Proposition 1, it is guaranteed that conditioned on E1, all the policies

inside Γk
h(s) are safe, i.e., Γk

h(s) ⊂ Γsafe
h (s). Now, in the following lemma, we quantify κh(s).
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Algorithm 4 RSLUCB-QVI

1: Input: A, λ, δ, H, K, τ , κh(s)

2: A1
h = λI, A1

h,s = λ
(
I − ϕ̃

(
s, a0 (s)

)
ϕ̃

⊤ (
s, a0 (s)

))
b̃1
h = r1h,s = 0, ∀(s, h) ∈ S ×

[H], Q̃k
H+1(., .) = 0, ∀k ∈ [K]

3: for episodes k = 1, . . . , K do

4: Observe the initial state sk1.

5: for time-steps h = H, . . . , 1 do

6: Compute Γk
h(s) as in (3.14) ∀s ∈ S.

7: Compute Q̃k
h(s, a) as in (3.15) ∀(s, a) ∈ S ×A.

8: end for

9: for time-steps h = 1, . . . , H do

10: Play akh ∼ argmaxθ∈Γk
h(s

k
h)
Ea∼θ

[
Q̃k

h(s
k
h, a)

]
and observe skh+1, r

k
h and zkh.

11: end for

12: end for

Lemma 4 (Optimism in the face of safety constraint in RSLUCB-QVI). Let κh(s) :=

2H
τ−τh(s)

+ 1 and Assumptions 4,5,6,7 hold. Then, conditioned on event Ẽ, it holds that

Ṽ ∗
h (s) ≤ Ṽ k

h (s),∀(s, h, k) ∈ S × [H]× [K].

The proof is included in Appendix B.2.1. Using Lemma 4, we show that Q̃∗
h(s, a) ≤

Q̃k
h(s, a),∀(a, s, h, k) ∈ A×S × [H]× [K]. This highlights the UCB nature of RSLUCB-QVI,

allowing us to exploit the standard analysis of unsafe LSVI-UCB [64] to establish the regret

bound.

Theorem 6 (Regret of RSLUCB-QVI). Under Assumptions 4, 5, 6, and 7, there exists

an absolute constant cβ > 0 such that for any fixed δ ∈ (0, 1/3), and the definition of β in

Theorem 4, if we set κh(s) :=
2H

τ−τh(s)
+ 1, then with probability at least 1− 3δ, it holds that

RK ≤ 2H
√
T log(dT

δ
) + 2(1 + κ)β

√
2dHT log

(
1 + K

dλ

)
, where κ := max(s,h)∈S×[H] κh(s).

See Appendix B.2.2 for the proof.
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Figure 3.1: Comparison of SLUCB-QVI to the unsafe state-of-the-art verifying that: 1)

when LSVI-UCB [64] has knowledge of γ∗
h, it outperforms SLUCB-QVI (without knowledge of

γ∗
h) as expected; 2) when LSVI-UCB does not know γ∗

h (as is the case for SLUCB-QVI) and

its goal is to maximize r − λ′c instead of r, larger λ′ leads to smaller per-episode reward and

number of constraint violations while the number of constraint violations for SLUCB-QVI is

zero.
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Figure 3.2: Comparison of RSLUCB-QVI and CISR [127] in Frozen Lake environment.
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3.7 Experiments

In this section, we present numerical simulations 1 to complement and confirm our theoretical

findings. We evaluate the performance of SLUCB-QVI on synthetic environments and

implement RSLUCB-QVI on the Frozen Lake environment from OpenAI Gym [32].

3.7.1 SLUCB-QVI on Synthetic Environments

The results shown in Figure 3.1 depict averages over 20 realizations, for which we have chosen

δ = 0.01, σ = 0.01, λ = 1, d = 5, τ = 0.5, H = 3 and K = 10000. The parameters {θ∗h}h∈[H]

and {γ∗
h}h∈[H] are drawn from N (0, Id). In order to tune parameters {µ∗

h(.)}h∈[H] and the

feature map ϕ such that they are compatible with Assumption 4, we consider that the feature

space {ϕ(s, a) : (s, a) ∈ S ×A} is a subset of the d-dimensional simplex and e⊤i µ
∗
h(.) is an

arbitrary probability measure over S for all i ∈ [d]. This guarantees that Assumption 4 holds.

Computing safe sets Ak
h(s) in the first loop of SLUCB-QVI (Line 6), is followed by

selecting an action that maximizes a linear function (in feature map ϕ) over the feature space

Dk
h(s

k
h) :=

{
ϕ(skh, a) : a ∈ Ak

h(s
k
h)
}
in its second loop (Line 10). Unfortunately, even if the

feature space {ϕ(s, a) : (s, a) ∈ S ×A} is convex, the set Dk
h(s

k
h) can have a form over which

maximizing the linear function is intractable. In our experiments, we define map ϕ such that

the sets D(s) are star convex and finite around ϕ
(
s, a0 (s)

)
with N = 100 (see Definition 1)

and therefore, we can show that the optimization problem in Line 10 of SLUCB-QVI can be

solved efficiently (see Appendix B.3 for a proof).

Definition 1 (Finite star convex set). A star convex set D around x0 ∈ Rd is finite, if

there exist finitely many vectors {xi}Ni=1 such that D = ∪Ni=1[x0,xi], where [x0,xi] is the line

connecting x0 and xi.

Figure 3.1 depicts the average per-episode reward of SLUCB-QVI and compares it to

that of baseline and emphasizes the value of SLUCB-QVI in terms of respecting the safety

constraints at all time-steps. Specifically, we compare SLUCB-QVI with 1) LSVI-UCB [64]

1All the experiments are implemented in Matlab on a 2020 MacBook Pro with 32GB of RAM.
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when it has knowledge of safety constraints, i.e., γ∗
h; and 2) LSVI-UCB, when it does not know

γ∗
h (as is the case for SLUCB-QVI) and its goal is to maximize the function r− λ′c, with the

constraint being pushed into the objective function, for different values of λ′ = 0.8, 0.85, 0.9

and 0.95. Thus, playing costly actions is discouraged via low rewards. The plot verifies

that LSVI-UCB with knowledge of γ∗
h outperforms SLUCB-QVI without knowledge of γ∗

h

as expected. Also, larger λ′ leads to smaller per-episode reward and number of constraint

violations when LSVI-UCB seeks to maximize r − λ′c (without knowledge of γ∗
h) while the

number of constraint violations for SLUCB-QVI is zero.

3.7.2 RSLUCB-QVI on Frozen Lake Environment

We evaluate the performance of RSLUCB-QVI in the Frozen Lake environment. The agent

seeks to reach a goal in a 10× 10 2D map (Figure 3.2a) while avoiding dangers. At each time

step, the agent can move in four directions, i.e., A = {a1 : left, a2 : right, a3 : down, a4 : up}.

With probability 0.9 it moves in the desired direction and with probability 0.05 it moves

in either of the orthogonal directions. We set H = 1000, K = 10, d = |S| = 100, and

µ∗(s) ∼ N (0, Id) for all s ∈ S = {s1, . . . , s100}. We then properly specified the feature map

ϕ(s, a) for all (s, a) ∈ S×A by solving a set of linear equations such that the transition specifics

of the environment explained above are respected. In order to interpret the requirement of

avoiding dangers as a constraint of form (3.11), we tuned γ∗ and τ as follows: the cost of

playing action a ∈ A at state s ∈ S is the probability of the agent moving to one of the danger

states. Therefore a safe policy ensures that the expected value of probability of moving to

a danger state is a small value. To this end, we set γ∗ =
∑

s∈ Danger statesµ
∗(s) and τ = 0.1.

Also, for each state s ∈ S a safe action, playing which leads to one of the danger states with

small probability (τ = 0.1) is given to the agent. We solve a set of linear equations to tune

θ∗ such that at each state s ∈ S, the direction which leads to a state that is closest to the

goal state gives the agent a reward 1, while playing other three directions gives it a reward

0.01. This model persuades the agent to move towards to the goal.

After specifying the feature map ϕ and tuning all parameters, we implemented RSLUCB-
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QVI for 10 interaction units (episodes) i.e, K = 10) each consisting of 1000 time-steps

(horizon), i.e., H = 1000). During each interaction unit (episode) and after each move, the

agent can end up in one of three kinds of states: 1) goal, resulting in a successful termination

of the interaction unit; 2) danger, resulting in a failure and the consequent termination of

the interaction unit; 3) safe. The agent receives a return of 6 for reaching the goal and 0.01

otherwise.

In Figure 3.2, we report the average of success rate and return over 20 agents for each of

which we implemented RSLUCB-QVI 10 times and compare our results with that of CISR

proposed by [127] in which a teacher helps the agent in selecting safe actions by making

interventions. While the performances of both approaches, RSLUCB-QVI and CISR, are

fairly comparable, an important point to consider is that each interaction unit (episode) in

CISR consists of 10000 time-steps whereas this number is 1000 in RSLUCB-QVI. Notably,

the learning rate of RSLUCB-QVI is faster than that of CISR. Also it is noteworthy that we

comparedRSLUCB-QVI with CISR when it uses the optimized intervention, which gives the

best results compared to other types of intervention.

3.8 Summary

In this chapter, we developed SLUCB-QVI and RSLUCB-QVI, two safe RL algorithms in

the setting of finite-horizon linear MDP. For these algorithms, we provided sub-linear regret

bounds Õ
(
κ
√
d3H3T

)
, where H is the duration of each episode, d is the dimension of the

feature mapping, κ is a constant characterizing the safety constraints, and T = KH is the

total number of action plays. We proved that with high probability, they never violate the

unknown safety constraints. Finally, we implemented SLUCB-QVI and RSLUCB-QVI on

synthetic and Frozen Lake environments, respectively, which confirms that our algorithms

have performances comparable to that of state-of-the-art that either have knowledge of the

safety constraint or take advantage of a teacher’s advice helping the agent avoid unsafe

actions.
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CHAPTER 4

Doubly Pessimistic Algorithms for Strictly Safe

Off-Policy Optimization

4.1 Introduction

Offline/Batch reinforcement learning (RL) as a method that uses previously collected datasets

in many real-world decision-making applications where obtaining new experiences is costly

has received significant attention [76]. For example, the outcome of a treatment in clinical

trials can be evaluated only after several years and thus, a bad decision can cause long-term

damages. The main focus of offline RL has been on two directions: 1) offline policy evaluation,

which aims at estimating value functions of a target policy, and 2) offline policy optimization,

which aims to find an optimal policy that maximizes the expected cumulative reward. A

key challenge in offline RL is to address the issue of insufficient coverage in the dataset [131]

due to the lack of exploration in data collecting process. There has been a surge of research

activities investigating appropriate conditions on the data collecting process to guarantee

an efficient and successful learning either in policy evaluation or policy optimization regions.

For example, see [45, 143, 153, 147, 146].

Most of the existing offline RL methods in the more challenging category of offline policy

optimization find a policy that under certain coverage assumptions performs well or at

least as well as the behavior policy based on which the available dataset has been collected

[76, 51, 71, 150, 101, 65, 72]. However, the learned policy in the above-mentioned works

explores all possible actions, even though freely exploring all actions may be harmful in many

real-world systems where playing even one unsafe action may lead to catastrophic results.

Safety in RL has become increasingly important in recent years. Yet, many of existing
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solutions fail to strictly avoid choosing unsafe policies, which may lead to catastrophic results

in safety-critical systems. Thus, safety in offline RL has become a serious issue that has

restricted the applicability of offline RL algorithms to many risk-sensitive real-world systems.

For example, in a self-driving car, it is critical to only explore those policies that avoid

crash and damage to the car, people and property. Switching cost limitations in medical

applications [27] and legal restrictions in financial managements [3] are other examples of

safety-critical applications. All the aforementioned safety-critical environments introduce the

new challenge of balancing the goal of reward maximization with the restriction of playing

safe actions and studying the influence of safety constraints in the sample complexity of

finding an optimal safe policy.

4.1.1 Key Contributions

We study offline reinforcement learning (RL) in the presence of safety requirements: from a

dataset collected a priori and without direct access to the true environment, learn an optimal

policy that is guaranteed to respect the safety constraints. We focus on a strong notion

of safety requirement which is modeled as an unknown cost function of states and actions,

whose expected value with respect to the learned policy must fall below a certain threshold

at each time-step an action is played with high probability. We present an algorithm in

the context of finite-horizon Markov decision processes (MDPs), termed Safe-DPVI that

performs in a doubly pessimistic manner when 1) it constructs a conservative set of safe

policies; and 2) when it selects a good policy from that conservative set. Without assuming

the sufficient coverage of the dataset or any structure for the underlying MDPs, we establish a

data-dependent upper bound on the suboptimality gap of the safe policy Safe-DPVI returns.

We then specialize our results to linear MDPs with appropriate assumptions on dataset

being well-explored. Both data-dependent and specialized bounds nearly match that of

state-of-the-art unsafe offline RL algorithms, with an additional multiplicative factor
∑H

h=1 αh

H
,

where αh characterizes the safety constraint at time-step h. We further present numerical

simulations that corroborate our theoretical findings.
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4.2 Problem Statement

In this section, we first introduce the standard episodic Markov decision process (MDP) which

is augmented by an extra safety/cost function and describe the data collecting process based

on a behavior policy in the underlying MDP. Then, we introduce safety constraint which

must be satisfied at all time-steps that actions are played with high probability. Finally, we

introduce the performance metric.

Episodic Markov decision process. We consider an episodic Markov decision process

(MDP) denoted by M = (S,A, H,P, R, C), where S is the state set, A is the action set,

H is the length of each episode (horizon), P = {Ph}Hh=1 are the transition probabilities,

R = {Rh}Hh=1 are the reward functions, and C = {Ch}Hh=1 are the safety/cost functions, where

Rh : S ×A → [0, 1] and Ch : S ×A → [0, 1]. For each time-step h ∈ [H], Ph(s
′|s, a) denotes

the probability of transitioning to state s′ upon playing action a at state s. At each time-step

h ∈ [H], the agent observes the state sh, plays an action ah ∈ A, and observes the next state

sh+1 ∼ Ph(.|sh, ah), a reward rh := Rh(sh, ah) + ηh, and a cost ch := Ch(sh, ah) + ϵh, where

ηh and ϵh are random additive noise. We consider a learning problem, where S and A are

known, while the transition probabilities Ph, rewards Rh and costs Ch are unknown to the

agent and must be learned from a given dataset D. The dataset D :=
{
skh, a

k
h, r

k
h, c

k
h

}H,K

h,k=1
is

collected from K i.i.d. trajectories under a behavior policy denoted as π̄.

Safety Constraint. We assume that the underlying system is safety-critical and the

environment is subject to a side constraint that restricts the choice of policies. A policy

π := {πh}Hh=1, where πh : S → ∆A maps S to distributions over A, is called safe if

Ea∼πh(.|s)
[
Ch(s, a)

]
≤ τ, ∀(s, h) ∈ S × [H] (4.1)

with high probability. We accordingly define the unknown set of safe policies by Πsafe :={
π : πh(.|s) ∈ Γsafe

h (s), ∀(s, h) ∈ S × [H]
}
, where

Γsafe
h (s) :=

{
θ(.|s) ∈ ∆A : Ea∼θ(.|s)

[
Ch(s, a)

]
≤ τ

}
. (4.2)
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Thus, after observing state sh at time-step h ∈ [H], the agent’s choice of policy must belong

to Γsafe
h (sh) with high probability. As a motivating example, consider a self-driving car. On

the one hand, the agent (car) is rewarded for getting from point one to point two as fast

as possible. On the other hand, the driving behavior must be constrained to respect traffic

safety standards.

Performance Metric. We define the state-action and state value function Qπ
h : S×A → R

and V π
h : S → R for a policy π at time-step h ∈ [H] by

Qπ
h(s, a) := E

 H∑
h′=h+1

rh′ (sh′ , ah′)

∣∣∣∣∣∣ sh = s, ah = a, π

 , V π
h (s) := E

 H∑
h′=h

rh′ (sh′ , ah′)

∣∣∣∣∣∣ sh = s, π

 ,

where the expectation is over the environment and the randomness of policy π. To simplify

the notation, for any function f , we denote [Phf ](s, a) := Es′∼Ph(.|s,a)f(s
′) and [Bhf ](s, a) :=

Rh(s, a) + [Phf ](s, a). Let π∗ be the optimal safe policy such that V π∗
h (s) := V ∗

h (s) =

supπ∈Πsafe V π
h (s) for all (s, h) ∈ S × [H]. Thus, for all (s, a, h) ∈ S × A × [H], the Bellman

equations for the optimal safe policy and an arbitrary policy π ∈ Πsafe are:

Q∗
h(s, a) = [BhV

∗
h+1](s, a), V ∗

h (s) = max
θ(.|s)∈Γ safe

h (s)
Ea∼θ(.|s)

[
Q∗

h(s, a)
]

(4.3)

Qπ
h(s, a) = [BhV

π
h+1](s, a), V π

h (s) = Ea∼πh(.|s)
[
Qπ

h(s, a)
]
, (4.4)

where V π
H+1(s) = V ∗

H+1(s) = 0. Our goal is to learn a safe policy that maximizes the

cumulative expected reward given the collected dataset D. To this end, we define the following

suboptimality gap of a safe policy π given by the initial state s1 = s as

∆(π; s) := V ∗
1 (s)− V π

1 (s). (4.5)

4.3 Prior Work

In online setting, the problem of Safe RL formulated with Constrained Markov Decision

Process (CMDP) is studied in [48, 127, 54, 154, 42, 100, 43, 141, 67, 88]. In the above-

mentioned papers, the goal is to find the optimal policy in an online manner that maximizes
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the reward value function V π
r (s) (expected total reward) over the safe policies that satisfy

V π
c (s) ≤ b, where V π

c (s) is the cumulative expected cost over an entire episode with duration

H and b is a threshold. This safety requirement is defined over an entire episode, and

consequently is less strict than the safety requirement considered in this work, which must be

satisfied at each time-step an action is played. The notion of safety has been used in several

existing offline RL works. However, they fundamentally differ from the definition of safety

considered in our work. For example, safety in [77, 123, 55] means the algorithm returns

a policy with performance at least as good as that of behavior/baseline policy, based on

which the dataset has been collected. In another line of work, [111, 122] empirically study

safety-constrained RL problem and propose algorithms that consist of two distinct offline and

online phases and aim to find an optimal policy for which the expected value of the number

of unsafe states visits is less than some threshold ϵ ∈ (0, 1) in the context of discounted

MDPs with discount factor γ. In the offline phase, they estimate the safe set of policies form

an available dataset, and then in the online phase, they seek to find the best policy based

on the estimated safe set of policies. The definition of safety constraints studied in all the

above-stated papers is a special case of the notion of safety considered in our work. For

example, if C(s, a) and τ in (4.1) are set to be the probability of transitioning to an unsafe

state by playing action a at state s and ϵ(1− γ) would recover the safety constraint in [122]

for infinite-horizon discounted MDPs. Furthermore, in all the online safe papers, having

τ = b/H in the definition of safety constraint considered in our work in (4.1) would recover

V π
c (s) ≤ b. Therefore, the safety requirement considered in our work is much stricter than

those in the existing literature, and naturally covers a wider range of applications.

4.4 Safe-DPVI: A General Framework for Safe Offline Policy Op-

timization

In this section, we formally present Safe Doubly Pessimistic Value Iteration (Safe-DPVI),

summarized in Algorithm 5, that employs the dataset and returns a safe policy π̂. We then

introduce two uncertainty quantifiers based on which, we are able to control ∆(π̂; s) and
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state our main results on the suboptimality gap’s bound in Theorem 7.

First, we introduce the following assumption, which is necessary to ensure that the safety

constraint in (4.1) is satisfied from the very first time-step.

Assumption 9 (Non-empty safe sets). There exists a known safe policy π0 with known costs

τh(s) := Ea∼π0
h(.|s)

[
Ch(s, a)

]
< τ . Thus, the sets Γsafe

h (s) are non-empty, as π0
h(s) ∈ Γsafe

h (s).

This assumption is rather standard and has been widely used in the literature of safe

online RL [15, 88] and safe bandits [11, 97]. This assumption is also realistic in many practical

examples, where the known safe policy could be the one suggested by the current strategy of

the company or a very cost-neutral policy that does not necessarily have high reward but its

cost is far from the threshold. Note that the known safe policy π0 is not necessarily the same

as the behavior policy π̄. If the behavior policy π̄ is also safe, we can simply treat it as the

known safe policy, i.e., π̄ = π0. In Appendix C.3, we show that it is possible to relax the

assumption of knowing the costs of the safe policy τh(s) and when π0 = π̄, this relaxation

naturally goes through.

Algorithm 5 Safe Doubly Pessimistic Value Iteration

1: Input: D =
{
skh, a

k
h, r

k
h, c

k
h

}H,K

h,k=1

2: Initialization: V̂H+1(s) = 0, ∀s ∈ S

3: for time-steps h = H, . . . , 1 do

4: Compute [B̂hV̂h+1](s, a), B
′
h(s, a) and Γ̂h(s), ∀(s, a) ∈ S ×A, as defined in Section 4.5.1

for underlying linear MDP.

5: Set Q̂h(s, a) =
{
[B̂hV̂h+1](s, a)−B′

h(s, a)
}+

, ∀(s, a) ∈ S ×A.

6: Set π̂h(.|s) = argmaxθ(.|s)∈Γ̂h(s)
Ea∼θ(.|s)

[
Q̂h(s, a)

]
, ∀s ∈ S.

7: Set V̄h(s) = Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, V̂h(s) = min

{
V̄h(s), H

}
, ∀s ∈ S.

8: end for

9: Output: π̂ = {π̂h}Hh=1
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4.4.1 Overview

From a high-level point of view, based on dataset D, Safe-DPVI constructs estimated cost

functions Ĉh : S × A → R, Q-functions Q̂h : S × A → R, value functions V̂h : S → R,

and Bellman operator B̂h such that [B̂hV̂h+1](s, a) approximates [BhV̂h+1](s, a). Note that

the algorithm only relies on construction of [B̂hV̂h+1](s, a) not B̂h itself. The algorithm

constructs an estimated set of safe policies Π̂ based on estimated cost functions Ĉh. To see

how this happens, we first define the following δ-safety uncertainty quantifier and δ-Bellman

uncertainty quantifier for δ ∈ (0, 1) that quantify the uncertainty arising from approximating

the cost function C and [BhV̂h+1](s, a), respectively.

Definition 2 (Uncertainty quantifiers). For a fixed δ ∈ (0, 1), we call B = {Bh}Hh=1 with

Bh : S ×A → R, a δ-safety uncertainty quantifier if P
(∣∣∣Ch(s, a)− Ĉh(s, a)

∣∣∣ ≤ Bh(s, a),

∀(s, a, h) ∈ S ×A× [H]
)
≥ 1 − δ. We also call B′ = {B′

h}Hh=1 with B′
h : S × A → R, a

δ-Bellman uncertainty quantifier if P
(∣∣∣[B̂hV̂h+1](s, a)− [BhV̂h+1](s, a)

∣∣∣ ≤ B′
h(s, a),

∀(s, a, h) ∈ S ×A× [H]
)
≥ 1− δ.

Thus, if the agent can compute a δ-safety uncertainty quantifier B based on the dataset

D and uc
h(s, a) = Ĉh(s, a) + Bh(s, a), then, a natural approximation for Πsafe is Π̂ :={

π : πh(.|s) ∈ Γ̂h(s), ∀(s, h) ∈ S × [H]
}
, where

Γ̂h(s) :=
{
θ(.|s) ∈ ∆A : Ea∼θ(.|s)

[
uc
h(s, a)

]
≤ τ

}
. (4.6)

Thus, Safe-DPVI constructs Γ̂h(s) pessimistically as it relies on uc
h(s, a), which is an upper

confidence bound on Ch(s, a).

Next time Safe-DPVI applies pessimism is when it computes Q̂h by incorporating δ-

Bellman uncertainty quantifier B′ into the value iteration step as follows

Q̂h(s, a) =
{
[B̂hV̂h+1](s, a)−B′

h(s, a)
}+

. (4.7)

After the construction of Γ̂h and Q̂h, the algorithm is ready to return the safe policy

π̂ = {π̂h}Hh=1, where π̂h(.|s) = argmaxθ(.|s)∈Γ̂h(s)
Ea∼θ(.|s)

[
Q̂h(s, a)

]
, as its output. In the

following theorem, we characterize the safeness and suboptimality gap of Safe-DPVI.
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Theorem 7. Fix δ ∈ (0, 0.5). Let B and B′ be δ-safety uncertainty quantifier and

δ-Bellman uncertainty quantifier, respectively, π̂ be the output of Algorithm 5, αh =

2 + 2H
τ−maxs∈S τh(s)

and B̄h(s, a) := max
{
Bh(s, a), B

′
h(s, a)

}
. Then, under Assumption 9,

if Ea∼π0
h(.|s)

[
Bh(s, a)

]
≤ τ−τh(s)

2
for all (s, h) ∈ S × [H], then with probability at least

1 − 2δ, it holds that 1. Π̂ includes π0 and therefore it is non-empty and π̂ is safe; 2.

∆(π̂; s) ≤ max
{∑H

h=1 αhE
[
B̄h(sh, ah)|s1 = s, π∗] ,∑H

h=1 αhE
[
B̄h(sh, ah)|s1 = s, π0

]}
.

The complete proof is given in Appendix C.1.3.

Now, we comment on the suboptimality gap of Algorithm 5 and how it compares to

that of its unsafe counterpart in [65]. The bound on PEVI’s suboptimality gap in [65] is

2
∑H

h=1 E
[
B′

h(sh, ah)|s1 = s, π∗]. We observe that our bound is comparable with that of

PEVI with the following differences: 1) Instead of B′
h, our bound includes αhB̄h to account

for the uncertainty regarding the additional unknown safety constraints we have to deal with

in our setting; 2) Moreover, we take the maximum of the expected value of the uncertainty of

trajectories induced by both the optimal safe policy π∗ and the known safe policy π0, which

once again highlights the role of the known safe policy in Safe-DPVI’s performance.

4.4.2 Proof Sketch of Theorem 7

While point 1 is directly proven from the definition of δ-safety uncertainty quantifier B in

Definition 2, the proof of point 2 is more intricate and challenging and uses the following two

key lemmas whose proofs are given in Appendixes C.1.1 and C.1.2.

Lemma 5 (Suboptimality Gap’s Upper Bound Decomposition). Consider a meta-algorithm

that employs the dataset to construct an estimated Q-function Q̂h : S × A → R and an

estimated value function V̂h : S → R. Let ιh(s, a) := [BhV̂h+1](s, a)− Q̂h(s, a) be the model

evaluation error and π̂ be a policy such that V̂h(s) = min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
for all

(s, h) ∈ S × [H]. Then, it holds that

∆(π̂; s) ≤ V ∗
1 (s)− V̂1(s)︸ ︷︷ ︸

Term I

+
H∑

h=1

E

−ιh(sh, ah)
∣∣∣∣∣s1 = s, π̂


︸ ︷︷ ︸

Term II

.

49



Recall that ιh(s, a) := [BhV̂h+1](s, a) − Q̂h(s, a). Thus, ιh and π̂ are correlated as they

both depend on the dataset D and thus, the expectation in Term II can be rather large. The

definition of δ-Bellman uncertainty quantifier B′ and the pessimism in computation of Q̂h(s, a)

helps us eliminate Term II. Note that if [B̂hV̂h+1](s, a)−B′
h(s, a) < 0, then Q̂h(s, a) = 0 and

therefore −ιh(s, a) = −[BhV̂h+1](s, a) ≤ 0 as V̂h(s) ≥ 0 for all (s, h) ∈ S × [H]. Now, suppose

[B̂hV̂h+1](s, a)−B′
h(s, a) ≥ 0. Since B′ is a δ-Bellman uncertainty quantifier, we have

−ιh(s, a) = Q̂h(s, a)− [BhV̂h+1](s, a) = [B̂hV̂h+1](s, a)−B′
h(s, a)− [BhV̂h+1](s, a) ≤ 0.

This concludes that for all (s, a, h) ∈ S ×A× [H], with probability at least 1− δ, it holds

that −ιh(s, a) ≤ 0, and therefore Term II =
∑H

h=1 E

−ιh(sh, ah)
∣∣∣∣∣s1 = s, π̂

 ≤ 0.

Our main technical contribution towards bounding ∆(π̂; s) is given in Lemma 6 that

together with Lemma 5 proves point 2 of Theorem 7.

Lemma 6. Fix δ ∈ (0, 0.5). Let B and B′ be δ-safety uncertainty quantifier and δ-

Bellman uncertainty quantifier, respectively. Also, let B̄h(s, a) = max
{
Bh(s, a), B

′
h(s, a)

}
and

Fh(s) := max
{∑H

h′=h αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗] ,∑H

h′=h αh′E
[
B̄h′(sh′ , ah′)|sh = s, π0

]}
.

Then, under Assumption 9 and provided that αh = 2 + 2H
τ−maxs∈S τh(s)

, with probability at

least 1− 2δ, it holds that

V ∗
h (s)− V̂h(s) ≤ Fh(s), ∀(s, h) ∈ S × [H]. (4.8)

In safe off-policy optimization, the safe set Πsafe is not known. Therefore, at each time-step,

the agent’s policy must be chosen from a conservative inner approximation of Πsafe. Intuitively,

the better this approximation is, the more likely that the output policy of Safe-DPVI leads

to small suboptimality gap, ideally of the same order as that of PEVI proposed by [65] in the

classical offline RL setting. In order to better highlight the challenging part of our analysis

compared to classical setting without safety constraint, we observe that for all (s, h) ∈ S× [H],

with probability at least 1 − δ, it holds that V ∗
h (s) − V̂h(s) ≤ Term i + Term ii, where

Term i = min

{
Ea∼π∗

h(.|s)

[
Q̂h(s, a)

]
, H

}
− min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
and Term ii =
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Ea∼π∗
h(.|s)

[
2B′

h(s, a)−
[
Ph

(
V̂h+1 − V ∗

h+1

)]
(s, a)

]
. A key difference in the analysis of Safe-

DPVI compared to the classical offline RL without safety constraint is that π∗
h(.|sh) may not

lie within the estimated safe set Γ̂h(sh), which makes controlling Term i and Term ii more

delicate. This complication lies at the heart of the new formulation with additional safety

constraints. When safety constraints are absent, classical pessimistic offline RL algorithms

such as PEVI in [65] guarantee that Term i is non-positive and by induction it can be shown

that Term ii≤ 2
∑H

h′=h E
[
B′

h′(sh′ , ah′)|sh = s, π∗]. Unfortunately, this is not the case here as

π∗
h(.|sh) does not necessarily belong to Γ̂h(sh), thus Term i can be positive, which also affects

the bound on Term ii. This extra positive term in the suboptimality gap is the price paid by

Safe-DPVI for choosing safe policies at each time-step h ∈ [H].

4.5 Safe-DPVI: Linear MDP

In this section, we specialize Safe-DPVI and its theoretical guarantees to the case where the

underlying MDP is linear [31, 142, 64]. We further determine sufficient conditions that allow

us to derive finite sample complexity for Safe-DPVI with an underlying linear MDP.

Definition 3 (Linear MDP ). M = (S,A, H,P, R, C) is a linear MDP with feature map

ϕ : S ×A → Rd, if for any h ∈ [H], there exist d unknown measures µ∗
h := [µ∗

h
(1), . . . , µ∗

h
(d)]⊤

over S, and unknown vectors θ∗h, ζ
∗
h ∈ Rd such that Ph(.|s, a) =

〈
µ∗

h(.),ϕ(s, a)
〉
, Rh(s, a) =〈

θ∗h,ϕ(s, a)
〉
, and Ch(s, a) =

〈
ζ∗h,ϕ(s, a)

〉
.

4.5.1 Overview

We introduce the quantities that Safe-DPVI constructs based on the dataset D when the

underlying MDP is linear. Recall that Γ̂h(s) in (4.6) depends on Ĉh(s, a), an approximation

of Ch(s, a), and Bh(s, a). In particular, Safe-DPVI constructs Ĉh(s, a) =
〈
ζ̂h,ϕ(s, a)

〉
, where

ζ̂h := argminν∈Rd

∑K
k=1

(〈
ν,ϕ(skh, a

k
h)
〉
− ckh

)2
+ λ∥ν∥22 is the least square estimator of ζ∗h

with regularization parameter λ > 1 and has the closed form ζ̂h := Λ−1
h

(∑K
k=1ϕ(s

k
h, a

k
h). c

k
h

)
,
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where Λh = λI +
∑K

k=1ϕ(s
k
h, a

k
h)ϕ(s

k
h, a

k
h)

⊤. Moreover, Safe-DPVI computes

[B̂hV̂h+1](s, a) =
〈
ŵh,ϕ(s, a)

〉
, Bh(s, a) = β

∥∥ϕ(s, a)∥∥
Λ−1

h

, B′
h(s, a) = β′∥∥ϕ(s, a)∥∥

Λ−1
h

,

(4.9)

where ŵh is the minimizer of the empirical mean squared Bellman error (MSBE), with closed

form

ŵh := Λ−1
h

 K∑
k=1

ϕ(skh, a
k
h).
[
rkh + V̂h+1(s

k
h+1)

] , (4.10)

and β, β′ > 0 are scaling parameters that will be defined shortly in Theorem 8.

4.5.2 Theoretical Guarantees

Now, we specialize our results in Theorem 7 to the case of linear MDP and provide a sample

complexity for Safe-DPVI when the underlying MDP is linear and certain conditions hold.

First, we make the remaining necessary assumptions under which our proposed algorithm

operates and achieves small suboptimality gap.

Assumption 10 (Subgaussian noise). For all (h, k) ∈ [H]× [K], ηkh and ϵkh are zero-mean

σ-subGaussian random variables.

Assumption 11 (Boundedness). Without loss of generality,
∥∥ϕ(s, a)∥∥

2
≤ 1 for all (s, a) ∈

S ×A, and max
(∥∥µ∗

h(S)
∥∥
2
,∥θ∗h∥2 ,∥ζ

∗
h∥2
)
≤
√
d for all h ∈ [H].

Assumption 12 (Well-explored dataset). There exists an absolute constant c̄ > 0 such

that λmin(Σh) ≥ c̄, ∀h ∈ [H], where Σh = Eπ̄

[
ϕ(sh, ah)ϕ(sh, ah)

⊤] and Eπ̄ is the expectation

taken with respect to the trajectory induced by behavior policy π̄.

Assumptions 10 and 11 are standard in linear MDP and bandit literature [64, 97, 11]. As-

sumption 12 is necessary to ensure that the data collecting process has sufficiently explored A

and S. This assumption is standard in the literature of offline policy optimization/evaluation;

e.g., see [65, 45].

Given these assumptions, we are now ready to present the formal theoretical guarantees

of Safe-DPVI, with underlying linear MDP defined in Definition 3, in the following theorem.
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(a) Success Rate of π̂ (b) Per-Episode Reward of π̂, π̄

Figure 4.1: Performance of Safe-DPVI with an underlying linear MDP on Inverted Pendulum.

The shaded regions show standard deviation around the average over 100 realizations.

Theorem 8 (Suboptimality gap of Safe-DPVI: Linear MDP). Let the underlying MDP

of Safe-DPVI be a linear MDP as stated in Definition 3, π̂ be the output of Safe-

DPVI and αh = 2 + 2H
τ−maxs∈S τh(s)

. Under Assumptions 9, 10, 11, and 12, if K ≥

max

{
8
c̄
log(dH

δ
), 8β2

c̄(τ−max(s,h)∈S×[H] τh(s))
2

}
and we set β = σ

√
d log

(
2+ 2T

λ

δ

)
+
√
λd, β′ =

cdH
√

log(dT
δ
) for an absolute constant c > 0, β̄ = max{β, β′}, then for any fixed δ ∈ (0, 1/3),

for all s ∈ S, with probability at least 1− 3δ, π̂ ∈ Πsafe and ∆(π̂; s) ≤
√
2β̄

∑H
h=1 αh√

2λ+c̄K

We observe that under the same wide-coverage assumption (Assumption 12), Safe-

DPVI with underlying linear MDP achieves an upper bound on the suboptimality gap

of the safe policy π̂, which is nearly of the same order as
√
2β′H√
2λ+c̄K

obtained for the state-

of-the-art unsafe algorithm PEVI in [65]. The complete proof is reported in the Appendix

C.2.

4.6 Experiments

In this section, we present numerical simulations to complement and confirm our theoretical

findings. We apply Safe-DPVI to the control of a simulated Inverted Pendulum environment
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from OpenAI Gym [32]. We consider a pendulum with mass m = 1, length l = 1, which is

actuated by torque u ∈ [−15, 15]. The environment’s state is described by the pendulum’s

angular position θ ∈ [−π, π] and its angular rate θ̇ ∈ [−5, 5]. The system dynamics are

defined as follows

θh+1 = θh + θ̇hδh+
3g

2l
sin(θt)δh

2 +
3

ml2
uδh2, θ̇h+1 = θ̇h +

3g

2l
sin(θh)δh+

3

ml2
uδh, (4.11)

where g = 9.8 is the gravity constant and δh is the simulation step and we set it to 1.

For real numbers a and b and positive integer number n, let Disc([a, b], n) be a dis-

cretized set formed of uniformly dividing [a, b] into n intervals. We discretize the continu-

ous state and action spaces and consider that S = Disc([−π, π], 10) × Disc([−5, 5], 5) and

A = Disc([−15, 15], 15). Thus, |S| = 50 and |A| = 15. For any s ∈ S, let s(1) and s(2) be the

corresponding pendulum’s angular position and pendulum’s angular rate.

We consider that the transition probability P, the reward R, and the cost C do not vary

during an episode. In order to induce stochasticity and parametrize P(s′|s, a), we assumed

that when a torque a is chosen, an additive random torque affects it. In particular, we

considered that P(s′|s, a) = 0.8 for s′ being the closest element of S to the next state of

playing torque a at pendulum’s angular position s(1) and pendulum’s angular rate s(2)

according to system’s dynamics in (4.11). Moreover, P(s′|s, a) = 0.05 for s′ being the closest

element of S to the next state of playing torque a + i, i ∈ {−6,−3, 3, 6} at pendulum’s

angular position s(1) and pendulum’s angular rate s(2) according to (4.11). We also let

R(s, a) = c − s(1)2 + 0.1s(2)2 + 0.001a2 for all (s, a) ∈ S × A, where c is a constant that

makes the rewards positive, and divided them by max(s,a)∈S×A R(s, a). This definition for

the reward function encourages learning a controller that keeps the pendulum upright. We

further defined the set of unsafe states as Sunsafe =
{
s ∈ S : s(1) /∈ [−π/3, π/3]

}
and specified

C(s, a) =
∑

s′∈Sunsafe P(s′|s, a), and τ = 0.01. Therefore a safe policy ensures that the

expected value of the probability of moving to an unsafe state is a small value (τ = 0.01).

Note that any tabular MDP with finitely many states and actions can be represented by a

linear MDP. In particular, if we let d = |S||A| and index each coordinate by an state-action

pair (s, a) ∈ S × A, then a linear MDP with ϕ(s, a) = e(s,a), Ph(.|s, a) =
〈
µ∗

h(.), e(s,a)
〉
,
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Rh(s, a) =
〈
θ∗h, e(s,a)

〉
, and Ch(s, a) =

〈
ζ∗h, e(s,a)

〉
, recovers the tabular MDP. As such, for

the inverted pendulum environment with the above-stated tabular MDP, we considered an

underlying linear MDP with standard basis vectors of dimension d = |S||A| as its feature

maps and episode length H = 100.

The performance of Batch RL algorithms can vary greatly from one dataset to another.

To properly assess Safe-DPVI, we repeated the following for 100 times: 1) fixed a randomly

selected safe behavior policy, π̄, used in the data collecting process, and created datasets with

size K = 1000, K = 10000, and K = 100000, on Inverted Pendulum environment discussed

above; 2) implemented Safe-DPVI on each of these three datasets, and employed the output

policies for 100 episodes with randomly selected initial state; 3) reported the per-episode

reward and success rate, which is the number of time-steps the pendulum was in safe states

during an episode divided by the duration of each episode H = 100, for each of the output

policies. The results shown in Figure 4.1 depict averages over these 100 realizations, for which

we have chosen δ = 0.01, σ = 0.05, λ = 1. In this figure, we have numerically confirmed

the result of Theorem 8. Figure 4.1a showcases that the rate of unsafe states visits is low

(success rate is high) and therefore the output policy π̂ is safe with high probability. Figure

4.1b confirms that π̂, for sufficiently large datasets that satisfy wide-coverage assumption

(see Assumption 12), performs near-optimally and better than the behavior policy π̄.

4.7 Summary

In this chapter, we developed Safe-DPVI, a safe offline RL algorithm in the setting of episodic

MDPs, that performs in a pessimistic manner when 1) it constructs a conservative set of

safe policies; and 2) when it selects a good policy from that conservative set in the value

iteration step. We guaranteed that Safe-DPVI outputs a policy π̂ which is strictly safe in the

sense that it respects the safety constraint at each time-step that it suggests an action to be

played with high probability. Without assuming the sufficient coverage of the dataset or any

structure for the underlying MDPs, we first established a data-dependent upper bound on the

suboptimality gap of the safe policy Safe-DPVI returns. Then, we specialized our results to
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linear MDPs with appropriate assumptions on dataset being well-explored and proved a high

probability upper bound on the suboptimality gap of π̂, i.e., ∆(π̂; s) ≤
√
2β̄

∑H
h=1 αh√

2λ+c̄K
, ∀s ∈ S,

which is order-wise comparable to those of its unsafe counter-parts. Finally, we implemented

Safe-DPVI on Inverted Pendulum environment to empirically confirm our theoretical findings.
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CHAPTER 5

Provably Efficient Lifelong Reinforcement Learning

with Linear Representation

5.1 Introduction

Recently, there has been a surging interest in designing lifelong learning agents that can

continuously learn to solve multiple sequential decision making problems in their lifetimes

[124, 69, 108, 140]. This scenario is in particular motivated by building multi-purpose

embodied intelligence, such as robots working in a weakly structured environment [102].

Typically, curating all tasks beforehand for such problems is nearly infeasible, and the

problems the agent is tasked with may be adaptively selected based on the agent’s past

behaviors. Consider a household robot as an example. Since each household is unique, it is

difficult to anticipate upfront all scenarios the robot would encounter. Moreover, the tasks

the robot faces are not independent and identically distributed (i.i.d.). Instead, what the

robot has done before can affect the next task and its starting state; e.g., if the robot fails to

bring a glass of water and breaks it, then the user is likely to command the robot to clean up

the mess. Thus, it is critical that the agent continuously improves and generalizes learned

abilities to different tasks, regardless of their order.

In this work, we theoretically study lifelong reinforcement learning (RL) in a regret

minimization setting [124, 19], where the agent needs to solve a sequence of tasks using

rewards in an unknown environment while balancing exploration and exploitation. Motivated

by the embodied intelligence scenario, we suppose that tasks differ in rewards, but share the

same state and action spaces and transition dynamics [140]. To be realistic, we make no
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assumptions on how the tasks and initial states are selected1; generally we allow them to be

chosen from a continuous set by an adversary based on the agent’s past behaviors. Once a

task is specified and revealed, the agent has one chance (i.e., executing one rollout from its

current state) to complete the task and then it moves to the next task.

The agent’s goal is to perform near optimally for the tasks it faces, despite the online

nature of the problem. This means that the accumulated regret of the learner compared

with the best policy for each task should be sublinear in its lifetime. We assume that there

is no memory constraint; this is usually the case for robotics applications where real-world

interactions are the main bottleneck [140]. Nonetheless, we require that the agent eventually

learns to make decisions without frequent deliberate planning, because planning is time

consuming and creates undesirable wait time for user-interactive scenarios. In other words,

the agent needs to learn a multi-task policy, generalizing from not only past samples but also

past computation, to solve new tasks.

Formally, we consider an episodic setup based on the framework of contextual Markov

decision process (CMDP) [1, 57]. It repeats the following steps: 1)At the beginning of an

episode, the agent is set to an initial state and receives a context specifying the task reward,

both of which can be arbitrarily chosen. 2) When needed, the agent uses its past experiences

to plan for the current task. 3) The agent runs a policy in the environment for a fixed horizon

in an attempt to solve the assigned task and gains experience from its policy execution.

The agent’s performance is measured as the regret with respect to the optimal policy of the

corresponding task. We require that, for any task sequence, both the agent’s overall regret

and number of planning calls to be sublinear in the number of episodes.

While lifelong RL is not new, the realistic need of simultaneously achieving 1) sublinear

regret and 2) sublinear number of planning calls for 3) a potentially adversarial sequence

of tasks and initial states makes the setup considered here particularly challenging. To our

knowledge, existing works only address a strict subset of these requirements; especially, the

computation aspect is often ignored. Most provable works in lifelong RL make the assumption

1We adopt a stricter definition of lifelong RL here to distinguish it from multi-task RL, while there are
existing works on lifelong RL (e.g. [34, 79]) assuming i.i.d. tasks.

58



that the tasks are finitely many [19, 151, 35], or are i.i.d. [18, 34, 4, 5, 79], while others

considering similar setups to ours do not provide regret guarantees [63, 140]. On the technical

side, the closest lines of work are [92, 1, 57, 91, 66] for contextual MDP and [137, 6] for

the dynamic setting of multi-objective RL, which study the sample complexity for arbitrary

task sequences; however, they either assume the problem is tabular or require a model-based

planning oracle with unknown complexity. Importantly, none of the existing works properly

addresses the need of sublinear planning calls, which creates a large gap between the abstract

setup and practice need.

In this chapter, we aim to establish a foundation for designing agents meeting these three

practically important requirements, a problem which has been overlooked in the literature.

As the first step, here we study lifelong RL with linear representation. We suppose that

the contextual MDP is linearly parameterized [142, 64] and the agent needs to learn a

multi-task policy based on this linear representation. To make this possible, we introduce

a new completeness-style assumption on the representation which is sufficient to ensure

the optimal multi-task policy is realizable under the linear representation. Under these

assumptions, we propose the first provably efficient lifelong RL algorithm, Upper Confidence

Bound Lifelong Value Distillation (UCBlvd, pronounced as “UC Boulevard”), that possesses

all three desired qualities. Specifically, for K episodes of horizon H, we prove a regret bound

Õ(
√

(d3 + d′d)H4K) using Õ(dH log(K)) planning calls, where d and d′ are the feature

dimensions of the dynamics and rewards, respectively.

From a high-level viewpoint, UCBlvd uses a linear structure to identify what to transfer

and operates by interleaving 1) independent planning for a set of representative tasks and 2)

distilling the planned results into a multi-task value-based policy. UCBlvd also constantly

monitors whether the new experiences it gained are sufficiently significant, based on a doubling

schedule, to avoid unnecessary planning. On the technical side, UCBlvd’s design is inspired

by single-task LSVI-UCB [64], however, we introduce a novel distillation step based on QCQP,

along with a new completeness assumption, to enable computation sharing across tasks; we

also extend the low-switching cost technique [2, 52, 132] for single-task RL to the lifelong

setup to achieve sublinear number of planning calls.
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5.2 Preliminaries

We formulate lifelong RL as a regret minimization problem in contextual MDP [1, 57] with

adversarial context and initial state sequences. We suppose that a context determines the

task reward but does not affect the dynamics. Such a context dependency is common for

the lifelong learning scenario where an embodied agent consecutively solves multiple tasks.

Below we give the formal problem definition.

Finite-horizon contextual MDP. We consider a finite-horizon contextual MDP denoted

by M = (S,A,W , H,P, r), where S is the state space, A is the action space, W is the task

context space, H is the horizon (length of each episode), P = {Ph}Hh=1 are the transition

probabilities, and r = {rh}Hh=1 are the reward functions. We allow S and W to be continuous

or infinitely large, while we assume A is finite such that maxa∈A can be performed easily. For

h ∈ [H], rh(s, a, w) denotes the reward function whose range is assumed to be in [0, 1], and

Ph(s
′|s, a) denotes the probability of transitioning to state s′ upon playing action a at state

s. In short, a contextual MDP can be viewed as an MDP with state space S ×W and action

space A where the context part of the state remains constant in an episode.2 To simplify the

notation, for any function f , we write Ph[f ](s, a) := Es′∼Ph(.|s,a)[f(s
′)].

Policy and value functions. In a finite-horizon contextual MDP, a policy π = {πh}Hh=1 is

a sequence where πh : S ×W → A determines the agent’s action at time-step h. Given π,

we define its state value function as V π
h (s, w) := E[

∑H
h′=h rh′

(
sh′ , πh′(sh′ , w), w)|sh = s

]
and

its action-value function as Qπ
h(s, a, w) := rh(s, a, w) + Ph[V

π
h+1(., w)](s, a), where Qπ

H+1 = 0.

We denote the optimal policy as π∗
h(s, w) := supπ V

π
h (s, w), and let V ∗

h := V π∗

h and Q∗
h := Qπ∗

h

denote the optimal value functions. Lastly, we recall the Bellman equation of the optimal

policy:

Q∗
h(s, a, w) = rh(s, a, w) + Ph[V

∗
h+1(., w)](s, a), V ∗

h (s, w) = max
a∈A

Q∗
h(s, a, w). (5.1)

2In general, a context-dependent dynamics would take the form Ph(s
′|s, a, w).
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Interaction protocol of lifelong RL. The agent interacts with a contextual MDP M

in episodes. For presentation simplicity, we assume that the reward functions r are known,

while the transition probabilities P are unknown and must be learned online; we will discuss

how reward learning can be naturally incorporated in Section 5.4.3. At the beginning of

episode k, the agent receives a task context wk ∈ W and is set to an initial state sk1, both of

which can be adversarially chosen. The agent can use past experiences to plan for the current

task, if needed. Then the agent executes its policy πk: at each time-step h ∈ [H], it observes

the state skh, plays an action akh = πk
h(s

k
h, w

k), observes a reward rkh := rh(s
k
h, a

k
h, w

k), and goes

to the next state skh+1 according to Ph(.|skh, akh). Let K be the total number of episodes. The

agent’s goal is to achieve sublinear regret, where the regret is defined as

RK :=
∑K

k=1 V
∗
1 (s

k
1, w

k)− V πk

1 (sk1, w
k). (5.2)

As the comparator policy above (namely π∗ that defines V ∗
1 ) also knows the task context,

achieving sublinear regret implies that the agent would attain near task-specific optimal

performance on average.

Linear model representation. We focus on MDPs with linear transition kernels and

reward functions [64, 142] that are encapsulated in the following assumption.

Assumption 13 (Linear MDPs). M = (S,A, H,P, r,W) is a linear MDP with feature maps

ϕ : S × A → Rd and ψ : S × A×W → Rd′. That is, for any h ∈ [H], there exist a vector

ηh and d measures µh := [µh
(1), . . . , µh

(d)]⊤ over S such that Ph(.|s, a) =
〈
µh(.),ϕ(s, a)

〉
and rh(s, a, w) =

〈
ηh,ψ(s, a, w)

〉
, for all (s, a, w) ∈ S ×A×W. Without loss of generality,∥∥ϕ(s, a)∥∥

2
≤ 1,

∥∥ψ(s, a, w)∥∥
2
≤ 1,

∥∥µh(s)
∥∥
2
≤
√
d, and ∥ηh∥2 ≤

√
d′ for all (s, a, w, h) ∈

S ×A×W × [H].

In real-world problems, we can use the context to model the task specification of a problem.

For example, if we want to design household robots to assist humans with a series of tasks

like cooking, cleaning, washing dishes, lawn mowing, vacuuming, we can treat the the context

as a natural language instruction that the human user would give to the robot, and we can
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view the representations ψ and ϕ as the embedding of a deep neural network model that has

been pre-trained.

Example 1 (Weighted rewards). An interesting and common special case is ψ(s, a, w) =

ϕ(s, a) ⊗ ρ(w), for some mapping ρ : W → Rm. In this case, it holds that d′ = md and

rh(s, a, w) =
〈
ρ(w), rh(s, a)

〉
, where rh(s, a) = Ahϕ(s, a) ∈ Rm, for some Ah ∈ Rm×d, is the

vector reward functions at time-step h. We can view rh(s, a, w) as a weighted reward with

weights ρ(w) that depend on task w. This setting is closely related to Multi-Objective RL

studied for tabular case in [137], which studies the case where ρ(w) = w ∈ Rm along with

tabular S and A.

5.3 A Warm-up Algorithm for Lifelong RL

We first present a warm-up algorithm based on linear representation, termed Lifelong Least-

Squares Value Iteration (Lifelong-LSVI), in Algorithm 6, which is a straightforward extension

of the single-task LSVI-UCB algorithm proposed by [64] to the lifelong learning setting. The

motivation of this warm-up algorithm is to give intuitions on how the problem structure in

Assumption 13 can be used to achieve small regret and discuss the computational difficulty

in lifelong learning.

We will show that Lifelong-LSVI has a sublinear regret bound, which matches the minimax

optimal rate in the special case studied by [137] in terms of number of objectives, m (see

Example 1). However, we will also show that Lifelong-LSVI is not computationally efficient,

in the sense that the number of planning calls it requires grows linearly with the number of

episodes, which would mean the overall computational complexity grows quadratically. This

high computation cost is because the agent never learns to internalize the task solving skills

but requires going though all past experiences for planning every time a new task arrives.

Importantly, we will discuss why it cannot be made computationally efficient in an easy

manner without further assumptions on the representation. This drawback motivates our

new completeness assumption and our main algorithm, UCBlvd, which is provably efficient

in terms of both regret and number of planning calls, in Section 5.4.
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We remark that Lifelong-LSVI is only a warm-up algorithm that guides the reader to

understand the mechanisms used for addressing the problem, motivates the need for UCBlvd,

and shows what regret bound is possible when computational complexity is not a concern

(though being impractical).

5.3.1 Algorithmic Notations

To begin, we introduce the template and the notations that will be used commonly in

presenting the warm-up algorithm, Lifelong-LSVI, and later our main algorithm, UCBlvd.

For each algorithm, first we will define an algorithm-specific action-value function Qk
h :

S ×A×W → R, which determines the agent’s policy at time-step h in episode k; then we

present the full algorithm and its analysis using the quantities below, which are defined with

respect to each algorithm’s definition of Qk
h.

Given {Qk
h}h∈[H], we define state value functions and their backups as

V k
h (s, w) := min

{
max
a∈A

Qk
h(s, a, w), H

}
, θkh(w) :=

∫
S
V k
h+1(s

′, w)dµh(s
′), (5.3)

Thanks to the linear MDP structure in Assumption 13, it holds that

Ph

[
V k
h+1(., w)

]
(s, a) =

〈
θkh(w),ϕ(s, a)

〉
. (5.4)

Let λ > 0 be a constant. We define the λ-regularized least squares estimator of θkh(w) as

θ̃
k

h(w) :=
(
Λk

h

)−1
k−1∑
τ=1

ϕτ
hV

k
h+1(s

τ
h+1, w), where Λk

h := λId +
k−1∑
τ=1

ϕτ
hϕ

τ
h
⊤, (5.5)

and θ̃
k

h(w) is the solution to minθ∈Rd

∑k−1
τ=1(⟨θ,ϕ(sτh, aτh)⟩ − V k

h+1(s
τ
h+1, w))

2 + λ∥θ∥22, ϕ
τ
h :=

ϕ(sτh, a
τ
h), and Id ∈ Rd×d is the identity matrix.

5.3.2 Details of Lifelong-LSVI and its Theoretical Guarantees

We define the upper confidence bound (UCB) style action-value function of Lifelong-LSVI

as follows:

Qk
h(s, a, w) := rh(s, a, w) +

〈
θ̃
k

h(w),ϕ(s, a)
〉
+ β

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 , (5.6)
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Algorithm 6 Lifelong-LSVI

1: Set: Qk
H+1(., ., .) = 0, ∀k ∈ [K]

2: for episodes k = 1, . . . , K do

3: Observe the initial state sk1 and the task context wk.

4: for time-steps h = H, . . . , 1 do

5: Compute θ̃
k

h(w
k) as in (5.5) using Qk

h+1 defined in (5.6).

6: end for

7: for time-steps h = 1, . . . , H do

8: Compute Qk
h(s

k
h, a, w

k) for all a ∈ A as in (5.6).

9: Play akh = argmaxa∈AQk
h(s

k
h, a, w

k) and observe skh+1 and rkh.

10: end for

11: end for

where Qk
H+1 = 0 and θ̃

k

h(w) and Λk
h are defined in (5.5). Here, β is an exploration factor

that will be appropriately chosen in Theorem 9. At episode k, given wk, Lifelong-LSVI first

performs planning backward in time based on past data to compute θ̃
k

h(w
k) in (5.5) using

Qk
h+1 defined in (5.6) (Lines 4- 5). Then, in execution, it uses θ̃

k

h(w
k) to compute Qk

h(s
k
h, a, w

k)

for the current state and all a ∈ A (Line 8) and executes the action with the highest value

(Line 9).

We show that Lifelong-LSVI achieves sublinear regret for our lifelong RL setup. The

complete proof is reported in Appendix D.1, which follows the ideas of LSVI-UCB [64].

Theorem 9. Let T = KH. Under Assumption 13, there exists an absolute constant c > 0

such that for any fixed δ ∈ (0, 0.5), if we set λ = 1 and β = cH
(
d+
√
d′
)√

log(dd′T/δ) in

Algorithm 6, then with probability at least 1− 2δ, it holds that RK ≤ Õ
(√

(d3 + dd′)H3T
)
.

Before introducing our main algorithm in Section 5.4, we make a few remarks on the

regret and number of planning calls of Lifelong-LSVI. First, Theorem 9 implies that for

the special case studied by [137] (Example 1), the regret bound of Lifelong-LSVI becomes

Õ(
√
md3H3T ). This rate is optimal in terms of its dependency on m, as shown in [137].

Furthermore, this rate matches the LSVI-UCB’s regret dependencies on d and H for the
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single-task setting [64].

While Lifelong-LSVI has a decent regret guarantee, it requires computing θ̃
k

h(w
k) for all

h ∈ [H], whenever a distinct new task wk arrives. Since the number of unique tasks may be

as large as K, the total number of planning calls required in Lifelong-LSVI is K in the worst

case.

Unfortunately, the number of planning calls of Lifelong-LSVI cannot be easily improved,

because under Assumption 13 alone, the optimal Q-function Q∗
h(s, a, w) of the CMDP can be

nonlinear in the representation ψ. As a result, for any algorithm that represents its policy

linearly based on both ψ and ϕ, in general it is necessary to recompute the coefficients for

every new w to be optimal. For Lifelong-LSVI specifically, this nonlinear dependency shows

up in θ̃
k

h(w) of Q
k
h(s, a, w) in (5.6).

In the next section, we discuss how placing a completeness-style assumption, which ensures

Q∗
h(s, a, w) can be linearly parameterized by ψ, would circumvent the issue of non-linear

dependency of the action-value functions on w, and consequently would enable computation

sharing to decrease the number of planning calls to O(dH log(K)).

5.4 UCB Lifelong Value Distillation (UCBlvd)

In this section, we present our main algorithm, UCB Lifelong Value Distillation (UCBlvd),

in Algorithm 7. Under new completeness-style assumption that we will introduce in Section

5.4.1, we show that UCBlvd shares the same regret bound as Lifelong-LSVI but significantly

reduces the number of planning calls to be logarithmic in K. In contrast to Lifelong-LSVI

which learns individual action-value function for each wk, UCBlvd learns a single action-value

function for all w ∈ W based on ψ(s, a, w) to enable computation sharing across tasks,

which is made possible by the extra completeness-style assumption. In general, in order to

directly extend Lifelong-LSVI to only use feature ψ(s, a, w) ∈ Rd′ with d′ ≥ d, we need a

context-dependent dynamics structure, which would eventually increase the regret. UCBlvd

maintains the same order of regret as Lifelong-LSVI by separating the planning into a novel

two-step process: 1) independent planning with ϕ for a set of representative task contexts

65



and 2) distilling the planned results into a multi-task value function parameterized by ψ. In

addition, UCBlvd runs a doubling schedule to decide whether replanning is necessary, which

makes the total number of planning calls logarithmic in K.

5.4.1 Enabling Computation Sharing

As lifelong RL with Assumption 13 alone would require replanning in every episode in general

(see Section 5.3), here we introduce new structural assumptions on ψ to enable computation

sharing across tasks. First, we define the following class of functions

F =

{
f : f(s, w) = min

{
max
a∈A

{
⟨ν,ψ(s, a, w)⟩+ β

∥∥ϕ(s, a)∥∥
Λ−1

}+
, H

}
,ν ∈ Rd′ ,Λ ∈ Sd

++, β ≥ 0

}
,

where Sd
++ denotes the set of symmetric positive definite matrices. We now state our main

completeness-style assumption.

Assumption 14 (Completeness). For any f ∈ F and h ∈ [H], there exists a vector ξfh ∈ Rd′

with
∥∥∥ξfh∥∥∥ ≤ H

√
d′ such that Ph

[
f(., w)

]
(s, a) = ⟨ξfh,ψ(s, a, w)⟩.

This assumption says that the backups of functions in F are captured by the feature ψ

with bounded parameters. The definition of F closely models the structure of action-value

function used by Lifelong-LSVI in (5.6), except ⟨θ̃kh(w),ϕ(s, a)⟩ there is replaced by functions

linear in ψ(s, a, w). We will see that the action-value function used by UCBlvd defined in

the next section is contained in F . In addition, by setting β = 0 in F and (5.1), we see

Q∗
h(s, a, w) is linearly realizable by ψ under Assumption 14. We note that a similar notion

of this assumption is mentioned in previous work for single-task settings under the name of

“optimistic closure” [133].

Inspired by Example 1, we now introduce the next assumption on the structure of ψ.

Assumption 15 (Mappings). We assume ψ(s, a, w) = ϕ(s, a)⊗ ρ(w), for some mapping

ρ : W → Rm, i.e., d′ = md. We assume that there is a known set {w(1), w(2), . . . , w(n)}

of n ≤ m task contexts such that ρ(w) ∈ Span({ρ(w(j))}j∈[n]) for all w ∈ W. That is, for

any w ∈ W, there exist coefficients {cj(w)}j∈[n] such that ρ(w) =
∑

j∈[n] cj(w)ρ(w
(j)). We

assume
∑

j∈[n]

∣∣cj(w)∣∣ ≤ L for all w ∈ W and some L <∞.
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Note that, for finite-dimensional representations, such set {ρ(w(j))}j∈[n] always exists. We

assume that this set {w(1), w(2), . . . , w(n)} is known to the algorithm

5.4.2 Details of UCBlvd

We define the UCB style action-value function of UCBlvd as follows:

Qk
h(s, a, w) :=

{
rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1

}+

. (5.7)

The parameter ξ̂
k

h is computed by solving the convex quadratically constrained

quadratic program (QCQP) in (5.8), which is defined on a set of representative

task contexts {w(1), w(2), . . . , w(n)} in Assumption 15 and state-action pairs D :={
(s, a) : ϕ(s, a) are d linearly independent vectors.

}
.

ξ̂
k

h, {θ̂
k(j)

h }j∈[n] = argmin
ξ,{θ(j)}

j∈[n]

∑
j∈[n]

∑
(s,a)∈D

(
⟨θ(j),ϕ(s, a)⟩ − ⟨ξ,ψ(s, a, w(j))⟩

)2
(5.8)

s.t.
∥∥∥θ(j) − θ̃kh(w(j))

∥∥∥
Λk

h

≤ β, ∀j ∈ [n] and ∥ξ∥2 ≤ H
√
md,

where θ̃
k

h(w) andΛk
h are defined in (5.5). In Appendix D.2.3, we will show that the action-value

function in (5.7) is an optimistic estimate of the optimal action-value function.

UCBlvd also uses the linear dependency of Qk
h on ψ to reduce calls of the planning step

in (5.8). The agent triggers replanning only when it has gathered enough new information

compared to the last update at episode k̃. This is measured by tracking the variations in

Gram matrices {Λk
h}h∈[H] (Line 4 for Algorithm 7). Finally, when executing the policy at

episode k, the agent chooses the action according to Qk̃
h in Line 12.

5.4.3 Theoretical analysis of UCBlvd

We present our main theoretical result which shows UCBlvd achieves sublinear regret in

lifelong RL using sublinear number of planning calls, for any sequence of tasks. The proof is

given in Appendix D.2.

Theorem 10. Let T = KH. Under Assumptions 13, 14, and 15, the number of planning
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Algorithm 7 UCBlvd (UCB Lifelong Value Distillation)

1: Set: Qk
H+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1

2: for episodes k = 1, . . . , K do

3: Observe the initial state sk1 and the task context wk.

4: if ∃h ∈ [H] such that log detΛk
h − log detΛk̃

h > 1 then

5: k̃ = k

6: for time-steps h = H, . . . , 1 do

7: Compute ξ̂
k̃

h as in (5.8).

8: end for

9: end if

10: for time-steps h = 1, . . . , H do

11: Compute Qk̃
h(s

k
h, a, w

k) for all a ∈ A as in (5.7).

12: Play akh = argmaxa∈AQk̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

13: end for

14: end for
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calls in Algorithm 7 is at most dH log(1 + K
dλ
), and there exists an absolute constant c > 0

such that for any fixed δ ∈ (0, 0.5), if we set λ = 1 and β = cH(d+
√
md)

√
log(mdT/δ) in

Algorithm 7, then with probability at least 1−2δ, it holds that RK ≤ Õ
(
L
√
(d3 +md2)H3T

)
.

Theorem 10 shows that UCBlvd has the same regret bound as Lifelong-LSVI in Theorem 9,

but reduces the number of planning calls from K to dH log(1+K/dλ). As we discussed before,

this is made possible by the unique QCQP-based distillation step of UCBlvd in (5.8). If we were

to simply perform least-squares regression to fit ⟨ψ(s, a, w), ξ̂
k

h⟩ to {⟨ϕ(s, a), θ̃
k

h(w
(j))}j∈[n] for

distillation, we cannot guarantee the required optimism, because ⟨ϕ(s, a), θ̃kh(w)⟩ computed

based on finite samples can be an irregular function that cannot be modelled by ψ(s, a, w).

Remark 2. If the rewards are unknown, we can adopt a slightly different completeness

assumption with an extra bonus in terms of ψ, and then combine tools from linear bandits [2]

and our proof of Theorem 10. Because reward learning affects the radius of the confidence

intervals for θkh(w), the number of planning calls and regret would increase by factors of O(m)

and O(
√
m) 3, respectively, compared to those in Theorem 10. See Appendix D.3 for details.

Remark 3. It is possible to eliminate the assumption that ψ(s, a, w) = ϕ(s, a)⊗ ρ(w). In

this case, our analysis would instead require a set {w(1), w(2), . . . , w(n)} of n tasks such that

ψ(s, a, w) ∈ Span({ψ(s, a, w(j))}j∈[n]) for all (s, a, w) ∈ S × A ×W. In Appendix D.4, we

provide details of this relaxation, and show that this version still enjoys the same planning

calls and regret as in Theorem 10.

Remark 4. We can eliminate Assumptions 13 and 15 and instead design a computation-

sharing version of Lifelong-LSVI under a sightly different completeness assumption with

a class F , whose exploration bonus is β
∥∥ψ(s, a, w)∥∥

Λ̃
−1. This assumption naturally in-

cludes settings with linear MDP in which dynamics also change with task context, i.e.,

for all h ∈ [H], it holds that Ph(.|s, a, w) = ⟨µh(.),ψ(s, a, w)⟩ for d′ unknown mea-

sures [µ
(1)
h , . . . , µ

(d′)
h ]⊤. Under this assumption, a slightly modified version of Lifelong-

LSVI would use Qk
h(s, a, w) = {rh(s, a, w) + ⟨ν̃k

h,ψ(s, a, w)⟩+ β
∥∥ψ(s, a, w)∥∥

(Λ̃
k
h)

−1}+, where

3While for both settings in this remark and Remark 4, the action-value functions contain exploration bonus
in terms of ψ, the regret here is better by a factor of

√
m and this is because the multiplicative factor β here

saves a factor
√
m compared to that in Remark 4.
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ν̃k
h = (Λ̃

k

h)
−1
∑k−1

τ=1ψ
τ
h.min{maxa∈A Qk

h+1(s
τ
h+1, a, w

τ ), H}, Λ̃k

h = λId′ +
∑k−1

τ=1ψ
τ
hψ

τ
h
⊤, ψτ

h =

ψ(sτh, a
τ
h, w

τ ), and β = Õ(d′). However, in Appendix D.5, we show how these new algo-

rithm and assumption result in Õ(mdH) number of planning calls and a regret scaling with

Õ(
√
m3d3) for settings with ψ(s, a, w) = ϕ(s, a)⊗ ρ(w). These are worse than the number

of planning calls and regret in Theorem 10 of UCBlvd by a factor of O(m).

Remark 5. A natural follow-up relaxation of Assumption 14 is when the equality holds

up to an error of ζ. In Appendix D.6, we show that this relaxation results in a regret

Õ
(√

mdTζ +
√

λ(d3 +md2)H3T
)
and the same number of planning calls as that in Theorem

10. When ζ is sufficiently small, i.e., ζ = O(
√
d2H3/mT ), UCBlvd will still enjoy a regret

of the same order as that in Theorem 10.

5.4.4 Proof Sketch of Theorem 10

Because the proof of planning calls’ upper bound follows standard arguments in low switching

cost analysis of [2], in this section, we focus on the proof sketch for the regret bound. We

start by introducing the high probability event E1, which is the foundation of our analysis:

E1(w) :=
{∥∥∥θkh(w)− θ̃kh(w)∥∥∥

Λk
h

≤ β, ∀(h, k) ∈ [H]× [K]

}
. (5.9)

The following lemma highlights the importance of the carefully designed planning step in (5.8),

which ensures good estimators for ξ
V ∗
h+1

h without the need of bonus term
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 .

This step saves a factor O(m) in planning calls and regret.

Lemma 7. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 10

and conditioned on events {E1(w)}w∈W̃ defined in (5.9), for all (s, a, w, h, k) ∈ S ×A× W̃ ×

[H]× [K], it holds that

∣∣∣∣⟨ξ̂kh,ψ(s, a, w)⟩ − Ph[V
k
h+1(., w)](s, a)

∣∣∣∣ ≤ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1.

As the final step in the regret analysis, we use Lemma 7 to prove the optimistic nature

of UCBlvd, i.e., Qk
h(s, a, w

k) ≥ Q∗
h(s, a, w

k) for all (s, a, h, k) ∈ S × A × [H] × [K]. Then

following the standard analysis of single-task LSVI-UCB we derive the regret bound in

Theorem 10.
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5.4.5 Experiments

We implemented our main algorithm UCBlvd on synthetic environments and compared its

performance with the warm-up algorithm Lifelong-LSVI, which is viewed as an idealized

baseline ignoring the computational complexity. In all the experiments, the same setting,

task sequences and feature mappings were used for both UCBlvd and Lifelong-LSVI. Figure

5.1a depicts per-episode rewards for the main setup considered throughout the chapter, and

Figure 5.1b shows those for the setup in Remark 3. The plots verify that Lifelong-LSVI and

UCBlvd statistically perform almost the same while UCBlvd uses much smaller numbers of

planning calls (1000 vs ∼ 20). We remark that Lifelong-LSVI has an overall computation

complexity of O(K2), which makes it not practical for the lifelong learning setting, as its

planning complexity increases linearly with the number of samples. The details on the

parameters of simulations are deferred to Appendix D.8.
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(a) Setting of Theorem 10, d = 5, m =

5, d′ = 25
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(b) Setting of Remark 3, d = 5, d′ = 10

Figure 5.1: UCBlvd vs Lifelong-LSVI. The experimental results include 50 seeds.

5.5 Related Work

We consider the regret minimization setup of lifelong RL under the contextual MDP framework,

where the agent receives tasks specified by contexts in sequence and needs to achieve a sublinear

regret for any task sequence. Below, we contrast our work with related work in the literature.
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Lifelong RL. Generally lifelong RL studies how to learn to solve a streaming sequence

of tasks using rewards. While it was originally motivated by the need of endless learning of

robots [124], historically many works on lifelong RL [18, 34, 4, 5, 79] assume that the tasks

are i.i.d. (similar to multi-task RL; see below). There are works for adversarial sequences,

but most of them assume finite number of tasks [35, 19, 151] or are purely empirical [140].

The work by [63] uses contexts to enable zero-shot learning like here, but it (as well as most

works above) does not provide formal regret guarantees.4 [35] and [140] assume the task

identity is latent, which requires additional exploration; in this sense, their problem is harder

than the setup here where the task context is revealed. Extending the setup here to consider

latent context is an important future direction.

Contextual MDP and Multi-objective RL. Our setup is closely related to the ex-

ploration problem studied in the contextual MDP literature, though contextual MDP is

originally not motivated from the lifelong learning perspective. A similar mathematical

problem appears in the dynamic setup of multi-objective RL [137, 6], which can be viewed as

a special case of contextual MDP where the context linearly determines the reward function

but not the dynamics. Most contextual MDP works allow adversarial contexts and initial

states, but a majority of them focuses on the tabular setup [1, 57, 91, 92, 80, 137], whereas

our setup allows continuous states. [66] and [44] allow continuous state and action spaces, but

the former assumes a planning oracle with unclear computational complexity and the latter

focuses on only LQG problems. While generally contextual MDP allows both the reward and

the dynamics to vary with contexts, we focus on the effects of context-independent dynamics

similar to [66, 137]. In particular, the recent work of [137] is the closest to ours, but they

study the sample complexity in the tabular setup with linearly parameterized rewards. In

view of Example 1, their proposed algorithm has a regret bound Õ(
√
min{m,|S|}H|S||A|K).

However, they need linear number of planning calls. On the contrary, our algorithm, UCBlvd,

allows continuous states, nonlinear context dependency, and has both sublinear regret and

4[19] give regret bounds but only for linearized value difference; [35] show regret bounds only for finite
number of tasks.
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number of planning calls.

Multi-task RL. Another closely related line of work is multi-task RL. Compared to our

setting, multi-task RL assumes that there are beforehand known finite tasks and/or they are

i.i.d. samples from a fixed distribution. For example, in [144, 61, 33, 49, 152, 109], tasks are

assumed to be chosen from a known finite set, and in [144, 135, 33, 116], tasks are sampled

from a fixed distribution. By contrast, our setting provides guarantees on regret and number

of planning calls for adversarial task sequences.

5.6 Discussion

In this chapter, we frame lifelong RL as contextual MDPs and identify a new completeness-

style assumption to enable provably efficient lifelong RL with linear representation. We

propose UCBlvd, an algorithm that simultaneously satisfies the practical need of achieving

1) sublinear regret and 2) sublinear number of planning calls for 3) any sequence of tasks

and initial states. Specifically, for K task episodes of horizon H, we prove that UCBlvd

has a regret bound Õ(
√
(d3 + d′d)H4K) based on Õ(dH log(K)) number of planning calls,

where d and d′ are the feature dimensions of the dynamics and rewards, respectively. We

believe that our results would inspire new research directions in the literature of CMDP and

multi-objective RL, as existing work to our knowledge does not cover the computation-sharing

aspect of lifelong RL. That said, our work’s limitations motivate further investigations in the

following directions: 1) extension to more general class of MDPs, potentially using general

function approximation/representation tools, 2) establishing an information-theoretic lower

bound on the number of planning calls/computation complexity.
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CHAPTER 6

Distributed Contextual Linear Bandits with Minimax

Optimal Communication Cost

6.1 Introduction

In the contextual bandit problem, a learning agent repeatedly makes decisions based on

contextual information, with the goal of learning a policy that maximizes their total reward

over time. This model captures simple reinforcement learning tasks in which the agent

must learn to make high-quality decisions in an uncertain environment, but does not need

to engage in long-term planning. Contextual bandit algorithms are deployed in online

personalization systems such as medical trials and product recommendation in e-commerce

[8, 121]. For example, by modelling personalized recommendation of articles as a contextual

bandit problem, a learning algorithm sequentially selects articles to be recommended to users

based on contextual information about the users and articles, while continuously updating

its article-selection strategy based on user-click feedback to maximize total user clicks [82].

Distributed cooperative learning is a paradigm where multiple agents collaboratively

learn a shared prediction model. More recently, researchers have explored the potential of

contextual bandit algorithms in distributed systems, such as in robotics, wireless networks,

the power grid and medical trials [84, 24, 28, 115]. For example, in sensor/wireless networks

[24] and channel selection in radio networks [85, 86, 87], a collaborative behavior is required

for decision-makers/agents to select better actions as individuals.

While a distributed nature is inherent in certain systems, distributed solutions might also

be preferred in broader settings, as they can lead to speed-ups of the learning process. This
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calls for extensions of the traditional single-agent bandit setting to networked systems. In

addition to speeding up the learning process, another desirable goal of each distributed learning

algorithm is communication efficiency. In particular, keeping the communication as rare as

possible in collaborative learning is of importance. The notion of communication efficiency in

distributed learning paradigms is directly related to the issue of efficient environment queries

made in single-agent settings. In many practical single-agent scenarios, where the agent

sequentially makes active queries about the environment, it is desirable to limit these queries

to a small number of rounds of interaction, which helps to increase the parallelism of the

learning process and reduce the management cost. In recent years, to address such scenarios,

a surge of research activity in the area of batch online learning has shown that in many

popular online learning tasks, a very small number of batches may achieve minimax optimal

learning performance, and therefore it is possible to enjoy the benefits of both adaptiveity

and parallelism [103, 58, 53]. In light of the connection between communication cost in

distributed settings and the number of environment queries in single-agent settings, a careful

use of batch learning methods in multi-agent learning scenarios may positively affect the

communication efficiency by limiting the number of necessary communication rounds. In

this chapter, we first prove an information-theoretic lower bound on the communication cost

of distributed contextual linear bandits, and then leverage such batch learning methods to

design an algorithm with a small communication cost that matches this lower bound while

guaranteeing optimal regret.

6.1.1 Problem Formulation

We consider a network of N agents acting cooperatively to efficiently solve a K-armed

stochastic linear bandit problem. Let T be the total number of rounds. At each round t ∈ [T ],

each agent i is given a decision set X i
t = {xi

t,a : a ∈ [K]} ⊂ Rd, drawn independently from a

distribution Di
t. We assume that Di

t = D for all (i, t) ∈ [N ]× [T ]. Here, xi
t,a is a mapping

from action a and the contextual information agent i receives at round t to the d-dimensional

space. We call xi
t,a the feature vector associated with action a and agent i at round t. Agent

i selects action ai,t ∈ [K], and observes the reward yit = ⟨θ,xi
t,ai,t
⟩+ ηit, where θ ∈ Rd is an
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Setting Algorithm Regret Communication cost Communication

cost lower

bound

Contexts are fixed

over time horizon and

agents

DELB

with

server

[134]

O
(
d
√
NT log T

)
O

(
(dN + d log log d) log T

)

Contexts adversarially

vary over time horizon

and agents

DisLinUCB

with

server

[134]

O
(
d
√
NT log2 T

)
O

(
d3N1.5

)

FedUCB

with

server [46]

O
(
d
√
NT log2 T

)
O

(
d3N1.5

)

Contexts adversari-

ally vary over agents

Fed-PE

with

server [62]

O(
√

dNT log(KNT )) O
(
(d2 + dK)N log T

)

Contexts stochastically

vary over time horizon

and agents (this

work)

DisBE-

LUCB

with

server

O(
√

dNT log d log2(KNT )) O
(
dN log log(NT )

)
Ω(dN)

DecBE-

LUCB

without

server

O(NS +√
dN(T + S) log d log2(KNT ))

O
(
SδmaxdN log log(NT )

)

Table 6.1: N : number of agents; K: number of arms; T : time horizon; d: dimension of the

feature vectors; S = log(dN)√
1/|λ2|

; |λ2|: the second largest eigenvalue of communication matrix in

absolute value; δmax is the maximum degree of the graph representing agents’ network. The

lower bound for the communication cost is interpreted as follows: For any algorithm with

expected communication cost less than dN
64
, there exists a contextual linear bandit instance

with stochastic contexts, for which the algorithm’s regret is Ω(N
√
dT ). See Theorem 11.

unknown vector and ηit is an independent zero-mean additive noise. The agents are also

allowed to communicate with each other. Both the action selection and the communicated

information of each agent may only depend on previously played actions, observed rewards,

decision sets, and communication received from other agents. Throughout the chapter, we

rely on the following assumption.
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Assumption 16. Without loss of generality, ∥θ∥2 ≤ 1, ∥xi
t,a∥2 ≤ 1,

∣∣yit∣∣ ≤ 1 for all (a, i, t) ∈

[K]× [N ]× [T ]. Also, the distribution D is known to the agents.

The boundedness assumption is standard in the linear bandit literature [39, 41, 62].

Moreover, our results can be readily extended to the settings where the assumption on

the boundedness of yit is relaxed by assuming the noise variables ηit are conditionally σ-

subGaussiam for a constant σ ≥ 0. As such, a high probability bound on ηit and consequently

yit can be established, which is desired in our analysis for establishing confidence intervals in

Appendix E.2.1.

Our assumption on the knowledge of D is fairly well-motivated. A standard argument is

based on having loads of unsupervised data in real-world scenarios. For example, Google,

Amazon, Netflix, etc, have collected massive amounts of data about users, products, and

queries, sufficiently describing the joint distributions. Given this, even if the features change

(for a given user or product, etc.), their distributions can be computed/sampled from as the

features are computed via a deterministic feature map. In light of this, [59] recently studied

contextual linear bandits with known context distribution. We further relax this assumption

in Remark 8 in Section 6.4.2.

Goal. The performance of the network is measured via the cumulative regret of all agents

in T rounds, defined as

RT := E[
∑T

t=1

∑N
i=1⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩], (6.1)

where the expectation is taken over the random variables X i
t , (i, t) ∈ [N ] × [T ] with joint

distribution
⊗N,T

i,t=1Di
t, x

i
t and xi

∗,t ∈ argmaxx∈X i
t
⟨θ,x⟩ are the feature vectors associated

with the action chosen by agent i at round t and the best possible action, respectively.

For simplicity, in our algorithms the communication cost is measured as the number of

communicated real numbers over the course of T rounds. In Section 6.3, we also discuss

variants of our methods where the communication cost is measured as the number of

communicated bits.
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The goal is to design a distributed collaborative algorithm that minimizes the cumulative

regret, while maintaining an efficient coordination protocol with a small communication

cost. Specifically, we wish to achieve a regret close to Õ(
√
dNT ) that is incurred by an

optimal single-agent algorithm for NT rounds (the total number of arm pulls) while the

communication cost is Õ(dN) with only a mild (logarithmic) dependence on T .

A motivating example. In news article recommendation, the candidate actions correspond

to K news articles. At round t, an individual user visits an online news platform that has

N servers employing the same recommender systems to recommend news articles from an

article pool. The contextual information of the user, the articles and the servers at round

t is modeled by X i
t = {xi

t,a : a ∈ [K]}, characterizing user’s reaction to each recommended

article a (e.g., click/not click) by server i, and the probability of clicking on a is modeled by

⟨θ,xi
t,a⟩, which corresponds to the expected reward. On the distributed side, these N servers

collaborate with each other by sharing information about the feedback they receive from the

users after recommending articles in an attempt to speed up learning the users’ preferences.

In this example, the individual users and articles can often be viewed as independent samples

from the population which is characterized by distribution D.

6.1.2 Contributions

We establish a lower bound on the communication cost of distributed contextual linear

bandits. We propose algorithms with optimal regret and communication cost matching our

lower bound (up to logarithmic factors) and growing linearly with d and N while those of

previous best-known algorithms scale super linearly either in d or N . Below, we elaborate

more on our contributions:

Minimax lower bound for the communication cost. As our main technical contribu-

tion, in Section 6.3, we prove the first information-theoretic lower bound on the communication

cost (measured in bits) of any algorithm achieving an optimal regret rate for the distributed

contextual linear bandit problem with stochastic contexts. In particular, we prove that for
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any distributed algorithm with expected communication cost less than dN
64
, there exists a

contextual linear bandit problem instance with stochastic contexts for which the algorithm’s

regret is Ω(N
√
dT ).

DisBE-LUCB. We propose a distributed batch elimination contextual linear bandit

algorithm (DisBE-LUCB): the time steps are grouped into M pre-defined batches and at each

time step, each agent first constructs confidence intervals for each action’s reward, and the

actions whose confidence intervals completely fall below those of other actions are eliminated.

Throughout each batch, each agent uses the same policy to select actions from the surviving

action sets. At the end of each batch, the agents share information through a central server

and update the policy they use in the next batch. We prove that while the communication

cost of DisBE-LUCB is only Õ(dN), it achieves a regret Õ(
√
dNT ), which is of the same

order as that incurred by a near optimal single-agent algorithm for NT rounds . This shows

that DisBE-LUCB is nearly minimax optimal in terms of both regret and communication cost.

We highlight that while DisBE-LUCB is inspired by the single-agent batch elimination style

algorithms [103] in an attempt to save on communication as much as possible, a direct use of

confidence intervals used in such algorithms would fail to guarantee optimal communication

cost Õ(dN) and require more communication by a factor of O(d). We address this issue by

introducing new confidence intervals in Lemma 9. Details are given in Section 6.4.

DecBE-LUCB. Finally, we propose a fully decentralized variant of DisBE-LUCB without

a central server, where the agents can only communicate with their immediate neighbors

given by a communication graph. Our algorithm, called decentralized batch elimination linear

UCB (DecBE-LUCB), runs a carefully designed consensus procedure to spread information

throughout the network. For this algorithm, we prove a regret bound that captures both the

degree of selected actions’ optimality and the inevitable delay in information-sharing due to

the network structure while the communication cost still grows linearly with d and N . See

Section 6.4.4.

We complement our theoretical results with numerical simulations under various settings
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in Section 6.5.

6.2 Related Work

Distributed MAB. Multi-armed bandit (MAB) in multi-agent distributed settings has

received attention from several academic communities. In the context of the classical K-armed

MAB, [90, 73, 74, 75] proposed decentralized algorithms for a network of N agents that can

share information only with their immediate neighbors, while [119] studied the MAB problem

on peer-to-peer networks.

Distributed contextual linear bandits. The most closely related works on distributed

linear bandits are those of [134, 46, 62, 70, 60]. In particular, [134] investigate communication-

efficient distributed linear bandits, where the agents can communicate with a server by sending

and receiving packets. They propose two algorithms, namely, DELB and DisLinUCB, for fixed

and time-varying action sets, respectively. The works of [46, 62] consider the federated linear

contextual bandit model and the former focuses on federated differential privacy. In the latter,

the contexts denote the specifics of the agents and are different but fixed during the entire

time horizon for each agent. In the former, however, the contexts contain the information

about both the environment and the agents, in the sense that contexts associated with

different agents are different and vary during the time horizon. To put these in the context

of an example, consider a recommender system. Both [46] and [62] consider a multi-agent

model, where each agent is associated with a different user profile. [62] fix a user profile for

an agent, while [46] consider a time-varying user profile. Therefore, [62] capture the variation

of contexts over agents, whereas it is captured over both agents and time horizon in [46]. A

regret and communication cost comparison between DisBE-LUCB, DecBE-LUCB and other

baseline algorithms is given in Table 6.1.

Batch elimination in distributed bandits. An important line of work related to

communication efficiency in distributed bandits studies practical single-agent scenarios using

80



batch elimination methods, in which a very small number of batches achieve minimax optimal

learning performance [103, 58, 53]. Our proposed algorithms are inspired by the single-agent

BatchLinUCB-DG proposed in [103] in an attempt to save on communication as much as

possible. That said, a direct use of confidence intervals in [103] would fail to guarantee

optimal communication cost Õ(dN) and require more communication by a factor of O(d).

We address this issue by introducing new confidence intervals, used in our algorithms, in

Lemma 9.

Minimax lower bound on communication cost. We are unaware of any lower bound

on the communication cost scaling with both d and N for contextual linear bandits in the

distributed/federated learning setting. To the best of our knowledge, our work is the first

to establish such a minimax lower bound and to propose algorithms with optimal regret

and communication cost matching this lower bound up to logarithmic factors. Recently, [81]

proved a Ω(N) communication lower bound for asynchronous federated contextual linear

bandits. However, their lower bound does not include the dependency on d, which is of

importance in our work and emphasizes how our proposed algorithm optimally improves

the communication cost of existing methods. In addition, [134] previously proved a Ω(N)

communication lower bound for distributed MAB.

6.3 Lower Bound on Communication Cost

In this section, we derive an information-theoretic lower bound on the communication cost of

the distributed contextual linear bandits with stochastic contexts. In particular, we prove

that for any distributed contextual linear bandit algorithm with stochastic contexts that

achieves the optimal regret rate Õ(
√
dNT ), the expected amount of communication must be

at least Ω(dN). This is formally stated in the following theorem.

Theorem 11. Let T ≥ max{4d log(8), d2/500}. For any algorithm with expected communi-

cation cost (measured in bits) less than dN
64
, there exists a contextual linear bandit instance

with stochastic contexts, for which the algorithm’s regret is Ω(N
√
dT ).

81



6.3.1 Proof of Theorem 11

We start with a lower bound for a single-agent Bayesian two-armed bandit problem where

the agent is given side information that contains a small amount of information about the

optimal action.

Lemma 8. Let µ1 = (∆, 0) and µ2 = (−∆, 0) and consider the single-agent Bayesian

two-armed Gaussian bandit with mean µ uniformly sampled from {µ1,µ2} and a∗ =

argmaxa∈{1,2}µa, which is a random variable. Suppose additionally that the agent has

access to a random element M with I(M ; a∗) ≤ 1/16. Then, for any policy π,

BRT (π) ≥ ∆T

1

2
−

√
1

2

(
1

16
+ 4T∆2

) ,

where BRT (π) = Eµ∼ Unif{µ1,µ2}[RT (π,µ)] and RT (π,µ) is the regret suffered by policy π in

the Gaussian two-armed bandit with means µ.

Remark 6. We assume in Lemma 8 that the agent has access to the message M from the

beginning. The same bound continues to hold in the strictly harder problem where the agent

has sequential access to a sequence of messages M1, . . . ,MT with I({Mt}Tt=1; a∗) ≤ 1/16.

The proof is presented in Appendix E.1. This lemma emphasizes the role of extra

information a single agent might receive throughout the learning process on its performance,

and therefore, it is key in proving Theorem 11. Specifically, since Lemma 8 makes no

assumption on how the agent receives the extra information about the learning environment,

we can prove Theorem 11 by employing this lemma and a reduction from single-agent bandit

to multi-agent bandit as explained in what follows.

The construction. We consider a bandit instance where K = 2 and the decision sets are

drawn uniformly from
{
(e1, e2), (e3, e4), . . . , (ed−1, ed)

}
. Let Θ = {θ ∈ Rd : (θ2j−1,θ2j) ∈

{(∆, 0), (−∆, 0)}, ∀j ∈ [d
2
]}. We call (θ2j−1,θ2j) by j-th block of reward vector.

Bayesian regret. As in Lemma 8, we prove the minimax-style lower bound using the

Bayesian regret. Let θ be sampled uniformly from Θ and π be a fixed multi-agent policy.
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The multi-agent Bayesian regret is

BRT = E[
∑T

t=1

∑N
i=1⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩] ,

where the expectation integrates over the randomness in both θ and the corresponding

history induced by the interaction between π and the environment determined by θ. By

Yao’s minimax principle, there exists a θ ∈ Θ such that the expected regret is at least BRT ,

so it suffices to lower bound the Bayesian regret. For the remainder of the proof E[·] and P(·)

correspond to the expectation and probability measure on θ and the history. For technical

reasons, we assume that these probability spaces are defined to include an infinite interaction

between the agents and environment. Of course, this is only used in the analysis.

Reduction from single-agent to multi-agent. Let Mij be the mutual information

between messages agent i receives in T rounds and (θ2j−1,θ2j). By assumption,

N∑
i=1

d
2∑

j=1

Mij ≤
N∑
i=1

E[Total number of bits agent i receives] ≤ dN

64
. (6.2)

Let S be the set of dN
4

pairs (i, j) ∈ [N ] × [d
2
] with smallest Mij. From (6.2) and the

definition of S, we observe that for every pair (i, j) ∈ S, we have

Mij ≤
dN

64dN
4

=
1

16
.

Let Bijt be the indicator that the context is such that agent i interacts with j-th block in

round t, which is

Bijt = 1(xi
t,1 = e2j−1) .

Note that {Bijt}∞t=1 are independent and E[Bijt] = 2/d. Let Tij = {t : Bijt = 1} and T ◦
ij be

the first T◦ elements of Tij with T◦ = T/d. Let

Rij =
∑
t∈T ◦

ij

⟨θ,xi
∗,t⟩ − ⟨θ,xi

t⟩
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be the regret of agent i during the rounds in T ◦
ij in bandit instance θ. Note that T ◦

ij may

contain rounds larger than T . Nevertheless,

BRT ≥
∑N

i=1

∑d/2
j=1 E[Rij1(T ◦

ij ⊂ {1, . . . , T})]

≥
∑

(i,j)∈S E[Rij1(T ◦
ij ⊂ {1, . . . , T})]

=
∑

(i,j)∈S E[Rij]− E[Rij1(T ◦
ij ̸⊂ {1, . . . , T})] .

Suppose that (i, j) ∈ S. Now, E[Rij ] is exactly the Bayesian regret of some policy interacting

with the Bayesian two-armed bandit defined in Lemma 8 for T◦ rounds. Furthermore, the

mutual information between the optimal action in this bandit and the messages passed to

the agent is at most Mij ≤ 1/16. Hence, by Lemma 8 and Remark 6,

E[Rij] ≥ ∆T◦

1

2
−

√
1

2

(
1

16
+ 4T◦∆2

) .

On the other hand,

E[Rij1(T ◦
ij ̸⊂ {1, . . . , T})] ≤ 2∆T◦P(T ◦

ij ̸⊂ {1, . . . , T}) = 2∆T◦P
(∑T

t=1 Bijt < T◦

)
.

By Chernoff’s bound, T ≥ 4d log(8) and E[Bijt] = 2/d,

2P
(∑T

t=1Bijt < T◦

)
= 2P

(∑T
t=1 Bijt < T/d

)
≤ 2 exp

(
−T/(4d)

)
≤ 1

4
.

Therefore, with ∆ = 0.0695
√

d
T
, we have

BRT ≥
dNT◦∆

4

1

4
−

√
1

2

(
1

16
+ 4T◦∆2

) ≥ N
√
dT

1250
= Ω

(
N
√
dT
)
,

which concludes the proof of Theorem 11. Also, note that the fact that T ≥ d2

500
ensures that

∥θ∥2 = ∆
√

d
2
≤ 1 which is compatible with Assumption 16.

6.4 An Optimal Algorithm

Following the communication cost lower bound in previous section, we now present an

algorithm called, Distributed Batch Elimination Linear Upper Confidence Bound (DisBE-

LUCB), whose communication cost matches the lower bound up to logarithmic factors while
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achieving an optimal regret rate. DisBE-LUCB employs a central server to which, the

agents send local updates and it then aggregates and broadcasts the updated global values of

interest. We also discuss Decentralized Batch Elimination Linear Upper Confidence Bound

(DecBE-LUCB), a modified version of DisBE-LUCB in the absence of a central server, where

each agent can only communicate with its immediate neighbors.

6.4.1 Overview of DisBE-LUCB

Before describing how DisBE-LUCB operates for every agent i ∈ [N ], we note that all

agents run DisBE-LUCB concurrently. In DisBE-LUCB, the time steps are grouped into

M pre-defined batches by a grid T = {T0, T1, . . . , TM}, where 0 = T0 ≤ T1 ≤ . . . ≤ TM ,

T ≤ TM and Tm = Tm − Tm−1 is the length of batch m. Our choice of grid implies that for

any m ≥ 3, we have Tm = (a2
m−1−1d

1
2/N

1
2 )

1
2m−2 . Parameter a is chosen such that TM = T

and TM =
∑

m∈[M ] Tm ≥ TM = T , and therefore our choice of grid T is valid. At rounds

t ∈ [Tm−1 + 1 : Tm] during batch m ∈ [M ], agent i first constructs confidence intervals for

each action’s reward, and the actions whose confidence intervals completely fall below those

of other actions are eliminated. We denote the set of feature vectors associated with the

surviving actions by X i(m)
t = ∩m−1

k=0 E(X i
t ; (Λ

i
k,θ

i
k, β)), where

E(X i
t ; (Λ

i
k,θ

i
k, β)) := {x ∈ X i

t : ⟨θik,x⟩+ β∥x∥(Λi
k)

−1 ≥ ⟨θik,y⟩ − β∥y∥(Λi
k)

−1 , ∀y ∈ X i
t }.

Here, {Λi
k}m−1

k=0 and {θik}m−1
k=0 are agent i’s statistics used in computation of X (i)m

t for

t ∈ [Tm−1 + 1 : Tm]. They are initialized to λI and 0 and will be updated at the end of

each batch (will be specified how shortly). Let πi
0 be an arbitrary initial policy used in

the first batch. Throughout batch m ∈ [M ], agent i uses the same policy πi
m−1 to select

actions from the surviving actions set. At the end of batch m ∈ [M ], agent i ∈ [N ] sends

ui
m =

∑Tm−1+Tm/2
t=Tm−1+1 xi

ty
i
t to the server who broadcasts

∑N
i=1 u

i
m to all the agents. Then, agent

i updates policy πi
m (used in the next batch) and the following components that are key in
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the construction of the surviving actions set in the next batch as follows:

Λi
m = λI+

NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤], (6.3)

θim = (Λi
m)

−1
∑N

j=1 u
j
m, (6.4)

where λ > 0 is a regularization constant and when conditioned on the first (m− 1) batches,

Di
m is the distribution based on which the sets of surviving feature vectors X i(m)

t for all

t ∈ [Tm−1 + 1 : Tm] are generated.

Algorithm 8 DisBE-LUCB for agent i

1: Input: N , d, δ, T , M,λ

2: Initialization: a =
√
T (NT/d)

1

2(2M−1−1) , T1 = T2 = a
√

d/N , Tm = ⌊a
√
Tm−1⌋, θi0 = 0,

Λi
0 = λI, T0 = 0, Tm = Tm−1 + Tm, λ = 5 log(4dT/δ), β = 6

√
log(2KNT/δ) +

√
λ,

arbitrary policy πi
0

3: for m = 1, . . . ,M do

4: for t = Tm−1 + 1, . . . ,min{Tm, T} do

5: Construct X i(m)
t = ∩m−1

k=0 E
(
X i

t ; (Λ
i
k,θ

i
k, β)

)
.

6: Play arm ai,t associated with feature vector xi
t ∼ πi

m−1

(
X i(m)

t

)
and observe yit.

7: end for

8: Send ui
m =

∑Tm−1+Tm/2
t=Tm−1+1 xi

ty
i
t to the server.

9: Receive
∑N

j=1 u
j
m from the server.

10: Compute/construct Λi
m and θim as in (6.3) and (6.4), respectively, S i

m as in (6.5),

and πi
m = ExplorationPolicy

(
2λ

NTm
,S i

m

)
, where ExplorationPolicyis presented in

Appendix E.4.

11: end for

Statistics Λi
m and θim are used in defining new confidence intervals in Lemma 9. We

highlight that a direct use of existing standard confidence intervals in the literature such

as the ones in [103] would fail to guarantee optimal communication cost Õ(dN) and re-

quire more communication by a factor of d 1. Using matrix concentration inequalities,

1d2 + d values per agent, i.e., ui
m and

∑Tm−1+Tm/2
t=Tm−1+1 xi

tx
i
t
⊤
.
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we address this issue by replacing matrix λI +
∑Tm−1+Tm/2

t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤
, which would have

been used if Algorithm 5 in [103] had been directly extended to a multi-agent one, with

λI+(NTm/2)EX∼Di
m
Ex∼πi

m−1(X )[xx
⊤]. This allows agent i to communicate only d values (ui

m)

while achieving Õ(
√
dNT ) regret as will be shown in Theorem 12. As the final step of batch

m, agent i implements ExplorationPolicywith inputs 2λ
NTm

,S i
m, where

S i
m = {X i(m+1)

t }Tmt=Tm−1+Tm/2+1. (6.5)

ExplorationPolicy, which is presented in Algorithm 14 in Appendix E.4 and is inspired by

Algorithm 3 in [103], computes policy πi
m that will be used to select actions from the sets of

surviving actions in the next batch. This choice of policy coupled with the definition of Λi
m

in (6.3) guarantees that at all rounds t ∈ [T1 + 1 : T ], the length of the longest confidence

interval in the surviving sets, which is an upper bound on the instantaneous regret of agent i

at round t, can be bounded by O(
√

d/NT ). This allows us to achieve the optimal O(
√
dNT )

regret, while other exploration policies, such as the G-optimal design results in a O(d
√
NT )

regret.

6.4.2 Theoretical Results for DisBE-LUCB

We present our theoretical results for DisBE-LUCB, showing that it is nearly minimax optimal

in terms of both regret and communication cost. The proof is given in Appendix E.2.

Theorem 12. Fix M = 1 + log(log(NT/d)/2 + 1) in Algorithm 8. Suppose Assumption 16

holds. If T ≥ Ω(d22 log2(NT/δ) log2 d log2(dλ−1)), then with probability at least 1−2δ, it holds

that RT ≤ O
(√

dNT log d log2(KNT/δλ) log log
(
NT/d

))
, and Communication Cost ≤

O(dN log log(NT/d)), where the communication cost is measured by the number of real

numbers communicated by the agents.

We remark that simple tricks may significantly reduce the exponent constant in constraint

T ≥ dO(1). For example, first running a simpler version of DisBE-LUCB, in which the

exploration policy is the G-optimal design πG(X i(m)
t ), for

√
T/dN rounds and then switching

to DisBE-LUCB would reduce the exponent to 10.
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Remark 7. For the sake of Algorithm 8’s presentation, we find it instructive to consider the

communication cost as the number of real numbers communicated in the network. However,

it is more realistic if we translate it into the total number of communicated bits. It would

also allow us to make a fair comparison with the lower bound in Theorem 11 as it is stated

in terms of number of communicated bits. Therefore, if we slightly modify Algorithm 8

such that instead of communicating vectors ui
m in Line 8, agent i first rounds each entry

of ui
m with precision ϵ0 and then sends the rounded vector to the server, then O(log(1/ϵ0))

number of bits is sufficient to communicate each entry of the rounded vectors ui
m. Our

analysis in Appendix E.2.3 shows that compared to bounds in Theorem 12, by selecting

ϵ0 = O(1/(N
√
dT )), the communication cost of this slightly modified version of DisBE-LUCB,

which is measured in bits, is O
(
dN log log

(
NT/d

)
log(dNT )

)
and its regret is same as

DisBE-LUCB’s.

Remark 8. As mentioned in Section 6.4.1, a direct use of confidence intervals in [103] would

fail to guarantee optimal communication cost Õ(dN) and require more communication by

a factor of d. Thus, we use new confidence intervals (see Lemma 9) so that DisBE-LUCB

would enjoy an optimal communication rate. The assumption on the knowledge of D is

required in the computation of Λi
m in (6.3) used in these new confidence intervals. However,

in practice, distribution D is not fully known and can only be estimated; therefore, Λi
m

cannot be computed without any error. We relax this assumption and consider more realistic

settings where each agent i can estimate matrix Λi
m in batch m up to an ϵm error, i.e.,

(1 − ϵm)Λ
i
m ⪯ Λ̃

i

m ⪯ (1 + ϵm)Λ
i
m, where Λ̃

i

m is an estimation of Λi
m and ϵm ∈ (0, 1)2. In

Appendix E.2.4, we show that for sufficiently small values of ϵm ≤ 1/
√
NTm, a multiplicative

factor (1−maxm∈[M ] ϵm)
−1 appears in the regret bound while the communication cost remains

unchanged.

2This is a weaker condition compared to the component-wise condition (1− ϵm)Λi
m ≤ Λ̃

i

m ≤ (1 + ϵm)Λi
m.
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Figure 6.1: The shaded regions show standard deviation around the mean. Standard

deviation for communication cost of DisBE-LUCB is zero, because communication cost =

dNM and parameters determining M are known upfront (see Theorem 12).

6.4.3 Proof Sketch of Theorem 12

We first introduce the following lemma that constructs confidence intervals for the expected

rewards.

Lemma 9 (Confidence intervals for DisBE-LUCB). Suppose Assumption 16 holds. For

δ ∈ (0, 1), let β = 6
√

log(2KNT/δ) +
√
λ. Then for all x ∈ X i

t , i ∈ [N ], t ∈ [T ],m ∈ [M ],

with probability at least 1− δ, it holds that
∣∣∣⟨x,θim − θ⟩∣∣∣ ≤ β∥x∥(Λi

m)−1.

We prove this lemma by first employing appropriate matrix concentration inequalities

to lower bound Λi
m by matrix 1

2

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤
. Carefully replacing Λi

m with its

lower bound and using Azuma’s inequality, we establish confidence intervals stated in the

lemma. This lemma is key in ensuring an optimal communication rate Õ(dN), as a direct use

of confidence intervals in [103] fails to guarantee optimal communication cost and requires

Õ(d2N) communication. See Appendix E.2.1 for proof.

Thanks to our choice of T1 and T2, and the fact that expected value of the rewards

are bounded in [−1, 1], the regret of first two batches is bounded by O(
√
dNT ). For

each batch m ≥ 3, the confidence intervals imply that for all t ∈ [Tm−1 + 1 : Tm],

xi
t,∗ ∈ X

i(m)
t with high probability, and allow us to bound the instantaneous regret

rit = E[⟨θ,xi
∗,t⟩ − ⟨θ,xi

t⟩] by 4βEX∼Di
m−1

[maxx∈X

√
x⊤(Λi

m−1)
−1x]. Note that learning of
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θim and πi
m are done through disjoint sets of samples, i.e., A = [Tm−1 + 1 : Tm−1 + Tm/2]

and B = [Tm−1 + Tm/2 + 1 : Tm], respectively. This is because Di
m depends on θim, which

is learned from A, and we have to make B disjoint from A so as to ensure that elements

in S i
m are independently sampled from Di

m. Therefore, Theorem 5 in [103] guarantees that

EX∼Di
m−1

[maxx∈X

√
x⊤(Λi

m−1)
−1x] ≤ Õ(

√
d/(NTm−1)). Finally, these combined with our

choice of grid T = {T0, T1, . . . , TM} and M = 1 + log(log(NT/d)/2 + 1) lead us to a regret

bound Õ(
√
dNT ). Moreover, communications happen only at the end of each batch, whose

number is M , and agents only share d-dimensional vectors ui
m. Therefore, communication

cost is dNM = O(dN log log(NT/d)).

6.4.4 Fully Decentralized Batch Elimination LUCB

In a scenario where there is no server and the agents are allowed to communicate only with

their immediate neighbors, they can be represented by nodes of a graph. Applying a carefully

designed consensus procedure that guarantees sufficient information mixing among the entire

network, in Appendix E.3, we propose a fully decentralized version of DisBE-LUCB, called

DecBE-LUCB. Communication cost of DecBE-LUCB is greater than DisBE-LUCB’s by an

extra multiplication factor S = log(dN)δmax/
√

1/|λ2|, where δmax is the maximum degree of

the network’s graph and |λ2| is the second largest eigenvalue of the communication matrix

in absolute value characterizing the graph’s connectivity level. This is because at the last

S rounds of each batch m, agents communicate each entry of their estimations of vector∑N
j=1 u

j
m with their neighbors, whose number is at most δmax, to ensure enough information

mixing. Moreover, this results in DecBE-LUCB having no control over the regret of the

mixing rounds, and therefore an additional term log(dN)NM/
√

1/|λ2|, which we call the

delay effect, in the regret bound. Note that the more connected the graph is, the smaller |λ2|

is. This aligns with the fact that the more connected the graph is, the less number of mixing

rounds S is required. For example, fixing N = 20, for chain, ring, star, random Erdős–Renyi

graph with parameter p = 0.5, and complete graphs, the values of |λ2| are 0.9918, 0.9674,

0.97, 0.67 (average over 100 instances), and 0, respectively. As expected, for less connected

graphs (Chain, Ring, Star), |λ2| is close to 1 and for the fully connected graph |λ2| = 0
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and for a random graph |λ2| is not too small nor too large. The theoretical guarantees of

DecBE-LUCB are summarized in table 6.1 and a detailed discussion is given in Appendix

E.3.

6.5 Experiments

In this section, we present numerical simulations to confirm our theoretical findings. We

evaluate the performance of DisBE-LUCB on synthetic data and compare it to that of

DisLinUCB proposed by [134] that study the most similar setting to ours. The results shown in

Figure 6.1 depict averages over 20 realizations, for which we have chosen K = 20, δ = 0.01 and

T = 100000. For each realization, the parameter θ is drawn fromN (0, Id) and then normalized

to unit norm and noise variables are zero-mean Gaussian random variables with variance

0.01. The decision set distribution D is chosen to be uniform over {X̃1, X̃2, . . . , X̃100}, where

each X̃i is a set of K vectors drawn from N (0, Id) and then normalized to unit norm. While

implementing DisBE-LUCB, in order to compute EX∼Di
m
Ex∼πi

m−1(X )[xx
⊤] for agent i at batch

m, we followed these steps: 1) for each j ∈ [100], we built X̃ i(m)
j = ∩m−1

k=0 E(X̃j; (Λ
i
k,θ

i
k, β));

2) we took average over all 100 matrices 1
100

∑
j∈[100] Ex∼πi

m−1(X̃
i(m)
j )

[xx⊤] as D is a uniform

distribution over {X̃1, X̃2, . . . , X̃100}. In Figure 6.1a, fixing d = 4, we compare the per-agent

regret Rt/N of DisBE-LUCB and DisLinUCB for t ∈ [T ] and for different values of N = 2 and

N = 10, where Rt =
∑t

s=1

∑N
i=1⟨θ,xi

∗,s⟩ − ⟨θ,xi
s⟩ . Figure 6.1b compares the communication

cost of DisBE-LUCB and DisLinUCB over T rounds when both algorithms are implemented

for fixed d = 4, and N varying from 2 to 20. Finally, Figure 6.1c compares the communication

cost of DisBE-LUCB and DisLinUCB over T rounds when both algorithms are implemented

for fixed N = 10, and d varying from 2 to 20. From these three comparisons, we conclude

that DisBE-LUCB achieves a regret comparable with DisLinUCB, at a significantly smaller

communication rate. The curves in Figures 6.1b and 6.1c verify the linear dependency of

DisBE-LUCB’s communication cost on N and d while communication cost of DisLinUCB

grows super-linearly with N and d (see Table 6.1 for theoretical comparisons). Moreover,

Figure 6.1a emphasizes the value of collaboration in speeding up the learning process. As the
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number of agents increases, each agent learns the environment faster as an individual.

6.6 Conclusion

We proved an information-theoretic lower bound on the communication cost of any algorithm

achieving an optimal regret rate for the distributed contextual linear bandit problem with

stochastic contexts. We then proposed DisBE-LUCB with optimal regret Õ(
√
dNT ) and

communication cost Õ(dN) which (nearly) matches our lower bound and improves upon the

previous best-known algorithms whose communication cost scale super linearly either in d or

N . Finally, we proposed DecBE-LUCB, a fully decentralized variant of DisBE-LUCB, without

a central server where the agents can only communicate with their immediate neighbors

given by a communication graph. We showed that the structure of the network affects

the regret performance via a small additive term that depends on the spectral gap of the

underlying graph, while the communication cost still grows linearly with d and N . As shown

in Table 6.1, the best communication cost achieved for settings with adversarially varying

contexts over time horizon and agents is O(d3N1.5). There is no formal theory proving

such bounds are optimal for the adversarial context case. While our work provides optimal

theoretical guarantees for stochastically varying contexts, it is not clear how to generalize

these optimal results to settings with adversarially varying contexts. Therefore, an important

future direction is to design optimal algorithms and prove communication cost lower bounds

for scenarios with adversarial contexts.
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APPENDIX A

Proofs for Chapter 2

A.1 Proof of Lemma 1

In order to bound the minimum eigenvalue of the Gram matrix at round T ′ + 1, we use the

Matrix Chernoff Inequality [125, Thm. 5.1.1].

Theorem 13 (Matrix Chernoff Inequality, [125]). Consider a finite sequence {Xk} of inde-

pendent, random, symmetric matrices in Rd. Assume that λmin(Xk) ≥ 0 and λmax(Xk) ≤ L

for each index k. Introduce the random matrix Y =
∑

k Xk. Let µmin denote the minimum

eigenvalue of the expectation E[Y ],

µmin = λmin

(
E[Y]

)
= λmin

∑
k

E[Xk]

 .

Then, for any ϵ ∈ (0, 1), it holds,

Pr
(
λmin(Y) ≤ ϵµmin

)
≤ d · exp

(
−(1− ϵ)2

µmin

2L

)
.

Proof of Lemma 1. Let Xt = xtx
⊤
t for t ∈ [T ′], such that each Xt is a symmetric matrix

with λmin(Xt) ≥ 0 and λmax(Xt) ≤ L2. In this notation, AT ′+1 = λI+
∑T ′

t=1Xt. In order to

apply Theorem 13, we compute:

µmin := λmin

 T ′∑
t=1

E[Xt]

 = λmin

 T ′∑
t=1

E[xtx
⊤
t ]

 = λmin

(
T ′Σ

)
= λ−T

′.

Thus, the theorem implies the following for any ϵ ∈ [0, 1):

Pr

λmin(
T ′∑
t=1

Xt) ≤ ϵλ−T
′

 ≤ d · exp
(
−(1− ϵ)2

λ−T
′

2L2

)
. (A.1)
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To complete the proof of the lemma, simply choose ϵ = 0.5 (say) and T ′ ≥ 8L2

λ−
log(d

δ
) in (A.1).

This gives Pr
[
λmin(AT ′+1) ≥ λ+ λ−T ′

2

]
≥ 1− δ, as desired.

A.2 Proof of Theorems 2 and 3

In this section, we present the proofs of Theorems 2 and 3.

A.2.1 Preliminaries

Conditioning on µ ∈ Ct, ∀t > 0. Consider the event

E := {µ ∈ Ct, ∀t > 0}, (A.2)

that µ is inside the confidence region for all times t. By Theorem 1 the event holds with

probability 1− δ. Onwards, we condition on this event, and we make repeated use of the fact

that µ ∈ Ct for all t > 0, without further explicit reference.

Decomposing the regret in two terms. Recall the decomposition of the instantaneous

regret in two terms in (2.10) as follows:

rt = µ
⊤xt − µ⊤x∗ = µ⊤xt − µ̃⊤

t xt︸ ︷︷ ︸
Term I

+ µ̃⊤
t xt − µ⊤x∗︸ ︷︷ ︸

Term II

. (A.3)

As discussed in Section 2.5.1, we control the two terms separately.

A.2.2 Bounding Term I

The results in this subsection are by now rather standard in the literature (see for example

[2, ]). We provide the necessary details for completeness.

We start with the following chain of inequalities, that hold for all t ≥ T ′ + 1:

Term I := µ⊤xt − µ̃⊤
t xt = (µ⊤xt − µ̂⊤

t xt) + (µ̂⊤
t xt − µ̃⊤

t xt)

≤ ∥µ− µ̂t∥At∥xt∥A−1
t

+ ∥µ̂t − µ̃t∥At∥xt∥A−1
t

≤ 2βt∥xt∥A−1
t
. (A.4)
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The last inequality (A.4) follows from Theorem 1 and the fact that µ and µ̃t ∈ Ct. Recall,

from Assumption 2, the trivial bound on the instantaneous regret

rt = µ
⊤xt − µ⊤x∗ ≤ 2.

Thus, we conclude with the following

Term I ≤ 2min
(
βt∥xt∥A−1

t
, 1
)
. (A.5)

The next lemma bounds the total contribution of the (squared) terms in (A.4) across the

entire horizon t = T ′ + 1, . . . , T .

Lemma 10 (Term I). Let Assumptions 1 and 2 hold. Fix any δ ∈ (0, 0.5) and assume that

T ′ is such that T ′ ≥ 8L2

λ−
log
(

d
δ

)
. Then, with probability at least 1− δ, it holds

T∑
t=T ′+1

min
(
∥xt∥2A−1

t
, 1
)
≤ 2d log

(
2TL2

d(2λ+ λ−T ′)

)
.

Thus, with probability at least 1− 2δ, it holds

T∑
t=T ′+1

(
µ⊤xt − µ̃⊤

t xt

)
≤ 2βt

√
2d (T − T ′) log

(
2TL2

d (2λ+ λ−T ′)

)
. (A.6)

Proof. The proof is mostly adapted from [40, Lem. 9] but we also exploit the bound on

λmin(AT ′+1) thanks to Lemma 1. We present the details for the reader’s convenience.

With probability at least 1− δ, we find that for all t ≥ T ′ + 1:

det(At+1) = det(At + xtx
⊤
t ) = det(At) det(I + (A

− 1
2

t xt)(A
− 1

2
t xt)

⊤) = det(At)(1 + ∥xt∥2A−1
t
)

= . . . = det(AT ′+1)
t∏

τ=T ′+1

(1 + ∥xτ∥2A−1
τ
)

≥
(
λ+

λ−T
′

2

)d t∏
τ=T ′+1

(1 + ∥xτ∥2A−1
τ
),

where the last inequality follows form Lemma 1 and the fact that det(A) =
∏d

i=1 λi(A) ≥

(λmin(A))
d. Furthermore, by the AM-GM inequality applied to the eigenvalues of At+1, if

holds

det(At+1) =
d∏

i=1

λi(At+1) ≤

(
tL2

d

)d

,
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where we also used the fact that ∥xt∥2 ≤ L for all t. These combined yield,

t∏
τ=T ′+1

(1 + ∥

xτ∥2A−1
τ
) ≤

(
2tL2

d(2λ+ λ−T ′)

)d

.

Next, using the fact that for any 0 ≤ y ≤ 1, log(1 + y) ≥ y/2, we have

T∑
t=T ′+1

min
(
∥xt∥2A−1

t
, 1
)
≤ 2

T∑
t=T ′+1

log
(
∥xt∥2A−1

t
+ 1
)
= 2 log

( T∏
t=T ′+1

(
∥xt∥2A−1

t
+ 1
) )

≤ 2d log

(
2TL2

d(2λ+ λ−T ′)

)
.

It remains to prove (A.6). Recall from (A.5) that for any T ′ < t ≤ T , with probability at

least 1− δ (note that we have conditioned in the event E in (A.2)),(
µ⊤xt − µ̃⊤

t xt

)
≤ 2min

(
βt∥xt∥A−1

t
, 1
)
≤ 2βt min

(
∥xt∥A−1

t
, 1
)
,

where for the inequality we have used the fact that βt ≤ βt (and assumed for simplicity that

T large enough such that βt > 1). Thus, the desired bound in (A.6) follows from applying

Cauchy-Schwartz inequality to the above.

A.2.3 Bounding Term II

As discussed in Section 2.5.2, the challenge in bounding Term II in (2.10) is that , in general,

Ds
t ̸= Ds, so x∗ might not belong in Ds

t . Bounding Term II amounts to bounding a certain

”distance” of the set Ds
t from the set D0. In order to accomplish this task, we proceed as

follows. First, we define a shrunk version D̃s
t of Ds

t , for which we have a more convenient

characterization, compared to the original D̃s
t . Then, we select the point zt in D̃s

t that is in

the direction of x∗ and is as close to it as possible. Finally, we are able to bound the distance

of zt to x∗.

A shrunk safe region D̃s
t . Consider an enlarged confidence region C̃t centered at µ defined

as follows:

C̃t := {v ∈ Rd : ∥ν − µ∥At ≤ 2βt} ⊇ Ct. (A.7)
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The inclusion property above holds since µ ∈ Ct, and, by triangle inequality, for all v ∈ Ct,

one has that ∥ν − µ∥At ≤ ∥ν − µ̂t∥At + ∥µ̂t − µ∥At ≤ 2βt.

The definition of the enlarged confidence region in (A.7) naturally leads to the definition

of a corresponding shrunk safe decision set D̃s
t . Namely, let

D̃s
t := {x ∈ D0 : ν

⊤Bx ≤ c, ∀v ∈ C̃t} = {x ∈ D0 : max
v∈C̃t

ν⊤Bx ≤ c}

= {x ∈ D0 : µ
⊤Bx+ 2βt∥Bx∥A−1

t
≤ c}, (A.8)

and observe that D̃s
t ⊆ Ds

t . Note here that since by Assumption 3 zero is in the interior of

D0, the sets D̃s
t and Ds

t have a nonempty interior.

A point zt ∈ D̃s
t close to x∗. Let zt be a vector in the direction of x∗ that belongs in D̃s

t

and is closest to x∗. Formally, zt := αtx
∗, where

αt := max
{
α ∈ [0, 1] | zt = αx∗ ∈ D̃s

t

}
.

Since both 0 and x∗ ∈ D0, and, D0 is convex by assumption, it follows in view of (A.8) that

αt := max

{
α ∈ [0, 1] |α ·

(
µ⊤Bx∗ + 2βt∥Bx∗∥A−1

t

)
≤ c

}
. (A.9)

Recall that C > 0, thus (A.9) can be simplified to the following:

αt =


1 , if µ⊤Bx∗ + 2βt∥Bx∗∥A−1

t
≤ c,

min

(
c

µ⊤Bx∗+2βt∥Bx∗∥
A−1

t

, 1

)
, otherwise.

(A.10)

Bounding Term II in terms of αt. Due to the fact that D̃s
t ⊆ Ds

t , it holds that zt ∈ Ds
t .

Using this, and optimality of (µ̃,xt) in the minimization in Step 10 of Algorithm 1, we can

bound Term II as follows:

Term II := µ̃⊤
t xt − µ⊤x∗

≤ µ⊤zt − µ⊤x∗ = αtµ
⊤x∗ − µ⊤x∗

≤ |αt − 1| |µ⊤x∗|

≤ |αt − 1| = (1− αt). (A.11)
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The inequality in the last line uses Assumption 2. For the last equality recall that αt ∈ [0, 1]

To proceed further from (A.11) we consider separately the two cases ∆ > 0 and ∆ = 0

that lead to Theorems 2 and 3, respectively.

A.2.3.1 Bound for the Case ∆ > 0

Here, assuming that ∆ > 0, we prove that if the duration T ′ of the pure exploration phase

of Safe-LUCB is chosen appropriately, then αt = 1, and equivalently, x∗ ∈ Ds
t . The precise

statement is given in Lemma 11 below, which is a restatement of Lemma 2, given here for

the reader’s convenience.

Lemma 11 (∆ > 0 =⇒ x∗ ∈ Ds
t). Let Assumptions 1, 2 and 3 hold for all t ∈ [T ]. Fix

any δ ∈ (0, 0.5) and assume a positive safety gap ∆ > 0. Initialize Safe-LUCB with

T ′ ≥
(
8L2∥B∥2β2

T

λ− ∆2
− 2λ

λ−

)
∨ tδ. (A.12)

Then, with probability at least 1− 2δ, for all t = T ′ + 1, . . . , T it holds that

Term II := µ̃⊤
t xt − µ⊤x∗ ≤ 0.

Thus, with the same probability

T∑
t=T ′+1

(µ̃⊤
t xt − µ⊤x∗) ≤ 0. (A.13)

Proof. Recall from (A.11), that for any T ′ < t ≤ T , with probability at least 1− δ (note that

we have conditioned in the event E in (A.2)), Term II = 1− αt. Thus, in view of (A.10), it

suffices to prove that for any T ′ < t ≤ T , with probability at least 1− δ, it holds αt = 1, or

equivalently,

µ⊤Bx∗ + 2βt∥Bx∗∥A−1
t
≤ c ⇔ βt∥Bx∗∥A−1

t
≤ ∆/2. (A.14)

For any T ′ < t ≤ T , we have

βt∥Bx∗∥A−1
t
≤ βt∥Bx∗∥2√

λmin(At)
≤ βT∥Bx∗∥2√

λmin(AT ′+1)
≤ βT∥B∥L√

λmin(AT ′+1)
, (A.15)
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where, in the second inequality we used βt ≤ βt and λmin(At) ≥ λmin(AT ′+1), and in the last

inequality we used Assumption 2. Next, since tδ ≤ T ′, we may apply Lemma 1 to find from

(A.15), that for all T ′ + 1 ≤ t ≤ T , with probability at least 1− δ:

βt∥Bx∗∥A−1
t
≤
√
2∥B∥LβT√
2λ+ λ−T ′

. (A.16)

To complete the proof of the lemma note that the assumption T ′ ≥ 8∥B∥2L2β2
T

λ−∆2 − 2λ
λ−

when

combined with (A.16), it guarantees (A.14), as desired.

Remark 9. We remark on a simple tweak in the algorithm that results in a constant T ′ (i.e.,

independent of T ) in Lemma 11. However, this does not change the final order of regret bound

in Theorem 2. In particular, we modify Safe-LUCB to use the nested (as is called in [68])

confidence region Bt = ∩tτ=1Cτ at round t such that . . . ⊆ Bt+1 ⊆ Bt ⊆ Bt−1 ⊆ . . .. According

to Theorem 1, it is guaranteed that for all t > 0, µ ∈ Bt, with high probability. Applying

these nested confidence regions in creating safe sets, results in · · · ⊆ Ds
t−1 ⊆ Ds

t ⊆ Ds
t+1 ⊆ . . . .

Thanks to this, it is now guaranteed that once x∗ ∈ Ds
t , the optimal action x∗ will remain

inside the safe decision sets for all rounds after t. Thus, it is sufficient to find the first round

t, such that x∗ ∈ Ds
t . This leads to a shorter duration T ′ for the pure exploration phase. In

particular, following the arguments in Lemma 11, it can be shown that T ′ becomes the smallest

value satisfying 2
√
2∥B∥LβT ′ ≤ ∆

√
2λ+ λ−T ′, which is now a constant independent of T .

A.2.3.2 Bound for the Case ∆ = 0

Lemma 12 (Term II for ∆ = 0). Let Assumptions 1, 2 and 3 hold. Fix any δ ∈ (0, 0.5) and

assume that T ′ is such that T ′ ≥ tδ. Then, with probability at least 1− δ, it holds

T∑
t=T ′+1

1− αt ≤
2
√
2∥B∥Lβt(T − T ′)

c
√
2λ+ λ−T ′

. (A.17)

Therefore, with probability at least 1− 2δ, it holds

T∑
t=T ′+1

(µ̃⊤
t xt − µ⊤x∗) ≤ 2

√
2∥B∥Lβt(T − T ′)

c
√

2λ+ λ−T ′
. (A.18)
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Proof. Recall from (A.11), that for any T ′ < t ≤ T , with probability at least 1− δ (note that

we have conditioned in the event E in (A.2)), Term II = 1−αt. Thus, (A.18) directly follows

once we show (A.17). In what follows, we prove (A.17).

The definition of αt in (A.10) and the fact that µ⊤Bx∗ ≤ c imply that

αt =


1 , if µ⊤Bx∗ + 2βt∥Bx∗∥A−1

t
≤ c,

c
µ⊤Bx∗+2βt∥Bx∗∥

A−1
t

≥ c
c+2βt∥Bx∗∥

A−1
t

, otherwise.

Thus, for all t ≥ T ′ + 1:

αt ≥
c

c+ 2βt∥Bx∗∥A−1
t

,

from which it follows,

1− αt ≤
2βt∥Bx∗∥A−1

t

c+ 2βt∥Bx∗∥A−1
t

≤ 2βt

c
∥Bx∗∥A−1

t
≤ 2βt∥Bx∗∥2

c
√

λmin(At)
≤ 2βt∥B∥L

c
√

λmin(AT ′+1)
.

The last two inequalities follow as in (A.15). To complete the proof, note that since T ′ ≥ tδ,

we can apply Lemma 1. Thus, with probability at least 1− δ it holds,

T∑
t=T ′+1

1− αt ≤
2βt∥B∥L(T − T ′)

c
√

λmin(AT ′+1)
≤ 2
√
2∥B∥Lβt(T − T ′)

c
√
2λ+ λ−T ′

,

as desired.

A.2.4 Completing the Proof of Theorem 2

We are now ready to complete the proof of Theorem 2. Let T sufficiently large such that

T > T ′ ≥
(
8L2∥B∥2β2

T

λ−∆2
− 2λ

λ−

)
∨ tδ. (A.19)

We combine Lemma 10 (specifically, Eqn. (A.6)), Lemma 11 (specifically, Eqn. (A.13)), and,

the decomposition in (A.3), to conclude that

RT =
T ′∑
t=1

rt +
T∑

t=T ′+1

rt ≤ 2T ′ + 2βt

√
2d(T − T ′) log

(
2TL2

d(2λ+ λ−T ′)

)
.

Specifically, choosing T ′ =

(
8L2∥B∥2β2

T

λ− ∆2 − 2λ
λ−

)
∨ tδ in the above, results in

RT = O

(
∥B∥2

λ−∆2
d
√
T log T

)
, (A.20)

where the constant in the Big-O notation may only depend on L, S,R, λ and δ.
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A.2.5 Completing the proof of Theorem 3

We are now ready to complete the proof of Theorem 3. Let T sufficiently large such that

T > T ′ ≥ tδ.

We combine Lemma 10 (specifically, Eqn. (A.6)), Lemma 12 (specifically, Eqn. (A.18)), and,

the decomposition in (A.3), to conclude that

RT =
T ′∑
t=1

rt +
T∑

t=T ′+1

rt ≤ 2T ′ + 2βt

√
2d(T − T ′) log

(
2TL2

d(2λ+ λ−T ′)

)
+

2
√
2∥B∥Lβt(T − T ′)

c
√

2λ+ λ−T ′
.

Specifically, choosing T ′ =

(
∥B∥LβtT

c
√

2λ−

) 2
3

∨ tδ in the above, results in

RT = O

(∥B∥
c

) 2
3

λ
−1/3
− d T 2/3 log T

 , (A.21)

where as in (A.20) the constant in the Big-O notation may only depend on L, S,R, λ and δ.

A.3 Extension to linear Contextual Bandits

In this section, we present an extension to the setting of K-armed contextual bandit. At each

round t ∈ [T ], the learner observes a context consisting of K action vectors, {yt,a : a ∈ [K]} ⊂

Rd and chooses one action denoted by at and observes its associated loss, ℓt = µ
⊤yt,at + ηt.

We consider the same constraint (2.1) which results in a safe set of actions at each round

{yt,a | a ∈ [K],µ⊤Byt,a ≤ c}. The optimal action at round t is denoted by yt,a∗t where

a∗t ∈ argmin
a∈[K],µ⊤Byt,a≤c

µ⊤yt,a. (A.22)

If the chosen action at round t is denoted by xt := yt,at and the optimal one by x∗
t := yt,a∗t

,

the cumulative regret over total T rounds will be

RT =
T∑
t=1

µ⊤xt − µ⊤x∗
t .
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We briefly discuss how Safe-LUCB extends to the K-armed contextual setting with

provable regret guarantees under the following assumptions.

First, we need the standard Assumptions 1 and 2 that naturally extend to the linear

contextual bandit setting. Beyond these, in order for the safe-bandit problem to be well-

defined, we assume that safe actions exist at each round. Equivalently, the feasible set in (A.22)

is nonempty and x∗
t is well-defined. Moreover, in order to be able to run the pure-exploration

phase of Safe-LUCB with random actions (that guarantee Lemma 1 holds) we further require

that at least one of these safe actions is randomly sampled at each round t (technically, we

need this assumption to hold only for rounds 1, . . . , T ′). These two assumptions are both

implied by Assumption 17 below.

Assumption 17 (Nonempty safe sets). Consider the set Dw = {x ∈ Rd : ∥Bx∥2 ≤ c
S
}.

Then, at each round t, Nt ≥ 1 number of K action vectors lie within Dw.

Finally, in order to guarantee that Safe-LUCB has sub-linear regret for the K-armed

linear setting we need that the safety gap at each round is strictly positive.

Assumption 18 (Nonzero ∆). The safety gap ∆t = c− µ⊤Bx∗
t at each round t is positive.

Under these assumptions, Safe-LUCB naturally extends to the K-armed linear bandit

setting. Specifically, at rounds t ≤ T ′, Safe-LUCB randomly selects xt to be one of the

available Nt action vectors that belong to the set Dw. Assume that λmin(E[xtx
⊤
t ]) ≥ λ− > 0

for all t ∈ [T ′].

After round T ′, Safe-LUCB implements the safe exploration-exploitation phase by choosing

safe actions based on OFU principle as in (2.9). Therefore line 10 of Safe-LUCB changes to

at = arg min
a∈As

t

min
ν∈Ct

ν⊤yt,a, (A.23)

where the safe set at rounds t ≥ T ′ + 1 is defined by

As
t = {a ∈ [K] : ν⊤Byt,a ≤ c,∀ν ∈ Ct}. (A.24)

With these and subject to Assumptions 1, 2, 17 and 18, it is straightforward to extend

the results of Theorem 2 to the setting considered here. Namely, under these assumptions,

Safe-LUCB achieves regret Õ(
√
T ) when T ′ is set to T∆ as in (2.13) for ∆ = mint∈[T ] ∆t.
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A.4 Safe-LUCB with ℓ1-confidence Region

In this section we briefly discussed a modified ℓ1-confidence region (as in [40]), which is used

in our numerical experiments.

Motivation. The minimization in (2.9) involves solving a bilinear optimization problem.

In view of (2.6) and (2.8) it is not hard to show that (2.9) can be equivalently expressed as

follows:

µ̃⊤
t xt = min

x
µ̂⊤

t x− βt ∥x∥A−1
t

sub. to µ̂⊤
t Bx+ βt ∥Bx∥A−1

t
≤ c, x ∈ D0 .

This is a non-convex optimization problem. Thus, we present a variant of Safe-LUCB (and

its analysis) and we show that it can be efficiently implemented (particularly so, when the

decision set is a polytope) [40]. We use this variant in our simulation results (see Appendix

A.6).

Algorithm and guarantees. We adapt the procedure first presented in [40] to our new

Safe-LUCB algorithm. The pure-exploration phase of the algorithm remains unaltered. In

the safe exploration-exploitation phase, the only thing that changes is the definition of the

confidence region in Line 8 in Algorithm 1. Specifically, we define the modified ℓ1-confidence

region as follows:

Cℓ1t := {ν ∈ Rd : ∥ν − µ̂t∥At,1 ≤ βt

√
d}. (A.25)

Note that for any v ∈ Ct and all t > 0, ∥A1/2
t (ν − µ̂t)∥1 ≤

√
d∥A1/2

t (ν − µ̂t)∥2 ≤
√
dβt. Thus,

Ct ⊆ Cℓ1t , ∀t > 0. From this and Theorem 1, we conclude Pr(µ ∈ Cℓ1t , ∀t > 0) ≥ 1− δ. Then,

the natural modification of (2.9) becomes

µ̃⊤
t xt = min

x∈Ds
t ,ν∈C

ℓ1
t

ν⊤x = min
ν∈Cℓ1

t

f(ν), (A.26)

where

f(ν) := min
x∈D0

m̂⊤
t Bx+

√
dβt ∥Bx∥

A−1
t

≤C

ν⊤x. (A.27)
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From these, it is clear that all the results and theorems can be directly applied to the

modified algorithm which uses ℓ1-confidence region in (A.25), with βt

√
d instead of βt. As

noted in [40] the regret of the modified algorithm does not optimally scale with the dimension

d (since there is an extra factor of
√
d introduced by the substitution βt ← βt

√
d). However,

as explained next, solving (A.26) is now computationally tractable.

On computational efficiency. Note that the minimization in (A.27) is a convex program

that can be efficiently solved for fixed ν. In particular, if D0 is a polytope then the minimiza-

tion in (A.27) is a quadratic program. Moreover, note that f(ν) is positive homogeneous of

degree one, i.e., f(θv) = θf(ν) for any θ ≥ 0. Therefore, in order to solve (A.26) it suffices

to evaluate the function f(ν) at the 2d vertices v1, . . . , v2d of Cℓ1t in (A.25) and choose the

minimum fmin := minνi, i∈[2d] f(νi). In order to see this, let ν∗ ∈ argmin
ν∈Cℓ1

t
f(ν) and

θ1, . . . , θ2d ≥ 0,
∑d

i=1 θi = 1 such that ν∗ =
∑2d

i=1 θiνi. Then,

min
v∈Cℓ1

t

f(ν) = f(ν∗) =
2d∑
i=1

θif(νi) ≥ fmin

2d∑
i=1

θi = fmin ≥ min
v∈Cℓ1

t

f(ν).

Thus,

min
v∈Cℓ1

t

f(ν) = min
vi, i∈[2d]

f(νi). (A.28)

To sum up, we see from (A.28) that solving (A.26) amounts to solving 2d quadratic programs

(when D0 is a polytope).

A.5 On GSLUCB

Having no knowledge of the safety gap ∆, GSLUCB starts conservatively by setting the

length of the pure exploration phase to its largest possible value, which is equal to T0 defined

in Theorem 3 (corresponding to ∆ = 0). The idea behind GSLUB is to generate at each

round t of the pure-exploration phase a certain value ∆t that serves as a lower bound for the

unknown safety gap ∆. We discuss possible ways to do so next, but for now let us describe

how these lower estimates of ∆ can be useful. Owing to the result of Theorem 2, at each
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round t, GSLUCB computes a pure exploration duration T ′
t = T∆t , which is associated with

the lower confidence bound ∆t (Eqn. (2.13) for ∆ = ∆t). If at some round t, the computed

T ′
t becomes less than t, then Theorem 2 guarantees that x∗ ∈ Ds

t and the algorithm switches

to the exploration-exploitation phase.

One way to compute the ∆t’s that guarantees ∆t ≤ ∆ is as follows. For each vector

ν ∈ Ct denote x∗
ν ∈ argminx∈Ds(ν) v

⊤x, where Ds(ν) := {x ∈ D0 : ν
⊤Bx ≤ c} and define

∆t := min
ν∈Ct

∆ν , (A.29)

where ∆ν := c − ν⊤Bx∗
ν . Since µ ∈ Ct with high probability (cf. Theorem 1) and by

definition of ∆, it can be seen that ∆t ≤ ∆. Unfortunately, solving (A.29) can be challenging

and, in general, one has to resort to relaxed versions of the optimization involved, but ones

that guarantee ∆t ≤ ∆ (at least after a few rounds). We leave the study of this general

case to future work and we discuss here a special case in which this is possible. We have

implemented this special case in the simulation results presented in Figure 2.1a (see Appendix

A.6). Specifically, we consider a finite K-armed linear bandit setting with feature vectors

denoted by y1, . . . ,yK . We produce lower estimates ∆t as follows. For all i ∈ [K], we form the

following two sets. (i) The set Cit = {ν ∈ Ct | ν⊤Byi ≤ c} of all vectors in the confidence region

for which the action yi is deemed safe; (ii) The set Y i
t = {yj, j ∈ [K] | maxv∈Ci

t
ν⊤Byj ≤ c}

of all actions that are considered safe with respect to all ν ∈ Cit . Then, we define

∆i
t := min

ν∈Ci
t

ν⊤yi≤ν⊤y, for all y∈Yi
t

c− ν⊤Byi. (A.30)

It can be checked that mini∈[K] ∆
i
t ≤ ∆. Thus we rely on mini∈[K] ∆

i
t as our lower confidence

bound on ∆. Note that computing mini∈[K] ∆
i
t is computationally tractable for finite K and

an ℓ1 confidence region.

A.6 Experiments

In this section, we provide the details of our numerical experiments. In view of our discussion

in Appendix A.4, we implement a modified version of Safe-LUCB which uses 1-norms instead
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(a) Safe-LUCB with pure exploration phase.
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(b) Safe-LUCB without pure exploration

phase

Figure A.1: Growth of Ds
t with and without pure exploration phase. In both figures: D0

(in black) Ds (in blue), DS
T ′+1 (in red), DS

5e4 (in green). Also, shown the optimal action x∗.

Note that x∗ ∈ DS
T ′+1 when pure exploration phase is used as suggested by Lemma 2.

of 2-norms (as in [40]; see also Appendix A.4 for details). We have taken δ = 0.01, λ = 1,

and R = 0.1 in all cases.

Figure 2.1a compares the average per-step regret of 1) Safe-LUCB with knowledge of

∆; 2) Safe-LUCB without knowledge of ∆ (hence, assuming ∆ = 0); 3) GSLUCB without

knowledge of ∆ (the algorithm creates a lower confidence bound for ∆ as the pure exploration

phase runs). Figure A.2 highlights the sample standard deviation of regret around the average

per-step regret for each of the above-mentioned cases. We considered a time independent

decision set of 15 arms in R4 such that 5 of the feature vectors are drawn uniformly from

Dw and the other 10 are drawn uniformly from unit ball in R4. Moreover, µ is drawn from

N (0, I4) and then normalized to unit norm. B and c are drawn uniformly from [0, 0.5]4×4

and [0,1] respectively. The results shown depict averages over 20 realizations. It can be seen

from the figure that GSLUCB performs significantly better than the worst case suggested

by Theorem 3 (aka Safe-LUCB assuming ∆ = 0). In fact, it appears that it approaches the

improved regret performance suggested by Theorem 2 of Safe-LUCB with knowledge of ∆.

Our second numerical experiment serves to showcase the value of the safe exploration phase

106



0 2 4 6 8 10

10
4

0

0.2

0.4

0.6

0.8

1

1.2

(a) Safe-LUCB, T ′ = T∆
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(b) GSLUCB
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(c) Safe-LUCB, T ′ = T0

Figure A.2: Comparison of mean per-step regret for Safe-LUCB(T ′ = T∆), GSLUCB, and

Safe-LUCB(T ′ = T0). The shaded regions show one standard deviation around the mean.

The results are averages over 20 problem realizations.

as discussed in Section 2.5.3. We focus on an instance with positive safety gap ∆ > 0 to verify

the validity of Lemma 2, namely that x∗ ∈ Ds
t for t ≥ T ′+1, when T ′ is appropriately chosen.

Furthermore, we compare the performance with a “naive” variation of Safe-LUCB that only

implements the safe exploration-exploitation phase (aka, no pure exploration phase). The

regret plots of the two algorithms (with and without pure exploration phase) shown in Figure

2.1b clearly demonstrate the value of the pure exploration phase for the simulated example.

Specifically, for the simulation, we consider a horizon T = 100000 with decision set D0 the

unit ℓ∞-ball in R2, and, the following parameters: µ =

 0.9

0.044

, B =

0.6 1.8

1.8 0.4

, c = 0.9.

We have chosen a low-dimensional instance, because we find it instructive to also depict

the the growth of the safe sets for the two algorithms. This is done in Figures A.1a and

A.1b, where we illustrate the safe sets of Safe-LUCB with and without pure exploration

phase, respectively. Black lines denote the (border of) the polytope D0; blue lines denote

the linear constraint in (2.1); red lines denote the (border of) Ds
T ′+1, where T ′ = T∆ = 1054

and T ′ = 0 for Figures A.1a and A.2c, respectively; and, green lines denote (the border

of) safe sets Ds
50000 at round 50000. Also depicted the optimal action x∗ with coordinates

{−1,−1}. As expected, Safe-LUCB starts the exploration-exploitation phase with a safe

set that includes x∗ while, without the pure exploration phase, the algorithm starts the

exploration-exploitation phase with a smaller safe set which does not include x∗ and as a
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results, fails in expanding the safe set to include x∗ even after T = 50000 rounds. This results

in the bad regret performance in Figure 2.1b.
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APPENDIX B

Proofs for Chapter 3

B.1 SLUCB-QVI Proofs

In this section, we prove the technical statements in Sections 3.4 and 3.5. First, recall the

definitions of the following events that we repeatedly refer to throughout this section:

E1 :=
{
Φ⊥

0 (s,γ∗
h) ∈ Ckh(s), ∀(s, h, k) ∈ S × [H]× [K]

}
, (B.1)

E2 :=
{∣∣∣⟨wk

h,ϕ(s, a)⟩ −Qπ
h(s, a) + [PhV

π
h+1 − V k

h+1](s, a)
∣∣∣ ≤ β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1

, ∀(a, s, h, k) ∈ A× S × [H]× [K]
}
. (B.2)

B.1.1 Proof of Proposition 1

Let a ∈ Ak
h(s). Recall that Φ0(s,x) =

〈
x, ϕ̃

(
s, a0 (s)

)〉
ϕ̃
(
s, a0 (s)

)
for any x ∈ Rd. By the

definition of Ak
h(s) in (3.9), we have〈

Φ0

(
s,ϕ(s, a)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a)

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a)

)∥∥∥(
Ak

h,s

)−1 ≤ τ

(B.3)

Moreover, using Cauchy-Schwarz inequality and conditioned on event E1 in (B.1), we get∣∣∣∣〈γk
h,s − Φ⊥

0 (s,γ∗
h) ,Φ

⊥
0

(
s,ϕ(s, a)

)〉∣∣∣∣ ≤ β
∥∥∥Φ⊥

0

(
s,ϕ(s, a)

)∥∥∥(
Ak

h,s

)−1 , (B.4)
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and thus,〈
Φ⊥

0 (s,γ∗
h) ,Φ

⊥
0

(
s,ϕ(s, a)

)〉
≤
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a)

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a)

)∥∥∥(
Ak

h,s

)−1 . (B.5)

Note that ⟨Φ⊥
0

(
s,γ∗

h

)
,Φ⊥

0

(
s,ϕ(s, a)

)
⟩ =

〈
γ∗
h,ϕ(s, a)

〉
− ⟨γ∗

h,s,Φ0

(
s,ϕ(s, a)

)
⟩ =

⟨γ∗
h,ϕ(s, a)⟩ −

〈
Φ0(s,ϕ(s,a)),ϕ̃(s,a0(s))

〉
∥∥∥ϕ(s,a0(s))∥∥∥

2

τh(s). Combining this fact with (B.3) and (B.5) con-

cludes that

〈
γ∗
h,ϕ(s, a)

〉
=

〈
Φ0

(
s,ϕ(s, a)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
Φ⊥

0 (s,γ∗
h) ,Φ

⊥
0

(
s,ϕ(s, a)

)〉

≤

〈
Φ0

(
s,ϕ(s, a)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a)

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a)

)∥∥∥(
Ak

h,s

)−1

(Eqn. (B.5))

≤ τ, (Eqn. (B.3))

as desired.

B.1.2 Proof of Lemma 3

Before we start the main proof, we introduce vectors {wπ
h}h∈[H] for any policy π:

wπ
h := θ∗h +

∫
S
V π
h+1(s

′)dµ(s′). (B.6)

From the Bellman equation in (3.4) and the linearity of the MDP in Assumption 4, we

have:

Qπ
h(s, a) :=

〈
ϕ(s, a),wπ

h

〉
. (B.7)

See Proposition 2.3 in [64] for the proof.

Now, we prove Lemma 3 by induction. First, we prove the base case at time-step H + 1.

The statement holds because V ∗
H+1(s) = V k

H+1(s) = 0. Now, suppose the statement holds for

time-step h+ 1. We prove it also holds for time-step h. For all (s, h, k) ∈ S × [H]× [K], let

akh(s) := argmax
a∈Ak

h(s)

Qk
h(s, a) and a∗h(s) := argmax

a∈A safe
h (s)

Q∗
h(s, a). (B.8)
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We consider the following two cases:

1) If a∗h(s) ∈ Ak
h(s), we have

V k
h (s) = max

a∈Ak
h(s)

Qk
h(s, a) ≥ Qk

h(s, a
∗
h(s))

≥ Q∗
h(s, a

∗
h(s)) + Es′∼P(.|s,a∗h(s))

[
V k
h+1(s

′)− V ∗
h+1(s

′)
]

(Conditioned on E2 in (B.2))

≥ Q∗
h(s, a

∗
h(s)) = V ∗

h (s), (Induction assumption)

as desired.

2) Now, we recall the definition of Ak
h(s) in (3.9) and focus on the other case when

a∗h(s) /∈ Ak
h(s), which means〈

Φ0

(
s,ϕ(s, a∗h(s))

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 > τ.

(B.9)

Now, we observe that a0(s) ∈ Ak
h(s). Recall that ϕ̃

(
s, a0 (s)

)
=

ϕ(s,a0(s))∥∥∥ϕ(s,a0(s))∥∥∥
2

and note that

Φ0

(
s,ϕ

(
s, a0 (s)

))
= ϕ

(
s, a0 (s)

)
and Φ⊥

0

(
s,ϕ(s, a0(s))

)
= 0. Thus

〈
ϕ
(
s, a0 (s)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a0(s))

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a0(s))

)∥∥∥(
Ak

h,s

)−1 = τh(s)

< τ,

(B.10)

which implies that a0(s) ∈ Ak
h(s) or equivalently ϕ

(
s, a0 (s)

)
∈ Dk

h(s) :={
ϕ(s, a) : a ∈ Ak

h(s)
}
. Now, let

αk
h(s) := max

{
α ∈ [0, 1] : αϕ(s, a∗h(s)) + (1− α)ϕ

(
s, a0 (s)

)
∈ Dk

h(s)
}
. (B.11)

Assumption 5 guarantees that αk
h(s) exists for all (s, k) ∈ S × [H] × [K]. Note that

Φ0

(
s, αϕ(s, a∗h(s)) + (1− α)ϕ

(
s, a0 (s)

))
= αΦ0

(
s,ϕ(s, a∗h(s))

)
+ (1 − α)ϕ

(
s, a0 (s)

)
and

Φ⊥
0

(
s, αϕ(s, a∗h(s)) + (1− α)ϕ

(
s, a0 (s)

))
= αΦ⊥

0

(
s,ϕ(s, a∗h(s))

)
. Thus, by the definition of
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Dk
h(s), we have

αk
h(s) :=max

{
α ∈ [0, 1] :

〈
αΦ0

(
s,ϕ(s, a∗h(s))

)
+ (1− α)ϕ

(
s, a0 (s)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s)

+ α
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
+ αβ

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 ≤ τ

}
. (B.12)

For all (s, k) ∈ S × [K], at time-step h, let yk
h(s) := αk

h(s)ϕ(s, a
∗
h(s)) + (1 −

αk
h(s))ϕ

(
s, a0 (s)

)
. Thus, the definition of αk

h(s) in (B.11) implies that yk
h(s) ∈ Dk

h(s),

and thus

max
a∈Ak

h(s)
Qk

h(s, a) ≥ min

{〈
wk

h,y
k
h(s)

〉
+ κh(s)β

∥∥∥yk
h(s)

∥∥∥
(Ak

h)
−1 , H

}

= min

{〈
wk

h −w∗
h,y

k
h(s)

〉
+
〈
w∗

h,y
k
h(s)

〉
+ κh(s)β

∥∥∥yk
h(s)

∥∥∥
(Ak

h)
−1 , H

}
.

(B.13)

Conditioned on event E2 in (B.2), and by the induction assumption, we have

−β
∥∥∥yk

h(s)
∥∥∥
(Ak

h)
−1 ≤

〈
wk

h −w∗
h,y

k
h(s)

〉
+ Es′∼P(.|s,a∗h(s))

[
V ∗
h+1(s

′)− V k
h+1(s

′)
]

≤
〈
wk

h −w∗
h,y

k
h(s)

〉
. (B.14)

By combining (B.13) and (B.14), we conclude that

max
a∈Ak

h(s)
Qk

h(s, a) ≥ min

{〈
w∗

h,y
k
h(s)

〉
+ (κh(s)− 1)β

∥∥∥yk
h(s)

∥∥∥
(Ak

h)
−1

, H

}
≥ min

{
αk
h(s)

〈
w∗

h,ϕ(s, a
∗
h(s))

〉
+(1− αk

h(s))
〈
w∗

h,ϕ
(
s, a0 (s)

)〉
+ (κh(s)− 1)β

∥∥∥∥Φ⊥
0

(
s,yk

h(s)
)∥∥∥∥(

Ak
h,s

)−1
, H


≥ min

αk
h(s)

(〈
w∗

h,ϕ(s, a
∗
h(s))

〉
+ (κh(s)− 1)β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1

)
, H

 ,

(B.15)

where the second inequality holds because
∥∥yk

h(s)
∥∥
(Ak

h)
−1 ≥

∥∥∥Φ⊥
0

(
s,yk

h(s)
)∥∥∥(

Ak
h,s

)−1 (see

Lemma 3 in [96] for a proof). The last inequality follows from the fact that (1 −
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αk
h(s))

〈
w∗

h,ϕ
(
s, a0 (s)

)〉
≥ 0 as the reward is always positive, i.e., rh(s, a) ∈ [0, 1] for

all (s, a, h) ∈ S ×A× [H].

Now, we show that αk
h(s) ≥

τ−τh(s)

τ−τh(s)+2β
∥∥∥Φ⊥

0 (s,ϕ(s,a∗h(s)))
∥∥∥
(Ak

h,s)
−1

, which eventually leads to

a proper value for κh(s) > 1 that guarantees for all (s, h, k) ∈ S × [H] × [K] it holds that

V ∗
h (s) ≤ V k

h (s) conditioned on E = E1 ∩ E2. Definitions of αk
h(s) in (B.12) and the estimated

safe set Ak
h(s) in (3.9) imply that for all (s, h, k) ∈ S × [H]× [K], we have

(1− αk
h(s))

〈
ϕ
(
s, a0 (s)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) + αk
h(s)


〈
Φ0

(
s,ϕ(s, a∗h(s))

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s)

+
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1

]
= τ. (B.16)

Let M =

〈
Φ0(s,ϕ(s,a∗h(s))),ϕ̃(s,a0(s))

〉
∥∥∥ϕ(s,a0(s))∥∥∥

2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
+

β
∥∥∥Φ⊥

0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 . Note that due to (B.9), M > τ , and recall that

ϕ̃
(
s, a0 (s)

)
=

ϕ(s,a0(s))∥∥∥ϕ(s,a0(s))∥∥∥
2

. Therefore, (B.16) gives that

0 < αk
h(s) =

τ − τh(s)

M − τh(s)
< 1. (B.17)

In order to lower bound αk
h(s) (upper bound M), we first rewrite M as

M =

〈
Φ0

(
s,ϕ(s, a∗h(s))

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γ∗
h,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
+
〈
γk
h,s − γ∗

h,Φ
⊥
0

(
s,ϕ(s, a∗h(s))

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 , (B.18)

and show that

(a)

〈
Φ0(s,ϕ(s,a∗h(s))),ϕ̃(s,a0(s))

〉
∥∥∥ϕ(s,a0(s))∥∥∥

2

τh(s) +
〈
γ∗
h,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
≤ τ because
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〈
Φ0

(
s,ϕ(s, a∗h(s))

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γ∗
h,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
=

〈
γ∗
h,
〈
Φ0

(
s,ϕ(s, a∗h(s))

)
, ϕ̃
(
s, a0 (s)

)〉
ϕ̃
(
s, a0 (s)

)〉
+
〈
γ∗
h,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
=
〈
γ∗
h,Φ0

(
s,ϕ(s, a∗h(s))

)〉
+
〈
γ∗
h,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
=
〈
γ∗
h,ϕ(s, a

∗
h(s))

〉
≤ τ. (B.19)

(b)
〈
γk
h,s − γ∗

h,Φ
⊥
0

(
s,ϕ(s, a∗h(s))

)〉
≤ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 , because conditioned

on E1 in (B.1), we have〈
γk
h,s − γ∗

h,Φ
⊥
0

(
s,ϕ(s, a∗h(s))

)〉
=
〈
γk
h,s − Φ⊥

0 (s,γ∗
h) ,Φ

⊥
0

(
s,ϕ(s, a∗h(s))

)〉
≤ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 . (B.20)

Now, we combine (B.18), (B.19) and (B.20) to conclude that

M ≤ τ + 2β
∥∥∥Φ⊥

0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 ⇒ αk
h(s) ≥

τ − τh(s)

τ − τh(s) + 2β
∥∥∥Φ⊥

0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1

.

(B.21)

This lower bound on αk
h(s) combined with (B.15) gives

max
a∈Ak

h(s)
Qk

h(s, a) ≥ min


(τ − τh(s))

(〈
w∗

h,ϕ(s, a
∗
h(s))

〉
+ (κh(s)− 1)β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1

)
τ − τh(s) + 2β

∥∥∥Φ⊥
0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1

, H


(B.22)

Let M1 = β
∥∥∥Φ⊥

0

(
s,ϕ(s, a∗h(s))

)∥∥∥(
Ak

h,s

)−1 . We observe that Therefore maxa∈Asafe
h

Q∗
h(s, a) =
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maxa∈Asafe
h

min
{
Q∗

h(s, a), H
}
= min

{
maxa∈Asafe

h
Q∗

h(s, a), H
}
. Therefore

max
a∈Ak

h(s)
Qk

h(s, a) ≥ max
a∈Asafe

h

Q∗
h(s, a) ⇐⇒

(
τ − τh(s)

)(
max
a∈Asafe

h

Q∗
h(s, a) + (κh(s)− 1)M1

)
≥
(
τ − τh(s) + 2M1

)
max
a∈Asafe

h

Q∗
h(s, a)

⇐⇒
(
τ − τh(s)

)
(κh(s)− 1) ≥ 2 max

a∈Asafe
h

Q∗
h(s, a)

⇐⇒
(
τ − τh(s)

)
(κh(s)− 1) ≥ 2H

⇐⇒ κh(s) ≥
2H

τ − τh(s)
+ 1, (B.23)

as desired.

B.1.3 Proof of Theorem 4

The key property of optimism in the face of safety constraint in SLUCB-QVI, which is proved

in Appendix B.1.2 as our main technical allows us to follow the standard steps in establishing

the regret bound of unsafe LSVI-UCB in [64] to complete the proof of Theorem 4.

Conditioned on event E2 in (B.2), for any (a, s, h, k) ∈ A× S × [H]× [K], we have

Qk
h(s, a)−Qπk

h (s, a) = min

{〈
wk

h,ϕ(s, a)
〉
+ κh(s)β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1 , H

}
−Qπk

h (s, a)

≤
〈
wk

h,ϕ(s, a)
〉
+ κh(s)β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1 −Qπk

h (s, a)

≤ Es′∼P(.|s,a)

[
V k
h+1(s

′)− V πk
h+1(s

′)
]
+
(
1 + κh(s)

)
β
∥∥ϕ(s, a)∥∥

(Ak
h)

−1 .

(B.24)

Let δkh := V k
h (s

k
h) − V πk

h (skh) and ζkh+1 := Es′∼P(.|skh,a
k
h)

[
V k
h+1(s

′)− V πk
h+1(s

′)
]
− δkh+1. We can

write

δkh = V k
h (s

k
h)− V πk

h (skh)

= Qk
h(s

k
h, a

k
h)−Qπk

h (skh, a
k
h)

≤ Es′∼P(.|skh,a
k
h)

[
V k
h+1(s

′)− V πk
h+1(s

′)
]
+
(
1 + κh(s)

)
β
∥∥∥ϕk

h

∥∥∥
(Ak

h)
−1 (Eqn. (B.24))

= δkh+1 + ζkh+1 +
(
1 + κh(s)

)
β
∥∥∥ϕk

h

∥∥∥
(Ak

h)
−1 . (B.25)
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Now, conditioning on event E = E1 ∩ E2, we bound the cumulative regret as follows:

RK =
K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1) ≤
K∑
k=1

δk1 (Lemma 3)

≤
K∑
k=1

H∑
h=1

ζkh +
K∑
k=1

H∑
h=1

(
1 + κh(s)

)
β
∥∥∥ϕk

h

∥∥∥
(Ak

h)
−1

≤
K∑
k=1

H∑
h=1

ζkh + (1 + κ) β
K∑
k=1

H∑
h=1

∥∥∥ϕk
h

∥∥∥
(Ak

h)
−1 . (B.26)

We observe that {ζkh} is a martingale difference sequence satisfying |ζkh | ≤ 2H. Thus, thanks

to Azuma-Hoeffding inequality, we have

P

 K∑
k=1

H∑
h=1

ζkh ≤ 2H
√

T log(dT/δ)

 ≥ 1− δ. (B.27)

In order to bound
∑K

k=1

∑H
h=1

∥∥∥ϕk
h

∥∥∥
(Ak

h)
−1 , note that for any h ∈ [H], we have

K∑
k=1

∥∥∥ϕk
h

∥∥∥
(Ak

h)
−1 ≤

√√√√K
K∑
k=1

∥∥∥ϕk
h

∥∥∥2
(Ak

h)
−1 (Cauchy-Schwartz inequality)

≤

√√√√2K log

(
det
(
AK

h

)
det
(
A1

h

) ) (B.28)

≤

√
2dK log

(
1 +

K

dλ

)
. (B.29)

In inequality (B.28), we used the standard argument in regret analysis of linear bandits [2]

(Lemma 11) as follows:

n∑
t=1

min
(
∥yt∥2V−1

t
, 1
)
≤ 2 log

detVn+1

detV1

where Vn = V1 +
n−1∑
t=1

yty
⊤
t . (B.30)

In inequality (B.29), we used Assumption 7 and the fact that det(A) =
∏d

i=1 λi(A) ≤

(trace(A)/d)d. Combining (B.26), (B.27), and (B.29), we have with probability at least 1−2δ

RK ≤ 2H
√

T log(dT/δ) + (1 + κ)β

√
2dHT log

(
1 +

K

dλ

)
. (B.31)
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B.1.4 Unknown τh(s)

In this section, we relax Assumption 5, and instead assume that we only have the knowledge

of safe actions a0(s), and remove the assumption on the knowledge about their costs τh(s).

Similar results are provided by [96].

Let k be the number of times the agent has played action a0(s) at time-step h, and τ̂h(s)

be the empirical mean estimator of τh(s). Then, for any δ ∈ (0, 1), we have

P
(
τh(s) ≤ τ̂h(s) +

√
2 log(1/δ)/k

)
≥ 1− δ. (B.32)

If we let δ = 1/K2, then we have

P
(∣∣τ̂h(s)− τh(s)

∣∣ ≤ 2
√

log(K)/k, ∀k ∈ [K]
)
≥ 1− 2/K. (B.33)

We find Th(s), the number of time the agent must play action a0(s) at state s and time-step h

in an adaptive manner as follow. Let Th(s) be the first time that τ̂h(s)+6
√
log(K)/Th(s) ≤ τ .

Thus, we have

τh(s) + 4
√
log(K)/Th(s) ≤ τ ⇒ 16 log(K)

(τ − τh(s))2
≤ Th(s). (B.34)

Note that in this case 4
√

log(K)/Th(s) is a conservative estimation for τ − τh(s).

Now we show that it will not take much longer than 16 log(K)
(τ−τh(s))2

that this first time happens.

Conversely, for any k ≥ 64 log(K)
(τ−τh(s))2

, we observe that

τ̂h(s) + 6
√

log(K)/k ≤ τh(s) + 8
√
log(K)/k ≤ τ. (B.35)

Therefore, we conclude that

16 log(K)

(τ − τh(s))2
≤ Th(s) ≤

64 log(K)

(τ − τh(s))2
, (B.36)

and 4
√

log(K)/Th(s) is a conservative estimate for τ − τh(s).
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B.2 Randomized SLUCB-QVI Proofs

In this section, we prove the technical statements in Section 3.6. First, recall the definition of

the following event that we repeatedly refer to throughout this section:

E3 :=
{∣∣∣⟨w̃k

h,ϕ(s, a)⟩ − Q̃π
h(s, a) + [PhṼ

π
h+1 − Ṽ k

h+1](s, a)
∣∣∣ ≤ β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1

, ∀(a, s, h, k) ∈ A× S × [H]× [K]
}
. (B.37)

In the following theorem, we state that E3, focusing on randomized policy selection, is a high

probability event.

Theorem 14 (Thm. 2 in [2] and Lemma B.4 in [64]). Define

Ṽ k
h (s) := min

{
max

θ∈Γk
h(s)

Ea∼θ

[
Q̃k

h(s, a)
]
, H

}
(B.38)

and recall the definition of E1 in (B.1). Then, for any fixed policy π, under Assumptions 4, 5,

6, and 7, and the definition of β in Theorem 4, there exists an absolute constant cβ > 0, such

that for any fixed δ ∈ (0, 0.5), with probability at least 1− 2δ, the event Ẽ := E1 ∩ E3 holds.

B.2.1 Proof of Lemma 4

First, similar to vectors {wπ
h}h∈[H] in (B.6) for deterministic policy selection setting, we

introduce vectors {w̃π
h}h∈[H] for any policy π:

w̃π
h := θ∗h +

∫
S
Ṽ π
h+1(s

′)dµ(s′). (B.39)

From the Bellman equation in (3.12) and the linearity of the MDP in Assumption 4, we have:

Q̃π
h(s, a) :=

〈
ϕ(s, a), w̃π

h

〉
. (B.40)

Now, similar to the proof of Lemma 3, we start proving this Lemma 4 by induction.

First, we prove the base case at time-step H + 1. The statement holds because Ṽ ∗
H+1(s) =
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Ṽ k
H+1(s) = 0. Now, suppose the statement holds for time-step h+ 1. We prove it also holds

for time-step h. For all (s, h, k) ∈ S × [H]× [K], let

πk(s, h) := argmax
θ∈Γk

h(s)

Ea∼θ

[
Q̃k

h(s, a)
]

and π∗(s, h) := argmax
θ∈Γsafe

h (s)

Ea∼θ

[
Q̃∗

h(s, a)
]
. (B.41)

We consider the following two cases:

1) If π∗(s, h) ∈ Γk
h(s), we have

Ṽ k
h (s) = min

{
max

θ∈Γk
h(s)

Ea∼θ

[
Q̃k

h(s, a)
]
, H

}
≥ min

{
Ea∼π∗(s,h)

[
Q̃k

h(s, a)
]
, H

}

≥ min

{
Ea∼π∗(s,h)

[
Q̃∗

h(s, a) + Es′∼P(.|s,a)

[
Ṽ k
h+1(s

′)− Ṽ ∗
h+1(s

′)
]]

, H} (Conditioned on E3 in (B.37))

≥ min

{
Ea∼π∗(s,h)

[
Q̃∗

h(s, a)
]
, H

}
, (Induction assumption)

= Ea∼π∗(s,h)

[
Q̃∗

h(s, a)
]
= V ∗

h (s). (B.42)

as desired.

2) Now, we recall the definition of Γk
h(s) in (3.14) and focus on the other case when

π∗(s, h) /∈ Γk
h(s), which means

〈
Φ0

(
s,ϕπ∗(s,h)(s)

)
, ϕ̃
(
s, a0 (s)

)〉
∥∥∥ϕ (s, a0 (s))∥∥∥

2

τh(s)

+

〈
γk
h,s,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
+ β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
> τ. (B.43)

Let π0(s, h) be the policy that always selects a0(s) for all (s, h) ∈ S × [H]. Now,

we observe that π0(s, h) ∈ Γk
h(s). Recall that ϕ̃

(
s, a0 (s)

)
=

ϕ(s,a0(s))∥∥∥ϕ(s,a0(s))∥∥∥
2

and note that

Φ0

(
s,ϕ

(
s, a0 (s)

))
= ϕ

(
s, a0 (s)

)
and Φ⊥

0

(
s,ϕ(s, a0(s))

)
= 0. Thus
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〈
Φ0

(
s,ϕπ0(s,h)(s)

)
, ϕ̃
(
s, a0 (s)

)〉
∥∥∥ϕ (s, a0 (s))∥∥∥

2

τh(s) +

〈
γk
h,s,Φ

⊥
0

(
s,ϕπ0(s,h)(s)

)〉
+ β

∥∥∥∥Φ⊥
0

(
s,ϕπ0(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1

=

〈
ϕ
(
s, a0 (s)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) +
〈
γk
h,s,Φ

⊥
0

(
s,ϕ(s, a0(s))

)〉
+ β

∥∥∥Φ⊥
0

(
s,ϕ(s, a0(s))

)∥∥∥(
Ak

h,s

)−1

= τh(s) < τ, (B.44)

which implies that π0(s, h) ∈ Γk
h(s). Now, let π̃k(s, h) := αk

h(s)π∗(s, h) + (1− αk
h(s))π0(s, h),

where

αk
h(s) :=

{
maxα ∈ [0, 1] : απ∗(s, h) + (1− α)π0(s, h) ∈ Γk

h(s)
}
. (B.45)

Let ϕθ(s) := Ea∼θϕ(s, a). We observe that

ϕπ̃k(s,h)(s) = αk
h(s)ϕ

π∗(s,h)(s) + (1− αk
h(s))ϕ

π0(s,h)(s)

= αk
h(s)ϕ

π∗(s,h)(s) + (1− αk
h(s))ϕ

(
s, a0 (s)

)
. (B.46)

Since π̃k(s, h) ∈ Γk
h(s) (see the definition of αk

h(s) in (B.45)), for all (s, k) ∈ S × [K], at

time-step h, we have

Ṽ k
h (s) = min

{
max

θ∈Γk
h(s)

Ea∼θ

[
Q̃k

h(s, a)
]
, H

}
≥ min

{
Ea∼π̃(s,h)

[
Q̃k

h(s, a)
]
, H

}
(B.47)

= min

{
Ea∼π̃k(s,h)

[
⟨w̃k

h,ϕ(s, a)⟩+ κh(s)β
∥∥ϕ(s, a)∥∥(Ak

h)
−1

]
, H

}
(B.48)

≥ min

{
⟨w̃k

h,ϕ
π̃k(s,h)(s)⟩+ κh(s)β

∥∥∥ϕπ̃k(s,h)(s)
∥∥∥
(Ak

h)
−1

, H

}
(Jensen’s Inequality)

= min

{〈
w̃k

h − w̃∗
h,ϕ

π̃k(s,h)(s)
〉
+
〈
w̃∗

h,ϕ
π̃k(s,h)(s)

〉
+κh(s)β

∥∥∥ϕπ̃k(s,h)(s)
∥∥∥
(Ak

h)
−1

, H

}
. (B.49)

Conditioned on event E3 in (B.37) and by the induction assumption, we have

−β
∥∥∥ϕπ̃k(s,h)(s)

∥∥∥
(Ak

h)
−1 ≤

〈
w̃k

h − w̃∗
h,ϕ

π̃k(s,h)(s)
〉
+ Ea∼π̃k(s,h)

[
Es′∼P(.|s,a)

[
Ṽ k
h+1(s

′)− Ṽ ∗
h+1(s

′)
]]

≤
〈
w̃k

h − w̃∗
h,ϕ

π̃k(s,h)(s)
〉
. (B.50)
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By combining (B.49) and (B.50), we conclude that

Ṽ k
h (s) ≥ min

{〈
w̃∗

h,ϕ
π̃k(s,h)(s)

〉
+ (κh(s)− 1)β

∥∥∥ϕπ̃k(s,h)(s)
∥∥∥(

Ak
h

)−1 , H

}

= min

{
αk
h(s)

〈
w̃∗

h,ϕ
π∗(s,h)(s)

〉
+ (1− αk

h(s))
〈
w̃∗

h,ϕ
π0(s,h)(s)

〉
+ (κh(s)− 1)β

∥∥∥ϕπ̃k(s,h)(s)
∥∥∥(

Ak
h

)−1 , H

}

≥ min

αk
h(s)

〈
w̃∗

h,ϕ
π∗(s,h)(s)

〉
+ (κh(s)− 1)β

∥∥∥∥Φ⊥
0

(
s,ϕπ̃k(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
, H


= min

αk
h(s)

〈
w̃∗

h,ϕ
π∗(s,h)(s)

〉
+ (κh(s)− 1)β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1

 , H

 (B.51)

where the third inequality holds because
∥∥∥ϕπ̃k(s,h)(s)

∥∥∥
(Ak

h)
−1 ≥

∥∥∥∥Φ⊥
0

(
s,ϕπ̃k(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1

(see Lemma 3 in [96] for a proof) and (1 − αk
h(s))

〈
w̃∗

h,ϕ
(
s, a0 (s)

)〉
≥ 0 as the reward is

always positive, i.e., rh(s, a) ∈ [0, 1] for all (s, a, h) ∈ S × A × [H]. The second equality

follows from the fact that

Φ⊥
0

(
s,ϕπ̃k(s,h)(s)

)
= αk

h(s)Φ
⊥
0

(
s,ϕπ∗(s,h)(s)

)
+ (1− αk

h(s))Φ
⊥
0

(
s,ϕπ0(s,h)(s)

)
= αk

h(s)Φ
⊥
0

(
s,ϕπ∗(s,h)(s)

)
. (B.52)

Now, we show that αk
h(s) ≥

τ−τh(s)

τ−τh(s)+2β
∥∥∥Φ⊥

0 (s,ϕπ∗(s,h)(s))
∥∥∥
(Ak

h,s)
−1

, which eventually leads to

a proper value for κh(s) > 1 that guarantees for all (s, h, k) ∈ S × [H] × [K] it holds that

Ṽ ∗
h (s) ≤ Ṽ k

h (s) conditioned on Ẽ = E1 ∩ E3. Definitions of αk
h(s) in (B.45) and the estimated

safe set Γk
h(s) in (3.14) imply that for all (s, h, k) ∈ S × [H]× [K], we have

(1− αk
h(s))

〈
ϕ
(
s, a0 (s)

)
, ϕ̃
(
s, a0 (s)

)〉∥∥∥ϕ (s, a0 (s))∥∥∥
2

τh(s) + αk
h(s)


〈
Φ0

(
s,ϕπ∗(s,h)(s)

)
, ϕ̃
(
s, a0 (s)

)〉
∥∥∥ϕ (s, a0 (s))∥∥∥

2

τh(s)

+

〈
γk
h,s,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
+ β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1

 = τ. (B.53)

Let M =

〈
Φ0(s,ϕπ∗(s,h)(s)),ϕ̃(s,a0(s))

〉
∥∥∥ϕ(s,a0(s))∥∥∥

2

τh(s) +

〈
γk
h,s,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
+

β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
. Note that due to (B.43), M > τ , and recall that
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ϕ̃
(
s, a0 (s)

)
=

ϕ(s,a0(s))∥∥∥ϕ(s,a0(s))∥∥∥
2

. Thus, (B.53) gives

0 < αk
h(s) =

τ − τh(s)

M − τh(s)
< 1. (B.54)

In order to lower bound αk
h(s) (upper bound M), we first rewrite M as

M =

〈
Φ0

(
s,ϕπ∗(s,h)(s)

)
, ϕ̃
(
s, a0 (s)

)〉
∥∥∥ϕ (s, a0 (s))∥∥∥

2

τh(s) +

〈
γ∗
h,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉

+

〈
γk
h,s − γ∗

h,Φ
⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
+ β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
, (B.55)

and show that

(a)

〈
Φ0(s,ϕπ∗(s,h)(s)),ϕ̃(s,a0(s))

〉
∥∥∥ϕ(s,a0(s))∥∥∥

2

τh(s) +

〈
γ∗
h,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
≤ τ because

〈
Φ0

(
s,ϕπ∗(s,h)(s)

)
, ϕ̃
(
s, a0 (s)

)〉
∥∥∥ϕ (s, a0 (s))∥∥∥

2

τh(s) +

〈
γ∗
h,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉

=

〈
γ∗
h,

〈
Φ0

(
s,ϕπ∗(s,h)(s)

)
, ϕ̃
(
s, a0 (s)

)〉
ϕ̃
(
s, a0 (s)

)〉

+

〈
γ∗
h,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
=

〈
γ∗
h,Φ0

(
s,ϕπ∗(s,h)(s)

)〉
+

〈
γ∗
h,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
=
〈
γ∗
h,ϕ

π∗(s,h)(s)
〉

≤ τ. (B.56)

(b)

〈
γk
h,s − γ∗

h,Φ
⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
≤ β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
, because conditioned

on E1 in (B.1), we have〈
γk
h,s − γ∗

h,Φ
⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
=

〈
γk
h,s − Φ⊥

0 (s,γ∗
h) ,Φ

⊥
0

(
s,ϕπ∗(s,h)(s)

)〉
≤ β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
. (B.57)
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Now, we combine (B.55), (B.56) and (B.57) to conclude that

M ≤ τ + 2β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
⇒ αk

h(s) ≥
τ − τh(s)

τ − τh(s) + 2β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1

.

(B.58)

This lower bound on αk
h(s) combined with (B.51) gives

Ṽ k
h (s) ≥ min



(
τ − τh(s)

)Ṽ ∗
h (s) + (κh(s)− 1)β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1


τ − τh(s) + 2β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1

, H


(B.59)

Let M1 = β

∥∥∥∥Φ⊥
0

(
s,ϕπ∗(s,h)(s)

)∥∥∥∥(
Ak

h,s

)−1
. Thus, Ṽ k

h (s) ≥ Ṽ ∗
h (s) = min

{
V ∗
h (s), H

}
, if and

only if

(
τ − τh(s)

) (
V ∗
h (s) + (κh(s)− 1)M1

)
≥
(
τ − τh(s) + 2M1

)
V ∗
h (s), (B.60)

which is true if and only if

(
τ − τh(s)

)
(κh(s)− 1) ≥ 2V ∗

h (s) ⇐⇒
(
τ − τh(s)

)
(κh(s)− 1) ≥ 2H ⇐⇒ κh(s) ≥

2H

τ − τh(s)
+ 1, (B.61)

as desired.

B.2.2 Proof of Theorem 6

Conditioned on event E3, for any (a, s, h, k) ∈ A× S × [H]× [K], we have

Q̃k
h(s, a)− Q̃πk

h (s, a) =
〈
w̃k

h,ϕ(s, a)
〉
+ κh(s)β

∥∥ϕ(s, a)∥∥
(Ak

h)
−1 − Q̃πk

h (s, a)

≤ Es′∼P(.|s,a)

[
Ṽ k
h+1(s

′)− Ṽ πk
h+1(s

′)
]
+
(
1 + κh(s)

)
β
∥∥ϕ(s, a)∥∥

(Ak
h)

−1 .

(B.62)
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Let δkh := Ṽ k
h (s

k
h)− Ṽ πk

h (skh) and ζkh+1 := Ea∼πk(s
k
h,h)

[
Es′∼P(.|skh,a)

[
Ṽ k
h+1(s

′)− Ṽ πk
h+1(s

′)
]]
− δkh+1.

We can write

δkh = Ṽ k
h (s

k
h)− Ṽ πk

h (skh)

= min

{
max

θ∈Γk
h(s

k
h)
Ea∼θ

[
Q̃k

h(s
k
h, a)

]
, H

}
− Ea∼πk(s

k
h,h)

[
Q̃πk

h (skh, a)
]

≤ max
θ∈Γk

h(s
k
h)
Ea∼θ

[
Q̃k

h(s
k
h, a)

]
− Ea∼πk(s

k
h,h)

[
Q̃πk

h (skh, a)
]

= Ea∼πk(s
k
h,h)

[
Q̃k

h(s
k
h, a)

]
− Ea∼πk(s

k
h,h)

[
Q̃πk

h (skh, a)
]

≤ Ea∼πk(s
k
h,h)

[
Es′∼P(.|skh,a)

[
Ṽ k
h+1(s

′)− Ṽ πk
h+1(s

′)
]]

+
(
1 + κh(s)

)
βEa∼πk(s

k
h,h)

[∥∥∥ϕ(skh, a)∥∥∥
(Ak

h)
−1

]
(Eqn. (B.62))

= δkh+1 + ζkh+1 +
(
1 + κh(s)

)
βEa∼πk(s

k
h,h)

[∥∥∥ϕ(skh, a)∥∥∥
(Ak

h)
−1

]
, (B.63)

Now, conditioning on event Ẽ defined in Theorem 14, we bound the cumulative regret as

follows:

RK =
K∑
k=1

Ṽ ∗
1 (s

k
1)− Ṽ πk

1 (sk1) ≤
K∑
k=1

δk1 (Lemma 4)

≤
K∑
k=1

H∑
h=1

ζkh +
K∑
k=1

H∑
h=1

(
1 + κh(s)

)
βEa∼πk(s

k
h,h)

[∥∥∥ϕ(skh, a)∥∥∥
(Ak

h)
−1

]

≤
K∑
k=1

H∑
h=1

ζkh + (1 + κ) β
K∑
k=1

H∑
h=1

Ea∼πk(s
k
h,h)

[∥∥∥ϕ(skh, a)∥∥∥
(Ak

h)
−1

]
. (B.64)

We observe that {ζkh} is a martingale difference sequence satisfying |ζkh | ≤ 2H. Thus, thanks

to Azuma-Hoeffding inequality, we have

P

 K∑
k=1

H∑
h=1

ζkh ≤ 2H
√

T log(dT/δ)

 ≥ 1− δ. (B.65)

In order to bound
∑K

k=1

∑H
h=1 Ea∼πk(s

k
h,h)

[∥∥ϕ(skh, a)∥∥(Ak
h)

−1

]
, we define the martingle differ-

ence sequence ιkh := Ea∼πk(s
k
h,h)

[∥∥ϕ(skh, a)∥∥(Ak
h)

−1

]
−
∥∥ϕ(skh, akh)∥∥(Ak

h)
−1 , and note that for any
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(h, k) ∈ [H] × [k], we have |ιkh| ≤ 2/
√
λ. Thus, thanks to Azuma-Hoeffding inequality, we

have

P

 K∑
k=1

H∑
h=1

ιkh ≤ 2
√

T log(dT/δ)/λ

 ≥ 1− δ. (B.66)

Now, we are ready to bound
∑K

k=1

∑H
h=1 Ea∼πk(s

k
h,h)

[∥∥ϕ(skh, a)∥∥(Ak
h)

−1

]
as follows:

K∑
k=1

H∑
h=1

Ea∼πk(s
k
h,h)

[∥∥∥ϕ(skh, a)∥∥∥
(Ak

h)
−1

]
≤ 2
√

T log(dT/δ)/λ+
K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥
(Ak

h)
−1 .

(B.67)

In order to bound the second term, we have

K∑
k=1

∥∥∥ϕ(skh, akh)∥∥∥
(Ak

h)
−1 ≤

√√√√K
K∑
k=1

∥∥ϕ(skh, akh)∥∥2(Ak
h)

−1 (Cauchy-Schwartz inequality)

≤

√√√√2K log

(
det
(
AK

h

)
det
(
A1

h

) ) (B.68)

≤

√
2dK log

(
1 +

K

dλ

)
. (B.69)

In inequality (B.68), we used the standard argument in regret analysis of linear bandits [2]

(Lemma 11) as follows:

n∑
t=1

min
(
∥yt∥2V−1

t
, 1
)
≤ 2 log

detVn+1

detV1

where Vn = V1 +
n−1∑
t=1

yty
⊤
t . (B.70)

In inequality (B.69), we used Assumption 7 and the fact that det(A) =
∏d

i=1 λi(A) ≤

( trace(A)/d)d.

Combining (B.64), (B.65), (B.66), and (B.69), we have with probability at least 1− 3δ

RK ≤ 2H
√
T log(dT/δ) + 2(1 + κ)β

√
2dHT log

(
1 +

Td

δ

)
/λ. (B.71)
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B.3 Finite Star Convex Sets and Tractability of the Experiments

In this section, we show that if for all s ∈ S, the sets D(s) = {ϕ(s, a) : a ∈ A} are star

convex and finite around ϕ
(
s, a0 (s)

)
(see Definition 1), then the optimization problem

in Line 10 of SLUCB-QVI can be solved efficiently. Thanks to Definition 1, for each

s ∈ S, there exist finite number N of vectors ϕ
(
s, ai (s)

)
such that we can write D(skh)

as: D(s) := ∪N
i=1

[
ϕ
(
s, a0 (s)

)
,ϕ
(
s, ai (s)

)]
, where

[
ϕ
(
s, a0 (s)

)
,ϕ
(
s, ai (s)

)]
is the line

connecting ϕ
(
s, a0 (s)

)
to ϕ

(
s, ai (s)

)
. Since ϕ

(
s, a0 (s)

)
∈ Dk

h(s) :=
{
ϕ(s, a) : a ∈ Ak

h(s)
}
,

the set Dk
h(s) is also a finite star convex set around ϕ

(
s, a0 (s)

)
, and can be written as

Dk
h(s) := ∪Ni=1

[
ϕ
(
s, a0 (s)

)
,ϕ
(
s, aki,h (s)

)]
, where ϕ

(
s, aki,h (s)

)
= αs,k

i,hϕ
(
s, ai (s)

)
+ (1 −

αs,k
i,h)ϕ

(
s, a0 (s)

)
and αs,k

i,h = max
{
α ∈ [0, 1] : αϕ

(
s, ai (s)

)
+ (1− α)ϕ

(
s, a0 (s)

)
∈ Dk

h(s)
}
,

which can be solved by doing line search. The optimization problem at Line 10 of Algorithm

3 is equivalent to

max
x∈Dk

h(s
k
h)

〈
wk

h,x
〉
+ κh(s

k
h)β∥x∥(Ak

h)
−1 , (B.72)

which can be executed by optimizing over each line

[
ϕ
(
skh, a0

(
skh
))

,ϕ
(
skh, a

k
i,h

(
skh
))]

for all

i ∈ [N ]. Note that
〈
wk

h,x
〉
+ κh(s

k
h)β∥x∥(Ak

h)
−1 is a convex function in x. Therefore, its max-

imum over the line

[
ϕ
(
skh, a0

(
skh
))

,ϕ
(
skh, a

k
i,h

(
skh
))]

is achieved at either ϕ
(
skh, a0

(
skh
))

or ϕ
(
skh, a

k
i,h

(
skh
))

, which makes the optimization problem at line 10 of Algorithm 3 easy

and tractable.
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APPENDIX C

Proofs for Chapter 4

C.1 Analysis of Safe-DPVI

In this section, we first prove Lemma 5 and then prove the three points stated in Theorem 7.

C.1.1 Proof of Lemma 5

First, we summarize Lemma A.1 in [65] and Lemma 4.2 in [36] in Lemma 13.

Lemma 13. Let π and π′ be two arbitrary policies and let Q be any given Q-function such

that Vh(s) = Ea∼πh(.|s)
[
Qh(s, a)

]
for all (s, h) ∈ S × [H]. Then

V1(s)− V π′

1 (s) =
H∑

h=1

E

Ea∼πh(.|sh)
[
Qh(sh, a)

]
− Ea∼π′

h(.|sh)
[
Qh(sh, a)

] ∣∣∣∣∣s1 = s, π′


+

H∑
h=1

E

Qh(sh, ah)− [BhVh+1](sh, ah)

∣∣∣∣∣s1 = s, π′

 . (C.1)

Now, recall the definition of suboptimality gap ∆(π; s) in (4.5). We have

∆(π̂; s) = V ∗
1 (s)− V̂1(s)︸ ︷︷ ︸

Term I

+V̂1(s)− V π̂
1 (s). (C.2)
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Let π = π′ = π̂. Thus, applying Lemma 13, we have

V̂1(s)− V π̂
1 (s) = min

{
Ea∼π̂1(.|s)

[
Q̂1(s, a)

]
, H

}
− V π̂

1 (s)

≤ Ea∼π̂1(.|s)

[
Q̂1(s, a)

]
− V π̂

1 (s)

=
H∑

h=1

E

Q̂h(sh, ah)− [BhV̄h+1](sh, ah)

∣∣∣∣∣s1 = s, π̂


≤

H∑
h=1

E

Q̂h(sh, ah)− [BhV̂h+1](sh, ah)

∣∣∣∣∣s1 = s, π̂


=

H∑
h=1

E

−ιh(sh, ah)
∣∣∣∣∣s1 = s, π̂

 = Term II,

which concludes Lemma 5.

C.1.2 Proof of Lemma 6

First note that

[B̂hV̂h+1](s, a)− [BhV̂h+1](s, a) = [B̂hV̂h+1](s, a)−Rh(s, a)− [PhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−Qπ
h(s, a) +Qπ

h(s, a)−Rh(s, a)− [PhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−Qπ
h(s, a) +Rh(s, a) + [PhV

π
h+1](s, a)−Rh(s, a)

− [PhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−Qπ
h(s, a)−

[
Ph

(
V̂h+1 − V π

h+1

)]
(s, a).

Thus, if B′ is a δ-Bellman uncertainty quantifier, then for any policy π and (s, a, h) ∈

S ×A× [H], with probability at least 1− δ, it holds that∣∣∣∣∣[B̂hV̂h+1](s, a)−Qπ
h(s, a)−

[
Ph

(
V̂h+1 − V π

h+1

)]
(s, a)

∣∣∣∣∣ ≤ B′
h(s, a). (C.3)

Now, we start the formal proof of the lemma. We prove this lemma by induction. First, we

prove the base case at time-step H + 1. The statement holds for H + 1 because FH+1(s) =

0 = V ∗
H+1(s) = V̂H+1(s) = 0. Now, suppose the statement holds for time-step h + 1. We

prove it also holds for time-step h. We consider the following two cases:
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1) If π∗
h(.|s) ∈ Γ̂h(s), we have

V̂h(s) + Fh(s) = min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
+ Fh(s)

≥ min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗]

≥ min

{
Ea∼π∗

h(.|s)

[
Q̂h(s, a)

]
, H

}
+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗]

≥ min

Ea∼π∗
h(.|s)

[
Q∗

h(s, a) +

[
Ph

(
V̂h+1 − V ∗

h+1

)]
(s, a)− 2B′

h(s, a)

]
, H


+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗] (Eqn. (C.3))

≥ min
{
Ea∼π∗

h(.|s)
[
Q∗

h(s, a) + αhB̄h(s, a)− 2Bh(s, a)
]
, H
}

(Induction assumption)

≥ min
{
Ea∼π∗

h(.|s)
[
Q∗

h(s, a) + (αh − 2)B̄h(s, a)
]
, H
}

= min
{
V ∗
h (s), H

}
(⋆)

= V ∗
h (s).

⋆ is true because αh ≥ 2.

2) Now, we focus on the other case when π∗
h(.|s) /∈ Γ̂h(s), which means

Ea∼π∗
h(.|s)

[
uc
h(s, a)

]
> τ. (C.4)

Let π̃h(.|s) := γh(s)π
∗
h(.|s) + (1− γh(s))π

0
h(.|s), where

γh(s) :=
{
max γ ∈ [0, 1] : γπ∗

h(.|s) + (1− γ)π0
h(.|s) ∈ Γ̂h(s)

}
. (C.5)

Now, we show that γh(s) ≥ τ−τh(s)

τ−τh(s)+2Ea∼π∗
h
(.|s)[B̄h(s,a)]

, which eventually leads to a proper

value for αh that guarantees for all s ∈ S, with probability at least 1 − 2δ, it holds that

V̂h(s) + Fh(s) ≥ V ∗
h (s). Definitions of γh(s) in (C.5) and the estimated safe set Γ̂h(s) in (4.6)
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imply that

Ea∼π̃h(.|s)
[
uc
h(s, a)

]
= γh(s)Ea∼π∗

h(.|s)
[
uc
h(s, a)

]
+ (1− γh(s))Ea∼π0

h(.|s)
[
uc
h(s, a)

]
= γh(s)Ea∼π∗

h(.|s)
[
uc
h(s, a)

]
+ (1− γh(s))τh(s)

≤ τ. (C.6)

Thus

0 < γh(s) =
τ − τh(s)

Ea∼π∗
h(.|s)

[
uc
h(s, a)

]
− τh(s)

< 1. (C.7)

Recall the definition of Γsafe
h (s) in (4.2) and note that π∗

h(.|s) ∈ Γsafe
h (s). Due to the

definition δ-safety uncertainty quantifier B, for all (s, a, h) ∈ S ×A× [H], with probability

at least 1− δ, it holds that

Ea∼π∗
h(.|s)

[
uc
h(s, a)

]
≤ Ea∼π∗

h(.|s)

[
Ĉh(s, a) +Bh(s, a)

]
≤ Ea∼π∗

h(.|s)
[
Ch(s, a) + 2Bh(s, a)

]
≤ τ + 2Ea∼π∗

h(.|s)
[
Bh(s, a)

]
(π∗

h(.|s) ∈ Γsafe
h (s))

≤ τ + 2Ea∼π∗
h(.|s)

[
B̄h(s, a)

]
. (C.8)

Combining (C.7) and (C.8), we conclude that

γh(s) ≥
τ − τh(s)

τ − τh(s) + 2Ea∼π∗
h(.|s)

[
B̄h(s, a)

] . (C.9)

130



We have

V̂h(s) + Fh(s) = min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
+ Fh(s)

= min

{
Ea∼π̂h(.|s)

[{
[B̂hV̂h+1](s, a)−B′

h(s, a)
}+
]
, H

}
+ Fh(s)

≥ min

{
Ea∼π̃h(.|s)

[{
[B̂hV̂h+1](s, a)−B′

h(s, a)
}+
]
, H

}
+ Fh(s)

≥ min

{
Ea∼π̃h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]
, H

}
+ Fh(s)

= min

{
γh(s)Ea∼π∗

h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]

+(1− γh(s))Ea∼π0
h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]
, H

}
+ Fh(s)

≥ min

{
γh(s)

(
Ea∼π∗

h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]
+ Fh(s)

)

+(1− γh(s))

(
Ea∼π0

h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]
+ Fh(s)

)
, H

}

≥ min

{
γh(s)

(
Ea∼π∗

h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]
+ Fh(s)

)
, H

}
(⋆)

≥ min
{
γh(s)Ea∼π∗

h(.|s)
[
Q∗

h(s, a) + (αh − 2)B̄h(s, a)
]
, H
}
. (⋆⋆)

⋆ is true because (1− γh(s)) ≥ 0 and

Ea∼π0
h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]
+ Fh(s)

≥ Ea∼π0
h(.|s)

[
Q0

h(s, a) +

[
Ph

(
V̂h+1 − V 0

h+1

)]
(s, a)− 2B′

h(s, a)

]
+ Fh(s) (Equation (C.3))

≥ Ea∼π0
h(.|s)

[
Q0

h(s, a) +

[
Ph

(
V̂h+1 − V 0

h+1

)]
(s, a)− 2B′

h(s, a)

]
+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π0

]
(Definition of Fh(s) in Lemma 6)

≥ Ea∼π0
h(.|s)

[
Q0

h(s, a) + αhB̄h(s, a)− 2B′
h(s, a)

]
(Induction assumption)

≥ Ea∼π0
h(.|s)

[
Q0

h(s, a) + (αh − 2)B̄h(s, a)
]

≥ Ea∼π0
h(.|s)

[
Q0

h(s, a)
]

(αh ≥ 2)

≥ 0.
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⋆⋆ is true because

Ea∼π∗
h(.|s)

[
[B̂hV̂h+1](s, a)−B′

h(s, a)
]
+ Fh(s)

≥ Ea∼π∗
h(.|s)

[
Q∗

h(s, a) +

[
Ph

(
V̂h+1 − V ∗

h+1

)]
(s, a)− 2B′

h(s, a)

]
+ Fh(s) (Equation (C.3))

≥ Ea∼π∗
h(.|s)

[
Q∗

h(s, a) +

[
Ph

(
V̂h+1 − V ∗

h+1

)]
(s, a)− 2B′

h(s, a)

]

+
H∑

h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗] (Definition of Fh(s) in Lemma 6)

≥ Ea∼π∗
h(.|s)

[
Q∗

h(s, a) + αhB̄h(s, a)− 2B′
h(s, a)

]
(Induction assumption)

≥ Ea∼π∗
h(.|s)

[
Q∗

h(s, a) + (αh − 2)B̄h(s, a)
]
.

Now, we continue from ⋆⋆ and observe that V̂h(s) + Fh(s) ≥ V ∗
h (s) if and only if

γh(s)Ea∼π∗
h(.|s)

[
Q∗

h(s, a) + (αh − 2)B̄h(s, a)
]
≥ V ∗

h (s)

(C.9)⇐⇒
(
τ − τh(s)

)
V ∗
h (s) +

(
τ − τh(s)

)
Ea∼π∗

h(.|s)
[
(αh − 2)B̄h(s, a)

]
τ − τh(s) + 2Ea∼π∗

h(.|s)
[
B̄h(s, a)

] ≥ V ∗
h (s)

⇐⇒ (αh − 2)
(
τ − τh(s)

)
Ea∼π∗

h(.|s)
[
B̄h(s, a)

]
≥ 2Ea∼π∗

h(.|s)
[
B̄h(s, a)

]
V ∗
h (s)

H≥V ∗
h (s)

⇐⇒ (αh − 2)
(
τ − τh(s)

)
Ea∼π∗

h(.|s)
[
B̄h(s, a)

]
≥ 2Ea∼π∗

h(.|s)
[
B̄h(s, a)

]
H

⇐⇒ αh ≥ 2 +
2H

τ − τh(s)

as desired.

C.1.3 Proof of Theorem 7

Proof of point 1 of Theorem 7 Recall the definition of Γ̂h(s) in (4.6). Since B is a

δ-safety uncertainty quantifier, thus for all (s, a, h) ∈ S ×A× [H], uc
h(s, a) is an upper bound

on Ch(s, a) with probability at least 1− δ. Thus,
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1. π0 ∈ Π̂ or equivalently π0
h(.|s) ∈ Γ̂h(s), for all (s, h) ∈ S × [H] because

Ea∼π0
h(.|s)

[
uc
h(s, a)

]
= Ea∼π0

h(.|s)

[
Ĉh(s, a) +Bh(s, a)

]
≤ Ea∼π0

h(.|s)
[
Ch(s, a) + 2Bh(s, a)

]
= τh(s) + 2Ea∼π0

h(.|s)
[
Bh(s, a)

]
≤ τ. (C.10)

2. π̂h(.|s) ∈
{
θ(.|s) ∈ ∆A : Ea∼θ(.|s)

[
uc
h(s, a)

]
≤ τ

}
, which implies that with probability

at least 1− δ, it holds that

Ea∼π̂h(.|s)
[
Ch(s, a)

]
≤ Ea∼π̂h(.|s)

[
uc
h(s, a)

]
≤ τ, (C.11)

This concludes point 1 of Theorem 7.

Proof of point 2 of Theorem 7 Note that if [B̂hV̂h+1](s, a)−B′
h(s, a) < 0, then Q̂h(s, a) =

0 and therefore −ιh(s, a) = −[BhV̂h+1](s, a) ≤ 0. Now, suppose [B̂hV̂h+1](s, a)−B′
h(s, a) ≥ 0.

Since B′ is a δ-Bellman uncertainty quantifier, we have

−ιh(s, a) = Q̂h(s, a)− [BhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−B′
h(s, a)− [BhV̂h+1](s, a)

≤ 0.

This concludes that for all (s, a, h) ∈ S ×A× [H], with probability at least 1− δ, it holds

that −ιh(s, a) ≤ 0, and therefore

Term II =
H∑

h=1

E

−ιh(sh, ah)
∣∣∣∣∣s1 = s, π̂

 ≤ 0. (C.12)

Now, we are ready to use Lemma 6 and (C.12) to complete the proof of point 2 as follows
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V ∗
h (s)− V̂h(s) ≤ F1(s) = max


H∑

h=1

αhE
[
B̄h(sh, ah)|s1 = s, π∗] , H∑

h=1

αhE
[
B̄h(sh, ah)|s1 = s, π0

] ,

(C.13)

as desired.

C.2 Analysis of Safe-DPVI: Linear MDP

In this section, we prove the technical statements in Section 4.5.

We make use of Theorem 7, which is stated for general MDPs, to prove Theorem 8 in

two steps: 1) We first state Lemma 14, in which we specify B and B′ such that they are

δ-safety uncertainty quantifier and δ-Bellman uncertainty quantifier as in Definition 2 for the

corresponding to the linear MDP in Definition 3; 2) Next, we lower bound λmin(Λh) for each

h ∈ [H] in Lemma 15, which is followed by a high probability upper bound on B̄h(s, a) for

all (s, a, h) ∈ S ×A× [H].

Lemma 14 (Theorem 2 in [2] and Lemma 5.2 in [65]). Let the underlying MDP of Safe-

DPVI be a linear MDP as in Definition 3. Under Assumptions 10 and 11, if we set Bh(s, a) =

β
∥∥ϕ(s, a)∥∥

Λ−1
h

and B′
h(s, a) = β′

∥∥ϕ(s, a)∥∥
Λ−1

h

, where β = σ

√
d log

(
2+ 2K

λ

δ

)
+
√
λd and

β′ = cdH
√

log(dK
δ
) for an absolute constant c > 0, then B and B′ are δ-safety uncertainty

quantifier and δ-Bellman uncertainty quantifier as in Definition 2.

Lemma 15. Let δ ∈ (0, 1) and Assumption 12 holds. If K ≥ 8
c̄
log(dH

δ
), then

P
(
λmin(Λh) ≥ λ+ c̄K

2
, ∀h ∈ [H]

)
≥ 1− δ.

Proof. In order to bound the minimum eigenvalue of the Gram matrix Λh, we use the Matrix

Chernoff Inequality [125, Thm. 5.1.1].

Theorem 15 (Matrix Chernoff Inequality, [125]). Consider a finite sequence {Xk} of inde-

pendent, random, symmetric matrices in Rd×d. Assume that λmin(Xk) ≥ 0 and λmax(Xk) ≤ L

for each index k. Introduce the random matrix Y =
∑

k Xk. Let µmin denote the minimum
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eigenvalue of the expectation E[Y],

µmin = λmin

(
E[Y]

)
= λmin

∑
k

E[Xk]

 .

Then, for any ϵ ∈ (0, 1), it holds,

P
(
λmin(Y) ≤ ϵµmin

)
≤ d · exp

(
−(1− ϵ)2

µmin

2L

)
.

Now, let Xk = ϕ(skh, a
k
h)ϕ(s

k
h, a

k
h)

⊤, such that each Xk is a symmetric matrix with

λmin(Xk) ≥ 0 and λmax(Xk) ≤ 1 (see Assumption 11). In this notation, Λh = λI +
∑K

k=1 Xk.

In order to apply Theorem 15, we compute

µmin := λmin

 K∑
k=1

E[Xk]

 = λmin

 K∑
k=1

E[ϕ(skh, akh)ϕ(skh, akh)⊤]

 = λmin (KΣh) ≥ c̄K,

where the last inequity follows from Assumption 12. Thus, the theorem implies the following

for any ϵ ∈ [0, 1):

P

λmin(
K∑
k=1

Xk) ≤ ϵc̄K

 ≤ d · exp
(
−(1− ϵ)2

c̄K

2

)
. (C.14)

To complete the proof of the lemma, simply choose ϵ = 0.5 (say) and K ≥ 8
c̄
log(dH

δ
) in

(C.14). This gives P
(
λmin(Λh) ≥ λ+ c̄K

2
, ∀h ∈ [H]

)
≥ 1− δ, as desired.

C.2.1 Proof of Theorem 8

As a direct conclusion of Lemma 15, we upper bound B̄h(s, a) for all (s, a, h) ∈ S ×A× [H].

In particular, Assumption 11 and Lemma 15 imply that for all (s, a, h) ∈ S ×A× [H] with

probability at least 1− δ, it holds that

∥∥ϕ(s, a)∥∥
Λ−1

h

≤
∥∥ϕ(s, a)∥∥

2

√
1

λmin (Λh)
≤
√

2

2λ+ c̄K
.

Now that we have established B and B′ and obtained an upper bound on
∥∥ϕ(s, a)∥∥

Λ−1
h

,

we are able to exploit the results stated in Theorem 7 to conclude that if K ≥
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8β2

c̄(τ−max(s,h)∈S×[H] τh(s))
2 , which implies that

Ea∼π0
h(.|s)

[
Bh(s, a)

]
= Ea∼π0

h(.|s)

[
β
∥∥ϕ(s, a)∥∥

Λ−1
h

)
]

≤ β

√
2

2λ+ c̄K

≤
τ −max(s,h)∈S×[H] τh(s)

2

≤ τ − τh(s)

2
∀(s, h) ∈ S × [H],

then

P

(
∆(π̂; s) ≤

√
2β̄
∑H

h=1 αh√
2λ+ c̄K

, ∀s ∈ S and π̂ ∈ Πsafe

)
≥ 1− 3δ. (C.15)

C.3 Unknown τh(s)

In this section, we relax Assumption 9, and instead assume that we only have the knowledge

of a safe policy π0, and remove the assumption on the knowledge about the costs τh(s).

In this case, we compute a conservative estimation of the gap τ − τh(s) in an adaptive

manner. We show that the agent needs N samples of each tuple (s, a, Ch(s, a0(s)) + ϵh)

in the dataset that are collected by executing policy π0 in order to be able to construct

this conservative estimators of the gap τ − τh(s), and thereafter rely on these conservative

estimates in the computation of estimated safe set of policies (discussed shortly). We show

that if 16 log(K)
(τ−τh(s))2

≤ N ≤ 64 log(K)
(τ−τh(s))2

, then the agent is able to construct these conservative

estimates.

Let k be the number of times policy π0 has been executed in the dataset, and τ̂h(s) be

the empirical mean estimator of τh(s). Then, for any δ ∈ (0, 1), we have

P
(
τh(s) ≤ τ̂h(s) +

√
2 log(1/δ)/k

)
≥ 1− δ. (C.16)

If we let δ = 1/K2, then we have

P
(∣∣τ̂h(s)− τh(s)

∣∣ ≤ 2
√

log(K)/k, ∀k ∈ [K]
)
≥ 1− 2/K. (C.17)
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We start from the first sample of (s, a, Ch(s, a) + ϵh) and continue to update the empirical

mean τ̂h(s). Let N be the first time that τ̂h(s) + 6
√
log(K)/N ≤ τ . Thus, we have

τh(s) + 4
√

log(K)/N ≤ τ ⇒ 16 log(K)

(τ − τh(s))2
≤ N. (C.18)

Note that in this case 4
√

log(K)/N is a conservative estimation for τ − τh(s). Thus, we

have

τh(s) + 4
√

log(K)/N ≤ τ ⇒ 16 log(K)

(τ − τh(s))2
≤ N. (C.19)

Now we show that it will not take much more number of this tuple than 16 log(K)
(τ−τh(s))2

that

this first time happens. Conversely, for any N ≥ 64 log(K)
(τ−τh(s))2

, we observe that

τ̂h(s) + 6
√
log(K)/N ≤ τh(s) + 8

√
log(K)/N ≤ τ. (C.20)

Therefore, we conclude that

16 log(K)

(τ − τh(s))2
≤ N ≤ 64 log(K)

(τ − τh(s))2
, (C.21)

and 4
√
log(K)/N is a conservative estimator for τ − τh(s).
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APPENDIX D

Proofs for Chapter 5

D.1 Proofs of Section 5.3

To prove Theorem 9, we will use the high probability event E2 defined in Lemma 17 to prove

the UCB nature of Lifelong-LSVI in Lemma 18, which is the key to controlling the regret.

We first state the following lemma that will be used in the proof of Lemma 17.

Lemma 16. Under the setting of Theorem 9, let cβ be the constant in the definition of β.

Then, for a fixed w, there is an absolute constant c0 independent of cβ, such that for all

(h, k) ∈ [H]× [K], with probability at least 1− δ it holds that

∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h.
(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)

−1

≤ c0H
(
d+
√
d′
)√

log((cβ + 1)dd′T/δ),

where c0 and cβ are two independent absolute constants.

Proof. We note that ∥ηh∥2 ≤
√
d′ (Assumption 13),

∥∥θkh(w)∥∥2 ≤ H
√
d (Lemma 32), and∥∥∥∥(Λk

h

)−1
∥∥∥∥ ≤ 1

λ
. Thus, Lemmas 33 and 35 together imply that for all (h, k) ∈ [H]× [K], with

probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)

−1

≤ 4H2

d

2
log

(
k + λ

λ

)
+ d′ log(1 + 4d′/ϵ) + d log(1 + 4Hd/ϵ) + d2 log

(
1 + 8B2

√
d

λϵ2

)
+ log

(
1

δ

)
+

8k2ϵ2

λ
.
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If we let ϵ = dH
k

and β = cβ(d+
√
d′)H

√
log(dT/δ), then, there exists an absolute constant

C > 0 that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)

−1

≤ C(d′ + d2)H2 log
(
(cβ + 1)dd′T/δ

)
.

Lemma 17. Let the setting of Theorem 9 holds. The event

E2(w) :=
{∥∥∥θkh(w)− θ̃kh(w)∥∥∥

Λk
h

≤ β, ∀(h, k) ∈ [H]× [K]

}
. (D.1)

holds with probability at least 1− δ for a fixed w.

Proof.

θkh(w)− θ̃
k
h(w) = θ

k
h(w)−

(
Λk

h

)−1
k−1∑
τ=1

ϕτ
hV

k
h+1(s

τ
h+1, w)

=
(
Λk

h

)−1

Λk
hθ

k
h(w)−

k−1∑
τ=1

ϕτ
hV

k
h+1(s

τ
h+1, w)


= λ

(
Λk

h

)−1
θkh(w)︸ ︷︷ ︸

q1

−
(
Λk

h

)−1

k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)

︸ ︷︷ ︸
q2

.

Thus, in order to upper bound
∥∥∥θkh(w)− θ̃kh(w)∥∥∥

Λk
h

, we bound ∥q1∥Λk
h
and ∥q2∥Λk

h
sepa-

rately.

From Lemma 32, we have

∥q1∥Λk
h
= λ

∥∥∥θkh(w)∥∥∥
(Λk

h)
−1 ≤

√
λ
∥∥∥θkh(w)∥∥∥

2
≤ H
√
λd. (D.2)

Thanks to Lemma 16, for all (w, h, k), with probability at least 1− δ, it holds that

∥q2∥Λk
h
≤

∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)

−1

≤ c0H
(
d+
√
d′
)√

log((cβ + 1)dd′T/δ), (D.3)
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where c0 and cβ are two independent absolute constants.

Combining (D.2) and (D.3), for all (w, h, k), with probability at least 1− δ, it holds that

∥∥∥θkh(w)− θ̃kh(w)∥∥∥
Λk

h

≤ cH
(
d+
√
d′
)√

λ log(dd′T/δ)

for some absolute constant c > 0.

Lemma 18. Let W̃ = {w1, w2, . . . , wK}. Under the setting of Theorem 9 and conditioned

on events {E2(w)}w∈W̃ defined in (D.1), and with Qk
h computed as in (5.6), it holds that

Qk
h(s, a, w) ≥ Q∗

h(s, a, w) for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×

W̃ × [H]× [K], it holds that∣∣∣∣rh(s, a, w) + 〈θ̃kh(w),ϕ(s, a)〉−Qπ
h(s, a, w)− Ph

[
V k
h+1(., w)− V π

h+1(., w)
]
(s, a)

∣∣∣∣
=

∣∣∣∣rh(s, a, w) + 〈θ̃kh(w),ϕ(s, a)〉− rh(s, a, w)− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣
=

∣∣∣∣〈θ̃kh(w),ϕ(s, a)〉− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣
=

∣∣∣∣〈θ̃kh(w)− θkh(w),ϕ(s, a)〉∣∣∣∣
≤
∥∥∥θ̃kh(w)− θkh(w)∥∥∥

Λk
h

∥∥ϕ(s, a)∥∥
(Λk

h)
−1

≤ β
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 , (Lemma 17)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because Qk
H+1(., ., .) =

Q∗
H+1(., ., .) = 0 and thus conditioned on events {E2(w)}w∈W̃ , defined in (D.1), for all

(s, a, w, k) ∈ S ×A× W̃ × [K], we have

∣∣∣∣rH(s, a, w) + 〈θ̃kH(w),ϕ(s, a)〉−Q∗
H(s, a, w)

∣∣∣∣ ≤ β
∥∥ϕ(s, a)∥∥

(Λk
H)

−1 .
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Therefore, conditioned on events {E2(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A×W̃ × [K], we have

Q∗
H(s, a, w) ≤ rH(s, a, w) +

〈
θ̃
k

H(w),ϕ(s, a)
〉
+ β

∥∥ϕ(s, a)∥∥
(Λk

H)−1 = Qk
H(s, a, w).

Now, suppose the statement holds at time-step h+1 and consider time-step h. Conditioned

on events {E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤ rh(s, a, w) +

〈
θ̃
k

h(w),ϕ(s, a)

〉
−Q∗

h(s, a, w)− Ph

[
V k
h+1(., w)− V ∗

h+1(., w)
]
(s, a) + β

∥∥ϕ(s, a)∥∥(Λk
h)

−1

≤ rh(s, a, w) +

〈
θ̃
k

h(w),ϕ(s, a)

〉
−Q∗

h(s, a, w) + β
∥∥ϕ(s, a)∥∥(Λk

h)
−1 . (Induction assumption)

Therefore, conditioned on events {E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],

we have

Q∗
h(s, a, w) ≤ rh(s, a, w) +

〈
θ̃
k

h(w),ϕ(s, a)
〉
+ β

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 = Qk

h(s, a, w).

This completes the proof.

D.1.1 Proof of Theorem 9

Let δkh = V k
h (s

k
h, w

k)− V πk

h (skh, w
k) and ξkh+1 = E

[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events

{E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

Qk
h(s, a, w)−Qπk

h (s, a, w) = rh(s, a, w) +
〈
θkh(w),ϕ(s, a)

〉
−Qπk

h (s, a, w) + β
∥∥ϕ(s, a)∥∥

(Λk
h)

−1

≤ Ph

[
V k
h+1(., w)− V πk

h+1(., w)
]
(s, a) + 2β

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 . (D.4)

Note that δkh ≤ Qk
h(s

k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (D.4), Lemma 17, and

a union bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least

1− δ, it holds that

δkh ≤ ξkh+1 + δkh+1 + 2β
∥∥∥ϕ(skh, akh)∥∥∥

(Λk
h)

−1
.
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Now, we complete the regret analysis

RK =
K∑
k=1

V ∗
1 (s

k
1, w

k)− V πk

1 (sk1, w
k)

≤
K∑
k=1

V k
1 (s

k
1, w

k)− V πk

1 (sk1, w
k) (Lemma 18)

=
K∑
k=1

δk1

≤
K∑
k=1

H∑
h=1

ξkh + 2β
K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥
(Λk

h)
−1

≤ 2H
√

T log(dT/δ) + 2Hβ
√
2dK log(1 +K/λ)

≤ Õ
(√

λ(d3 + dd′)H3T
)
.

The third inequality is true because of the following: we observe that {ξkh} is a martingale

difference sequence satisfying |ξkh| ≤ 2H. Thus, thanks to Azuma-Hoeffding inequality, we

have

P

 K∑
k=1

H∑
h=1

ξkh ≤ 2H
√

T log(dT/δ)

 ≥ 1− δ. (D.5)

In order to bound
∑K

k=1

∑H
h=1

∥∥∥ϕk
h

∥∥∥
(Λk

h)
−1 , note that for any h ∈ [H], we have

K∑
k=1

∥∥∥ϕk
h

∥∥∥
(Λk

h)
−1 ≤

√√√√K
K∑
k=1

∥∥∥ϕk
h

∥∥∥2
(Λk

h)
−1 (Cauchy-Schwartz inequality)

≤

√√√√√√2K log

det
(
ΛK

h

)
det
(
Λ1

h

)
 (D.6)

≤

√
2dK log

(
1 +

K

dλ

)
. (D.7)

In inequality (D.6), we used the standard argument in regret analysis of linear bandits [2,

Lemma 11] as follows:

n∑
t=1

min
(
∥yt∥2V−1

t
, 1
)
≤ 2 log

detVn+1

detV1

where Vn = V1 +
n−1∑
t=1

yty
⊤
t . (D.8)
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In inequality (D.7), we used Assumption 13 and the fact that det(A) =
∏d

i=1 λi(A) ≤

(trace(A)/d)d.

D.2 Proofs of Section 5.4

We start by introducing the high probability event E1, which is the foundation of our analysis

in the following lemma.

Lemma 19. Follow the setting of Theorem 10. The event

E1(w) :=
{∥∥∥θkh(w)− θ̃kh(w)∥∥∥

Λk
h

≤ β, ∀(h, k) ∈ [H]× [K]

}
. (D.9)

holds with probability at least 1− δ for a fixed w.

D.2.1 Proof of Lemma 19

First, we state the following lemma that will be used in the proof of Lemma 19.

Lemma 20. Under the setting of Lemma 19, let cβ be a constant in the definition of β.

Then, for a fixed w, there is an absolute constant c0 independent of cβ, such that for all

(h, k) ∈ [H]× [K], with probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h.
(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)

−1

≤ c0H
(
d+
√
md
)√

log((cβ + 1)mdT/δ),

where c0 and cβ are two independent absolute constants.

Proof. We note that

∥∥∥∥ηh + ξ̂
k

h

∥∥∥∥
2

≤ (1 +H)
√
md and

∥∥∥∥(Λk
h

)−1
∥∥∥∥ ≤ 1

λ
. Thus, Lemmas 33 and

36 together imply that for all (h, k) ∈ [H]× [K], with probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)

−1

≤ 4H2

d

2
log

(
k + λ

λ

)
+md log(1 + 8H

√
md/ϵ) + d2 log

(
1 + 32L2β2

√
d

λϵ2

)
+ log

(
1

δ

)+
8k2ϵ2

λ
.
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If we let ϵ = dH
k

and β = cβ(d +
√
md)H

√
log(dT/δ), then, there exists an absolute

constant C > 0 that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)

−1

≤ C(md+ d2)H2 log
(
(cβ + 1)mdT/δ

)
.

Now, we begin the formal proof of Lemma 19:

θkh(w)− θ̃
k

h(w) = θ
k
h(w)−

(
Λk

h

)−1
k−1∑
τ=1

ϕτ
hV

k
h+1(s

τ
h+1, w)

=
(
Λk

h

)−1

Λk
hθ

k
h(w)−

k−1∑
τ=1

ϕτ
hV

k
h+1(s

τ
h+1, w)


= λ

(
Λk

h

)−1

θkh(w)︸ ︷︷ ︸
q1

−
(
Λk

h

)−1

k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)

︸ ︷︷ ︸
q2

.

Thus, in order to upper bound
∥∥∥θkh(w)− θ̃kh(w)∥∥∥

Λk
h

, we bound ∥q1∥Λk
h
and ∥q2∥Λk

h
sepa-

rately.

From Lemma 32, we have

∥q1∥Λk
h
= λ

∥∥∥θkh(w)∥∥∥
(Λk

h)
−1 ≤

√
λ
∥∥∥θkh(w)∥∥∥

2
≤ H
√
λd. (D.10)

Thanks to Lemma 20, for all (w, h, k), with probability at least 1− δ, it holds that

∥q2∥Λk
h
≤

∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)

−1

≤ c0H
(
d+
√
md
)√

log((cβ + 1)mdT/δ), (D.11)

where c0 and cβ are two independent absolute constants.

Combining (D.10) and (D.11), for all (h, k) ∈ [H]× [K], with probability at least 1− δ,

it holds that
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∥∥∥θkh(w)− θ̃kh(w)∥∥∥
Λk

h

≤ cH
(
d+
√
md
)√

λ log(mdT/δ)

for some absolute constant c > 0.

D.2.2 Proof of Lemma 7

Thanks to Assumption 14 and conditioned on events {E1(w)}w∈W̃ , one set of solution for (5.8)

is

{
θkh

(
w(j)

)}
j∈[n]

and ξ
V k
h+1

h with corresponding zero optimal objective value. Therefore, it

holds that 〈
θ̂
k(j)

h ,ϕ(s, a)

〉
=

〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
, ∀(j, (s, a)) ∈ [n]×D. (D.12)

Let
(
s(i), a(i)

)
be the i-th element of D and {c′i(s, a)}i∈[d] be the coefficients such that

ϕ(s, a) =
∑
i∈[d]

c′i(s, a)ϕ
(
s(i), a(i)

)
.

For any triple (s, a, j) ∈ S ×A× [n], we have〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
=

〈
ξ̂
k

h,ϕ(s, a)⊗ ρ
(
w(j)

)〉
=

〈
ξ̂
k

h,
∑
i∈[d]

c′i(s, a)ϕ
(
s(i), a(i)

)
⊗ ρ

(
w(j)

)〉

=
∑
i∈[d]

c′i(s, a)

〈
ξ̂
k

h,ψ
(
s(i), a(i), w(j)

)〉
(Assumption 15)

=
∑
i∈[d]

c′i(s, a)

〈
θ̂
k(j)

h ,ϕ
(
s(i), a(i)

)〉
(Eqn. (D.12))

=

〈
θ̂
k(j)

h ,ϕ(s, a)

〉
. (D.13)
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For any (s, a, w) ∈ S ×A×W , it holds that

Ph

[
V k
h+1(., w)

]
(s, a) =

〈
θkh(w),ϕ(s, a)

〉
(Eqn. (5.4))

=

〈
ξ
V k
h+1

h ,ψ(s, a, w)

〉
(Assumption 14)

=
∑
j∈[n]

cj(w)

〈
ξ
V k
h+1

h ,ψ
(
s, a, w(j)

)〉
(Assumption 15)

=
∑
j∈[n]

cj(w)Ph

[
V k
h+1

(
., w(j)

)]
(s, a) (Assumption 14)

=
∑
j∈[n]

cj(w)

〈
θkh

(
w(j)

)
,ϕ(s, a)

〉
. (D.14)

Finally, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],

it holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
−
〈
θkh(w),ϕ(s, a)

〉∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θkh

(
w(j)

)
,ϕ(s, a)

〉)∣∣∣∣∣∣
(Assumption 15 and Eqn. (D.14))

≤

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,ϕ(s, a)

〉)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃kh
(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃kh
(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣
(Eqn. (D.13))

≤ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 . (Lemma 19)
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D.2.3 Proof of Optimistic Nature of UCBlvd

Lemma 21. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 10

and conditioned on events {E1(w)}w∈W̃ defined in (5.9), and with Qk
h computed as in (5.7), it

holds that Qk
h(s, a, w) ≥ Q∗

h(s, a, w) for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×

W̃ × [H]× [K], it holds that∣∣∣∣∣rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
−Qπ

h(s, a, w)− Ph

[
V k
h+1(., w)− V π

h+1(., w)
]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
− rh(s, a, w)− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣
≤ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 , (Lemma 7)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because Qk
H+1(., ., .) =

Q∗
H+1(., ., .) = 0 and thus conditioned events {E1(w)}w∈W̃ , defined in (5.9), for all (s, a, w, k) ∈

S ×A× W̃ × [K], we have

∣∣∣∣∣rH(s, a, w) +
〈
ξ̂
k

H ,ψ(s, a, w)

〉
−Q∗

H(s, a, w)

∣∣∣∣∣ ≤ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
H)

−1 .

Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A×W̃ × [K], we have

Q∗
H(s, a, w) ≤ rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

H)−1

=

{
rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

H)−1

}+

= Qk
H(s, a, w),

where the first equality follows from the fact that Q∗
H(s, a, w) ≥ 0. Now, suppose the statement

holds at time-step h+ 1 and consider time-step h. Conditioned on events {E1(w)}w∈W̃ , for
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all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤ rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗

h(s, a, w)− Ph

[
V k
h+1(., w)− V ∗

h+1(., w)
]
(s, a) + 2Lβ

∥∥ϕ(s, a)∥∥(Λk
h)

−1

≤ rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗

h(s, a, w) + 2Lβ
∥∥ϕ(s, a)∥∥(Λk

h)
−1 . (Induction assumption)

Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S×A×W̃×[H]×[K],

we have

Q∗
h(s, a, w) ≤ rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1

=

{
rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1

}+

= Qk
h(s, a, w),

where the first equality follows from the fact that Q∗
h(s, a, w) ≥ 0. This completes the

proof.

D.2.4 Proof of Theorem 10

First, we bound the number of times Algorithm 7 updates ξ̂
k

h, i.e., number of planning calls.

Let P be the total number of updates and kp be the episode at which, the agent did replanning

for the p-th time. Note that detΛ1
h = λd and detΛK

h ≤ trace(ΛK
h /d)

d ≤
(
λ+ K

d

)d
, and

consequently:

detΛK
h

detΛ1
h

=
P∏

p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)d

,

and therefore

H∏
h=1

detΛK
h

detΛ1
h

=
H∏

h=1

P∏
p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)dH

. (D.15)

Since 1 ≤ detΛ
kp
h

detΛ
kp−1
h

for all p ∈ [P ], we can deduce from (D.15) that

∃h ∈ [H] such that e <
detΛk

h

detΛk̃
h
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happens for at most dH log
(
1 + K

dλ

)
number of episodes k ∈ [K]. This concludes that the

number of planing calls in UCBlvd is dH log
(
1 + K

dλ

)
.

Now, we prove the regret bound. Let δkh = V k̃
h (s

k
h, w

k) − V πk

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A ×

W̃ × [H]× [K], we have

Qk̃
h(s, a, w)−Qπk

h (s, a, w) = rh(s, a, w) +

〈
ξ̂
k̃

h,ψ(s, a, w)

〉
−Qπk

h (s, a, w) + 2Lβ
∥∥ϕ(s, a)∥∥

(Λk̃
h)

−1

≤ Ph

[
V k̃
h+1(., w)− V πk

h+1(., w)
]
(s, a) + 4Lβ

∥∥ϕ(s, a)∥∥
(Λk̃

h)
−1 .

(D.16)

Note that δkh ≤ Qk̃
h(s

k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (D.16), Lemma 19, and

a union bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least

1− δ, it holds that gives

δkh ≤ ξkh+1 + δkh+1 + 4Lβ
∥∥∥ϕ(skh, akh)∥∥∥

(Λk̃
h)

−1
.

Note that for any positive semi-definite matrices A, B, and C such that A = B+C, we

have:

det(A) ≥ det(B), det(A) ≥ det(C), (D.17)

and for any x ̸= 0 ([2, Lemm. 12]):

∥x∥2A
∥x∥2B

≤ det(A)

det(B)
and

∥x∥2B−1

∥x∥2A−1

≤ det(A)

det(B)
. (D.18)

Now, we complete the regret analysis following similar steps as those of Theorem 9’s

149



proof:

RK =
K∑
k=1

V ∗
1 (s

k
1, w

k)− V πk

1 (sk1, w
k)

≤
K∑
k=1

V k̃
1 (s

k
1, w

k)− V πk

1 (sk1, w
k) (Lemma 21)

=
K∑
k=1

δk1

≤
K∑
k=1

H∑
h=1

ξkh + 4Lβ
K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥(
Λk̃

h

)−1

≤
K∑
k=1

H∑
h=1

ξkh + 4Lβ
K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥
(Λk

h)
−1

√
detΛk

h

detΛk̃
h

(Eqn. (D.18))

≤ 2H
√

T log(dT/δ) + 8HLβ
√

2dK log(1 +K/λ)

≤ Õ
(
L
√

λ(d3 +md2)H3T
)
.

D.2.5 Discussion on the Time Complexity of UCBlvd and Lifelong-LSVI

In what follows, we clarify on how the time complexity of UCBlvd compares to that of Lifelong

LSVI. When we compute
(
Λk

h

)−1

by the Sherman-Morrison formula, the computational

complexity of Lifelong-LSVI is dominated by Line 5 in computing maxa∈AQ
k
h+1(s

τ
h+1, a) for

all τ ∈ [k]. This takes O(d2|A|K) per step, which gives a total runtime O(d2|A|HK2). In

UCBlvd, every planning call takes Õ(md2|A|K +m3d3), where the second term is the time-

complexity of the convex QCQP with m+1 constraints and 2md variables. This gives a total

runtime of Õ(H2(md3|A|K+m3d4)). Therefore, UCBlvd enjoys a smaller time complexity by

a factor of K compared to that of Lifelong-LSVI, which is a significant reduction in practical

scenarios where K >> d′ = md.

D.3 Details of Remark 2: UCBlvd with unknown rewards

In order for our analysis to go through, we need a slightly different completeness assumption

as below:
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Assumption 19. Given feature maps ϕ : S ×A → Rd and ψ : S ×A×W → Rd′, consider

function class

F =

{
f : f(s, w) = min

{
max
a∈A

{
⟨ν,ψ(s, a, w)⟩+ β

∥∥ϕ(s, a)∥∥
Λ−1 + β̃

∥∥ψ(s, a, w)∥∥
Λ̃

−1

}+

, H

}
,ν ∈ Rd′ ,Λ ∈ Sd

++, Λ̃ ∈ Sd′

++, β ≥ 0, β̃ ≥ 0
}
.

Then for any f ∈ F , and h ∈ [H], there exists a vector ξfh ∈ Rd′ with
∥∥∥ξfh∥∥∥ ≤ H

√
d′ such that

Ph

[
f(., w)

]
(s, a) = ⟨ξfh,ψ(s, a, w)⟩.

D.3.1 Overview

Algorithm 9 UCBlvd with Unknown Rewards

1: Set: Qk
H+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1

2: for episodes k = 1, . . . , K do

3: Observe the initial state sk1 and the task context wk.

4: if ∃h ∈ [H] such that
detΛk

h

detΛk̃
h

> e or det Λ̃
k
h

det Λ̃
k̃
h

> e then

5: k̃ = k

6: for time-steps h = H, . . . , 1 do

7: Compute ξ̂
k

h as in (D.21).

8: end for

9: end if

10: for time-steps h = 1, . . . , H do

11: Compute Qk̃
h(s

k
h, a, w

k) for all a ∈ A as in (D.19).

12: Play akh = argmaxa∈AQk̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

13: end for

14: end for

Let ψτ
h = ψ(sτh, a

τ
h, w

τ ). UCBlvd with unknown rewards works with the following action-

value functions:

Qk
h(s, a, w) =

{〈
η̃k
h + ξ̂

k

h,ψ(s, a, w)

〉
+ β

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 + β̃

∥∥ψ(s, a, w)∥∥
(Λ̃

k
h)

−1

}+

, (D.19)
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where

η̃k
h =

(
Λ̃

k

h

)−1
k−1∑
τ=1

ψτ
h.r

τ
h and Λ̃

k

h = λImd +
k−1∑
τ=1

ψτ
hψ

τ
h
⊤, (D.20)

and

ξ̂
k

h,

{
θ̂
k(j)

h

}
j∈[n]

= argmin
ξ,{θ(j)}

j∈[n]

∑
j∈[n]

∑
(s,a)∈D

(〈
θ(j),ϕ(s, a)

〉
−
〈
ξ,ψ

(
s, a, w(j)

)〉)2

(D.21)

s.t.

∥∥∥∥θ(j) − θ̃kh (w(j)
)∥∥∥∥

Λk
h

≤ β, ∀j ∈ [n] and ∥ξ∥2 ≤ H
√
md,

D =
{
(s, a) : ϕ(s, a) are d linearly independent vectors.

}
, and θ̃

k

h(w) and Λk
h are defined in

(5.5).

We note that compared to (5.7), action-value function defined in (D.19) involves an

extra term
〈
η̃k
h,ψ(s, a, w)

〉
+ β̃

∥∥ψ(s, a, w)∥∥
(Λ̃

k
h)

−1 . This term is in fact an upper bound on

rh(s, a, w). Specifically, from Theorem 2 in [2], we know that for β̃ =
√
λmd, it holds that∥∥∥ηh − η̃k

h

∥∥∥
Λ̃

k
h

≤ β̃, ∀(h, k) ∈ [H]× [K]. (D.22)

Theorem 16. Let T = KH. Under Assumptions 13, 15, and 19, the number of planning calls

in Algorithm 9 is at most dH log
(
1 + K

dλ

)
+mdH log

(
1 + K

mdλ

)
, and there exists an absolute

constant c > 0 such that for any fixed δ ∈ (0, 0.5), if we set λ = 1, β = cH (md)
√

log(mdT/δ)

and β̃ =
√
md in Algorithm 9, then with probability at least 1− 2δ, it holds that

RK ≤ 2H
√

T log(dT/δ) + 4H
√
K
(
Lβ
√
2d log(1 +K/λ) + β̃

√
2md log(1 +K/λ)

)
≤ Õ

(
L
√
m2d3H3T

)
.

D.3.2 Necessary Analysis for the Proof of Theorem 16

Lemma 22. Let cβ be a constant in the definition of β. Then, under Assumptions 13, 15,

and 19, for a fixed w, there is an absolute constant c0 independent of cβ, such that for all

(h, k) ∈ [H]× [K], with probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h.
(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)

−1

≤ c0mdH
√
log((cβ + 1)mdT/δ),

where c0 and cβ are two independent absolute constants.
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Proof. We note that

∥∥∥∥η̃k
h + ξ̂

k

h

∥∥∥∥
2

≤ H
√
md +K/λ and

∥∥∥∥(Λk
h

)−1
∥∥∥∥ ≤ 1

λ
and

∥∥∥∥(Λ̃k

h

)−1
∥∥∥∥ ≤ 1

λ
.

Thus, Lemmas 33 and 37 together imply that for all (h, k) ∈ [H]× [K], with probability at

least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)

−1

≤ 4H2

d

2
log

(
k + λ

λ

)
+md log(1 + 8H

√
md/ϵ) + d2 log

(
1 + 32L2β2

√
d

λϵ2

)

+m2d2 log

(
1 + 8β̃2

√
md

λϵ2

)
+ log

(
1

δ

)+
8k2ϵ2

λ
.

If we let ϵ = dH
k

and β = cβ(md)H
√

log(mdT/δ), then, there exists an absolute constant

C > 0 that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w)− Ph[V

k
h+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)

−1

≤ C(m2d2)H2 log
(
(cβ + 1)mdT/δ

)
.

Lemma 23. Under Assumptions 13, 15, and 19, if we let β = cmdH
√

λ log(mdT/δ) with

an absolute constant c > 0, then the event

E3(w) :=
{∥∥∥θkh(w)− θ̃kh(w)∥∥∥

Λk
h

≤ β, ∀(h, k) ∈ [H]× [K]

}
. (D.23)

holds with probability at least 1− δ for a fixed w.

Proof. The proof follows the same steps as those of Lemma 19, except that it uses Lemma 22

instead of Lemma 20 due to different structure of action-value functions Qk
h in this section.

Lemma 24. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 16

and conditioned on events {E3(w)}w∈W̃ defined in (D.23), for all (s, a, w, h, k) ∈ S × A ×

W̃ × [H]× [K], it holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣ ≤ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 .
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Proof. The proof follows the exact same steps as those of Lemma 7’s proof.

Lemma 25. Let W̃ = {wτ : τ ∈ [K]}∪{w(j) : j ∈ [n]}. Under the setting of Theorem 16 and

conditioned on events {E3(w)}w∈W̃ defined in (D.23), and with Qk
h computed as in (D.19), it

holds that Qk
h(s, a, w) ≥ Q∗

h(s, a, w) for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×

W̃ × [H]× [K], it holds that∣∣∣∣∣
〈
η̃k
h + ξ̂

k

h,ψ(s, a, w)

〉
−Qπ

h(s, a, w)− Ph

[
V k
h+1(., w)− V π

h+1(., w)
]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
η̃k
h + ξ̂

k

h,ψ(s, a, w)

〉
− rh(s, a, w)− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣
≤

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣+ β̃
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 (Eqn. (D.22))

≤ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 + β̃
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 , (Lemma 24)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because Qk
H+1(., ., .) =

Q∗
H+1(., ., .) = 0 and thus conditioned events {E3(w)}w∈W̃ , defined in (D.23), for all

(s, a, w, k) ∈ S ×A× W̃ × [K], we have

∣∣∣∣∣
〈
η̃k
H + ξ̂

k

H ,ψ(s, a, w)

〉
−Q∗

H(s, a, w)

∣∣∣∣∣ ≤ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
H)

−1 + β̃
∥∥ψ(s, a, w)∥∥(

Λ̃
k
H

)−1 .

(D.24)

Therefore, conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A×W̃ × [K], we have

Q∗
H(s, a, w) ≤

〈
η̃k
H + ξ̂

k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

H)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
H

)−1

=

{〈
η̃k
H + ξ̂

k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

H)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
H

)−1

}+

= Qk
H(s, a, w),
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where the first equality follows from the fact that Q∗
H(s, a, w) ≥ 0. Now, suppose the statement

holds at time-step h+ 1 and consider time-step h. Conditioned on events {E3(w)}w∈W̃ , for

all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤
〈
η̃k
h + ξ̂

k

h,ψ(s, a, w)

〉
−Q∗

h(s, a, w)− Ph

[
V k
h+1(., w)− V ∗

h+1(., w)
]
(s, a)

+ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 + β̃
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1

≤
〈
η̃k
h + ξ̂

k

h,ψ(s, a, w)

〉
−Q∗

h(s, a, w) + 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 + β̃
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 .

(Induction assumption)

Therefore, conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],

we have

Q∗
h(s, a, w) ≤

〈
η̃k
h + ξ̂

k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

=

{〈
η̃k
h + ξ̂

k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

}+

= Qk
h(s, a, w),

where the first equality follows from the fact that Q∗
h(s, a, w) ≥ 0. This completes the

proof.

D.3.3 Proof of Theorem 16

First, we bound the number of times Algorithm 9 updates ξ̂
k

h, i.e., number of planning

calls. Let P be the total number of policy updates and kp be the episode at, the agent did

replanning for the p-th time. Note that detΛ1
h = λd and detΛK

h ≤ trace(ΛK
h /d)

d ≤
(
λ+ K

d

)d
,

and consequently:

detΛK
h

detΛ1
h

=
P∏

p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)d

,

and therefore

H∏
h=1

detΛK
h

detΛ1
h

=
H∏

h=1

P∏
p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)dH

. (D.25)
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We similarly have

H∏
h=1

det Λ̃
K

h

det Λ̃
1

h

=
H∏

h=1

P∏
p=1

det Λ̃
kp
h

det Λ̃
kp−1

h

≤
(
1 +

K

mdλ

)mdH

. (D.26)

Since 1 ≤ detΛ
kp
h

detΛ
kp−1
h

for all p ∈ [P ], we can deduce from (D.25) and (D.26) that

∃h ∈ [H] such that e <
detΛk

h

detΛk̃
h

or e <
det Λ̃

k

h

det Λ̃
k̃

h

(D.27)

happens for at most dH log
(
1 + K

dλ

)
+ mdH log

(
1 + K

mdλ

)
number of episodes k ∈ [K].

This concludes that number of planning calls in Algorithm 9 is at most dH log
(
1 + K

dλ

)
+

mdH log
(
1 + K

mdλ

)
.

Now, we prove the regret bound. Let δkh = V k̃
h (s

k
h, w

k) − V πk

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A ×

W̃ × [H]× [K], we have

Qk̃
h(s, a, w)−Qπk

h (s, a, w)

=

〈
η̃k̃
h + ξ̂

k̃

h,ψ(s, a, w)

〉
−Qπk

h (s, a, w) + 2Lβ
∥∥ϕ(s, a)∥∥

(Λk̃
h)

−1 + β̃
∥∥ψ(s, a, w)∥∥

(Λ̃
k̃
h)

−1

≤ Ph

[
V k̃
h+1(., w)− V πk

h+1(., w)
]
(s, a) + 4Lβ

∥∥ϕ(s, a)∥∥
(Λk̃

h)
−1 + 2β̃

∥∥ψ(s, a, w)∥∥
(Λ̃

k̃
h)

−1
. (D.28)

Note that δkh ≤ Qk̃
h(s

k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (D.28), Lemma 23, and

a union bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least

1− δ, it holds that gives

δkh ≤ ξkh+1 + δkh+1 + 4Lβ
∥∥∥ϕ(skh, akh)∥∥∥

(Λk̃
h)

−1
+ 2β̃

∥∥∥ψ(skh, akh, wk)
∥∥∥
(Λ̃

k̃
h)

−1
.

Now, we complete the regret analysis following similar steps as those of Theorem 9’s
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proof:

RK =

K∑
k=1

V ∗
1 (s

k
1 , w

k)− V πk

1 (sk1 , w
k)

≤
K∑

k=1

V k̃
1 (sk1 , w

k)− V πk

1 (sk1 , w
k) (Lemma 25)

=

K∑
k=1

δk1

≤
K∑

k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥(
Λk̃

h

)−1 + 2β̃

K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)
∥∥∥(

Λ̃
k̃
h

)−1

≤
K∑

k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥
(Λk

h)
−1

√√√√detΛk
h

detΛk̃
h

+ 2β̃

K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)
∥∥∥(

Λ̃
k
h

)−1

√√√√det Λ̃
k

h

det Λ̃
k̃

h

(Eqn. (D.18))

≤ 2H
√
T log(dT/δ) + 4H

√
K
(
Lβ
√
2d log(1 +K/λ) + β̃

√
2md log(1 +K/λ)

)
≤ Õ

(
L
√
λm2d3H3T

)
.

D.4 Details of Remark 3: Relaxation of Assumption 15

In this section, we replace Assumption 15 with the following assumption:

Assumption 20. There is a known set {w(1), w(2), . . . , w(n)} of n ≤ d′ tasks such that

ψ(s, a, w) ∈ Span

({
ψ(s, a, w(j))

}
j∈[n]

)
for all (s, a, w) ∈ S ×A×W. This implies that for

any (s, a, w) ∈ S ×A×W, there exist coefficients {cj(s, a, w)}j∈[n] such that

ψ(s, a, w) =
∑
j∈[n]

cj(s, a, w)ψ
(
s, a, w(j)

)
. (D.29)

Moreover,
∑

j∈[n]

∣∣cj(s, a, w)∣∣ ≤ L for all (s, a, w) ∈ S ×A×W.

Define the concatenated mapping ψ̃ : S × A × W → Rd+d′ such that

ψ̃(s, a, w) =
[
ϕ(s, a)⊤,ψ(s, a, w)⊤

]⊤
. For any w ∈ W, define D(w) ={

(s, a) : ψ̃(s, a, w) are d+ d′ linearly independent vectors.
}
. Given Assumption 20, we mod-
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ify the planning step of UCBlvd to the following:

ξ̂
k

h,

{
θ̂
k(j)

h

}
j∈[n]

= argmin
ξ,{θ(j)}

j∈[n]

∑
j∈[n]

∑
(s,a)∈D(w(j))

(〈
θ(j),ϕ(s, a)

〉
−
〈
ξ,ψ

(
s, a, w(j)

)〉)2

(D.30)

s.t.

∥∥∥∥θ(j) − θ̃kh (w(j)
)∥∥∥∥

Λk
h

≤ β, ∀j ∈ [n] and ∥ξ∥2 ≤ H
√
d′.

The only change we make in Algorithm 7 is in Line 11, in which ξ̂
k

h is now computed as

defined in (D.30). We present this modification in Algorithm 10 for completeness.

Theorem 17. Let T = KH. Under Assumptions 13, 14, and 20, the number or planning

calls in Algorithm 10 is at most dH log
(
1 + K

dλ

)
and there exists an absolute constant c > 0

such that for any fixed δ ∈ (0, 0.5), if we set λ = 1 and β = cH
(
d+
√
d′
)√

λ log(dd′T/δ) in

Algorithm 10, then with probability at least 1− 2δ, it holds that

RK ≤ 2H
√

T log(dT/δ) + 8HLβ
√

2dK log(K) ≤ Õ
(
L
√

(d3 + dd′)H3T
)
. (D.31)

Proof of Theorem 17 follows exactly the same steps as those of Theorem 10. The only

difference is the proof of Lemma 7, which we clarify in the proof of following lemma.

Lemma 26. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under Assumptions 13, 14, and

20, if we let β = cH
(
d+
√
d′
)√

λ log(dd′T/δ) with an absolute constant c > 0, then for all

(s, a, w, h, k) ∈ S ×A×W × [H]× [K] with probability at least 1− δ, it holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣ ≤ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 .

Proof. We let ψ̃i(w) =
[
ϕ⊤

i ,ψi(w)
⊤
]⊤

be the i-th element of D̃(w) ={
ψ̃(s, a, w) : (s, a) ∈ D(w)

}
and for any triple (s, a, w) ∈ S×A×W , we let {c′i(s, a, w)}i∈[d+d′]

be the coefficients such that

ψ̃(s, a, w) =
∑

i∈[d+d′]

c′i(s, a, w)ψ̃i(w),
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Algorithm 10 Modified UCBlvd

1: Set: Qk
H+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1

2: for episodes k = 1, . . . , K do

3: Observe the initial state sk1 and the task context wk.

4: if ∃h ∈ [H] such that
detΛk

h

detΛk̃
h

> e then

5: k̃ = k

6: for time-steps h = H, . . . , 1 do

7: Compute ξ̂
k

h as in (D.30).

8: end for

9: end if

10: for time-steps h = 1, . . . , H do

11: Compute Qk̃
h(s

k
h, a, w

k) for all a ∈ A as in (5.7).

12: Play akh = argmaxa∈AQk̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

13: end for

14: end for
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which implies that

ϕ(s, a) =
∑

i∈[d+d′]

c′i(s, a, w)ϕi and ψ(s, a, w) =
∑

i∈[d+d′]

c′i(s, a, w)ψi(w). (D.32)

Thanks to Assumption 14 and conditioned on events {E1(w)}w∈W̃ , one set of solution

for (D.30) is

{
θkh

(
w(j)

)}
j∈[n]

and ξ
V k
h+1

h with corresponding zero optimal objective value.

Therefore, it holds that〈
θ̂
k(j)

h ,ϕi

〉
=

〈
ξ̂
k

h,ψi

(
w(j)

)〉
, ∀(i, j) ∈ [d+ d′]× [n]. (D.33)

Moreover, for any triple (s, a, j) ∈ S ×A× [n], we have〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
=

∑
i∈[d+d′]

c′i

(
s, a, w(j)

)〈
ξ̂
k

h,ψi

(
w(j)

)〉
(Eqn. (D.32))

=
∑

i∈[d+d′]

c′i

(
s, a, w(j)

)〈
θ̂
k(j)

h ,ϕi

〉
(Eqn. (D.33))

=

〈
θ̂
k(j)

h ,ϕ(s, a)

〉
. (D.34)

For any (s, a, w) ∈ S ×A×W , it holds that

Ph

[
V k
h+1(., w)

]
(s, a) =

〈
θkh(w),ϕ(s, a)

〉
(Eqn. (5.4))

=

〈
ξ
V k
h+1

h ,ψ(s, a, w)

〉
(Assumption 14)

=
∑
j∈[n]

cj(s, a, w)

〈
ξ
V k
h+1

h ,ψ
(
s, a, w(j)

)〉
(Eqn. (D.29))

=
∑
j∈[n]

cj(s, a, w)Ph

[
V k
h+1

(
., w(j)

)]
(s, a)⟩ (Assumption 14)

=
∑
j∈[n]

cj(s, a, w)

〈
θkh

(
w(j)

)
,ϕ(s, a)

〉
. (D.35)

Finally, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],
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it holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣ (D.36)

=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
−
〈
θkh(w),ϕ(s, a)

〉∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θkh

(
w(j)

)
,ϕ(s, a)

〉)∣∣∣∣∣∣ (Eqns. (D.29) and (D.14))

≤

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,ϕ(s, a)

〉)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣
(Eqn. (D.13))

≤ 2Lβ
∥∥ϕ(s, a)∥∥(Λk

h)
−1 . (Lemma 19)

D.5 Details of Remark 4

In this section, we only rely on the following two assumptions:

Assumption 21. Given a feature map ψ : S ×A×W → Rd′, consider function class

F =

{
f : f(s, w) = min

{
max
a∈A

{
⟨ν,ψ(s, a, w)⟩+ β

∥∥ψ(s, a, w)∥∥
Λ−1

}+

, H

}
ν ∈ Rd′

, β ≥ 0,Λ ∈ Sd′

++

}
.

(D.37)

Then for any f ∈ F and h ∈ [H], there exists a vector νf
h ∈ Rd′ with

∥∥∥νf
h

∥∥∥
2
≤ H
√
d′ such

that

Ph

[
f(., w)

]
(s, a) = ⟨ψ(s, a, w),νf

h⟩. (D.38)

Moreover, for every h ∈ [H], there exists a vector ηh such that rh(s, a, w) =
〈
ηh,ψ(s, a, w)

〉
.

Assumption 22. Without loss of generality,
∥∥ψ(s, a, w)∥∥

2
≤ 1 for all (s, a, w) ∈ S ×A×W,

and ∥ηh∥2 ≤
√
d′ for all h ∈ [H].
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D.5.1 Overview

Let ψτ
h = ψ(sτh, a

τ
h, w

τ ). Standard Lifelong-LSVI with computation sharing works with the

following action-value functions:

Qk
h(s, a, w) =

{
rh(s, a, w) +

〈
ν̃k
h,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥
(Λ̃

k
h)

−1

}+

, (D.39)

where

ν̃k
h =

(
Λ̃

k

h

)−1
k−1∑
τ=1

ψτ
h.min

{
max
a∈A

Qk
h+1(s

τ
h+1, a, w

τ ), H

}
and Λ̃

k

h = λId′ +
k−1∑
τ=1

ψτ
hψ

τ
h
⊤.

(D.40)

Algorithm 11 Standard Lifelong-LSVI with Computation Sharing

1: Set: Qk
H+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1

2: for episodes k = 1, . . . , K do

3: Observe the initial state sk1 and the task context wk.

4: if ∃h ∈ [H] such that det Λ̃
k
h

det Λ̃
k̃
h

> e then

5: k̃ = k

6: for time-steps h = H, . . . , 1 do

7: Compute ν̃ k̃
h as in (D.40).

8: end for

9: end if

10: for time-steps h = 1, . . . , H do

11: Compute Qk̃
h(s

k
h, a, w

k) for all a ∈ A as in (D.39).

12: Play akh = argmaxa∈AQk̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

13: end for

14: end for

Theorem 18. Let T = KH. Under Assumptions 21 and 22, the number of planning calls

in 11 is at most d′H log
(
1 + K

d′λ

)
and there exists an absolute constant c > 0 such that for

any fixed δ ∈ (0, 0.5), if we set λ = 1 and β = cd′H
√

log(d′T/δ) in Algorithm 11, then with
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probability at least 1− 2δ, it holds that

RK ≤ 2H
√

T log(d′T/δ) + 4Hβ
√
2d′K log(K) ≤ Õ

(√
d′3H3T

)
.

D.5.2 Necessary Analysis for the Proof of Theorem 18

Thanks to Assumption 21, we have

Ph

[
V k
h+1(., w)

]
(s, a) =

〈
νk
h,ψ(s, a, w)

〉
, (D.41)

where νk
h = ν

V k
h+1

h .

Lemma 27. Let cβ be a constant in the definition of β. Then, under Assumption 22, there is

an absolute constant c0 independent of cβ, such that for all (h, k) ∈ [H]× [K], with probability

at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ψτ
h.
(
V k
h+1(s

τ
h+1, w

τ )− Ph[V
k
h+1(., w

τ )](sτh, a
τ
h)
)∥∥∥∥∥∥(

Λ̃
k
h

)−1

≤ c0d
′H
√
log((cβ + 1)d′T/δ),

where c0 and cβ are two independent absolute constants.

Proof. We note that
∥∥∥ηh + ν̃

k
h

∥∥∥
2
≤ (1 +H)

√
d′ and

∥∥∥∥(Λ̃k

h

)−1
∥∥∥∥ ≤ 1

λ
. Thus, Lemmas 33 and

38 together imply that for all (h, k) ∈ [H]× [K], with probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w

τ )− Ph[V
k
h+1(., w

τ )](sτh, a
τ
h)
)∥∥∥∥∥∥

2

(
Λ̃

k
h

)−1

≤ 4H2

d′

2
log

(
k + λ

λ

)
+ d′ log(1 + 8H

√
d′/ϵ) + d′

2
log

(
1 + 32L2β2

√
d′

λϵ2

)
+ log

(
1

δ

)+
8k2ϵ2

λ
.

If we let ϵ = dH
k

and β = cβ(d
′ +
√
d′)H

√
log(dT/δ), then, there exists an absolute

constant C > 0 that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

(
V k
h+1(s

τ
h+1, w

τ )− Ph[V
k
h+1(., w

τ )](sτh, a
τ
h)
)∥∥∥∥∥∥

2

(
Λ̃

k
h

)−1

≤ C(d′ + d′
2
)H2 log

(
(cβ + 1)d′T/δ

)
.

163



Lemma 28. Under Assumptions 21 and 22, if we let β = cd′H
√

λ log(d′T/δ) with an

absolute constant c > 0, then the event

E4 :=
{∥∥∥νk

h − ν̃k
h

∥∥∥
Λ̃

k
h

≤ β, ∀(h, k) ∈ [H]× [K]

}
. (D.42)

holds with probability at least 1− δ.

Proof.

νk
h − ν̃k

h = νk
h −

(
Λ̃

k

h

)−1
k−1∑
τ=1

ψτ
hV

k
h+1(s

τ
h+1, w

τ )

=
(
Λ̃

k

h

)−1

Λ̃
k

hν
k
h −

k−1∑
τ=1

ψτ
hV

k
h+1(s

τ
h+1, w

τ )


= λ

(
Λ̃

k

h

)−1

νk
h︸ ︷︷ ︸

q1

−
(
Λ̃

k

h

)−1

k−1∑
τ=1

ψτ
h

(
V k
h+1(s

τ
h+1, w

τ )− Ph[V
k
h+1(., w

τ )](sτh, a
τ
h)
)

︸ ︷︷ ︸
q2

.

(Eqn. (D.41))

Thus, in order to upper bound
∥∥∥νk

h − ν̃k
h(w)

∥∥∥
Λ̃

k
h

, we bound ∥q1∥Λ̃k
h
and ∥q2∥Λ̃k

h
separately.

From Assumption 22, we have

∥q1∥Λk
h
= λ

∥∥∥νk
h

∥∥∥(
Λ̃

k
h

)−1 ≤
√
λ
∥∥∥νk

h

∥∥∥
2
≤ H
√
λd′. (D.43)

Thanks to Lemma 27, for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds

that

∥q2∥Λ̃k
h
≤

∥∥∥∥∥∥
k−1∑
τ=1

ψτ
h

(
V k
h+1(s

τ
h+1, w

τ )− Ph[V
k
h+1(., w

τ )](sτh, a
τ
h)
)∥∥∥∥∥∥

(Λk
h)

−1

≤ c0d
′H
√

log((cβ + 1)d′T/δ), (D.44)

where c0 and cβ are two independent absolute constants.

Combining (D.43) and (D.44), for all (h, k) ∈ [H]× [K], with probability at least 1− δ,

it holds that ∥∥∥νk
h − ν̃k

h

∥∥∥
Λ̃

k
h

≤ cd′H
√

λ log(d′T/δ)

for some absolute constant c > 0.
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Lemma 29. Let the setting of Lemma 28 holds. Conditioned on events E4 defined in

(D.42), and with Qk
h computed as in (D.39), it holds that Qk

h(s, a, w) ≥ Q∗
h(s, a, w) for all

(s, a, w, h, k) ∈ S ×A×W × [H]× [K].

Proof. We first note that conditioned on the event E4 , for all (s, a, w, h, k) ∈ S ×A×W ×

[H]× [K], it holds that∣∣∣∣rh(s, a, w) + 〈ν̃k
h,ψ(s, a, w)

〉
−Qπ

h(s, a, w)− Ph

[
V k
h+1(., w)− V π

h+1(., w)
]
(s, a)

∣∣∣∣
=

∣∣∣∣rh(s, a, w) + 〈ν̃k
h,ψ(s, a, w)

〉
− rh(s, a, w)− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣
=

∣∣∣∣〈ν̃k
h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣
=

∣∣∣∣〈ν̃k
h − νk

h,ψ(s, a, w)
〉∣∣∣∣

≤
∥∥∥ν̃k

h − νk
h

∥∥∥
Λ̃

k
h

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

≤ β
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 , (Lemma 28)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because Qk
H+1(., ., .) =

Q∗
H+1(., ., .) = 0 and thus conditioned on the event E4, defined in (D.42), for all (s, a, w, k) ∈

S ×A×W × [K], we have

∣∣∣∣rh(s, a, w) + 〈νk
H ,ψ(s, a, w)

〉
−Q∗

H(s, a, w)

∣∣∣∣ ≤ β
∥∥ψ(s, a, w)∥∥(

Λ̃
k
H

)−1 .

Therefore, conditioned on the event E4, for all (s, a, w, k) ∈ S ×A×W × [K], we have

Q∗
H(s, a, w) ≤ rH(s, a, w) +

〈
νk
H ,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥
(Λ̃

k
H)−1

=

{
rH(s, a, w) +

〈
νk
H ,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥
(Λ̃

k
H)−1

}+

= Qk
H(s, a, w),

where the first equality follows from the fact that Q∗
H(s, a, w) ≥ 0. Now, suppose the

statement holds at time-step h+ 1 and consider time-step h. Conditioned on events E4, for
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all (s, a, w, h, k) ∈ S ×A×W × [H]× [K], we have

0 ≤ rh(s, a, w) +
〈
νk
h,ψ(s, a, w)

〉
−Q∗

h(s, a, w)− Ph

[
V k
h+1(., w)− V ∗

h+1(., w)
]
(s, a)

+ β
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1

≤ rh(s, a, w) +
〈
νk
h,ψ(s, a, w)

〉
−Q∗

h(s, a, w) + β
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 .

(Induction assumption)

Therefore, conditioned on events E4, for all (s, a, w, h, k) ∈ S ×A×W × [H]× [K], we have

Q∗
h(s, a, w) ≤ rh(s, a, w) +

〈
νk
h,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

=

{
rh(s, a, w) +

〈
νk
h,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

}+

= Qk
h(s, a, w),

where the first equality follows from the fact that Q∗
H(s, a, w) ≥ 0. This completes the proof.

D.5.3 Proof of Theorem 18

First, we bound the number of times Algorithm 11 updates ν̃k
h. Let P be the total number

of updates and kp be the episode at which, the agent did replanning for the p-th time. Note

that det Λ̃
1

h = λd′ and det Λ̃
K

h ≤ trace(Λ̃
K

h /d
′)d

′ ≤
(
λ+ K

d′

)d′
, and consequently:

det Λ̃
K

h

det Λ̃
1

h

=
P∏

p=1

det Λ̃
kp
h

det Λ̃
kp−1

h

≤
(
1 +

K

d′λ

)d′

,

and therefore

H∏
h=1

det Λ̃
K

h

det Λ̃
1

h

=
H∏

h=1

P∏
p=1

det Λ̃
kp
h

det Λ̃
kp−1

h

≤
(
1 +

K

d′λ

)d′H

. (D.45)

Since 1 ≤ det Λ̃
kp
h

det Λ̃
kp−1
h

for all p ∈ [P ], we can deduce from (D.45) that

∃h ∈ [H] such that e <
det Λ̃

k

h

det Λ̃
k̃

h
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happens for at most d′H log
(
1 + K

d′λ

)
number of episodes k ∈ [K]. This concludes that

number of planning calls in Algorithm 11 is at most d′H log
(
1 + K

d′λ

)
.

Now, we prove the regret bound. Let δkh = V k̃
h (s

k
h, w

k) − V πk

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on E4, for all (s, a, w, h, k) ∈ S ×A×W × [H]× [K], we

have

Qk̃
h(s, a, w)−Qπk

h (s, a, w) = rh(s, a, w) +
〈
θk̃h,ψ(s, a, w)

〉
−Qπk

h (s, a, w) + β
∥∥ψ(s, a, w)∥∥

(Λ̃
k̃
h)

−1

≤ Ph

[
V k̃
h+1(., w)− V πk

h+1(., w)
]
(s, a) + 2β

∥∥ψ(s, a, w)∥∥
(Λ̃

v
h)

−1 .

(D.46)

Note that δk̃h ≤ Qk
h(s

k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, (D.46) and Lemma 28 imply that

for all (h, k) ∈ [H]× [K], it holds that

δkh ≤ ξkh+1 + δkh+1 + 2β
∥∥∥ψ(skh, akh, wk)

∥∥∥
(Λ̃

k
h)

−1
.

Now, we complete the regret analysis following similar steps as those of Theorem 9’s

proof:

RK =
K∑
k=1

V ∗
1 (s

k
1, w

k)− V πk

1 (sk1, w
k)

≤
K∑
k=1

V k̃
1 (s

k
1, w

k)− V πk

1 (sk1, w
k) (Lemma 29)

=
K∑
k=1

δk1

≤
K∑
k=1

H∑
h=1

ξkh + 2β
K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)
∥∥∥(

Λ̃
k̃
h

)−1

≤
K∑
k=1

H∑
h=1

ξkh + 2β
K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)
∥∥∥(

Λ̃
k
h

)−1

√√√√det Λ̃
k

h

det Λ̃
k̃

h

(Eqn. (D.18))

≤ 2H
√

T log(d′T/δ) + 4Hβ
√

2λd′K log(1 +K/λ)

≤ Õ
(√

λd′3H3T

)
.
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D.6 Details of Remark 5: A misspecified setting

We first present a definition for an approximate completeness model.

Assumption 23 (ζ-Approximate Completeness). Given feature maps ϕ : S ×A → Rd and

ψ : S ×A×W → Rd′ in Assumption 13, consider the function class

F =

{
f : f(s, w) = min

{
max
a∈A

{
⟨ν,ψ(s, a, w)⟩+ β

∥∥ϕ(s, a)∥∥
Λ−1

}+
, H

}
,ν ∈ Rd′ ,Λ ∈ Sd

++, β ≥ 0

}
.

For any f ∈ F and h ∈ [H], there exists a vector ξfh ∈ Rd′ with
∥∥∥ξfh∥∥∥ ≤ H

√
d′ such that for

all (s, a, w) ∈ S ×A×W∣∣∣Ph

[
f(., w)

]
(s, a)− ⟨ξfh,ψ(s, a, w)⟩

∣∣∣ ≤ ζ.

Theorem 19. Let T = KH. Under Assumptions 13, 23, and 15, the number of planning

calls in Algorithm 7 is at most dH log(1 + K
dλ
), and there exists an absolute constant c > 0

such that for any fixed δ ∈ (0, 0.5), if we set λ = 1 and β = cH(d+
√
md)

√
log(mdT/δ) in

Algorithm 7, then with probability at least 1− 2δ, it holds that

RK ≤ Õ
(√

mdTζ +
√

(d3 +md2)H3T
)
.

D.6.1 Necessary Analysis for the Proof of Theorem 19

Let
(
s(i), a(i)

)
be the i-th element of D and {c′i(s, a)}i∈[d] be the coefficients such that

ϕ(s, a) =
∑
i∈[d]

c′i(s, a)ϕ
(
s(i), a(i)

)
.

Then, Lϕ is a positive constant such that
∑

i∈[d]

∣∣c′i(s, a)∣∣ ≤ Lϕ for all (s, a) ∈ S ×A.

Lemma 30. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 19

and conditioned on events {E1(w)}w∈W̃ defined in (5.9), for all (s, a, w, h, k) ∈ S ×A× W̃ ×

[H]× [K], it holds that∣∣∣∣⟨ξ̂kh,ψ(s, a, w)⟩ − Ph[V
k
h+1(., w)](s, a)

∣∣∣∣ ≤ (2L+ Lϕ
√
md)ζ + 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 .

168



Proof. Thanks to Assumption 23 and conditioned on events {E1(w)}w∈W̃ , one set of feasible

parameters for (5.8) is

{
θkh

(
w(j)

)}
j∈[n]

and ξ
V k
h+1

h such that

∣∣∣∣∣
〈
θ̂
k(j)

h ,ϕ(s, a)

〉
−
〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉∣∣∣∣∣ ≤ ζ
√
md, ∀(j, (s, a)) ∈ [n]×D. (D.47)

For any triple (s, a, j) ∈ S ×A× [n], we have〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
=

〈
ξ̂
k

h,ϕ(s, a)⊗ ρ
(
w(j)

)〉
=

〈
ξ̂
k

h,
∑
i∈[d]

c′i(s, a)ϕ
(
s(i), a(i)

)
⊗ ρ

(
w(j)

)〉

=
∑
i∈[d]

c′i(s, a)

〈
ξ̂
k

h,ψ
(
s(i), a(i), w(j)

)〉
(Assumption 15)

≤
√
mdζ

∑
i∈[d]

c′i(s, a) +
∑
i∈[d]

c′i(s, a)

〈
θ̂
k(j)

h ,ϕ
(
s(i), a(i)

)〉
(Eqn. (D.47))

≤ Lϕ
√
mdζ +

〈
θ̂
k(j)

h ,ϕ(s, a)

〉
.

Similarly, it holds that

〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
≥ −Lϕ

√
mdζ +

〈
θ̂
k(j)

h ,ϕ(s, a)

〉
. Therefore, for

any (s, a, j) ∈ S ×A× [n], it holds that

∣∣∣∣∣
〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,ϕ(s, a)

〉∣∣∣∣∣ ≤ Lϕ
√
mdζ. (D.48)

169



For any (s, a, w) ∈ S ×A×W , it holds that

Ph

[
V k
h+1(., w)

]
(s, a) =

〈
θkh(w),ϕ(s, a)

〉
(Eqn. (5.4))

≤ ζ +

〈
ξ
V k
h+1

h ,ψ(s, a, w)

〉
(Assumption 23)

= ζ +
∑
j∈[n]

cj(w)

〈
ξ
V k
h+1

h ,ψ
(
s, a, w(j)

)〉
(Assumption 15)

≤ ζ

1 +
∑
j∈[n]

cj(w)

+
∑
j∈[n]

cj(w)Ph

[
V k
h+1

(
., w(j)

)]
(s, a)

(Assumption 23)

≤ 2Lζ +
∑
j∈[n]

cj(w)

〈
θkh

(
w(j)

)
,ϕ(s, a)

〉
. (Assumption 15)

Similarly, it holds that Ph

[
V k
h+1(., w)

]
(s, a) ≥ −2Lζ +

∑
j∈[n] cj(w)

〈
θkh

(
w(j)

)
,ϕ(s, a)

〉
.

Therefore, for any (s, a, w) ∈ S ×A×W , it holds that

∣∣∣∣∣∣Ph

[
V k
h+1(., w)

]
(s, a)−

∑
j∈[n]

cj(w)

〈
θkh

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣ ≤ 2Lζ. (D.49)

Finally, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],
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it holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣
≤ 2Lζ +

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θkh

(
w(j)

)
,ϕ(s, a)

〉)∣∣∣∣∣∣
(Assumption 15 and Eqn. (D.49))

≤ 2Lζ +

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,ϕ(s, a)

〉)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃kh
(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣
≤ (2L+ Lϕ

√
md)ζ +

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃kh
(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,ϕ(s, a)

〉∣∣∣∣∣∣ (Eqn. (D.48))

≤ (2L+ Lϕ
√
md)ζ + 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 . (Lemma 19)

As the final step in the regret analysis, we state the following lemma which uses Lemma 30

to prove the optimistic nature of UCBlvd. Then following the standard analysis of single-task

LSVI-UCB we derive the regret bound for misspecified settings.

Lemma 31. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 19

and conditioned on events {E1(w)}w∈W̃ defined in (5.9), and with Qk
h computed as in (5.7),

it holds that (2L+ Lϕ
√
md)(H − h+ 1)ζ +Qk

h(s, a, w) ≥ Q∗
h(s, a, w) for all (s, a, w, h, k) ∈

S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×
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W̃ × [H]× [K], it holds that∣∣∣∣∣rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
−Qπ

h(s, a, w)− Ph

[
V k
h+1(., w)− V π

h+1(., w)
]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
− rh(s, a, w)− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V k
h+1(., w)

]
(s, a)

∣∣∣∣∣
≤ (2L+ Lϕ

√
md)ζ + 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1 , (Lemma 30)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because Qk
H+1(., ., .) =

Q∗
H+1(., ., .) = 0 and thus conditioned events {E1(w)}w∈W̃ , defined in (5.9), for all (s, a, w, k) ∈

S ×A× W̃ × [K], we have

∣∣∣∣∣rH(s, a, w) +
〈
ξ̂
k

H ,ψ(s, a, w)

〉
−Q∗

H(s, a, w)

∣∣∣∣∣ ≤ (2L+ Lϕ
√
md)ζ + 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

H)
−1 .

Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A×W̃ × [K], we have

Q∗
H(s, a, w) ≤ rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

H)−1 + (2L+ Lϕ
√
md)ζ

=

{
rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

H)−1

}+

+ (2L+ Lϕ
√
md)ζ

= Qk
H(s, a, w) + (2L+ Lϕ

√
md)ζ,

where the first equality follows from the fact that Q∗
H(s, a, w) ≥ 0. Now, suppose the statement

holds at time-step h+ 1 and consider time-step h. Conditioned on events {E1(w)}w∈W̃ , for

all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤ rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗

h(s, a, w)− Ph

[
V k
h+1(., w)− V ∗

h+1(., w)
]
(s, a)

+ (2L+ Lϕ
√
md)ζ + 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1

≤ rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗

h(s, a, w) + (2L+ Lϕ
√
md)(H − h+ 1)ζ

+ 2Lβ
∥∥ϕ(s, a)∥∥

(Λk
h)

−1 . (Induction assumption)

172



Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],

we have

Q∗
h(s, a, w) ≤ rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ (2L+ Lϕ

√
md)(H − h+ 1)ζ + 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1

=

{
rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥ϕ(s, a)∥∥
(Λk

h)
−1

}+

+ (2L+ Lϕ
√
md)(H − h+ 1)ζ

= Qk
h(s, a, w) + (2L+ Lϕ

√
md)(H − h+ 1)ζ,

where the first equality follows from the fact that Q∗
h(s, a, w) ≥ 0. This completes the proof.

D.6.2 Proof of Theorem 19

The proof for establishing the upper bound on the number of planning calls for misspecified

settings follows exactly the steps as those in the proof of Theorem 10.

Now, we prove the regret bound. Let δkh = V k̃
h (s

k
h, w

k) − V πk

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A ×

W̃ × [H]× [K], we have

Qk̃
h(s, a, w)−Qπk

h (s, a, w) = rh(s, a, w) +

〈
ξ̂
k̃

h,ψ(s, a, w)

〉
−Qπk

h (s, a, w) + 2Lβ
∥∥ϕ(s, a)∥∥

(Λk̃
h)

−1

≤ Ph

[
V k̃
h+1(., w)− V πk

h+1(., w)
]
(s, a) + (2L+ Lϕ

√
md)ζ

+ 4Lβ
∥∥ϕ(s, a)∥∥

(Λk̃
h)

−1 . (D.50)

Note that δkh ≤ Qk̃
h(s

k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (D.50), Lemma 19, and

a union bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least

1− δ, it holds that gives

δkh ≤ ξkh+1 + δkh+1 + (2L+ Lϕ
√
md)ζ + 4Lβ

∥∥∥ϕ(skh, akh)∥∥∥
(Λk̃

h)
−1

.

Now, we complete the regret analysis following similar steps as those of Theorem 9’s
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proof:

RK =
K∑
k=1

V ∗
1 (s

k
1, w

k)− V πk

1 (sk1, w
k)

≤ (2L+ Lϕ
√
md)HKζ +

K∑
k=1

V k̃
1 (s

k
1, w

k)− V πk

1 (sk1, w
k) (Lemma 31)

= (2L+ Lϕ
√
md)HKζ +

K∑
k=1

δk1

≤ (4L+ 2Lϕ
√
md)HKζ +

K∑
k=1

H∑
h=1

ξkh + 4Lβ
K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥(
Λk̃

h

)−1

≤ (4L+ 2Lϕ
√
md)HKζ +

K∑
k=1

H∑
h=1

ξkh + 4Lβ
K∑
k=1

H∑
h=1

∥∥∥ϕ(skh, akh)∥∥∥
(Λk

h)
−1

√
detΛk

h

detΛk̃
h

(Eqn. (D.18))

≤ (4L+ 2Lϕ
√
md)HKζ + 2H

√
T log(dT/δ) + 8HLβ

√
2dK log(1 +K/λ)

≤ Õ
(
(L+ Lϕ

√
md)HKζ + L

√
λ(d3 +md2)H3T

)
,

where the last two inequalities follow from the similar steps in the proof of Theorem 9.

D.7 Auxiliary Lemmas

Notations. Nϵ(V) denotes the ϵ-covering number of the class V of functions mapping S to

R with respect to the distance dist(V, V ′) = sups

∣∣V (s)− V ′(s)
∣∣.

Lemma 32 (Bound on Weights θkh(w)). Under Assumption 13, for any set of action-value

functions {Qk
h}h∈[H], and (w, h, k) ∈ W × [H]× [K], it holds that∥∥∥θkh(w)∥∥∥

2
≤ H
√
d.

Proof. Recall that V k
h (s, w) = min

{
maxa∈A Qk

h(s, a, w), H
}

and θkh(w) :=∫
S V

k
h+1(s

′, w)dµh(s
′). Thus, we have∥∥∥θkh(w)∥∥∥

2
=

∥∥∥∥∫
S
V k
h+1(s

′, w)dµh(s
′)

∥∥∥∥ ≤ H
√
d.
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Lemma 33 (Lemma D.4 in [64]). Let {sτ}∞τ=1 be a stochastic process on state space S

with corresponding filtration {Fτ}∞τ=0. Let {ϕτ}∞τ=0 be an Rd-valued stochastic process where

ϕτ ∈ Fτ−1, and ∥ϕτ∥ ≤ 1. Let Λk = λId +
∑k−1

τ=1ϕτϕ
⊤
τ . Then with probability at least 1− δ,

for all k ≥ 0 and V ∈ V such that sups∈S
∣∣V (s)

∣∣ ≤ H, we have∥∥∥∥∥∥
k∑

τ=1

ϕτ .
(
V (sτ )− E

[
V (sτ )|Fτ−1

])∥∥∥∥∥∥
2

Λ−1
k

≤ 4H2

(
d

2
log

(
k + λ

λ

)
+ log

(
Nϵ(V)

δ

))
+

8k2ϵ2

λ
.

Lemma 34. For any ϵ > 0, the ϵ-covering number of the Euclidean ball in Rd with radius

R > 0 is upper bounded by (1 + 2R/ϵ)d.

Lemma 35. For a fixed w, let V denote a class of functions mapping from S to R with

following parametric form

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+
〈
y,ϕ(., a)

〉
+ β

√
ϕ(., a)⊤Yϕ(., a), H

}
,

where the parameters β ∈ R, z ∈ Rd′, y ∈ Rd, and Y ∈ Rd×d satisfy 0 ≤ β ≤ B,

∥z∥ ≤ z, ∥y∥ ≤ y, and ∥Y∥ ≤ λ−1. Assume
∥∥ϕ(s, a)∥∥ ≤ 1 and

∥∥ψ(s, a, w)∥∥ ≤ 1 for all

(s, a, w) ∈ S ×A×W. Then

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d log(1 + 4y/ϵ) + d2 log

(
1 + 8B2

√
d

λϵ2

)
.

Proof. First, we reparametrize V by letting Ỹ = β2Y. We have

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+
〈
y,ϕ(., a)

〉
+

√
ϕ(., a)⊤Ỹϕ(., a), H

}
,

for ∥z∥ ≤ z, ∥y∥ ≤ y, and
∥∥∥Ỹ∥∥∥ ≤ B2

λ
. For any two functions V1, V2 ∈ V with parameters
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(
z1,y1, Ỹ1

)
and

(
z2,y2, Ỹ2

)
, respectively, we have

dist(V1, V2) ≤ sup
(s,a)∈S×A

∣∣∣∣∣
[〈

z1,ψ(s, a, w)
〉
+
〈
y1,ϕ(s, a)

〉
+

√
ϕ(s, a)⊤Ỹ1ϕ(s, a)

]

−
[〈

z2,ψ(s, a, w)
〉
+
〈
y2,ϕ(s, a)

〉
+

√
ϕ(s, a)⊤Ỹ2ϕ(s, a)

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1,ϕ:∥ϕ∥≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+
〈
y1,ϕ

〉
+

√
ϕ⊤Ỹ1ϕ

]
−
[〈

z2,ψ
〉
+
〈
y2,ϕ

〉
+

√
ϕ⊤Ỹ2ϕ

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1

∣∣∣∣〈z1 − z2,ψ
〉∣∣∣∣+ sup

ϕ:∥ϕ∥≤1

∣∣∣∣〈y1 − y2,ϕ
〉∣∣∣∣+ sup

ϕ:∥ϕ∥≤1

√∣∣∣∣ϕ⊤
(
Ỹ1 − Ỹ2

)
ϕ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥∥z1 − z2

∥∥∥+∥∥∥y1 − y2
∥∥∥+√∥∥∥Ỹ1 − Ỹ2

∥∥∥
≤
∥∥∥z1 − z2

∥∥∥+∥∥∥y1 − y2
∥∥∥+√∥∥∥Ỹ1 − Ỹ2

∥∥∥
F
. (D.51)

Let Cz and Cy be ϵ/2-covers of {z ∈ Rd′
:∥z∥ ≤ z} and {y ∈ Rd :∥y∥ ≤ y}, respectively, with respect to the

2-norm, and CY be an ϵ2/4-cover of {Y ∈ Rd×d :∥Y∥F ≤
B2

√
d

λ }, with respect to the Frobenius norm. By

Lemma 34, we know

|Cz| ≤ (1 + 4z/ϵ)d
′
,
∣∣Cy∣∣ ≤ (1 + 4y/ϵ)d, |CY| ≤

(
1 + 8B2

√
d

λϵ2

)d2

.

According to (D.51), it holds that Nϵ(V) ≤|Cz|
∣∣Cy∣∣|CY|, and therefore

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d log(1 + 4y/ϵ) + d2 log

(
1 + 8B2

√
d

λϵ2

)
.

Lemma 36. For a fixed w, let V denote a class of functions mapping from S to R with

following parametric form

V (.) = min

{
max
a∈A

{〈
z,ψ(., a, w)

〉
+ 2Lβ

√
ϕ(., a)⊤Yϕ(., a)

}+

, H

}
,

where the parameters β ∈ R, z ∈ Rd′ and Y ∈ Rd×d satisfy 0 ≤ β ≤ B, ∥z∥ ≤ z, and

∥Y∥ ≤ λ−1. Assume
∥∥ϕ(s, a)∥∥ ≤ 1 and

∥∥ψ(s, a, w)∥∥ ≤ 1 for all (s, a, w) ∈ S ×A×W. Then

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d2 log

(
1 + 8B2

√
d

λϵ2

)
.
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Proof. First, we reparametrize V by letting Ỹ = β2Y. We have

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+

√
ϕ(., a)⊤Ỹϕ(., a), H

}
,

for ∥z∥ ≤ z, and
∥∥∥Ỹ∥∥∥ ≤ B2

λ
. For any two functions V1, V2 ∈ V with parameters

(
z1, Ỹ1

)
and(

z2, Ỹ2
)
, respectively, we have

dist(V1, V2) ≤ sup
(s,a)∈S×A

∣∣∣∣∣
[〈

z1,ψ(s, a, w)
〉
+

√
ϕ(s, a)⊤Ỹ1ϕ(s, a)

]
−
[〈

z2,ψ(s, a, w)
〉
+

√
ϕ(s, a)⊤Ỹ2ϕ(s, a)

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1,ϕ:∥ϕ∥≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+

√
ϕ⊤Ỹ1ϕ

]
−
[〈

z2,ψ
〉
+

√
ϕ⊤Ỹ2ϕ

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1

∣∣∣∣〈z1 − z2,ψ
〉∣∣∣∣+ sup

ϕ:∥ϕ∥≤1

√∣∣∣∣ϕ⊤
(
Ỹ1 − Ỹ2

)
ϕ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥∥z1 − z2

∥∥∥+√∥∥∥Ỹ1 − Ỹ2
∥∥∥

≤
∥∥∥z1 − z2

∥∥∥+√∥∥∥Ỹ1 − Ỹ2
∥∥∥
F
. (D.52)

Let Cz be an ϵ/2-cover of {z ∈ Rd′ :∥z∥ ≤ z} with respect to the 2-norm, and CY be an

ϵ2/4-cover of {Y ∈ Rd×d :∥Y∥F ≤
B2

√
d

λ
}, with respect to the Frobenius norm. By Lemma

34, we know

|Cz| ≤ (1 + 4z/ϵ)d
′
, |CY| ≤

(
1 + 8B2

√
d

λϵ2

)d2

.

According to (D.52), it holds that Nϵ(V) ≤|Cz||CY|, and therefore

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d2 log

(
1 + 8B2

√
d

λϵ2

)
.

Lemma 37. For a fixed w, let V denote a class of functions mapping from S to R with

following parametric form

V (.) = min

{
max
a∈A

{〈
z,ψ(., a, w)

〉
+ 2Lβ

√
ϕ(., a)⊤Yϕ(., a) + β̃

√
ϕ(., a, w)⊤Ỹϕ(., a, w)

}+

, H

}
,

where the parameters β, β̃ ∈ R, z ∈ Rd′, Y ∈ Rd×d and Ỹ ∈ Rd′×d′ satisfy 0 ≤ β ≤ B,

0 ≤ β̃ ≤ B̃ ∥z∥ ≤ z, ∥Y∥ ≤ λ−1 and
∥∥∥Ỹ∥∥∥ ≤ λ−1. Assume

∥∥ϕ(s, a)∥∥ ≤ 1 and
∥∥ψ(s, a, w)∥∥ ≤ 1
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for all (s, a, w) ∈ S ×A×W. Then

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d2 log

(
1 + 8B2

√
d

λϵ2

)
+ d′

2
log

(
1 + 8B̃2

√
d′

λϵ2

)
.

Proof. First, we reparametrize V by letting Z = β2Y and Z̃ = β̃2Ỹ. We have

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+
√
ϕ(., a)⊤Zϕ(., a) +

√
ϕ(., a)⊤Z̃ϕ(., a), H

}
,

for ∥z∥ ≤ z, ∥Z∥ ≤ B2

λ
, and

∥∥∥Z̃∥∥∥ ≤ B̃2

λ
. For any two functions V1, V2 ∈ V with parameters(

z1,Z1, Z̃1
)
and

(
z2,Z2, Z̃2

)
, respectively, we have

dist(V1, V2) ≤ sup
(s,a)∈S×A

∣∣∣∣∣
[〈

z1,ψ(s, a, w)
〉
+
√
ϕ(s, a)⊤Z1ϕ(s, a) +

√
ψ(s, a, w)⊤Z̃1ψ(s, a, w)

]

−
[〈

z2,ψ(s, a, w)
〉
+
√
ϕ(s, a)⊤Z2ϕ(s, a) +

√
ψ(s, a, w)⊤Z̃2ψ(s, a, w)

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1,ϕ:∥ϕ∥≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+

√
ϕ⊤Z1ϕ+

√
ψ⊤Z̃1ψ

]
−
[〈

z2,ψ
〉
+

√
ϕ⊤Z2ϕ+

√
ψ⊤Z̃2ψ

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1

∣∣∣∣〈z1 − z2,ψ
〉∣∣∣∣+ sup

ϕ:∥ϕ∥≤1

√∣∣∣ϕ⊤ (Z1 − Z2)ϕ
∣∣∣+ sup

ψ:∥ϕ∥≤1

√∣∣∣∣ψ⊤
(
Z̃1 − Z̃2

)
ψ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥∥z1 − z2

∥∥∥+√∥Z1 − Z2∥+
√∥∥∥Z̃1 − Z̃2

∥∥∥
≤
∥∥∥z1 − z2

∥∥∥+√∥Z1 − Z2∥F +

√∥∥∥Z̃1 − Z̃2
∥∥∥
F
. (D.53)

Let Cz be an ϵ/2-cover of {z ∈ Rd′ :∥z∥ ≤ z} with respect to the 2-norm, CZ be an ϵ2/4-

cover of {Z ∈ Rd×d :∥Z∥F ≤
B2

√
d

λ
}, and CZ̃ be an ϵ2/4-cover of {Z̃ ∈ Rd′×d′ :

∥∥∥Z̃∥∥∥
F
≤ B̃2

√
d

λ
}

with respect to the Frobenius norm. By Lemma 34, we know

|Cz| ≤ (1 + 4z/ϵ)d
′
, |CZ| ≤

(
1 + 8B2

√
d

λϵ2

)d2

,
∣∣CZ̃∣∣ ≤

(
1 + 8B̃2

√
d′

λϵ2

)d′2

.

According to (D.53), it holds that Nϵ(V) ≤|Cz||CY|, and therefore

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d2 log

(
1 + 8B2

√
d

λϵ2

)
+ d′

2
log

(
1 + 8B̃2

√
d′

λϵ2

)
.
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Lemma 38. Let V denote a class of functions mapping from S to R with following parametric

form

V (., .) = min

{
max
a∈A

{〈
z,ψ(., a, .)

〉
+ 2Lβ

√
ψ(., a, .)⊤Yψ(., a, .)

}+

, H

}
,

where the parameters β ∈ R, z ∈ Rd′ and Y ∈ Rd′×d′ satisfy 0 ≤ β ≤ B, ∥z∥ ≤ z, and

∥Y∥ ≤ λ−1. Assume
∥∥ψ(s, a, w)∥∥ ≤ 1 for all (s, a, w) ∈ S ×A×W. Then

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d′

2
log

(
1 + 8B2

√
d′

λϵ2

)
.

Proof. First, we reparametrize V by letting Ỹ = β2Y. We have

V (., .) = min

{
max
a∈A

〈
z,ψ(., a, .)

〉
+

√
ψ(., a, .)⊤Ỹψ(., a, .), H

}
,

for ∥z∥ ≤ z, and
∥∥∥Ỹ∥∥∥ ≤ B2

λ
. For any two functions V1, V2 ∈ V with parameters

(
z1, Ỹ1

)
and(

z2, Ỹ2
)
, respectively, we have

dist(V1, V2) ≤ sup
(s,a,w)∈S×A×W

∣∣∣∣∣
[〈
z1,ψ(s, a, w)

〉
+

√
ψ(s, a)⊤Ỹ1ψ(s, a)

]

−
[〈

z2,ψ(s, a, w)
〉
+

√
ψ(s, a, w)⊤Ỹ2ψ(s, a, w)

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+

√
ψ⊤Ỹ1ψ

]
−
[〈

z2,ψ
〉
+

√
ψ⊤Ỹ2ψ

]∣∣∣∣∣
≤ sup
ψ:∥ψ∥≤1

∣∣∣〈z1 − z2,ψ
〉∣∣∣+ sup

ψ:∥ψ∥≤1

√∣∣∣∣ψ⊤
(
Ỹ1 − Ỹ2

)
ψ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥z1 − z2

∥∥+√∥∥∥Ỹ1 − Ỹ2

∥∥∥
≤
∥∥z1 − z2

∥∥+√∥∥∥Ỹ1 − Ỹ2

∥∥∥
F
. (D.54)

Let Cz be an ϵ/2-cover of {z ∈ Rd′ : ∥z∥ ≤ z} with respect to the 2-norm, and CY be an

ϵ2/4-cover of {Y ∈ Rd′×d′ :∥Y∥F ≤
B2

√
d′

λ
}, with respect to the Frobenius norm. By Lemma

34, we know

|Cz| ≤ (1 + 4z/ϵ)d
′
, |CY| ≤

(
1 + 8B2

√
d′

λϵ2

)d′2

.

179



According to (D.54), it holds that Nϵ(V) ≤|Cz||CY|, and therefore

log
(
Nϵ(V)

)
≤ d′ log(1 + 4z/ϵ) + d′

2
log

(
1 + 8B2

√
d′

λϵ2

)
.

D.8 Details of the Experiments

In all the experiments, we have chosen δ = 0.01, λ = 1, d = 5, and H = 5. The parameters

{ηh}h∈[H] are drawn from N (0, Id′). In order to tune parameters {µh(.)}h∈[H] and the

feature mappings ϕ such that they are compatible with Assumption 1, we consider that

the feature space {ϕ(s, a) : (s, a) ∈ S × A} is a subset of the d-dimensional simplex,

{ϕ ∈ Rd :
∑d

i=1ϕi = 1,ϕi ≥ 0,ϕi ≤ 1,∀i ∈ [d]}, and e⊤i µh(.) is an arbitrary probability

measure over S for all i ∈ [d].

The results shown in Figure D.1a depict averages over 50 realizations for the main setup

considered throughout the chapter with m = 5 and the results shown in Figure D.1b depict

averages over 50 realizations, for the more general setup of Remark 3 with d′ = 10. For

the results shown in Figure D.1a, the mappings ρ(w) are drawn from N (0, Im) except for

the n = m representative tasks {w(j)}j∈[m] introduced in Assumption 15, for which we set

ρ(w(j)) = ej for j ∈ [m]. For the results shown in Figure D.1b, the mappings ψ(s, a, w) are

drawn from N (0, Id′) and we set ψ(s, a, w(j)) = ej for j ∈ [d′], where {w(j)}j∈[d′] are n = d′

representative tasks introduced in Assumption 20 in Appendix D.4. The parameters {ηh}h∈[H]

are drawn from N (0, Id′), where d′ = m× d = 25 in Figure D.1a. In our experiments, the

exact same settings are used for both UCBlvd and Lifelong-LSVI in both Figures D.1a and

D.1b. We chose fairly large d, m, and d′ and by checking online, we noticed that the optimal

value of QCQP in (5.8) happens always to be zero. All these together suggest that the

assumptions made in the chapter approximately hold. Figures D.1a and D.1b depict the

average per-episode reward of UCBlvd and state the average number of planning calls and

compare them to those of baseline algorithm Lifelong-LSVI, a direct extension of LSVI-UCB

in [64]. The results emphasize the value of UCBlvd in terms of requiring much smaller
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numbers of planning calls. The plots verify that the performances of Lifelong-LSVI and

UCBlvd are almost the same statistically, while UCBlvd uses much smaller numbers of

planning calls (1000 vs ∼ 20).

In Figure D.2, we plot UCBlvd’s number of planning calls for different number of task

episodes, K, while the setting is same as that in D.1a. In this figure, we empirically verify

the logarithmic dependence of number of planning calls on K as suggested by Theorem 10.
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(a) Setting of Theorem 10, d = 5, m = 5,

d′ = 25
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(b) Setting of Remark 3, d = 5, d′ = 10

Figure D.1: UCBlvd vs Lifelong-LSVI
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Figure D.2: Setting of Theorem 10, d = 5, m = 5, d′ = 25
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APPENDIX E

Proofs for Chapter 6

E.1 Proof of Lemma 8

Let µ ∼ Unif(µ1,µ2), where µ1 = [∆, 0]⊤,µ2 = [−∆, 0]⊤, z = {zt}Tt=1 be the set of

arm 1’s reward, H = {at, yt}Tt=1 be the history over the course of T rounds, where at

is the arm pulled and yt is the observed reward at round t, a∗ = argmaxa∈{1,2}µa, and

â ∼ Unif({a1, a2, . . . , aT}). We have

BRT (π) = E[RT (π,µ)] = E[
T∑
t=1

1(â ̸= a∗)∆]

= ∆TP(â ̸= a∗). (⋆)

Now, we lower bound P(â ̸= a∗) as follows
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P(â ̸= a∗) =
∑

a∈{1,2}

P(a∗ = a)P(â ̸= a|a∗ = a)

=
∑

a∈{1,2}

P(a∗ = a)
[
P(â ̸= a) + P(â = a)− P(â = a|a∗ = a)

]
≥
∑

a∈{1,2}

P(a∗ = a)

[
P(â ̸= a)−

√
1

2
DKL(Pâ|a∗=a,Pâ)

]
(Pinsker’s inequality)

=
1

2
−
∑

a∈{1,2}

P(a∗ = a)

√
1

2
DKL(Pâ|a∗=a,Pâ)

≥ 1

2
−
√

1

2

∑
a∈{1,2}

P(a∗ = a)DKL(Pâ|a∗=a,Pâ) (Jensen’s inequality)

=
1

2
−
√

1

2
I(â; a∗)

≥ 1

2
−
√

1

2
I(M,H; a∗) (Data processing)

≥ 1

2
−
√

1

2

(
I(M ; a∗) + I(H; a∗)

)
≥ 1

2
−

√
1

2

(
1

16
+ I(H; a∗)

)
. (⋆⋆)

In our next step towards lower bounding P(â ≠ a∗), we upper bound I(H; a∗), as follows

I(H; a∗) ≤ I(z; a∗) (Data processing)

=
∑

a∈{1,2}

1

2
DKL(P(z|a∗ = a),P(z))

≤
∑

b∈{1,2}

∑
a∈{1,2}

1

2
DKL

(
P(z|a∗ = a),P(z|a∗ = b)

)
=

1

2
DKL

(
P(z|a∗ = 1),P(z|a∗ = 2)

)
+

1

2
DKL

(
P(z|a∗ = 2),P(z|a∗ = 1)

)
=

1

2

[
T (2∆)2 + T (2∆)2

]
= 4T∆2. (⋆⋆⋆)
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Combining ⋆, ⋆⋆, and ⋆⋆⋆, we have

BRT (π) ≥ ∆T

1

2
−

√
1

2

(
1

16
+ 4T∆2

) ,

which concludes the lemma.

E.2 Proof of Theorem 12

In this section, we give a complete outline of the proof of Theorem 12 which starts with the

proof of Lemma 9.

E.2.1 Proof of Lemma 9

For each batch m ∈ [M ], let bm =
∑Tm−1+Tm/2

t=Tm−1+1

∑N
i=1 x

i
ty

i
t and Vm =

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤
.

We have

Λi
m = λI+

NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]

= λI+
NTm

4

(
2EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤] + 6γI

)
− 1.5NTmγI. (E.1)

By choosing γ =
3 log( 4dT

δ
)

NTm
and λ = 5 log

(
4dT
δ

)
, combining (E.1) and Lemma 44, for all

m ∈ [M ], with probability at least 1− δ/2, we have

Λi
m ⪰

(
λ− 5 log

(
4dT

δ

))
I +

1

2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
i=1

xi
tx

i
t

⊤

=
1

2
Vm. (E.2)

Moreover, for a fixed x ∈ X i
t and (i, t) ∈ [N ] × [T ], let zj,it,m =
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x⊤
(
Λi

m

)−1 (
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)
. Thus, we have

∣∣∣∣〈x,θim − θ〉∣∣∣∣ =
∣∣∣∣∣
〈
x,
(
Λi

m

)−1

bm − θ
〉∣∣∣∣∣

=

∣∣∣∣∣
〈
x,
(
Λi

m

)−1

bm

〉
−
〈
x,
(
Λi

m

)−1

Λi
mθ

〉∣∣∣∣∣
≤

∣∣∣∣∣
〈
x,
(
Λi

m

)−1

bm

〉
−
〈
x,
(
Λi

m

)−1 (
Λi

m − λI
)
θ

〉∣∣∣∣∣+
∣∣∣∣λ⟨x,(Λi

m

)−1

θ⟩
∣∣∣∣

≤

∣∣∣∣∣x⊤
(
Λi

m

)−1
(
bm −

NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ

)∣∣∣∣∣+√λ∥x∥(Λi
m)

−1

(Cauchy Schwarz inequality and Assumption 16)

=

∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣+√λ∥x∥(Λi
m)

−1 .

Note that

E
[
zj,it,m

]
= E

[
x⊤
(
Λi

m

)−1 (
xj
t(x

j
t

⊤
θ + ηjt )− EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)]

= 0,

(Noise ηjt is zero-mean and independent of xj
t)

By Azuma’s inequality, for a fixed x ∈ X i
t and (i, t) ∈ [N ]× [T ], we have

P


∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣ ≥ α∥x∥
(Λi

m)
−1

 ≤ 2exp

−α2∥x∥2
(Λi

m)
−1

2cim

 , (E.3)
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where

cim =

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λi

m

)−1 (
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λi

m

)−1

xj
ty

j
t

∣∣∣∣2 +NTm

∣∣∣∣x⊤
(
Λi

m

)−1

EX∼Di
m
Ex∼πi

m−1(X )[xx
⊤]θ

∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λi

m

)−1

xj
t

∣∣∣∣2 + 4

NTm

∣∣∣∣x⊤
(
Λi

m

)−1 (
Λi

m − λI
)
θ

∣∣∣∣2 (Assumption 16)

= 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

x⊤
(
Λi

m

)−1

xj
tx

j
t

⊤
(
Λi

m

)−1

x+
4

NTm

∣∣∣∣x⊤θ − λx⊤
(
Λi

m

)−1

θ

∣∣∣∣2

≤ 2x⊤
(
Λi

m

)−1

Vm

(
Λi

m

)−1

x+

4∥θ∥2Λi
m

NTm

+
4λ

NTm

∥x∥2
(Λi

m)
−1

(Cauchy Schwarz inequality and Assumption 16)

≤ 4x⊤
(
Λi

m

)−1

Λi
m

(
Λi

m

)−1

x+

4∥θ∥2Λi
m

NTm

+
4λ

NTm

∥x∥2
(Λi

m)
−1

(Conditioned on the event in Eqn. (E.2))

≤
(
6 +

8λ

NTm

)
∥x∥2

(Λi
m)

−1 , (E.4)

where the last inequity follows from the fact that

∥θ∥2Λi
m
≤∥θ∥22 λmax

(
Λi

m

)
≤ λ+

NTm

2
. (Assumption 16)

Combining (E.3) and (E.4), and by a union bound, we have

P

∣∣∣∣〈x,θim − θ〉∣∣∣∣ ≤
6

√
log

(
2KNT

δ

)
+
√
λ

∥x∥(Λi
m)

−1 , ∀x ∈ X i
t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

 ≥ 1− δ.

(E.5)

E.2.2 Completing the Proof of Theorem 12

Next, we state the following lemma, which we borrow from Theorem 5 in [103] and is used in

the proof analysis of Theorem 12.
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Lemma 39 ([103]). Let X1,X2, . . . ,XL ∼ D be i.i.d drawn from a distribution D and input

of Algorithm 14 and let π be the output policy of Algorithm 14. For any λ ∈ (0, 1), we have

P
[
Vλ

D(π) ≤ O
(√

d log d log(λ−1)
)]
≥ 1− exp

(
O(d3 log d log(dλ−1))− Ld−2c2−16

)
,

where we define the λ-deviation of policy π over D by

Vλ
D(π) := EX∼D

[
max
x∈X

√
x⊤
(
λI+ EX∼DEy∼π(X )[yy⊤]

)−1
x

]
. (E.6)

Corollary 2. As a direct corollary of Lemma 39, if T ≥

Ω
(
d22 log2(NT

δ
) log2 d log2(dNTλ−1)

)
, then for all m ≥ 2 and i ∈ [N ], with probabil-

ity at least 1− δ, it holds that

V
( 2λ
NTm

)

Di
m

(πi
m−1) ≤ O(

√
d log d log(NTλ−1)). (E.7)

Now, we focus on the regret of the i-th agent at m-th batch for any m ≥ 3. Let Di
m be the

distribution based on which the surviving sets X i(m)
t for all t ∈ [Tm−1 + 1 : Tm] are generated

when conditioned on the first m− 1 batches. For any t ∈ [Tm−1 + 1 : Tm], conditioned on the

event that the confidence intervals in Lemma 9 hold, we have

rit = E
[
⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩
]

≤ E

[
⟨θim−1,x

i
∗,t⟩ − ⟨θim−1,x

i
t⟩+ β

∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1 + β

∥∥∥xi
t

∥∥∥
(Λi

m−1)
−1

]
(Lemma 9)

≤ 2βE

[∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1 +

∥∥∥xi
t

∥∥∥
(Λi

m−1)
−1

]
(xi

∗,t ∈ X
i(m)
t )

≤ 4βE

[
max

x∈X i(m)
t

∥x∥
(Λi

m−1)
−1

]

≤ 4βEX∼Di
m

[
max
x∈X
∥x∥

(Λi
m−1)

−1

]
≤ 4βEX∼Di

m−1

[
max
x∈X
∥x∥

(Λi
m−1)

−1

]

≤ 8β√
NTm−1

EX∼Di
m−1

max
x∈X

√
x⊤
(

2λ

NTm−1

I + EX∼Di
m−1

Ey∼πi
m−2(X )[yy

⊤]

)−1

x


=

8β√
NTm−1

V
( 2λ
NTm−1

)

Di
m−1

(πi
m−2), (E.8)
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where the third inequality follows from our established confidence intervals in Lemma 9

guaranteeing that xi
∗,t ∈ X

i(m)
t for all (i, t,m) ∈ [N ]× [Tm−1 + 1 : Tm]× [M ] with probability

at least 1− δ. Now, continuing form (E.8), we bound the cumulative regret of batches m ≥ 3,

as follows:

T∑
t=T2+1

N∑
i=1

rit ≤
M∑

m=3

8βNTm√
NTm−1

V
( 2λ
NTm−1

)

Di
m−1

(πi
m−2)

≤ 8β
√
dN log d log(NTλ−1)

M∑
m=2

Tm√
Tm−1

(Conditioned on the event in Eqn. (E.7))

= 8βMa
√

dN log d log(NTλ−1). (E.9)

Next, we bound cumulative regret of the first two batches. Under Assumption 16, during

the first two batches, the instantaneous regret of each agent i at any round t is at most 2.

Therefore

T2∑
t=1

N∑
i=1

rit ≤ 2NT2 = 4a
√
dN. (E.10)

Note that for any m ≥ 3, we can write Tm as

Tm = aT
1
2
m−1 = a

3
2T

1
4
m−2 = . . . = a

2m−2−1

2m−3 T
1

2m−2

2

Tm = a
1

2m−2 a
2m−2−1

2m−3

(
T2

a

) 1
2m−2

= a
2m−1−1

2m−2

(√
d

N

) 1
2m−2

=

(
a2

m−1−1d
1
2

N
1
2

) 1
2m−2

.

Our choice of a in the algorithm ensures that for any M > 0, TM = T and
∑M

m=1 Tm ≥

TM = T , and thus the choice of grid {T1, . . . , TM} is valid. If we letM = 1+log

(
log(NT

d )
2

+ 1

)
,
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from (E.9) and (E.10), we conclude that, with probability at least 1− 2δ, it holds that

RT ≤ 4
√
dNT

(
NT

d

) 1

2(2M−1−1)

+ 8βM
√

dNT log d log(NTλ−1)

(
NT

d

) 1

2(2M−1−1)

≤ O

√dNT log d log2
(
KNT

δλ

)
log log

(
NT

d

) . (E.11)

E.2.3 Communication Cost as Number of Bits Transmitted

In this section, we consider the number of bits transmitted in a slightly modified version of

DisBE-LUCB. To this end, we make the following minor modification to DisBE-LUCB. Let

ϵ0 be an additional input to the algorithm. In Line 9 of DisBE-LUCB, agent i sends vector

ũi
m which is an ϵ0-precise rounded version of ui

m. In particular, if it rounds each entry of

ui
m with precision ϵ0, vector ũ

i
m will be obtained. Now, we observe how this extra rounding

step affects confidence intervals in Lemma 9. In fact, we are interested in upper bounds on∣∣∣∣〈x, θ̃im − θ〉∣∣∣∣, where θ̃im =
(
Λi

m

)−1∑N
i=1 ũ

i
m.

For δ ∈ (0, 1), let β = 6
√

log
(
2KNT

δ

)
+
√
λ. Then for all x ∈ X i

t , i ∈ [N ], t ∈ [T ],m ∈ [M ],

with probability at least 1− δ, it holds that∣∣∣∣〈x, θ̃im − θ〉∣∣∣∣ = ∣∣∣∣〈x, θ̃im − θim + θim − θ
〉∣∣∣∣

≤
∣∣∣∣〈x, θ̃im − θim〉∣∣∣∣+∣∣∣∣〈x,θim − θ〉∣∣∣∣
≤
(∥∥∥θ̃im − θim∥∥∥

Λi
m

+ β

)
∥x∥

(Λi
m)

−1

(Lemma 9 and Cauchy Schwarz inequality)

≤
(√

Λmax(Λ
i
m)
∥∥∥θ̃im − θim∥∥∥

2
+ β

)
∥x∥

(Λi
m)

−1

≤
(
N
√
dTϵ0 + β

)
∥x∥

(Λi
m)

−1 . (E.12)

Therefore, letting ϵ0 =
β

N
√
dT
, we have∣∣∣∣〈x, θ̃im − θ〉∣∣∣∣ ≤ 2β∥x∥

(Λi
m)

−1 , (E.13)

which implies that replacing β in DisBE-LUCB with 2β, will result in the same order of regret

as that of DisBE-LUCB for our modified algorithm. Moreover, since for transmission of each

189



real number log(dNT ) bits is used, the communication cost of our modified algorithm in

terms of number of bits is same as that stated in Theorem 12 with an additional multiplicative

factor log(dNT ).

E.2.4 Relaxing the Assumption on Knowledge of D

In this section, we relax this assumption and consider more realistic settings where each agent

i can estimate matrix Λi
m in batch m up to an ϵm error, i.e.,

(1− ϵm)Λ
i
m ⪯ Λ̃

i

m ⪯ (1 + ϵm)Λ
i
m, (E.14)

where Λ̃
i

m is an estimation of Λi
m. Given this estimation, we define

θ̃
i

m =
(
Λ̃

i

m

)−1
N∑
j=1

uj
m, (E.15)

as the new estimation of θ computed by agent i at batch m in this modified version of

DisBE-LUCB.

We note that if the inequalities hold component-wise, i.e., (1−ϵm)Λi
m ≤ Λ̃

i

m ≤ (1+ϵm)Λ
i
m,

this concludes that (E.14) holds. This is because for any positive semi-definite matrices A,

B, and C such that A = B+C, we have:

A ⪰ B, A ⪰ C. (E.16)

This combined with the fact that all (1 − ϵm)Λ
i
m, Λ̃

i

m, and (1 + ϵm)Λ
i
m are positive semi-

definite symmetric matrices ensures that (E.14) holds if (1− ϵm)Λ
i
m ≤ Λ̃

i

m ≤ (1+ ϵm)Λ
i
m, and

therefore, (E.14) is a weaker assumption than the component-wise assumption (1− ϵm)Λ
i
m ≤

Λ̃
i

m ≤ (1 + ϵm)Λ
i
m.

Now, we define corresponding modified confidence intervals in the following lemma.

Lemma 40. Suppose ∥θ∥2 ≤ 1,
∥∥∥xi

t,a

∥∥∥
2
≤ 1,

∣∣yit∣∣ ≤ 1 for all (a, i, t) ∈ [K] × [N ] × [T ]

and ϵm ≤
√

λ
NTm

for all m ∈ [M ]. For δ ∈ (0, 1), let βm = 6

√
log( 2KNT

δ )
1−ϵm

+ 4
√
λ. Then

for all x ∈ X i
t , i ∈ [N ], t ∈ [T ],m ∈ [M ], with probability at least 1 − δ, it holds that∣∣∣∣〈x, θ̃im − θ〉∣∣∣∣ ≤ βm∥x∥(

Λ̃
i
m

)−1.
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Proof. The proof closely follows the steps in the proof of Lemma 9. For each batch m ∈ [M ],

let bm =
∑Tm−1+Tm/2

t=Tm−1+1

∑N
i=1 x

i
ty

i
t and Vm =

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤
. For a fixed x ∈ X i

t and

(i, t) ∈ [N ]× [T ], let zj,it,m = x⊤
(
Λ̃

i

m

)−1 (
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)
. Thus, we have

∣∣∣∣〈x, θ̃im − θ〉∣∣∣∣ =
∣∣∣∣∣
〈
x,
(
Λ̃

i

m

)−1

bm − θ
〉∣∣∣∣∣

=

∣∣∣∣∣
〈
x,
(
Λ̃

i

m

)−1

bm

〉
−
〈
x,
(
Λ̃

i

m

)−1

Λ̃
i

mθ

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
x,
(
Λ̃

i

m

)−1

bm

〉
−
〈
x,
(
Λ̃

i

m

)−1 (
Λi

m − λI
)
θ

〉
+

〈
x,
(
Λ̃

i

m

)−1 (
Λi

m − Λ̃
i

m − λI
)
θ

〉∣∣∣∣∣
≤

∣∣∣∣∣
〈
x,
(
Λ̃

i

m

)−1

bm

〉
−
〈
x,
(
Λ̃

i

m

)−1 (
Λi

m − λI
)
θ

〉∣∣∣∣∣+
∣∣∣∣∣
〈
x,
(
Λ̃

i

m

)−1 (
Λi

m − Λ̃
i

m − λI
)
θ

〉∣∣∣∣∣
≤

∣∣∣∣∣x⊤
(
Λ̃

i

m

)−1
(
bm −

NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ

)∣∣∣∣∣+ 4
√
λ∥x∥(

Λ̃
i
m

)−1

(Cauchy Schwarz inequality)

=

∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣+ 4
√
λ∥x∥(

Λ̃
i
m

)−1 , (E.17)
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where the second inequality follows from

∥θ∥(
Λ̃

i
m

)−1(
Λi

m−Λ̃
i
m−λI

)2 =

√
θ⊤
(
Λ̃

i

m

)−1 (
Λi

m − Λ̃
i

m − λI
)2
θ

≤∥θ∥2

√
λmax

((
Λ̃

i

m

)−1 (
Λi

m − Λ̃
i

m − λI
)2)

≤

√
λmax

((
Λ̃

i

m

)−1 (
Λi

m − Λ̃
i

m

)2
+ λ2

(
Λ̃

i

m

)−1
)

(∥θ∥2 ≤ 1)

≤

√
λmax

((
Λ̃

i

m

)−1 (
Λi

m − Λ̃
i

m

)2
+ λ2

(
Λ̃

i

m

)−1
)

≤

√
λmax

((
Λ̃

i

m

)−1 (
Λi

m − Λ̃
i

m

)2)
+
√
λ

(Cauchy Schwarz inequality)

≤ ϵm

√
λmax

(
Λ̃

i

m

)
+
√
λ (Eqn. (E.14))

≤ 2ϵm

√
λmax

(
Λi

m

)
+
√
λ (Eqn. (E.14))

≤ ϵm
√
NTm + 3

√
λ

≤ 4
√
λ. (ϵm ≤

√
λ

NTm
)

Note that

E
[
zj,it,m

]
= E

[
x⊤
(
Λ̃

i

m

)−1 (
xj
t(x

j
t

⊤
θ + ηjt )− EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)]

= 0,

(Noise ηjt is zero-mean and independent of xj
t)

By Azuma’s inequality, for a fixed x ∈ X i
t and (i, t) ∈ [N ]× [T ], we have

P


∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣ ≥ α∥x∥(
Λ̃

i
m

)−1

 ≤ 2exp

−α2∥x∥2(
Λ̃

i
m

)−1

2cim

 , (E.18)
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where

cim =

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λ̃

i

m

)−1 (
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λ̃

i

m

)−1

xj
ty

j
t

∣∣∣∣2 +NTm

∣∣∣∣x⊤
(
Λ̃

i

m

)−1

EX∼Di
m
Ex∼πi

m−1(X )[xx
⊤]θ

∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λ̃

i

m

)−1

xj
t

∣∣∣∣2 + 4

NTm

∣∣∣∣x⊤
(
Λ̃

i

m

)−1 (
Λi

m − λI
)
θ

∣∣∣∣2

= 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

x⊤
(
Λ̃

i

m

)−1

xj
tx

j
t

⊤ (
Λ̃

i

m

)−1

x+
4

NTm

∣∣∣∣x⊤
(
Λ̃

i

m

)−1 (
Λi

m

)
θ − λx⊤

(
Λ̃

i

m

)−1

θ

∣∣∣∣2
≤ 2x⊤

(
Λ̃

i

m

)−1

Vm

(
Λ̃

i

m

)−1

x+
1

1− ϵm

(
4 +

8λ

NTm

)
∥x∥2(

Λ̃
i
m

)−1 (Cauchy Schwarz inequality)

≤ 4x⊤
(
Λ̃

i

m

)−1

Λi
m

(
Λ̃

i

m

)−1

x+
1

1− ϵm

(
4 +

8λ

NTm

)
∥x∥2(

Λ̃
i
m

)−1

(Conditioned on the event in Eqn. (E.2))

≤ 4

1− ϵm
x⊤
(
Λ̃

i

m

)−1

x+
1

1− ϵm

(
4 +

8λ

NTm

)
∥x∥2(

Λ̃
i
m

)−1 ((1− ϵm)Λi
m ⪯ Λ̃

i

m)

=
8

1− ϵm

(
1 +

λ

NTm

)
∥x∥2(

Λ̃
i
m

)−1

≤ 16

1− ϵm
∥x∥2(

Λ̃
i
m

)−1 , (E.19)

where the third inequity follows from the fact that

θ⊤
(
Λi

m

(
Λ̃

i

m

)−1

Λi
m

)
θ ≤∥θ∥2 λmax

(
Λi

m

(
Λ̃

i

m

)−1

Λi
m

)
≤ λmax

(
Λi

m

(
Λ̃

i

m

)−1

Λi
m

)
(∥θ∥2 ≤ 1)

≤ 1

1− ϵm
λmax

(
Λi

m

)
((1− ϵm)Λ

i
m ⪯ Λ̃

i

m)

≤ λ+NTm

1− ϵm
.

Combining (E.17), (E.18) and

(E.19), and by a union bound, we have

P


∣∣∣∣〈x,θim − θ〉∣∣∣∣ ≤

6

√√√√ log
(

2KNT
δ

)
1− ϵm

+ 4
√
λ

∥x∥(Λ̃i
m

)−1 , ∀x ∈ X i
t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

 ≥ 1− δ.

(E.20)
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Now, we state the regret bound for DisBE-LUCB with Λ̃
i

m and θ̃
i

m.

Theorem 20. Fix M = 1 + log
(
log
(
NT/d

)
/2 + 1

)
. Under the setting of Lemma 40,

if T ≥ Ω
(
d22 log2(NT/δ) log2 d log2(dλ−1)

)
and β = maxm∈[M ] βm, then with probability at

least 1−2δ, it holds that RT ≤ O
(

1
1−maxm∈[M ] ϵm

√
dNT log d log2

(
KNT
δλ

)
log log

(
NT
d

))
, where

the communication cost is measured by the number of real numbers communicated by the

agents.

Proof. The proof follows similar steps to those in the proof of Theorem 12.

We focus on the regret of the i-th agent at m-th batch for any m ≥ 3. Let Di
m be the

distribution based on which the surviving sets X i(m)
t for all t ∈ [Tm−1 + 1 : Tm] are generated

when conditioned on the first m− 1 batches. For any t ∈ [Tm−1 + 1 : Tm], conditioned on the

event that the confidence intervals in Lemma 9 hold, we have

rit = E
[
⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩
]

≤ E

[
⟨θ̃im−1,x

i
∗,t⟩ − ⟨θ̃

i

m−1,x
i
t⟩+ β

∥∥∥xi
∗,t

∥∥∥(
Λ̃

i
m−1

)−1 + β
∥∥∥xi

t

∥∥∥(
Λ̃

i
m−1

)−1

]
(Lemma 40)

≤ 2βE

[∥∥∥xi
∗,t

∥∥∥(
Λ̃

i
m−1

)−1 +
∥∥∥xi

t

∥∥∥(
Λ̃

i
m−1

)−1

]
(xi

∗,t ∈ X
i(m)
t )

≤ 4βE

[
max

x∈X i(m)
t

∥x∥(
Λ̃

i
m−1

)−1

]

≤ 4βEX∼Di
m

[
max
x∈X
∥x∥(

Λ̃
i
m−1

)−1

]

≤ 4βEX∼Di
m−1

[
max
x∈X
∥x∥(

Λ̃
i
m−1

)−1

]

≤ 4β√
1− ϵm

EX∼Di
m−1

[
max
x∈X
∥x∥

(Λi
m−1)

−1

]
((1− ϵm)Λ

i
m ⪯ Λ̃

i

m)

≤ 8β√
NTm−1(1− ϵm)

EX∼Di
m−1

max
x∈X

√
x⊤
(

2λ

NTm−1

I + EX∼Di
m−1

Ey∼πi
m−2(X )[yy

⊤]

)−1

x


=

8β√
NTm−1(1− ϵm)

V
( 2λ
NTm−1

)

Di
m−1

(πi
m−2), (E.21)

where the third inequality follows from our established confidence intervals in Lemma 40

guaranteeing that xi
∗,t ∈ X

i(m)
t for all (i, t,m) ∈ [N ]× [Tm−1 + 1 : Tm]× [M ] with probability

194



at least 1− δ. The rest of the proof follows the steps as those in the proof of Theorem 12

with an additional 1√
1−ϵm

multiplicative factor in the bound.

Therefore, we conclude that, with probability at least 1− 2δ, it holds that

RT ≤ 4
√
dNT

(
NT

d

) 1

2(2M−1−1)

+ 8βM

√
dNT log d log(NTλ−1)

1−maxm∈[M ] ϵm

(
NT

d

) 1

2(2M−1−1)

≤ O

 1

1−maxm∈[M ] ϵm

√
dNT log d log2

(
KNT

δλ

)
log log

(
NT

d

) . (E.22)

E.3 Decentralized Batch Elimination LUCB without Server

In this environment, the agents are represented by the nodes of an undirected and connected

graph G. Each agent i can send and receive messages only to and from its immediate

neighbors j ∈ N (i).

Definition 4 (Communication Matrix). For an undirected connected graph G with N nodes,

P ∈ RN×N is a symmetric communication matrix if it satisfies the following three conditions:

(i) Pi,j = 0 if there is no connection between nodes i and j; (ii) the sum of each row and

column of P is 1; (iii) the eigenvalues are real and their magnitude is less than 1, i.e.,

1 = |λ1| > |λ2| ≥ . . . |λN | ≥ 0.

We assume that P is known to the agents. We remark that P can be constructed with

little global information about the graph, such as its adjacency matrix and the graph’s

maximal degree; For example, one can compute it as P = IN − 1
δmax+1

D−1/2LD−1/2, where

δmax is the maximum degree of the graph, L ∈ RN×N is the graph Laplacian, and D ∈ RN×N

is a diagonal matrix whose entries are the degrees of the nodes (see [47] for details).

Running consensus. In order to share information about agents’ past actions among

the network, we rely on running consensus, e.g., [89, 139]. The goal of running consensus

is that after enough rounds of communication, each agent has an accurate estimate of the
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average (over all agents) of the initial values of each agent. Precisely, let ν0 ∈ RN be a vector,

where each entry ν0,i, i ∈ [N ] represents agent’s i information at some initial round. Then,

running consensus aims at providing an accurate estimate of the average 1
N

∑
i∈[N ] ν0,i for

each agent. It turns out that the communication matrix P defined in Definition 4 plays

a key role in reaching consensus. The details are standard in the rich related literature

[139, 89]. Here, we only give a brief explanation of the high-level principles. Roughly

speaking, a consensus algorithm updates ν0 by ν1 = Pν0, ν2 = Pν1 and so on. Note that

this operation respects the network structure since the updated value ν1,j is a weighted

average of only ν0,j itself and neighbor-only values ν0,i, i ∈ N (j). Thus, after S rounds, agent

j has access to entry j of νS = PSν0. We adapt polynomial filtering introduced in [90, 107]

to speed up the mixing of information by following an approach whose convergence rate is

faster than the standard multiplication method above. Specifically, after S communication

rounds, instead of PS, agents compute and apply to the initial vector ν0 an appropriate

re-scaled Chebyshev polynomial qS(P) of degree S of the communication matrix. Recall that

Chebyshev polynomials are defined recursively. It turns out that the Chebyshev polynomial

of degree ℓ for a communication matrix P is also given by a recursive formula as follows:

qℓ+1(P) = 2wℓ

|λ2|wℓ+1
Pqℓ(P)− wℓ−1

wℓ+1
qℓ−1(P), where w0 = 0, w1 = 1/|λ2|, wℓ+1 = 2wℓ/|λ2| − wℓ−1,

q0(P) = I and q1(P) = P. Specifically, in a Chebyshev-accelerated gossip protocol [90], the

agents update their estimates of the average of the initial vector’s ν0 entries as follows:

νℓ+1 = (2wℓ)/(|λ2|wℓ+1)Pνℓ − (wℓ−1/wℓ+1)νℓ−1. (E.23)

DecBE-LUCB, presented in Algorithm 12, implements the Chebyshev-accelerated gossip

protocol outlined above for every entry of vectors ui
m =

∑Tm−1+Tm/2
t=Tm−1+1 xi

ty
i
t at the end of m-th

batch.

The accelerated consensus algorithm, summarized in Algorithm 13, guarantees fast mixing

of information thanks to the following key property stated in Lemma 3 of [90]: for ϵ ∈ (0, 1)

and any vector ν0 in the N -dimensional simplex, it holds that

∥NqS(P)ν0 − 1∥2 ≤ ϵ, if S =
log(2N/ϵ)√
2 log(1/|λ2|)

. (E.24)

196



In view of this, DecBE-LUCB properly implements the accelerated consensus algorithm

such that for every i ∈ [N ] and m ∈ [M ], the vector ui
m is communicated within the network

during the last S rounds of batchm. At round Tm+1, agent i has access to
∑N

j=1 ai,ju
j
m, where

ai,j = N [qS(P)]i,j. Thanks to (E.24), ai,j is ϵ close to 1, thus, these are good approximations

of the true
∑N

j=1 u
j
m. Furthermore, the choice of grid T = {T0, T1, . . . , TM} in DecBE-LUCB

is slightly different than what used in DisBE-LUCB.

E.3.1 Theoretical Guarantees of DecBE-LUCB

As the first step in regret analysis of DecBE-LUCB, we establish the following confidence

intervals.

Lemma 41 (Confidence intervals for DecBE-LUCB). Suppose Assumption 16 holds. Fix

δ ∈ (0, 1) and let ϵ = β√
d
and γ = 2β, where β is defined in Lemma 9. Then

P

(∣∣∣∣〈x, θ̂im − θ〉∣∣∣∣ ≤ γ∥x∥
(Λi

m)
−1 , ∀x ∈ X i

t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

)
≥ 1− δ. (E.25)

Proof. Recall the definition of θim in (6.4). For a fixed x ∈ X i
t and (i, t) ∈ [N ]× [T ], we have∣∣∣∣〈x, θ̂im − θ〉∣∣∣∣ ≤ ∣∣∣∣〈x,θim − θ〉∣∣∣∣+∣∣∣∣〈x, θ̂im − θim〉∣∣∣∣

≤
∣∣∣∣〈x,θim − θ〉∣∣∣∣+∥x∥(Λi

m)
−2

∥∥∥∥∥∥ūm,i −
N∑
j=1

uj
m

∥∥∥∥∥∥
2

(Cauchy Schwarz inequality)

≤
∣∣∣∣〈x,θim − θ〉∣∣∣∣+ ϵ

√
d∥x∥

(Λi
m)

−1

(Assumption 16 and choice of S in (E.24))

=

∣∣∣∣〈x,θim − θ〉∣∣∣∣+ β∥x∥
(Λi

m)
−1 . (E.26)

Combining Lemma 9 and (E.26), we have

P

(∣∣∣∣〈x, θ̂im − θ〉∣∣∣∣ ≤ 2β∥x∥
(Λi

m)
−1 , ∀x ∈ X i

t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

)
≥ 1− δ. (E.27)
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Algorithm 12 DecBE-LUCB for agent i

1: Input: N , d, δ, T , M , λ, ϵ

2: Initialization: S = log(2N/ϵ)√
2 log(1/|λ2|)

, a =
√
T + S

(
N(T+S)

d

) 1

2(2M−1−1) , T1 = T2 = a
√

d
N + S,

Tm = ⌊a
√
Tm−1 − S + S⌋, θi0 = 0, Λi

0 = λI, T0 = 0, Tm = Tm−1 + Tm, λ = 5 log
(
4dT
δ

)
,

γ = 12

√
log
(
2KNT

δ

)
+ 2
√
λ, arbitrary policy πi

0

3: for m = 1, . . . ,M do

4: for t = Tm−1 + 1, . . . ,min{Tm, T} do

5: Let X i(m)
t = ∩m−1

k=0 E
(
X i
t ; (Λ

i
k, θ̂

i

k, γ)

)
6: Play arm ai,t associated with feature vector xi

t ∼ πm−1

(
X i(m)
t

)
and observe yit.

7: end forSet Ki
0 =

∑Tm−1+(Tm−S)/2
t=Tm−1+1 xi

ty
i
t

8: for t = Tm − S + 1 do

9: Let X i(m)
t = ∩m−1

k=0 E
(
X i
t ; (Λ

i
k, θ̂

i

k, γ)

)
10: Play arm ai,t associated with feature vector xi

t ∼ πm−1

(
X i(m)
t

)
and observe yit.

11: Send each entry of Ki
0, i.e., [Ki

0]n, ∀n ∈ [d] to your neighbors N (j) and receive the corre-

sponding values from them. For each n ∈ [d], update [Ki
1]n = Pi,i[Ki

0]n +
∑

j∈N (i)Pi,j [Kj
0]n

12: end for

13: Set s = 1

14: for t = Tm − S + 2, . . . , Tm do

15: Construct set X i(m)
t = ∩m−1

k=0 E
(
X i
t ; (Λ

i
k, θ̂

i

k, γ)

)
.

16: Play arm ai,t associated with feature vector xi
t ∼ πm−1

(
X i(m)
t

)
and observe yit. [Ki

s+1]n =

Comm([Ki
s]n, [Ki

s−1]n, s+ 1), ∀n ∈ [d]

17: s = s+ 1

18: end for

19: Compute/construct

Λi
m = λI+

N(Tm − S)

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤],

θ̂
i

m =
(
Λi

m

)−1
ūm,i,

Sim =
{
X i(m+1)
t

}Tm

t=Tm−1+(Tm−S)/2+1
,

πi
m = ExplorationPolicy

(
2λ

N(Tm − S)
,Sim

)
.

20: end for
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Theorem 21. Fix M = 1 + log

(
log

(
N(T+S)

d

)
2

+ 1

)
, with S defined in (E.24) for

ϵ = 6

√
log( 2dKNT

δ )
d

in Algorithm 8. Suppose Assumption 16 holds. If T ≥
Ω
(
d22 log2(NT

δ
) log2 d log2(dλ−1)

)
, then with probability at least 1− 2δ, it holds that

RT ≤ O




N log(dN)√

1/|λ2|
+

√√√√√√√√dN

(
T +

log(dN)√
1/|λ2|

)
log d log2


KN

(
T + log(dN)√

1/|λ2|

)
δλ


 log log

(
NT

d

)
 ,

(E.28)

and

Communication Cost ≤ O

(
δmaxdN log(dN)√

log(1/|Λ2|)

)
. (E.29)

Proof. The proof follows similar steps as those of Theorem 12’s proof. We focus on the regret

of m-th batch for any m ≥ 3. For any i ∈ [N ], t ∈ [Tm−1 + 1 : Tm], conditioned on the event

that the confidence intervals in Lemma 41 hold, we have

rit = E
[
⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩
]

≤ E

[
⟨θ̂im−1,x

i
∗,t⟩ − ⟨θ̂

i

m−1,x
i
t⟩+ β

∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1 + β

∥∥∥xi
t

∥∥∥
(Λi

m−1)
−1

]
(Lemma 41)

≤ 2γE

[∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1 +

∥∥∥xi
t

∥∥∥
(Λi

m−1)
−1

]
(xi

∗,t ∈ X
i(m)
t )

≤ 4γE

 max
x∈X i(m)

t

∥x∥
(Λi

m−1)
−1


≤ 4γEX∼Di

m

[
max
x∈X
∥x∥

(Λi
m−1)

−1

]
≤ 4γEX∼Di

m−1

[
max
x∈X
∥x∥

(Λi
m−1)

−1

]

≤ 8γ√
N(Tm−1 − S)

EX∼Di
m−1

max
x∈X

√
x⊤
(

2λ

N(Tm−1 − S)
I + EX∼Di

m−1
Ey∼πi

m−2(X )[yy
⊤]

)−1

x


=

8γ√
N(Tm−1 − S)

V
( 2λ
N(Tm−1−S)

)

Di
m−1

(πi
m−2), (E.30)

where the third inequality follows from our established confidence intervals in Lemma 41

guaranteeing that xi
∗,t ∈ X

i(m)
t for all (i, t,m) ∈ [N ]× [Tm−1 + 1 : Tm]× [M ] with probability
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at least 1− δ. Now, continuing form (E.8), we bound the cumulative regret of batches m ≥ 3,

as follows:
T∑

t=T2+1

N∑
i=1

rit ≤ 2MSN +
M∑

m=3

Tm−S∑
t=Tm−1+1

N∑
i=1

rit

≤ 2MSN +
8γMN(Tm − S)√

N(Tm−1 − S)
V

( 2λ
N(Tm−1−S)

)

Di
m−1

(πi
m−2)

≤ 2MSN ++8γM
√

dN log d log(NTλ−1)
M∑

m=2

Tm − S√
Tm−1 − S

(Conditioned on the event in Eqn. (E.7))

= 2MSN + 8γMa
√

dN log d log(NTλ−1). (E.31)

Next, we bound cumulative regret of the first two batches. Under Assumption 16, during

the first two batches, the instantaneous regret of each agent i at any round t is at most 2.

Therefore
T2∑
t=1

N∑
i=1

rit ≤ 2NT2 = 4a
√
dN. (E.32)

Note that the choice of a in the algorithm ensures that for any M > 0, TM = T and∑M
m=1 Tm ≥ TM = T , and thus the choice of grid {T1, . . . , TM} is valid. If we let M =

1+log

(
log

(
N(T+S)

d

)
2

+ 1

)
, from (E.31) and (E.32), we conclude that, with probability at least

1− 2δ, it holds that

RT ≤ 2MSN + 4
√
dN(T + S)

(
NT

d

) 1

2(2M−1−1)

+ 8γM
√
dNT log d log(NTλ−1)

(
N(T + S)

d

) 1

2(2M−1−1)

≤ O




N log(dN)√

1/|λ2|
+

√√√√√√√√dN

(
T +

log(dN)√
1/|λ2|

)
log d log2


KN

(
T + log(dN)√

1/|λ2|

)
δλ


 log log

(
NT

d

)
 .

(E.33)

E.3.2 Communication Step

In this section, we summarize the accelerated Chebyshev communication step, discussed

above, in Algorithm 13, which follows the same steps as those of the communication algorithm
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presented in [90].

Algorithm 13 Comm for Agent i

1: Input: xnow, xprev, ℓ

2: Output: xi,next

3: Initialization: w0 = 0, w1 = 1/|λ2|, wr = 2wr−1/|λ2| − wr−2, ∀2 ≤ r ≤ S, xi,now = xnow,

xi,prev = xprev

4: Send xi,now and receive the corresponding xj,now to and from j ∈ N (i) // Recall that

all agents run Comm in parallel.

5: xi,next =
2wℓ−1

|λ2|wℓ
Pi,ixi,now + 2wℓ−1

|λ2|wℓ

∑
j∈N (i) Pi,jxj,now − wℓ−2

wℓ
xi,prev

Chebyshev polynomials [148] are defined as T0(x) = 1, T1(x) = x and Tk+1(x) = 2xTk(x)−

Tk−1(x). Define:

qℓ(P) =
Tℓ(P/|λ2|)
Tℓ(1/|λ2|)

. (E.34)

By the properties of Chebyshev polynomial [20], it can be shown that:

qℓ+1(P) =
2wℓ

|λ2|wℓ+1

Pqℓ(P)− wℓ−1

wℓ+1

qℓ−1(P), (E.35)

where w0 = 1, w1 = 1/|λ2|, wℓ+1 = 2wℓ/|λ2| − wℓ−1, q0(P) = I and q1(P) = P. This implies

that when agents share an specific quantity, whose initial values given by agents are denoted

by vector ν0 ∈ RN , by using the recursive Chebyshev-accelerated updating rule, they have:

νℓ+1 =
2wℓ

|λ2|wℓ+1

Pνℓ −
wℓ−1

wℓ+1

νℓ−1. (E.36)

In light of the above mentioned recursive procedure, the accelerated communication step is

summarized in Algorithm 13 below for agent i. We denote the inputs by: 1) xnow, which is

the quantity of interest that agent i wants to update at the current round, 2) xprev, which is

the estimated value for a quantity of interest that agent i updated at the previous round,

and 3) ℓ which is the current round of communication. Note that inputs are scalars, however

matrices and vectors also can be passed as inputs with Comm running for each of their

entries.
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E.4 Omitted Algorithms

In this section, we present a definition and necessary algorithms, that are borrowed from

[103] and are used as subroutines in DisBE-LUCB and DecBE-LUCB.

Definition 5 ([103]). Fix α = logK. For a given positive semi-definite matrix M, we define

the softmax policy πS
M(X ) over a set X = {x1,x2, . . . ,xk} with k ≤ K with

πS
M(xi) =

(x⊤
i Mxi)

α∑k
i=1(x

⊤
i Mxi)α

. (E.37)

Now, suppose we are given a setM =
{
(pi,Mi)

}n
i=1

such that pi ≥ 0 and
∑n

i=1 pi = 1. We

define the mixed-softmax policy πMS
M (X ) over X as

πMS
M (xi) =


πG(X ), with probability 1/2,

πS
Mi

(X ), with probability pi/2,

(E.38)

where πG(X ) is called G-optimal design and is the minimizer of g(π) = maxx∈X∥x∥2V(π)−1,

where V(π) =
∑

x∈X π(x)xx⊤; see Section 21 in [78] for details.

Algorithm 14 ExplorationPolicy

1: Input: λ, S = {X1,X2, . . . ,XL}

2: Output: A mixed-softmax policy π Using Algorithm 15 find a core C ⊆ S such that

max
Xi∈C,x∈Xi

x⊤A(C)−1x > d5 (E.39)

and

|C|
L

< 1−O(d−2 log λ−1) (E.40)

where A(C) := λI + 1
L

∑
Xi∈C Ex∼πG(Xi)[xx

⊤], and for any set X ⊂ Rd, πG(X ) is called

G-optimal design and is the maximizer of g(π) = maxx∈X∥x∥2V(π)−1 , where V(π) =∑
x∈X π(x)xx⊤.

3: Return the mixed-softmax policy π by calling MixedSoftMax(λ, C).
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Algorithm 15 CoreIdentification (Algorithm 4 in [103])

1: Input: λ, S = {X1,X2, . . . ,XL}

2: Output: A core set C ⊆ S

3: Initialization: C1 = S

4: for ξ = 1, 2, . . . do

5: if maxXi∈Cξ,x∈Xi
x⊤A(Cξ)−1x > d5 then

6: Return Cξ.

7: else

8:

Cξ+1 =

{
Xi ∈ Cξ : max

x∈Xi

x⊤A(Cξ)−1x ≤ 1

2
d5
}
,

where A(C) := λI + 1
L

∑
Xi∈C Ex∼πG(Xi)[xx

⊤], and for any set X ⊂ Rd, πG(X ) is

called G-optimal design and is the maximizer of g(π) = maxx∈X∥x∥2V(π)−1 , where

V(π) =
∑

x∈X π(x)xx⊤.

9: end if

10: end for
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Algorithm 16 MixedSoftMax

1: Input: λ, S = {X1,X2, . . . ,XL}

2: Output: A mixed-softmax policy π

3: Initialization: Q = 2d2 log d, X(i−1)L+j = Xj, ∀(i, j) ∈ [Q] × L, U0 = λQLI +

Q
2

∑L
i=1 Ex∼πG(Xi)[xx

⊤], n = 1, τn = ∅, Wn = U0

4: for s = 1, . . . , QL do

5: τn = τn ∪ {s}

6: Us = Us−1 + Ex∼πS

W−1
n

(Xs)[xx
⊤], where πS

W−1
n
(Xs) is computed as in Definition 5.

7: if detUs

detWn
> 2 then

8: n = n+ 1, τn = ∅, Wn = Us

9: end if

10: end for

11: pi =
I{|τi|≥L}|τi|∑n
i=1 I{|τi|≥L}|τi| and Mi = QLW−1

i , ∀i ∈ [n]

12: Return the mixed-softmax policy with parametersM =
{
(pi,Mi)

}n
i=1

as in Definition 5.

E.5 Auxiliary Lemmas

Lemma 42 ([125], Theorem 5.1.1). Consider a finite sequence Xk of independent, random,

Hermitian matrices with common dimension d. Assume that 0 ≤ λmin(Xk) and λmax(Xk) ≤ L

for each index k. Introduce the random matrix

Y =
n∑

k=1

Xk (E.41)

Define the minimum eigenvalue µmin and maximum eigenvalue µmax of the expectation E[Y]:

µmin = λmin(E[Y]), µmax = λmax(E[Y]). (E.42)

Then

P
(
λmin(Y) ≤ (1− ε)µmin

)
≤ d

(
exp(−ε)
(1− ε)1−ε

)µmin
L

, for ε ∈ [0, 1) (E.43)

P
(
λmax(Y) ≥ (1 + ε)µmax

)
≤ d

(
exp(ε)

(1 + ε)1+ε

)µmax
L

, for ε ≥ 0. (E.44)
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Lemma 43. Suppose x1,x2, . . . ,xn ∼ D are d-dimensional vectors that are i.i.d. drawn from

a distribution D and ∥xk∥2 ≤ L for all k ∈ [n] almost surely. Let γ = λmin

(
Ex∼D[xx

⊤]
)
> 0

be the smallest eigenvalue of the co-variance matrix. We have that

P

 1

n

n∑
k=1

xkx
⊤
k ⪯ 2Ex∼D[xx

⊤]

 ≥ 1− d exp

(
−γn
3

)
. (E.45)

Proof. Let Σ = Ex∼D[xx
⊤] and yk = Σ

−1
2 xk for all k ∈ [n]. Also, we have λmax(yky

⊤
k ) =

∥yk∥22 ≤
1
γ
almost surely, and E[yky

⊤
k ] = I. Therefore, plugging ε = 1 in (E.44), we have

P

 1

n

n∑
k=1

xkx
⊤
k ⪯ 2Ex∼D[xx

⊤]

 = P

 1

n

n∑
k=1

yky
⊤
k ⪯ 2Σ

−1
2 Ex∼D[xx

⊤]Σ
−1
2


= P

 1

n

n∑
k=1

yky
⊤
k ⪯ 2I


= P

λmax

 n∑
k=1

yky
⊤
k

 ≤ 2n


≥ 1− d

(
e

4

)nγ

≥ 1− d exp

(
−γn
3

)
. (E.46)

Lemma 44. Suppose x1,x2, . . . ,xn ∼ D are d-dimensional vectors that are i.i.d. drawn from

a distribution D and ∥xk∥2 ≤ 1 for all k ∈ [n] almost surely. For any cutoff level γ > 0, we

have

P

 1

n

n∑
k=1

xkx
⊤
k ⪯ 2Ex∼D[xx

⊤] + 6γI

 ≥ 1− 2d exp

(
−γn
3

)
. (E.47)

Proof. Suppose Ex∼D[xx
⊤] =

∑d
i=1 λiνiν

⊤
i , where {νi}di=1 is a set of orthonormal basis. Let

P+ =
∑d

i=1 νiν
⊤
i 1(λi ≥ γ) and P− =

∑d
i=1 νiν

⊤
i 1(λi < γ), so that P+P− = I. We observe

that the eigenvalues of Ex∼D[P+xx
⊤P⊤

+] are greater than or equal to γ when restricted to the

space spanned by the P+. Therefore, by Lemmas 43 and 42 (Eqn. (E.44)), we respectively

205



have

P

 1

n

n∑
k=1

P+xkx
⊤
k P⊤

+ ⪯ 2Ex∼D[P+xx
⊤P⊤

+]

 ≥ 1− d exp

(
−γn
3

)
(E.48)

P

 1

n

n∑
k=1

P−xkx
⊤
k P⊤

− ⪯ 2γI

 ≥ 1− d exp

(
−γn
3

)
. (E.49)

Now, we observe that

1

n

n∑
k=1

xkx
⊤
k =

1

n

 n∑
k=1

P+xkx
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Also, note that
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Therefore, combining (E.49) and (E.50) and (E.51), we have
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