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Abstract 

Thinking about other people often requires complex cognitive processing to integrate their many 

and varied features. The three papers I present further our understanding of how we integrate this 

information into coherent social judgments. In Chapter 1, I tested whether mental representations 

of others’ appearance rapidly update to new information. After learning to ascribe valenced 

behaviors to a target person and subsequently visualizing his face in a reverse-correlation task, 

participants learned new information that was (a) counter-attitudinal and diagnostic about his 

character or (b) neutral and non-diagnostic before generating a second visualization. 

Visualizations at Time 2 assimilated to counter-attitudinal information, suggesting that 

representations of others’ appearance may rapidly update to new information. In Chapter 2, I 

examined whether and how the salience of emotion expression (scowling, smiling) or race 

(Black, White) cues shapes racially biased weapon identification (gun, tool). Across two 

manipulations of salience, racially biased weapon identification was weaker when the salience of 

emotion versus race was heightened. Using diffusion modeling, I tested competing cognitive 

accounts of this effect. Consistent support emerged for an initial bias account, whereby the 

decision process initiates closer to “gun” responses upon seeing Black (vs. White) faces, and this 

racially biased shift in the starting position is weaker when emotion (vs. race) is salient. In 

Chapter 3, I developed a solution to the inability of conventional measures of social judgment to 

distinguish the unique contributions of multiple features (e.g., social categories, behaviors). In 

particular, I introduced a computational model to separately measure the use of multiple features 

underlying social judgments. Using data from a judgments task in which emotion and sex cues 

varied in target faces, I initially validate the model’s capacity to measure the use of those cues 

and demonstrated how the model be applied to answer long-standing questions in the field.  
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Chapter 1 

 

Revising Mental Representations of Faces Based on New Diagnostic Information 
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Abstract 

Extending evidence for the rapid revision of mental representations of what other people are like, 

we explored whether people also rapidly revise their representations of what others look like. 

After learning to ascribe positive or negative behavioral information to a target person and 

generating a visualization of their face in a reverse-correlation task, participants learned new 

information that was (a) counter-attitudinal and diagnostic about the person’s character or (b) 

neutral and non-diagnostic, and then they generated a second visualization. Ratings of these 

visualizations in separate samples of participants consistently revealed revision effects: Time 2 

visualizations assimilated to the counter-attitudinal information. Weaker revision effects also 

emerged after learning neutral information, suggesting that the evaluative extremity of 

visualizations may dilute when encountering any additional information. These findings indicate 

that representations of others’ appearance may change upon learning more about them, 

particularly when this new information is counter-attitudinal and diagnostic.  

Keywords: face impressions; mental representations; reverse correlation; social cognition; 

updating  



3 

Revising Mental Representations of Faces Based on New Diagnostic Information 

First impressions are lasting impressions (Asch, 1946)—or so it has been assumed, 

particularly for implicit (i.e., unintentional) impressions. Indeed, some dual-process theorizing 

has maintained that, although people readily revise their explicit impressions of others when 

encountering countervailing target information, implicit impression revision occurs more slowly, 

if at all (e.g., Rydell & McConnell, 2006). This claim was initially supported by research that 

failed to find implicit impression revision based on countervailing target information (e.g., Gregg 

et al., 2006). Although the malleability of implicit impressions has long been recognized 

(Gawronski & Bodenhausen, 2006), an assumption guiding this literature has been that exposure 

to abundant countervailing information is required for implicit impression revision.  

Counter to this assumption, accumulating evidence now indicates that people can rapidly 

revise their implicit impressions when encountering even a single piece of diagnostic information 

that contradicts their initial impression (Ferguson et al., 2019). For example, participants who 

first learned positive behavioral information about a person fully reversed their initially favorable 

impression after learning about his child molestation conviction (Cone & Ferguson, 2015). Such 

updating generalizes beyond the context in which the impression was formed (Brannon & 

Gawronski, 2017) and is evident days later (Cone et al., 2021b), suggesting genuine revision.  

Notably, all documented instances of rapid impression revision have emerged in mental 

representations of the target person’s character, commonly assessed with sequential-priming 

tasks (e.g., affect misattribution procedure [AMP]; Payne et al., 2005) and self-report measures. 

Although tracking impression revision with such measures provides insight into evaluative 

assumptions about the person’s character, it is silent on how the person’s physical appearance is 

initially represented or potentially revised.  
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Here, we explored the revision of facial appearance representations using reverse correlation 

(Mangini & Biederman, 2004), a data-driven approach for visualizing the features underlying 

face classifications. This technique imposes no pre-existing assumptions about these features, 

thereby affording an unconstrained assessment of what another person looks like. The 

measurement outcomes of reverse-correlation tasks, unlike those of the AMP and other indirect 

measures of what a person is like, include conditionally variable features of physical appearance 

(Brinkman et al., 2017). Exactly how these features relate to measures that serve as proxies of 

character representations remains an open question (Dotsch et al., 2013). 

Our investigation comprised an image-generation experiment and three image-assessment 

experiments. In the image-generation experiment, participants visualized a target person twice: 

first after learning to ascribe positive or negative behaviors to him, and again after receiving new 

information that was (a) diagnostic, extreme, and contradictory to the initial information or (b) 

neutral and non-diagnostic. This procedure produced classification images for each of 8 

experimental conditions. In three image-assessment experiments, with three distinct image-

processing procedures, separate samples of participants rated these images on traits that are 

detectable in faces. Data for all experiments are available here: https://osf.io/7u6cd/ 

Image-Generation Experiment 

Method 

Participants 

 Prior research on implicit impression revision has revealed large effects (ηp
2s > .12; Cone & 

Ferguson, 2015); however, whether appearance representations shift comparably remains 

unknown. Rounding up to the nearest number divisible by 50, we thus set our target sample size 

https://osf.io/7u6cd/


5 

near our smallest effect of interest (ηp
2 = .05; 90% power) in our 2 × 2 × 2 mixed design.1,2 After 

surpassing our target sample (250 participants), we continued data collection until the week’s 

end. In total, 338 undergraduates participated for course credit. We excluded data from 53 

participants who pressed the same key for ≥95% of image-generation trials at Time 1 or Time 2. 

The final sample comprised 285 participants (see Table 1 for participant demographics in all 

experiments). Across experiments, participants provided informed consent prior to participating. 

Table 1 

 

Chapter 1: Participant Demographics in Each Experiment. 

  

Age 

 

Gender (%) 

 

Race/Ethnicity (%) 

 

Experiment 

 

M 

 

SD 

 

Male 

 

Female 

 

Nonbinary 

 

W 

 

B 

 

A 

 

L 

 

M 

IG 19.9 2.2 20.7 76.8 1.4 18.9 2.5 46.0 20.4 12.3 

IA 1 35.3 10.6 63.2 36.1 0.0 38.7 36.8 6.5 7.7 10.3 

IA 2A 

IA 2B 

38.5 

20.0 

12.6 

2.7 

48.2 

18.2 

50.0 

79.3 

0.0 

0.0 

76.3 

15.7 

6.1 

0.4 

6.1 

50.8 

1.8 

20.2 

9.6 

12.8 

Note. IG = image generation, IA = image assessment. Some participants did not report their 

gender or race/ethnicity. For race/ethnicity, W = White or European American, B = Black or 

African American, A = Asian American or Pacific Islander, L = Latinx or Hispanic, and M = 

reported other or more than one race/ethnicity. 

 

Procedure 

Participants first learned to ascribe positive or negative behaviors to a target person, Robert 

(Cone & Ferguson, 2015). They read (in randomized order) 64 behaviors (32 positive, 32 

 
1To our knowledge, no formal power analysis procedures exist for the image-generation phase in reverse-correlation 

paradigms (see also Brown-Iannuzzi et al., 2021). 
2Our planned analyses were conducted at the level of participants; however, based on editorial feedback, we shifted 

to analyses that account for other sources of variance (i.e., traits or stimuli, depending on the experiment). Thus, the 

reported a priori power analyses, conducted with G*Power (Faul et al., 2007), only considered the number of 

participants, but not the number of traits or stimuli. 



6 

negative; Rydell & McConnell, 2006) and indicated whether each was characteristic or 

uncharacteristic of him, after which condition-specific feedback appeared for 2.5 s. In the 

positive-induction condition, a blue correct message appeared after classifying a positive 

(negative) behavior as characteristic (uncharacteristic), and a red incorrect message appeared 

after classifying a negative (positive) behavior as characteristic (uncharacteristic). 

Accompanying each message was a summary statement (e.g., “Giving flowers to his mother is 

characteristic of Robert”). In the negative-induction condition, these feedback contingencies 

were reversed. Participants then reported their impressions of Robert on 7 traits that are 

important for person impressions (Oosterhof & Todorov, 2008): trustworthy, attractive, 

dominant, caring, intelligent, aggressive, and mean (1 = not at all, 7 = extremely).  

Next, participants completed a reverse-correlation task (Brinkman et al., 2017). On each of 

350 trials, they selected which of two side-by-side degraded face images looked more like 

Robert. Each pair of images comprised a random noise pattern3 and its inverse superimposed 

onto a base face image.4 This technique maximizes between-image contrast (Dotsch & Todorov, 

2012). Responses <100 ms or >4000 ms after target onset prompted a message to respond more 

slowly or more quickly, respectively.  

Participants then received one new piece of information about Robert. In the counter-

attitudinal condition, the information was diagnostic about his character and contradicted the 

valence of their Time 1 induction (“Robert was recently convicted of child molestation” after a 

positive induction; “Robert donated one of his kidneys to a child in need he had never met 

 
3The noise patterns comprised 4,092 superimposed truncated sinusoid patches in all possible combinations of 2 

cycles in 6 orientations (0°, 30°, 60°, 90°, 120°, 150°) × 5 spatial frequencies (1, 2, 4, 8, 16 patches per image) × 2 

phases (0, π/2), with random contrasts.   
4The base face, which Krosch and Amodio (2014) created by morphing 100 White and 100 Black male faces, has 

been used in prior reverse-correlation research (e.g., Lei & Bodenhausen, 2017). 
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before” after a negative induction). These behaviors were rated similarly in diagnosticity and 

valence extremity (see Cone & Ferguson, 2015). In the neutral condition, the information was 

neutral in valence (“Robert recently bought a soda”). Finally, participants again reported their 

impressions of Robert and completed the reverse-correlation task in a newly-randomized order. 

Using the rcicr package (Dotsch, 2014), we created group classification images by 

superimposing onto the base face the average noise patterns of the selected images across all 

participants in each condition. Group images reflect the average features visualized of Robert 

within that condition (see Figure. 1).5  

Figure 1 

Chapter 1: Group Images by Time, Time 1 Induction, and Time 2 Information 

 
 

Results 

All analyses were conducted via linear mixed-effects models (LMEMs), with each model 

containing fixed effects for Time, Time 1 induction, Time 2 information, and all possible 

interactions. For each model, we began with its maximal random-effects structure (i.e., random 

intercepts and all appropriate random slopes for each source of variance; Barr et al., 2013) and 

 
5We report in Appendix A additional measures collected in all experiments.   

 

Positive Induction Negative Induction 

Time 1 Time 2 Time 1 Time 2 

Counter- 
attitudinal 

Neutral 
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downsized to solve problems of non-convergence and singularity. The sources of variance were 

participants and traits in the image-generation experiment and image-assessment Experiment 1, 

and participants and stimuli in image-assessment Experiments 2A and 2B.6 

We reverse-scored responses for aggressive, dominant, and mean, ensuring that all traits were 

directionally consistent in valence, and considered the 7 traits as having been sampled from the 

population of positive traits on which impressions could be formed. Because the trait ratings 

were highly correlated (see Appendix A) and fitting separate models for each trait can inflate 

Type-I error (Herzog et al., 2019), we included random effects for traits.7   

This analysis revealed a significant three-way interaction, b = -0.37, SE = 0.03, F(1, 280.97) 

= 206.33, p < .001 (see Figure 2). To explicate this interaction, we examined contrasts of the 

model’s Time × Time 2 information interactions separately in the positive-induction and 

negative-induction conditions. This interaction was significant in both the positive-induction 

condition, b = 2.27, SE = .15, t(281) = 15.68, p < .001, and the negative-induction condition, b = 

-0.68, SE = .15, t(281) = -4.66, p < .001, with significantly greater positive-to-negative than 

negative-to-positive revision, b = -1.59, SE = .21, t(281) = -7.78, p < .001.8  

 

 

 
6See Appendix A for a detailed description of the random-effects structures for each mixed-effects model reported in 

the main text, and a discussion of how problems of non-convergence and singularity in the maximal models led to 

those reported in the main text. 
7An alternative analytic approach entails using data-reduction techniques (e.g., exploratory factor analysis) to fit 

these models to latent factor(s). Because our focus was on testing for revision effects in representations of 

appearance, regardless of the trait, we do not report this approach in the main text (but see Appendix A for results 

using this alternative approach). 
8This additional post-hoc test assessed the magnitude of revision, as reflected in the difference between the Time × 

Time 2 information contrast in the positive-induction condition and this same contrast in the negative-induction 

condition. Due to the opposing numerical directions of the contrasts, we first multiplied all ratings in the negative-

induction condition by a constant of -1, ensuring that the difference between the two contrasts reflects the magnitude 

of difference. We used this same approach in all three image-assessment experiments. 
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Figure 2 

Chapter 1: Trait Impressions of Robert  

 
Notes. Markers reflect estimated marginal means of trait impressions of Robert by Time, Time 1 

induction, and Time 2 information in the image-generation experiment. Error bars represent 95% 

confidence intervals. The surrounding violin plots illustrate mirrored density distributions of 

image generators’ responses after a smoothing function was applied.  

 

Next, we conducted pairwise comparisons in each induction condition. In the positive-

induction condition, learning about Robert’s child molestation conviction prompted negative 

revision, b = 2.42, SE = 0.13, t(30.00) = 19.40, p < .001, but learning neutral information did not, 

b = 0.15, SE = 0.13, t(31.60) = 1.21, p = .235. In negative-induction condition, learning about 

Robert’s kidney donation prompted positive revision, b = -0.91, SE = 0.13, t(32.20) = -7.17, p < 

.001, but learning neutral information did not, b = -0.24, SE = 0.13, t(30.00) = -1.88, p = .070.9 

These results replicate prior findings indicating that learning diagnostic counter-attitudinal 

target information prompts character-representation revision (Cone & Ferguson, 2015). As in this 

 
9For detailed information on the descriptive statistics for these and all other experiments, see Appendix A. 
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prior work, we also observed an asymmetry whereby positive-to-negative revision was stronger 

than negative-to-positive revision.  

Image-Assessment Experiments 

To examine whether learning countervailing diagnostic information prompts appearance-

representation revision, we conducted several image-assessment experiments. In Experiment 1, a 

new sample of participants rated the 8 group images (see Figure 1) on the same traits from 

before. Experiments 2A and 2B used two alternative image-processing procedures (detailed 

below) and two new samples of raters to assess apparent trustworthiness. 

Experiment 1 

Method 

 

Participants. We again considered the large revision effects (ηp
2s > .12) in Cone and 

Ferguson (2015) but allowed for weaker effects. To detect a medium-sized three-way interaction 

(ηp
2 = .06) with 80% power in a 2 × 2 × 2 within-participants design, we set our target sample 

size at 126. Amazon’s Mechanical Turk (MTurk) workers (N = 155) participated for pay. No data 

were excluded; thus, the final sample comprised 155 participants.  

Procedure. Participants rated the 8 group images on the same 7 traits from the image-

generation experiment.  

Results 

A LMEM revealed a significant three-way interaction, b = -0.11, SE = 0.01, F(1, 8358) = 

52.32, p < .001 (see Figure 3). We again examined contrasts of the model’s Time × Time 2 

information interactions separately in the two induction conditions. This interaction was 

significant in both the positive-induction condition, b = 0.65, SE = .08, t(8358) = 7.69, p < .001, 

and the negative-induction condition, b = -0.21, SE = .08, t(8358) = -2.54, p = .021, with 
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significantly greater positive-to-negative than negative-to-positive revision, b = -0.43, SE = .13, 

t(8358) = -3.31, p = .001.  

Figure 3 

Chapter 1: Trait Impressions of Group Classification Images 

 
Notes. Estimated marginal means of trustworthiness impressions of group classification images 

by Time, Time 1 induction, and Time 2 information in image-assessment Experiment 1. Error 

bars represent 95% confidence intervals. The surrounding violin plots illustrate mirrored density 

distributions of image raters’ responses after a smoothing function was applied. 

 

Pairwise comparisons in each induction condition revealed that, in the positive-induction 

condition, learning about Robert’s child molestation conviction prompted negative revision, b = 

0.66, SE = 0.06, t(8358) = 11.16, p < .001, but learning neutral information did not, b = 0.02, SE 

= 0.06, t(8358) = 2.66, p = .790. In the negative-induction condition, learning about Robert’s 

kidney donation prompted positive revision, b = -0.37, SE = 0.06, t(8358) = -6.63, p < .001, but 

so did learning neutral information, b = -0.16, SE = 0.06, t(8358) = -2.69, p = .007, albeit to a 

lesser extent.10 

 
10A difference between counter-attitudinal and neutral information in the negative-induction condition is evidenced 

by the significant Time × Time 2 contrast in the negative-induction condition reported above.  
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Visualizations of Robert’s appearance grew less favorable upon learning negative counter-

attitudinal information and more favorable upon learning positive counter-attitudinal 

information. Notably, positive-to-negative revision was stronger than negative-to-positive, 

replicating findings from the image-generation experiment and elsewhere (Cone & Ferguson, 

2015). When learning neutral information, participants did not visualize Robert’s appearance 

differently if their initial visualization was positive; however, they did visualize him more 

favorably if their initial visualization was negative. Because the neutral information was non-

diagnostic, revision here may reflect a dilution effect (Nisbett et al., 1981), whereby highly 

negative initial visualizations become less extreme upon learning any additional information.  

Experiments 2A and 2B 

Image-assessment Experiment 1 relied exclusively on group images that were created by 

aggregating across the responses of all image generators per condition. This practice, though 

normative in reverse-correlation research (Brinkman et al., 2017), can artificially augment 

between-condition differences, thereby inflating Type-I error (Cone et al., 2021a). Image-

assessment Experiments 2A and 2B used alternative image-processing procedures—subgroup 

and individual classification images—that avoid this limitation (Cone et al., 2021a; Hutchings et 

al., 2021). Both experiments assessed apparent trustworthiness, given its centrality in face 

impressions (Oosterhof & Todorov, 2008).  

Method 

Participants. We considered the possibility that subgroup and (perhaps especially) individual 

images are noisier than group images, potentially producing smaller effects. To detect medium-

sized three-way interactions (Experiment 2A: ηp
2 = .06; Experiment 2B: ηp

2 = .03) with 80% 

power, we set target sample sizes of 126 (Experiment 2A) and 257 (Experiment 2B). In total, 125 
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MTurkers (Experiment 2A) and 259 undergraduates (Experiment 2B) participated for pay and 

course credit, respectively. We excluded data from participants who gave the same response on 

≥95% of ratings (Experiment 2A: n = 6; Experiment 2B: n = 5) or who did not finish the entire 

experiment (Experiment 2A: n = 5; Experiment 2B: n = 12). The final samples comprised 114 

participants in Experiment 2A and 242 participants in Experiment 2B. 

Procedure. We used the rcicr package (Dotsch, 2014) to create subgroup and individual 

images. In Experiment 2A, we created subgroup images by aggregating the noise patterns 

selected by 12 random subsets of image generators in each condition and superimposing them 

onto the base face (Cone et al., 2021a). The total stimulus set included 96 subgroup images, with 

each image comprising the average selected noise patterns from 5–7 image generators. 

Participants rated all 96 subgroup images (order randomized). In Experiment 2B, we created 

individual images by aggregating the noise patterns selected by each image generator, separately 

for each time point, and superimposing them onto the base face. The total stimulus set comprised 

570 images. To minimize fatigue, we had participants rate one of three sets of 95 randomized 

pairs of Time 1 and Time 2 images, totaling 190 images. In both experiments, participants rated 

how trustworthy the person looked (1 = extremely untrustworthy, 7 = extremely trustworthy).  

Results 

Experiment 2A (Subgroup Images). A LMEM revealed a significant three-way interaction, 

b = -0.11, SE = 0.03, F(1, 45.27) = 10.67, p = .002 (see Figure 4). Next, we examined contrasts 

of the model’s Time × Time 2 information interactions separately in the two induction 

conditions. This interaction was significant in the positive-induction condition, b = 0.72, SE = 

.19, t(44.8) = 3.89, p < .001, but not in the negative-induction condition, b = -0.14, SE = .19, 
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t(44.8) = -0.75, p = .456, with significantly greater positive-to-negative than negative-to-positive 

revision, b = -0.58, SE = .26, t(44.3) = -2.23, p = .031.  

Figure 4 

Chapter 1: Trustworthiness Impressions of Subgroup Classification Images 

 
Notes. Estimated marginal means of trustworthiness impressions of subgroup classification 

images by Time, Time 1 induction, and Time 2 information in image-assessment Experiment 2A. 

Error bars represent 95% confidence intervals. The surrounding violin plots illustrate mirrored 

density distributions of image raters’ responses after a smoothing function was applied. 

  

Pairwise comparisons in each induction condition revealed that, in the positive-induction 

condition, learning about Robert’s child molestation conviction prompted negative revision, b = 

0.92, SE = 0.13, t(48.4) = 6.87, p < .001, but learning neutral information did not, b = 0.20, SE = 

0.13, t(48.40) = 1.48, p = .145. In the negative-induction condition, learning about Robert’s 

kidney donation prompted positive revision, b = -0.65, SE = .13, t(48.40) = -4.90, p < 001, but so 

did learning neutral information, b = -0.52, SE = .13, t(48.40) = -3.86, p < 001. 

Experiment 2B (Individual Images). Once again, the three-way interaction was significant, 

b = -0.03, SE = 0.01, F(1, 280.36) = 5.90, p = .016 (see Figure 5). As before, we examined 
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contrasts of the model’s Time × Time 2 information interactions separately in the two induction 

conditions. This interaction was significant in the positive-induction condition, b = 0.20, SE = 

.08, t(281) = 2.55, p < .001, but not in the negative-induction condition, b = -0.07, SE = .08, 

t(282) = -0.89, p = .372, with no significant difference in the magnitude of positive-to-negative 

versus negative-to-positive revision, b = -0.13, SE = .11, t(279) = -1.17, p = .244.  

Figure 5 

Chapter 1: Trustworthiness Impressions of Individual Classification Images 

 
Notes. Estimated marginal means of trustworthiness impressions of individual classification 

images by Time, Time 1 induction, and Time 2 information in image-assessment Experiment 2B. 

Error bars represent 95% confidence intervals. The surrounding violin plots illustrate mirrored 

density distributions of image raters’ responses after a smoothing function was applied. 

 

Pairwise comparisons in each induction condition revealed that, in the positive-induction 

condition, learning about Robert’s child molestation conviction prompted negative revision, b = 

0.39, SE = 0.06, t(303) = 6.88, p < .001. Learning neutral information also prompted negative 

revision, b = 0.19, SE = 0.06, t(303) = 3.24, p = .001, albeit to a lesser extent. In the negative-

induction condition, learning about Robert’s kidney donation prompted positive revision, b = -
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0.26, SE = .06, t(293) = -4.43, p < 001, but so did learning neutral information, b = -0.19, SE = 

.13, t(294) = -3.29, p < 001. 

Discussion 

Using a reverse-correlation paradigm, we found that visualizations of a target person’s face 

consistently assimilated to new information that was extreme, diagnostic, and contradictory to 

the initial information learned about him. Initially positive visualizations were revised to appear 

less trustworthy after learning about his child molestation conviction. The opposite pattern 

emerged when participants with negative initial visualizations learned about his kidney donation, 

albeit sometimes to no greater extent than the revision prompted by learning neutral 

information.11 These results complement other evidence of rapid revision in mental 

representations of what others are like under similar conditions (Ferguson et al., 2019). We also 

found a valence asymmetry, whereby greater positive-to-negative (vs. negative-to-positive) 

revision emerged in most cases (cf. Cone & Ferguson, 2015).  

Some evidence of revision also emerged, albeit more weakly, when learning new neutral 

information about the person. Revision here might reflect a dilution effect, whereby new non-

diagnostic information diluted the extremity of the initial visualizations (Nisbett et al., 1981). If 

so, one implication of this finding is that extreme appearance representations may dissipate over 

time upon learning any additional target information.  

A strength of this work is its use of group, subgroup, and individual classification images, 

with the latter two procedures reducing concerns about Type-I error inflation (Cone et al., 

2021a). Because subgroup aggregation is a new technique, future work should explore optimal 

points at which subgroup images minimize noise but preserve image-generator variability. 

 
11Less conservative analyses that did not account for random effects of stimuli consistently revealed revision effects 

in both induction conditions in all experiments. We report these analyses in Appendix A. 
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Furthermore, although some results (e.g., revision after neutral information) varied across 

experiments, the key effect (i.e., stronger revision after counter-attitudinal vs. neutral 

information) emerged consistently. Such convergence helps bolster our conclusions. Future work 

should identify boundary conditions of these effects. For example, if the information initially 

learned about a person (e.g., broke into his neighbor’s house) is reinterpreted based on new 

information (e.g., the house was on fire and children were inside), do we revise our 

representations of their appearance accordingly (Mann & Ferguson, 2015)?  

Notably, we found a sizable correlation between image generators’ trustworthiness ratings of 

Robert in the image-generation experiment and image raters’ trustworthiness ratings of 

individual images of Robert in image-assessment Experiment 2B, r(568) = .51, p < .001, 

suggesting a correspondence between revision in (explicit) character representations and revision 

in appearance representations, at least when the new information learned about the person is 

diagnostic, extreme, and (presumably) believable (see Ferguson et al., 2019). What remains for 

future research is determining whether similar correspondence emerges if one of these elements 

is missing or under conditions in which corresponding revisions in implicit and explicit character 

representations have not materialized in prior work (e.g., Gregg et al., 2006). Future research 

should also explore whether revisions in character representations precede (and/or cause) 

changes in appearance representations. Answering these questions promises a richer 

understanding of how various components of person impressions are integrated.  

The current findings indicate that mental representations of others’ appearance are far from 

static. As we learn new information about someone, not only do we revise our representations of 

what they are like; we also revise our representations of what they look like.  
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Abstract 

Racial stereotypes are commonly activated by informational cues that are detectable in people’s 

faces. Here, we used a sequential priming task to examine whether and how the salience of 

emotion (angry/scowling vs. happy/smiling expressions) or apparent race (Black vs. White) 

information in male face primes shapes racially biased weapon identification (gun vs. tool) 

decisions. In two experiments (Ntotal = 546) using two different manipulations of facial 

information salience, racial bias in weapon identification was weaker when the salience of 

emotion expression versus race was heightened. Using diffusion modeling, we tested competing 

accounts of the cognitive mechanism by which the salience of facial information moderates this 

behavioral effect. Consistent support emerged for an initial bias account, whereby the decision 

process began closer to the “gun” response upon seeing faces of Black versus White men, and 

this racially biased shift in the starting position was weaker when emotion versus race 

information was salient. We discuss these results vis-à-vis prior empirical and theoretical work 

on how facial information salience moderates racial bias in decision-making.   
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Emotion Expression Salience and Racially Biased Weapon Identification: 

A Diffusion Modeling Approach 

Racial stereotypes pervade modern thinking, with abundant experimental evidence more 

strongly linking Black versus White people with weapons (Payne & Correll, 2020). In the 

weapon identification task (WIT), for example, participants are usually better (i.e., faster and 

more accurate) at identifying guns and worse at identifying harmless objects (e.g., tools, toys) 

after seeing Black versus White face primes (Amodio et al., 2004; Payne, 2001; Todd et al., 

2016). This typical pattern of racial bias in the WIT is robust (see Rivers, 2017); however, its 

magnitude may vary by the salience of (i.e., the attention garnered by; Higgins, 1996) 

information in the face primes. Indeed, racially biased weapon identification is weaker and 

sometimes eliminated when age versus race information is more salient (Jones & Fazio, 2010; 

Todd et al., 2021). Granted, age is only one of many sources of social information. In two 

experiments, we investigated whether attending to another facial cue—emotion expression—

likewise weakens weapon-related racial bias, relative to attending to race.  

Unlike facial cues pertaining to relatively static social categories (e.g., age, race), emotion 

expressions can vary moment-to-moment within the same target person. Furthermore, emotion 

expressions presumably signal affect and intentions (Niedenthal & Brauer, 2012; Todorov et al., 

2008) in ways that demographic cues may not, making them informative for basic social 

judgment (e.g., identifying threats). Accordingly, emotion expressions may garner substantial 

attention in threat-related contexts like weapon identification, effectively competing against the 

attention often garnered by race in such contexts (Payne & Correll, 2020). Indeed, the mere 

availability of scowls and smiles has been found to affect racially biased weapon identification 

(Kubota & Ito, 2014), whereas the mere availability of other information (e.g., age cues) has not 

(Todd et al., 2016). Thus, it seems reasonable to propose that directing attention toward emotion 
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versus race cues moderates racially biased weapon identification. Our experiments tested this 

proposition. 

Besides investigating whether the salience of emotion versus race information alters racial 

bias in the WIT, we examine how such an effect emerges using diffusion decision modeling 

(DDM; Ratcliff et al., 2016). The DDM is a sequential sampling technique designed to 

disentangle processes underlying behavior in tasks like the WIT. By concurrently modeling both 

decisions and decision speed, the DDM decomposes decisions into four parameters (see Table 2). 

We briefly describe two relevant parameters that might explain how information salience 

moderates racially biased weapon identification. 

 

Table 2 

 

Chapter 2: Parameters of the Diffusion Decision Model in the Weapon Identification Task 

 

 

Parameter 

 

Interpretation 

 

Relative start point (β) 

 

 

 

Threshold separation (α) 

 

 

Drift rate (δ) 

 

 

 

 

Non-decision time (τ) 

 

Initial bias to select gun or tool at the start of evidence 

accumulation, with 0 < β < 1. Values >.50 indicate a bias to 

select gun; values <.50 indicate a bias to select tool. 

 

Amount of evidence required to decide, with 0 < α. Hitting a 

threshold triggers a decision to select gun or tool.  

 

Average quality of information extracted at each unit of time, 

with -∞ < δ < ∞. Higher absolute values indicate stronger 

evidence. Positive values indicate evidence to select gun; 

negative values indicate evidence to select tool. 

 

Length of all response components (encoding time, motor 

response time, and other unknown contaminants) unrelated to 

decision making, with 0 < τ. Measured in milliseconds. 

 

The DDM assumes that evidence is accumulated over time until a decision threshold is 

reached. It models both the strength of evidence extracted (i.e., drift rate) and the position from 
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which evidence accumulation begins (i.e., relative start point; see Figure 6). An evidence 

accumulation account of facial information salience moderating racially biased weapon 

identification posits that seeing a Black versus White face prime strengthens the evidence 

accumulated for identifying guns (i.e., race-stereotypic objects), but that racially biased evidence 

accumulation is weaker when emotion versus race information is salient. Alternatively, an initial 

bias account posits that seeing a Black versus White face prime shifts the starting position of the 

decision process closer to the “gun” response, but that shifts in the start point are less racially 

biased when emotion versus race is salient.12  

The initial bias account is more strongly supported in the WIT literature.13 Specifically, 

whereas an evidence accumulation account did not explain racially biased weapon identification, 

or its moderation by the salience of age versus race information in the face primes, an initial bias 

account did (Todd et al., 2021). Relative to age cues, the arguably greater relevance of emotion 

expression in threat-related contexts might undermine racially biased weapon identification by 

altering the interpretation of object-related content—the process-level pattern predicted by an 

evidence accumulation account. Thus, testing these accounts when emotion versus race salience 

varies in the context of weapon identification is instructive. Our experiments provide such a test. 

For consistency with prior work (e.g., Todd et al., 2021), we report behavioral analyses of the 

error rates and correct response times (RTs) along with our analyses of the DDM parameters. 

Data and code are available at https://osf.io/hxywn/.   

 

 

 

 
12 We did not derive clear predictions about threshold separation and non-decision time, but we report results 

pertaining to these parameters for completeness.  
13 Notably, an evidence accumulation account better explains racial bias in the first-person shooter task (FPST, 

Correll et al., 2015; Johnson et al., 2018; Pleskac et al., 2018). For a discussion of procedural differences between 

the FPST and the WIT, see Todd et al. (2021). 
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Figure 6 

Chapter 2: Illustration of the Diffusion Decision Process 

 
Notes. The decision process starts with a bias to select gun or tool, as indicated by the relative 

start point, β. Evidence is then accumulated (as illustrated by the jagged line) for each decision 

option, with average strength δ. The distance between the thresholds, α, indicates the amount of 

evidence needed to decide. Finally, the length of non-decision processes is indicated by τ. The 

hypothetical distributions (in gray) above and below the decision space indicate that the model 

predicts the distribution of response times for each decision option. 

 

Experiment 1 

Method 

Participants 

Prior work using a similar design (Todd et al., 2021, Experiment 2) revealed a small-to-

medium sized salience effect on racial bias in the WIT (Salience × Race Prime × Target Object 

interaction: ηp
2 = .028). Thus, we set a target sample size (N = 280) affording ≥80% power to 

detect ηp
2 = .028 (Faul et al., 2007). In total, 311 undergraduates consented to participate for 

course credit. We decided a priori to exclude data from participants who performed at or below 

chance (errors on ≥50% of trials) on any trial type in the WIT (n = 21). Retaining the excluded 

data did not meaningfully alter any of the conclusions in either experiment. The final sample 

comprised 290 participants (81% women, 15.4% men, 1.8% non-binary; 15% White, 2.1% 

Black, 57.3% Asian, 17.1% Latino/a/e/x, 5.2% multiracial; Mage = 19.3, SD = 1.3). 
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Procedure 

In both experiments, participants arrived at the lab in small groups and were led by an 

experimenter to an individual computer workstation to complete the experimental tasks. 

Participants completed a sequential priming task, the WIT (Payne, 2001), wherein two images 

appeared in quick succession. Instructions urged participants to ignore the first image (face 

prime) and to classify the second image (target object) quickly and accurately via key press. The 

face primes were facial images of 48 men varying in apparent race (24 Black, 24 White) and 

posed emotion expression (24 angry/scowling, 24 happy/smiling) from the Chicago Face 

Database (Ma et al., 2015).14 The target objects were 6 gun and 6 tool images from Payne (2001). 

Each trial comprised the following sequence: fixation cross (500 ms), face prime (200 ms), target 

object (200 ms), and pattern mask (until participants responded). If participants failed to respond 

within 500 ms, a message (“Please respond faster!”) appeared (1 s).  

We structured the WIT so that apparent race or emotion expression was more distinctive 

throughout the task (Macrae & Cloutier, 2009; Rees et al., 2022; Todd et al., 2021). Participants 

were randomly assigned to complete one of two WIT variants, each comprising two blocks of 

144 experimental trials (288 total trials that were preceded by 12 practice trials). In the race-

salient condition, the face primes were scowling Black and White men in one block of trials and 

smiling Black and White men in the other block. In the expression-salient condition, the face 

primes were smiling and scowling Black men in one block of trials and smiling and scowling 

White men in the other block. Within a given block of trials, varying only one source of 

information (e.g., emotion expression) should render it more contextually distinctive, and thus 

 
14 The emotion expression and apparent race of these face stimuli were likely construed unambiguously. In the face 

categorization task in Experiment 2, emotion expression and race were both “correctly” classified on ≥95% of trials, 

supporting the assumption that both sources of information were clear and easy to identify (see Tables B7 & B8). 
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more salient (Taylor & Fiske, 1978), than the other source of information (e.g., apparent race). 

Block order was counterbalanced and did not moderate racial bias.  

Analysis Plan 

Prior to all analyses, we excluded trials with RTs <100 ms and >1500 ms (Todd et al., 2021), 

which eliminated 2.4% of the data in both experiments. We also excluded error trials prior to RT 

analyses (but see Appendix B for RT analyses of error trials). Below, we report analyses pertinent 

to our focal hypotheses on information salience effects on racial bias.  

Behavioral Data Analyses. All analyses were conducted using linear mixed-effects models 

(LMEMs), with each model containing fixed effects for Salience, Race Prime, Emotion Prime, 

Target Object, and all identifiable interactions. Models included a random-effects structure with 

by-participant and by-stimulus random intercepts.15,16 This approach is analogous to fitting the 

data to a mixed analysis of variance that is adjusted for the cross-classified clustering of 

responses within participants and within stimuli. We examined our effect of interest (i.e., the 

Salience × Race Prime × Target Object effect) via contrasts of the model’s Race Prime × Target 

Object interactions across and between salience conditions. Full LMEM tables appear in 

Appendix B (see Tables B1 and B3). 

DDM Parameter Estimation. For each experiment, we estimated the model using a Markov 

Chain Monte Carlo (MCMC) sampler in JAGS 4.30 (Plummer, 2003) with the Wiener 

distribution provided by Wabersich and Vandekerckhove (2014) and an estimation approach to 

make inferences in this framework (Gelman et al., 2003; Kruschke, 2014). Mirroring model 

 
15 The only exception was for the LMEM on incorrect response times reported in Appendix B. Due to boundary fit 

conditions, we removed the by-stimulus random intercept from the model. 
16 Although the LMEM on error rates in Experiment 2 afforded the inclusion of by-participant random slopes for 

Race Prime, we chose to prioritize consistency within and across experiments over that single model’s random 

effects structure. Inclusion versus exclusion of the additional random effect did not meaningfully change the results. 
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specifications from Todd et al. (2021; see also Pleskac et al., 2018), all parameters were allowed 

to vary by Race Prime, Emotion Prime, and Salience, and the drift rate and non-decision time 

parameters also were allowed to vary by Target Object.17 As in prior work (Todd et al., 2021), 

posterior predictive checks suggest that the model adequately characterizes the WIT data. The 

representativeness and accuracy of each model’s estimation were assessed both visually and 

numerically (see Appendix B and the online supplementary materials) and were found to be 

adequate enough to rely on the parameter estimates for subsequent process analyses. 

To compare parameter estimates across conditions, we computed contrasts that included the 

95% highest density interval (HDI95%) of the difference between posterior distributions of each 

parameter across the relevant conditions. Differences with HDI95% excluding 0 are considered 

credible. For each analysis, we report the most credible estimate of the raw difference, a Cohen’s 

d, and the HDI95% around d. The effect of Race Prime was compared across levels of Salience for 

all four parameters. For drift rate and non-decision time, contrasts were further computed to 

evaluate the effect of Race Prime across levels of Target Object. (Figure 8 displays the relative 

start point parameter estimates in both experiments; Figures B7–B14 display all other parameter 

estimates, including the start point parameter estimates varying by emotion expression as well).  

Results 

Behavioral Analyses 

Error Rates. A significant Salience × Race Prime × Target Object interaction, β = 0.03, F(1, 

82166.6) = 16.92, p < .001, R2 < .01, revealed salience-driven variation in racially biased weapon 

 
17 As highlighted in Table 2, the threshold separation and relative start point parameters cannot be identified across 

conditions of Target Object: The relative start point parameter reflects the position at which participants are closer to 

a gun versus tool decision at target onset; the threshold separation parameter reflects the extent to which evidence 

must be accumulated to reach a gun versus tool decision, presumably determined before target onset. Presumably 

both the extent of evidence accumulated from the target object (i.e., drift rate) and the processing time prior to a 

response being recorded (i.e., non-decision time) may vary by Target Object. 
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identification. When race was salient, the Race Prime × Target Object interaction (i.e., racial 

bias) was significant, b = -0.02, z = -2.60, p = .009, though neither underlying simple effect of 

Race Prime reached significance (see Table B5 for simple effects). When emotion was salient, 

however, the Race Prime × Target Object interaction was not significant, b = 0.01, z = 1.79, p = 

.073 (see Table B6 for descriptive statistics for each experiment). 
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Figure 7 

Chapter 2: Behavioral Data Plots by Race Prime and Salience Condition Across Experiments 

 

Notes. Markers reflect error rates (top row) and correct response times (bottom row) for Black 

and White prime trials. Empty markers reflect individual-level data and filled shapes and their 

error bars reflect the estimated marginal means from the linear mixed-effects model applied to 

those data. The x-axis displays whether the target object was a gun or tool. Shading and shape of 

markers reflect whether the target object followed a Black or White face prime. Panels vary by 

salience condition, whereby panels on the left within each plot reflect the race-salient condition 

and panels on the right within each plot reflect the emotion-salient condition. The plots on the 

left display data from Experiment 1; the plots on the right display data from Experiment 2.  

         

Correct RTs. A significant Salience × Race Prime × Target Object interaction, β = 0.07, F(1, 

74530.0) = 63.83, p < .001, R2 = .03, again revealed salience-driven variation in racial bias. 
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When race was salient, racial bias was evident, b = -0.04, z = -5.11, p < .001. Guns were 

identified faster (Mdiff = -4 ms) and tools were identified slower (Mdiff = 6 ms) after Black versus 

White primes. Contrary to expectations, when emotion was salient, there was significant racial 

bias in the opposite direction, b = 0.03, z = 3.16, p = .002. Guns were identified slower after 

Black versus White primes (Mdiff = 7 ms); the speed of tool identification, by contrast, did not 

significantly differ between race primes. 

Process Analyses  

A Salience × Race Prime contrast on the relative start point () was credible, µdiff = 0.02, d = 

0.25, HDI95% [0.11, 0.41]. When race was salient, the decision process began closer to “gun” 

after Black versus White primes, µdiff = -0.02, d = -0.33, HDI95% [-0.54, -0.13]. When emotion 

was salient, no credible racial bias emerged, µdiff = 0.01, d = 0.18, HDI95% [-0.03, 0.38]. These 

findings align with an initial bias account: Salience-driven variation in racially biased starting 

positions in the decision process explain salience-driven moderation of racially biased behavior. 
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Figure 8 

Chapter 2: Relative Start Point (β) Estimates by Race Prime and Salience Conditions Across 

Experiments  

 

Notes. Markers reflect posterior estimates for Black prime and White prime trials. Empty 

markers reflect individual-level estimates and filled shapes and their error bars reflect the most 

credible values and 95% highest density intervals, respectively, from the DDM modeled to the 

data. The x-axis displays information salience condition (race, emotion). Shading and shape of 

markers reflect the salience condition. The plot on the left displays estimates from Experiment 1; 

the plot on the right displays estimates from Experiment 2.  

 

A small but credible race prime effect emerged on the drift rate (δ), µdiff = -0.14, d = -0.15, 

HDI95% [-0.25, -0.06], but it did not vary by information salience, µdiff = -0.05, d = -0.06, HDI95% 

[-0.16, 0.03], or target object, µdiff = 0.04, d = 0.04, HDI95% [-0.06, 0.14]. Accumulated evidence 

from target objects was stronger after Black versus White primes, regardless of whether emotion 

or race information was more salient or whether the object was a gun or tool.  

The race prime effect on threshold separation (α) was not credible, µdiff = -0.02, d = -0.11, 

HDI95% [-0.25, 0.02]. Finally, a small but credible race prime effect emerged on non-decision 

time (τ), µdiff = -0.004, d = -0.10, HDI95% [-0.20, -0.03], but it did not vary by information 

salience, µdiff = -0.001, d = -0.02, HDI95% [-0.12, 0.05], or target object, µdiff < 0.001, d = 0.01, 

HDI95% [-0.08, 0.09].  
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Discussion 

In Experiment 1, racial bias was weaker when emotion versus race was salient. Process 

analyses failed to support an evidence accumulation account of this effect. Neither target object 

nor information salience moderated the stronger evidence accumulation occurring after Black 

versus White primes. Rather, process analyses supported an initial bias account: When race was 

salient, the decision process began closer to “gun” after Black versus White primes. When 

emotion was salient, no credible start-point bias emerged. Descriptively, however, start points in 

the emotion-salient condition were farther from “gun” after Black versus White primes, 

mirroring the atypical pattern of RTs in the emotion-salient condition (e.g., slower tool 

identifications after Black versus White primes). Whether behavior assimilates toward (e.g., 

typical racial bias) or contrasts from (e.g., atypical racial bias) race stereotypes can vary by 

context (Bless & Schwarz, 2010), raising questions about whether the atypical pattern in 

Experiment 1 stems from our blocking design. Experiment 2, therefore, aimed to replicate these 

results using a different manipulation of information salience. 

Experiment 2 

Method 

Participants 

Prior work using a similar design (Todd et al., 2021, Experiment 1) revealed a large effect of 

information salience on racial bias in the WIT (Salience × Race Prime × Target Object 

interaction: ηp
2 = .139); however, because smaller effects are of theoretical interest, we set a 

target sample size (N = 258) affording ≥80% power to detect ηp
2 = .03 (Faul et al., 2007). In 

total, 278 undergraduates consented to participate for course credit. We decided a priori to 

exclude data from participants who performed at or below chance (errors on ≥50% of trials) on 
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the face categorization task (n = 1) or on any trial type in the WIT (n = 20). We also excluded 

data from one participant for whom a computer error caused the WIT to abort early. The final 

sample comprised 256 participants (73.4% women, 24.2% men, 1.2% non-binary; 12.7% White, 

1.9% Black, 61.3% Asian, 15.2% Latino/a/e/x, 4.7% multiracial; Mage = 19.4, SD = 2.0).  

Procedure 

Participants first completed a face categorization task (Todd et al., 2021) wherein they 

viewed one of two stimulus sets of facial images, each containing a randomly selected batch of 

24 of the 48 facial images from Experiment 1. Both stimulus sets contained equal numbers of 

male faces varying in apparent race and posed emotion expression. Depending on information 

salience condition, participants were randomly assigned to classify the faces by race (Black vs. 

White) or by emotion expression (angry vs. happy) via key press. The images appeared one-by-

one and remained on screen until participants responded, for a total of 72 trials.   

Next, participants completed a WIT that deviated from the WIT in Experiment 1 in two ways. 

First, the face primes were the other set of 24 facial images not used during the face 

categorization task. We counterbalanced which stimulus set was used for the face categorization 

task and the WIT. Using different facial stimuli in the two tasks allowed us to rule out an event 

coding account (Hommel et al., 2001) whereby memory of specific responses toward specific 

faces in the face categorization task might affect responses toward those same faces in the WIT. 

Second, the face prime × target object combinations were fully integrated within a single block 

of 288 experimental trials that were preceded by 12 practice trials.  

Results 

Behavioral Analyses 
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Error Rates. A significant Salience × Race Prime × Target Object interaction, β = 0.04, F(1, 

74212.8) = 25.35, p < .001, R2 < .01, revealed salience-driven variation in racial bias. Race bias 

was evident when race was salient, b = -0.02, z = -2.60, p = .009. Guns were misidentified as 

tools less often after Black versus White  primes (Mdiff = -4.3%) and tools were misidentified as 

guns more often after Black versus White primes (Mdiff = 2.2%). Racial bias was also evident 

(albeit more weakly) when emotion was salient, b = -0.02, z = -3.04, p = .002. Guns were 

misidentified as tools more often after Black versus White primes (Mdiff = -1.5%), whereas 

misidentification of tools did not significantly differ between race primes. 

Correct RTs. A significant Salience × Race Prime × Target Object interaction, β = 0.59, F(1, 

66767.8) = 42.52, p < .001, R2 = .04, again revealed salience-driven variation in racial bias. 

Racial bias emerged when race was salient, b = -0.07, z = -11.67, p < .001. Guns were identified 

faster after Black versus White primes (Mdiff = -9 ms) and tools were identified slower after 

Black versus White primes (Mdiff = 8 ms). Racial bias also emerged (albeit more weakly) when 

emotion was salient, b = -0.03, z = -3.98, p < .001. Whereas the speed of gun identification did 

not significantly differ between race primes, tools were identified slower after Black  versus 

White primes (Mdiff = 5 ms).  

Process Analyses  

A Salience × Race Prime contrast on the relative start point (β) was credible, µdiff = 0.02, d = 

0.40, HDI95% [0.25, 0.57]. When race was salient, the decision process began closer to “gun” 

after Black versus White primes, µdiff = -0.07, d = -1.17, HDI95% [-1.45, -0.94]. Although start-

point bias also emerged when emotion was salient, the effect was weaker, µdiff = -0.02, d = -0.39, 

HDI95% [-0.60, -0.16]. Like Experiment 1, these findings align with an initial bias account. 



38 

A small but credible race prime effect emerged on the drift rate (δ), µdiff = -0.13, d = -0.17, 

HDI95% [-0.27, -0.06], but it did not vary by information salience, µdiff = 0.07, d = 0.10, HDI95% 

[-0.01, 0.20], or target object, µdiff = 0.07, d = 0.10, HDI95% [-0.02, 0.20]. Stronger evidence was 

accumulated for the target objects after Black versus White primes, regardless of whether 

emotion or race information was more salient or whether the object was a gun or tool.  

A small but credible race prime effect also emerged on threshold separation (α), µdiff = -0.04, 

d = -0.24, HDI95% [-0.38, -0.09], but it did not vary by salience, µdiff = 0.01, d = 0.07, HDI95% [-

0.07, 0.22]. The amount of evidence required before responding was greater after Black versus 

White primes, regardless of information salience. No credible effects emerged on non-decision 

time (τ). 

Discussion 

In Experiment 2, facial information salience again moderated racial bias in behavior, and 

these results again were better explained by an initial bias account. The decision process began 

closer to “gun” following Black versus White primes, but less so when emotion versus race 

information was more salient. Once again, stronger evidence accumulation following Black 

versus White primes did not vary by target object or which information was more salient.  

General Discussion 

In two experiments, we examined if and how the salience of facial information shapes 

racially biased weapon identification. We manipulated salience either by augmenting the 

distinctiveness of emotion or race information during the WIT (Experiment 1) or by augmenting 

participants’ experience in processing emotion or race information prior to the WIT (Experiment 

2). Racial bias in behavior was consistently weaker when the salience of emotion versus race 

information was highlighted. These findings complement a growing body of evidence suggesting 
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that the salience of facial information other than race (e.g., the age of the face primes) can alter 

racially biased weapon identification (Jones & Fazio, 2010; Todd et al., 2021; see also 

Gawronski et al., 2010). Specifically, they suggest that attending to comparatively more dynamic 

and affect-laden information communicated by facial expressions of emotion can likewise 

moderate racially biased weapon identification.  

Using diffusion modeling, we tested competing cognitive accounts of how facial information 

salience shapes racially biased weapon identification. Our results contradict the evidence 

accumulation account, which posits that evidence is accumulated from stereotype-congruent (vs. 

stereotype-irrelevant) target objects more strongly following race primes, and that the salience of 

information in the face primes shapes this phenomenon. In both experiments, the strength of 

evidence accumulation did not vary stereotypically (e.g., larger estimates for guns following 

Black primes) nor by information salience. 

Our process-level analyses instead consistently supported an initial bias account, which 

posits that the weapon identification process begins closer to a race-stereotypic decision after 

encountering race information in the face primes, and that the salience of facial information 

shapes the strength of this start-point bias. In both experiments, the decision process began closer 

to “gun” responses shortly after participants encountered Black versus White face primes. 

Furthermore, the strength of this effect was shaped by the salience of facial information: Racially 

biased start points were either eliminated (Experiment 1) or attenuated (Experiment 2) when 

emotion versus race was salient. Considered alongside previous findings of moderation by age 

salience (Todd et al., 2021), these results support the initial bias account as a mechanism 

whereby attending to person information besides race lowers the likelihood of favoring the “gun” 

response before the object’s appearance, relative to attending to race-related information. 
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Notably, our experiments failed to replicate prior findings that the mere availability of 

emotion cues in face primes moderates racially biased weapon identification (see Tables B1 & 

B3). Whereas Kubota and Ito (2014) found that racial bias emerged for scowling but not smiling 

face primes (see also Raissi & Steele, 2021), here emotion expressions in the face primes failed 

to moderate racial bias (despite these emotion expressions being easily detected; see footnote 3 

and Tables B7 & B8). Furthermore, emotion expressions weakly moderated weapon 

identification (i.e., the Emotion Prime × Target Object interaction) in Experiment 2, but this 

effect was not moderated by the salience of emotion. This latter point offers further clarity to the 

question of how emotion versus race salience shapes racially biased weapon identification. If 

racial bias is weaker in the emotion-salient versus race-salient condition because participants 

attended more to emotion information in the face primes, then the effect of emotion expression 

on weapon identification (i.e., the Emotion Prime × Target Object interaction) should be stronger 

when emotion versus race is salient. That is, if participants are paying more attention to emotion, 

then the effect of emotion expressions should be more impactful. And yet, we found no evidence 

that emotion salience moderated the impact of emotion expression on weapon identification. 

Our findings suggest that the mere availability of obvious emotion expressions does not 

moderate racially biased weapon identification, but that increasing the salience of emotion 

expressions does moderate racial bias, relative to increasing salience of race. And yet, increasing 

the salience of emotion expressions failed to moderate the effects of emotion expression on 

weapon identification. It is unclear, therefore, if attention is simply being drawn away from race 

information without being drawn toward emotion information. This pattern of results 

underscores the importance of directly measuring the processing of prime-related content to 

clarify when and how salient cues are integrated into object identification. The current 
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instantiation of the DDM is ill-equipped to answer this question because it measures the decision 

process from target object onset, treating the influence of face primes as a response bias toward 

or away from “gun” decisions (i.e., a start-point bias).  

In reality, the processing of facial information occurs over a time course rich in nuance 

(Freeman et al., 2020). Such nuance may be needed to understand where attention is directed at 

prime onset, and how such attention allocation affects later-stage processing. For example, the 

length of time spent processing information in the primes might flip the direction of their impact 

on decisions about targets (Klauer et al., 2009). We see value in future research that uses 

alternative computational approaches (e.g., Diederich & Trueblood, 2018) to capture the 

processing of face primes more directly. By dynamically measuring the processing of face 

primes in the WIT, future work may identify the amount of processing time required for various 

information in the face primes to have maximal impacts on later-stage processing.18 

Future research should also test the generalizability of the initial bias account across other 

sources of salient facial information and different social groups. For example, information 

salience also shapes gender-stereotypic threat impressions (Rees et al., 2022), but it remains 

unclear where in the decision process these effects emerge. In addition, because we used only 

male face primes, future research should test whether racially biased weapon identification 

evoked by Black versus White women (Thiem et al., 2019) is likewise shaped by informational 

salience (cf. Petsko et al., 2022) and, if so, whether it is best explained by an initial bias account.  

Our findings indicate that attending to emotion versus race information can weaken racially 

biased weapon identification. This phenomenon can be explained by salience-driven changes at 

the start of the decision process. Racial biases favoring a “gun” response before the object’s 

 
18 We thank an anonymous reviewer for raising this point. 
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onset were weaker when emotion versus race was salient, pointing to a mechanism whereby the 

salience of person information moderates racially biased decision-making.   
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Abstract 

Forming impressions of others is a fundamental aspect of social life. These impressions 

necessitate the integration of many and varied sources of information about other people, 

including social group memberships, apparent personality traits, inferences from observed 

behaviors, etc. However, methodological limitations have hampered progress in understanding 

this integration process. In particular, extant approaches have been unable to measure the 

independent contributions of multiple features to a given impression. In this article, after 

describing these limitations and their constraints on theory testing and development, we present a 

multinomial processing tree model as a computational solution to the problem. Specifically, the 

model distinguishes the contributions of multiple cues to social judgment. We describe an 

empirical demonstration of how applying the model can resolve long-standing debates among 

person perception researchers. Finally, we survey a variety of questions to which this approach 

can be profitably applied.  

Keywords: person perception; impression formation; multinomial processing trees; 

computational modeling; stereotyping  



49 

Measuring the Impact of Multiple Social Cues to Advance Theory in Person Perception 

Research 

Since the publication of Asch’s seminal work (1946), perhaps the most fundamental objective 

in the research on person perception has been to understand how people combine the 

implications of multiple and varied features in judging others (see also Anderson, 1968). Cues 

relating to social group membership (e.g., racial appearance), personality traits (e.g., 

trustworthiness), emotions (e.g., anger), witnessed behaviors (e.g., an act of violence), and many 

other attributes may be relied upon in forming a coherent impression of another person. Though 

many influential models have been proposed to account for this complex task, testing them has 

been hindered by a limitation in measurement. In turn, this limitation has significantly slowed 

theoretical progress. In this paper, we detail the nature of the problem before offering a solution 

in the form of a computational modeling approach.  

Theoretical Background 

Models of person perception often posit how multiple features are integrated into a judgment. 

One of the prevailing claims these models make is that integrating different features occurs 

through a competitive process, such that relying more on one feature implies relying less on 

others. We refer to this as the inverse relativity assumption. In their initial presentations, both 

Brewer’s (1988; 2014; see also Brewer & Feinstein, 1999) and Fiske and Neuberg’s (1990; see 

also Fiske et al., 1999) influential models propose an inverse relationship between the use of 

social category (e.g., group stereotypes) and individuating (e.g. individual behavior) information: 

Increased stereotyping requires decreased individuation and vice versa. So, for example, if 

cognitive load is predicted to reduce the reliance on individuating behaviors, it should also 

increase the use of social stereotypes (e.g., Fiske & Neuberg, 1990). More recent models 
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similarly invoke inverse relativity. Consider Petsko and colleagues’ (2022) Lens Model, which 

proposes that people use a variety of contextually activated lenses in perceiving others. However, 

according to the model, once one social category lens (e.g., race) has been activated, the use of 

other categories is necessarily diminished.  

Beyond the inverse relativity assumption, another prevailing view in the person perception 

literature is that certain features dominate person perception (cf. Petsko & Bodenhausen, 

2020)—that is, some cues are integrated into judgments by default and are highly impactful in 

determining social judgments. These models generally suppose that social category cues, 

particularly unambiguous visible cues to sex, race, and age, are processed more efficiently with 

fewer attentional resources than other cues (e.g., Brewer, 1988; Fiske & Neuberg, 1990). When 

person information is perceptually disfluent (e.g., inverted face; Cloutier et al., 2005) or a 

perceiver’s cognitive or motivational resources are low (e.g., via a cognitive load task; 

Wigboldus et al., 2004), social categorization and, by extension, stereotyping is thought to 

remain active. However, the processing of cues that refer to the personal, individuating attributes 

of people, such as traits, states, and behaviors, is thought to operate insufficiently under such 

impoverished circumstances (e.g., Sherman et al., 2000; Swencionis & Fiske, 2013), augmenting 

the relative impact of social categories. 

Of course, inverse relativity and category dominance are not the only perspectives in person 

perception research. For example, the Social Judgeability Model (SJM; Leyens et al., 1992; 

Yzerbyt et al., 1994; 1998) predicts that stereotyping is more likely when individuating features 

are available, if those individuating features provide perceivers with the subjective sense of being 

fair and decrease concerns with unfairly stereotyping a target (Darley & Gross, 1983; Norton et 
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al., 2004; Yzerbyt et al., 1994). Thus, this perspective posits that greater individuation may 

increase categorization (i.e., a direct relationship), contrasting the inverse-relativity perspective. 

A class of network models (e.g., Freeman & Ambady, 2011; Kunda & Thagard, 1996) 

eschews both the inverse relativity and category dominance perspectives, assuming that all 

available features may be integrated, as in early models of impression formation (e.g., Asch, 

1946; Andersen, 1968). They allow for the use of different features to be positively correlated, 

negatively correlated, or not correlated at all (Freeman et al., 2012). They also suggest that 

aspects of the perceiver, can affect which features are more or less dominant during the construal 

process (Freeman et al., 2020; see also Schwarz & Bless, 2010). Altogether, there is great 

flexibility in the model to account for almost any pattern of feature integration. This is both a 

strength and weakness of the model, as it does not make sufficiently precise predictions to be 

falsifiable as a general model of person perception, though some specific hypotheses may be 

testable (e.g., Freeman et al., 2012; for a more detailed discussion, see Petsko & Bodenhausen, 

2020). For example, these models imply that cues processed earlier during person perception 

have more time and opportunity to influence final judgments. 

A Multi-Cue Measurement Problem 

Clear tests of the models laid out above require the ability to measure the separate impacts of 

multiple features on impressions and their theoretically proposed relationships (e.g., race 

dominating impressions over behavior). For instance, adequately testing whether cognitive load 

decreases individuation and increases categorization (e.g., Fiske & Neuberg, 1990), or decreases 

both processes (e.g., Spears & Haslam, 1997), requires that the impacts of social categories and 

person-specific cues be distinguished from each other. Unfortunately, conventional measurement 

approaches are unable to do so. 
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To illustrate the problem, consider an archetypal study that attempts to assess the extent to 

which different types of information influence judgments along some stereotype-relevant 

dimension (e.g., How threatening is Bob?). Those judgments, in and of themselves, cannot 

provide independent estimates of the impacts of social stereotypes (Bob is Black and therefore 

stereotypically threatening), Bob’s somewhat threatening behavior, and Bob’s smiling facial 

expression. In this case, a relatively stereotypic judgment of Bob as threatening may result from 

increased stereotyping, increased influence of his behavior, decreased impact of his facial 

expression, or all three. In turn, a relatively counter-stereotypic judgment may result from 

decreased stereotyping, decreased use of the behavior, increased use of the expression, or all 

three.  

Consider also the classic finding that people tend to make more stereotypic judgments of 

suspects’ alleged misbehavior when they are tested at the low point versus high point of their 

circadian cycles (Bodenhausen, 1990). This is the sort of evidence that has been seen to support 

prominent dual-process models and their assumptions about inverse-relativity and social 

category dominance: People make more stereotypic judgments when they have diminished 

processing capacity and motivation. Although findings like this serve as important illustrations, 

the extent to which different information contributes to these effects is unclear. Does reducing 

cognitive resources increase the use of social categories, decrease the use of individuating details 

about the person, or both? Alternatively, both features may be relied upon more or less, with the 

change in one being greater than the other. In all cases, the outcome is an increase in stereotypic 

judgments. 

As another example, consider the finding that those with greater implicit bias are quicker to 

recognize happiness in White faces and anger in Black faces (Hugenburg & Bodenhausen, 2003). 
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Though an important demonstration of the effects of stereotypes on emotion perception (see also 

Weisbuch & Ambady, 2008), the extent to which different types of information contribute to the 

effect is unclear. Does construing Black faces quickly becoming angry reflect relying on race 

more, relying on facial expressions less, or some combination of changes in both features?  

As a final illustration, consider mouse-tracking tasks, which instruct participants to move 

their cursor from a fixed starting position toward one of two (or more) response options based on 

the target stimulus provided. The extent to which the cursor initially moves toward one response 

before being tracked to the other response indicates the extent of conflict between the two 

response options and that both have been activated in parallel (e.g., Hehman et al. 2015; 

Stillerman & Freeman, 2019).  

However, although mouse-tracking measures are excellent indicators of parallel activation 

and response conflict, they cannot distinguish the extents to which the two different sources of 

information influence cursor movement (Stillman et al., 2018). For example, when used to assess 

race categorization, participants show a stronger initial tendency to move the cursor toward 

White categorizations when an ambiguously Black target is wearing a suit versus a janitor’s 

uniform (Freeman & Ambady, 2009). This measure of conflict between White and Black 

response options is interpreted to reflect an initially greater impact of clothing at the expense of 

race before a transition to a greater impact of race at the expense of clothing. However, the 

varying influence of each feature cannot be distinguished from the other. The measures are 

inherently relative and pit the use of each cue against the other in an inverse fashion.  

A Multi-Cue Integration Model  

Here, we propose a solution to the multi-cue measurement problem in the form of a 

computational model that we named the multi-cue integration (MCI) model. The MCI model is a 
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multinomial processing tree (MPT), a class of cognitive models comprised of a set of equations 

to identify and measure the extent of processes underlying responses in a task (for reviews, see 

Batchelder & Riefer, 1999; Calanchini et al., 2018; Erdfelder et al., 2009; Hütter & Klauer, 2016; 

Sherman et al., 2010). Like any MPT, the MCI model is built on a small set of parameters – C1, 

C2, and g – with each parameter reflecting the probability of a unique cognitive processing state 

(e.g., the integration of sex information into an impression). The C1 and C2 parameters each 

reflect the probability of a unique source of information being used to form judgments, whereas 

g reflects a response bias toward one response over another. If targets in a gender classification 

task vary in both sex and facial expression, then C1 could be assigned to reflect the probability of 

sex cues being used when classifying target faces, whereas C2 could be assigned to reflect the use 

of facial expressions for those very same classifications.  

Visually, the relationships among these parameters can be depicted as a processing tree, as 

seen in Figure 9. The MCI model assumes that the probability of using the information assigned 

to C2 (e.g., facial expressions) is contingent upon the probability that using the information 

assigned to C1 (e.g., sex cues) is insufficient for deriving a particular judgment [(1 – C1) × C2]. 

Although the parameters and their relationships among one another remain the same across 

judgment tasks, the number of equations used to model the data are determined by the number of 

unique responses on that task. That is, the MCI model produces an equation for each unique 

response that can be observed in a judgment task. A task with 12 unique responses would require 

12 unique equations, derived from the MCI model’s parameters.  

It is noteworthy to further highlight what the C1 and C2 processing parameters represent. 

Traditional cognitive models of person perception focus on the various mechanisms (e.g., 

activated associations, recognition memory, correct response detection) that turn input 
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information into social judgments. MPTs have been very useful for such investigations (e.g., 

Heycke & Gawronski, 2020; Klauer & Wegner, 1998; Krieglmeyer & Sherman, 2012), as they 

traditionally quantify how often the various mechanisms work to generate those judgments. The 

MCI, however, is unique in that it focuses on quantifying the extent to which specific input 

features are used to form social judgments. The C1 and C2 parameter estimates encapsulate the 

cumulative processing of these features, across whatever mechanisms may be involved. That is, 

the MCI model offers a quantitative assessment on each feature’s impact, summed across all the 

mechanisms by which they may be used to derive judgments. To illustrate more fully, we 

describe an experiment designed to test the model’s validity for a particular judgment task and its 

capacity for theory testing and development in person perception research. 

Demonstrating the MCI Model 

Participants (N = 593; Klein & Sherman, 2024) classified faces varying in facial cues to sex 

(male cues, female cues) and expression (e.g., scowling, smiling). Using morphing techniques 

described in Appendix C, both cues were manipulated to appear either ambiguous or 

unambiguous. By assigning participants to classify faces by gender or emotion, the relevance of 

sex and expression information were manipulated between-participants. As previously stated, the 

number of equations the MCI model derives depends on the number of unique responses in the 

task. Here, the MCI model derives 8 unique equations (2 [judgment: man, woman; or angry, 

happy] × 2 [sex cues: male, female] × 2 [emotion expression: scowling, smiling] equations). For 

example, separate equations were derived for predicting how often smiling male faces were 

classified as a man versus woman. 

Following along the tree in Figure 9, for the gender classification task, the probability of 

classifying a happy male face as a man is predicted by the joint contributions of male facial cues 
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[C1] and a tendency to categorize faces as men whenever sex and expression cues are insufficient 

to derive a coherent judgment [(1- C1) × (1- C2) × (1-g)] – that is, a response bias toward man. 

The compliment of that probability, the equation for classifying a happy male target as a woman, 

is predicted by the joint contributions of a smiling facial expression [(1- C1) × C2] and a tendency 

to categorize faces as women whenever sex and emotion cues are insufficient to derive a 

coherent judgment [(1- C1) × (1- C2) × g] – that is, a response bias toward woman. Therefore, by 

simply following the paths along the tree, the equations predicting each unique response can be 

derived (The full set of equations are displayed in Appendix C).19  

Figure 9 

Chapter 3: The MCI Model and Its Predicted Responses to Gender Classifications 

 

Notes. Diagram of the MCI model used to measure person perception data from a paradigm in 

which judgments were made of targets varying in sex and expression cues. The manifest 

outcome is represented on the right side of the figure (i.e., binary responses about the person’s 

gender). The paths along the tree depict the processing paths assumed by the model to explain 

responses for each trial type. 

 
19 More detailed discussions of the mechanics of using MPTs is beyond the scope of this text. We recommend 

general (e.g., Schmidt et al., 2022) and software-specific (e.g., Hartmann et al., 2020; Heck et al., 2018; Moshagen, 

2010; Stahl & Klauer, 2007; Singmann & Kellen, 2013) tutorials for instructions on developing and applying MPTs. 
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MPTs are theoretically derived models, and the MCI model relies on well-established 

stereotypes we assume participants rely on when forming judgments. Here, the MCI model relies 

on the stereotype linking men (women) and negative (positive) expressions: the model assumes 

that expression information is used when smiling faces are classified as woman and scowling 

faces as man, but not the other way around. For example, the equation for judging a smiling male 

face as woman [(1- C1) × C2 + (1- C1) × (1- C2) × g] includes the assumption that smiling 

expressions are associated with woman and not man (see Hess et al., 2007). These assumptions 

are required to identify the model and can be tested by examining whether the model adequately 

predicts the observed responses (i.e., model fit).  

The parameters are estimated by entering the frequencies of participants’ actual responses as 

outcomes in the equations, and their values reflect the probability that their respective processing 

component contributes toward the observed responses. Each estimated parameter can vary 

independently of all others, yielding distinct estimates for the relative contributions of each 

component. 

Applying the MCI Model  

Model Fit. First and foremost, the MCI model fits well to both the gender classification 

judgments, Median Individual T1 p-value = .558, Aggregate T1 p-value < .001, Aggregate T2 p-value = 

.002, w = .02, and emotion classification judgments, Median Individual T1 p-value = .538, 

Aggregate T1 p-value = .094, Aggregate T2 p-value = .192, w < .01, albeit far better fitting for emotion 

classification judgments. Assessment of model fit includes visual examination of the posterior 

predictions against the observe response frequencies and covariances. Visually, we also plotted 

expected versus observed mean frequencies (T1) and covariances (T2). The observed means and 

covariances generally fall within the range of box-plotted model expectations, indicating good fit 
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(see Figures C1-C4). Visual inspection is both inherently Bayesian and a common tool for MPT 

modeling using the current estimation strategy (e.g., Calanchini et al., 2021; Smith et al., 2019).  

Parameter Comparisons. If the MCI model measures the distinct contributions of sex and 

expression information, we would expect the estimated use of each cue to be greater when it was 

relevant versus irrelevant to the intended judgment. Indeed, sex cues were used more and 

expressions were used less during gender versus emotion classification. We would also expect 

that task-relevant cues (e.g., sex cues during gender classification) would be used less when 

ambiguous. Aligned with this expectation, introducing ambiguity in sex cues decreased their use 

during gender classification (Figure 10), whereas introducing ambiguity in expressions decreased 

their use during emotion classification (Figure 11).  

Parameter Correlations. As we previously discussed, a prominent assumption in the person 

perception literature is that two features are integrated in a competition (e.g., Fiske & Neuberg, 

1990). If one feature contributes more, it is at the expense of the other feature’s contribution to 

the judgment. However, alternative relationships have also been proposed, such as positive 

associations between the two features (e.g., Leyens et al., 1992) – categorization is sometimes 

thought to increase when individuation does as well. To diagnose these competing accounts, we 

can examine the correlation between the use of each source of information. Here, we focus on 

trials when neither feature was ambiguous. For gender classification judgments, the MCI model 

identified a credible and positive correlation between the use of sex and expression cues r = .64, 

BCI95% [.29,.92]. For emotion classification judgments of the same targets, however, the model 

failed to identify any association between the use of the two cues, r = .13, BCI95% [-.92, .90].  

Model Comparison. As we have noted, extant theory contends with competing predictions 

about which cues are processed by default. Arguably the most prominent assumption is one in 
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which social categorization serves as the default process. Regardless of alternative sources of 

information or the intended judgment, social categories are often thought to be integrated into 

impressions (Brewer, 1988; Fiske & Neuberg, 1990; Hugenberg et al., 2010). Alternative 

perspectives suggest that the intended judgment – that is, a perceiver’s goal – and other motives 

determine which information is more likely to be integrated into an impression by default 

(Freeman et al., 2020; Petsko et al., 2022; Schwarz & Bless, 2010).  

A strength of the MCI model is that it offers a framework within which to formalize and test 

competing default-processing assumptions. The model’s equations establish conditional 

relationships among the parameters, assuming that the use of the second feature is contingent 

upon the first feature being insufficient for producing the judgment [(1 – C1) × C2]. By fitting the 

MCI model both when C1 is assigned to one cue versus the other, we can identify whichever 

model variant better characterizes the data (for similar approaches, see Calanchini et al., 2022; 

and Laukenmann et al., 2023). Here, we demonstrate this procedure by fitting the MCI when C1 

reflects sex processing and again when it reflects expression processing. 

After fitting both versions of the model, we compared their Deviance Information Criteria 

(DIC) to determine which version offers a better characterization of the observed judgments. In 

both the gender classification task (ΔDIC = -2.74) and emotion classification task (ΔDIC = 8.72), 

comparison of the two models yielded substantive evidence for a default-sex model. That is, 

regardless of which cue was more relevant to the intended judgment, sex cues were integrated by 

default, whereas expression cues were better characterized as being used if sex cues, alone, were 

insufficient to derive the judgment. It remains an open question as to whether all social 

categories dominate person perception. This procedure, therefore, should be replicated and 

generalized across various social categories (e.g., race, age) and identity-specific cues (e.g., other 
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expressions, behaviors), and across various intended judgments (e.g., gender classification, 

gender-typical versus gender-atypical trait impressions). 

Figure 10 

Chapter 3: Estimated Use of Sex Cues During Face Classification  

 

Notes. Markers reflect the estimated use of sex cues during face classification by gender 

(triangles) or emotion (circles). Solid markers reflect aggregate-level estimates, whereas empty 

markers reflect individual-level estimates. The x-axis reflects whether target face stimuli were 

presenting ambiguous sources of information. The y-axis reflects the estimated probability of 

relying on sex cues when classifying target faces. Error bars signify 95% Bayesian credibility 

intervals around the aggregate-level estimate. 
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Figure 11 

Chapter 3: Estimated Use of Expression Cues During Face Classification  

 

Notes. Markers reflect the estimated use of expression cues during face classification by gender 

(triangles) or emotion (circles). Solid markers reflect aggregate-level estimates, whereas empty 

markers reflect individual-level estimates. The x-axis reflects whether target face stimuli were 

presenting ambiguous sources of information. The y-axis reflects the estimated probability of 

relying on expression cues when classifying target faces. Error bars signify 95% Bayesian 

credibility intervals around the aggregate-level estimate. 

 

Summary 

This initial pilot study demonstrates that the MCI provides an accurate account of multi-

feature integration in person perception. Further, the results highlight the model’s potential for 

theory testing and development. For instance, the lack of negative correlation between the use of 

two clear cues challenges the inverse relativity assumption that increases in the use of one 

feature should coincide with decreases in the other. Obviously, this singular empirical 

demonstration does not offer a thorough test of inverse-relativity, but it does highlight the need 



62 

for research that applies this technique to thoroughly examine how various cues are integrated 

together into social judgments. 

We also demonstrated how the MCI model can be applied to test dominance assumptions in 

person perception research, which generally assume that one feature (usually representing social 

categories) is used more efficiently, acts as a default, and is more impactful in judgments than 

other features. Here, we find that sex cues were, indeed, better characterized as a default process, 

even when expression cues were more relevant to the judgment at hand (i.e., emotion 

classification). Again, these data are illustrative but preliminary. Considerable further work will 

be required to draw any broad claims about the kinds of features that tend to dominate and the 

conditions under which they do so.  

Further Applications of the MCI Model 

The MCI model offers a flexible solution for testing key questions and theories surrounding 

person perception that can be applied to most tasks in which judges must select among discrete 

options. In this paper, we introduce and initially validate the MCI model as one that can capture 

information processing behind binary classifications of faces by gender and emotion. However, 

the same framework could be applied to judgments of race, age, or personality traits, or to 

decision-making given a variety of kinds of available information (e.g., hiring context; Axt et al., 

2018), so long as each target belongs to only one level of each dimension measured by the MCI 

model. MPTs like the MCI model also can be redrawn to accommodate a broader range of data, 

including data from tasks with three response options (e.g., Klauer & Wegener, 1998). The 

model also can be extended to include both discrete responses and continuous data, such as 

response times (Heck et al., 2016; Klauer & Kellen, 2018) and mouse-tracking (Heck et al., 
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2018), if both are presumed to be integral for explaining the cognitive processing underlying 

judgments.  

Consider the benefits of integrating response times into the MCI model. Doing so could (1) 

estimate the speeds at which different features lead to judgments and (2) test the temporal order 

by which two features are processed during person perception. As previously discussed, social 

categorization is thought to occur prior to the processing of other, more identity-specific 

information (e.g., Fiske & Neuberg, 1990; Hugenberg et al., 2010). Including response times into 

the MCI model framework, and subsequently testing the temporal order between social 

categories and more identity-specific cues, offers a direct test of this assumption. Although we 

have not yet developed versions of the MCI model to accommodate nonbinary discrete responses 

or the inclusion of continuous data, it is certainly possible to do so.  

Testing Dominance Assumptions of Person Perception Models  

As mentioned earlier, another facet of the general assumption that social categories dominate 

person perception is the claim that they are more efficiently processed and applied than other 

information (e.g., individuating behaviors). As such, these models predict greater impact of 

social categories and lesser impact of individuating features, especially when perceivers have 

limited processing capacity (e.g., Brewer, 1988; Fiske & Neuberg, 1990). The supposed 

efficiency of activation and application of social category stereotypes implies that their 

processing should be unaffected or even increased when the perceiver is under cognitive load or 

time pressure, for example. Individuating expressions, traits, and behaviors, on the other hand, 

are assumed to be applied less fully under those same conditions (e.g., Sherman et al., 2000; 

Swencionis & Fiske, 2013).  
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Those same theoretical models of impression formation and social inference also propose 

that perceivers vary their use of different attributes as a function of their motivation to judge a 

target accurately (e.g., Fiske, Lin, & Neuberg, 1999; Fiske & Neuberg, 1990). Specifically, 

according to these models, increased accuracy motivation (via internal motives, interdependence 

with the target, etc.) should decrease the use of social category information and increase the use 

of individuating personal information. The MCI model can be applied to directly test these 

hypotheses by providing a means for estimating the independent contributions of different cues, 

which, to date, has not been possible. 

The MCI model can also be applied to test the extent to which various features are used 

depending on what other information is also available. Our empirical demonstration measured 

the use of sex and expression cues to classify faces. However, if those faces varied in sex and 

race cues instead, would sex cues be used differently than when expression was the alternatively 

available information? By implementing the MCI model across various information pairings 

(e.g., sex and expression, sex and race, sex and traits), we can better understand the extent to 

which the use of specific features is context-general versus context-specific in person perception. 

Context Effects on Person Perception 

Another central goal of person perception research is to assess the independent contributions 

of target features (e.g., traits) and situational details in impression formation. Process models 

designed to account for the supposed under-use of social context on person perception (i.e., the 

“Fundamental Attribution Error”) propose that inferences about the situation surrounding a 

person are made less efficiently than inferences about the person’s traits (Gilbert, 1989; Trope, 

1986). Accordingly, these models propose that cognitive load reduces the integration of 
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situational information but does not impair the use of person information (e.g., personality traits) 

in person perception.  

More broadly, a key question in person perception research concerns the joint contributions 

of person cues and context cues on impression formation. Among many other examples, 

researchers have investigated the contributions of background imagery (e.g., Brambilla et al., 

2018), clothing cues (Freeman et al., 2011; Oh et al., 2020), and accessory items (e.g., tools or 

guns; Fessler et al., 2012), on person perception. In some cases, researchers have avoided 

making inferences about the contributions of each cue (e.g., Fessler et al., 2012); in others, cues 

are assumed to be integrated inversely from one another (e.g., Brambilla et al., 2018; Freeman et 

al., 2013; Xie et al., 2022). The MCI model provides a means for directly investigating such 

questions.  

Multiply Categorizable Person Perception 

All people simultaneously belong to multiple groups based on sex, race, age, etc. In recent 

years, increasing attention has been paid to how impressions are based not on a single social 

category, but rather multiple categories (e.g., Kang & Bodenhausen, 2015). This research has 

revealed considerable nuance in group-based judgments of and behavior toward other people. 

For example, judgments about a target’s sex may vary as a function of target race (Johnson et al., 

2012). Judgments of leadership ability may be affected by an interaction between the target’s 

race and sexual orientation (Wilson et al., 2017). Basic intergroup bias favoring ingroups over 

outgroups may be attenuated if the target and perceiver share a common identity (e.g., 

Calanchini et al., 2022; Scroggins et al., 2016). However, the literature on judgments of multiply 

categorizable targets has yet to disentangle the contributions of each category cue. For example, 

the extents to which each social category plays a role in Black women being mistaken for and 
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stereotyped as men more frequently than White women (e.g., Kang & Bodenhausen, 2015) is not 

clear. Do perceivers rely on Black cues more (stereotypically emphasizing masculine qualities), 

female cues less (stereotypically minimizing feminine qualities), or both? These kinds of 

questions are can be addressed with the MCI model.  

Conclusion 

The judgments we make about people are foundational to when, how, and why we treat them 

the way we do. Theoretical progress in person perception research has been hindered by an 

inability to distinguish the contributions of multiple available cues to social judgment. Is the 

processing of social categories highly efficient? Does accuracy motivation reduce the use of 

social categories and increase the use of identity-specific cues, or both? Is the integration of 

situational constraints in understanding behavior particularly inefficient? More broadly, to what 

extent do people integrate personal and contextual features in person perception? Do certain 

features dominate impressions? If so, are these dominant features processed first, by default, 

more efficiently, more often, or by some combination of these facets? These questions cannot be 

addressed effectively without disentangling the contributions of each source of information. The 

MCI model offers a solution to this multi-cue measurement problem.  
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Appendix A 

Revising Mental Representations of Faces Based on New Diagnostic Information 

Linear Mixed-Effects Models (LMEMs) 

Fixed-Effects Tables 

 

Table A1 

 

Trait Impressions of Robert by Fixed Effects of Time, Time 1 Induction, Time 2 Information, and 

All Interactions (Image-Generation Experiment) 

 

Fixed Effects 

 

b 

 

SE 

 

t 

 

df 

Intercept 3.64*** 0.13 28.16 7.85 

Time 0.18** 0.04 4.00 8.18 

Time 1 Induction -1.25*** 0.18 -7.10 6.91 

Time 2 Information -0.23*** 0.06 -3.90 35.07 

Time × Time 1 Induction -0.46*** 0.03 -18.15 280.97 

Time × Time 2 Information 0.20*** 0.03 7.77 280.97 

Time 1 Induction × Time 2 Information 0.34** 0.08 4.21 13.28 

Time × Time 1 Induction × Time 2 Information -0.37*** 0.03 -14.36 280.97 

Note. *p < .05 **p < .01 ***p < .001; degrees of freedom (df) were calculated using Satterthwaite 

approximation. 

 

 

Table A2 

 

Trait Ratings of Group Classification Images by Fixed Effects of Time, Time 1 Induction, Time 2 

Information, and All Interactions (Image-Assessment Experiment 1) 

 

Fixed Effects 

 

b 

 

SE 

 

t 

 

df 

Intercept 3.98*** 0.26 15.37 6.17 

Time 0.02 0.01 1.23 8358.00 

Time 1 Induction -0.34*** 0.04 -8.87 154.00 

Time 2 Information -0.09*** 0.01 -5.93 8358.00 

Time × Time 1 Induction -.015*** 0.01 -10.20 8358.00 

Time × Time 2 Information 0.05*** 0.01 3.64 8358.00 

Time 1 Induction × Time 2 Information 0.11*** 0.01 7.17 8358.00 

Time × Time 1 Induction × Time 2 Information -0.11*** 0.01 -7.23 8358.00 

Note. *p < .05 **p < .01 ***p < .001; degrees of freedom (df) were calculated using Satterthwaite 

approximation. 
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Table A3 

 

Trait Ratings of Subgroup Classification Images by Fixed Effects of Time, Time 1 Induction, Time 

2 Information, and All Interactions (Image-Assessment Experiment 2a) 

 

Fixed Effects 

 

b 

 

SE 

 

t 

 

df 

Intercept 3.97*** 0.08 49.43 153.49 

Time -0.01 0.03 -0.21 45.04 

Time 1 Induction -0.55*** 0.05 -10.61 81.29 

Time 2 Information -0.10* 0.04 -2.31 45.95 

Time × Time 1 Induction -0.29*** 0.04 -8.12 58.67 

Time × Time 2 Information 0.07* 0.03 2.23 44.26 

Time 1 Induction × Time 2 Information 0.15*** 0.04 3.41 48.40 

Time × Time 1 Induction × Time 2 Information -0.11** 0.03 -3.27 45.27 

Note. *p < .05 **p < .01 ***p < .001; degrees of freedom (df) were calculated using Satterthwaite 

approximation. 

 

 

Table A4 

 

Trait Ratings of Individual Classification Images by Fixed Effects of Time, Time 1 Induction, 

Time 2 Information, and All Interactions (Image-Assessment Experiment 2b) 

 

Fixed Effects 

 

b 

 

SE 

 

t 

 

df 

Intercept 3.74*** 0.05 74.76 315.60 

Time 0.02 0.01 1.18 314.38 

Time 1 Induction -0.22*** 0.02 -10.19 395.34 

Time 2 Information -0.04 0.02 -1.97 281.41 

Time × Time 1 Induction -0.13*** 0.01 -8.78 314.36 

Time × Time 2 Information 0.02 0.01 1.17 278.53 

Time 1 Induction × Time 2 Information 0.07*** 0.02 3.65 291.52 

Time × Time 1 Induction × Time 2 Information -0.03* 0.01 -2.43 280.36 

Note. *p < .05 **p < .01 ***p < .001; degrees of freedom (df) were calculated using Satterthwaite 

approximation. 
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Random-Effects Structures 

Image-Generation Experiment  

In this and all other linear mixed-effects models (LMEMs) reported below, we aimed to 

maintain the largest possible random-effects structure without convergence failure or singularity. 

The two sources of variance accounted for in the image-generation experiment were participants 

(i.e., image generators) and traits (i.e., image generators’ trait impressions of Robert). We 

reverse-scored the negatively-valenced traits (mean, dominant, and aggressive), ensuring that the 

traits can be interpreted as a sample drawn from a population of positive traits. The maximal 

random-effects structure included intercepts for participants and traits, a by-participant slope for 

Time, and by-trait slopes for Time, Time 1 induction, Time 2 information, and all possible 

interactions among those variables. Time is the only within-participant variable. Time, Time 1 

induction, and Time 2 information are all within-trait variables.  

This maximal model failed to converge. Thus, we downsized the random-effects structure 

until the model converged. The higher-order random-effects interactions involving traits proved 

most problematic, so we removed the three-way interaction, along with the Time × Time 1 and 

Time × Time 2 interactions. The final random-effects structure included intercepts for 

participants and traits, a by-participant slope for Time, and by-trait slopes for Time, Time 1 

induction, Time 2 information, and the Time 1 induction × Time 2 information interaction.  

Image-Assessment Experiment 1  

The two sources of variance accounted for in image-assessment Experiment 1 were 

participants (i.e., image raters) and traits (i.e., image raters’ trait impressions of the group 

classification images of Robert). As before, we reverse-scored the negative-valenced traits. 

Because each image rater rated all 8 group images on each of the 7 traits, Time, Time 1 
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induction, and Time 2 information are within-participant and within-trait variables. Therefore, 

the maximal random-effects structure includes intercepts for participants and traits, and both by-

participant and by-trait slopes for Time, Time 1 induction, Time 2 information, as well as all 

possible interactions involving those variables. 

This maximal model failed to converge without singular fit. Therefore, we downsized the 

random-effects structure until singular fit was eliminated. All by-trait slopes riddled the model 

with singular fit. So too did all by-participant slopes, except a slope for Time 1 induction.  

Therefore, the final random-effects structure included intercepts for participants and traits, a by-

participant slope for Time, and by-trait slopes for Time, Time 1 induction, Time 2 information, 

and the Time 1 induction × Time 2 information interaction.  

Image-Assessment Experiment 2a  

The two sources of variance accounted for in image-assessment Experiment 2a were 

participants (i.e., image raters) and stimuli. Here, “stimuli” refers to the subgroup of image 

generators whose data were used to generate subgroup classification images at Time 1 and Time 

2. With 96 subgroup images, there were 48 subgroup stimuli IDs, with each ID corresponding to 

the pair of Time 1 and Time 2 subgroup images generated by the same subgroup of image 

generators. Because each image rater rated all 96 subgroup images, Time, Time 1 induction, and 

Time 2 information were all within-participant variables. Because each subgroup image ID 

contained a Time 1 and Time 2 image, Time was also a within-stimuli variable. Therefore, the 

maximal random-effects structure included intercepts for participants and stimuli, by-participant 

slopes for Time, Time 1 induction, and Time 2 information, and all possible interactions 

involving those variables, as well as a by-stimuli slope for Time. This maximal model converged 

without any concerns over singular fit. Therefore, we reported the maximal model. 
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Image-Assessment Experiment 2b  

The two sources of variance accounted for in image-assessment Experiment 2b were 

participants (i.e., image raters) and stimuli. Here, “stimuli” refers to the image generators of the 

individual classification images. These image generator IDs correspond to the 285 pairs of 

images (Time 1 and Time 2) created by each image generator. Because each image rater was 

randomly assigned images to rate from all possible conditions, Time, Time 1 induction, and Time 

2 information were within-participant variables. With two time points of image generations per 

image generator, Time was a within-stimuli variable. Therefore, the maximal random-effects 

structure included intercepts for participants and stimuli, by-participant slopes for Time, Time 1 

induction, and Time 2 information, and all possible interactions involving those variables, as well 

as a by-stimuli slope for Time.  

This maximal model failed to converge without singular fit. Therefore, we downsized the 

random-effects structure until singular fit was no longer a concern. After removing the by-

participant three-way interaction slope, singular fit was eliminated. Therefore, the final random-

effects structure included intercepts for participants and traits, by-participant slopes for Time, 

Time 1 induction, Time 2 information, and all two-way interactions between the variables, as 

well as a by-stimuli slope for Time.  
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Analyses of Variance (ANOVAs) 

Based on recommendations received during the editorial process, we reported LMEMs that 

account for additional sources of variance (traits in both the image-generation experiment and 

image-assessment Experiment 1; stimuli in both image-assessment Experiments 2a and 2b) in the 

main text. Here, we report analyses of variance (ANOVAs) that do not account for those 

additional sources of variance. 

Image-Generation Experiment 

Data Reduction  

To limit the dimensionality of our data, we used the psych 1.8.12 package (Revelle, 2018) to 

conduct an exploratory factor analysis (EFA) with a promax rotation. We arrived at a two-factor 

solution, 2(570) = 6.69, p < .001, accounting for 63% of the total variance (Factor 1 = 44%; 

Factor 2 = 27%; Figure A1). Although a three-factor solution also fit the data, the two-factor 

solution made more theoretical sense. Similar to other two-factor solutions in the face-

impression literature (e.g., Oosterhof & Todorov, 2008), four traits loaded onto a positivity factor 

(attractive, caring, intelligent, and trustworthy), and three traits loaded onto a dominance factor 

(aggressive, dominant, and mean). Each item loaded onto its primary factor at |λ| > .58, with all 

but mean loading at |λ| > .65. All items loaded onto the other factor at |λ| < .40. Composite 

indices were generated for each factor with its primary loadings; higher scores reflect greater 

positivity (α = .90) and dominance (α = .83), respectively. Although the positivity and dominance 

indices were highly correlated (r = -.77, p < .001), the EFA suggests they should be treated as 

two distinct variables. 
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Figure A1 

Factor Loadings From an EFA on Trait Ratings of Robert  

Notes. The x-axis depicts the positive loading strength for items on each factor. Factors are 

separated by panel and labeled by panel heading. Horizontal bars range from blue to red, with the 

greater appearance of blue representing higher positive load strength.  

 

Positivity 

A 2 (Time: 1 vs. 2; within-participants) × 2 (Time 1 induction: positive vs. negative; 

between-participants) × 2 (Time 2 information: control vs. counter-attitudinal; between-

participants) mixed ANOVA on the positivity of the group images revealed a significant three-

way interaction, F(1, 560) = 73.20, p < .001, p
2 = .12 (Figure A2). We decomposed this 

interaction by conducting separate Time × Time 2 information ANOVAs in the positive-induction 

and negative-induction conditions.  
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Figure A2 

Positivity Factor Impressions of Robert 

 
Notes. Markers reflect mean positivity factor scores of Robert by Time, Time 1 induction, and 

Time 2 information in the image-generation experiment. Error bars represent 95% confidence 

intervals. The surrounding violin plots are mirrored density distributions of the composite indices 

for the positivity factor (i.e., composite scores of trustworthy, intelligent, caring, and attractive) 

after a smoothing function was applied.  

 

Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, F(1, 280) = 83.77, p < .001, p
2 = .24. Simple-effects tests indicated that 

learning about Robert’s child molestation conviction prompted negative revision (Time 1: M = 

5.47, SD = 1.07; Time 2: M = 2.91, SD = 1.30), t(72) = 14.37, p < .001, d = 1.68. Learning 

neutral information also prompted negative revision (Time 1: M = 5.53, SD = 0.90; Time 2: M = 

5.33, SD = 1.04), t(69) = 3.04, p = .003, d = 0.36; however, this effect was smaller than that in 

the counter-attitudinal condition. 

Evidence of revision also emerged in the negative-induction condition—Time × Time 2 

information interaction, F(1, 278) = 9.35, p = .002, p
2 = .03. Learning about Robert’s kidney 

donation prompted positive revision (Time 1: M = 2.04, SD = 1.04; Time 2: M = 2.99, SD = 
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1.37), t(68) = -7.22, p < .001, d = -0.87. Learning neutral information also prompted positive 

revision (Time 1: M = 2.18, SD = 0.93; Time 2: M = 2.33, SD = 1.02), t(72) = -2.16, p = .034, d = 

-0.25; however, this effect was smaller than that in the counter-attitudinal condition. 

Dominance  

An identical 2 (Time) × 2 (Time 1 condition) × 2 (Time 2 condition) mixed ANOVA on the 

dominance of the group images also revealed a significant three-way interaction, F(1, 560) = 

46.38, p < .001, p
2 = .08 (Figure A3). We again decomposed this interaction by conducting 

separate 2 (Time) × 2 (Time 2 information) ANOVAs in the positive-induction and negative-

induction conditions. 

Figure A3 

Dominance Factor Impressions of Robert 

 
Notes. Marketers reflect mean dominance factor scores of Robert images by Time, Time 1 

induction, and Time 2 information in the image-generation experiment. Error bars represent 95% 

confidence intervals. The surrounding violin plots are mirrored density distributions of the 

composite indices for the dominance factor (i.e., composite scores of aggressive, dominant, and 

mean) after a smoothing function was applied.  
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Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, F(1, 280) = 60.27, p < .001, p
2 = .18. Learning about Robert’s child 

molestation conviction prompted revision in the more dominant direction (Time 1: M = 2.37, SD 

= 1.10; Time 2: M = 4.60, SD = 1.35), t(154) = -12.72, p < .001, d = -1.43, whereas learning 

neutral information did not (Time 1: M = 2.44, SD = 1.09; Time 2: M = 2.52, SD = 1.18), t(69) = 

-1.07, p = .287, d = -0.13. 

Evidence of revision also emerged in the negative-induction condition; however, it was not 

restricted to the counter-attitudinal condition—Time × Time 2 information interaction, F(1, 278) 

= 3.78, p = .053, p
2 = .03. Learning about Robert’s kidney donation prompted revision in the 

less dominant direction (Time 1: M = 5.97, SD = 0.99; Time 2: M = 5.10, SD = 1.22), t(68) = 

7.59, p < .001, d = 0.91, as did learning neutral information (Time 1: M = 5.85, SD = 1.11; Time 

2: M = 5.51, SD = 1.28), t(72) = 4.32, p < .001, d = 0.51. 

Image-Assessment Experiment 1 

Data Reduction  

An EFA with promax rotation again revealed a two-factor solution, 2(1240) = 4.69, p = .086, 

that accounted for 56% of the total variance (Factor 1 = 34%, Factor 2 = 22%; Figure A4). 

Although a three-factor solution also fit the data, the two-factor solution made more theoretical 

sense. As before, four traits loaded onto a positivity factor (attractive, caring, intelligent, and 

trustworthy), and three traits loaded onto a dominance factor (aggressive, dominant, and mean). 

Each item loaded onto its primary factor at λ > .60 and the other factor at λ < .15. Composite 

indices were generated for each factor, with higher scores reflecting greater positivity (α = .85) 

and dominance (α = .76), respectively. Although the positivity and dominance indices were 

weakly correlated (r = .09, p = .002), the EFA suggested they should be treated separately. 
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Figure A4 

Factor Loadings From an EFA on Trait Ratings of Group Classification Images 

Notes. The x-axis depicts the positive loading strength for items on each factor. Factors are 

separated by panel and labeled by panel heading. Horizontal bars range from blue to red, with the 

greater appearance of blue representing higher positive load strength.  

 

Positivity  

A 2 (Time: 1 vs. 2) × 2 (Time 1 induction: positive vs. negative) × 2 (Time 2 information: 

control vs. counter-attitudinal) repeated-measures ANOVA on the positivity of the group images 

revealed a three-way interaction, F(1, 154) = 58.62, p < .001, p
2 = .28 (Figure A5). We 

decomposed this interaction by conducting separate Time × Time 2 information ANOVAs in the 

positive-induction and negative-induction conditions. 
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Figure A5 

Positivity Factor Impressions of Group Classification Images 

 
Notes. Markers reflect mean positivity factor scores of group classification images by Time, 

Time 1 induction, and Time 2 information in image-assessment Experiment 1. Error bars 

represent 95% confidence intervals. The surrounding violin plots are mirrored density 

distributions of the composite indices for the positivity factor (i.e., composite scores of 

trustworthy, intelligent, caring, and attractive) after a smoothing function was applied. 

 

Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, F(1, 154) = 48.96, p < .001, p
2 = .24. Simple-effects tests indicated that 

learning about Robert’s child molestation conviction prompted negative revision (Time 1: M = 

5.00, SD = 1.04; Time 2: M = 4.36, SD = 1.25), t(154) = 7.58, p < .001, d = 0.61, whereas 

learning neutral information did not (Time 1: M = 5.00, SD = 1.07; Time 2: M = 5.02, SD = 

1.04), t(154) = -0.61, p = .546, d = -0.05. 

Evidence of revision also emerged in the negative-induction condition—Time × Time 2 

information interaction, F(1, 154) = 13.39, p < .001, p
2 = .08. Learning about Robert’s kidney 

donation prompted positive revision (Time 1: M = 4.03, SD = 1.49; Time 2: M = 4.46, SD = 

1.27), t(154) = -6.47, p < .001, d = -0.52. Learning neutral information also prompted positive 
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revision (Time 1: M = 4.10, SD = 1.46; Time 2: M = 4.25, SD = 1.33), t(154) = -2.76, p = .007, d 

= -0.22; however, this effect was smaller than that in the counter-attitudinal condition.  

Dominance  

A 2 (Time) × 2 (Time 1 condition) × 2 (Time 2 condition) repeated-measures ANOVA on the 

dominance of the group images also revealed a significant three-way interaction, F(1, 154) = 

24.55, p < .001, p
2 = .14 (Figure A6). We again decomposed this interaction by conducting 

separate 2 (Time) × 2 (Time 2 information) ANOVAs in the positive-induction and negative-

induction conditions. 

Figure A6 

Dominance Factor Impressions of Group Classification Images 

Notes. Markers reflect dominance factor scores of group classification images by Time, Time 1 

induction, and Time 2 information in image-assessment Experiment 1. Error bars represent 95% 

confidence intervals. The surrounding violin plots are mirrored density distributions of the 

composite indices for the dominance factor (i.e., composite scores of aggressive, dominant, and 

mean) after a smoothing function was applied.  

 

Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, F(1, 154) = 22.58, p < .001, p
2 = .13. Learning about Robert’s child 
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molestation conviction prompted revision in the more dominant direction (Time 1: M = 4.25, SD 

= 1.46; Time 2: M = 4.95, SD = 0.96), t(154) = -5.79, p < .001, d = -0.47, whereas learning 

neutral information did not (Time 1: M = 4.10, SD = 1.54; Time 2: M = 4.17, SD = 1.50), t(154) 

= -1.38, p = .169, d = -0.11. 

Evidence of revision also emerged in the negative-induction condition; however, it was not 

restricted to the counter-attitudinal condition—Time × Time 2 information interaction, F(1, 154) 

= 2.53, p = .114, p
2 = .02. Learning about Robert’s kidney donation prompted revision in the 

less dominant direction (Time 1: M = 5.26, SD = 0.87; Time 2: M = 4.96, SD = 0.92), t(154) = 

4.03, p < .001, d = 0.32, as did learning neutral information (Time 1: M = 5.19, SD = 0.97; Time 

2: M = 5.02, SD = 0.94), t(154) = 2.71, p = .008, d = 0.22. 

Image-Assessment Experiment 2a 

A 2 (Time) × 2 (Time 1 induction) × 2 (Time 2 information) repeated-measures ANOVA on 

the trustworthiness impressions of the subgroup images revealed the expected three-way 

interaction, F(1, 113) = 129.20, p < .001, p
2 = .53 (Figure A7).20 We decomposed this interaction 

by conducting separate 2 (Time) × 2 (Time 2 information) ANOVAs in the positive-induction 

and negative-induction conditions. 

 

 

 

 

 

 

 

 

 
20An unexpected difference between Time 2 information conditions at Time 1 emerged in the positive-induction 

condition in Experiment 2a, t(113) = -4.73, p < .001, d = -0.44, and Experiment 2b, t(241) = -5.75, p < .001, d = -

0.37. This difference did not emerge in the negative-induction condition in Experiment 2a, t(113) = 0.96, p = .338, d 

= 0.09, or Experiment 2b, t(241) = 0.88, p = .382, d = 0.06; nor did it emerge in either Time 1 induction condition in 

Experiment 1. 
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Figure A7 

Trustworthiness Impressions of Subgroup Classification Images 

Notes. Markers reflect mean trustworthiness ratings of subgroup classification images by Time, 

Time 1 induction, and Time 2 information in image-assessment Experiment 2a. Error bars 

represent 95% confidence intervals. The surrounding violin plots are mirrored density 

distributions of image raters’ responses after a smoothing function was applied. 

 

Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, F(1, 113) = 158.64, p < .001, p
2 = .58. Learning about Robert’s child 

molestation conviction prompted negative revision (see Table A7 for descriptive statistics in 

Experiments 2a and 2b), t(113) = 15.94, p < .001, d = 1.49. Although learning neutral 

information about Robert also prompted negative revision, t(113) = 6.02, p < .001, d = 0.56, this 

effect was smaller than that in the counter-attitudinal condition. 

Revision was also evident in the negative-induction condition—Time × Time 2 information 

interaction, F(1, 113) = 9.40, p = .003, p
2 = .08. Learning about Robert’s kidney donation 

prompted positive revision, t(113) = -14.20, p < .001, d = -1.33. Learning neutral information 

also prompted positive revision, t(113) = -13.31, p < .001, d = -1.25, but again this effect was 

smaller than that in the counter-attitudinal condition. 
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Image-Assessment Experiment 2b 

A 2 (Time) × 2 (Time 1 induction) × 2 (Time 2 information) repeated-measures ANOVA on 

the trustworthiness impressions of individual images revealed the expected three-way 

interaction, F(1, 241) = 60.00, p < .001, p
2 = .19 (Figure A8). We again decomposed this 

interaction by examining the underlying patterns separately in the positive-induction and 

negative-induction conditions. 

Figure A8 

Trustworthiness Impressions of Individual Classification Images 

Notes. Markers reflect trustworthiness ratings of individual classification images by Time, Time 

1 induction, and Time 2 information in image-assessment Experiment 2b. Error bars represent 

95% confidence intervals. The surrounding violin plots are mirrored density distributions of 

image raters’ responses after a smoothing function was applied. 

 

Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, F(1, 241) = 56.72, p < .001, p
2 = .19. Learning about Robert’s child 

molestation conviction prompted negative revision, t(241) = 16.17, p < .001, d = 1.04. Learning 
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neutral information also prompted negative revision, t(241) = 9.31, p < .001, d = 0.60; however, 

this effect was smaller than that in the counter-attitudinal condition. 

Revision was also evident in the negative-induction condition—Time × Time 2 information 

interaction, F(1, 241) = 11.68, p < .001, p
2 = .05. Learning about Robert’s kidney donation 

prompted positive revision, t(241) = -12.55, p < .001, d = -0.81. Learning neutral information 

also prompted positive revision, t(241) = -8.75, p < .001, d = -0.56, but again this effect was 

smaller than that in the counter-attitudinal condition. 
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Descriptive Statistics Tables 

Table A5 

 

Descriptive Statistics for Trait Ratings of Robert (Image-Generation Experiment) 

 
 

Positive-induction Condition 

 
 

Neutral 

 

Counter-attitudinal 

 

 

Trait 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

Aggressive 1.93 (1.47) 2.21 (1.42) 1.74 (1.11) 4.84 (1.68) 

Attractive 4.27 (1.46) 4.10 (1.58) 4.42 (1.59) 2.64 (1.66) 

Caring 6.39 (1.09) 6.17 (1.26) 6.30 (1.14) 2.95 (1.50) 

Dominant 3.83 (1.51) 3.43 (1.56) 3.53 (1.60) 4.63 (1.74) 

Intelligent 5.49 (1.13) 5.31 (1.20) 5.26 (1.35) 3.85 (1.66) 

Mean 1.57 (1.04) 1.93 (1.24) 1.82 (1.38) 4.34 (1.91) 

Trustworthy 5.99 (1.19) 5.71 (1.34) 5.89 (1.37) 2.21 (1.56) 

 
 

Negative-induction Condition 

 
 

Neutral 

 

Counter-attitudinal 

 

 

Trait 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

Aggressive 6.03 (1.38) 5.74 (1.55) 6.28 (1.21) 5.33 (1.56) 

Attractive 2.14 (1.28) 2.34 (1.45) 2.26 (1.54) 2.75 (1.71) 

Caring 1.67 (1.08) 1.85 (1.05) 1.51 (1.13) 3.26 (1.63) 

Dominant 5.37 (1.66) 5.04 (1.80) 5.39 (1.61) 5.09 (1.56) 

Intelligent 3.18 (1.41) 3.18 (1.47) 2.84 (1.45) 3.35 (1.60) 

Mean 6.15 (1.43) 5.74 (1.61) 6.23 (1.15) 4.88 (1.71) 

Trustworthy 1.73 (1.15) 1.96 (1.26) 1.57 (1.22) 2.59 (1.68) 
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Table A6 

 

Descriptive Statistics for Trait Ratings of Group Classification Images (Image-Assessment 

Experiment 1) 

 

Positive-induction Condition 

 
 

Neutral 

 

Counter-attitudinal 

 

 

Trait 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

Aggressive 3.97 (1.81) 4.09 (1.77) 4.18 (1.78) 4.97 (1.21) 

Attractive 4.62 (1.52) 4.68 (1.57) 4.86 (1.47) 4.38 (1.62) 

Caring 5.32 (1.27) 5.28 (1.38) 5.19 (1.31) 4.29 (1.53) 

Dominant 4.23 (1.56) 4.33 (1.64) 4.40 (1.64) 4.90 (1.33) 

Intelligent 5.07 (1.36) 5.06 (1.25) 4.97 (1.31) 4.50 (1.39) 

Mean 4.09 (1.90) 4.10 (1.83) 4.17 (1.73) 4.98 (1.36) 

Trustworthy 4.97 (1.33) 5.07 (1.30) 4.95 (1.26) 4.25 (1.54) 

 

Negative-induction Condition 

 
 

Neutral 

 

Counter-attitudinal 

 

 

Trait 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

Aggressive 5.29 (1.21) 5.14 (1.19) 5.30 (1.17) 4.90 (1.25) 

Attractive 4.02 (1.76) 4.26 (1.65) 3.84 (1.71) 4.34 (1.53) 

Caring 4.10 (1.86) 4.14 (1.67) 3.93 (1.81) 4.47 (1.62) 

Dominant 5.06 (1.35) 5.00 (1.32) 5.28 (1.27) 5.05 (1.34) 

Intelligent 4.25 (1.54) 4.41 (1.44) 4.28 (1.54) 4.66 (1.37) 

Mean 5.21 (1.27) 4.91 (1.34) 5.21 (1.24) 4.93 (1.30) 

Trustworthy 4.02 (1.68) 4.19 (1.62) 4.06 (1.69) 4.36 (1.65) 
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Table A7 

 

Descriptive Statistics for Trustworthiness Impressions of Subgroup Classification Images                         

(Image-Assessment 2a) and Individual Classification Images (Image-Assessment Experiment 2b) 

 
 

Time 2 Information 

 
 

Neutral 

 

Counter-attitudinal 

 

 

Time 1 Induction 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

Experiment 2a 

Positive 4.87 (0.92) 4.67 (0.95) 4.72 (0.88) 3.80 (0.75) 

Negative 3.11 (0.85) 3.63 (0.79) 3.15 (0.81) 3.80 (0.78) 

 

Experiment 2b 

Positive 4.16 (0.81) 3.98 (0.76) 4.05 (0.76) 3.65 (0.76) 

Negative 3.41 (0.78) 3.58 (0.75) 3.42 (0.79) 3.69 (0.77) 
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Additional Dependent Measures 

Feeling Thermometer 

Alongside the seven traits on which participants in the image-generation experiment rated 

Robert (discussed in the main text), they also indicated their feelings about him by entering a 

number between 0 and 100. Higher numbers reflect warmer impressions.  

A mixed ANOVA on the feeling thermometer revealed a three-way interaction, F(1, 278) = 

149.31, p < .001, p
2 = .35.21 We decomposed this interaction by conducting separate 2 (Time) × 

2 (Time 2 information) mixed ANOVAs in the positive-induction and negative-induction 

conditions. 

Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, F(1, 139) = 126.50, p < .001, p
2 = .48. Learning about Robert’s child 

molestation conviction prompted negative revision (Time 1: M = 82.22, SD = 19.30; Time 2: M = 

27.53, SD = 27.57), t(71) = 14.46, p < .001, d = 1.70. Learning neutral information also 

prompted negative revision (Time 1: M = 82.38, SD = 21.68; Time 2: M = 76.71, SD = 20.64), 

t(68) = 2.62, p = .011, d = 0.32; however, this effect was smaller than that in the counter-

attitudinal condition.  

Evidence of revision also emerged in the negative-induction condition—Time × Time 2 

information interaction, F(1, 139) = 25.00, p < .001, p
2 = .15. Learning about Robert’s kidney 

donation prompted positive revision (Time 1: M = 18.54, SD = 22.59; Time 2: M = 33.84, SD = 

25.74), t(67) = -6.66, p < .001, d = -0.81, but learning neutral information did not (Time 1: M 

=22.78, SD = 19.13; Time 2: M = 24.96, SD = 20.01), t(72) = -1.60, p = .113, d = -0.19.  

 

 
21Either due to technical errors in data collection or blank responses on the feeling thermometer measure, we 

excluded three participants’ data, leaving a final sample of 282 participants for these analyses. 
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Race/Ethnicity Categorizations 

In the image-generation experiment, participants also made race/ethnicity categorizations of 

Robert at Time 1 and Time 2. They selected from six response options the one that best matched 

their impression of Robert’s race/ethnicity: Asian, Black, Latinx, Native American, White, or 

other. ‘Other’ responses account for approximately 3% of total race/ethnicity categorizations. 

Given that all but 2 of those responses were irrelevant, ambiguous, or left uncategorized, ‘other’ 

responses were excluded from the analyses below. 

We conducted generalized linear model (GLM) analyses with logit link functions on the 

race/ethnicity categorizations. Time (1 vs. 2), Time 1 induction (positive vs. negative), Time 2 

information (neutral vs. counter-attitudinal), and all interactions were included as predictors. To 

account for repeated-measures (Time) in the model, we also included random intercepts for each 

participant. Due to low frequencies in Latinx and Native American categorizations (frequencies 

<10 for both), we do not include analyses for these racial/ethnic categorizations.  

Neither Asian nor Black categorizations produced significant three-way interactions (Bs < -

2.00, ps > .136; Table A8).22 White categorizations, however, revealed a significant three-way 

interaction, B = 0.33, SE = 0.13, z = 2.46, p = .014. We decomposed this interaction by 

conducting separate 2 (Time) × 2 (Time 2) analyses in the two induction conditions.  

Evidence of revision emerged in the positive-induction condition—Time × Time 2 

information interaction, B = -0.38, SE = 0.17, z = -2.26, p = .024. Whereas the odds of White 

categorization were not revised after learning about Robert’s child molestation conviction, OR = 

0.74, p = .503, they did decrease after learning neutral information, OR = 3.37, p = .012. No 

 
22Either due to technical errors in data collection, blank responses, or other categorizations, we excluded 31 

participants’ data, leaving a final sample of 254 participants for these analyses. 
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significant evidence of revision emerged for White categorizations in the negative-induction 

condition—Time × Time 2 information interaction, B = 0.21, SE = 0.21, z = 0.99, p = .321.  

Table A8 

 

Descriptive Statistics (Proportions) for Race/Ethnicity Categorizations  

(Image-Generation Experiment) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Race/Ethnicity Prototypicality Ratings 

In image-assessment Experiment 1, participants also rated the group images of Robert on 

how prototypical they were for each of four races/ethnicities: Asian, Black, Latinx, and White (0 

= not at all prototypical, 100 = extremely prototypical). 

We conducted a 2 (Time: 1 vs. 2) × 2 (Time 1 induction: positive vs. negative) × 2 (Time 2 

information: neutral vs. counter-attitudinal) ANOVA on the prototypicality ratings separately for 

each race/ethnicity. These analyses revealed a three-way interaction only for ratings of Black 

 

Positive-induction Condition 

 

 

Neutral Counter-attitudinal 

 

Race/Ethnicity 

 

Time 1 

 

Time 2 

 

Time 1 

 

Time 2 

Asian 0.02 0.00 0.05 0.02 

Black 0.38 0.60 0.49 0.48 

Latinx 0.11 0.09 0.08 0.06 

Native American 0.02 0.02 0.00 0.02 

White 0.48 0.29 0.38 0.43 

 

Negative-induction Condition 

 

 

Neutral Counter-attitudinal 

 

Race/Ethnicity 

 

Time 1 Time 2 

 

Time 1 

 

Time 2 

Asian 0.05 0.00 0.00 0.02 

Black 0.23 0.36 0.35 0.46 

Latinx 0.11 0.07 0.14 0.09 

Native American 0.03 0.00 0.02 0.02 

White 0.57 0.57 0.49 0.42 
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prototypicality, F(1, 154) = 19.52, p < .001, p
2 = .11. Ratings of Asian, Latinx, and White 

prototypicality revealed no significant three-way interactions (Fs < 3.43, ps > .07, p
2s < .02). 

We decomposed the interaction for Black prototypicality by inspecting the underlying patterns 

separately in the positive-induction and negative-induction conditions (see Table A9).  

Revision was evident in the positive-induction condition—Time × Time 2 information 

interaction—for ratings of Black prototypicality. Visualizations of Robert were less 

prototypically Black after learning about his child molestation conviction, but not after learning 

neutral information. This pattern of revision did not emerge in the negative-induction condition. 
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Table A9 

 

Descriptive Statistics and Univariate ANOVA Results for Race/Ethnicity Prototypicality Ratings of Group Images (Image-Assessment 

Experiment 1) 

 

Positive-induction Condition 

 

 

Neutral  Counter-attitudinal  F values 

 

Race/ethnicity 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

d 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

d 

 

Time  

 

Time 2 

Info 

 

Time ×  

Time 2 Info 

Asian 51.91 (32.42) 50.65 (32.49) 0.08 51.85 (32.06) 49.15 (32.93) 0.15 3.61 0.59 0.62 

Black 67.17 (26.87) 67.55 (27.54) 0.03 68.97 (25.06) 56.23 (30.30) 0.43 21.24*** 12.45*** 24.74*** 

Latinx 58.45 (25.37) 59.03 (27.28) 0.04 59.27 (25.77) 60.75 (26.96) 0.07 1.08 1.62 0.18 

White 56.09 (29.61) 56.34 (29.53) 0.01 58.32 (29.00) 67.23 (23.70) 0.29 11.58*** 19.44*** 7.96** 

 

Negative-induction Condition 

 

 

Neutral  Counter-attitudinal  F values 

 

Race/ethnicity 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

d 

 

Time 1 

M (SD) 

 

Time 2 

M (SD) 

 

d 

 

Time  

 

Time 2 

Info 

 

Time ×  

Time 2 Info 

Asian 47.89 (33.99) 48.20 (33.85) 0.02 47.33 (33.79) 49.77 (33.70) 0.16 2.80 0.36 1.48 

Black 59.84 (28.60) 53.75 (31.68) 0.27 60.01 (26.75) 54.05 (32.03) 0.25 12.75*** 0.05 0.01 

Latinx 57.90 (26.98) 58.66 (27.48) 0.04 59.95 (26.78) 57.48 (29.76) 0.13 0.67 0.20 2.45 

White 65.53 (25.36) 71.13 (23.67) 0.25 63.10 (25.67) 70.49 (23.04) 0.32 19.27*** 2.03 0.72 

Note. Info = Information.  *p < .05 **p < .01 ***p < .001
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Appendix B 

Chapter 2: Emotion Expression Salience and Racially Biased Weapon Identification:  

A Diffusion Modeling Approach  

Weapon Identification Task 

Results (Incorrect Response Times) 

In the main text, we reported analyses of response times (RTs) only on trials with correct 

responses, as is common in research using the Weapon Identification Task (see Rivers, 2017). 

For completeness, we report RT analyses on trials with incorrect responses. Because error rates 

were low overall, these results should be interpreted cautiously.   

Experiment 1 

The Race Prime × Target Object interaction indicative of racial bias was not significant, β = 

7.79, F(1, 489.6) = 1.40, p = .237, R2 < .01. Nor was this interaction moderated by Salience, β = 

-2.48, F(1, 7489.8) = 0.04, p = .845, R2 < .01.  

Experiment 2 

The model had to be re-fit after removing the by-stimulus random intercept from the model, 

as boundary fit emerged. The Race Prime × Target Object interaction was significant, β = 23.49, 

F(1, 7354.2) = 11.56, p = .001, R2 = .01, but it was not moderated by Salience, β = -26.45, F(1, 

7354.2) = 3.66, p = .056, R2 = .01.  
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Behavioral Data Plots 

Figure B1 

Error Rates by Race Prime, Emotion Prime, and Salience Conditions (Experiment 1) 

 
 

Notes. Empty markers reflect individual-level error rates and filled markers and their error bars 

reflect estimated marginal means and confidence intervals, respectively, from the LMEM 

modeled to error rates in Experiment 1. 
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Figure B2 

Error Rates by Race Prime, Emotion Prime, and Salience Conditions (Experiment 2) 

 

 
 

Notes. Empty markers reflect individual-level error rates and filled markers and their error bars 

reflect estimated marginal means and confidence intervals, respectively, from the LMEM 

modeled to error rates in Experiment 2. 
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Figure B3 

Correct RTs by Race Prime, Emotion Prime, and Salience Conditions (Experiment 1) 

 

 
 

Notes. RTs = response times. Empty markers reflect individual-level correct RTs and filled 

markers and their error bars reflect estimated marginal means and confidence intervals, 

respectively, from the LMEM modeled to correct RTs in Experiment 1. 
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Figure B4 

Correct RTs by Race Prime, Emotion Prime, and Salience Conditions (Experiment 2) 

 

 
 

Notes. RTs = response times. Empty markers reflect individual-level correct RTs and filled 

markers and their error bars reflect estimated marginal means and confidence intervals, 

respectively, from the LMEM modeled to correct RTs in Experiment 2. 
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Figure B5 

Incorrect RTs by Race Prime, Emotion Prime, and Salience Conditions (Experiment 1) 

 

 
 

Notes. RTs = response times. Empty markers reflect individual-level incorrect RTs and filled 

markers and their error bars reflect estimated marginal means and confidence intervals, 

respectively, from the LMEM modeled to incorrect RTs in Experiment 1. 
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Figure B6 

Incorrect RTs by Race Prime, Emotion Prime, and Salience Conditions (Experiment 2) 

 

 
 

Notes. RTs = response times. Empty markers reflect individual-level incorrect RTs and filled 

markers and their error bars reflect estimated marginal means and confidence intervals, 

respectively, from the LMEM modeled to incorrect RTs in Experiment 2. 
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Behavioral Data Tables 

Table B1 

LMEM of Error Rates and Correct Response Times (Experiment 1) 

 

Effect 

 

β 
 

SE 
 

df 
 

t 
 

p 

 

Error rates 

     

(Intercept) .09 < .01 343.49 23.11 < .001 
Race Prime .01 < .01 563.22 3.36 .001 
Target Object < .01 < .01 563.08 -0.6 .551 
Salience .01 .01 289.97 1.1 .274 
Emotion Prime < .01 < .01 563.27 -0.54 .587 
Race Prime × Target Object < .01 .01 563.08 -0.46 .645 
Race Prime × Salience .01 < .01 82169.63 3.45 .001 
Target Object × Salience .01 < .01 82167.17 3.28 .001 
Race Prime × Emotion Prime < .01 .01 563.08 0.66 .512 
Target Object × Emotion Prime < .01 .01 563.08 -0.62 .537 
Salience × Emotion Prime < .01 < .01 82172.11 -1.18 .236 
Race Prime × Target Object × Salience .03 .01 82166.56 4.11 < .001 
Race Prime × Target Object × Emotion Prime < .01 .01 563.09 -0.11 .915 
Race Prime × Salience × Emotion Prime < .01 .01 82166.54 0.09 .932 
Target Object × Salience × Emotion Prime -.01 .01 82166.63 -0.89 .373 
Race Prime × Target Object × Salience × Emotion Prime < .01 .02 82166.72 0.22 .826 

      

Correct response times      

(Intercept) 5.66 .01 311.86 742.22 < .001 

Race Prime -0.01 < .01 553.93 -3.48 .001 

Target Object 0.11 < .01 554.02 31.7 < .001 

Salience -0.01 .01 292.36 -0.8 .424 

Emotion Prime < 0.01 < .01 553.98 0.6 .552 

Race Prime × Target Object -0.01 .01 553.66 -1.1 .271 

Race Prime × Salience -0.01 < .01 74529.95 -3.13 .002 

Target Object × Salience 0.01 < .01 74533.29 2.9 .004 

Race Prime × Emotion Prime 0.01 .01 553.56 1.14 .256 

Target Object × Emotion Prime -0.01 .01 553.62 -1.38 .167 

Salience × Emotion Prime < 0.01 < .01 74533.57 0.76 .444 

Race Prime × Target Object × Salience 0.07 .01 74529.96 7.99 < .001 

Race Prime × Target Object × Emotion Prime < 0.01 .01 553.6 -0.25 .807 

Race Prime × Salience × Emotion Prime -0.01 .01 74528.38 -1.42 .156 

Target Object × Salience × Emotion Prime -0.01 .01 74528.64 -0.68 .499 

Race Prime × Target Object × Salience × Emotion Prime 0.01 .02 74529.22 0.46 .644 

 

  



 

107 

Table B2 

LMEM of Incorrect Response Times (Experiment 1) 

 

Effect 

 

β 
 

SE 
 

df 
 

t 
 

p 

      

(Intercept) 252.35 2.88 304.07 87.64 < .001 

Race Prime 3.89 3.28 483.49 1.19 .237 

Target Object 6.28 3.34 518.89 1.88 .061 

Salience -8.09 5.69 311.99 -1.42 .156 

Emotion Prime -0.97 3.3 491.74 -0.29 .770 

Race Prime × Target Object 7.79 6.58 489.58 1.18 .237 

Race Prime × Salience -3.47 6.35 7482.64 -0.55 .584 

Target Object × Salience 0.86 6.47 7574.77 0.13 .895 

Race Prime × Emotion Prime -0.33 6.55 478.56 -0.05 .960 

Target Object × Emotion Prime 7.18 6.58 488.52 1.09 .275 

Salience × Emotion Prime -1.66 6.37 7513.26 -0.26 .795 

Race Prime × Target Object × Salience -2.48 12.72 7489.82 -0.2 .845 

Race Prime × Target Object × Emotion Prime 2.30 13.13 483.35 0.18 .861 

Race Prime × Salience × Emotion Prime -24.08 12.66 7455.82 -1.9 .057 

Target Object × Salience × Emotion Prime 2.36 12.71 7488.3 0.19 .853 

Race Prime × Target Object × Salience × Emotion Prime 4.07 25.38 7480.25 0.16 .873 
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Table B3 

LMEM of Error Rates and Correct Response Times (Experiment 2) 

 

Effect 

 

β 

 

SE 

 

df 

 

t 

 

p 

 

Error rates 

     

(Intercept) 0.1 < .01 294.32 24.14 < .001 

Race Prime 0.01 < .01 565.36 2.27 .024 

Target Object -0.01 < .01 565.35 -3.93 < .001 

Salience < .01 0.01 259.99 0.14 .889 

Emotion Prime < .01 < .01 565.36 -1.19 .235 

Race Prime × Target Object -0.04 0.01 565.36 -7.31 < .001 

Race Prime × Salience -0.01 < .01 74213.34 -1.5 .135 

Target Object × Salience < .01 < .01 74212.81 0.99 .323 

Race Prime × Emotion Prime < .01 0.01 565.37 -0.22 .825 

Target Object × Emotion Prime -0.01 0.01 565.35 -2.4 .017 

Salience × Emotion Prime < .01 < .01 74212.87 -0.24 .808 

Race Prime × Target Object × Salience 0.04 0.01 74212.84 5.03 < .001 

Race Prime × Target Object × Emotion Prime < .01 0.01 565.36 -0.4 .693 

Race Prime × Salience × Emotion Prime < .01 0.01 74213.48 -0.47 .639 

Target Object × Salience × Emotion Prime < .01 0.01 74212.81 0.5 .618 

Race Prime × Target Object × Salience × Emotion Prime 0.02 0.02 74213.49 0.97 .334 

      

Correct response times      

(Intercept) 5.66 .01 274.21 705.40 < .001 

Race Prime < .01 < .01 551.44 -0.32 .747 

Target Object 0.11 < .01 552.09 34.99 < .001 

Salience -0.04 .02 264.14 -2.27 .024 

Emotion Prime < .01 < .01 551.42 0.52 .601 

Race Prime × Target Object -0.06 .01 551.73 -9.59 < .001 

Race Prime × Salience < .01 < .01 66766.01 -0.92 .359 

Target Object × Salience < .01 < .01 66769.88 0.15 .880 

Race Prime × Emotion Prime < .01 .01 551.47 -0.22 .829 

Target Object × Emotion Prime -0.01 .01 551.49 -2.21 .028 

Salience × Emotion Prime < .01 < .01 66767.17 1.07 .283 

Race Prime × Target Object × Salience 0.06 .01 66767.76 6.52 < .001 

Race Prime × Target Object × Emotion Prime -0.01 .01 551.43 -0.96 .336 

Race Prime × Salience × Emotion Prime -0.01 .01 66766.64 -0.73 .465 

Target Object × Salience × Emotion Prime < .01 .01 66767.15 0.17 .865 

Race Prime × Target Object × Salience × Emotion Prime 0.01 .02 66767.39 0.73 .468 
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Table B4 

LMEM of Incorrect Response Times (Experiment 2) 

 

Effect 

 

β 
 

SE 
 

df 
 

t 
 

p 

      

(Intercept) 256.42 3.29 257.01 78.00 < .001 

Race Prime -2.41 3.43 7305.24 -0.70 .482 

Target Object 8.22 3.50 7417.28 2.35 .019 

Salience -10.13 6.57 257.01 -1.54 .125 

Emotion Prime -0.92 3.42 7291.95 -0.27 .788 

Race Prime × Target Object 23.49 6.91 7354.22 3.40 .001 

Race Prime × Salience -10.12 6.86 7305.24 -1.48 .140 

Target Object × Salience 5.93 7.01 7417.28 0.85 .398 

Race Prime × Emotion Prime -0.91 6.87 7314.43 -0.13 .894 

Target Object × Emotion Prime 0.34 6.87 7321.63 0.05 .961 

Salience × Emotion Prime 12.72 6.85 7291.95 1.86 .063 

Race Prime × Target Object × Salience -26.45 13.82 7354.22 -1.91 .056 

Race Prime × Target Object × Emotion Prime 14.41 13.72 7304.46 1.05 .293 

Race Prime × Salience × Emotion Prime 0.60 13.73 7314.43 0.04 .965 

Target Object × Salience × Emotion Prime 24.32 13.74 7321.63 1.77 .077 

Race Prime × Target Object × Salience × Emotion Prime 4.41 27.43 7304.46 0.16 .872 
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Table B5 

Race Prime Contrasts (Black – White) Across Conditions of Target Object and Salience  

 

Effect 

 

b 

 

SE 

 

z 

 

p 

Experiment 1 

Error Rates     

Gun Trial, Race Salience -0.01 .01 -2.55 .053 

Tool Trial, Race Salience 0.01 .01 1.13 .674 

Gun Trial, Emotion Salience -0.01 .01 -2.02 .179 

Tool Trial, Emotion Salience -0.02 .01 -4.55 < .001 

     

Correct Response Times     

Gun Trial, Race Salience -0.01 .01 -2.65 .041 

Tool Trial, Race Salience 0.03 .01 4.59 < .001 

Gun Trial, Emotion Salience 0.03 .01 5.47 < .001 

Tool Trial, Emotion Salience 0.01 .01 0.99 .757 

     

Experiment 2 

Error Rates     

Gun Trial, Race Salience -0.04 .01 -8.25 < .001 

Tool Trial, Race Salience 0.02 .01 4.39 < .001 

Gun Trial, Emotion Salience -0.02 .01 -2.27 .023 

Tool Trial, Emotion Salience .01 .01 0.52 .463 

     

Correct Response Times     

Gun Trial, Race Salience < .01 .01 0.15 < .001 

Tool Trial, Race Salience < .01 .01 -0.22 < .001 

Gun Trial, Emotion Salience -0.01 .01 -2.21 .109 

Tool Trial, Emotion Salience 0.01 .01 0.73 .004 

Note. Contrasts were computed to compare the estimated marginal mean error rates or correct 

response times following Black primes minus the estimated marginal mean error rates or correct 

response times following White primes. 
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Table B6 

Descriptive Statistics by Race Prime, Emotion Prime, and Salience Conditions (Experiments 1 &2). 

 

 
  

Emotion prime, race prime, and target object 

   

Angry prime 
  

Happy prime 

   

Black prime 
  

White prime 
  

Black prime 
  

White prime 

 

Variable 
  

Gun 
  

Tool 
  

Gun 
  

Tool 
 

 

 

Gun 
  

Tools 
  

Gun 
  

Tool 

Experiment 1 

Error rate (%) 

   Race-salient 

   Emotion-salient 

Correct RT (ms) 

   Race-salient 

   Emotion-salient 

  

8.6 (28.1) 

9.1 (28.7) 

 

288 (103) 

288 (106) 

  

8.7 (28.2) 

9.3 (29.0) 

 

323 (108) 

318 (105) 

  

9.7 (29.6) 

9.8 (29.8) 

 

289 (102) 

279 (104) 

  

8.0 (27.2) 

11.4 (31.7) 

 

314 (102) 

317 (110) 

  

8.3 (27.6) 

8.8 (28.4) 

 

286 (99) 

290 (103) 

  

8.6 (28.0) 

8.2 (27.4) 

 

320 (104) 

316 (101) 

  

10.0 (30.0) 

10.0 (30.0) 

 

293 (105) 

283 (107) 

  

8.2 (27.4) 

10.8 (31.0) 

 

314 (103) 

317 (110) 

Incorrect RT (ms)                 

   Race-salient  254 (140)  253 (145)  251 (137)  260 (156)  244 (123)  250 (138)  251 (152)  265 (145) 

   Emotion-salient  240 (128)  246 (152)  249 (151)  255 (160)  243 (123)  255 (130)  236 (117)  252 (159) 

Experiment 2 

Error rate (%)                 

   Race-salient  8.5 (27.9)  10.8 (31.0)  12.4 (33.0)  8.9 (28.4)  8.6 (28.1)  10.0 (30.1)  13.3 (33.9)  7.4 (26.3) 

   Emotion-salient  9.4 (29.3)  10.4 (30.5)  11.2 (31.6)  9.6 (29.5)  9.9 (29.9)  9.3 (29.1)  11.2 (31.5)  8.5 (27.9) 

Correct RT (ms)                 

   Race-salient  288 (108)  333 (114)  299 (106)  321 (110)  288 (106)  332 (112)  304 (114)  319 (116) 

   Emotion-salient  282 (106)  317 (106)  286 (113)  313 (103)  285 (107)  318 (110)  289 (113)  310 (103) 

Incorrect RT (ms)                 

   Race-salient  269 (146)  258 (159)  251 (150)  282 (182)  270 (148)  242 (147)  244 (112)  271 (167) 

   Emotion-salient  249 (145)  257 (172)  243 (128)  251 (160)  253 (155)  265 (160)  239 (127)  266 (176) 

Note. Values in parentheses are standard deviations. RT = response time. 
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Face Categorization Task 

 

Table B7 

 

Analyses of Error Rates and Correct Response Times by Condition (Experiment 2) 

 

 

Effect 

  

   F(1, 253) 

  

    p 

  

   ηp
2 

 

Error rates 

Salience (Race vs. Emotion) 

Stimulus Set 

Salience × Stimulus Set 

 11.01 

0.16 

1.02 

 < .001 

.689 

.313 

 .042 

< .001 

.004 

   

 

 

  

Correct response times 

Salience (Race vs. Emotion) 

Stimulus Set 

Salience × Stimulus Set 

 4.26 

0.19 

0.19 

 < .001 

.762 

.321 

 

 .239 

< .001 

.004 

   

   

Note. Stimulus Set refers to the two randomly selected sets of 24 faces (Race: 12 Black, 12 

White; emotion expression: 12 angry/scowling, 12 happy/smiling). 

 

 

Table B8 

 

Descriptive Statistics for Face Categorization Task (Experiment 2) 

 

 
 

Stimulus Set 1 

 

Stimulus Set 2 

 

Effect 

 

Emotion 

Classification 

 

Race 

Classification 

 

Emotion 

Classification 

 

Race 

Classification 

 

Error rate (%) 0.05 (0.22) 0.03 (0.16) 0.04 (0.20) 0.03 (0.17) 
 

Correct RT (ms) 718.7 (481.4) 517.5 (242.2) 710.8 (497.6) 542.9 (355.5) 

Note. Values in parentheses are standard deviations. RT = response time. 
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Hierarchical Diffusion Decision Model 

As stated in the main text, we estimated the model using an MCMC sampler in JAGS 4.30 

(Plummer, 2003), with the Wiener distribution provided by Wabersich and Vandekerckhove 

(2014) and an estimation approach to make inferences in this framework (Gelman et al., 2003; 

Kruschke, 2014). We collected 12,000 samples using 10 chains with 1,200 samples per chain. We 

also included a burn-in of 500 samples and recorded only every tenth sample. 

Representativeness of the posterior distribution was evaluated visually by inspecting 

caterpillar plots for overlap in MCMC chains, and it was evaluated numerically by checking 

whether the Gelman-Rubin convergence statistic (R-hat) was <1.05. Overall, the chains met 

these standards, suggesting representativeness of the posterior distributions. Accuracy was 

evaluated by examining autocorrelations, the effective sample size, and the Monte-Carlo 

standard error (MCSE). The ESS estimates the sample size of MCMC chains after accounting for 

autocorrelations. We sought an effective sample size >10,000. Group-level distributions were 

>8,500, with most >10,000. The MCSE estimates the noise in the sampled estimates (Kruschke, 

2015), and is computed by dividing the standard deviation of the chains by their effective sample 

size. All MSCE values were < .001, suggesting extremely low levels of noise in the model’s 

parameter estimation. For brevity, we exclude tables and figures demonstrating the model’s 

representativeness and accuracy from this document. However, that information is readily 

accessible within the online supplementary materials (https://osf.io/hxywn/), including tables 

which offer the ESS, MSCE, and R-hat values per condition, per experiment.  

  

https://osf.io/hxywn/
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DDM Parameter Plots 

 

Figure B7 

Alpha Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 1) 

 

 
 

Notes. Alpha (threshold separation) estimates. Empty dots reflect individual-level estimates and 

filled dots and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 1. 
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Figure B8 

Beta Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 1) 

 

 
 

Notes. Beta (starting point) estimates. Empty dots reflect individual-level estimates and filled 

dots and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 1. 
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Figure B9 

Delta Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 1) 

 
 

Notes. Delta (drift rate) estimates. Empty dots reflect individual-level estimates and filled dots 

and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 1. The plot on the left reflects delta 

estimates for tool trials. The plot on the right reflects delta estimates for gun trials. 
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Figure B10 

Tau Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 1) 

 
 

Notes. Tau (nondecision time) estimates. Empty dots reflect individual-level estimates and filled 

dots and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 1. The plot on the left reflects tau 

estimates for tool trials. The plot on the right reflects tau estimates for gun trials. 
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Figure B11 

Alpha Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 2) 

 
 

Notes. Alpha (threshold separation) estimates. Empty dots reflect individual-level estimates and 

filled dots and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 2. 
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Figure B12 

Beta Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 2) 

 

 
 

Notes. Beta (starting point) estimates. Empty dots reflect individual-level estimates and filled 

dots and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 2. 
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Figure B13 

Delta Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 2) 

 
 

Notes. Delta (drift rate) estimates. Empty dots reflect individual-level estimates and filled dots 

and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 2. The plot on the left reflects delta 

estimates for tool trials. The plot on the right reflects delta estimates for gun trials. 
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Figure B14 

Tau Estimates by Race Prime, Emotion Prime, and Salience Conditions (Experiments 2) 

 
 

Notes. Tau (nondecision time) estimates. Empty dots reflect individual-level estimates and filled 

dots and their error bars reflect the most credible values and 95% highest density intervals, 

respectively, from the DDM modeled to data in Experiment 2. The plot on the left reflects tau 

estimates for tool trials. The plot on the right reflects tau estimates for gun trials. 
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Posterior Predictive Checks 

Response Proportions 

Within the online supplementary materials (https://osf.io/hxywn/), figures can be found which 

display the observed proportion of gun responses and the posterior predicted proportion of gun 

responses from the DDM. Overall, the model adequately characterized the proportion of times 

participants identified objects as guns. However, it should be noted that it somewhat 

overestimates the number of gun responses on trials with scowling face primes and Black face 

primes.  

Response Times 

Also within the online supplementary materials, figures can be found which display the 

observed and posterior predicted response times (RTs). Overall, the model adequately 

characterized the proportion of times participants identified objects as guns. The model 

overestimates incorrect response times, but does so consistently across trial types and conditions, 

and it varies to a highly similar pattern across quantiles of response times as seen in the observed 

data.  

  

https://osf.io/hxywn/
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Appendix C 

Chapter 3: Measuring the Impact of Multiple Social Cues to Advance Theory in Person 

Perception Research 

 

Method 

Participants 

In total, 619 undergraduates consented to participate for course credit. We decided a priori to 

exclude data from participants who performed at or below chance (errors on ≥50% of trials; n = 

22) or who responded with the same key for more than 90% of trials (n = 2). Trial-level 

exclusions included the removal of responses recorded in <100 ms or >2,500 ms. Two 

participants’ data were fully excluded due to having <80 responses left after trial-level 

exclusions. The final sample comprised 593 participants (70.5% women; 45.5% Asian, 2.7% 

Black, 19.3% Latino, 18.2% White; Mage = 19.90, SD = 2.45). 

Stimuli 

This preregistered experiment relied on a stimulus set of faces selected from the Chicago 

Face Database (CFD; Ma et al., 2015). First, we sampled 10 female actors and 10 male actors 

from the CFD. When displaying neutral expressions, norming data form the CFD indicates that 

these actors’ faces are correctly classified by gender >95% of the time. We then selected two face 

images per actor: one image in which they display a smiling expression and another in which 

they display a scowling expression. In total, we were left with 40 face images. 

We then applied facial morphing techniques, using the online morphing tool WebMorph 

(Debruine, 2018), to manipulate ambiguity within the original stimulus set of 40 faces. Smiling 

and scowling expressions, per actor, were blended together such that each actor was associated 

with two additional face images, besides their original smiling and scowling images: one image 

in which 55% of their smiling image and 45% of their scowling image remained (i.e., an 
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ambiguous smiling expression) and another in which 45% of their smiling image and 55% of 

their scowling image remained (i.e., an ambiguous scowling expression). At that point, we were 

left with double the original set of images – that is, 80 images in total. We then randomly paired 

male and female actors together, and morphed together their associated faces images. This 

secondary morphing procedure matched faces by their expression. If Female Actor A was 

randomly paired with Male Actor B, then their two unambiguous smiling expressions were 

morphed together, as were each of their other associated images (i.e., unambiguous scowling 

expressions, ambiguous smiling expressions, ambiguous scowling expressions). Morphs along 

sex generated ambiguous male (i.e., 45% male, 55% male) and ambiguous female (55% female, 

45% male) face images. Because all image stimuli retained at least 55% properties of one level 

of sex and expression, each stimulus was associated with a correct response. 

Procedure 

In each experiment, participants were instructed to “quickly and accurately” classify a series 

of target faces. As previously mentioned, those targets varied along dimensions of sex and 

expression. Therefore, these two dimensions varied in relevance, depending on the task to which 

participants were assigned. Sex cues were considered task-relevant for those assigned to classify 

the faces by gender and task-irrelevant for those assigned to classify the faces by emotion. In 

contrast, expression cues were considered task-relevant for those assigned to classify the faces by 

emotion and task-irrelevant for those assigned to classify the faces by gender. 

On each trial, stimuli were presented in the following sequence: a fixation cross for 500 ms, a 

target face for 200 ms, and, finally, a pattern mask until a response was recorded. Following a 

block of 16 practice trials, participants completed three critical test blocks of 60, 60, and 40 

trials, with self-paced breaks provided between blocks. Each face was presented just once during 
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the critical test phase. Participants then provided demographics information before being 

debriefed on the purpose of the experiment. This experiment was approved by the University of 

California Institutional Review Board (protocol number: 223029; experiment name: SHER806). 

Analytic Approach 

Heterogeneity of Variance  

We first tested the heterogeneity of participant variance with an asymptotic chi-squared test 

which holds a null-hypothesis that response distributions are identical between participants. 

Indeed, there was a significant level of heterogeneity between participants’ responses in both the 

gender classification condition, χ2 (3564) = 6471.32, p < .001, and emotion classification 

condition, χ2 (3528) = 6664.29, p < .001. Therefore, a hierarchical Bayesian approach (Klauer, 

2010) was implemented using the TreeBUGS package (Heck et al., 2018) to estimate the MCI 

model parameters. This approach estimates individual-level parameter values under the 

assumption that each individual set of parameters follows the same hierarchical distribution, 

essentially treating participants as random factors.  

Assessing Model Fit 

Model fit, the ability for the model to predict observed response data, was mainly assessed 

via posterior predictive checks (PPCs). That is, we assessed the divergence between the observed 

response data and those predicted by the model’s posterior distribution. Analytically, we 

conducted PPCs via two fit statistics. First, T1 indicates the model’s ability to account for 

discrepancies between observed and expected responses across all participants. That is, T1 

indicates mean-level fit. Second, T2 indicates the model’s ability to account for discrepancies 

between observed and expected covariances, providing an assessment of individual-level fit. We 

collected one thousand samples from the model’s posterior distribution, and the means and 
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covariances of the posterior were then compared to those in the observed data to produce T1 

(mean) and T2 (covariance) statistics. Both T1 and T2 p-values reflect the probability that 

discrepancies between the expected and posterior-predicted data are greater than those between 

the expected and observed data (Heck et al., 2018, p. 273). The T1 statistic is defined by a chi-

square distribution and, therefore, must be considered in regards to the size of our dataset. The 

larger the dataset, the more sensitive the statistic will be at identifying even minor deviations of 

the model from the data. With Nobs ~70,000 observations, we expect a high level of sensitivity. 

Therefore, using the w statistic, we describe the level of misfit between the model’s expectations 

and the observed aggregate responses. We rely on w < .10 as a descriptive benchmark for small 

levels of misfit.23 

  

 
23 Due to poor model fit when both sources of information were ambiguous, we removed the eight response 

categories from this condition before modeling the data. Although we our preregistration states that we would model 

32 response categories, and not 24, the model poorly characterizes those data. Alternatively, we could include those 

response categories and simply avoid analyzing the parameters across those conditions. The results of the parameter 

analyses do not meaningfully change between these selection criteria. 
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Figure C1 

Plot of Posterior Predictive and Observed Mean Frequencies (Gender Classification)

 

Notes. Red triangle markers reflect observed mean frequencies. Boxplots reflect summarized 

frequencies from the fitted model’s posterior distribution. Even-numbered response categories 

(“Woman” judgments) are the compliment of the odd-numbered response categories (“Man” 

judgments) and are, therefore, excluded from the plot.  
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Figure C2 

Plot of Posterior Predictive and Observed Covariances (Gender Classification) 

 

Notes. Red triangle markers reflect observed covariances. Boxplots reflect summarized 

covariances sampled from the fitted model’s posterior distribution. Even-numbered response 

categories (“Woman” judgments) are the compliment of the odd-numbered response categories 

(“Man” judgments) and are, therefore, excluded from the plot.  
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Figure C3 

Plot of Posterior Predictive and Observed Mean Frequencies (Emotion Classification) 

 

Notes. Red triangle markers reflect observed mean frequencies. Boxplots reflect summarized 

frequencies from the fitted model’s posterior distribution. Even-numbered response categories 

(“Woman” judgments) are the compliment of the odd-numbered response categories (“Man” 

judgments) and are, therefore, excluded from the plot.  
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Figure C4 

Plot of Posterior Predictive and Observed Covariances (Emotion Classification) 

 
Notes. Red triangle markers reflect observed covariances. Boxplots reflect summarized 

covariances sampled from the fitted model’s posterior distribution. Even-numbered response 

categories (“Woman” judgments) are the compliment of the odd-numbered response categories 

(“Man” judgments) and are, therefore, excluded from the plot.  
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Additional Analyses 

Gender Classification 

Parameter comparisons revealed a credible and large effect of Ambiguity on sex processing, 

ΔC1 = .62, BCI95% [.59, .64], indicating that the use of sex cues to classify faces by gender 

decreased with ambiguity. Although ambiguity in expression cues also decreased the use of sex 

cues to classify faces by gender, ΔC1 = -.04, BCI95% [-.06, -.02], this effect was >30 times 

smaller than the effect of ambiguity in sex cues on sex processing, ΔC1.sex /ΔC1.expression = 32.  

There was also a credible effect of Expression Ambiguity on expression processing, ΔC2 = 

.23, BCI95% [.16, .29], indicating that the use of facial expressions to classify faces by gender 

decreased when they were ambiguous. The effect of expression ambiguity on expression 

processing was >5 times larger than its effect on sex processing, ΔC2/ΔC1 = 5.75. 

Emotion Classification 

Parameter comparisons revealed a credible and large effect of Ambiguity on expression 

processing, ΔC2 = .64, BCI95% [.60, .67], indicating that the use of facial expressions to classify 

faces by emotion decreased with ambiguity. Although ambiguity in sex cues also decreased the 

use of facial expressions to classify faces by emotion, ΔC2 = -.03, BCI95% [-.05, >-.01], this effect 

was >25 times smaller than the effect of expression ambiguity on expression processing, ΔC2.sex 

/ΔC2.expression = 25.22. 

Task Relevance 

To explore whether each cue is used more if it is relevant versus irrelevant to the intended 

judgment, we compared parameter estimates between gender and emotion classification tasks. 

Sex cues were used more when they were task-relevant versus task-irrelevant, ΔC1 ≥ .13, BCI95% 
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[≥.11, ≥.15]. Facial expressions were used more often when they were task-relevant versus task-

irrelevant, ΔC2 ≥ .14, BCI95% [≥.11, ≥.17] (see Table C1).  

 

 

Table C1 

Analyses of C1 and C2 Parameters Across Conditions of Cue Ambiguity 

 

Effect 

 

Mean Difference 

 

SD 

 

BCI95% 

 

 

Use of Sex Cues (C1) During Gender Classification     

Unambiguous Sex and Expression Cues .74 .01 [.72, .77]  

Ambiguous Sex Cues .13 .01 [.11, .15]  

Ambiguous Expression Cues .78 .01 [.75, .81]  

     

Use of Expression Cues (C2) During Emotion 

Classification 

    

Unambiguous Sex and Expression Cues .55 .04 [.48, .62]  

Ambiguous Sex Cues .59 .02 [.56, .63]  

Ambiguous Expression Cues .14 .02 [.11, .17]  

 

 

 




