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Real–time compensation of backlash

positional errors in CNC machines

by localized feedrate modulation

Rida T. Farouki and Jack R. Swett

Department of Mechanical and Aerospace Engineering,
University of California, Davis, CA 95616, USA

Abstract

A methodology for analyzing the influence of gear backlash in the axis
drive systems of a Cartesian CNC machine on positional accuracy is
developed. The approach is based on solving the machine dynamical
equations in the context of an angular dead–zone backlash model and
an osculating circle approximation of smooth paths in a neighborhood
each path turning point, which admit an essentially exact solution for
a P controller. This methodology is the basis for schemes to minimize
backlash degradation of positional accuracy through feedrate or path
geometry modifications, rather than hardware or controller upgrades
(that may be expensive or disruptive for CNC machines in continuous
production use). As a preliminary demonstration of the methodology,
results are presented from the use of smooth feedrate reductions about
each path turning point as a means to suppress positional inaccuracies
incurred by gear backlash in CNC machine axis drive systems.

Keywords: CNC machine, backlash, machine dynamics,
osculating circle, feedrate modulation, position error.
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1 Introduction

To achieve a desired speed (feedrate) of a cutting tool relative to a workpiece
along a specified path, computer numerical control (CNC) machines employ
feedback controllers to independently drive each machine axis. Typically, the
axes are powered by electric motors driving ball screws through geared speed
reducers. Thus, characterizing and compensating for the internal dynamics of
these drive systems can be an important consideration [3, 26] in guaranteeing
consistently high accuracy in machining complex part shapes.

Such “inverse dynamics” compensation schemes may be based on machine
hardware or controller upgrades, but these may often be infeasible, expensive,
or disruptive for existing CNC machines employed in continuous production
use. An alternative approach is to achieve the compensation by modification
of the part programs — i.e., by altering the toolpaths and associated feedrates
[4, 17]. This approach can prove effective in compensating for the inertia and
damping of the axes, by solving the system differential equations “backwards”
to identify the input required to achieve a prescribed output.

An aspect of the axis drive system dynamics that is much more difficult to
compensate for than inertia and damping is backlash in the axis gear system,
since it incurs a discontinuous relation between the commanded and executed
motions. For a Cartesian machine, backlash occurs when the path tangent is
orthogonal to one machine axis, and the path lies locally on one side of the
tangent, implying a reversal in the direction of motion of that axis.1

The goal of this study is to develop methods to minimize degradation of
path tracking accuracy incurred by backlash in the drive systems of Cartesian
multi–axis CNC machines. The intent is to achieve this goal by alteration of
the commanded path geometry and/or feedrates, rather than by modification
of the machine hardware or controller software, allowing implementation on
existing machines with minimal expense, and a high potential for automation
by updating the software used to generate the part programs. It is expected
that the proposed approach can significantly improve the positional accuracy
of inexpensive low–end machines, or machines that have less–sophisticated
controllers or have experienced wear due to heavy usage.

Backlash is an inherent limitation of geared drive systems. Among other
considerations, it provides accommodation of finite manufacturing tolerances,

1No backlash arises in the exceptional case of an inflectional tangent, since there is no
reversal in the direction of axis motion.

1



thermal expansion, and lubrication of gears. Nordin and Gutman [16] provide
a comprehensive survey of control methods to compensate for the influence of
backlash on the tracking accuracy of drive systems, including elastic effects
and systems driven against external loads. Tarng et al. [21] used a simulated
annealing algorithm to determine the optimum parameters for minimization
of the backlash contour error along circular paths. Ge and Jouaneh [11] have
proposed a linearized model of backlash hysteresis, and based on this model
Warnecke and Jouaneh [23] developed an open–loop backlash compensation
scheme that employs a modification of the commanded feedrate profile in the
vicinity of points where backlash occurs. Shi et al. [18] have analyzed the
compensation of transient backlash error in closed–loop feed drives.

A simple “dead–zone” model for gear backlash is adopted — wherein, on
reversal of the sense of rotation of the drive motor, the gear system output
shaft remains stationary while the motor shaft turns through a finite angle
∆θm. This mechanical decoupling is the dominant aspect of backlash — of
much greater magnitude than higher–order effects such as the finite rigidity of
mechanical components or impact effects as components re–engage. During
the dead–zone interval, the motor becomes disengaged from the axis, and its
operation is governed by the control input (determined by the axis position
error) and the motor inertia and damping. The dead–zone model facilitates
simple a priori estimation of the time duration of backlash phases.

The methodology developed herein is based on paths defined by analytic
curves, rather than piecewise–linear/circular G code approximations. Real–
time interpolators for analytic curves have been proposed [2, 9, 14, 19, 24] by
many authors, and can accommodate feedrates specified as functions of time,
arc length, or curvature [7, 8, 10, 15, 22, 25]. Another advantage of analytic
paths is that they admit an exact determination of the osculating circle at the
path “turning points” where backlash occurs. Within a neighborhood of each
point on a general curvilinear path, the osculating circle offers a simple but
accurate path approximation, that can be exploited to formulate and analyze
backlash compensation schemes based on part program modification.

The plan for the remainder of this paper is as follows. Section 2 proposes
use of the osculating circle at the turning points of a smooth analytic path as
the basis for backlash compensation, and develops an estimate for the extent
over which the osculating circles deviates from the path by no more than
a prescribed tolerance ǫ. Section 3 formulates a dynamic model for an axis
drive system with backlash, that will be employed to determine the onset
and duration of each backlash interval. Section 4 then considers this model
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in the context of the osculating circle path approximation — namely, the
simple harmonic motion of an axis. As a preliminary backlash compensation
scheme, Section 5 consider the use of feedrate suppression in the vicinity of
turning points, and Section 6 presents simulation results that demonstrate
the efficacy of this approach. Finally, Section 7 summarizes and assesses the
results of the present study, and identifies directions for further investigation.

2 Osculating circle approximation

For brevity, only planar paths in the (x, y) plane are considered here, since
the extension to spatial paths is straightforward. Along a general curvilinear
path, the neighborhood of a point of vertical or horizontal tangent (and non–
zero curvature) can be accurately approximated by the path osculating circle
at that point. The influence of backlash can thus be accurately assessed by
considering the machine dynamics along the local osculating circle, which for
a prescribed feedrate corresponds to out–of–phase simple harmonic motion
of two orthogonal axes. The osculating circle path approximation forms the
basis for development of the backlash compensation schemes.

The parametric speed σ(ξ) = |r′(ξ)| =
√

x′2(ξ) + y′2(ξ) of a plane curve
r(ξ) = (x(ξ), y(ξ)) defines the derivative ds/dξ of its arc length s with respect
to the parameter ξ. Thus, derivatives with respect to ξ and s are related by

d

ds
=

1

σ(ξ)

d

dξ
, (1)

and will henceforth be indicated by primes and dots, respectively. The unit
tangent and normal vectors and the curvature of r(ξ) are defined by

t(ξ) =
r′(ξ)

|r′(ξ)|
, n(ξ) = z × t(ξ) , κ(ξ) =

(r′(ξ) × r′′(ξ)) · z

σ3(ξ)
, (2)

where z is a unit vector orthogonal to the (x, y) plane, such that (t,n, z) form
a right–handed orthonormal frame. The curvature determines the variation
of t and n through [20] the relations

dt

ds
= κn ,

dn

ds
= −κ t .
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A differentiable curve r(ξ) can be expanded [20] in a Taylor series in the
arc length s measured from a chosen curve point r0 = r(ξ0) as

r(s) = r0 + t0 s +
κ0 n0

2
s2 +

κ̇0 n0 − κ2
0 t0

6
s3

−
3 κ0κ̇0 t0 + (κ3

0 − κ̈0)n0

24
s4 + · · · , (3)

where t0,n0 are the unit tangent and normal vectors, and κ0, κ̇0, κ̈0 are the
curvature and its first and second arc–length derivatives, all evaluated at ξ0.
Applying the differential operator (1) to the expression in (2), the arc–length
derivatives of the curvature can be written [10] as

κ̇ =
(r′ × r′′′) · z − 3 σ2σ′κ

σ4
,

κ̈ =
(r′′ × r′′′ + r′ × r′′′′) · z − 3 σ(2 σ′2 + σσ′′)κ − 7 σ3σ′κ̇

σ5
,

where the derivatives of the parametric speed σ(ξ) are given by

σ′ =
r′ · r′′

σ
, σ′′ =

r′ · r′′′ + |r′′|2 − σ′2

σ
.

Now let c(s) be the osculating circle at r(ξ0), parameterized by arc length
s from that point. Since c(s) agrees with r(ξ) in position, tangent, normal,
and curvature at r(ξ0), it is seen from (3) that the deviation δ(s) = r(s)−c(s)
is specified by

δ(s) =
κ̇0 n0

6
s3 −

3 κ0κ̇0 t0 − κ̈0 n0

24
s4 + · · · . (4)

In general, κ̇0 6= 0 (i.e., the curvature of r(ξ) is not an extremum at ξ0) and
the osculating circle has second–order contact with r(ξ) at that point. The
lowest–order deviation between points of corresponding arc length along c(s)
and r(s) is then identified by the cubic term in (4). However, if κ̇0 = 0 and κ0

is a local curvature extremum, the osculating circle has third–order contact
with the curve. In this case, the deviation (4) reduces to

δ(s) =
κ̈0 n0

24
s4 + · · · . (5)
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Figure 1: Left: behavior of the osculating circle (blue) for a curve (red) with
a horizontal turning point of non–extremum curvature, and a vertical turning
point of extremum curvature. Right: the curvature profile for the red curve.

For second–order contact with κ̇0 6= 0, the osculating circle crosses the curve
at the point r(ξ0). For a third–order contact with κ̇0 = 0, on the other hand,
the osculating circle lies (locally) to one side of the curve at r(ξ0) — some
examples of this behavior are illustrated in Figure 1.

Figure 2 illustrates the magnitude of the deviation (4) in the vicinity of
vertical and horizontal turning points of the curve in Figure 1. The greater
accuracy of the osculating circle at a point of extremum curvature is apparent.
Over the range in s shown, the t0 component of (4) is generally < 2% of the
n0 component, and can be considered negligible — in fact, as seen in (5), the
t0 component is identically zero for a turning point of extremum curvature.

As a conservative estimate of the maximum arc length s about r(ξ0) over
which the osculating circle does not deviate from the curve by more than a
specified tolerance ǫ, the t0 term in (4) is omitted to obtain

| s | = min
[

(6 ǫ/|κ̇0|)
1/3, (24 ǫ/|κ̈0|)

1/4
]

. (6)

For the curve in Figure 1, the extent defined by (6) is indicated by the dashed
lines in Figure 2, with ǫ = 10−6 and ǫ = 10−5 for the vertical and horizontal
turning points, respectively — it is evident that (6) is a remarkably accurate
estimate. The osculating circles at the vertical and horizontal turning points
deviate from the curve by no more than ǫ = 10−6 and ǫ = 10−5 over total arc
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Figure 2: Magnitude of the osculating circle deviation (4) from the curve in
Figure 1 in the vicinity of vertical (left) and horizontal (right) turning points
— note the different scales in these plots. Dashed vertical lines indicate the
extent (6) over which the deviation is less than 10−6 (left) and 10−5 (right).

lengths 2 | s | equal to 0.2411 and 0.2033, respectively.

3 Dynamic model formulation

For brevity, only the x–axis dynamics are discussed here: similar principles
also apply to the y–axis, with possibly different physical parameters. Figure 3
shows a typical servosystem architecture [1, 26] for a single axis of a CNC
machine, comprising a ball screw axis driven through a gearbox by an electric
motor governed by a feedback controller.

F(s)
u

ka

i
kt

Tm
1 / (Js+B)

ωm
G(s)

ω
1 / s

θ
r

xX e+
 
–

Figure 3: Block diagram for the x–axis drive system dynamics.

In Figure 3, the system variables (and their units) are as follows.

• s (s−1) is the Laplace transform variable;
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• X(s), x(s) (m) are Laplace transforms of the commanded and measured
axis positions, and e(s) is that of the axis position error;

• F (s) (V/m) is the controller Laplace transfer function;

• u (V) and i (A) are the control voltage and motor current;

• ka (A/V), kt (Nm/A) are the current amplifier and motor torque gains;

• J (kg m2) and B (kg m2/s) are the overall effective rotary inertia and
viscous damping acting on the motor output shaft;

• Tm (Nm) and ωm (rad/s) are the motor torque and angular speed;

• G(s) (dimensionless) is the Laplace transfer function of the gear system,
including backlash;

• ω (rad/s) and θ (rad) are the drive shaft angular speed and position;

• r (m/rad) is the ball screw transmission ratio, i.e., the axis translation
for unit rotation of the ball screw.

3.1 Axis drive system

The controller receives the position error e = X − x as input and passes the
actuating signal u to the power amplifier, which supplies a current i to the
motor. The motor produces a torque Tm that is modulated by the overall
system inertia J and damping B to produce a motor speed ωm that, subject
to amplification and backlash of the gear box, yields the angular speed ω of
the ball screw drive. Integration of ω then determines the axis linear position
x through the transmission ratio r of the ball screw.

For a general PID controller, with transfer function of the form

F (s) = kp +
ki

s
+ kd s ,

where kp, ki, kd are the proportional, integral, and derivative gains, the axis
equation of motion has — in the absence of backlash — the form

a
...
x + b ẍ + c ẋ + x = d Ẍ + e Ẋ + X , (7)
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where dots indicate time derivatives, and the constant coefficients a, b, c, d, e
depend on the machine/controller physical parameters, and the cases kd = 0
and ki = kd = 0 identify PI and P controllers. For brevity (and to facilitate
closed–form solutions) the focus here is on a P controller, for which (7)
reduces to

b ẍ + c ẋ + x = X , (8)

where, for a gearbox speed reduction ratio N , the coefficients are

b =
NJ

kpkaktr
, c =

NB

kpkaktr
. (9)

These coefficients may be detemined from a system identification procedure.
The basic methodology can be extended to PI and PID controllers, although
the derivations become more complicated.

3.2 Dead-zone backlash model

To model the backlash, a gearbox transfer function of the form

G(s) =
H(s)

N

is assumed, where H(s) defines the gear backlash, and N is the gear reduction
ratio. A simple “dead–zone” model for gear train backlash in the axis drive
system is employed. If the motor angular velocity ωm changes sign at times
ti, a backlash interval ∆ti is associated with each reversal, such that the axis
drive shaft angular speed ω satisfies

ω(t) = h(t) ωm(t) , h(t) =

{

0 if ti < t ≤ ti + ∆ti ,

1 if ti + ∆ti < t ≤ ti+1 ,
(10)

for each interval i between reversals. Figure 4 gives schematic illustration of
the function h(t), which may be expressed as sequence of alternating positive
and negative instances of the Heaviside unit step function

u(t − t∗) =

{

0 if t < t∗ ,

1 if t > t∗ .

Assuming no backlash at time t = 0, the function h(t) can be written as

h(t) = u(t) −
∑

i

[ u(t − ti) − u(t − (ti + ∆ti)) ] ,
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and its Laplace transform may be expressed as

H(s) =
1

s
−

e−st1

s
+

e−s(t1+∆t1)

s
−

e−st2

s
+

e−s(t2+∆t2)

s
− · · ·

=
1

s
−

∑

i

e−sti

s
(1 − e−s∆ti) . (11)

ti ti+1 ti+2

h(t)

1

0 t

Figure 4: Schematic illustration of the backlash function h(t) defined by (10)
relating the drive shaft angular speed ω and motor shaft angular speed ωm.

In general, the overall inertia J incorporates contributions from the motor
internal inertia (Jm), the gear system inertia (Jg), and the axis ball screw
drive (Ja), and the overall effective inertia in Figure 3 is

J = Jm + Jg +
Ja

N2
, (12)

where Ja/N
2 is the “reflected” inertia of the ball screw axis drive, as seen by

the motor through the gearbox. Similarly, B is the effective viscous damping,
with contributions Bm, Bg, and Ba from the motor, gear system, and the ball
screw axis drive. The block diagram in Figure 3 then yields

x(s) =

[

F (s) · ka · kt ·
1

Js + B
· G(s) ·

1

s
· r

]

(X(s) − x(s)) ,

and for a P controller with F (s) = kp the closed–loop transfer function is

x(s)

X(s)
=

KH(s)

KH(s) + (Js + B)s
, (13)

where K = kpkaktr/N .
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3.3 Governing differential equations

In general, the backlash transfer function H(s) in (13) precludes closed–form
inversion of the Laplace transform x(s) of the output motion for a prescribed
commanded motion, and the equations of motion must be integrated in the
time domain, with appropriate “switching” between the backlash and non–
backlash phases of the motion. The equations of motion, together with their
appropriate initial conditions, are now formulated.

During each backlash interval t ∈ [ ti, ti +∆ti ] the ball screw axis drive is
decoupled from the motor/gear system, and with no applied torque exhibits
a “freewheeling” open–loop motion governed by its inertia Ja and damping
Ba through the equation

Ja
dω

dt
+ Ba ω = 0 .

With initial value ω(ti) and setting α = Ba/Ja, this has the solution

ω(t) = ω(ti) exp(−α (t − ti)) , t ∈ [ ti, ti + ∆ti ] .

Since ω(t) = ωm(t)/N during the prior non–backlash phase, with ωm(ti) = 0
at the beginning of the backlash interval, then ω(t) ≡ 0, t ∈ [ ti, ti + ∆ti ].
Consequently, the gearbox output shaft maintains a constant angular position
θi = θ(ti), and the axis maintains the constant position xi = x(ti) during the
backlash phase. The x–axis position and velocity at the end of the backlash
interval are therefore

x(ti + ∆ti) = xi and ẋ(ti + ∆ti) = 0 . (14)

During the non–backlash interval [ ti+∆ti, ti+1 ] the feedback loop remains
closed, and there is full transfer of the amplified motor torque N Tm to the
ball screw axis drive. The x–axis position for a given commanded motion
X(t) is then governed by equation (8), subject to the initial conditions (14).
Integrating this equation over t ∈ [ ti + ∆ti, ti+1 ] yields the initial conditions
x(ti+1), ẋ(ti+1) for the backlash interval [ ti+1, ti+1 + ∆ti+1 ]. By considering
a sequence of intervals with and without backlash in the above manner, the
actual motion x(t) for any given commanded motion X(t) can be obtained.

3.4 Determination of backlash intervals

In general, the instances ti at which the backlash phases commence and their
durations ∆ti are not known a priori, and must be determined in real time.
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A reasonable assumption is that backlash corresponds to a stationary output
shaft of the gear system during a finite rotation ∆θm > 0 of the motor shaft,
upon each reversal of the motor angular speed ωm (∆θm is assumed to be the
same for each reversal, and independent of the sense of each reversal). The
backlash interval ∆ti is thus determined by the condition

∫ ti+∆ti

ti

ωm(t) dt = σ ∆θm , (15)

where σ is +1 or −1 according to whether ωm changes negative to positive or
positive to negative at t = ti. During the backlash interval [ ti, ti + ∆ti ] the
motor is disconnected from the ball screw axis drive, so the axis maintains a
fixed position xi = x(ti) while the commanded position X(t) may be varying.

From Figure 3, the transfer function relating the motor angular speed to
the axis position error is

ωm(s)

X(s) − xi
=

kaktF (s)

Jms + Bm
,

and in the case of a P controller with F (s) = kp the corresponding differential
equation

dωm

dt
+ β ωm = C [ X(t) − xi ] , (16)

where Jm = ηJ with 0 < η < 1 and

β =
Bm

Jm
, C =

kpkakt

Jm
=

N

ηrb
.

Then equation (16) has, with initial condition ωm(ti) = 0, the solution

ωm(t) = C e−β t

∫ t

ti

eβ t [ X(t) − xi ] dt , t ∈ [ ti, ti + ∆ti ] . (17)

The coefficient β may be determined by measuring the motor slow–down rate
from an initial speed ωm(0) 6= 0 when disconnected from the power source at
t = 0, since ωm(t) = ω(0) e−t/τ where τ = 1/β. The constant C is expressed
in terms of the known gear reduction ratio N and ball screw transmission
ratio r, the coefficient b in (9) obtained from the system identification, and
the fraction η that the motor contributes to the overall inertia (12).

The expression (17) can be substituted in (15) to determine the duration
∆ti of the backlash interval. Depending on the commanded motion X(t), the
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integral in (17) may or may not admit closed–form reduction. To facilitate its
evaluation, X(t) will be specified by a simple harmonic motion, corresponding
to an approximation of the commanded path by its osculating circle at each
path turning point, as described below.

4 Analysis of canonical test case

Consider a commanded path corresponding to simple harmonic motion about
x = 0 with amplitude a and frequency Ω — namely,

X(t) = a sin Ω t , (18)

with the initial conditions are x(0) = 0 and ẋ(0) = Ω a. At the beginning of
the backlash interval [ ti, ti +∆ti ] the gearbox output shaft will have angular
velocity ω = 0, and since no torque is transmitted during this interval, the
x–axis maintains a constant position, x(t) = x(ti) for t ∈ [ ti, ti + ∆ti ].

Setting ∆ = c2−4 b and ts = ti +∆ti, the solution to equation (8) during
the non–backlash interval [ ti +∆ti, ti+1 ] that corresponds to the commanded
motion (18) is of the form

x(t) =

{

e−γ(t−ts) [ c1 eλ(t−ts) + c2 e−λ(t−ts) ] − g(t) , ∆ > 0

e−γ(t−ts) [ c1 sin λ(t − ts) + c2 cos λ(t − ts) ] − g(t) , ∆ < 0
(19)

where
g(t) := a (p sin Ω t + q cos Ω t) , (20)

γ =
c

2b
, λ =

√

|∆|

2b
, (p, q) =

(b Ω2 − 1, c Ω)

(b Ω2 − 1)2 + (c Ω)2
,

and the integration constants c1, c2 are determined from the initial conditions
x(ts) = xi and ẋ(ts) = 0 for the non–backlash interval as

c1 =
(λ + γ)(xi + g(ts)) + ġ(ts)

2λ
, c2 =

(λ − γ)(xi + g(ts)) − ġ(ts)

2λ
,

for ∆ > 0, and

c1 =
γ (xi + g(ts)) + ġ(ts)

λ
, c2 = xi + g(ts) ,

12



for ∆ < 0. The corresponding axis velocities and accelerations are

ẋ(t) = e−γ(t−ts) [ (λ − γ) c1 eλ(t−ts) − (λ + γ) c2 e−λ(t−ts) ] − ġ(t) ,

ẋ(t) = e−γ(t−ts) [ (λ c1 − γ c2) cos λ(t − ts) − (γ c1 + λ c2) sin λ(t − ts) ] − ġ(t) ,

and

ẍ(t) = e−γ(t−ts) [ (λ − γ)2 c1 eλ(t−ts) + (λ + γ)2 c2 e−λ(t−ts) ] − g̈(t) ,

ẍ(t) = e−γ(t−ts) [ ((γ2 − λ2) c2 − 2 λγ c1) cos λ(t − ts)

+ ((γ2 − λ2) c1 + 2 λγ c2) sin λ(t − ts) ] − g̈(t) .

The derivatives of (20) appearing in the above expressions are

ġ(t) = a Ω (p cos Ω t − q sin Ω t) , g̈(t) = − a Ω2 (p sin Ω t + q cos Ω t) .

4.1 Computing the backlash intervals

The preceding results determine the backlash and non–backlash motions over
the intervals [ ti, ti +∆ti ] and [ ti +∆ti, ti+1 ] but the instances ti at which the
backlash phases commence, and their durations ∆ti, must be determined.

The end ti of the non–backlash interval [ ti−1 + ∆ti−1, ti ] following the
backlash interval [ ti−1, ti−1 + ∆ti−1 ] may be identified as the least value of t
greater than ti−1 +∆ti−1 satisfying ẋ(t) = 0, with the appropriate expression
for the axis velocity according to whether ∆ is positive or negative. From a
sufficiently close initial estimate t

(0)
i a sequence of Newton iterations

t
(k)
i = t

(k−1)
i −

ẋ(t
(k−1)
i )

ẍ(t
(k−1)
i )

, k = 1, 2, . . .

can be used to determine ti to machine precision. For the commanded motion
(18), the time between axis reversals is T = π/Ω, and when the actual motion

does not deviate severely from (18) the initial value t
(0)
i = ti−1 + 0.9 T yields

rapid convergence to ti.
For the commanded motion (18), the integral in equation (17) admits a

closed–form reduction, yielding the motor angular speed as

ωm(t) = C

[

a cos(Ω ti + φ) e−β(t−ti)

√

β2 + Ω2
−

a cos(Ω t + φ)
√

β2 + Ω2
−

xi

β
[ 1 − e− β(t−ti) ]

]

,

13



where φ is defined by

(sin φ, cosφ) =
(β, Ω)

√

β2 + Ω2
.

Substituting for ωm(t) into (15) and simplifying yields the equation

Q(∆ti) := f(0) − f(∆ti) − σ ∆θm = 0 , (21)

where

f(∆ti) := C

[

a cos(Ω ti + φ) e−β ∆ti

β
√

β2 + Ω2
+

a sin(Ω(ti + ∆ti) + φ)

Ω
√

β2 + Ω2

+
xi

β
(ti + ∆ti) +

xi

β2
e− β∆ti

]

. (22)

The condition (21) determining ∆ti must also be solved iteratively. To obtain
a starting approximation, note that Q(0) = −σ ∆θm, Q′(0) = 0, and Q′′(0) =
C(sin Ω ti−xi), so the lowest–order non–trivial power series expansion of (21)
about ∆ti = 0 yields the initial estimate

∆t
(0)
i =

[

2 σ ∆θm

C (a sin Ω ti − xi)

]1/2

,

where the sign σ must be chosen to ensure the square root of a positive value.
This initial estimate can be refined through a sequence of Newton iterations
applied to (21). Note, however, that since (21) has a small derivative in the
vicinity of ∆ti = 0, the convergence is relatively slow.

4.2 Illustrative example

The illustrative set of parameter values b = 0.0005 s2, c = 0.005 s are chosen
(so that ∆ = − 0.001975 s), N = 25, η = 0.35, r = 1.0 m/rad, τ = 1/β = 1 s,
and ∆θm = 0.125664 rad. The commanded motion (18) has the amplitude
a = 0.25 m and an interval T = 6 s between reversals, corresponding to the
frequency Ω = π/T = 0.523599 rad/s. These values are chosen to ensure that
the influence of the gear backlash is clearly apparent. The derived parameters
in Section 4 are γ = 5 s−1, λ = 44.440972 s−1, C = 1.428571 × 105 rad/ms2,
p = − 1.000130, q = 0.002619, and φ = 1.088448 rad.
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The motion starts with the initial conditions x = 0 and ẋ = a Ω at t = 0,
and after a brief transient phase it settles down to a repetitive behavior with
period 2 T = 12 s and a lag of 0.005001 s relative to the commanded motion.
Each reversal is characterized by the backlash time interval ∆ti = 0.118743 s.
Figure 5 illustrates the time variation of the x–axis position in the vicinity of
an axis reversal. The position remains constant during the backlash interval
∆ti, and thereafter the controller attempts to restore the commanded motion.
The oscillatory nature of this recovery reflects the underdamped nature of
the system dynamics, characterized by the negative value of the quantity ∆.

20.6 20.8 21.0 21.2 21.4

–0.250

–0.248

–0.246

–0.244

t (s)

x 
(m

)

Figure 5: Representative output motion (blue & cyan) in response to backlash
at an extreme point of the commanded motion (red) defined by (18) — the
blue and cyan plots identify non–backlash and backlash phases of the motion.

For the circular motion (X(t), Y (t)) = (a sin Ω t, a cos Ω t), with the same
physical parameters for the x and y axes, Figure 6 compares the commanded
and executed paths in the neighborhood of an x–axis turning point, with the
discrepancy ρ − a of the radial distance ρ =

√

x2 + y2 of the executed path
from the origin amplified by the factor 25×.

5 Feedrate modulation scheme

Backlash compensation via part program modification may involve modifying
the commanded path geometry or path speed (feedrate), or a combination of
both. Feedrate modulation has been used to suppress variations in machining
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Figure 6: Commanded (red) and executed (blue/cyan) paths at an x–axis
turning point for the circular motion (X(t), Y (t)) = (a sin Ω t, a cos Ω t), with
the radial distance error of the executed path magnified by the factor 25×.

forces [7], and path geometry modifications can minimize contour errors in
high–speed execution of sharp path corners [12, 13].

Since determining the optimum modification parameters for the general
case can be rather involved, the focus at present is on feedrate modulation
and path modifications are deferred to a future study. Feedrate modulation
for backlash compensation has been proposed by Warnecke and Jouaneh [23],
using a piecewise–linear feedrate profile (which incurs discontinuities of the
acceleration), determined from the backlash model developed in [11]. The
approach adopted herein is based on feedrate profiles with a polynomial time
dependence, which ensures continuity of both acceleration and jerk (time
derivative of acceleration). Furthermore, for paths specified by Pythagorean–
hodograph (PH) curves [5], such feedrate variations can be realized by simple
and essentially exact real–time interpolator algorithms [22].

During a backlash interval, one axis remains stationary as the orthogonal
axis continues to move with an (initial) speed equal to the feedrate V . The
backlash position error therefore diminishes as the feedrate is V decreased.
This is evident from Figure 7, based on the results of the analytic model in
Section 4 for increasing times T between reversals of a single axis. This plot
shows the distance traversed by the second axis while the first axis remains
stationary as the gear system takes up the backlash — note that the feedrate
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is V = πa/T , so increasing T corresponds to decreasing V .
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Figure 7: Variation of the distance travelled by the orthogonal axis while one
axis remains stationary due to backlash, as a function of the time interval T
between reversals of a single axis, based on the analytical model of Section 4.

Since it is impractical to run extended paths at very low feedrates, the
approach adopted here is to employ smooth “local” feedrate reductions within
small path segments that encompass each turning point. Although backlash
begins at a turning point, feedrate suppression should commence beforehand
to be most effective. The feedrate modulation is therefore implemented over
a small path segments symmetric about the turning points.

Let r(ξ0) = (x0, y0) be a vertical turning point with curvature κ0 6= 0 on
a smooth free–form path r(ξ). It is convenient to take time t = 0 to be the
instant at which the commanded path goes through the turning point r(ξ0),
identified by θ = 0 on the osculating circle. Coordinates with origin at the
point r(ξ0) are employed, and path arc length is defined such that s = 0 at
r(ξ0). A path segment s ∈ [−s∗, s∗ ] may then be approximated by the arc

x(θ) = ρ0(cos θ − 1) , y(θ) = ρ0 sin θ , θ ∈ [−θ∗, θ∗ ] (23)

of the osculating circle at r(ξ0), where ρ0 = 1/κ0 is the radius of curvature
and θ∗ = s∗/ρ0.

17



5.1 Modulated feedrate function

Let t ∈ [− t∗, t∗ ] be the time interval over which the feedrate is to be reduced.
A normalized time variable

τ =
t + t∗
2 t∗

, (24)

is introduced, such that t ∈ [− t∗, t∗ ] is mapped to τ ∈ [ 0, 1 ] and derivatives
with respect to t and τ are related by

d

dt
=

1

2 t∗

d

dτ
. (25)

A time–dependent feedrate2 will be employed, specified by a polynomial of
even degree n in the time variable (24), represented in Bernstein form as

V (τ) =

n
∑

k=0

Vk

(

n

k

)

(1 − τ)n−kτk . (26)

Let Vc be the nominal constant feedrate for t < − t∗ and t > t∗. For continuity
of the velocity and acceleration at t = − t∗ and t = t∗, the coefficients of (26)
must satisfy

V0 = V1 = Vc = Vn−1 = Vn ,

and consequently n ≥ 4 if (26) is to incorporate free parameters that can be
used to optimally suppress the influence of backlash.

Figure 8 shows examples of the feedrate function (26) of degree n = 4 and
n = 10, with all the coefficients in (26) equal to Vc, except that Vn/2 is some
multiple f of Vc. Hence V (τ) is symmetric about (and attains its extremum
value at) τ = 1

2
. Namely V (1

2
) = (5 + 3f)Vc/8 and (193 + 63f)Vc/256 for

n = 4 and n = 10, respectively (where f > −5/3 and f > −193/63 in these
two cases, to ensure that V always remains positive). As evident in Figure 8,
larger degrees n provide higher orders of continuity of the modulated feedrate
(26) with the constant value Vc when t < − t∗ and t > t∗.

The arc–length interval s ∈ [−s∗, s∗ ] on the osculating circle over which
the reduced feedrate (26) holds can be determined by integrating ds/dt = V
to obtain

∫ s∗

−s∗

ds =

∫ t∗

−t∗

V (t) dt = 2 t∗

∫ 1

0

V (τ) dτ ,

2Analogous feedrate modulation functions have previously been used [8, 15] in the
context of high–speed cornering motions.
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Figure 8: The feedrate modulation function defined by (26) with values (a)
n = 4 with V0 = V1 = Vc = V3 = V4 and V2 = −1.5 Vc (blue curve); and (b)
n = 10 with V0 = · · · = V4 = Vc = V6 = · · · = V10, V5 = − 2.8 Vc (red curve).

and using the fact that the integral of a degree n Bernstein–form polynomial
over [ 0, 1 ] is simply [6] the sum of its coefficients divided by n + 1 yields

s∗ =
(V0 + · · · + Vn) t∗

n + 1
, (27)

and this relation may be used to choose t∗ so that the osculating circle does
not deviate from the exact path by more than a desired tolerance ǫ over the
segment s ∈ [−s∗, s∗ ] on the osculating circle. The corresponding angular
extent on the osculating circle is determined from θ∗ = s∗/ρ0.

Note that, if the coefficient Vn/2 in (26) is set equal to f Vc and all other
coefficients are set equal to Vc, the time 2 t∗ required to traverse the segment
[− s∗, s∗ ] using (26) exceeds the traversal time 2 s∗/Vc for a constant feedrate
Vc by the relatively modest factor (n + 1)/(n +f).

5.2 Commanded motion

Consider motion on an extended portion θ ∈ [−Θ∗, Θ∗ ] of the osculating
circle, with Θ∗ > θ∗, corresponding to a time interval t ∈ [−T∗, T∗ ]. For θ ∈
[−Θ∗,− θ∗ ] and θ ∈ [ θ∗, Θ∗ ] the motion is at a constant feedrate ds/dt = Vc,
but for θ ∈ [− θ∗, θ∗ ] the feedrate function (26) is imposed.
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The purpose of the “lead–in” and “lead–out” segments θ ∈ [−Θ∗,− θ∗ ]
and θ ∈ [ θ∗, Θ∗ ] is to minimize the influence of transient effects during the
interval θ ∈ [− θ∗, θ∗ ] over which the modified feedrate is employed. The
total time required for traversal of the extended osculating circle segment
[−Θ∗, Θ∗ ] is 2 T∗, where

T∗ = t∗ +
ρ0(Θ∗ − θ∗)

Vc

.

The duration of the motion is t ∈ [−T∗, T∗ ]. During the lead–in and lead–out
phases, the commanded angular position Θ(t) increases at the constant rate
Ω = Vc/ρ. During the interval t ∈ [− t∗, t∗ ] with the reduced feedrate (26),
the commanded angular position is

Θ(t) = − θ∗ +

∫ t

−t∗

V (t)

ρ0
dt = − θ∗ + 2 t∗

∫ τ

0

V (τ)

ρ0
dτ .

Now the degree n + 1 polynomial defined by

S(τ) =

∫

V (τ) dτ =

n+1
∑

k=0

Sk

(

n + 1

k

)

(1 − τ)n−kτk (28)

has [6] the Bernstein coefficients

S0 = 0 and Sk =
1

n + 1

k−1
∑

j=0

Vj , k = 1, . . . , n + 1 ,

and hence the commanded angular position during the feedrate modulation
phase can be expressed as

Θ(t) = − θ∗ +
2 t∗
ρ0

S(τ) , (29)

where τ is defined in terms of t by (24). Referred to the turning point r(ξ0)
as origin, the commanded position is given in terms of Θ(t) by

X(t) = ρ0 [ cos Θ(t) − 1 ] , Y (t) = ρ0 sin Θ(t) . (30)
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5.3 Equations of motion

For brevity, the x and y axes are assumed to be characterized by the same
values for the constants (9). For the lead–in/out segments [−Θ∗,− θ∗ ] and
[ θ∗, Θ∗ ] executed at the constant feedrate Vc, the equations of motion for the
x and y axes are then

b ẍ + c ẋ + x = X , b ÿ + c ẏ + y = Y , (31)

with commanded positions X(t), Y (t) defined by (30). The initial conditions
for the lead–in segment are then (x(−T∗), y(−T∗)) = ρ0(1− cos Θ∗,− sin Θ∗)
and (ẋ(−T∗), ẏ(−T∗)) = Vc(sin Θ∗, cos Θ∗).

For the interval t ∈ [− t∗, 0 ] the equations of motion (31) still hold, but
the inputs correspond to the modulated feedrate defined by (24) and (26),
and are specified by (29) and (30). However, the interval [ 0, θ∗ ] — during
which the x–axis backlash occurs — must be treated differently.

During the backlash interval t ∈ [ 0, ∆t ] the x-axis maintains the constant
position xi = x(0) at the end of the interval t ∈ [− t∗, 0 ] while the y–axis
position is given by the solution of (31) with initial conditions y(0), ẏ(0). For
the time–dependent feedrate (26), the duration ∆t of the backlash interval
is more difficult to determine than for the simple model of Section 4, due to
the complicated nature of the commanded motion defined by (28)–(30).

Consequently, ∆t is computed by formulating equation (16) as the system
of first–order equations

dωm

dt
= C [ X(t) − xi ] − β ωm(t) ,

dθm

dt
= ωm(t) , (32)

for the motor angular speed ωm and position θm. With θm(0) = ωm(0) = 0,
these equations can be accurately integrated by standard solution schemes for
linear ordinary differential equations, using a sufficiently small time step δt.
The instant t at which |θm(t)| = ∆θm will then identify the backlash interval
∆t. The ∆t values, for various combinations of the parameters β and C, can
be computed offline to reduce the real–time controller computational burden.

Typically, t∗ ≥ ∆t is used so the backlash is completely taken up by the
end of the interval [− t∗, t∗ ]. If ∆t < t∗, the motion during the remaining
time interval [ ∆t, t∗ ] will be governed by equations (31) where X(t), Y (t)
are defined by (30) with Θ(t) = θ∗ + Vc(t− t∗)/ρ0, and the initial conditions
are determined at the conclusion of the backlash interval.
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6 Simulation results

To investigate the performance of the feedrate modulation scheme proposed
in Section 5, the model parameters employed in Section 4.2 are used together
with an angular extent Θ∗ = 1

2
π of the lead–in/out path segments, and a

modulated feedrate specified by (26) with n = 10 and a duration [− t∗, t∗ ]
defined by t∗ = 0.5 s. The coefficients of (26) are all set equal to Vc = ρ0Ω,
except that V5 = f Vc. The value of f required to obtain a prescribed ratio
V (1

2
)/Vc is defined by

f =
256 V (1

2
)/Vc − 193

63
.

The equations of motion were integrated with a time–step δt = 0.001 s.
Figure 9 compares commanded and executed paths at a vertical turning

point, under the influence of backlash, for three different values of V (1
2
)/Vc

(note that the radial position error in this plot employs a 25× magnification).
When this ratio equals 1 (i.e., a constant commanded feedrate Vc is imposed)
the backlash incurs a significant underdamped tracking error. For V (1

2
)/Vc =

0.25, corresponding to a 75% feedrate reduction at the turning point, there
is a substantial reduction in the magnitude of the backlash–induced position
error. Finally, for V (1

2
)/Vc = − 0.5 a retrograde motion is observed, with the

magnitude of the reversed feedrate reaching 50% of Vc, and the magnified
backlash position error is barely noticeable at the scale of the plot.

Since it is difficult to discern the retrograde motion of the V (1
2
)/Vc = −0.5

case in Figure 9, a “close–up” view is provided in Figure 10 — the cusps of
the executed path correspond to the instances of feedrate reversal.

Figure 11 illustrates the depedence on the ratio V (1
2
)/Vc of the maximum

and root–mean-square values of the fractional radial deviation e = (r−ρ0)/ρ0

of the executed path during the interval t ∈ [− t∗, t∗ ] where r is the distance
of the path from the center of the osculating circle, and ρ0 is its radius. Note
that values of this ratio less than 0 and great than 1 are also included in this
plot. The latter correspond to speeding up (rather than slowing down) the
feedrate, and evidently incur worse positional errors. The former induce a
“retrogade motion” phase during t ∈ [− t∗, t∗ ] — i.e., the forward motion
slows to a stop, reverses direction for a while, and then slows to a stop again
before resuming the original forward direction.

For feedrates that do not incur a retrograde motion, the positional errors
exhibit a shallow minimum at V (1

2
)/Vc ≈ 0.25, corresponding to a modest
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Figure 9: Commanded (red) and executed (blue) paths, with radial error for
the executed path magnified 25×, for the feedrate function (26) specified by
n = 10 and all coefficients equal to Vc except V5, which is chosen such that
the ratio V (1

2
)/Vc corresponds to 1.0 (left); 0.25 (center); and − 0.5 (right).
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Figure 10: Close–up comparison of the commanded (red) and executed (blue)
paths in the vicinity of the turning point, with radial error of the executed
path magnified 25×, for the case V (1

2
)/Vc = − 0.5 with a retrograde feedrate.
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Figure 11: Variation of the maximum (red dots) and root–mean–square (blue
dots) values for the fractional radial error of the executed motion during the
feedrate modulation interval t ∈ [− t∗, t∗ ], based on the feedrate modulation
function specified by (26) with various values for the ratio V (1

2
)/Vc.

reduction compared to those for the constant feedrate Vc (identified by the
dashed line in Figure 11). However, in the case of retrograde motion, a much
more pronounced positional error reduction is evident at V (1

2
)/Vc ≈ − 0.45.

This can be attributed to the fact that the “back–and–forth” motion arising
from feedrate functions with V (1

2
) < 0 essentially amounts to a dwell in the

vicinity of the turning point, affording the motor shaft the spin–up time that
is required to resolve the backlash of the gear system.

It might be thought that retrograde tool motion is undesirable in milling
operations. Note, however, that it incurs no change of the commanded path
geometry (subject to the tolerance of the osculating–circle approximation —
see Section 2). In the case of a 2D milling operation with fixed depth of cut,
for example, no additional material is removed during the retrograde phase.
In other applications, such as 3D printing, it may be more problematic.

7 Closure

The key contributions of this study may be summarized as follows:

24



(1) the osculating circle path approximation was proposed, to facilitate the
analysis of backlash at turning points of smooth analytic paths;

(2) a dynamic model for axis drive systems was developed, that can predict
the onset and duration of backlash intervals;

(3) based on the dynamic model, a local feedrate modulation scheme was
introduced to compensate for backlash positional errors;

(4) the efficacy of this scheme was demonstrated through simulations.

The backlash compensation scheme provides a simple means to improve the
tracking accuracy of CNC machines without machine hardware or controller
software upgrades. Results from an implementation of the methodology on an
open–architecture CNC milling machine, including identification of optimum
parameters, accuracy performance assessment, and a comparison with other
approaches, will be presented in a forthcoming study.

For the case of a “dead–zone” backlash model and a simple P controller,
the dynamic equations for backlash and non–backlash phases of the motion
admit closed–form solutions, and the duration of the backlash phases can be
determined by a simple iterative procedure. For a PI or PID controller, the
solutions can be obtained through numerical integration.

The backlash compensation scheme is based on smooth suppression of the
feedrate in a neighborhood of each path turning point. A significant feedrate
reduction below the nominal value is found to substantially reduce backlash
contour error at the turning points. Remarkably, suppressing the feedrate to
negative values (which incurs a brief “retrograde” motion) is found to yield
the maximum contour error reduction. This effectively provides a “dwell” at
turning points, allowing the drive motor to resolve the axis backlash.

In contexts where retrograde motion is undesirable, significant reductions
in contour error are still achievable through a choice of parameters that ensure
non–negative feedrate. An alternative approach is to formulate a composite
modulated feedrate function, consisting of a feed deceleration phase, a dwell
phase at zero feedrate, and an acceleration phase back to the nominal feedrate
value. These three phases should exhibit a high order of continuity at their
junctures. A detailed description of this approach, together with the selection
of appropriate parameters, is deferred to a future study.

The focus of this study has been on analysis and compensation of backlash
positional errors incurred by the intrinsic machine dynamics. For machining
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operations, the axis drive systems must also overcome cutting forces, and a
detailed model of their variation for a given tool path and feedrate, depth
and width of cut, workpiece specific cutting energy, etc., will be required to
characterize and compensate for backlash contour errors. Since the feedrate
modulation may require high localized axis accelerations, a further important
issue in selecting the feedrate function parameters is the torque capacity of
the drive motors. Investigation of these issues, and backlash compensation
through path modification, will be pursued in subsequent studies.
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