
Lawrence Berkeley National Laboratory
LBL Publications

Title
The Use of a Relaxation Method to Calculate the 3D Magnetic Field Contribution of an Iron 
Yoke

Permalink
https://escholarship.org/uc/item/60z7f70s

Authors
Caspi, S
Helm, M
Laslett, L J

Publication Date
1991-07-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/60z7f70s
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


't 
. ! f 

'~-* 

LBL-29826 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 
Presented at the Conference on the Computation of Electromagnetic Fields 
(COMPUMAG), Sorrento, Italy, July 7-11, 1991, and to be published 
in the Proceedings 

The Use of a Relaxation Method to Calculate the 3D 
Magnetic Field Contribution of an Iron Yoke 

S. Caspi, M. Helm, and L.J. Laslett 

July 1991 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

---
-flO o .... r 
"'S "'S 0 

n D 
.r:-~z .... 
s:a.n 
IDC"tO 
ID ID "0 
~~~~< 

"' ---
lXI .... 
c. 

ICI 
• 
Ul s 
r .... 
an 
"'S 0 
DI"C 
"'S'< 
"< • N 

r 
lXI r 
I 

N 
...0 
Q) 
N 
CJ'I 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



...... 

(J 

LBL-29826 
SC-MAG-317 

TilE USE OF A RELAXATION METHOD TO CALCULATE 
TilE 3D MAGNETIC FIELD CONTRIBUTION OF AN IRON YOKE* 

S. Caspi, M. Helm, and L.J. Laslett 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

COMPUMAG 
July 7-11, 1991 
Sorrento, Italy 

This report has been reproduced directly from the best available copy. 

*This work was supported by the Director, Office of Energy Research, Office of High Energy and 
Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098. 



P, 

The Use of a Relaxation Method to Calculate the 
3D Magnetic Field Contribution of an Iron Yoke* 

S. Caspi, M. Helm, and L.J. Laslett 
Lawrence Berkeley Laboratory 

1 Cyclotron Road, Bldg. 46-161 
Berkeley, CA 94720 

Abstract-A computational procedure has 
been developed for calculating the three-
dimensional field produced by an 
axisymmetric iron yoke of high 
permeability in the presence of a system of 
conductors. The procedure Is particularly 
applicable to the end regions of multipole 
.magnets of the sort used In particle 
accelerators. The field produced by the 
conductors Is calculated using the Blot
Savart law. We speak of the field 
contribution of the yoke as an "Image 
field", although It is associated with a 
distinctly diffuse distribution of Image 
currents or magnetic moments. At every 
point on the boundary of the yoke the total 
scalar potential is constant, so vi = -Vd 
where i = image and d = direct contribution 
from the conductors. If we describe both 
potentials as a series of "harmonic 
components" with respect to azimuthal 

· dependence, then the nature of the boundary 
condition Is such that a de-coupling of one 
harmonic component from another Is 
preservell and therefore it Is also true that 
Vi( n) =-V d (n) at the iron Interface, where n 
is a harmonic number. If we solve the 
appropriate Individual differential equations 
for the scalar potential functions vi( n) 
throughout the Iron-free region, with the 
proper applied boundary condition for the 
scalar potential of each harmonic number, 
we shall achieve upon summation the 
appropriate potential function to describe 
the field contribution of the surrounding 
high-permeability Iron. 

I. INTRODUCTION 

Computations concerning the character and 
quality of magnetic fields produce<f by prescribed 
current distributions in the presence of ferromagnetic 
material are required in many technological 
applications, including such applications that employ 

*This work was supported by the Director, Office of 
Energy Research, Office of High Energy and Nuclear Physics, 
Division of High Energy Physics, of the U.S. Department of 
Energy under Contract No. DE-AC03-76SF00098. 
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superconducting material and must determine 
maximum values of magnetic fields in order to predict 
"short sample" performance of magnets. It is 
attractive to consider the use of finite-difference 
computational methods for the relaxation solution of 
such problems, but such techniques frequently have 
been judged inconvenient, if not inadequate, in three
dimensional situations -- even if very simple 
approximations concerning the character of the 
ferromagnetic material can legitimately be assumed. 

Our own contact with such issues has recently 
been in connection with the design of 
superconducting magnetic lens elements (dipoles, 
quadrupoles, etc.) for particle accelerators such as the 
20x20 Tev Superconducting Super Collider (SSC). 
In this application, the length of the individual 
magnetic lenses is such that much useful information 
can be derived from two dimensional (x,y or r, 9) 
computations in which one can specify in some detail 
the magnetic properties of the iron that surrounds the 
current winding and thus, through relaxation 
computations[!], achieve the requisite accuracy for 
describing the interior field that serves to guide and 
focus the particle beam. The effect of the end 
windings (and of the nearby iron in that region) also 
requires attention, however, since (i) the non-neglible 
contribution of the iron to field quality in this region 
must be estimated and (ii) the end configuration must 
be such as to reduce its tendency to produce excessive 
field strength at the location of the superconducting 
windings. We wish to outline here some 
computational measures we have adopted to address 
such issues. 

II. ANALYSIS 

The magnetic field that arises "directly" from the 
current windings -- i.e. without inclusion of the 

~ contribution from induced magnetization in 
surrounding magnetic material -- of course can be 
computed at any point directly by application of the 
Biot-Savart law (possibly aided by simple numerical 
integration). At any desired longitudinal location (z) 
such field components (or, if desired, any associated 
magnetic-potential function) can be analyzed into 
Fourier components with respect to the azimuth angle 
(9). Thus conventional "non-skewed" configurations 
may be expected to provide Fourier components (of 
index n) for Br. Be, and Bz proportional respectively 

to sin n9, cos n9, and sin n9. 



Such Fourier components of the "direct" field 
when evaluated in the region exterior to the current 
windings, in a location where surrounding magnetic 
material may be found, can usefully be employed to 
provide boundary conditions suitable for evaluation of 
the iron contribution to the total magnetic field -
provided that (i) the iron interface is rotationally 
symmetric about the longitudinal axis (although 
possibly flared or interrupted with respect to the z 
direction) .an.d. (ii) the iron may be regarded as 
characterized by a substantially infinite permeability. 
The individual harmonic components that the iron 
contributes to the total field may be described in the 
current-free region exterior to the current windings by 

functions yin (r,z), for which the scalar potential 
vi(r,9,z) for the iron contribution becomes the sum 
of such functions times sin ne while the individual 

functions yin ( r, z) satisfy the differential equation 

in r,z space, subject to the boundary condition that 
the individual Fourier components contributed by the 
iron have tangential components at the interface (r=fb) 
that just cancel the corresponding "direct" tangential 
component of the field -- a condition that we specify 
by 

Vin(rb,z) =- V~(rb,z) = r~ B~,n(rb.z) . 

The completion of our problem thus requires 
only the solution of a (normally small) number of 
discrete two-dimensional partial differential equations, 
in r,z space, and the combination of such solutions 
with the results calculated for the "direct" field. 

An additional computational feature that may be 
applied to our two-dimensional solver, in 
correspondence to a feature we have introduced into 
POISSON, concerns the manner of imposing a 
surrounding boundary condition at the outermost, but 
finite, closed boundary of the two-dimensional mesh. ' 
The correct boundary condition in this case normally 
should be neither of the Dirichlet or Neumann type 
but should reflect the requirement that no "sources" 
(as currents or magnetized material) lie external to 
that boundary. In this case, we may construct in the · 
outer regions of the mesh two, rather closely nested, 
boundary curves -- for example a pair of confocal 
ellipses with prolate ellipsoidal coordinates (~,lli) and 
(~. TJ0 ). The character of the scalar potential function 
in this outer region may then be expressed in the 
present case (n >o) as a sum of terms proportional to 
the product of associated Legendre functions 
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P~(~) Qk (11) with k ::?:n, in order to depict the 
falling off of an external potential with increasing 
distance from the axis. After the completion of one 
or more relaxation passes through the mesh, the 
coefficients of such a series development may be 
provisionally evaluated from the prevailing values of 
potential at mesh points along the inner boundary 
curve (TJ=TJi) and the series then evaluated at points 

on the outer curve (TJ=TJo) to provide revised potential 
values for resumption of the relaxation procedure.[2] 
This repetitive relaxation procedure has been found to 
converge satisfactorily and through use of associated 

Legendre functions Pct~) Qk (11), of order equal to 

the harmonic index n and of degree len, could 
advantageously form a part of the modified relaxation 
program that is adopted to provide the scalar potential 

function ¥., in r,z or n ,C, space. It is a pleasure 
to acknowledge the support provided by Victor 0. 
Brady, of this Laboratory, in adapting the program 
POISSON to solution of the partial differential 

equations for yin· Further examination by a 
numerical analyst of these techniques and of possible 
modifications thereof could prove to be of interest to 
workers in the field of advanced magnet design. 

A. Example -A Dipole Magnet 

We calculated the iron field contribution at the 
end region of a two layer superconducting dipole 
magnet (D19) currently under construction at our 
laboratory. The "end" windings, schematically shown 
in Figure 1 as line currents, were used to calculate the 
scalar potential harmonics at the iron boundary. Nine 
sets of potential (corresponding to n= 1 ,3 ,5 ... 17, 
assuming dipole symmetry) have been applied as iron 
boundary values and used by the POISSON solver to 
form nine sets of solutions. 

Fig. 1. Schematic top view of end region of double layer 
dipole 019. 
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Fig. 2. Equal potential lines for a- n=l, b- n=3, 

andc-n=5. 

Plots of equal potential lines for 3 such sets are 
shown in Figure 2 for n=1,3, and 5. We have used 
the fomulation below to reconstruct the field 
components. 
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Fig. 3. Iron contribution to Br-a, and to Bz- b, along 

the end region of D19. 

Finally, we plot in Figure 3 Br(n=1, 9=90, r=o) and 

~z (n=l, 6=90) in the limiting case r~o. 

REFERENCES 

[1] User's Guide for the POISSON/Superfish Group 
of Codes, Los Alamos Accelerator Code Group, 
LA-UK-87-115,January 1987. 

[2] Analogous computational methods for various 
uses of Program POISSON are described for 
magnetostatic applications in LBL Report-
18798 (1984) and, more broadly, in LBL-24106 
(1988). 



,.-.-.... 

LAWRENCE BERKELEY LABORATORY 
UNIVERSITY OF CALIFORNIA 

INFORMATION RESOURCES DEPARTMENT 
BERKELEY, CALIFORNIA 94720 

.... -- '...:,... 




