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SUMMARY
Cluster randomized trials (CRTs)oftenenroll largenumbers of participants; yet due to resource constraints,
only a subset of participants may be selected for outcome assessment, and those sampled may not be
representative of all cluster members. Missing data also present a challenge: if sampled individuals with
measured outcomes are dissimilar from those withmissing outcomes, unadjusted estimates of arm-specific
endpoints and the intervention effect may be biased. Further, CRTs often enroll and randomize few
clusters, limiting statistical power and raising concerns about finite sample performance. Motivated by
SEARCH-TB, a CRT aimed at reducing incident tuberculosis infection, we demonstrate interlocking
methods to handle these challenges. First, we extend Two-Stage targeted minimum loss-based estimation
to account for three sources of missingness: (i) subsampling; (ii) measurement of baseline status among
those sampled; and (iii) measurement of final status among those in the incidence cohort (persons known
to be at risk at baseline). Second, we critically evaluate the assumptions under which subunits of the
cluster can be considered the conditionally independent unit, improving precision and statistical power
but also causing the CRT to behave like an observational study. Our application to SEARCH-TB highlights
the real-world impact of different assumptions on measurement and dependence; estimates relying on
unrealistic assumptions suggested the intervention increased the incidence of TB infection by 18% (risk
ratio [RR]= 1.18, 95% confidence interval [CI]: 0.85–1.63), while estimates accounting for the sampling
scheme, missingness, and within community dependence found the intervention decreased the incident
TB by 27% (RR= 0.73, 95% CI: 0.57–0.92).

KEYWORDS: Cluster randomized trials (CRTs); Double robustness; Efficiency; Group randomized
trials; Hierarchical data; Missing data; Multi-level data; Super Learner; Two-Stage targeted minimum
loss-based estimation (TMLE)
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1. IN TRODUCTION
In randomized controlled trials, the intervention is sometimes randomized to groups of par-
ticipants rather than to individuals (Hayes andMoulton, 2009; Campbell andWalters, 2014;
Donner and Klar, 2010; Eldridge and Kerry, 2012). For example, it would be impractical to evaluate
a new teaching method by randomizing students within classrooms, but much more feasible if
classrooms were randomized. In group or cluster randomized trials (CRTs), correlation between
the outcomeswithin a clustermay arise due to shared environmental factors, shared exposure to the
intervention (or control), and interactions between individuals within a cluster. This dependence
violates the common regression assumption that all observations are independent and identically
distributed (i.i.d.), complicating statistical estimation and inference.
A number of well-established methods can account for the dependence of observations in a

cluster (Liang and Zeger, 1986; Fitzmaurice and others, 2012; Hayes andMoulton, 2009). How-
ever, not all methods can address practical challenges arising in CRTs. First, outcomes may not be
measuredonall participants in each cluster.This couldoccur bydesign, for example, ifmeasurement
of a rare or expensive outcome only occurred in a subsample of participants. Failing to adjust for
sampling can result in biased point estimates and misleading inference (Horvitz and Thompson,
1952; Robins, 1986; van der Laan and Rose, 2011). Additionally, incomplete ascertainment of
outcomes among all (or the selected subset of) participants can bias results if the outcomes are not
missing completely at random(MCAR)(Rubin, 1976;Robins and others, 1995). Individualswhose
outcomes are notmeasured are likely different than thosewhowere fully observed; for example, stu-
dents who are absent on an exam daymay be systematically different than those present. If this sys-
tematic missingness is influenced by the intervention (e.g., a new teaching technique improves mo-
tivation and attendance, influencing exam scores and the probability of measurement), the risk of
bias is even larger. This is a common problem: a recent review found that missing data were present
in 93% of CRTs, 55% of which simply performed a complete-case analysis (Fiero and others, 2016).
Second, resource constraints often limit the number of clusters in CRTs. Indeed, a review of

100 CRTs found 37% with fewer than 20 clusters (Kahan and others, 2016) and another review of
100 CRTs found a median of 33 clusters (Selvaraj and Prasad, 2013). Further, in CRTs with many
clusters, key subgroup analyses might be conducted within strata defined by cluster-level covariates
(e.g., region), limiting the number of randomized units included in that analysis. As the number
of clusters shrinks, chance imbalance on covariates that influence the outcome becomes more
likely. Accounting for these covariates and other outcome predictors can increase precision (e.g.,
Fisher, 1932; Tsiatis and others, 2008; Moore and van der Laan, 2009; Hayes andMoulton, 2009;
Benitez and others, 2023). However, in analyses with few clusters, including too many covariates
can lead to overfitting, and it is often not clear which covariates to select for optimal performance
(Balzer and others, 2016b).
Third, statistical inference often relies on (i) tests with known finite sample properties that may

be inefficient or (ii) the asymptotic behavior of estimators that may not hold in CRT analyses
with a limited number of clusters. For example, generalized estimating equations (GEE) and
generalized linear mixed models (GLMMs) are two common approaches for analyzing CRTs
(Laird andWare, 1982; Liang and Zeger, 1986); both rely on having a “sufficient” number of
clusters. The exact recommendation varies, with some suggestingGEE can be usedwith as few as 10
clusters (Pan andWall, 2002), while others suggest that these approaches (without small-sample
corrections) should be avoided without 30 or more clusters (Kreft, 1998; Hayes andMoulton,
2009; Murray and others, 2018). Altogether, inference based on a small number of clusters may be
unreliable, creating conservative or anticonservative confidence interval coverage depending on the
situation (Leyrat and others, 2018). For an overview and comparison of methods for CRT analysis,
we refer the reader to Hayes andMoulton (2009) and Benitez and others (2023).
Here, we address these challenges by combining Two-Stage targeted minimum loss-based estima-

tion (TMLE) to account for subsampling andmissing individual-level outcomes (Balzer and others,
2021) with carefully considered conditional independence assumptions to address limited numbers
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of clusters (van der Laan and others, 2013). The novel contributions of this work include the
following. First, we extend Two-Stage TMLE to handle differential measurement of an outcome
among a closed cohort, where cohort membership is defined by subsampling and also subject to
differential measurement at baseline. Second, we detail the assumptions required to increase the
effective sample size by considering a subunit of the cluster to be the conditionally independent
unit; this process results in the CRT behaving like an observational study. As a consequence, we
extend the prior asymptotic results and practical implementation of Two-Stage TMLE for this
psuedo-observational setting. Additionally, we discuss how our approach relates to assumptions
commonly made in multilevel observational studies, where, for example, individuals are nested in
neighborhoods and substantial interactions occur within and across those neighborhoods (Oakes,
2004; Sobel, 2006). Finally, we demonstrate the real-life consequences of various analytic choices,
using real-world data from the SEARCH-TB study.
Briefly, SEARCH-TB sought to evaluate the population-level effect of universal HIV test-and-

treat on incident tuberculosis (TB) infection in rural Uganda. SEARCH-TB was a substudy of
the SEARCH trial, a 32-communityCRT(NCT01864603) (Havlir and others, 2019). Intervention
communities received annual, population-basedHIV testingwithuniversal treatment eligibility and
patient-centered care delivery. Control communities received population-based testing at baseline
with treatment eligibility according to Ministry of Health guidelines. Given logistical and financial
constraints, detailed below, assessment of incident TB infection was limited to nine communities,
within which a subsample of participants was selected based on the HIV status of their household.
Multiple visits were made to selected households to administer sociodemographic surveys and
tuberculin skin tests (TSTs) to persons aged 5 years and older. The substudy participants who were
TST-negative at baseline formed a closed cohort, on whom follow-up TSTs were attempted 1 year
later. The primary outcome of the substudy was the 1-year incidence of TB infection. The applied
results have been previously presented (Marquez and others, 2022); here, we focus on the causal
and statistical methods to account for purposefully differential sampling, potentially differential
outcome measurement, and few independent units. Full discussion of the application is given in
Section 4; we now present our analytic approach more generally.

2. T WO - STAGE TM LE FOR S A M PLING A ND M ISSING OU TCOM ES
In CRTs, “two-stage” approaches first estimate a cluster-level endpoint and then use those esti-
mates to evaluate the intervention effect (Hayes andMoulton, 2009; Murray and others, 2018). As
detailed in Benitez and others (2023), such approaches can be combined with weighting schemes
to estimate cluster-level or individual-level effects on any scale. In particular, Two-Stage TMLEwas
developed to reduce bias and improve efficiency ofCRTs by optimally adjusting for baseline cluster-
level covariates, after controlling for missingness on individual-level outcomes (Balzer and others,
2021). In Stage 1, we identify and estimate a cluster-level endpoint, accounting for potentially
differential measurement of individual-level outcomes. To do so, we (i) define a cluster-level
counterfactual parameter as a summary of the individual-level counterfactual outcomes of the
cluster members, (ii) assess identifiability of that causal parameter, and then (iii) estimate the
corresponding statistical parameter in each cluster separately. In Stage 2, we use the resulting
endpoint estimates from each cluster to evaluate the intervention effect, optimally adjusting for
cluster-level covariates to increase precision. Two-Stage TMLE compares favorably to competing
CRT methods, especially when there are post-baseline causes of missingness (Balzer and others,
2021). We now extend the approach to account for subsampling and missingness at both baseline
and follow-up. In Section 3.2, we further extend the method to support conditional independence
assumptions commonly made in observational epidemiology.

2.1. Stage 1: Identifying and estimating the cluster-level endpoint
When the individual-level outcomes are not MCAR, estimating the cluster-specific endpoint
with the simple mean among those measured can create several hazards. First, failing to account
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for over-sampling of certain subgroups and under-sampling of others can bias estimates for the
population of interest. Second, in longitudinal studies, failing to account for incomplete measure-
ment of baseline status can skew estimates of baseline prevalence and estimates of intervention
effectiveness. As an extreme example, suppose only participants at very low risk of the outcome
were tested at baseline; then estimates of baseline prevalence would be biased downwards, and the
resulting incidence cohortwould be a poor representation of the population at risk. Likewise, failing
to account for incomplete measurement of final endpoint status among the longitudinal cohort
can also bias estimates of incidence and intervention effectiveness. As another extreme example,
suppose all high-risk cohort members did not have their endpoint measured; then cluster-level
estimates of incidence would be biased downwards. If missingness is present at both baseline and
follow-up, these biases could compound. Further, if missingness is differential by arm—say, the
high-risk participants were more likely to be measured at follow-up in the intervention arm—the
potential for bias is even greater.
In SEARCH-TB, our motivating study, all of these dangers were present. The subsample was

enriched for persons with HIV; measurement of baseline TB status was potentially differential
among those sampled, and measurement of incident TB infection was also potentially differential
among participants who were TST-negative at baseline. In the following subsection, we discuss our
definition of the cluster-level endpoint and describe methods for estimating it, along with relevant
assumptions.

2.1.1. Notation.
Throughout, we denote cluster-level quantities with superscript c and underlying (possibly unmea-
sured) quantities with an asterisk. For an individual in a given cluster, let Ec represent the cluster-
level covariates (e.g., baseline HIV prevalence) and L0 the set of individual-level covariates (e.g.,
age).These are eithermeasuredprior to intervention implementationor, atminimum,not impacted
by the intervention. Let Ac represent whether the cluster was randomized to the intervention
(Ac = 1) or the control (Ac = 0), and S indicate that an individual was sampled for the substudy.
Next, define Y∗

0 ∈ {0, 1} as a participant’s underlying (possibly unmeasured) outcome status at
baseline—specifically,Y∗

0 = 1 if the participant has the outcome (e.g., TB infection) at baseline and
0 if not. Likewise, define �0 as an indicator that their outcome was measured at baseline; hence,
�0 is deterministically 0 if the participant was not sampled (S = 0) for the substudy. The observed
outcome at baseline is defined asY0 = �0 × Y∗

0 , equaling 1 if the participantwasmeasured andhad
the outcome at baseline. Participants known to be at risk at baseline (i.e., those with �0 = 1 and
Y0 = 0) form a closed cohort for incidence measurement. Variables Y∗

1 ,�1, and Y1 are the follow-
up timepoint analogues. Likewise, let L1 denote post-baseline variables that may be impacted by
the intervention Ac and impact the underlying outcome Y∗

1 and its measurement�1 at follow-up.
Altogether, the observed data for a participant are O = (Ec,L0,Ac, S,�0, Y0,L1,�1, Y1). Recall

that Stage 1 of our approach involves defining and estimating an endpoint in each cluster separately.
Therefore, we can simplify the participant-level data toO = (L0, S,�0, Y0,L1,�1, Y1), because the
cluster-level covariates Ec and cluster-level exposure Ac are shared by all members of a given cluster
(Balzer and others, 2021). A simplified directed acyclic graph showing the relationships between
the individual-level variables is shown in Figure 1.

2.1.2. Definition and identification of the cluster-level causal parameter.
In Stage 1,we focus on the underlying proportion of clustermemberswith the outcome at follow-up
among those at risk at baseline:

P(Y∗
1 = 1 | Y∗

0 = 0) = P(Y∗
1 = 1, Y∗

0 = 0)
P(Y∗

0 = 0)
= P(Y∗

1 = 1, Y∗
0 = 0)

1 − P(Y∗
0 = 1)

. (2.1)

This is equivalent to the counterfactual incidence of the outcome under the following hypothetical
interventions. First, to ensure outcome ascertainment at baseline, we would include all cluster
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Figure 1. A simplified causal model to illustrate the relationships between individual-level variables within
a cluster in Stage 1. For ease of presentation, the graph is shown without any dependence between
unmeasured variables, which are omitted.

members in the study (i.e., “set” S = 1) andmeasure all participants’ outcomes (i.e., “set”�0 = 1).
Second, to ensure follow-up outcome ascertainment among members of the incidence cohort, we
consider a dynamic intervention to “set”�1 = 1 among those at risk at baseline (Y0 = 0,�0 = 1)
(Hernán and others, 2006; van der Laan and Petersen, 2007; Robins and others, 2008). We now
briefly discuss the assumptions needed to express this causal parameter (2.1) as a statistical
parameter (i.e., function) of the observed data distribution. The plausibility of the identification
assumptions in our motivating example is discussed in Section 4, and further details are in the
supplementary material available at Biostatistics online.
For ease of presentation, we reparameterize the denominator of (2.1) as one minus the coun-

terfactual outcome prevalence at baseline: P(Y∗
0 = 0) = 1 − P(Y∗

0 = 1). Under the following as-
sumptions, the latter is identified as the baseline prevalence of the observed outcome, adjusted for
differences between participants with measured versus missing outcomes:ψ c

den ≡ E{E(Y0 | �0 =
1, S = 1,L0)}, where superscript c is used to emphasize this statistical parameter is shared by all
clustermembers. To establish equivalence betweenP(Y∗

0 = 1) andψ c
den, we need that subsampling

is done randomly within values of L0 and that the only common causes of the outcome and its
measurement (among those sampled) are also captured in L0. This equivalent to assuming baseline
outcome status ismissing-at-random(MAR):Y∗

0 ⊥⊥ S | L0 andY∗
0 ⊥⊥ �0 | S = 1,L0. Additionally,

we need a positivity assumption; subsampling and baseline measurement (among those sampled)
is possible, regardless of L0 values: P(S = 1 | L0 = l0) > 0 and P(�0 = 1 | S = 1,L0 = l0) > 0 for
all possible values l0 ∈ L0.
Identification of the counterfactual proportion of cluster members who have the outcome

at follow-up and are at risk at baseline P(Y∗
1 = 1, Y∗

0 = 0) is also possible under two common
assumptions. First, the sequential randomization assumption (Robins, 1986) requires that at each

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data


604 · J. R. Nugent and others

timepoint, the MAR assumption holds conditionally on (a subset of) the measured past. This
assumption can be evaluated graphically with the sequential backdoor criterion (Pearl, 2009).
Second, the corresponding positivity assumption requires a positive probability of measurement at
each timepoint, regardless covariate history. Under these assumptions, the numerator of the causal
parameter (2.1) can be identified as ψ c

num ≡ E [E{E(Y1 | �1 = 1,L1, Y0 = 0,�0 = 1, S = 1,L0)
| �0 = 1, S = 1,L0}]. This is the longitudinal G-computational formula expressed in terms of
iterated conditional expectations (Bang and Robins, 2005; van der Laan and Gruber, 2012).
Altogether, our Stage 1 statistical parameter is given by

Y c ≡ ψ c
num

1 − ψ c
den

= E [E{E(Y1 | �1 = 1,L1, Y0 = 0,�0 = 1, S = 1,L0) | �0 = 1, S = 1,L0}]
1 − E{E(Y0 | �0 = 1, S = 1,L0)} .

(2.2)
We use Y c to emphasize this parameter is shared by all cluster members and is a summary measure
of the individual-level data within that cluster. Here, Y c is a complex summary function, but can,
nevertheless, be interpreted as the incidence of the outcome, after adjusting for sampling and
differential measurement at both baseline and follow-up. Under the identification assumptions,
Y c would equal the counterfactual outcome incidence if there were complete sampling and no
missingness: P(Y∗

1 = 1|Y∗
0 = 0).

2.1.3. Estimating the cluster-level statistical parameter.
Several options exist to estimate the statistical parameters of the denominator ψ c

den, numerator
ψ c

num, and, thus, the cluster-level endpoint Y c. All approaches are implemented in each cluster
separately, allowing the relationships between the individual-level covariates, sampling, measure-
ment, and outcomes to vary by cluster and naturally accounting for cluster-level variables (Ec,Ac)
(Balzer and others, 2021). If the adjustment variables (L0,L1) are discrete and low-dimensional,
we could implement a nonparametric stratification-based approach to estimate the iterated condi-
tional expectations inG-computation ormeasurementmechanism in inverse probability weighting
(Horvitz and Thompson, 1952; Robins, 1986; Bang and Robins, 2005).
However, when the adjustment variables are continuous and/or moderate-to-high dimensional,

machine learning can be applied to avoid unsubstantiated modeling assumptions and flexibly learn
complex relationships in the data. To support valid statistical inference, machine learning should be
incorporated in doubly robust estimators (a.k.a, double/debiasedmachine learningmethods), such
asTMLE(van der Laan and Rose, 2011;Díaz, 2019).With respect to ourmissingdata problem(i.e.,
estimation of Y c), doubly robust estimators enjoy the following properties: asymptotic linearity
under reasonable regularity conditions; consistency if either the iterated conditional expectations
or the measurement mechanism is consistently estimated, and efficiency if both are consistently
estimated at fast enough rates. As a substitution estimator, TMLE is often preferable to other
approaches, especially under data sparsity due to positivity violations or rare outcomes. Imple-
mentation of TMLE will vary by parameter and is detailed in the supplementary material available
at Biostatistics online for both ψ c

num and ψ c
den. We recommend implementing TMLE with Super

Learner (van der Laan and others, 2007), an ensemble machine learning method, to improve our
chances of having both a consistent and efficient estimator.
Weobtain a point estimate of the endpoint in each cluster as Ŷ c = ψ̂ c

num/(1 − ψ̂ c
den). Then these

estimated cluster-level endpoints Ŷ c
i for i = {1, . . . ,N} are used to evaluate the intervention effect

in Stage 2.

2.2. Stage 2: Definition, estimation, and inference for the treatment effect
Recall our goal of evaluating the intervention effect in a CRT. Let Y c(ac) = P(Y∗

1 (ac) = 1 |
Y∗

0 (ac) = 0)denote the counterfactual outcome incidence under an additional intervention to “set”
Ac = ac. Since the cluster-level treatment is randomized, the following identification conditions
hold bydesign:Y c(ac) ⊥⊥ Ac and0 < P(Ac = 1) < 1.Additionally, sincewehave alreadydealtwith

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
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individual-level sampling and missingness in Stage 1, we can trivially identify summaries of these
cluster-level counterfactuals (Balzer and others, 2021). Suppose, for example, we are interested in
the effect for a population of clusters; then the expected counterfactual outcome E[Y c(ac)] equals
the expected outcome among those receiving the exposure of interest E(Y c|Ac). Our approach
easily accommodates other effects, such conditional or sample effects; however, we focus on
population effects throughout this manuscript for demonstration.
To gain efficiency, we incorporate covariate adjustment. Let φc(ac) = E{E(Y c|Ac = ac,Ec)},

where Ec are the baseline covariates, including those measured directly at the cluster-level (e.g.,
urban vs. rural) and/or aggregates of individual-level covariates L0 (e.g., HIV prevalence). φc(ac) is
a cluster-level analog of the G-computation identifiability result (Robins, 1986; Balzer and others,
2016a, 2019). If the Stage 1 identifiability assumptions hold, contrasts of φc(1) and φc(0) can be
interpreted as the population-level intervention effects. If not, contrasts of φc(1) and φc(0) are
interpreted statistically as associations of the cluster-level intervention with the incidence of the
outcome, after controlling for subsampling and missingness at the individual level.
We now consider how to optimally estimate the Stage 2 statistical parameter φc, defined as a

contrast betweenφc(1) andφc(0). For example, on the relative scale,φc = φc(1) ÷ φc(0). In Stage
2, our observed data are at the cluster level:Oc = (Ec,Ac, Ŷ c), where Ŷ c is the cluster-level endpoint
estimated in Stage 1.
Using these data, Stage 2 estimation can proceed by implementing a cluster-level analysis, such

a G-computation, inverse probability weighting, or TMLE. The key challenge to Stage 2 is a
priori specification of the optimal adjustment set — which variables and what functional form.
One solution to this challenge is to implement Adaptive Pre-specification (APS) within TMLE
(Balzer and others, 2016b). Briefly, APS prespecifies a candidate set of working generalized linear
models (GLMs) for the cluster-level outcome regression E(Ŷ c|Ac,Ec) and for the cluster-level
propensity score P(Ac = 1|Ec) and, then, chooses the combination that minimizes the cross-
validated variance estimate for the TMLE of the target parameter. Finite sample simulations and
real-data applications have demonstrated substantial precision gains over alternative approaches
(Balzer and others, 2016b, 2021; Benitez and others, 2023).
Under conditions detailed in Balzer and others (2021), the Two-Stage TMLE φ̂c will be an

asymptotically linear estimator of the target effect φc, such that φ̂c − φc = 1/N
∑N

i=1 Dc
i + RN

with Dc
i as the influence curve (function) for the ith cluster and RN = op(1/

√
N) as the remainder

term (van der Vaart, 1998). In particular, we need the contributions from Stage 1 estimation to the
remainder term RN to be essentially zero. Practically, this means we should not bet on bias can-
cellations when defining or estimating the cluster-level endpoint Y c = ψ c

num/(1 − ψ c
den). Indeed,

biased estimators of the cluster-level endpoints can result in biased estimates of and misleading
inference for the intervention effect. Instead, we recommend using TMLE, incorporating machine
learning, to flexibly estimate the cluster-level endpointY c

i for i = {1, . . . ,N} in Stage 1.Additionally,
two-stage approaches aremost effectivewhen the cluster size is relatively large, allowing for adaptive
and well-supported estimation of the cluster-level endpoints. The regularity conditions required
of Stage 2 estimators of the cluster-level outcome regression and known propensity score hold by
design, when using APS to select from working GLMs in TMLE. As discussed next, however, the
conditions on the Stage 2 estimators will change if we make alternative identification assumptions
in Stage 2.
Under the above conditions, Two-Stage TMLE will be normally distributed in the large data

limit, allowing for the construction of Wald-type confidence intervals as φ̂c ± 1.96σ̂ , where σ̂ 2

is the sample variance of the estimated cluster-level influence curve D̂c, scaled by sample size N.
(The form of the influence curve will depend on the target parameter φc.) In CRTs with fewer
than 40 clusters randomized (N < 40), we recommend using the Student’s t distribution with
N − 2 degrees of freedom as a finite sample approximation of the asymptotic normal distribution
(Hayes andMoulton, 2009).
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3. (R E-)DEFINING THE INDEPENDEN T UNIT
A fundamental premise of CRTs is that outcomes are dependent within a cluster. Sources of
dependence could include shared cluster-level factors, including the intervention, as well as social
interactions between participants within a cluster. Instead, clusters are assumed to be independent,
providing the basis for statistical inference, as described in the prior subsection. However, CRTs
tend to randomize few clusters, limiting statistical power. For example, while its parent trial
randomized 32 communities, measurement of incident TB infection in SEARCH-TB occurred in
only nine communities in Uganda. Even if a given CRT has many clusters, subgroup analyses to
understand effect heterogeneitymaybe conducted among limitednumbers of clusters. The extreme
case of randomizing to only two clusters, a de facto observational study, was covered in depth by
van der Laan and others (2013).
In this section, our goals are to (i) define a hierarchical causal model, reflecting the data-

generating process for a CRT, (ii) detail the assumptions needed to consider a subunit of the cluster
to be the conditionally independent unit, and (iii) present the consequences of these assump-
tions for statistical estimation and inference with Two-Stage TMLE. The level of clustering and,
thereby, the definition of “subunit” will vary by setting. In SEARCH-TB, for example, individuals
are nested within households, villages, parishes, and communities. Under different assumptions,
explicitly stated below, any level of partitioning of the cluster could be treated as the conditionally
independent unit.
For simplicity, we focus on CRTs with three layers of clustering: individuals are grouped into

subcluster “partitions”, indexed by j = {1, . . . , J}, and these partitions are grouped into a cluster,
which remain the unit of randomization. As before, we denote cluster-level variables with super-
script c. Now, denote partition-level variables with superscript p. Recall Ec is the set of cluster-level
characteristics; these are sometimes called “environmental” factors, because they represent the
shared environment of individuals in a given cluster (van der Laan and others, 2013). As before, Ac

is an indicator of the cluster being randomized to the intervention arm. Now, let Wp
j be the set

of baseline covariates for partition j; these could be general characteristics of the partition (e.g.,
urban vs. rural) as well as aggregates of baseline covariates of individuals from that partition (e.g.,
HIV prevalence). Likewise, let Yp

j be the jth partition’s endpoint, which is defined analogously to
Y c in Stage 1 (2.2). Specifically, Yp

j is the incidence of the outcome, after adjusting for sampling
and differential measurement among members of partition j. Under the identification assumptions
given in Section 2.1.2, Yp

j would equal the counterfactual incidence of the outcome for partition j if
we had complete sampling and no missingness.

3.1. Hierarchical structural causal models
Using the nonparametric structural causalmodel of Pearl (2009),we now formalize the hierarchical
data generating process for a CRT. For ease of presentation, we focus onCRTswith J = 2 partitions
per cluster; however, our results naturally generalize to other settings.
Figure 2provides a causalmodel, assuming independence between clusters and randomizationof

the cluster-level intervention (UAc⊥⊥UEc ,UWp
1
,UWp

2
,UYp

1
,UYp

2
). The structure of the remainingUs

may be complex and cluster-specific; for example, the unobserved factors influencing the partition-
level outcomes (UYp

1
,UYp

2
) might be related to unmeasured, environmental factors UEc . Beyond

the unmeasured factors, there are several sources of dependence between partition-level outcomes
in this model. For example, the jth partition’s outcome Yp

j may depend on the characteristics
of the other Wp

−j. This general causal model encodes independence at the cluster-level, not the
partition-level— yet.
To treat the subcluster partition as the conditionally independent unit, we need several

assumptions to hold, resulting in a more restrictive causal model reflected in Figure 3
(van der Laan and others, 2013). First, there is no interference between partitions within a cluster.
Second, any effect of the cluster-level covariatesEc on thepartition-level outcomeYp

j is only through
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Figure 2. A simplified causal model for the data-generating process of a cluster randomized trial with two
partitions (i.e., subunits) per cluster. By design in a cluster randomized trial, the unmeasured factors
contributing to the cluster-level intervention UAc are independent of the others. We make no other
exclusion restrictions or independence assumptions.

Figure 3. A restricted causal model for the data generating process of a cluster randomized trial with 2
partitions (i.e., subunits) per cluster and under the assumptions needed for the partitions to be
conditionally independent. This graph reflects the following exclusion restrictions and independence
assumptions: no interference between partitions; no direct effect of the cluster-level covariates Ec on the
partition-level outcomes Yp, and no unmeasured common cause of the partition-level outcomes (UYp)

and the cluster-level or partition-level covariates (UEc ,UWp). By design in a cluster randomized trial, the
unmeasured factors contributing to the cluster-level intervention (UAc) are independent of the others.

their effect on jth partition’s covariates Wp
j . Finally, there are no unmeasured common causes of

partition-level outcomes Yp
j and the cluster-level or partition-level covariates (Ec,Wp

j ). While we
additionally need the unmeasured factors contributing to the cluster-level intervention Ac to be
independent of the others, this holds by design in CRT. Altogether, these assumptions require
there to be no interactions between partitions within a cluster and the partition-level covariates
Wp are sufficient to block the effects of the cluster-level, environmental factors Ec on the partition-
level outcomesYp. If these assumptions hold, the partition becomes the conditionally independent
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unit, increasing the effective sample size, while still allowing for arbitrary dependence within each
partition.
Whether or not these assumptions are reasonable depends on the study context. Tomaximize the

effective sample size, it might be tempting to define the “partitions” as the individuals in a cluster.
However, this approach would entail very strong and possibly unrealistic assumptions, especially
in the setting of infectious or contagious outcomes. Instead, if partitions are large subunits of the
cluster (e.g., distant neighborhoods in a rural community), these assumptionsmight be reasonable.
Altogether, the assumptions needed to treat the partition as the conditionally independent unit
are strong; however, they are commonly evoked in multilevel, observational epidemiology (Oakes,
2004; Sobel, 2006). By explicitly stating them and illustrating them with a causal graph, we aim to
empower readers to judge whether they are plausible. Additionally, the design of future studies can
be improved by measuring a rich set of covariates to improve the plausibility of these assumptions.

3.2. Estimation and inference with partition-level conditional independence
The assumptions encoded in the restrictive causalmodel (Figure 3) have important implications for
our two-stage estimation approach. Previously, when considering the cluster to be the independent
unit, we identified and estimated a cluster-level endpoint Y c that accounted for subsampling of
individuals within that cluster, missingness on baseline outcome status of sampled individuals, and
missingness on final outcome status of individuals known to be at risk at baseline. Under the more
restrictive model, we now identify and estimate a partition-level endpoint Yp in Stage 1. Practically,
thismeans that within each partition separately, we useTMLE to estimateYp = ψ

p
num/(1 − ψ

p
den),

as defined in (2.2), and then use the resulting estimates Ŷp to evaluate the intervention effect in
Stage 2.
During effect estimation in Stage 2, we previously adjusted for cluster-level covariates Ec simply

to increase precision in a CRT. Now, however, blurring the lines between randomized trials and
observational studies requires us to adjust for confounders Wp to identify the causal effect and
support the conditional independence assumptions. Recall adjustment for the partition-level co-
variates Wp is required to block the effect of the cluster-level environmental factors Ec, which are
no longer included in the adjustment set. Therefore, the Stage 2 statistical estimand is now defined
in terms of contrasts of the expected partition-level endpoint, given the cluster-level treatment and
partition-level confounders: φp(ac) = E{E(Yp|Ac = ac,Wp)}. For example, on the relative scale,
our statistical estimand would be φp = φp(1) ÷ φp(0). As noted earlier, our approach can target
other effects, such as the conditional or sample effects, defined on any scale.)
Importantly, the revised statistical estimand φp has a subtly different interpretation than the

original statistical estimand φc, which was in terms of the expected cluster-level outcome. If the
number of partitions per cluster varies, the value of these two estimands could differ; however,
weights can be applied to recover either estimand (Benitez and others, 2023). Statistically, φp can
be interpreted as the association of the cluster-level interventionwith the incidence of the outcome,
after controlling for subsampling and missingness at the individual level and for confounding from
environmental factors at the partition level. However, if the Stage 1 identifiability assumptions
hold and the Stage 2 identifiability assumptions hold, φp can be interpreted as the population-
level intervention effect. The revised Stage 2 statistical estimand φp could be estimated with a
variety of methods. We again recommend TMLE, given its double robustness property, potential
for efficiency, and ability to incorporate machine learning while maintaining the basis for valid
statistical inference. To implement TMLE for φp in this setting, we pool together partition-level
observations Op

k = (Wp
k ,Ac

k, Ŷp
k ) for the k = {1, . . . ,K} partitions in the CRT. Now, Ŷp represents

the estimated partition-level endpoint from Stage 1. Using these data, we implement TMLE at the
partition level as if we had a point-treatment observational study (van der Laan and Rose, 2011).
Treating the partition as the conditionally independent unit changes our approach to statistical

inference. Specifically, our effective sample size is now K, the number of partitions. However, this
comes at the cost of stronger conditions for Two-Stage TMLE φ̂p to be asymptotically linear for
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Figure 4. Comparative results under different sets of assumptions using real data from the SEARCH-TB
study on incident tuberculosis (TB) infection. The primary analysis, adjusting in both Stage 1 and Stage 2
and considering the parish (a large subunit of the community) to be the conditionally independent unit, is
shown first. See Table 1 of the supplementary material available at Biostatistics online for additional
information.

the target parameter φp, such that φ̂p − φp = 1/K
∑K

i=1 Dp
k + RK with Dp

k as the influence curve
(function) for the kth partition and RK = op(1/

√
K) as the remainder term. Now, we need the

Stage 1 estimators of the partition-level endpoint Yp to contribute negligibly to the remainder
term (Balzer and others, 2021). Furthermore, the regularity conditions on effect estimation in Stage
2 do not hold by design. Instead, we need estimators of the partition-level outcome regression
E(Ŷp | Ac,Wp) and partition-level propensity score P(Ac | Wp) to converge to the truth at quick
enough rates and avoid overfitting (van der Laan and Rose, 2011). To satisfy these conditions, we
again recommend implementing TMLE with Super Learner, considering a diverse set of candidate
algorithms, in both Stage 1 and Stage 2.

4. A PPLIC ATION TO THE SE A RCH-TB ST UDY
An estimated 1.7 billion people, approximately a quarter of the world’s population, are in-
fected with TB, and this vast reservoir fuels TB disease and death (Houben and Dodd, 2016;
MacPherson and others, 2009). Understanding TB transmission dynamics and then implementing
effective public health interventions is difficult (Marquez and others, 2022). First, transmissions
are airborne and likely occur both inside and outside the household. Second, the focus has largely
been on active TB (i.e., TB disease), missing the majority of transmission events, which are latent
infections. Finally, measurement of latent TB infection through tuberculin skin tests (TSTs) is
expensive and imperfect.
Due to resource constraints, evaluation of SEARCH’s universal HIV test-and-treat inter-

vention on incident TB infection was conducted through a substudy known as SEARCH-TB

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
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(Marquez and others, 2022). This substudy was limited to nine communities in eastern Uganda
and 100 randomly sampled households in each community. As previously discussed, househod
sampling was enriched for persons with HIV. Among members of the sampled households, latent
TB infection wasmeasured via door-to-door placement and reading of TSTs. Incident TB infection
was defined as conversion fromanegative to positiveTSTafter 1 year of follow-up. Finally, given few
randomized clusters, parishes, a subunit of the community (analagous to the partitions discussed
in Section 3), were considered to be the conditionally independent unit under the assumptions
detailed below.

4.1. Stage 1: Identification and estimation of the one-year incidence of TB infection in
each partition

We first defined and estimated a partition-level endpoint Yp, appropriately accounting for
subsampling and differential TB ascertainment at the individual level. Of the 17 858 households
in the nine study communities, 1435 were sampled, and 688 (47.9%) of the sampled households
had at least one adult (aged 15 and up) with HIV. The adult prevalence of HIV in the subsample
was 19.6%, a sharp contrast to the prevalence in the region of 3.6% (Havlir and others, 2019). Since
the risk of TB differs by HIV serostatus (MacPherson and others, 2009), ignoring the sampling
scheme would bias estimates of TB burden and the intervention effect. However, sampling S was
randomwithin household HIV status H. Thus, the following assumptions were satisfied by design:
Y∗

0 ⊥⊥ S | H and P(S = 1 | H = h) > 0 for h ∈ {0, 1}.
Despite up to three visits to the sampled households, including weekends and after hours,

TSTs were administered to 4884/8420 (58%) of household members at baseline. Known risk
factors for prevalent TB and missingness include age and mobility (Marquez and others, 2022).
Let W represent these baseline individual-level risk factors. We were willing to assume that for
sampled individuals and within values of W , TB prevalence among those with a baseline TST
was representative of TB prevalence among those without a baseline TST: Y∗

0 ⊥⊥ �0 | W , S =
1,H. Additionally, we assumed that among those sampled, there was a positive probability of
administering aTSTwithin all possible values ofW . These assumptions, togetherwith the sampling
design, allowed for the identification of the counterfactual baseline TB prevalence in each partition
P(Y∗

0 = 1) asψ
p
den = E{E(Y0 | �0 = 1,W , S = 1,H)}.

Among the 4884 participants with known baseline TB status, 3831 (78%) were TST-negative,
forming a closed cohort for incidence measurement. As before, despite best efforts, follow-up
TST administration was imperfect, with 2425/3831 (63%) of the cohort measured at follow-up.
To address potentially differential ascertainment of follow-up status, we considered common risk
factors for incident TB infection and its measurement. Given the epidemiology of the region,
we again identified age, mobility, and household HIV status as key joint causes of outcomes and
missingness. We assumed that within values of these adjustment factors, the risk of incident TB
infection among cohortmemberswith a follow-upTSTwas representative of the risk among cohort
members without a follow-up TST. We also assumed a positive probability of receiving a follow-
up TST (among the incidence cohort) within all values of (W ,H). These assumptions were again
supported by the study design, including the repeat visits to households, and allowed for identifica-
tion of the counterfactual proportion with TB at follow-up but not at baseline P(Y∗

1 = 1, Y∗
0 = 0).

The corresponding statistical estimand wasψ
p
num = E[E{E(Y1 | �1 = 1, Y0 = 0,�0 = 1,W , S =

1,H) | �0 = 1,W , S = 1,H}], which is a simplified version of theψ c
num parameter fromSection 2.1

but without the time-dependent covariates L1.
For estimation and inference in Stage 1, we stratified on parish, the assumed conditionally

independentunit, andestimatedψ
p
num andψ

p
den with aparticipant-levelTMLEusingSuperLearner

to combine predictions from main-terms GLM, multivariate adaptive regression splines, and the
simple mean. Then for each parish, we obtained estimates of the 1-year incidence of TB infection
as Ŷp = ψ̂

p
num ÷ (1 − ψ̂

p
den).
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4.2. Stage 2: Evaluation of the intervention effect in SEARCH-TB
Next, we used the Stage 1 endpoint estimates ψ̂

p
k for k = {1, . . . ,K} to evaluate the effect of the

cluster-level intervention in Stage 2. Before doing so, we needed to critically evaluate the assump-
tions needed to treat the K subcommunity partitions as the conditionally independent unit. Given
the following considerations, we immediately eliminated the individual and the household as possi-
ble candidates. First, factors influencingTB infection risk include both an individual’s susceptibility
(e.g., age andHIV status) aswell as their level of exposure toTB.Within a household, onemember’s
risk factors could influence their own TB status as well as the TB status of the other household
members, especially in settings with poor ventilation and shared sleeping areas. This directly
violates the assumption of no interference between individuals within a household. Furthermore,
an estimated 80% of TB cases are acquired outside of the household (Martinez and others, 2017,
2019)— violating the potential assumption of no interference between households.
Therefore, for the following reasons, we assumed the parish, a large subunit of the community,

to be the conditionally independent unit. First, we considered how and where TB is transmitted
outside the home in rural Ugandan communities. Prior studies from high-TB burden countries
in Sub-Saharan Africa have shown clinics, schools, churches, and workplaces are the areas of
high TB risk (Andrews and others, 2014). Additionally, prior molecular epidemiologic studies in
Uganda have highlighted the role of bars in TB transmission (Chamie and others, 2015, 2018). After
conducting community mapping and having detailed discussion with the larger Ugandan research
team, we concluded these locations are generally shared within a parish, but it was unlikely people
would travel between parishes to visit these locations. Therefore, we were willing to assume that
there was negligible interference between parishes within a commmunity.
We then considered whether the measured parish-level covariates were sufficient to block the

effects of the environmental, community-level factors. First, the role of HIV in fueling the TB
epidemic is well established; the biomedical mechanism is via immunosuppression leading to
increased susceptibility to infection and reactivation of latent TB infections (Getahun and others,
2010).Additionally, the relationship betweenTBand alcohol has beenwell established.Globally, an
estimated 10% of TB disease is attributable to alcohol use disorder (Rehm and others, 2009), and a
large systematic review found a 3-fold higher risk of TB disease associatedwith alcohol use disorder
(Lönnroth and others, 2008). Our team’s prior research in Uganda has also demonstrated a dose–
response relationship between levels of alcohol use and latent TB infection (Puryear and others,
2021). The underlying mechanisms include alcohol-induced immunosuppression and increased
exposure to TB due to time-spent in bars, which are high-TB-risk venues. Altogether, we were
willing to assume that the parish-level characteristics of HIV prevalence and prevalence of adults
who drink alcohol Wp were sufficient to block the influences of other community-level covariates
Ec on the 1-year incidence of TB infection in each parish Yp. Under these assumptions and with
two parishes per community, the effect sample size wasK = 18. For estimation and inference of the
relative effect φp = E{E(Yp|Ac = 1,Wp)} ÷ E{E(Yp|Ac = 0,Wp)} in Stage 2, we implemented a
parish-level TMLEwith Super Learner using the same library of prediction algorithms. Computing
code is available at https://github.com/joshua-nugent/search-tb.

4.3. Results of the real-data analysis
The results of the SEARCH substudy on incident TB infection have been previously presented
in Marquez and others (2022). The primary prespecified analysis, using Two-Stage TMLE with
the parishes as the conditionally independent unit, suggested that the universal HIV test-and-treat
intervention resulted in a 27% reduction in incident TB infection in eastern Uganda; the adjusted
relative risk (aRR) was 0.73 (95% CI: 0.57−0.92; p=0.005).
We now explore the practical impact of varying the identfication assumptions on estimation

and inference. The results of our comparison are summarized in Figure 4 and Table 1 in the
supplementary material available at Biostatistics online. First, we relaxed the assumption that
parishes were conditionally independent and, instead, took a more traditional approach treating

https://github.com/joshua-nugent/search-tb
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad015#supplementary-data


612 · J. R. Nugent and others

the randomized unit (i.e., the community) as the independent unit. As expected, when we moved
from a parish-level analysis (K = 18) to a community-level analysis (N = 9), the effect estimate
shifted and substantial precision was lost: aRR = 0.93 (95% CI: 0.66−1.31; p = 0.32). In this
secondary analysis, Stage 1 was implemented analogously to obtain community-level estimates of
TB incidence, accounting for sampling and missingness at the individual level. However, Stage 2
effect estimation was done at the community-level with TMLE, using Adaptive Prespecification to
select the adjustment covariates to maximize empirical efficiency in the CRT (Balzer and others,
2016b).
To further explore the impact of our assumption that parishes were conditionally independent,

we conducted a sensitivity analysis where Stage 1 accounted for missingness (as before), but Stage
2 was implemented without adjustment. This approach corresponds to the very strong assumption
that the only source of dependence between parishes was the shared community-level intervention
Ac. In other words, this analysis assumed no community-level covariates (measured or not) directly
or indirectly influenced the incidence of TB infection. Estimates from this approach were again in
the similar direction, but even less precise: aRR= 0.91 (95% CI: 0.63−1.32; p = 0.30).
Next, we explored the impact our missing data assumptions. Specifically, we conducted a sen-

sitivity analysis where Stage 1 estimates of incidence were unadjusted, but Stage 2 was adjusted
(as before). This approach corresponds to the very strong and unreasonable assumption that
individual-level outcomes were MCAR. In fact, we know this assumption was violated: the sub-
sample was enriched for persons withHIV, andHIV is a known risk factor for TB. Age andmobility
are additional risk factors for TB and for not having a TST administered at baseline or follow-up.
Estimates from the approach were markedly different and in the opposite direction of the primary
analysis: aRR = 1.05 (95% CI: 0.80–1.37; p = 0.63). In other words, conducting a complete-case
analysis would lead to the conclusion that the SEARCH intervention increased the incidence of TB
infection by 5%.
Finally and as an extreme example of strong assumptions on measurement and dependence, we

conducted a fully unadjusted analysis. In Stage 1, we estimated the parish-level incidence of TB
infection with the raw proportion among those measured. Then in Stage 2, we compared parish-
level incidence estimates by arm without further adjustment. This approach is not recommended
in practice and suggested the SEARCH intervention increased the incidence ofTB infection by 18%:
aRR= 1.18 (95% CI: 0.85–1.63; p = 0.84).

5. DISCUSSION
Cluster randomized trials (CRTs) allow for the rigorous evaluation of interventions delivered at
the group-level. Within CRTs, rare or expensive outcomes may only be measured in a subset
of clusters and, within those clusters, on a subsample of participants. Missing outcomes among
participants is another common issue,which canbias estimates of baselineprevalence, the incidence
of the outcome, and the intervention effect. To address these challenges, we extended Two-Stage
TMLE to account for subsampling of participants and differential measurement of their outcomes
at baseline and at follow-up. Additionally, we detailed the assumptions needed to consider a
subcluster partition as the conditionally independent unit. We also extended Two-Stage TMLE to
this novel setting, which blurs the lines between CRTs and observational studies. Our application
to real-data from SEARCH-TB demonstrated the real-world impact of varying assumptions and
analytic choices. For example, ignoring the sampling scheme and assuming the outcomes were
missing-completely-at-random reversed the direction of the estimated intervention effect.
When estimating the endpoint in Stage 1 and evaluating the intervention effect in Stage 2, we

used TMLE with Super Learner to avoid parametric assumptions and, instead, support efficient
estimation in large, semiparametric models. In the absence of missing data, a single-stage approach,
such as GLMMs or GEE, could be used to estimate the intervention effect if the effective sample
size is sufficiently large. These methods account for the dependence of participants within a
partition and can incorporate adjustment for partition-level variables Wp needed to support the



Blurring CRTs and observational studies · 613

independence assumptions. However, when adjusting for covariates, these alternative estimators
are often limited in their ability to estimate marginal effects (Benitez and others, 2023). For ex-
ample, when using the logit-link in GLMM and GEE, the conditional odds ratio is estimated
(Laird andWare, 1982;Hubbard and others, 2010). Additionally, as previously discussed, even after
considering the subcluster partition to be the conditionally independent unit, the effective sample
size may still be too small to support use of these approaches without finite sample corrections.
Finally and perhapsmost importantly, thesemethods cannot accommodate post-baseline causes of
missingness (Balzer and others, 2021). Altogether, to handle common analytic challenges in CRTs
(e.g., differential missingness and few clusters) and to estimate marginal effects on any scale, we
recommend using TMLE, a doubly robust, semi-parametric efficient, substitution estimator, in our
two-stage approach.
Nonetheless, our approach does require real assumptions on themissingnessmechanism and the

dependence structure within a cluster. These assumptions have implications for trial design. First,
all the shared causes of missingness and outcomes must be measured. Second, fairly large cluster
sizes (or subcluster partition sizes) are needed for stable and consistent estimation of the endpoints
in Stage 1. Finally, to support any conditional independence assumptions and improve precision
in Stage 2, a rich set of partition-level covariates should be collected. We again emphasize these
conditional independence assumptions are commonly made, but less commonly acknowledged, in
multilevel observational studies (Oakes, 2004; Sobel, 2006).
In all cases, these assumptions should be carefully considered, transparently stated, and illus-

trated with a causal graph. As discussed in the real-data example, assuming individuals or house-
holds are effectively independent might be unrealistic in many settings. Alternatively, considering
larger partitions of the cluster, such as distant neighborhoods, might be more reasonable. While
larger partitions weakens the required identification assumptions, fewer (conditionally) indepen-
dent units raise finite sample concerns for estimation and inference in Stage 2. Specifically, there
can arise a tension between adjusting for too many partition-level covariates (with the potential of
overfitting, even with cross-validation) and including too few (not supporting the identification
assumptions). In future work, we plan to use “collaborative” TMLE (van der Laan and Gruber,
2010) where the partition-level propensity score would be fit in response to adjustment conducted
in the partition-level outcome regression. As illustratedwith the real-data example, in-depth discus-
sion with subject matter experts is imperative to identifying the minimal adjustment set needed to
support our assumptions—bothon themissingnessmechanismandonwithin cluster dependence.
Conducting a simulation study, informed by the real-data application, can help guide development
of the statistical analysis plan.
Thiswork addresses four commonchallenges in the design and analysis ofCRTs: (i) subsampling

of participants for measurement of a rare or expensive outcome; (ii) missingness on the baseline
outcome status of sampled participants; (iii)missingness on the final outcome status of participants
known to be “at-risk” at baseline; and (iv) very few independent units (i.e., clusters). To address the
first three challenges, we extended Two-Stage TMLE to account for potentially biased sampling
and outcome measurement. To address the final challenge, we carefully articulated and critically
evaluated the assumptions required to treat subcluster partitions as conditionally independent.
These assumptions increase our effective sample size, at the cost of making the CRT behave more
like an observational study.
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