
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Piece of Mind: Long-Term Memory Structure in ACT-R and CHREST

Permalink
https://escholarship.org/uc/item/6105r91v

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Lloyd-Kelly, Martyn
Gobet, Fernand
Lane, Peter C.R.

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6105r91v
https://escholarship.org
http://www.cdlib.org/


Piece of Mind: Long-Term Memory Structure in ACT-R and CHREST
Martyn Lloyd-Kelly (martynlk@liverpool.ac.uk)
Fernand Gobet (fernand.gobet@liverpool.ac.uk)

Department of Psychological Sciences, University of Liverpool,
Bedford Street South, Liverpool, L69 3BX, UK

Peter C. R. Lane (peter.lane@bcs.org.uk)
School of Computer Science, University of Hertfordshire,

College Lane, Hatfield, AL10 9AB, UK

Abstract

Creating a plausible Unified Theory of Cognition (UTC) re-
quires considerable effort from large, potentially distributed,
teams. Computational Cognitive Architectures (CCAs) pro-
vide researchers with a concrete medium for connecting dif-
ferent cognitive theories to facilitate development of a robust,
unambiguous UTC. However, due to wide dissemination of re-
search effort, and broad scope of cognition as a psychological
science, keeping track of CCA contributions is difficult.
We compare the structuring of long-term memory (LTM) in
two CCAs: ACT-R and CHREST. LTM structuring is consid-
ered in particular since it is an essential component of CCAs
and underpins most of their operations. We aim to consolidate
knowledge regarding LTM structuring for these CCA’s and
identify similarities and differences between their approaches.
We find that, whilst the architectures are similar in a number
of ways, providing consensus for some concepts to be included
in a UTC, their differences highlight important questions and
development opportunities.
Keywords: ACT-R, CHREST, Cognitive Architectures,
Long-term Memory

Introduction
Several CCAs are currently available to psychologists; some
benefit from large user-bases and development teams aim-
ing to create pan-optic models of cognition, of which ACT-
R (Anderson, 2007) is a notable example. Others, however,
have a relatively smaller community and focus upon partic-
ular aspects of cognition: CHREST (Gobet & Lane, 2010)
focuses on modelling general mechanisms that govern the in-
terplay between perception and cognition resulting in learn-
ing and acquisition of expertise in disparate domains such as
games, physics, language and concept formation1. CCAs are
powerful tools that force psychologists to specify theories of
cognition unambiguously, facilitating the testing and refine-
ment of general cognitive principles in domains that apply
large numbers of constraints (Newell, 1990). They also, cru-
cially, allow psychologists to analyse the overlap and dispar-
ity between different theories of cognition.

In this paper, we delineate how the latest versions of ACT-
R and CHREST (6.0 and 5.0, respectively) structure LTM
with a focus on LTM topology2. The purpose of our com-
parison is three-fold: first, it offers psychologists investigat-
ing theories of LTM structuring a centralised location for cur-

1For an overview, see Gobet et al. (2001).
2“Topology” is defined here in the sense of a physical network

topology.

rent3 information regarding how ACT-R and CHREST struc-
ture LTM. This will facilitate both understanding and efficient
comparisons of the similarities and differences between the
two architectures with respect to this feature and allow psy-
chologists using ACT-R or CHREST to tailor their investiga-
tions accordingly. Second, the comparison highlights novel
ways of developing both architectures and should foster dia-
logue and exchange of ideas between cognitive psychologists
in general and the ACT-R and CHREST development groups
in particular. Third, by identifying common and disparate el-
ements of LTM structuring in both architectures, a consensus
upon the subject can begin to be formalised to some degree,
enabling the construction of a valid UTC.

ACT-R and CHREST are, respectively, examples of top-
down and bottom-up approaches to cognitive modelling:
ACT-R is inherently pluralistic (Jilk, Lebiere, O’Reilly, &
Anderson, 2008) and can accommodate a number of cogni-
tive theories. It therefore adopts a laissez-faire attitude to-
wards how its structures and functions operate. CHREST, on
the other hand, focuses on modelling learning and the devel-
opment of expertise, and contains a number of hard-coded
limitations on how its structures and functions operate. Con-
sequently, to find some common ground between the two
architectures, we focus on the architecture of ACT-R as-is
(Bothell, n.d.), rather than considering it in accordance with
any particular implementation.

The paper is structured as follows: sections ACT-R and
CHREST discuss, in detail, the architectures’ mechanisms
for LTM organisation to provide a centralised location for
current information regarding LTM structuring in CHREST
and ACT-R. The Architecture Comparison section then per-
forms a comparison based upon the content of the previous
two sections allowing for the identification of similarities and
differences between the architectures approach to structur-
ing LTM. Finally, the Conclusions and Future Work section
briefly summarises the contributions of the paper and outlines
our plans for future work.

ACT-R
ACT-R is composed of a number of core modules that en-
capsulate the operations of particular regions of the human
brain and is primarily a production-rule system, since all in-

3At the time of writing.

1422



put/output from core modules must pass through a central
production system using module-specific buffers as an inter-
face. ACT-R has simulated cognition in a wide array of do-
mains, including games (Martin, Gonzalez, & Lebiere, 2004),
arithmetic (Lende & Taatgen, 2012) and language (Oliva, Ser-
rano, del Castillo, & Ángel Iglesias, 2010).

LTM in ACT-R is embodied as declarative or procedural
information that is handled by the declarative module or pro-
cedural system, respectively (Anderson, 2007). ACT-R uses
chunks (Chase & Simon, 1973) as currency for these modules
which include a reference and vectors of slots, one of which
defines the chunk’s type. Chunk references act as pointers
to LTM information and facilitate memory retrieval; taken in
isolation, references offer little practical information to mod-
ules. Chunk types are mutable, dictate what slots the chunk
has (along with their default values) and can be super or sub-
classes of other chunk types. This enables construction of
chunk type hierarchies that enable slot name and slot value
inheritance. Values for slots may contain references to other
chunks or simple information, such as a number. In version
6.0 of ACT-R, the slots for a chunk type can be extended stat-
ically or non-statically; this has implications when managing
declarative memory information (discussed below).

ACT-R contains a mathematical, sub-symbolic system that
underpins the declarative and procedural modules (Bothell,
n.d.). This system governs what chunks are returned and
how quickly (by using activation levels for declarative mem-
ory and utilities for productions) after external input is pre-
sented to ACT-R (Anderson, 2007). To determine what is
returned, the greater the activation level for a chunk in declar-
ative memory or the value of a production’s utility, the more
likely it is to be retrieved or selected after it has been found
in LTM. To determine how quickly a chunk or production is
selected, the activation level or utility affects the simulated
time taken but does not influence real world time. Since the
sub-symbolic system does not affect the topology of LTM, it
is not considered in detail here.

Declarative Module
The declarative module maintains chunks used by ACT-R.
Chunks can be created by any module at any time and all
those that remain in module buffers at the conclusion of an
ACT-R cycle are collected and added to the declarative mod-
ule instantly. Chunk learning can occur at model compile-
time (initial memories) or run-time but is, in either case, ab-
solutely concurrent but usually incremental when applied in
an ACT-R model. This temporal dissonance arises due to
ACT-R’s sub-symbolic system; a new chunk has all its in-
formation added concurrently to the declarative module but,
if its assigned activation is below that of the defined retrieval
threshold, only part of the chunk may be retrieved (if at all).

The structure of declarative memory is distinctly graph-
like, since the only links that exist between chunks are slot
value references; a slot value for a chunk, C, may reference
another chunk C′. Retrieval of LTM consists of performing a
non-directed search through LTM for a matching chunk and

takes a simulated period of time (dictated by the parameters
of the sub-symbolic system). Two simple methods exist to
modify information in declarative memory: chunk addition or
chunk merging, both of which are performed instantaneously.

Adding new information can be performed explicitly or im-
plicitly. Explicit addition entails a module creating a new in-
stance of a particular chunk-type, whereas implicit addition
entails collecting chunks from module buffers at the conclu-
sion of an ACT-R cycle. Chunks that are referenced by the
collected chunks and which do not currently exist in declara-
tive memory are then created automatically.

To merge chunks, candidates must have the same values
for the slots that they share. If a chunk-type’s slots have been
extended at any point prior to a merge, this can cause issues
during the merge process since a statically extended chunk
will not have a value for an extended slot unless the slot value
has been explicitly set, increasing the chance of a chunk mis-
match. Non-statically extended chunks, however, will have
default values set for extended slots, so the chance of a chunk
mismatch occurring is reduced.

Declarative memory topology appears to loosely reflect the
external environment that an ACT-R model is situated in: fre-
quency of chunk presentation is only considered when merg-
ing chunks and does not affect the topology of declarative
memory. In addition, all chunks remaining in module buffers
are always completely learned at once, so presentation fre-
quency is disregarded during this operation. The only impact
upon topological structure appears to be caused by the order
of chunk presentation, since it is only chunks that are present
in module buffers at the conclusion of a cycle that are assim-
ilated into declarative memory, and module buffers may only
store one chunk at any time.

Procedural System
The procedural system is composed of the procedural, util-
ity and production-compilation modules. It is responsible for
producing ACT-R’s rational behaviour by maintaining a set
of production rules that produce optimal4 chunks in response
to input chunks. Since this paper is concerned with LTM
structure, the only modules that will be considered further
in the procedural system are the procedural and production-
compilation modules. The procedural module stores produc-
tions and the production-compilation module is concerned
with creating new productions from existing ones.

Adding productions can occur at compile and run-time; if
there are no productions specified by a modeller at compile-
time, production compilation can not occur at run-time since
there are no pre-existing productions to compile. Productions
have no topological organisation within the procedural mod-
ule and adding a production whose name already exists in
procedural memory causes the old production to be replaced
by the new one.

To modify productions, the production-compilation mod-
ule collapses two distinct productions into one. Therefore,

4Equivalent to a production’s utility.

1423



after multiple production compilations, an ACT-R model can
produce a sequence of actions without considering intermedi-
ate inputs as it did previously. For example, to produce the an-
swer to a mathematical operation such as “24 + 57”, a model
may simply write “81” in response to this input after produc-
tion compilation, rather than using an algorithm that divides
the numbers into units and adding them together. If a newly
compiled production, P′, is semantically equivalent to a pro-
duction that has not been created through production compi-
lation, P, then P′ is discarded. If P′ is semantically equiva-
lent to a production that has been created through production
compilation, P∗, and utility learning is enabled in ACT-R, P′

is not added but the utility of P∗ is updated.
Productions are only compiled if they meet a set of con-

ditions. Most of these check syntactic aspects of production
rules so that they can be feasibly combined within the com-
putational constraints of ACT-R’s architecture and so are not
discussed here. Those of interest are: productions must have
been executed in sequence, and the time between the relevant
productions being activated must be less than the threshold
time specified. These conditions, in conjunction with the im-
plicit constraint that only two productions can be compiled at
a time, mean that production compilation is incremental and
enforces temporal contiguity.

CHREST
CHREST’s implementation of LTM contains one data struc-
ture comprising a hierarchical discrimination network that in-
dexes a pool of nodes connected by test-links. Nodes contain
chunks (Chase & Simon, 1973), and in combination with test-
links, enable LTM to provide similarity functions and act as a
retrieval device. CHREST’s current implementation divides
LTM memory into three modalities: action, auditory and vi-
sual. These three modalities are root nodes in LTM; chunks
presented to CHREST must have their modality specified so
LTM can be organised appropriately.

CHREST stores the entirety of a chunk’s information in
the chunk’s reference. For example: a chunk containing an
addition fact such as <[26][+][6]> is composed of three
primitives: [26], [+] and [3]. Its semantics, “this is an ad-
dition fact”, are not explicitly represented by the contents of
the chunk. Encoding perceptual information this way makes
it possible to act on a pattern rapidly (Lane & Gobet, 2011).

Learning in CHREST is incremental and on-line: external
information is learned in discrete steps during the model’s in-
teraction with its external environment. For example, if the
addition fact above were presented, each individual primitive
must be committed to LTM in discrete operations (see Dis-
crimination & Familiarisation section below for an explana-
tion) before the concatenation thereof can be committed to
LTM5. This incremental, on-line learning enables CHREST
to pick up the statistical distribution of the environment it is
situated in naturally, a feature that is critical for simulating ex-

5For a discussion of data supporting this design see Feigenbaum
and Simon (1984).

pert behaviour and, particularly, the acquisition of language
(Jones, Gobet, & Pine, 2007).

Four procedures are used to add or modify LTM informa-
tion and are considered in detail: discrimination, familiari-
sation, node linkage and template creation/modification. If
any of these procedures are being performed, subsequent re-
quests are blocked. The times taken for LTM to complete
each of these procedures are distinct and can be set by mod-
ellers at run-time. However, times for discrimination and
familiarisation are considered to be part of the architecture
since they have been validated independently by empirical re-
search (Feigenbaum & Simon, 1984; Gobet et al., 2001).

Discrimination & Familiarisation

Discrimination and familiarisation are the procedures by
which CHREST adds new nodes to LTM or modifies existing
ones, respectively. Therefore, discrimination increases the to-
tal number of nodes in LTM and familiarisation increases the
size of individual nodes in LTM. These procedures rely upon
chunks presented to CHREST having a finished property set
that indicates a complete unit of information.

Discrimination occurs when any of the following condi-
tions are true for a pattern presented to LTM, P, and a chunk
retrieved from LTM after P has been presented, C. Tests are
applied in the order specified and are cumulative:

• C is a root node for a modality

• C’s finished property is:

– True and:

∗ The number of primitives in C isn’t equal to the number
of primitives in P.

∗ P’s finished property is set to false.

– False and the number of primitives in P is less than the
the number of primitives in C.

• A primitive in P is not contained in C.

• The order of primitives in P is not the same in C.

When discrimination occurs, a new test-link is added from
C containing the first mismatched primitive in P. Thus,
CHREST’s incremental learning is hard-coded and uses the
least amount of information possible to discriminate between
external domain features in keeping with the concept of
bounded rationality (Simon, 1955) and expert behaviour in
general (Gobet et al., 2001).

Familiarisation appends a new primitive from P to C and
occurs if the number of primitives in P is greater than in C and
C’s finished property is set to false. As with discrimination,
only one primitive is added to LTM, i.e. the first primitive of
P, p, that is not present in C. Note that p must be present in
LTM before it can be appended to C.

1424



Node Links
Node links give CHREST’s LTM a graph flavour; they can
exist between nodes that have different descendent paths
through LTM. Thus, horizontal and vertical traversal of LTM
is possible. Similarity links are created without modeller in-
tervention when a user-defined number of duplicate primi-
tives, n, exist in two distinct visual chunks that are both com-
pletely committed to LTM and present in visual STM. The
latter constraint ensures that links between nodes are based
on a spatial or temporal contiguity, preserving an essential
property of perceptual chunking (Gobet et al., 2001). Un-
like discrimination and familiarisation, the order of primitive
occurrence in chunks presented to CHREST does not factor
into the creation of similarity links. Note that semantic links
are bi-directional too: if a similarity link exists between two
LTM nodes N and N′, it is possible to retrieve N′ from N and
vice-versa.

Production links are created at run-time without modeller
intervention between a visual node and an action node that are
held at the same time in visual and action STM. These links
hold a value that can be used, for example, to indicate the util-
ity of a production. For example, in chess, if the visual pattern
<[p g 2][p h 2]> and the action pattern <[p g2 g3]> are
held in STM, then a production link can be created, with the
visual pattern as a condition and the action pattern as the out-
put. When this production is used, its associated value can be
incremented or decremented accordingly to denote the util-
ity of the production to inform action-selection in subsequent
situations. Note that the visual pattern and the action pattern
can be of arbitrary complexity.

Template Creation and Modification
Templates (Gobet & Simon, 1996) evolve from frequently re-
trieved LTM nodes, N, that contain a number of core primi-
tives in their chunk, c, and a number of varying primitives, v,
in their chunks that are either descendants of, or have similar-
ity links to, N; values of c and v can be set by the user. If N
is converted to a template, CHREST attempts to convert any
children of N that can become templates into templates too
but not nodes that are linked to using similarity links. When
converted into a template, N contains slots that can have v
primitives swapped in/out quickly. Information in slots can
concern locations of objects, types of object or chunks can be
(recursively) encoded into template slots. Currently, template
generation itself incurs no time cost. However, filling a slot
has a default time cost of 250ms and this value is considered
to be part of template theory.

Architecture Comparison
Given the descriptions provided in the ACT-R and CHREST
sections above we now outline similarities and differences
between the concepts discussed, namely: topological LTM
structure, chunk structure, chunk addition/modification and
chunk linkage. This section is split in two: the first part dis-
cusses similarities between the architectures and the second

expounds their differences. This comparison offers insights
into what cognitive modellers appear to agree on and should
be taken forwards into UTCs, new CCAs or new versions of
ACT-R and CHREST, and new ideas that could significantly
advance the state-of-the-art for cognitive science.

Similarities
Notably, both ACT-R and CHREST use chunks, i.e. aggre-
gated features of the external environment, as their LTM cur-
rency. Consequently, it seems sensible to propose that a UTC
should also use chunks as its cognitive units. Addition of
chunks into LTM in both architectures can be on-line, i.e.
during the model’s interaction with an environment and, po-
tentially, incremental (see the Declarative Module section for
why incremental learning may not be always implemented in
ACT-R). Furthermore, the mechanism that controls implicit
chunk addition is also similar between ACT-R and CHREST:
if a chunk, C, references another chunk C′ and C′ is not yet
learned (present in LTM) then, if C is already present in LTM,
both ACT-R and CHREST will attempt to add C′ to LTM au-
tomatically. However, the likelihood of C′ being committed
to LTM differs between CHREST and ACT-R: in ACT-R this
is guaranteed but is not in CHREST.

With regard to controlling whether or not addition/merging
and discrimination/familiarisation occurs when requested, the
paired operations of ACT-R and CHREST are more similar
than they are different. Addition and discrimination will only
add a chunk to LTM if that chunk does not already exist in
LTM and to modify or familiarise a chunk the shared infor-
mation in the chunks to be merged must be the same.

In both architectures, chunks are also capable of having
production links created between them. These production
links originate and terminate with distinct chunks and each
production incorporates a measurement of utility. This would
suggest that the concept of productions is something that is
agreed upon although, currently, CHREST only supports pro-
duction links between visual and action chunks whereas this
restriction does not appear to exist in ACT-R.

Differences
The salient difference between ACT-R and CHREST is ACT-
R’s use of a sub-symbolic system and CHREST’s non-use of
such a system. It may be that cognition, in reality, uses a com-
bination of ACT-R and CHREST’s approaches. The topo-
logical structure of CHREST tends to represent the statistical
distribution of the environment since the order and frequency
of external information has a large effect upon how test-links,
nodes and links between nodes in LTM are formed. Such a
complete reflection of the external environment is missing in
the structure of declarative memory of ACT-R. Instead, or-
der and frequency of external information presentation is em-
bodied more in the sub-symbolic aspects of ACT-R’s LTM.
The crucial idea that stems from this comparison is that it
may be the case that whilst frequently encountered informa-
tion is organised in the “specialised” hierarchical discrimina-
tion network implemented by CHREST, infrequently encoun-

1425



tered, “general” knowledge may organised in the less struc-
tured network implemented by ACT-R. The exact function-
ality for memory retrieval would then differ depending upon
whether external information is represented in the specialised
area of LTM or not (if it is, the sub-symbolic system could
be given less precedence and vice-versa). In other words,
a CHREST-like structuring of LTM may emerge in human
LTM after information has first been assimilated and struc-
tured in a manner akin to ACT-R’s LTM structuring. This
modification of structure could provide a measure of exper-
tise in a particular domain and the resulting architecture may
provide a more complete and psychologically valid model of
human LTM structure.

To control transposition of generic LTM information into
specialised LTM information, one could make use of the sub-
symbolic functionality and LTM node meta-data that is al-
ready present and maintained in ACT-R. For example, given
a certain activation level, a LTM node may then be selected
for transposition into specialised LTM. This would entail that
nodes are tagged with their modality, a feature currently un-
supported by ACT-R, but trivial to implement. Such a mecha-
nism would provide a precise, unambiguous and formal basis
for topological structuring of LTM, since sub-symbolic in-
formation would control whether information becomes hier-
archically structured or not. Used in conjunction with long-
term human data regarding learning in a particular domain,
this hybrid theory’s psychological validity could be deter-
mined adequately.

It may also be interesting to combine ACT-R’s sub-
symbolic system with CHREST so that it directly influences
the structure of LTM components such as templates. Chunks
with higher activation values could gain precedence for tem-
plate slots and would therefore be swapped into a slot space
before a chunk with a lower activation value. This follows
the idea of Baddeley (1990), where frequently encountered
chunks are processed and memorised more quickly.

With regard to how ACT-R and CHREST structure chunks,
ACT-R is much less restrictive with respect to classifying
chunk types than CHREST. In ACT-R, it is possible for a user
to define chunk types at will, allowing super or sub-classes
of chunk types to be created freely. Conversely, CHREST’s
chunk types are governed by the modalities of their con-
stituent primitives and are essentially constricted by the input
interface used to generate a chunk. It would seem plausible
to suggest that human cognition can make use of both strate-
gies, i.e. whilst certain information is encoded as being of a
particular modality: visual, auditory etc., higher-order classi-
fications can also be applied that may be entirely novel. For
example, whilst one may construct a visual chunk contain-
ing a mathematical formula, we could classify that formula
as being an instance of a mathematical-operation chunk type.
More specifically, the formula may be an instance of an addi-
tion chunk type (a sub-class of the mathematical-operation
chunk type). If a CCA were produced that is capable of
organising LTM into specialised and general memory (see

previous paragraph), these chunk-types may serve to help
organise general knowledge topologically, facilitating a di-
rected search and reducing reliance upon brute-force retrieval
methods that may cause the utility problem noted in investiga-
tions using large LTMs in ACT-R (Kennedy & Trafton, 2006;
Rodgers, Douglass, & Ball, 2009).

When adding information to chunks, ACT-R and CHREST
differ in how the existence of this new information is checked.
When performing addition, ACT-R only checks to see if the
reference for a chunk exists in order to determine whether a
chunk should be added. CHREST checks that the chunk’s in-
formation does not already exist in the order specified. There-
fore, CHREST is more concerned with presentation order
than ACT-R given its goal of modelling expertise develop-
ment. It may be that this checking behaviour could be toggled
if the a retrieved chunk is part of specialised LTM or not.

Another interesting difference between chunk structure in
ACT-R and CHREST relates to where the information in a
chunk is contained. In both ACT-R and CHREST it ap-
pears that every piece of information used in LTM needs to
be internalised as a chunk before it can be used. However,
from what we have been able to ascertain research under-
taken thus far, CHREST may encode redundant information
by duplicating chunks. For example, if a LTM node encodes a
chunk, <[26]> then, if this chunk is present in another chunk
<[26][+][3]>, the chunk containing the single primitive is
not referenced in the chunk that contains multiple primitives.
Instead, the single chunk is duplicated. According to ACT-R
however, a chunk is stored in one location in LTM and that
location is referenced whenever the chunk is used in another
chunk, removing redundancy. Determining which implemen-
tation is psychologically valid is an interesting research ques-
tion and could help further the current state-of-the-art.

With regard to productions, ACT-R and CHREST differ in
a number of ways. First, production creation in CHREST
is automatic (no modeller intervention required) and entirely
novel productions can be created at run-time. Conversely,
ACT-R requires modellers to specify an initial set of produc-
tions at compile-time and can only compile these pre-defined
productions at run-time. Second, production granularity dif-
fers with a single production firing in a wide range of situa-
tions in ACT-R, so long as its conditions are met and produc-
tions are optimised by tuning their parameters. In contrast,
productions in CHREST are more akin to micro-productions
since their conditions tend to be specific and their range of
application limited. In this sense, it seems that ACT-R is able
to produce, in certain cases, abstract productions that may be
used when new situations occur (where particular productions
do not apply) but appear to be similar to previous situations.
Currently, CHREST is not capable of creating productions
in this way and may therefore benefit from a consideration
of how ACT-R achieves such functionality. Unifying these
processes may produce a clearer picture of production gen-
eration for a UTC. Finally, ACT-R’s production rules allow
for sequences of actions to be compiled and performed in one

1426



step whereas in CHREST, sequences of actions are possible
but not the compilation of two productions. This is an area of
potential development and also raises an interesting observa-
tion/question: if experts can perform sequences of moves, are
these learned production sequences ever revised? If so, is the
whole sequence revised after its execution or does an expert
consider each subsequent production in the sequence whilst
the sequence is being performed?

Conclusions and Future Work
Our intention in this paper has primarily been to create a cen-
tralised repository of information regarding the LTM struc-
turing approaches used by ACT-R and CHREST. In the long-
term, we hope that this will provide an efficient resource for
cognitive modellers to decide between ACT-R and CHREST
and to tailor their experiments appropriately given the infor-
mation discussed. In addition, we also attempted to outline
where these CCAs overlap/differ in order to both facilitate
agreement on underlying processes of LTM structuring for a
UTC, and highlight questions that need to be answered before
other UTC concepts can be formalised. In the short-term, we
hope this this work will foster a constructive dialogue and ex-
change of ideas between ACT-R and CHREST’s development
teams/user-bases, who are currently disconnected.

For those interested in using ACT-R or CHREST, the cru-
cial consideration depends upon how much flexibility with
regard to LTM operations a domain-modeller requires. ACT-
R contains less hard-coded functionality (it is possible to
have an ACT-R model learn 30 chunks at once, for exam-
ple), whereas CHREST hard codes structural functionality
that imposes adherence of the architecture to the principle
of bounded-rationality. Whilst increased flexibility provides
the ability to implement and test multiple theories of cogni-
tion, it also increases the programming overhead for domain-
modellers since LTM functions will also need to be scheduled
in addition to the creation of an input/output interface etc.

In future work we intend to take the ideas delineated in
the Differences sub-section of the Architecture Comparison
and expand upon them. Of particular interest to us is the
idea that general LTM knowledge (organised topologically in
a graph-like manner implemented by ACT-R) may become
specialised (topological structuring becomes hierarchical as
in CHREST) when certain sub-symbolic conditions are met.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? Oxford University Press.
Baddeley, A. D. (1990). Human memory: Theory and prac-

tice. Boston: Allyn & Bacon.
Bothell, D. (n.d.). ACT-R 6.0 reference

manual - working draft. Retrieved from
http://act-r.psy.cmu.edu/actr6/reference-
manual.pdf

Chase, W. G., & Simon, H. A. (1973). The mind’s eye in
chess. In W. G. Chase (Ed.), Visual information processing
(pp. 215–281). New York: Academic Press.

Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like
models of recognition and learning. Cognitive Science, 8,
305–336.

Gobet, F., & Lane, P. C. R. (2010). The CHREST architecture
of cognition: The role of perception in general intelligence.
In E. Baum, M. Hutter, & E. Kitzelmann (Eds.), Proceed-
ings of the 3rd conference on artificial general intelligence
(Vol. 10, pp. 7–12).

Gobet, F., Lane, P. C. R., Croker, S. J., Cheng, P. C.-H.,
Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mech-
anisms in human learning. Trends in Cognitive Sciences, 5,
236–243.

Gobet, F., & Simon, H. A. (1996). Templates in chess mem-
ory: A mechanism for recalling several boards. Cognitive
Psychology, 31, 1–40.

Jilk, D. J., Lebiere, C., O’Reilly, R. C., & Anderson, J. R.
(2008). SAL: an explicitly pluralistic cognitive architec-
ture. Journal of Experimental and Theoretical Artificial
Intelligence, 20(3), 197-218.

Jones, G. A., Gobet, F., & Pine, J. M. (2007). Linking
working memory and long-term memory: A computational
model of the learning of new words. Developmental Sci-
ence, 10, 853–873.

Kennedy, W. G., & Trafton, J. G. (2006). Long-term
symbolic learning in SOAR and ACT-R. In D. Fum,
F. D. Missier, & A. Stocco (Eds.), Proceedings of the 7th
international conference on cognitive modeling (p. 166-
171).

Lane, P. C. R., & Gobet, F. (2011). Perception in chess and
beyond: Commentary on Linhares and Freitas (2010). New
Ideas in Psychology, 29, 156–61.

Lende, L. K., & Taatgen, N. (2012). Modeling representa-
tional shifts in learning the number line. In N. Rußwinkel,
U. Drewitz, & H. van Rijn (Eds.), Proceedings of the 11th
international conference on cognitive modeling (p. 175-
180).

Martin, M. K., Gonzalez, C., & Lebiere, C. (2004). Learning
to make decisions in dynamic environments: ACT-R plays
the beer game. In M. Lovett, C. Schunn, C. Lebiere, &
P. Munro (Eds.), Proceedings of the 6th international con-
ference on cognitive modeling (Vol. 420, p. 178183).

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Oliva, J., Serrano, J. I., del Castillo, M. D., & Ángel Iglesias.
(2010). Cognitive modeling of the acquisition of a highly
inflected verbal system. In D. D. Salvucci & G. Gunzel-
mann (Eds.), Proceedings of the 10th international confer-
ence on cognitive modeling (p. 181-186).

Rodgers, S. M., Douglass, S. A., & Ball, J. (2009). Large
declarative memories in ACT-R. In A. Howes, D. Peebles,
& R. P. Cooper (Eds.), Proceedings of the 9th international
conference on cognitive modeling (p. 222-228).

Simon, H. A. (1955). A behavioral model of rational choice.
The Quarterly Journal of Economics, 69, 99–118.

1427


	cogsci_2015_1422-1427



