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ITERATIVE IMPORTANCE SAMPLING ALGORITHMS FOR
PARAMETER ESTIMATION∗

MATTHIAS MORZFELD† , MARCUS S. DAY‡ , RAY W. GROUT§ , GEORGE SHU HENG

PAU‡ , STEFAN A. FINSTERLE‡ , AND JOHN B. BELL‡

Abstract. In parameter estimation problems one computes a posterior distribution over un-
certain parameters defined jointly by a prior distribution, a model, and noisy data. Markov Chain
Monte Carlo (MCMC) is often used for the numerical solution of such problems. An alternative to
MCMC is importance sampling, which can exhibit near perfect scaling with the number of cores on
high performance computing systems because samples are drawn independently. However, finding a
suitable proposal distribution is a challenging task. Several sampling algorithms have been proposed
over the past years that take an iterative approach to constructing a proposal distribution. We in-
vestigate the applicability of such algorithms by applying them to two realistic and challenging test
problems, one in subsurface flow, and one in combustion modeling. More specifically, we implement
importance sampling algorithms that iterate over the mean and covariance matrix of Gaussian or
multivariate t-proposal distributions. Our implementation leverages massively parallel computers,
and we present strategies to initialize the iterations using “coarse” MCMC runs or Gaussian mixture
models.

Key words. Importance sampling, parameter estimation, Bayesian inverse problem

AMS subject classifications. 62F15,65C05, 65Y05

1. Introduction. Predicting the behavior of complex physical systems is a key
requirement in science and engineering. One approach to predicting the behavior
of such systems is through high fidelity simulation. However, for many systems,
model uncertainties limit predictive capability. The idea in parameter estimation
is to use experimental data to reduce model uncertainties and, therefore, improve
predictions of overall system behavior as follows. One represents uncertainties in the
model by assuming that model parameters are random variables with given “prior”
distributions, and one represents mismatch between model and data by a “likelihood”.
By Bayes’ rule, the prior and likelihood define a posterior distribution that describes
how well the parameters describing the system can be determined from the available
data – which aspects are tightly bounded and which are less precise. The posterior
distribution is thus regarded as the solution of a parameter estimation problem [16,
86,87].

The central theme of this paper is to present a Monte-Carlo (MC) sampling
method that is efficient for parameter estimation problems for complex systems, and
well suited to extreme-scale (parallel) computer architectures. We first formulate
the Bayesian parameter estimation problem and review the literature about Monte
Carlo approaches to its numeral solution (section 2). We then motivate our use of
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iterative importance sampling algorithms (ISA) and present its implementation on
high performance computing systems, as well as effective strategies to initialize the
iterations (section 3). ISA has been discussed in the literature extensively over the
past decades (see, e.g., [15,66,67]), but it has not yet been applied to “realistic” test
problems with complex systems. Our main goal in this work is to demonstrate that
ISA is indeed applicable in such situations by applying our ISA implementation to
two test cases: estimation of permeabilities in a subsurface flow problem (section 4),
and estimation of kinetic parameters for combustion simulation (section 5).

2. Background and problem formulation. We consider a set of parameters
θ of a numerical model M(θ). Here θ is an nθ-dimensional vector, and the model
M : Rnθ → Rnz maps the parameter vector to an nz dimensional vector of outputs z.
In the examples discussed below, θ represents collection of reaction rate parameters
and third-body coefficients that define a combustion model, or θ defines a permeability
field of a subsurface flow problem (see sections 4 and 5 below). Uncertainty in the
model is represented by uncertainty in the parameters, i.e., θ is a random vector with
prior probability distribution pθ. The outputs of the model can be measured, and
additional uncertainty in the approximation of the measurements are represented by
a random variable v with given distribution pv. We assume that this uncertainty is
additive,

(1) z =M(θ) + v,

however this assumption is not central to our approach. The above equation defines
the likelihood p(z|θ) = pv(z −M(θ)). By Bayes’ rule, prior and likelihood define the
posterior distribution

p(θ|z) ∝ pθ(θ)p(z|θ),

which describes the probability of the parameters θ given the data z. The posterior
distribution allows for a complete description of the uncertainty in the parameters
given the data. In particular, one can compute least-squares optimal estimates by
computing the posterior mean as well as “error bars” based on posterior covariances.

If the prior and the errors v are Gaussian, and if, in addition, the model M is
linear, then the posterior is also Gaussian. In this case, it is sufficient to compute
its mean and covariance. This can be done, for example, by minimizing the negative
logarithm of the posterior distribution

F (θ) = − log pθ(θ)− log p(z|θ) + C.

The minimizer of F is the posterior mean, and the Hessian, Hij = ∂2F/∂θi∂θj ,
i, j = 1, . . . , nθ is the inverse of the posterior covariance matrix [87]. Linear algorithms
have been developed that are highly efficient for large-scale problems of this type
[13,32].

When the model is nonlinear, the posterior distribution is no longer Gaussian,
even if the prior distribution for the parameters and the model errors, v, remain
Gaussian. In this case, minimizing the negative log-posterior F (θ) results in the most
likely state given the data, which is called “posterior mode”. However, there may be
more than one posterior mode (local maxima of the posterior distribution), in which
case it is difficult to argue that a (local) posterior mode is a meaningful solution of
the parameter estimation problem.
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2.1. Markov Chain Monte Carlo for inverse problems. Markov Chain
Monte Carlo (MCMC) methods are routinely used for solving nonlinear parameter
estimation problems. The basic idea is to choose a specific proposal distribution to
propose a “move”, i.e., a new set of parameters. This move is accepted or rejected
based on a suitable accept/reject criterion [47]. The chain then consists of a number
of correlated samples and converges in the sense that averages over the samples con-
verge to expected values with respect to the posterior distribution as the ensemble
size goes to infinity. Thus, MCMC provides a more complete description of the uncer-
tainty than computing modes of the posterior distribution. In practice, the beginning
of an MCMC chain is often regarded as a “burn-in” period, and discarded in the
subsequent analysis. In addition, if the correlation “time” of the chain is too large
then prohibitively long chains are needed to effectively sample the posterior. The
various MCMC algorithms in the literature differ in their proposal distributions and
approaches to reduce burn-in and auto-correlation time.

There are several “classical” MCMC algorithms, e.g., Metropolis-Hastings [47],
and many of them are known to be slow in high-dimensional and highly nonlinear prob-
lems, see, e.g., [40, 44]. Recent MCMC methods that address these problems include
affine invariant ensemble samplers [33, 40], adaptive MCMC [42, 43], and differential
evolution MCMC [9, 10]. Another class of MCMC algorithms relies on using local
geometry of the posterior to construct proposals. Algorithms of this type include the
Metropolis adjusted Langevin algorithm (MALA) [77], Hamiltonian MCMC, [31, 64]
and Riemann manifold MCMC [35]. The stochastic Newton MCMC algorithm [56,63]
also falls within this class. In stochastic Newton, one first finds the posterior mode
by minimizing the negative log-posterior, minθ F (θ), and then starts an MCMC chain
using low-rank approximations of Hessians, evaluated along the chain. Adjoints are
used to speed up gradient and Hessian computations. Another related method is
“randomize-then-optimize” (RTO) [4], where a stochastic version of the negative log-
posterior optimization problem is solved (repeatedly) to generate samples.

In many situations, the modelM is a discretization of a partial differential equa-
tion (PDE) and the unknown parameter is a discretization of a field. There is a large
literature addressing the fact that MCMC methods for such problems should have a
well-defined limit as the mesh is refined, see, e.g., [7, 23, 79, 86]. Moreover, indicators
of computational requirements (burn-in or autocorrelation times) of such “function
space” MCMC algorithms, should not increase as the dimension increases when the
mesh is refined. In fact these properties should be invariant under mesh-refinement,
once grid convergence is reached. For that reason, function space MCMC methods
are also often called “mesh-independent” or “dimension-independent”.

Computational requirements of MCMC can be reduced by solving a related, but
easier problem. This idea is implemented by reduced-order modeling: rather than
using the modelM for MCMC, one replaces the model by a simpler, “reduced-order”
version of it. Since the reduced-order model (ROM) is simpler, it is computationally
less expensive, and using it therefore speeds up MCMC. In this context, one can
also reduce the dimension of the parameter vector θ, the dimension of the state of
the underlying numerical model, M, or both, see, e.g., [24, 25, 52, 84]. Reducing
the state dimension is usually achieved by finding a simplified approximation to the
mathematical model M. This reduced model however may depend on the same
number of parameters as the “full” model. To reduce this number of parameters
one can determine a low-dimensional subspace of parameter combinations which are
constrained by data, as in the likelihood-informed methods [24, 25]. In problems
where the parameters are spatial fields, e.g., permeability fields in subsurface flow
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problems, one can use principal component analysis/Karhunen-Loeve expansions [61],
to define this field in terms of a small number of dominant modes (see also section 4,
where Kriging is used to reduce the parameter dimension). In either case, MCMC
by reduced-order models requires that the ROM does not introduce large errors, or
else the posterior distribution defined by the ROM may be very different from the
posterior distribution defined by M. Such ideas were made precise in the context of
polynomial chaos expansions in [54]. To reduce error due to model reduction one can
introduce a second stage in each Metropolis step as in [21], or one can continually
refine the ROM during MCMC sampling as in [22]. Nonetheless, ROM approaches
are only effective if the model M indeed has a low-dimensional representation that
can be discovered by ROM techniques.

Another approach to reducing computational cost of MCMC involves the use
optimal transport maps, see, e.g., [62,68,75,89]. The idea is to construct a transport
map that converts prior samples to posterior samples. More generally, the map should
transform a reference distribution to the posterior distribution [20]. Construction of
an optimal map requires solving an infinite dimensional optimization problem, which
is expensive, but approximations to an optimal map may be more readily computable
and can be used to “speed up” MCMC. Work in this direction is underway [70,71].

2.2. Importance sampling for inverse problems. An alternative to MCMC
is importance sampling. Importance sampling, just as MCMC, requires a proposal
distribution q. But rather than using the proposal distribution for defining a Markov
chain, one draws samples from it and attaches to each sample a weight

w(θ) ∝ p(θ|z)
q(θ)

.

The weighted samples form an empirical estimate of the posterior distribution in the
sense that weighted averages over the samples converge to expected values as the
ensemble size goes to infinity, see, e.g., [16, 69]. Moreover, the posterior distribution
and the proposal distribution need only be known up to a multiplicative constant (as
in MCMC), because the weights can be self-normalized such that their sum is one,

i.e., wi ← wi/
∑Ne
j=1 wj . Advantages of importance sampling compared to MCMC are

that there is no burn-in time, and the weighted samples are independent. The latter
means in particular that the samples and weights can be computed independently,
which can lead to enormous computational advantages on massively parallel computer
architectures.

However, the efficiency of importance sampling hinges on constructing a suitable
proposal distribution q. The reason is that, even though all samples are independent,
each sample carries a different weight and, therefore, the samples are not equally im-
portant. For an effective importance sampling method all samples should be similarly
important, i.e., the variance of the weights should be small. Indeed, a heuristic “ef-
fective sample size” can be defined [2, 6, 30, 39, 53, 90] based on the relative variance
var(w)/E(w)2:

(2) Neff =
N

R
, R =

var(w)

E(w)2
+ 1 =

E(w2)

E(w)2
,

The effective sample size describes the size of an unweighted ensemble of size Neff that
is equivalent to a weighted ensemble of size N . As an illustration, suppose that one
weight is close to one, which implies that all other self-normalized weights are close
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Parameter θ
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Third 
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Fig. 1. Illustration of iterative construction of a proposal distribution.

to zero. In this case, R ≈ N , so that the effective sample size is one. If this happens,
the sampling method is said to have “collapsed” [5]. In contrast, if the proposal
distribution is equal to the posterior distribution, the variance of the weights is zero,
so that R is unity. For effective sampling, one needs an R that is “not too large”,
where what large is depends mainly on how much computing power one is willing to
spend.

The collapse of sequential Monte Carlo methods for time-dependent problems,
called particle filters [30], has been studied extensively in the meteorological literature,
and it was shown that, for a certain class of problems, Neff → 1 as the “effective
dimension” of the problem increases [5, 8, 17, 20, 81–83]. The effective dimension can
depend on the dimension of the data vector z, the dimension of the parameter vector θ,
as well as the distributions of errors in the prior and likelihood and may increase when
the dimension of the parameter vector θ increases, however, at a slower rate. Moreover,
recent work suggests that particle filters may be efficient even if the effective dimension
is large, provided that the filtering problem has a certain “sparse” structure [59,74].

Perhaps due to these numerical difficulties, applications of importance sampling
are rare, but importance sampling schemes have been used for some time-dependent
“filtering problems” (see, e.g., [2, 3, 18, 19, 60, 89, 90]) and a few (simple) parameter
estimation test problems (see, e.g., [7, 61]).

2.3. Iterative importance sampling. The basic idea in iterative importance
sampling algorithms (ISA) is to iteratively improve the proposal distribution. The it-
eration starts with a given proposal distribution q0, which is used to draw N0

e weighted
samples {θ1

j , w
1
j}, j = 1, . . . , N0

e . These samples are then used to define a new proposal

distribution q1, and the process is repeated. The rationale for an iterative approach
is to discover, via iteration, the global structure of the posterior distribution without
becoming stuck in local minima. A successful iteration is illustrated in Figure 1.

ISA are discussed extensively in the literature and are sometimes called “adaptive
importance sampling” or “population Monte Carlo”. The earliest account we could
find is the applications paper by Buchner [12], where iterative sampling is used to
compute failure probabilities in structural dynamics. The proposal distribution at
each step is Gaussian and the mean and covariance of the Gaussian are updated
at each step of the iteration. The paper also presents initialization strategies for the
iteration that work well for the application. A more general version of ISA is described
in [66, 67]. Several stopping rules are presented, and consistency of the method is
established, in the sense that expected values computed by ISA are asymptotically
equal to expected values computed with respect to the posterior distribution. A
method closely related to ISA is “population Monte Carlo” [15,46], or “non-parametric
importance sampling” [91]. In these methods, the ensemble at each step undergoes
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Kernel smoothing, i.e., the proposal distribution at iteration k is

qk =

Ne∑
j=1

αkjKj(θ, θ
k
j ),

where the sum of the αj is one. Here, one can adapt the weights of the mixture αkj [29],
or adapt the weights and the Kernels [14, 36] in each iteration. A recent application
of population Monte Carlo in geosciences is presented in [85]. The scaling of the
computational requirements for one step of population Monte Carlo with respect to the
dimension of the parameter vector is discussed in a simplified setting in [49] (see also
our conclusions in section 6). We wish to point out that the adaptive independence
samplers, discussed in [34, 45, 48], use ideas similar to ISA in the context of MCMC/
rejection sampling. The “cross-entropy method” also adapts proposal distributions,
but in a more sophisticated way [78]. ISA also has connections with sequential Monte
Carlo (see section 3.5 of [58]).

3. Implementation and initialization of ISA. ISA has been discussed in the
literature extensively over the past decades (see above). In this paper we focus on
strategies for dealing with the pragmatic aspects of applying ISA to “realistic” prob-
lems in science and engineering and discussing the implementation of the algorithms,
rather than devising fundamentally new algorithmic ideas. We are targeting poste-
rior distributions that are difficult to deal with by the MCMC/importance sampling
technology reviewed above. More specifically, we wish to create ISA that are efficient
under the following conditions.

1. The priors are “broad”, i.e., using the prior distribution as proposal distribu-
tion leads to the collapse of importance sampling.

2. We can compute first derivatives of the negative log-posterior distribution
F (θ), but not second derivatives. This situation is often encountered in com-
plex computational models, e.g., if adjoints are available, but second-order
adjoints are not.

3. The negative log-posterior distribution F (θ) is not convex and may have
multiple minima that are not well separated (see also figure 1).

4. The effective dimension, nθ of the problem is moderate, perhaps tens, rather
than hundreds or even thousands, and that the model M can be evaluated
with modest computing resources.

As we will demonstrate, ISA can be effective under this conditions, but other, non-
iterative, importance sampling methods or MCMC may be slow to converge.

3.1. The basic algorithm. Our basic ISA, summarized in pseudo-code in algo-
rithm 1, is as follows. We first decide on a class of proposal distributions. In principle,
one could choose different classes of proposal distributions at each step in the itera-
tion, e.g., a log-normal distribution during the first step, and a uniform distribution
at the next step and so on. However, here we consider only the case where the class of
proposal distributions is fixed to either Gaussians or multivariate t-distributions. The
reason is that both distributions are defined by a mean and covariance which we can
easily compute from the samples. The utility of multivariate t-proposal distributions
is discussed in a more general setting in [69].

Given a set of initial samples, which we obtain using the initialization strate-
gies discussed below, we compute the sample mean and covariance, which define the
initial proposal distribution q0. We then generate N0

e weighted samples {θ1
j , w

1
j},

j = 1, . . . , N0
e , by importance sampling with the proposal distribution q0, and com-
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Algorithm 1 Iterative importance sampling algorithm

Given: an unweighted ensemble
{
θ0
j

}
, j = 1, . . . , Ne

Construct a proposal distribution q0 from the ensemble.
Set k = 0, and define a tolerance tol
while no convergence reached do

Importance sampling with proposal distribution qk to get
{
θk+1
j , wk+1

j

}
, j =

1, . . . , Nk
e

Compute Rk+1 by equation (2) for this set of weighted samples
if Rk+1/Rk < tol then

Convergence is reached
else

Construct proposal distribution qk+1 from
{
θk+1
j , wk+1

j

}
, j = 1, . . . , Nk

e (see
text)

end if
Set k ← k + 1

end while

pute the (weighted) sample mean and covariance to define a new proposal distribution
q1, and repeat. During the iteration, we monitor the quality measure R in equa-
tion (2), and stop the iteration when |Rk+1 − Rk| drops below a specified tolerance.
This stopping criterium is similar to the one discussed in [66,67].

Note that we cannot guarantee that R decreases monotonically during the iter-
ation when Nk

e is finite, in part because we must approximate R in equation (2) by
averaging; thus, we only know R up to sampling error, which can be substantial if R is
large and Nk

e is not. Indeed, a large R is always uncertain, since an approximation of
R by Ne samples is always less than Ne, however, the “true” R may be much larger.
Since the iteration is stopped when the change in R from one iteration to the next is
small, one must consider sampling error when choosing the tolerances.

3.2. Sample sizes and convergence of ISA. One must pick an ensemble size
Nk
e at each step of the distribution. We advocate choosing this number as large as

possible for two reasons. The first reason is computational. Since the iteration of ISA
is serial, we wish to use ISA with a small number of iterations and large Ne at each
iteration to leverage parallelism. However, the assumption that a large number of
samples can be generated “easily” at each iteration restricts the classes of problems
we can solve with ISA. For example, if a super-computer is needed to evaluate the
model M once, then ISA as described here is not feasible. Perhaps it is fair to state
that ISA may enable parameter estimation using massively parallel computers, if the
forward problem, i.e., evaluation of the model M, can be done using a small fraction
(order of 0.1%) of the available resources.

Our second reason for choosing large Nk
e is motivated by the convergence of

ISA. Suppose the support of the proposal distribution at iteration k, qk, includes the
support of the posterior distribution (which is a routine assumption). Then weighted
samples from the proposal distribution qk generate an “empirical estimate” of the
proposal distribution that converges in the sense that weighted averages converge
to expected values with respect to the posterior distribution as Nk

e → ∞. This
follows from the usual importance sampling theory, see, e.g., [16], even if the proposal
distribution depends on past samples (see also [15]). The next iteration is guaranteed
to converge in the same sense, and under the same routine assumptions. Thus, ISA
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converges within one step, provided one generates sufficiently many samples, i.e., if
Nk
e is large enough.

The importance of a large Nk
e at each step can be illustrated further under simpli-

fying assumptions. Suppose that the posterior distribution is Gaussian with variance
Σ, and that the proposal distribution at iteration k + 1 is also Gaussian. We neglect
error in the mean, i.e., we assume that the mean of the proposal distribution is exactly
equal to the mean of the posterior distribution, which can be justified because small
errors in the mean are less severe than small errors in the covariances [69]. We further
assume that the covariance matrix, computed from the weighted samples from the
kth iteration, is Σ̂ = (1 + ε)Σ, where ε is a small number. Under these assumptions,
the weights at iteration k + 1 are

wk+1 ∝ exp

(
−ε 1

2
xtΣ−1x

)
, x =∼ N (0, Σ̂),

which leads to

Rk+1 =

(
1 + ε√
1 + 2ε

)nθ
≈ 1 + ε2 ·

(nθ
2

)
,

where nθ is the number of parameters we wish to estimate, i.e., the dimension of θ.
We can interpret ε as “sampling” error, and assume ε is inversely proportional to the
square root of the effective sample size Neff in equation (2). Thus,

Rk+1 ≈ 1 +Rk
C · nθ
2Nk

e

,

where C is a constant. The above equation indicates that the efficiency of the iter-
ation is directly controlled by how many samples Nk

e one can generate at each step.
However, the expansions above are only valid if ε is “small”, which means that sam-
pling error is small and the algorithm is already performing well with small Rk. In
fact most theoretical considerations rely on large ensemble sizes Nk

e , but in practice
the behavior of the algorithm when the ensemble size is small is more interesting. We
study these practical issues in the context of examples (see sections 4 and 5 below).

3.3. Initialization. Initialization of ISA has a significant impact on the success
of the algorithm. Indeed, the iteration cannot proceed if the initial proposal distribu-
tion q0 yields only one effective sample, so that the variance that defines q1 is zero,
i.e., the algorithm has “collapsed” during the first step. We suggest two strategies for
initializing ISA.

The first initialization strategy is to run MCMC. However, if the MCMC has been
run long enough to generates sufficiently many samples to characterize the posterior,
then the problem has already been solved and refinement of a proposal distribution by
iteration is unnecessary. We thus consider “short” MCMC runs, and in the examples
and applications below this yielded good results. The initialization strategy combines
the robustness of MCMC with the computational advantages of importance sampling.
In this context, one can think of ISA as a means to “fill out” an under-resolved MCMC
computation, while making effective use of massively parallel machines. This can
yield dramatic reductions in run times, from weeks or months of serial MCMC on a
workstation, to minutes on an HPC system.

The second initialization strategy we propose is to construct a Gaussian mixture
model (GMM), for which each mixture component is centered at a mode of the poste-
rior distribution. The various modes can be found in parallel, by initializing a suitable
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optimization code at various locations in parameter space obtained by, e.g., sampling
the prior distribution. The covariances of the mixture are inverses of the approximate
Hessians of the negative log posterior distribution F (θ) at the modes. The weights of
the mixture components are

(3) ψj =
exp(−φj)∑n
i=1 exp(−φi)

,

where n is the number of minima we found and φi, i = 1, . . . , n are the local minima
of F . Alternatively, one could also use weights based on normalizing constants of the
Gaussians, but we do not pursue this idea further.

One may find that the optimizer, initialized at two different points in parameter
space finds the same minimum. We distinguish minima by considering the distance

di,j = (µi − µj)T H−1
i (µi − µj) ,

where µk are the various minima we find, and where Hk are the corresponding ap-
proximate Hessians with elements (Hk)ij = ∂2F/∂θi∂θj |µk , i, j = 1, . . . , n. We say
that a minimum of F at µi is different from the one at µj if di,j is more than an
application-specific threshold. Other, more sophisticated assessments may be needed
in other applications to account for asymmetries, since

(µi − µj)tH−1
i (µi − µj) 6= (µi − µj)tH−1

j (µi − µj) ,

However, in the applications we consider below, our simple strategy is sufficient.

3.4. Illustration by a 2D toy problem. We illustrate ISA by a simple “toy”
problem, where we estimate a two-dimensional parameter vector θ. The prior is
uniform on the cube [0, 11] × [0, 11], and the likelihood is such that the posterior is
given by

p(θ|z) ∝ exp (−F (θ)) , where F (θ) = 10−2 ||θ − [5; 5]||4 + 0.2 sin(5||θ||),

and where ||x|| =
√
xTx is the 2-norm. The posterior distribution is illustrated in

the bottom right panel of Figure 2. Note that there are several modes that carry
significant probability mass, but the modes are not well separated.

We apply ISA with Gaussian proposal distributions to obtain samples from this
posterior distribution. We initialize the iteration by samples we obtain by the emcee
implementation [33] of the affine invariant MCMC ensemble sampler [40]. We use four
walkers, initialized by drawing samples from the uniform prior distribution. The first
20 samples are used to initialize ISA. A “triangle plot” of these 20 samples, which
shows histograms of all one-dimensional marginals and the two-dimensional PDF, of
a given set of samples, is shown in the upper left panel of Figure 2. We perform 5
iterations, each with Ne = 20, 000 samples. The quality measure R converges quickly
to about R ≈ 1.1, by the sequence {Rk} = {658, 11.2, 1.13, 1.10}. A triangle plot from
the Gaussian proposal we obtained after five iterations is shown in the upper right
panel of Figure 2. A triangle plot of 20,000 weighted samples of this Gaussian proposal
are shown on the lower left panel of the figure, and one can clearly identify multiple
modes in the posterior distribution. Moreover, the efficiency of importance sampling
is almost perfect in this example: since R ≈ 1, almost all samples are effective samples.
Emcee hammer on the other hand is characterized by an integrated auto correlation
time of about 39, which means that only one in 39 samples is effective. We estimated
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Fig. 2. Illustration of ISA initialized by a short MCMC run. Top row, left: triangle plot of
the first 20 MCMC samples. Top row, right: triangle plot of the Gaussian proposal distribution
obtained after 5 iterations. Bottom row, left: triangle plot of the posterior distribution obtained by
ISA. Bottom row, right: the posterior distribution, bird view.

the integrated auto correlation time from an emcee run with four walkers, each taking
100,000 steps.

The convergence of ISA is further illustrated in Figure 3, where we show his-
tograms of one-dimensional marginals of the proposal distributions q0, q1, q2, q3, ob-
tained during the iteration, as well as a histogram of the corresponding marginal of
the posterior distribution. We observe that the high probability region of the initial
proposal distribution is far from that of the posterior distribution. However, ISA
quickly corrects this during iteration and moves the Gaussian proposal distributions
closer to the posterior distribution.

We also tested ISA initialized by a GMM, which we obtain by performing 100
minimizations of F , each initialized by a sample from the uniform prior density.
We then compare the minima by the distance di,j as explained above, and find five
distinct minima of F . At each distinct minimum, we approximate the Hessian by finite
differences (we chose computationally more efficient methods to approximate Hessians
in the applications below). The distinct minimizers and corresponding Hessians define
the GMM with five mixture components, where the weights of each component is given
by (3). We use this GMM as the proposal distribution and compute 20,000 samples to
obtain R ≈ 2.59. Using the GMM mixture distribution is thus less effective than using
a few iterations of ISA as above. Nonetheless, we can use a few samples of the GMM
to initialize ISA. Here we use the 50 samples from the GMM to initialize ISA and
then iterate using Gaussian proposal distributions with 20,000 samples at each step.
The Gaussian proposal distribution we obtain after three iterations is characterized
by a quality measure R = 1.10 (the sequence is R = {3.27, 1.1, 1.1}). The experiments
indicate the iterations of ISA yield similar proposal distributions after a few iterations
for both initialization strategies.
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Fig. 3. Convergence of the proposal distributions of ISA.

4. Application 1: subsurface flow.

4.1. Background and problem set-up. Subsurface flow models are exten-
sively used in hydrological and geosciences applications, such as the prediction of
contaminant fate during a chemical spill, and the estimation of oil production from
an oil recovery process. Robust predictions of quantities of interest require accu-
rate characterization of the model parameters, such as the material properties and
process-related parameters. Difficulties in direct measurements of these parameters
necessitate the use of inverse modeling tools to infer them based on sparse measure-
ments of observables that can be modeled.

In this section, we use ISA in a synthetic subsurface flow problem to estimate
the permeability distribution, and the associated uncertainty, in the vadose zone from
sparse measurements of saturations and changes in water volume in a domain that
covers a two-dimensional 4m×3m (width×depth) spatial domain and is discretized
by a mesh with uniform grid cells of size 0.05 × 0.05m. Water is released from a
pond into a heterogeneous vadose zone that has a water table at depth 3m. The
saturation of the heterogeneous soil is initially in capillary-gravity equilibrium. A one-
day ponded infiltration period is followed by a one-day water redistribution period.
During infiltration, the water level in the pond is maintained at 2cm, and saturations
at 36 locations, shown in the left panel of Figure 4, are measured every two hours (25
snapshots) during the two days of infiltration and redistribution. The total volume
of water flowing out of the pond is also measured at the same frequency, yielding a
total of 925 observations that we combine into a vector z as in equation (1).

Our goal is to determine the permeability distribution of the vadose zone based on
the above measurements. We describe the permeability by the pilot-point method [38,
73] with fourteen pilot points, located in two columns near the pond, as shown in
the left panel of Figure 4. The pilot points serve as adjustable conditioning points
for determining the permeability modifier (κm) in each grid cell through a Kriging
process that utilizes a spherical semivariogram model with fixed parameters [27]. The
permeability in each grid cell is then given by κref ×10κm , where κref = 0.316×10−11

m2 is a reference permeability value. The inverse problem we consider amounts to
estimating the parameter vector θ = {κm,i, 1 ≤ i ≤ 14}, where κm,i are the κm values
at the pilot point locations, based on two days worth of saturation and flow data.

We assume a broad Gaussian prior with zero mean and a diagonal covariance
matrix Cpp where all 14 diagonal elements are equal to nine. The likelihood is defined
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Fig. 4. Left: Computational domain and locations of the conditioning points for Kriging; the
color map illustrates the distribution of the permeability modifier when the values at the pilot points
are given by θref. Right: quality measure R during ISA iteration.

by equation (1), where the modelM is based on Richards’ equation [76]. Numerically,
we solve this equation using the finite-volume simulator TOUGH2 [72] with relative
permeability and capillary pressure functions as in [88]. The errors v in equation (1)
are Gaussian with mean zero and a diagonal covariance Czz. The standard deviations
that define the covariance are assumed to be 0.01 for the saturation measurements,
and 0.005 m3 for the water volume measurements. We perform experiments with
synthetic data, i.e., we assume a reference permeability field defined by

θref = {1.5, .5, 1., 1.5,−1.5, 1.5, 0.5,−0.5,−0.5,−1.5,−0.001, 0.5,−1.5,−0.5},

and then perform a simulation of the above infiltration. The reference set of param-
eters defines the permeability modifier field shown in the left panel of Figure 4. The
synthetic observation vector z is then given by M(θref) + ε where ε is an instance of
v in equation (1).

4.2. Results. We initialize ISA by a single Gaussian. We define this Gaussian
by solving the nonlinear least squares problem minθ F (θ), where F is the negative
logarithm of the posterior (up to an additive constant)

(4) F (θ) =
1

2
(z −M(θ))TC−1

zz (z −M(θ)) +
1

2
θTC−1

pp θ.

Here M(θ) is the output of the TOUGH2 simulator. The minimizer of F defines the
mean, and the approximate Hessian, evaluated at the minimum, defines the inverse of
the covariance matrix. We approximate the Hessian by neglecting contributions from
second derivatives, i.e., we set the covariance equal to the inverse of 2 JTJ , where
J is the Jacobian matrix of the nonlinear least squares problem. Numerically, we
rely on Levenberg-Marquardt [50, 55] (lsqnonlin function in MATLAB) to solve the
optimization problem and use finite differences for computing the first derivatives.
For this particular problem, 20 iterations are needed to find a minimum. We note
that the evaluations of the negative log-posterior (4) and of the Jacobian J in each
iteration can be easily parallelized.

We start ISA using the Gaussian proposal distribution and generate 5,120 samples
at each iteration. The likelihoods and weights of the samples are evaluated in parallel
using 160 nodes, each with 32 cores, on Cori, a supercomputer at NERSC. With this
set-up, the quality measure R converges from 163 to 1.3 in 9 iterations, as illustrated
by the right panel of Figure 4.
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Fig. 5. Triangle plot of posterior distribution obtained by ISA after nine iterations, each with
5,120 samples. The plot shows histograms of the parameters {θ6, θ7, θ8, θ9, θ10} (diagonal), as well
as two-dimensional histograms of all pairs of these five parameters (lower triangle).

We compare ISA to solving the same problem by the affine invariant ensemble
sampler [40], as implemented in the emcee code [33]. We use a parallel implementation
of the algorithm with 126 walkers, which allows us to use 2 nodes on Cori efficiently.
We discard the first 2,500 steps as “burn-in” and take another 2,500 steps per walker.
The computational cost thus amounts to a total of 630,000 likelihood evaluations,
each requiring an evaluation of the TOUGH2 model that takes approximately 3 min-
utes. The integrated auto-correlation times for θ vary from 84 to 532, indicating that
we have 3,750 to 592 “effective” samples. This should be compared to the quality
measure of R ≈ 1.3 after nine iterations of ISA. This means, in particular, that after
nine iterations, almost every Gaussian sample contributes effectively to the numerical
approximation of the posterior density. To get there, about 46,080 samples are used,
and these can be evaluated in parallel in nine batches of 5,120 samples. Our results
demonstrate that ISA can solve this parameter estimation problem effectively, while
achieving greater level of parallelism than MCMC, which reduces wall-clock time. In-
cluding the cost of the initial minimization of (4), solving the problem by ISA takes
about 90 minutes, while the emcee code requires about 20 days.

Note that in the context of ISA, a quality measure R close to 1 can indicate that
the posterior is nearly Gaussian. The reason is that we use a Gaussian proposal distri-
bution, and R ≈ 1 implies that the posterior distribution is also nearly Gaussian. This
is illustrated by the triangle plot in Figure 5. The plot shows histograms of the five
parameters θ6–θ10, as well as two-dimensional histograms of pairwise combinations of
these five parameters. Histograms of those parameters that are not shown in the fig-
ure are qualitatively similar. The figure suggests that the variables are indeed nearly
Gaussian. While we can conclude, after the fact, that other methods specifically de-
signed for nearly Gaussian problems (see literature review) may perform better on the
present problem, the distributions of the parameters are not typically known a priori.
On the other hand, the Gaussian proposal distribution whose mean is the posterior
mode and whose covariance matrix is derived from the Gauss-Newton solution if the
optimization problem, exhibits an R-value much larger than what we find after a few
iterations of ISA.
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5. Application 2: combustion modeling.

5.1. Background. Predictive combustion modeling entails solving a set of fluid
conservation equations that are supplemented with models for thermodynamics, trans-
port and chemical kinetics. For this study we assume an ideal gas mixture, gradient-
driven transport, and a set of reversible Arrhenius rate expressions for chemical reac-
tions. Here, we focus on chemical combustion on hydrogen combustion. Compared to
fuels involving complex hydrocarbons or biofuels, the hydrogen-oxygen case is com-
posed of a relatively small number of chemical species and reactions. For that reason,
and perhaps since hydrogen-oxygen represents an important building block for more
complex fuels, the basic form of the numerical model for hydrogen-oxygen systems,
including the set of specific fundamental chemical reactions, is well-established. The
parameters that define the model, however, remain open to considerable debate, as
indicated by the number of models under development (e.g., [26, 37, 51, 57, 65, 80]).
Note that the various parameter values reported over the years for each line of model
development result from a long history of incremental optimization efforts that incor-
porate emerging experimental data sets. As a result, while different parameter sets
may lead to similar predictive capabilities within a common range of their respective
validated conditions, the models they define can generate dramatically different pre-
dictions outside that range (see the discussion, e.g., in [41], particularly related to
Fig. 1, and in [28], related to Fig. 4).

The numerical model used here consists of a systems of differential equations
whose solution requires a database of parameters that characterize the relevant ther-
modynamic relationships, transport coefficients, and kinetic rate coefficients for the
component gases. Our goal is to use ISA to incorporate measured experimental data
into characterization of the uncertainty of a selected set of nine parameters that de-
scribe important behavior of this particular numerical model.

To a large extent, our study follows a recent effort to optimize 28 parameters
of a syngas combustion model [26]. In that work, the model was tuned specifically
to predict measured values of 36 experiments, including constant-pressure flow reac-
tors, constant-volume shock-tubes and steady, unstrained premixed flames. In the
reference, a solution-mapping technique was employed to approximate the response
of the model using a second-order polynomial. For each experiment, an a priori
sensitivity analysis was used to reduce the set of active parameters in the response
surface model. An objective function was constructed and minimized based on the
square of model prediction errors, normalized by the uncertainty of the respective
measurements. Prior knowledge of the parameters was used only to enforce bounds
on the variation of each active parameter, and to inform the construction of the un-
derlying polynomial response surface model. Implicitly, this work also incorporated
prior knowledge in the choice of what reactions to include in the kinetic model and
the choice of which model parameters to hold fixed during the optimization. In a
Bayesian framework, the referenced optimization approach can be interpreted loosely
as one based on a uniform prior over a cube whose sides are defined by prior-informed
parameter bounds. In the present work, discussed below, we estimate a subset of
the parameters considered in [26] and quantify the respective uncertainties using ISA,
based on the complete numerical combustion model, rather than solution-mapping.
However, we make use of many of the same target experiments in order to quantify
our likelihood estimate.

5.2. Prior and forward model, likelihood and data. We use the optimized
mechanism of [26], shown in detail in Table 1, to define the mean of a truncated
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ID Reaction A∗ β Ea σ Bounds (L:U)
1 H + O2 = O + OH 2.644(16) -0.6707 17041 2(16) 1(16):5(16)
2 O + H2 = H + OH 4.589(4) 2.7 6260 1(4) 1(4):1(5)
3 OH + H2 = H + H2O 1.734(8) 1.51 3430 2(8) 4(7):4(8)
4 2 OH = O + H2O 3.973(4) 2.4 -2110
5 2 H + M = H2 + M 1.780(18) -1 0
6 H + OH + M = H2O + M 4.400(22) -2 0
7 O + H + M = OH + M 9.428(18) -1 0
8 2 O + M = O2 + M 1.200(17) -1 0
9 H + O2 (+M) = HO2 (+M)

high pressure, Kf∞ 5.116(12) 0.44 0 5.116(12) 0:1.6(13)
low pressure, Kf0 6.328(19) -1.4 0 6.328(19) 0:2(20)
TROE: Fc = 0.5
Third-body: O2(0.85), H2O(11.89), Ar(0.40)

He(0.46), H2(0.75)
10 H2 + O2 = HO2 + H 5.916(5) 2.433 53502 5.916(5) 0:2(6)
11 2 OH (+M) = H2O2 (+M)

high pressure, Kf∞ 1.110(14) -.37 0
low pressure, Kf0 2.010(17) -.584 -2293
TROE: Fc = 0.2654 exp (−T/94)

+0.7346 exp (−T/1756) + exp (−5182/T )
Third-body: H2(6), H2O(6), Ar(0.7), He(0.7)

12 HO2 + H = O + H2O 3.970(12) 0 671
13 HO2 + H = 2 OH 7.485(13) 0 295 7.485(13) 0:2(14)
14 HO2 + O = OH + O2 4(13) 0 0 4(13) 0:2(14)

15a HO2 + OH = O2 + H2O 2.375(13) 0 -500 2.375(13) 0:1(14)
15b HO2 + OH = O2 + H2O 1.000(16) 0 17330
16a 2 HO2 = O2 + H2O2 1.300(11) 0 -1630
16b 2 HO2 = O2 + H2O2 3.658(14) 0 12000
17 H2O2 + H = HO2 + H2 6.050(6) 20 5200
18 H2O2 + H = OH + H2O 2.410(13) 0 3970
19 H2O2 + O = OH + HO2 9.630(6) 2 3970

20a H2O2 + OH = HO2 + H2O 2.000(12) 0 427
20b H2O2 + OH = HO2 + H2O 2.670(41) -7 37600

Table 1
Arrhenius rate parameters for H2-O2 combustion model (kinetics, and accompanying thermo-

dynamics and transport parameter database taken from [26]). Parameters in red are active for the
present study. The forward rate constant, Kf = ATβ exp (−Ea/RT ). ∗The number in parentheses
is the exponent of 10, i.e., 2.65(16) = 2.65 × 1016. For the active parameters, standard deviation
of the prior, σ and lower and upper bounds of the truncated Gaussian are provided in the last two
columns.

Gaussian prior distribution for the parameters shown in red. Since we wish to quantify
the extent to which experimental data (see below) constrains the active parameters,
we take the standard deviations of each parameter to be of the order of its mean value
(as shown in the table). In this way, we generate a broad Gaussian distribution that
extends well beyond the upper and lower bounds specified for each parameter (shown
in the rightmost column of the table). We truncate the Gaussians at the bounds
to obtain our truncated Gaussian prior distribution. We note that these bounds
represent are much broader that those considered in [26].

Our goal is to sharpen the prior knowledge by incorporating a limited set of exper-
imental data. We consider the six flow reactors and eight ignition delay experiments
labeled (ign1a, ign1b, ign2a, ign2b, ign3a, ign4a, ign4b, ign5a, flw1a, flw2a, flw3a,
flw4a, flw8a, flw8b) in Table 1 of [26]. The data include Gaussian error estimates,
taken as the standard deviations, σ, reported in Table 1 of [26]. We assume that
the errors are uncorrelated, i.e., the covariance matrix that defines the errors v in
equation (1) is diagonal. The data, assembled into a 14 × 1 vector z, and the Gaus-
sian error model are used along with our numerical model to define a likelihood by
equation (1).

In equation (1), each element of the vector z corresponds to one of the 14 experi-
ments. We compute z using point-reactors subject to constant pressure (flow-reactor)
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or constant volume (shock-tube) constraints. VODE [11], is used to integrate either
set of equations over time, and the solution is monitored until the desired diagnostic is
obtained. Initial data for the simulations is provided in the description of the exper-
iment in the reference, as is the event defining the measured quantity. For example,
experiment flw1a reports the mean rate of change of H2 mole fraction during the time
interval when it is between 40 and 60 percent of its initial value. The computed and
measured data, along with the sampled and prior mean values of the parameters, and
the corresponding prior standard deviations and experimental measurement errors are
combined for each sample vector to form the resulting likelihood.

Our combustion model is accessorized with several options for efficiency and ro-
bustness so that it can be driven by a number of sampling strategies. In particular,
the model is allowed to fail gracefully if any component of a sample (a vector of nine
parameters) is generated outside the bounds specified in Table 1. In this case, the like-
lihood is treated formally as zero. Similarly, some combinations of parameter values
lead to predicted values that are far from the corresponding measured data. Ignition
delays, for example, may be prohibitively long to compute efficiently, or too short to
accurately capture when scanning the solution at a “reasonable” sampling frequency.
In either case, the diagnostic analysis routines can identify the failure mode and grace-
fully exit, signaling the driver code that the corresponding likelihood is to be taken as
zero. Extra controls are provided/required in the specification of each experiment to
help detect such scenarios. These auxiliary parameters are adjusted to have minimal
effect on the presented data, but enable robust performance of the model evaluation
over millions of sample sets. For each sample, the list of simulated experiments are
evaluated in parallel over compute threads, using an OpenMP task manager. When
a large set of independent sample vectors can be generated at once, the likelihood
function itself can be evaluated in parallel over samples using MPI, where each MPI
rank maintains its own version of the model parameter set and evaluates its likelihood
using a local subset of the available cores.

5.3. Results. As explained in section 2, the prior distribution and a likelihood
jointly define a posterior distribution, and we apply several variants of ISA algo-
rithms to draw samples from this posterior distribution. We first test initialization
by a GMM. To construct the GMM we run 104 minimizations of the negative log-
arithm of the posterior. The starting point for the optimizations are drawn from
the broad prior. We use the nonlinear least squares code in the C implementation
of “minpack” to carry out the required optimizations. One could also use derivative
free optimization, but we decided to use minpack and compute derivatives by finite
differences. We use 2, 400 cores on NSERC’s supercomputer “Edison” to perform
the optimization and of our 104 optimization attempts, 2, 482 were “successful”. The
large number of failures is caused our broad prior: many of the starting parame-
ter sets we tried were outside of the range the numerical model can simulate, which
made the optimizer return a failure. We identified 12 minima to be distinct by using
the criterion outlined in section 3. Here we use a threshold based on a χ2 distribu-
tion so that the probability of the minima being within the threshold exceeds 95%.
The resulting Gaussian mixture consists of 12 components, centered at the minima.
The covariances are computed from approximate Hessians at these minima, using the
same Gauss-Newton approximation as in section 4. We generate 105 samples from
this GMM and evaluate the corresponding likelihoods using 3,072 cores on Edison.
Evaluating and weighting 105 samples takes less than 15 minutes of wall-clock time,
and results in the quality measure, R = 293. From the weighted samples we generate
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Fig. 6. Iterations of ISA. Left: Quality measure R as a function of iteration number for
ISA initialized by a GMM, using Gaussian or multivariate t-distributions and 105 samples at each
iteration. Center: Quality measure R as a function of iteration number for ISA initialized by 104

samples of an MCMC run, using Gaussian or multivariate t-distributions and 105 samples at each
iteration Right: Generating Gaussian/multivariate t-proposal distributions from 104, 105, and 6·105

samples.

Gaussian or multivariate t-distributions with shape parameter ν = 3 and iterate as
described above. At each step of the iteration we “inflate” the sample covariance by a
factor of two to mitigate sampling error and the underestimation of covariances, as is
common in numerical weather prediction [1]. The inflation parameter could be tuned
further, however we did not pursue this because we obtained good results. The left
panel of Figure 6 shows the quality measure R as a function of the iteration number
when using a multivariate t-distribution. The figure suggests that ISA produces an
effective proposal distribution after the first iteration with an associated R-value of
less than 42. The precise sequence during iteration is R = {293, 32, 42, 35, 38, 29, 27}.

Also shown in the left panel of Figure 6 are results we obtain by Gaussian pro-
posal distributions at each step of ISA. We note that the values of R fluctuate more
than when using multivariate t-distributions, and the lowest value of R we obtain is
also larger than the one we find by using multivariate t-proposal distributions. The
precise sequence is R = {293, 94, 140, 54, 66, 105, 47}. Nonetheless, the values of R we
obtain, in combination with the massive parallelism we can leverage at each step of the
iteration, make ISA with Gaussian proposal distributions effective for this problem.

In the center panel of Figure 6, we show results we obtain by ISA initialized by
multivariate t or Gaussian distributions computed from 104 samples of an MCMC run.
As before we use the emcee implementation of the affine invariant ensemble sampler
[33,40]. We describe the details of our MCMC run below, as it also serves as a reference
solution. In the context of ISA, we note that the initial Gaussian/multivariate t-
distribution yields a significantly larger R than the GMM we constructed above.
The iteration however can quickly reduce R to values of around R = 42 (Gaussian
proposal), and R = 35 (multivariate t-proposal). As above, we use 105 samples for
each iteration. Initializing ISA with only a “few” MCMC samples requires at least
two iterations to obtain R-values below 50, whereas we could reach low values of R
after only one iteration when we initialize ISA by a GMM. Constructing the GMM
is computationally more expensive due to the many optimizations we need to run,
however constructing the GMM can leverage parallelism effectively. We conclude
that, for this problem and computational set-up, the initialization by GMM is the
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Reaction ID 2 Reaction ID 3 Reaction ID 10 Reaction ID 14 Reaction ID 15a

Fig. 7. Triangle plot of posterior distribution obtained by ISA after six iterations, each with
105 samples. The plot shows histograms of reaction IDs {2, 3, 10, 14, 15a} (diagonal), as well as
two-dimensional marginals of all pairs of these five parameters (lower triangle).

more effective strategy.
We compare the ISA iterations to constructing Gaussian and multivariate t-

proposal distributions from longer MCMC runs. These tests will (i) illustrate the
degree to which ISA improves sampling efficiency compared to longer MCMC runs to
obtain comparable results; and (ii) demonstrate the convergence of ISA on this prob-
lem. In the right panel of Figure 6 we show the values of R we compute for proposal
distributions as a function of the number of MCMC samples we use to compute the
mean and covariances of these distributions. Specifically, we use 104, 105, and 6·105 to
obtain R = {689, 60, 42} for Gaussian proposals and R = {471, 130, 34} for multivari-
ate t-proposals. We thus obtain similar values of R as when iterating by ISA, provided
that sufficient MCMC samples are used to construct the proposal distribution. This
suggests that ISA can indeed find Gaussian or multivariate t approximations of the
posterior distribution that can be used to generate posterior samples with efficiency
of R ≈ 40.

For our MCMC runs, we use a serial implementation of the emcee code, but par-
allelize the likelihood evaluations across the various experiments (flow reactors and
ignition delays). In this way, we could effectively utilize the eight cores on a work-
station. Generating 6 · 105 samples then requires about one month. For comparison,
initializing ISA by 104 MCMC samples requires about 10 hours of MCMC for generat-
ing the initial ensemble, then 15 mins per iteration using 3,072 cores. Initializing ISA
by GMM further reduces the wall-clock time required to generate the initial ensemble.
On the other hand the emcee code also can be parallelized to a limited extent, which
would reduce run-times and improve overall performance. Nonetheless, it is difficult
to achieve the same level of parallelism as ISA by emcee or other MCMC codes. More-
over, the “shape” of the posterior distribution is difficult for the emcee code, which
results in relatively long integrated auto-correlation times of a few hundred samples.
Precise estimates of autocorrelation times are difficult to come by, however here we
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Fig. 8. Negative logarithm of posterior distribution along lines in parameter space.

are satisfied with the estimates provided by the emcee code (which differ significantly
across the nine variables). An autocorrelation of a few hundred means that the “ef-
ficiency” of the emcee code is about one effective sample for every few hundred we
try. This should be compared to the quality measure R ≈ 42 of ISA (after a few
iterations), which suggests that one in about 40 samples is effective.

Finally we show a triangle-plot of the posterior distribution we obtain by ISA
after 6 iterations initialized by a GMM. The plot shows histograms of five parameters
(Reactions IDs {2, 3, 10, 14, 15a}), as well as two-dimensional marginals of pairwise
combinations of these five variables. In the plot, the samples are scaled by the prior
mean as shown in Table 1. We note that there is significant probability mass away
from the prior mean, i.e., away from the value one. Moreover, the posterior mass
is concentrated on narrow ridges in parameter space, which suggests that posterior
variances are reduced significantly compared to the broad prior. We also note that
there are rather strong correlations among some of the variables, e.g., reaction IDs
two and three, and such correlations are absent in the prior. Thus, the experimental
data we use here do indeed constrain the parameters we wish to estimate, and ISA
can identify the parameter regimes that are consistent with the data we consider.

Finally, we wish to point out that the triangle plot suggests that the posterior has
only one mode, whereas our optimization found 12 “distinct” modes. This apparent
contradiction is caused by the modes not being “well separated”. In fact we believe
that the posterior distribution of this problem is a nine dimensional analogue of the
distribution illustrated in Figure 1, i.e., a plateau with several “shallow dents”. In
this situation, the various modes may not be easy to spot in a triangle plot because (i)
we may not have sufficient resolution due to limited sample size; (ii) the integration
implied by viewing marginals only. We can however, illustrate the complex structure
of the posterior distribution by evaluating the distribution along lines in parameter
space as in figure 8. These lines are obtained as follows. We take seven parameter
vectors from our reference MCMC run that result in the smallest negative logarithm
of the posterior. We then connect any two of these vectors by a line and evaluate
the posterior distribution at 100 equally spaced points along these lines. We observe
several “dents” along these lines. These dents are deep enough to cause importance
sampling algorithms that make use of local geometry to fail. For example, we tried
implicit sampling (see, e.g., [19, 60]), in which a proposal distribution is defined by
the mode and the Hessian of the negative log-posterior at the mode and found that
the method samples efficiently in the vicinity of the local minima, but fails to explore
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the broader parameter space. The various local minima are also deep enough to cause
large integrated auto correlation times in the MCMC runs (see above).

6. Summary and conclusions. We presented iterative importance sampling
schemes, which use samples obtained by importance sampling to construct a new
proposal distribution that leads to more efficient importance sampling. These ideas
have been discussed before (see our literature review), and the convergence of such
iterations has also been studied. It is important in practice that the iteration remains
robust when only few effective samples are produced at each step. We studied this
behavior in two test problems, one in subsurface flow and one in combustion modeling.
In our implementation of ISA we made use of massively parallel computers and found
that the iterations can robustly leverage parallelism, which led to significant speed ups
when compared to MCMC. We also presented two strategies to initialize the iterations.
One strategy uses a “short” MCMC run, the other makes use of optimization and
Gaussian mixture models.

A natural question is: how do the computational requirements of ISA scale with
the dimension of the parameter vector? Our numerical results provide little informa-
tion here because the dimension of the parameter vectors we considered are relatively
small. On the other hand, we argued in section 3.2 that the quality measure R of
Gaussian sampling problems depends exponentially on the dimension of the parame-
ter vector (see also [20,69]). This in turn implies that the number of samples required
to achieve a given number of “effective samples” also increases exponentially with
dimension. This may limit applicability of ISA, as the method would get stuck during
the initialization phase if R were inevitably large in high dimensional problems. On
the other hand, the Gaussian example that exhibits exponential dependence on the
dimension does not account for, e.g., sparsity of covariance matrices of the target or
proposal distributions. If such sparsity were present, and if one could exploit sparsity
during sampling, then high dimensional problems may come within reach of ISA or
other importance sampling methods. The situation is perhaps analogous to numeri-
cal linear algebra, where computations with large dense matrices are infeasible, while
sparse matrices can be handled easily. In fact, sparsity of covariances is exploited
during “covariance localization” of ensemble Kalman filters and is the key to being
able to effectively solve estimation problems in numerical weather prediction (where
the state dimension is several hundred million). If such strategies could be applied
to parameter estimation problems, e.g., by enforcing that some data only inform a
subset of the parameters one wants to estimate, then high-dimensional problems may
become feasible. In the applications presented here, we avoid this issue by selecting
a priori only a small set of parameters.
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