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Abstract

Quantum Monte Carlo Excited State Orbitals for Optical Gaps of Molecules and Materials

by

Sergio D. Pineda Flores

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Eric Neuscamman, Chair

Although amazing progress has been made since the genesis of quantum mechanics in mod-
eling the ground state wave functions and energies of electronic states, modeling the excited
electronic states with similar accuracy is still a difficult challenge. In this dissertation orbital
optimization of Multi-Slater Jastrow wave functions and its coupling to various Quantum
Monte Carlo (QMC) features are used to determine the optical gaps of various systems.
The new features being coupled to orbital optimization include: an excited state targeting
function, configuration selection for QMC wave functions, a variance matching scheme for
optical gaps, and a modified guiding function for sampling within QMC. After a study of the
utility of these features, the success of optical gap prediction on both gas phase molecules
(aperiodic systems), and condense phase materials (periodic systems) is explored.

For aperiodic systems we found that our QMC optical gap workflow produces predictions on
par in terms of accuracy with other standard techniques (e.g. MRCI+Q, CASSCF, CASPT2,
EOM-CCSD) for small molecules (e.g. Formaldimine, Thioformaldehyde). In addition, for

cases like
[
C3N2O2H4Cl

]−
in which state-averaged orbitals (between the ground and first

excited state) heavily compromises the accuracy of these states, and multiple reasonable
active-space choices lead to very different state energies, our workflow can be advantageous
to use.

For periodic systems we found that our QMC optical gap workflow produces predictions
on par in terms of accuracy with other standard techniques (e.g. DFT, G0W0) for simple
bulk materials (e.g. MgO, Trans-Polyaceylene). For more challenging systems, such as bulk
transition metal oxides (FeO and MnO) we found that QMC orbital optimization provides
the advantage of allowing one to bypass difficult parameterization (e.g. +U value, choice of
functional).
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Chapter 1

Introduction

Quantum mechanics (QM) is one of the most important scientific development of the 20th
century. Although it’s original use was for the esoteric goal of explaining the spectra of
atoms, there is hardly an aspect of life today that has not been affected by the ‘quan-
tum revolution’. Indeed, nearly every scientific field (chemistry, materials scientist, biology,
medicine, computer science etc.) has benefited from QM. Furthermore, the modern economy
relies heavily on semiconductor technologies (a technology whose development depends on
the understanding of QM). The work of this dissertation is placed in the context of the his-
tory of electronic structure theory. Because electronic structure theory can be understood as
the applications of QM to the electronic structure of atomic scaled systems, a brief review of
some of the key discoveries leading to the first computational self-consistent field calculation
in 1951 is worth evaluating.

• 1925 - Wolfgang Pauli proposes the ‘Pauli exclusion principle’ [147]

• 1925 - Werner Heisenberg, Max Born, Pascual Jordan, invent matrix mechanics [23,
22]

• 1926 - Erwin Schrödinger invents wave mechanics [183]

• 1926 - Wolfgang Pauli derives the hydrogen atom spectrum [146]

• 1927 - Fritz Wolfgang London and Walter Heitler applied QM to the bonding of a
hydgrogen molecule [83]

• 1928 - Dirac develops the relativistic wave equation (‘Dirac equation’) [47]

• 1932 - Linus Pauling publishes what he considers his most important work on “The
nature of the chemical bond” [148]

• 1951 - Clemens C. J. Roothaan uses computers to solve the electronic structure of
hydrogen and nitrogen molecules [168]
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The first electronic structure calculations utilizing computers in 1951 by Clemens C.
J. Roothaan was the birth of modern electronic structure theory. The following timeline
highlights some of the key advances that have made modern electronic structure techniques
(such as post Hartree-Fock methods, Density Functional Theory, and Quantum Monte Carlo)
routine.

• 1965 - Walter Kohn and Lu Jeu Sham introduce the Kohn–Sham equations [108]

• 1969 - John Pople pioneers ab initio quantum chemistry methods that use basis sets
of either Slater type orbitals or Gaussian orbitals [82]

• 1975 - Anderson develops ‘Fixed Node’ Diffusion Monte Carlo for fermionic systems
[9, 10]

• 1977 - Ceperley, Chester, and Kalos apply Variational Monte Carlo to fermionic system
[38]

With these advances the ability to simulate physical processes at the atomic scale to
investigate chemical questions became widespread. Instead of simulating simple light weight
diatomic molecules, systems with thousands of electrons can now routinely be simulated by
a variety of common software packages.[188, 104, 70] In terms of insight from simulation,
there is hardly a field of science that has not benefited. Examples of insights achieved in-
clude chemical synthetic mechanisms [101], enzyme reactivity in disease [186], and materials
discovery [156] just to name a few.

Of all physical processes, this dissertation is most concerned with photoabsorption. Pho-
toabsorption is a light matter interaction that refers to the transition of a system from a
ground state to an excited state through the absorption of energy from a photon. The
amount of energy required to cause such a transition is referred to as the optical gap (or
vertical excitation energy). It is useful to be able to predict the optical gap to interpret spec-
tra and therefore understand processes such as photosynthesis[115], solar cell efficiency[220],
and photo-catalytic production of fuels[34, 7].

To produce accurate estimates and insight via simulation, current electronic structure ca-
pabilities of optical gap prediction still has many challenges to overcome. Density Functional
theory has the notorious self interaction error that cause underestimates of gaps[80]. Active
space methods have challenges with scaling and equitable treatment in accuracy of ground
and excited states[140]. Perturbation methods have issues of poor zeroth order starting
points causing unreliability of predictions.[167, 139]

This dissertation is concerned with both providing accurate estimates and physical insight
to the nature of optical gaps through work on the particular class of electronic structure
methods referred to as Quantum Monte Carlo (QMC). It is through the coupling of Multi-
Slater Jastrow wave function orbital optimization with an excited state targeting function,
configuration selection for QMC wave functions, a variance matching scheme for optical
gaps, and a modified guiding function for sampling within QMC that we avoid some of the
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shortcomings of previously mentioned methods. We will show that orbital optimization of
Multi-Slater Jastrow wave functions for QMC when coupled with other QMC features can
provide accurate data and insight for optical gaps that is difficult if not impossible to get
from other methods.

1.1 Introduction to the Concept of Electronic

Structure Theory

Paul Dirac has famously been quoted as saying

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty
lies only in the fact that application of these laws leads to equations that are too
complex to be solved. [46]

The handling of “equations that are too complex to be solved” captures the spirit of
the current goals of electronic structure theory community. Electronic structure theory can
be understood as describing the motions of electrons of molecular systems. Just as the
goal of classical mechanics is to describe the motion of macroscopic particles, the goal of
quantum mechanics is to describe the motion of microscopic particles. In particular the
described motion is determined in the context of the Born-Oppenheimer approximation[24],
an assumption that the motion of electrons and nuclei can be separated due to the different
scales of speed of these two types of particles. So ultimately the goal of electronic structure
theory is to solve the non-relativistic time-independent Schrödinger (equation 1.1).

Ĥelec |Ψ〉 = E |Ψ〉 (1.1)

The Hamiltonian term in atomic units takes the form of equation 1.2 for a single particle
system, and for a many particle systems it takes on the form of equation 1.3. The ‘A’
subscrtipt refers to the index of nuclei in the system while the ‘i’ subscript refers to the
index of electrons.

Ĥ1 particle = −1

2
∇2 −

M∑
A

ZA
rA

(1.2)

Ĥmany particle = −
∑
i

1

2
∇2
i −

N∑
i

M∑
A

ZA
riA

+
N∑
i

N∑
j>i

1

rij
(1.3)

While the Schrödinger equation of a single particle (equation 1.2) such as a hydrogen
atom can be exactly solved, any system that includes more than one particle (equation 1.3)
is classified as a many-body problem and does not have an analytic solution. The source of
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the trouble is the third term in equation 1.3 which corresponds to the instantaneous Coulomb
repulsion between pairs of electrons.

Quantum chemist and solid sate physicists alike endeavor to find computational tractable
solutions to the many-body problem. As a result, there are a myriad of electronic structure
techniques that approach the problem from a variety of perspectives. Some focus on reducing
the scaling of solutions that are approximately exact, others focus on “cooking in” physical
insight to the technique that approach approximately exact solutions.

In the sections that follow we briefly review the electronic structure techniques relevant
to the work in this dissertation. The techniques reviewed are: 1) the Hartree Fock method,
2) post Hartree Fock methods, 3) Density Fucntional Theory 4) Quantum Monte Carlo
methods, and 5) pseudopotentials.

1.2 Hartree Fock

We review Hartree-Fock (HF) because it is often a starting point for modern Quantum
Chemistry methods and a brief overview will allow us to define some terms that will be used
frequently throughout this dissertation. In terms of HF’s relevance to QMC methods, often
the HF orbitals are chosen as the Single Particle Orbital set (SPO set) to form a trail wave
function.

Overview

The Hartree Fock method uses the determinant of a Slater matrix as the ansatz (trial wave
function) to solve the time-independent Schrödinger equation. The Slater matrix (figure 1.1)
is made up of N spin orbitals (φσ(r)) in which ‘r’ corresponds to position coordinates and
‘σ’ corresponds to spin. Due to the variational principle (which states that any trial wave
function will produce an upper bound to the true ground state energy [200]), a solution is
found by simply varying the orbitals until a minimum of the total energy is found. Using
Lagrange’s method of undetermined multipliers on a functional of the energy constrained
with orthonormal orbitals (equation 1.4 [200] in which εba are the Lagrange multipliers) leads
to the Hartree-Fock equations (equation 1.5 in which kets always represent electron 1).[200]

L[{φa}] = E0[{φa}]−
N∑
a=1

N∑
b=1

εba(〈a|b〉]− δab) (1.4)

[h(1) +
N∑
b=1

Jb(1)−Kb(1)] |φa〉 = εa |φa〉 a = 1, 2, ..., N (1.5)

The terms in the brackets of equation 1.5 is known as the Fock operator while the Hartree
Fock potential (vhf ) refers to

∑N
b=1 Jb(1)−Kb(1) in which Jb(1) |φa〉 = [

∫
dx2φ

∗
b(2)r−1

12 φb(2)] |φa〉
and Kb(1) |φa〉 = [

∫
dx2φ

∗
b(2)r−1

12 φa(2)] |φb〉. The interpretation of equation 1.5 is that the
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orbitals each experience a effective potential and so explicit coulomb electron-electron cor-
relation is missing from the theory.

Figure 1.1: Aufbau Configuration represented in Slater matrix form and pictorially

The electron-electron correlation missing from Hartree Fock is further divided into weak
and strong correlation (also known as dynamic and static correlation respectively). Weakly
correlated systems are those in which a single configuration mean field method like Hartree
Fock does an adequate job. For these weakly correlated systems perturbation theory can
adequately recover missing effects. Strongly correlated systems are those in which a single
configuration mean field method does not even qualitatively describe the system correctly.
Trying to use a single configuration as a zeroth order approximation for strongly correlated
systems results in perturbation theory failing disastrously.

1.3 Post Hartree Fock Methods

The goal of post Hartree Fock methods (also referred to simply as wave function based
methods in this dissertation) is to capture the missing correlation effects absent in Hartree
Fock. Typically this missing correlation is captured through a linear expansion of the trial
wave function in terms of ‘configurations’ (which QMC methods can use as the starting point
for a trial wave function). In this dissertation we take advantage of the wave function active
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space methods Configuration Interaction (CI) [109, 57, 137, 157], Selective Configuration
Interaction (S-CI) [93, 189, 182, 71, 33, 169, 214] and Complete Active Space SCF method
(CASSCF) [166, 141, 99, 117] in order to select configurations for our QMC methods.

Overview

Most wave function methods begin with the Hartree-Fock solution (the optimal orbitals for a
single slater wave function). When speaking of the basis for these methods one could divide
it into the single-particle orbital set (SPO set) and the many-body basis (‘exctied deter-
minants’/configuartions with respect to the Aufbau configuration constructed from Hartree
Fock orbitals). If all SPO and excited configurations are taken into account (referred to as
‘full configuration interaction’) then the exact solution (in the Fock space defined by the
SPO set) can be determined.[84, 200] But the number of configurations necessary for a cal-
culation containing K orbitals and N electrons is

(
K
N

)
= K!

N !(K−N)!
, so FCI scales exponentially

[84, 200] and only works for small systems in practice. Because FCI is too expensive some
sort of approximation to the basis must be made, either what configurations to include or
how to determine the weight of these configurations. In this way a trade off will always
be made between affordability (whether computational resources or human wall time) and
accuracy (number of configurations to consider and method of approximating their weight
in the expansion of the wave function).

For systems that require multi-reference description of states (such as the the larger
systems mentioned earlier) the CASSCF method is often used. The idea of the method is
to choose a subset of electrons and orbitals to perform FCI to hopefully capture the multi-
reference description.[84] Then there is an additional step of allowing the orbitals to relax in
the presence of the new multi-slater expansion.[84] Although this method will help describe
the multi-reference state the draw backs are that human input in necessary to determine the
active space and dynamic correlation is generally missing. But a second order perturbation
calculation from the CASSCF reference (known as CASPT2) helps recover the dynamic
correlation.[84] Yet CASPT2 can suffer from ‘intruder states’ similar to how MP2 does.[165,
40] Simply increasing active space to attempt to avoid this issue is not always possible and
any type of “removal” of intruder states (through ‘shifts’ or otherwise) inevitably introduces
a new possibility of errors.[229]

For Selective-Configuration Interaction the idea is to use perturbation theory repeatedly
to select what configurations to include in the linear expansion of the wave function.[93] The
schematic of the algorithm is presented in figure 1.3. In summary the steps to the algorithm
are:

1. start with the Hartree-Fock Aufbau configuration,

2. perform a first order perturbation correction to the wave function to have candidate
configurations to include in the linear expansion of the wave function,

3. use a threshold weight to decide which configurations to keep in your linear expansion,
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Figure 1.2: The left-most column corresponsd to the Hartree-Fock Aufbau configuration.
The center column corresponds to an ‘excited’ configuration in which an electron from the
second lowest orbital is promoted to the fourth lowest. The right-most column illustrates
the active space for which electrons and orbitals are considered when producing the linear
expansion of the wave function.

4. diagonalize the Hamiltonian in the linear expansion you have

5. repeat steps 2-4 until energy converges or some limit of configurations is reached.

Although S-CI allows one to consider a larger number of electrons and orbitals for the active
space it is ultimately limited once again by the exponential rise of necessary configurations
as system size grows and has no guarantee in treating the ground/excited state fairly with
respect to each other.

A comment on the practical limitation of the size of active spaces depends on the ever
changing current state of the art in algorithm development for currently available hardware.
Recently, NVIDA GPU programming of CASSCF has managed to perform routine active
space calculations of 18 electrons in 18 orbitals (2.4 billion determinants) [56]. Popular soft-
ware (Molpro, Gamess, etc.) employing active space methods is typically limited to electrons
and orbitals in the teens.[217, 74] For S-CI methods the active space can be larger, such as
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Figure 1.3: Graphical diagram of the workflow for S-CI algorithms.

the ‘fast semistochastic heat-bath configuration interaction’ ability to perform calculations
on 28 electrons in 76 orbitals[114] or even 44 electrons in 44 orbitals [198].

In addition to practical active space size limitations of any truncated CI method, these
methods typically suffer from not being ‘size consistent’.[13, 84, 200], Size consistency refers
to the property that for systems consisting of multiple non-interacting subunits, the calcu-
lated energy of the entire system equals the sum of the calculated energies of the subunits.
For a system of two non-interacting subunits (A and B) that means E(A+B) = E(A)+E(B)
will be true for size consistent methods.[84, 200] The typical lack of size consistency for trun-
cated CI methods is problematic, but especially so for solids when sampling the Brillouin
zone. It is these active space size limits and lack of size consistency that makes active space
based methods mostly limited to atoms or small molecules, while periodic systems tend to
utilize DFT and GW methods.

1.4 Density Functional Theory

In the process of reviewing the basics of Density Functional Theory (DFT) we will also define
the fundamental/optical gap, and discuss how well DFT performs in predicting these. With
respect to QMC, DFT serves as another source of SPO sets.

Overview

DFT is the most popular electronic structure theory method for determining quantum me-
chanical properties of atomic-scale systems. It reduces the many-body problem of solving
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the time-independent Schrödinger equation for an electronic wave function Ψ(r) (a func-
tion of 3N dimensions, in which N is the number particles) to that of finding the optimal
electronic density n(r) (a function of only 3 dimensions).[145] It is through the use of func-
tionals – functions of functions – that the total energy of the system can be determined via
the electronic density (equation 1.6).

E[n] = T [n] + U [n] +

∫
V (r)n(r)d3r (1.6)

DFT is a formally exact theory, proven by Hohenberg and Kohn [89], in the sense that
given the exact ground state density n(r) there exists a universal functional (F [n] = T [n] +
U [n]) that can be used to evaluate equation 1.6 to yield the exact ground state energy. Any
shortcoming of DFT in practice is due to the approximations made for these functionals,
since their general form is not known. Furthermore, no general prescription (that avoids an
explicit use of many body wave functions) for how to determine n(r) for a particular system
is known. It is with the existence of the Hohenberg–Kohn (HK) theorems [89] that DFT
is made possible in practice. These theorems state that: (1) there is a one-to-one mapping
between a given external potential (i.e. the system of interest) to its n(r), and (2) the ground
state n(r) is that which minimizes the total energy functional. With these two theorems the
ground state n(r) is determined uniquely by varying the density until the total energy is
minimized; all that is left is to make approximations for T [n] and U [n].

The Kohn–Sham (KS) equations [108] address how to make systematic approximations to
T [n]. By mapping the interacting system to a fictitious non-interacting system (represented
by the Kohn-Sham determinant) in which particles experience an effective potential that
captures all exchange-correlation effects, the T [n] can be approximated by its non-interacting
form Ts[n] (equation 1.7).

Ts[n] =
N∑
i=1

∫
drφ∗i (r)

(
− h̄2

2m
∇2

)
φi(r) (1.7)

With the kinetic energy approximated, U [n] needs to capture all other quantum mechan-
ical effects, including exchange-correlation effects and any further differences T [n]− Ts[n].

Functionals

The exchange-correlation (XC) functional is known exactly only for the free-electron gas,
but approximations that work well in practice have been made. One of the earliest being the
LDA approximation (equation 1.8) [37, 152, 72], derived from the homogeneous electron gas
(HEG) by Perdew and Wang. To determine the εXC(n) used for LDA, Perdew and Wang
fit a function [152] to accurate QMC calculations (produced by Ceperly[37]) of the HEG at
various densities.

ELDA
XC [n] =

∫
εXC(n)n(r) d3r (1.8)
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But because LDA is constructed under the assumption of uniform density, taking into account
the non-homogeneity of the true density is the natural next progression in the design of the
XC-functional. These XC-functional are referred to as Generalized Gradient Approximations
(GGA) and have the general form of equation 1.9.

EGGA
XC [n↑, n↓] =

∫
εXC(n↑, n↓,∇n↑,∇n↓)n(r) d3r (1.9)

An issue with local functionals (LDA and GGA) is that they suffer from self-interaction
error (SIE), which can most easily be illustrated by considering single electron systems. A
single electron should not Coulombically interact with itself yet the use of local functionals
will yield a non-zero interaction energy. Hartree-Fock does not suffer from SIE due to its
exchange energy exactly canceling the self coulomb interaction. Another physical picture
illustrating the short comings of local functionals is the potential experienced by an electron
as it moves away from a finite system that is neutral. The electron should be interacting
with it’s hole in a way that scales as lim|r|→∞ vxc(r) = − 1

|r| (proven by Almbladh and

Barth.[8]) but this is not the case for local functionals [8]. These observation suggests that
to improve the XC-functional the exact exchange of Hartree-Fock should be incorporated
into XC-functionals[15] which led to the rise of ‘hybrid functionals’ (such as PBE0, equation
1.10 [5]).

EPBE0
xc =

1

4
EHF

x +
3

4
EPBE

x + EPBE
c (1.10)

Although hybrid functionals perform better than local functionals there are still SIE
present because only a fraction of the correct asymptotic behavior is recovered for hybrid
functionals.[8] To more adequately correct the long range potential behavior ‘range separated
functionals’ were develop. The correct asymptotic potential is recovered by partitioning
the electron-electron interaction into a short range (typically consisting of local functional
exchange) and long range (typically consisting of HF exchange). The HSE06 functional
(equation 1.11 [86, 85]) has a division of short and long range potentials but numerical tests
led the developers to use HF for short range exchange potentials and PBE for long range.[87]

EωPBEh
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (1.11)

DFT Band Gap

Before we assess DFT band gap predictions we define the ionization potential (IP ), electron
affinity (EA), Fundamental Gap (EFund) and optical gap (EOpt).

IP = EN−1 − EN (1.12)

EA = EN − EN+1 (1.13)

EFund = (EN+1 − EN)− (EN − EN−1) = IP − EA (1.14)
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The fundamental gap is measured experimentally via photoemission and inverse-photoemission
experiments that calculate the IP and EA energies respectively. Both of these experiments
involve a change in the number of particles. In contrast the optical gap is the difference in
energy between the ground state and first excited state with the same number of particles
and is measured experimentally via absorption spectroscopy of a dipole allowed transition.
The exciton binding energy refers to the Coulomb interaction between the electon and it’s
hole in the excited state. A graphical summary of all these definitions is found in figure 1.4.

To calculate the fundamental gap two ground state calculations of a system containing
N and N+1 particles must be done. But often the difference in orbital energies εLUMO −
εHOMO of an N particle calculation is used to approximate the fundamental gap. This
approximation is appropriate for HF due to Koopman’s theorem which states that IP/EA
can be approximated as IP = −εHOMO and EA = −εLUMO [200] but the orbital energies
from DFT do not have physical meaning (with the exception of the HOMO being −IP ).[145]
Therefore an approximation of the fundamental gap via calculating εLUMO − εHOMO using
DFT orbital energies have no reason to correspond to the gap. Perdew and coworkers proved
that the fundamental gap is calculated as equation 1.15.[154]

ε(N + 1)HOMO − ε(N)HOMO + C (1.15)

The term ε(N + 1)HOMO refers to the DFT HOMO orbital energy of a N+1 particle system,
the term ε(N)HOMO refers to the DFT HOMO orbital energy of a N particle system and
the ‘C’ term refers to the derivative discontinuity of the energy with respect to particle
count evaluated at N particles. So while a single band structure calculation containing N
particles can estimate ε(N + 1)HOMO − ε(N)HOMO as ε(N)LUMO − ε(N)HOMO the Kohn-
Sham band structure does not include the finite and positive derivative discontinuity of the
Exchange-Correlation energy as a function of number of particles. Therefore even if the
exact XC-functional was being used for the single band structure calculation containing N
particles the correct fundamental band gap will not be predicted. [153, 151, 187, 172]

Despite ε(N)LUMO − ε(N)HOMO using DFT energies not having a rigorous justification
for estimating the fundamental gap it is commonly done and has proven accurate quite
often.[173, 134, 221] But it has been shown that this accuracy is rather fortuitous. [98, 128,
176]

Many-Body Perturbation Theory

Results from G0W0 calculations are considered when comparing the results of our QMC work
to other state of the art methods. Therefore, in this section we review the basics of Many-
Body theory necessary to have some basic understanding and ability to interpret results. We
follow notation conventions commonly found in standard Many-Body theory textbooks and
online tutorials provided by software packages. [3, 60, 121, 76]
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Figure 1.4: Key of abbrevations: Ionization Potential = IP , Electron Affinity = EA, Funda-
mental Gap = EFund, Optical Gap = EOpt, Binding Energy = EB, N Particle Ground State
= EN (grd), and N Particle Excited State = EN (exct)

Green’s function and self energy

Any single-particle operator can be evaluated once the Green’s function is known so we begin
with the time-ordered Green’s function G(1, 2). The integer coordinates represent both space
and time, the T̂ [...] term is the time ordering operator of the creation and annihilation field
operators and ΘN

0 represents the N particle state. The field operators create/destroy a
particle that is an eigenfunction of the coordinate operator, and in equation 1.16 are in
the Heisenberg representation. An intuitive interpretation of the Green’s function is that it
determines the probability of a particle moving from one point to another in a given amount
of time which is why it is sometimes referred to as the propagator.

G(1, 2) = −i
〈

ΘN
0

∣∣∣T̂ [ψ̂(1)ψ̂†(2)
]∣∣∣ΘN

0

〉
(1.16)

To see how single excitation information can be extracted from Green’s function it is
useful to re-express it in the Lehmann representation (equation 1.18) with the Lehmann
amplitudes (or Feynman-Dyson amplitudes) defined as equation 1.17. For the Lehmann
amplitudes µ represents the chemical potential of the system (or HOMO of the N particle
system), the ε terms are the single excitation energies of the system and the ‘i’ subscript
refers to the set of quantum numbers associated with the N+1 or N-1 states. Note from
equation 1.18 that if one locates the poles of the Green’s function in the complex plane then
information of the absorption spectrum is secured.
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Ψi(r) ≡


〈ΘN

0 |ψ̂(r)|ΘN+1
i 〉 εi > µ

〈ΘN−1
i |ψ̂(r)|ΘN

0 〉 εi < µ

(1.17)

G(r1, r2;ω) =
∑
i

Ψi(r1)Ψ†i (r2)

ω − εi + iη sign(εi − µ)
η → 0+ (1.18)

So now that we have established that we want the full interacting Green’s function we
introduce the Dyson equation (equation 1.19 ) which describes the relationship between
the non-interacting Green’s functions (G0) and fully interacting Green’s functions via the
self-energy (Σ).

G(12) = G0(12) +

∫
G0(13) Σ(34)G(42)d34 (1.19)

The self-energy describes the screened Coulomb interaction of electrons and can be used to
solve for the quasi particle excitation energies.[

ĥ0(r1) + vH(r1)
]
Ψ(r1) +

∫
Σ(r1, r2; εQP )Ψ(r2)dr2 = εQPΨ(r1) (1.20)

At this point the main goal is to determine Σ.

Hedin’s equation

In 1965 Hedin derived a way to compute the exact Green’s function[81] which involved
computing the irreducible polarizability (χ), the dynamically screened interaction (W ) and
the vertex function. The process is summarized by the black and blue path in figure 1.5. In
principle the equations should be solved self-consistently, but in practice this is difficult to
do. This leads to the single shot GW approximation.

The GW appoximation

Because solving Hedin’s equations is very demanding an approximate solution referred to as
the ‘GW approximation’ approximates the vertex function as equation 1.21

Γ(12; 3) ≈ δ(r1 − r2) δ(t1 − t2)δ(r1 − r3) δ(t1 − t3) ≡ ΓGW (12; 3). (1.21)

This leads to simplification of the necessary equations for Σ (summarized graphically as
the black and green path of figure 1.5). Iterating through these steps once for Σ is referred to
as G0W0. Continuing through the cycle updating both G and W is the ‘fully self consistent
GW ’, and updating just G is referred to as the partially self consistent version (GW0).

To begin the GW cycle an initialization for the self-energy is needed. The Kohn-Sham
exchange correlation potential is used as an approximation to the self-energy, the Kohn-
Sham states are approximations to the quasiparticle states and the Kohn-Sham eigenvalues
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Figure 1.5: Sketch of Hedin equation steps (black and blue path) and the GW approximation
(black and green path) [28, 27, 76]

approximations to the quasiparticle energies. In this way the quasiparticle energies can be
solved using first order perturbation theory via equations 1.22 and 1.23 .[95, 94]

εQP = εKS + Z〈ΨKS|Σ(εKS)− vxc|ΨKS〉 (1.22)

Z ≡
[
1− 〈ΨKS|Σ(ε)

εKS
|ΨKS〉

]−1

(1.23)

From the presented description it is clear that the accuracy of a G0W0 calculation will
depend on the quality of initial approximation being used. Because the initial approximation
comes from a DFT calculation the Kohn-Sham energies and SPOs are the limiting factor
of G0W0 accuracy and need to be near the true quasiparticle energy and states. For simple
s-p bonded systems in which DFT generally can describe the system well, G0W0 can easily
correct the typical underestimation of the gap. [116] But ultimately for systems that are
difficult for DFT to describe correctly, such as transition metal oxides, G0W0 becomes less
reliable. [174, 100, 110] One may ask if there is a way to assess the quality of the input SPO
set for G0W0. One attempt has been matching the HOMO to the experimental ionization
potential as a way to improve the initial quasiparticle energy and mitigate the SIE in the
creation of the quasiparticle states. [158, 59] Later in this dissertation we describe how QMC
can be used to assess the quality of SPO sets for G0W0.
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1.5 Quantum Monte Carlo

Quantum Monte Carlo is a method that: 1) utilizes the full interacting Hamiltonian and
2) evaluates integrals using Monte Carlo stochastic sampling. The consequence of point
1) suggest that one can interpret its use as tackling the strong correlation problem in a
‘variational and head on manner’ as the other wave function methods we mentioned do.[14,
206, 63, 79] But the main advantage of using QMC methods lies in point 2) because the trial
wave function can take on forms that may not be convenient for traditional wave function
methods.[14, 206, 63, 79]

In the following subsections we briefly review the basics of the QMC methods (Variational
Monte Carlo and Diffusion Monte Carlo) but will be presenting more specific details relevant
to the work in this dissertation later. The reader is encourage to read more comprehensive
reviews of the methods. [206, 63, 79]

Variational Monte Carlo

The wave function methods of the previous section are limited to a Gaussian basis due to the
reliance of analytic formulas for evaluating integrals [6]. The main advantage of VMC is that
integrals are evaluated via Monte Carlo stochastic sampling therefore the form of the wave
function is much more flexible.[14, 206, 63] This allows for the wave function (wfn) to take
on many different forms such as the Slater-Jastrow wfn [120, 208, 216], Jastrow correlated
antisymmetrized geminal power (JAGP) wfn [138, 36], Multi-Slater Jastrow wfn[62, 178,
179], and backflow transformation [61, 131, 135]. We will speak more about the Jastrow
factor in section 1.5.

VMC uses the idea that the multidimensional integrals needed to evaluate the expecta-
tion values of the energy of a system can be determined using the Monte Carlo integration
technique.[14, 206, 63] Equations 1.24 through 1.27 summarize how the Monte Carlo tech-
nique is used to evaluate the energy. Equation 1.24 is the expectation value of the energy of
a trial wave function re-expressed as the integration of the ‘local energy’ (EL(R) equation
1.26) according to the probability distribution of the wave function (ρ(R) equation 1.25).
Equation 1.27 summarizes how the integration can then be estimated via sampling the local
energy function M times according to the distribution of ρ(R) using the Metropolis-Hasting
algorithm[126].

Ev =

∫
Ψ∗(R)ĤΨ(R)dR∫
Ψ∗(R)Ψ(R)dR

=

∫
dR ρ(R)EL(R) (1.24)

ρ(R) =
|ΨT (R)|2∫
|ΨT (R)|2dR

(1.25)

EL(R) =
ĤΨT (R)

ΨT (R)
(1.26)
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Ev ≈
1

M

M∑
m=1

EL(Rm) (1.27)

Estimated VMC energies have statistical uncertainty that is determined using standard
statistical techniques.[58] If we consider an estimate of Ev from M1 samples (referred to as
E1 with a variance of σ2

1), another from M2 samples (E2 / σ2
2) and so on ... These values

of EX and σ2
X are independent identically distributed and so the familiar findings of the

central limit theorem can be used. As sampling approaches infinity the distribution of the
EX approaches a normal distribution with a mean value of the true Ev value and a variance
σ2/M . Note the feature that the statistical uncertainly falls as 1/

√
M regardless of the

dimensionality of the problem, in contrast to deterministic numerical integration techniques
such as the Simpson’s integration method [63].

One last property of VMC that should be noted is the ”zero-variance” property.[14, 206,
63] As illustrated above, how many samples must be taken in order to reduce the error to the
desirable amount depends in part on the variance of the local energy. As the trial wave func-
tion approaches the exact wave function the variance approaches zero. Therefore optimizing
the parameters of a wave function improves the energy, and the statistical uncertainty. As
will be discussed later, optimizing certain parameters (such as the orbital rotation parame-
ters) also improves the quality of the nodal surface of the wave function and can therefore
improve the Diffusion Monte Carlo estimate of the energy. [14, 206, 63]

Trial Wave Function Form

To describe the ground and excited states in this dissertation we will use a wave function of
the Multi-Slater Jastrow (MSJ) form. The MSJ wave function can be written as

Ψ(~r) = Φ(~r) ψJ(~r) (1.28)

Φ(~r) =
N∑
I=0

cIDI(~r) (1.29)

in which ψJ is the Jastrow factor and Φ is the linear combination of Slater determinants DI .
Although there are a wide variety of forms for the Jastrow factor ΨJ , for this study we

employed only the one-, two-, and three-body Jastrows.

ψJ =exp
(
u1(rσi) +

1

2

∑
σσ′ij

u2(rσi, rσ′j)

+
1

2

∑
I

∑
σσ′ij

u3(rσi, rσ′j, RI)
)

(1.30)

u1(rσi) =
∑
σi

∑
I

uσI(|rσi −RI |) (1.31)

u2(rσi, rσ′j) =uσσ′(|rσi − rσ′j|) (1.32)
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u3(rσi, rσ′j, RI) =

uσσ′I(|rσi −RI |, |rσ′j −RI |, |rσi − rσ′j|) (1.33)

Our Jastrow takes the form of equations 1.30-1.33 in which indices I are for ions, i/j
are for electrons, and σ/σ′ are for spins. The function uσσ′ takes on one of two forms, uss
or uos, depending on whether electrons σ and σ′ have the same spin or opposite spins, and
these two forms are constructed using splines [104] so as to guarantee that the appropriate
electron-electron cusp conditions are satisfied[102]. The functions uσI and uσσ′I are similarly
constructed of splines.[104] The function uσI can either be formulated to enforce the nuclear
cusp condition or to be cusp-free in cases where either a pseudopotential is used or the cusp
is built into the orbitals.[63] The function uσσ′I take el-el, el-ion, el-el-ion separations as
arguments and is identical to that proposed by Drummond and coworkers.[49] Because the
Jastrow factor reproduces the cusps determined by interparticle distances the multi-Slater
expansion can be much smaller than would otherwise be needed.

Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is a projection technique that allows one to sample from the
exact wave function (Ψ0) distribution and therefore compute the exact energy from a mixed
expectation value.[14, 206, 63, 79, 9, 10]

E0 =
〈Ψ0| Ĥ |Ψ〉
〈Ψ0|Ψ〉

(1.34)

Note that the calculation of Ĥ does not need to be evaluated on Ψ0, instead the usual
local energy according to trial wave function is evaluated but sampling occurs according
the mixed distribution of f(R) = Ψ0(R)Ψ(R)/

∫
dRΨ0(R)Ψ(R) instead of the usual ρ(R).

To begin, the time-dependent Schrödinger equation is rewritten in it’s imaginary time form
(τ → −it)

|Ψ(t)〉 = e−(Ĥ−ET )t |Ψ〉 (1.35)

in which ET is treated as some parameter that can be chosen. The spectral decomposi-
tion of e−(Ĥ−ET )t can then be inserted to equation 1.35 and taken to limit of infinite time
limτ→∞ |Ψ(t)〉 = limτ→∞ e

−(E0−ET )τ |Ψ0〉 〈Ψ0|Ψ〉 resulting in equation 1.36 .

lim
τ→∞
|Ψ(t)〉 ≈ |Ψ0〉 (1.36)

Now if we re-write our current expression (equation 1.35) in position basis with the defined
Green’s function (equation 1.38) the result is equation 1.37. In practice the Green’s function
is determined in the limit of short time using the Trotter-Suzuki formula 1.39. Now with
the the similarity transformed Green’s function (equation 1.40) we have a way of evaluating
the mixed distribution f(R) we originally wanted via equation 1.41.
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Ψ(Rf , t) =

∫
dRiG(Rf |Ri; t)Ψ(Ri) (1.37)

G(Rf |Ri; t) = 〈Rf | e−(Ĥ−ET )τ |Ri〉 (1.38)

G(Rf |Ri; t) = e−τ [V (Rf )−ET ]/2 〈Rf | e−τT̂ |Ri〉 e−τ [V (Ri)−ET ]/2 (1.39)

G̃(Rf |Ri; t) = Ψ(Rf )G(Rf |Ri; t)
1

Ψ(Ri)
(1.40)

f(Rf ) =

∫
dRiG̃(Rf |Ri; t)Ψ(Ri)

2 (1.41)

The stochastic implementation of equation 1.38 can take on different forms but the most
popular is the ‘birth/death algorithm’ under the ‘fixed-node approximation’.[159]

Fixed Node Approximation

Fixed Node DMC is a way of dealing with the fermionic sign issue of DMC. [9, 130, 159] The
sign issue with the DMC algorithm described above is that it does not take into account the
anti-symmetry of fermionic wave functions that we are interested it.[9, 130, 159] Without
a constraint to maintain anti-symmetry, the DMC algorithm will project out the bosonic
ground state wave function. Even if bosonic states were prohibited both Ψ0 and −Ψ0 are
equally good solutions to the Schrödinger equation and an equal contribution of both from
the projection will make the energy evaluate to zero with noise.[9, 130, 159, 14, 206, 63, 79]
A simple solution then is to impose that the nodal surface of the trial wave function fix the
nodal surface of the projected wave function. [9, 130, 159, 14, 206, 63, 79] In practice this is
done by simply having having walkers restricted to the ‘nodal pockets’ of the wave function.

1.6 Pseudopotentials

Pseudopotentials (PP) are ubiquitous in electronic structure calculations because they im-
prove computational efficiency while producing results similar to all-electron calculations.
[77] If errors occur with PP use it is typically expected to be that PP results are not con-
sistent with all electron results.[77, 213] But there are more subtle and lethal errors that
can occur when using these PP for QMC.[30, 51] These errors are especially difficult to find
the source of due to the stochastic nature of QMC often ‘washing them away’. In addition
the PP error can be experienced on the QMC side while coming from one or more of the
following: 1) PP design, 2) SPO set produced by DFT, 3) how PP is evaluated in QMC.

Throughout the work in this dissertation severe issues arose in the choice and parameter-
ization of PP for calculations that impacted our ability to determine band gaps. It was only
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through a careful review of PP that ultimately these issues were resolved to be ‘ghost states’.
In order to prepare the reader for the QMC specific discussion of this error we give a brief
review of the Kleinman-Bylander transformation (which allow for ghost states to occur), and
how ghost states occur in DFT to ultimately affect QMC calculations.

Overview

Figure 1.6: Sketch of a ‘pseudo wave function’ and ‘pseudopotential’ along with the ‘full
wave function’ and ‘full potential’. The r < rc region refers to the core region [219]

The electrons of an atom can conceptually be divided into the categories of “core” and
“valence” in which the noble gas configuration and filled d/f subshells of an electron con-
figuration are typically categorized as core electrons (e.g. for Be the electron configuration
is Be = 1s22s2 or [He], 2s2 in which the [He] is the core). It is often stated that only
the valence electrons participate in bonding due to the observation that wave functions of
valence electrons can change singficantly for a chemical bond while wave functions of core
electrons often only change slightly after bond formation. In fact, this simple but powerful
concept’s influence can be seen in the abstraction of chemical reactions in terms of simple
Lewis dot structures employed by organic chemist to teach reactions and build chemical in-
tuition. With respect to electronic structure programs the approximation that core electrons
can be ignored when trying to calculate molecular or solid state properties arises in the form
of pseudopotentials. These pseudopotentials are useful when dealing with the computational
challenge that a large number of filled shells pose in plane wave electronic structure theory.
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The idea of a pseudopotential is that the influence of the core electrons and the nucleus
of an atom on the valence states can be approximated with an effective potential. The
advantages of this approximation are: a reduction of basis size necessary to describe the
system, a reduction of the number of electrons present in your calculation, and the ability
to simply incorporate some relativistic effects.

A simple sketch of how the pseudopotential produces a nodeless simplified valence wave
function is illustrated in figure 1.6. The blue dashed lines represent the all electron single
partial orbital valence wave function and full potential, while the red lines represents the
pseudo wave function associated with the pseudo potential. The original blue wave function
necessarily exhibits high oscillatory character in the core region (defined as r < rc) due to the
orthogonality constraint with respect to the core single particle orbital wave functions. This
high oscillatory character is what necessitates the use of a large number of fourier modes
leading to calculations that are costly for all electron calculations. When the core region
of the wave function is simplified to contain no nodes we can imagine that the number of
fourier modes needed will be drastically reduced.

In the rest of this section we review the Kleinman-Bylander transformation, ghost states,
and finally the use of pseudopotentials in Variational Monte Carlo (VMC).

Semilocal Pseudopotnetial and the Kleinman-Bylander
Transformation

The Kleinman-bylander transformation[107] is the logical starting point for our discussion
because it is used to evaluate pseudopotentials commonly by modern DFT software. [70]

It is customary to break up the total pseudopotential (Vtotal(r) = Vlocal(r) + δVl(r)) into
the Semilocal (SL) form of equation 1.42, in which the radial and and angular parts are
separated due to spherical symmetry, and the non-locality refers to the angular coordinates.
The choice of Vlocal is arbitrary and the sum over l is often truncated at small values.

VSL = Vlocal(r) +
∑
lm

|Ylm〉 δVl(r) 〈Ylm| (1.42)

The evaluation of the expectation value of equation 1.42 leads to the equation 1.45.

eiq·r = 4π
∑
lm

iljl(qr)Y
∗
lm(q)Y ∗lm(r) (1.43)

〈q|VSL |q′〉 =
(4π)2

Ω

∑
lm

∑
ab

∑
cd

∫
(−i)aicja(qr)jc(q′r)Yab(q)Y ∗cd(q′)Vnl(r)r2drδla,mbδlc,md

(1.44)

〈q|VSL |q′〉 =
4π

Ω

∑
l

(2l + 1)

∫
jl(qr)jl(q

′r)Pl(cosθ)Vl(r)r
2dr (1.45)
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If the number of plane waves in our basis is Npw this general form leads to the need to
calculate N2

pw integrals.
The Kleinman-Bylander (KB) transformation[107] reduces the number of necessary in-

tegrals to just Npw by transforming the semilocal form into a fully non-local (NL) form that
is a separable pseudopotential operator.[106]

VNL = Vlocal(r) +
∑
lm

∣∣δVlψPSlm 〉 〈ψPSlm δVl∣∣
〈ψPSlm | δVl |ψPSlm 〉

(1.46)

VNL = Vlocal(r) +
∑
lm

|ηl(r)〉EKB
l 〈ηl(r)| (1.47)

The energies EKB
l determine the strength of the nonlocality and can be considered to be

coupling constants.

EKB
l =

〈
ψPSlm

∣∣ δV 2
l

∣∣ψPSlm 〉
〈ψPSlm | δVl |ψPSlm 〉

(1.48)

|ηl(r)〉 =

∣∣δVlψPSlm 〉√
〈ψPSlm | δV 2

l |ψPSlm 〉
(1.49)

Using VNL on the reference state ψPSlm is equivalent to operating with the VSL. And we
see that only products of projection operations are needed to calculate the expectation value
of the potential in our basis leading to our reduction of N2

pw to Npw.

〈
δVlψ

PS
lm

∣∣ψ〉 =

∫
drδVl(r)ψ

PS
lm (r)ψ(r) (1.50)

〈ψi|VNL |ψj〉 =
∑
lm

〈
ψi
∣∣ψPSlm δVl〉 1

〈ψPSlm | δVl |ψPSlm 〉
〈
δVlψ

PS
lm

∣∣ψj〉 (1.51)

Ghost states

We are now ready to describe ‘ghost states’ which produce bad symptoms in a QMC calcu-
lation but not always in a DFT calculation. For now we keep the discussion of ghost states
limited to DFT calculations but will discuss their consequence in QMC in the next section.

Overview of Ghost states

Although the KB NL PP operator produces the same result as the SL PP operator when
applied to the reference state, when the NL PP operator is applied to other states the op-
eration result may change leading to what are known as ghost states.[119] Pseudopotentials
that produce eigenvalues of the nonlocal hamiltoninan below the reference energy of the
pseudopotential are referred to as ghost states.[73] [103] More simply ghost states are states



CHAPTER 1. INTRODUCTION 22

-4 -2 0 2 4

-10

10

0

20

E (Ry)

Lo
g 

D
er

iv
at

iv
e

Nickel l=1 log derivatives

Figure 1.7: Sketch of an example ghost state in the production of pseudopotential for Ni.
We see a divergence of Dl(ε) indicating a ghost state.[2]

that violate the Wronskian thoerem [124] (which states that atomic eigenfunctions are ener-
getically ordered such that an increase in the number of nodes corresponds to an increase in
the energy). So when ghost states are found it often occurs below the zero-node state of the
atom, but they can occur in higher states as well. We will review the theorem that Gonze
et al. devised to tell if a a ghost state occurs. [73] [103] One way to detect ghost states is
to look at the energy derivative of Dl(ε) and look for large divergences in phase shifts.[103]
An example can be seen in figure 1.7 for a Ni atom l = 1 pseudowavefunction. But visual
inspection of the Dl(ε) will not always reveal the ghost states because the divergences can
be quite sharp and missed if small step sizes are not taken.[103]

We will summarize the analysis of separable nonlocal pseudopotentials devised by Alexan-
der Khein in which a method to determine ghost state is described.[103] Beginning with the
DFT radial equation the Hamiltonian is broken down to a local component and nonlocal
potential component.

[− d2

dr2
+
l(l + 1)

r2
+ VH(r) + Vxc(r) + V ion

loc (r)

+ δVl(r)]ψ
PS
lm (r) = εrefl ψPSlm (r)

(1.52)
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[Hloc + δVl(r)]ψ
PS
lm (r) = εrefl ψPSlm (r) (1.53)

H = Hlocal(r) + |ηl(r)〉EKB
l 〈ηl(r)| (1.54)

It is understood that there is a radial hamiltonian (equation 1.54) of this form for each
angular momentum channel. Now we will work towards deriving the “eigenvalue condition”
used to determine if ghost states are present. Although we have shown the projection per
channel to be a single operator, it is possible to have more than one projection per angular
momentum channel [103][18]. But for the following discussion we will continue to assume a
single projection.

Consider the eigenstates of the full Hamiltonian expanded in the basis of the eigenstates
of the local Hamiltonian equation 1.55.

|ψ〉 =
∑
m

cm
∣∣ψlocm 〉 (1.55)

Then we use equation 1.55 and plug it into the Schrödinger equation H |ψ〉 = ε |ψ〉

EKB
l

∑
cm |ηl(r)〉

〈
ηl(r)

∣∣ψlocm 〉 =
∑

cm(ε− εlocm )
∣∣ψlocm 〉 (1.56)

Taking the inner product with
∣∣ψlock 〉 results in ...

ck =
EKB
l

ε− εlocm

∑
cm
〈
ψlock
∣∣ηl(r)〉 〈ηl(r)∣∣ψlocm 〉 (1.57)

Then multiply both sides by
〈
η
∣∣ψlock 〉, sum over k, and using the fact that

∑
k

ck
〈
η
∣∣ ψlock 〉 =

〈
η

∣∣∣∣∣∑
k

ck ψ
loc
k

〉
= 〈η|ψ〉 (1.58)

results in equation 1.59, from which we can define the local Hamiltonian’s Green’s function
(eqn. 1.60 )

〈ηl(r)|ψ〉 = EKB
l 〈ηl(r)| [

∑
k

∣∣ψlock 〉 〈ψlock ∣∣
ε− εlock

] |ηl(r)〉 〈ηl(r)|ψ〉 (1.59)

ĝ(ε) = [
∑
k

∣∣ψlock 〉 〈ψlock ∣∣
ε− εlock

] (1.60)

Finally we can rearrange equation 1.59 to be equation 1.61

1

EKB
l

= 〈ηl(r)| ĝ(ε) |ηl(r)〉 (1.61)
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The 〈ηl(r)| ĝ(ε) |ηl(r)〉 is plotted in figure 1.8 for some positive value of EKB
l . We see that

the local eigenvalues, and non-local eigenvalues can be identified in the graph through the
poles of the function and the intersection of 〈ηl(r)| ĝ(ε) |ηl(r)〉 function with 1/EKB

l . One
of the non-local eigenvalues is necessarily the reference energy of the pseudopotential by
construction. For values of ε less than εlocal0 we can see that 〈ηl(r)| ĝ(ε) |ηl(r)〉 is negative
infinity and approaches zero asymptotically from the right.

ε0
loc ε1

loc ε2
loc

<u
|g

(ε
)|u

>

Non-local Eigenvalues

local Eigenvalues

(EKB)-1
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Figure 1.8: 〈ηl(r)| ĝ(ε) |ηl(r)〉 plotted as a function of ε. The value of of EKB
l is positive in

this case and the black circles correspond to eigenvalues of the total non-local Hamiltoninan.
[103]

We can now summarize the Gonze theorem for detecting ghost states. [103]

1. EKB
l < 0: there is a ghost below the reference level El if and only if El is higher than

εloc0

2. EKB
l > 0: there is a ghost below the reference level El if and only if El is higher than

εloc1

The sign and magnitude of EKB
l seems to be responsible for ghost states. For large negative

values of EKB
l we see that a deep lying ghost state can occur. What can be done if a ghost
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state is detected? Hopefully some slight modifications to the pseudopotential can resolve the
issue. Suggestions include varying the cutoff radius slightly, and changing the local channel
potential. These both may alleviate the denominator of equation 1.48 from being too close
to zero which is responsible for producing a large EKB

l .

Pseudopotential for Quantum Monte Carlo

Our review of pseudopotentials so far has been exclusively in the independent electron frame-
work, but now we begin discussing the utility and challenges of pseudopotentials in Quantum
Monte Carlo (QMC), specifically Variatioanl Monte Carlo (VMC). This section will be di-
vided into three subsections. We first review some basic motivation of PP in QMC and
some historical implementations in subsection 1.6. Then we describe some technical details
associated with the modern evaluation of the pseudopotential in QMC codes (such as QMC-
PACK) in subsection 1.6. Finally we touch upon some challenges of pseudopotential design
for QMC, and various errors that could arise in calculations in subsection 1.6.

We begin by reminding the reader that VMC involves a trial wave function consisting of a
Slater/Multi-Slater portion multiplied by a Jastrow component (a function which explicitly
introduces correlation effects and can take many forms). VMC then estimates the ground
state energy via a statistical average over Ns position samples {~ri} drawn from the many-
electron probability distribution p(~r) = |Ψ(~r)|2/〈Ψ|Ψ〉,

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
p(~r)EL(~r)d~r ≈ 1

Ns

Ns∑
i=1

EL(~ri), (1.62)

EL(~r) =
HΨ(~r)

Ψ(~r)
, (1.63)

For more details refer to section 1.5 or QMC review articles. [63] [206]

The need for pseudopotential in QMC

The Variational and Fixed-Node Diffusiom QMC methods are wave functions methods that
directly treat quantum many-body effects and involve stochastic sampling for evaluation
of quantities. All-electron calculations involving atoms with high Z values presents two
problems in getting good statistics for integral evaluations. The first is the that due to
the high degree of variation of the wave function at small length scales near the nucleus of
atoms, a smaller time step needs to be used for the sampling process, reducing sampling
efficiency.[63] The second is that there are large fluctuations of the local energy near the
nuclei due to the large values of the kinetic and potential energies of core electrons.[63]
Both these issues results in a large sampling effort being necessary to achieve good statistics
to evaluate the energy, or perform optimization of the trial wave function. As has been
mentioned throughout this review, the core electrons are not necessary to describe inter
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atomic bonding and low lying excited states and therefore pseudopotentials could be used
to improve computational cost.

In our discussion of the pseudopotentials so far we have shown that generally PP can be
written in terms of a local and nonlocal component. If we were to express the pseudopon-
tential in this general form but emphasize the action on each electron i of the total wave
function the result would be equation 1.64. [63]

Vloc(R) + V̂nl =
∑
i

V ps
loc(ri) +

∑
i

V̂ ps
nl,i (1.64)

When the non-local component of equation 1.64 is applied to an arbitrary function f(ri) the
result is equation 1.65. [63]

V̂ ps
nl,if(ri) =

∑
l,m

V ps
nl,l(ri)Ylm(Ωi)

∫
4π

Y ∗lm(Ω′i)f(r′i)dΩ′i (1.65)

The angular momentum components of the function f(ri) is plucked out by the integrals
allowing for each momentum channel to “see” its appropriate potential. [63]

Practical Implementation of pseudopotentials in Variational Monte Carlo

Early implementations of PP in QMC involve just applying the PP to the single slater
component of the trail wave function. [78] Fhay, Wang and Louie developed a method to
apply the non-local pseudopoential to the full trial wave function (including the correlating
Jastrow factor). [54] [55] [63] Remember that the evaluation of the total electronic energy
depends on sampling of the local energy (EL = Ψ−1

T ĤΨT ) and if we consider a single atom
centered at the origin the non-local component of the Hamiltonian is expressed as equation
1.66 in which the sum over i refers to the sum over electrons. [63]

Vnl = Ψ−1
T V̂nlΨT

=
∑
i

Ψ−1
T V̂ ps

nl,iΨT =
∑
i

Vnl,i
(1.66)

The evaluation of equation 1.66 using equation 1.65 results in equation 1.67.

Vnl,i =
∑
l

V ps
nl,l(ri)

l∑
m=−l

Ylm(Ωri)

∫
Y ∗lm(Ωr′i

)

× ΨT (r1, ..., r′i, ..., rN)

ΨT (r1, ..., ri, ..., rN)
dΩr′i

(1.67)

The angular integration is over a sphere passing through the i’th electron and centered at
the origin and can be further simplified to equation 1.68 with a choice of the z-axis being
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parallel to ri (vector from the origin of the atom to the ith electron).[63]

Vnl,i =
∑
l

V ps
nl,l(ri)

2l + 1

4π

∫
Pl[cos(θ

′
i)]

× ΨT (r1, ..., r′i, ..., rN)

ΨT (r1, ..., ri, ..., rN)
dΩr′i

(1.68)

Where Pl is the Legendre polynomial and to integrate the products of spherical harmonics
in equation 1.68 a quadrature rule is used.

Challenges and errors of pseudopotentials design for QMC

Using QMC to directly design pseduopotentials for QMC calculations has been done and has
been shown to be very accurate [4]. But more commonly PPs that were originally designed
for single-particle methods are used in QMC. The reason why QMC is not commonly used
to directly make PPs is that performing all-electron calculations for an atom with high Z
value is costly to achieve sufficient statistical accuracy. But using the independent electron
methods such as Hartree Fock or DFT to design a PP (as described in previous sections)
to use for QMC introduces errors. Furthermore, it’s not even clear if a hierarchy exists for
which independent electron method designed PP is most appropriate for use with QMC.
It has been shown that often Hartree Fock designed PP yield greater accuracy than DFT
PP despite the fact that the DFT method attempts to include correlation effects. Another
option to produce PP for QMC is to use quasiparticle / many-body methods (such as Couple
Cluster Singles and Doubles, and GW) to produce PP.[17] [194]

For the independent electron framework we have previously discussed, the separation of
core and valence electrons is straightforwardly done by partitioning the orbitals as either
associated with the core electron or valence electrons. [63] But within the many electron
framework (such as QMC) the core-valence partition is not exact because electrons are
indistinguishable particles. Furthermore a “removal of the core” removes correlation energy
between core electrons, and correlation energy between core and valence electrons. [63] These
errors can be large if the number of valence electrons is small relative to the core because
changes in the small valence can cause core polarization and relaxations. ‘Core polarization
potentials’ (CPP) have been used to modify the Hamiltonian and to address these issues
[63] [112] [195] and can be determined both from first principles and using simple empirical
forms. [63] [133] It has been shown that the CPP significantly improve QMC accuracy. [196]

The choice of lmax involved in the sum of angular momentum components in equation 1.65
is another source of possible errors when employing pseudopotentials for QMC. Typically
in the independent electron framework the choice of lmax is based off the highest orbital
occupancy of electrons in an atom.[63] For example, the oxygen atom has electrons occupy
s and p orbitals therefore lmax = 1. We shall refer to this rationale for choice of lmax
as the ‘standard method’. But it must be considered that the Jastrow factor can introduce
higher angular momentum components that the orbitals in the determinatal part of the wave



CHAPTER 1. INTRODUCTION 28

function does not contain.[63] An extensive study of the importantance of higher angular
momentum channels for PP in QMC has been done by Tipton et. al. [205] They found that
for QMC the choice of lmax and what angular momentum is chosen for the local channel
both have a strong influence on the accuracy of the calculation. One observation made is
that if the pseudopoential contains angular momentum terms higher than that determine
via the ‘standard method’ resulting VMC energies are less sensitive to the choice for the
local channel. But when lmax was determined via the ‘standard method’, different choices
for the local channel led to VMC energy differences that could range from a few to tens of
milliHartree. In addition, the VMC variances of the calculation could also vary to as much
as 0.3 Hartree squared. This “variance” dependence on the local channel potential can have
a strong bearing on results of “variance matched” calculations that depend on matching the
variance between two different states to have a greater cancellation of error when determining
quantities such as vertical excitation energies or reaction barriers. [160] [155] (We discuss our
variance matching scheme in more detail in section 2.4.) The explanation for this sensitivity
to the local channel choice is that the higher momentum components of the wave function
are present but do not experience their appropriate l-dependent potential, instead only
experiencing the local channel potential. When the local channel happens to be chosen to
be the high angular momentum, errors are mitigated. But when the local channel is chosen
to have a l = 0 value then the high angular momentum components of the wave function
experience an incorrect potential.

Although ghost states are specific to using the completely nonlocal Kleinman-Bylander
representation of pseudopotentials in plane wave DFT codes, QMC uses the single particle
orbitals from these DFT calculations to construct a trial wave function and is therefore
sensitive to ghost state issues as well. Drummond, Trail and Needs performed an analysis of
of Dirac-Fock pseudopotentials for QMC and found serious problems due to ghost states are
quite common when using DFT generated orbitals for VMC.[50] As stated in the article the
consequences of ghost states for a plane-wave-DFT-QMC workflow can be the following...[50]

The presence of ghost states gives rise to some or all of the following symptoms:
the failure of the DFT self-consistentfield (SCF) process to converge; a large
difference between the DFT energies obtained with plane-wave and Gaussian
basis sets; the existence of an absurdly low Kohn-Sham eigenvalue; an absurdly
high (unbound) energy when the orbitals are used in VMC calculations; a very
large energy variance; enormous difficulty optimizing a trial wave function in
VMC; and enormous difficulty controlling the configuration population in a DMC
simulation. Furthermore, these difficulties may change or disappear when the
local channel is changed.

We now summarize other findings from the article and note that explanations for these
observations are not offered by the author. The article describes how it is also possible for
a DFT calculation to not seem to suffer from a ghost state issue while a QMC calculation
exhibits symptoms mentioned. There was also an observation that high plane wave cut off
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energies are needed sometimes otherwise VMC optimization issues and variance values tend
to be large. They tested the cut off energy necessary to achieve chemical accuracy (1.59
mHa) and an order of magnitude greater accuracy (0.1 mHa) for convergence of the DFT
total energy of atoms. They found that for transition metals the cut off energy could be
almost as high as 105 Ha which suggest that caution must be taken if transition metals are
present in our plane-wave-DFT-QMC workflow. Another observation of the article is that to
mitigate the presence of ghost state one should use and s-local channel for DFT calculations
while using a d-local channel for QMC calculations and this is what we have done for our
calculations.



30

Chapter 2

QMC Specific Theory and Methods

2.1 Excited State Target Function

To ensure our orbitals are tailored to the needs of an individual excited state, we will rely
on the excited state variational principle that minimizes the objective function Ω,

Ω =
〈Ψ|(ω −H)|Ψ〉
〈Ψ|(ω −H)2|Ψ〉

(2.1)

which is a function whose global minimum is the exact Hamiltonian eigenstate with energy
immediately above the value ω. [227] Just as ground state VMC estimates the energy via a
statistical average over Ns position samples {~ri} drawn from the many-electron probability
distribution p(~r) = |Ψ(~r)|2/〈Ψ|Ψ〉,

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
p(~r)EL(~r)d~r ≈ 1

Ns

Ns∑
i=1

EL(~ri), (2.2)

EL(~r) =
HΨ(~r)

Ψ(~r)
, (2.3)

the objective function Ω may be statistically estimated as a ratio of two such averages

Ω ≈
∑Ns

i=1 ω − EL(~ri)∑Ns

i=1(ω − EL(~ri))2
(2.4)

and minimized via generalizations [227, 226, 190] of the ground state Linear Method. [215,
207] Note that, in practice, it is advisable to use a slightly modified probability distribution
from which to draw the samples, a point we will return to in Section 2.2.

While this and other [125, 41] excited state variational principles are quite general, one
of their most promising uses is to help achieve excited-state-specific relaxations of the orbital
basis. While excited state variational principles have been employed deterministically in both
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single-determinant wave functions [222] and linear combinations of single excitations, [191] as
well as by VMC for Jastrow-modified single excitations, [19, 20] the prospect of extending the
approach to the class of highly-sophisticated multi-Slater Jastrow (MSJ) wave functions that
are directly compatible with VMC and DMC is quite intriguing. In the following sections,
we will discuss how these excited state variational principles may be combined with other
recent advances in pursuit of this goal.

2.2 Modified Guiding Function

Although ground state VMC often draws samples from the probability distribution |Ψ|2/〈Ψ|Ψ〉
due to the allure of the zero variance principle, [64] this approach is not statistically robust
when estimating the energy variance,

σ2 =
〈Ψ|(H − E)2|Ψ〉

〈Ψ|Ψ〉
. (2.5)

The trouble comes from the fact that the local energy HΨ/Ψ can diverge, because Ψ can
be zero when ∇2Ψ is not. Although this divergence is integrable for E and σ2 and so poses
no formal issues for estimating E, it is not integrable for the variance of σ2, [212, 211, 161]
and so a naive approach in which samples are drawn from |Ψ(~r )|2/〈Ψ|Ψ〉 will not produce
normally distributed estimates for σ2. Due to the relationship

Ω(Ψ) =
〈Ψ|(ω − Ĥ)|Ψ〉
〈Ψ|(ω − Ĥ)2|Ψ〉

=
ω − E

(ω − E)2 + σ2
(2.6)

we are left with the consequence that statistical estimates for Ω via Eq. (2.7) will also not
be normally distributed.

Ω ≈
∑Ns

i=1 ω − EL(~ri)∑Ns

i=1(ω − EL(~ri))2
(2.7)

In a previous study, [161] we overcame this difficulty with the alternative importance
sampling function

|ΨM|2 = |Ψ|2 +
ε |∇2Ψ|2

1 + exp
[(

ln |Ψ| − ln |Ψ|+ σΨ

)
/σΨ

] (2.8)

in which the average ( ln |Ψ| ) and standard deviation (σΨ) of the logarithm of the wave func-
tion absolute value are estimated on a short sample drawn from the traditional distribution
|Ψ(~r )|2/〈Ψ|Ψ〉. For any ε > 0, Eq. (2.8) guarantees that the wave function ratio

η(~r ) =
∣∣Ψ(~r )/ΨM(~r )

∣∣ (2.9)
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and the modified local energy

EM
L (~r ) = η(~r )EL(~r ) (2.10)

will be finite everywhere, which implies that if we draw Ns samples from the distribution
|ΨM(~r )|2/〈ΨM|ΨM〉, the resulting statistical estimates

E ≈
∑Ns

i=1 η(~ri)E
M
L (~ri)∑Ns

i=1

(
η(~ri)

)2 (2.11)

σ2 ≈

∑Ns

i=1

(
EM
L (~ri)− η(~ri)E

)2

∑Ns

i=1

(
η(~ri)

)2 (2.12)

Ω ≈

∑Ns

i=1 η(~ri)
(
ωη(~ri)− EM

L (~ri)
)

∑Ns

i=1

(
ωη(~ri)− EM

L (~ri)
)2 (2.13)

are guaranteed to be normally distributed for sufficiently large Ns. Note that, due to di-
vergences in EL, this central limit theorem guarantee would not be true [212, 211] for the
σ2 and Ω estimates if we had made the traditional choice of |ΨM|2 = |Ψ|2. Also note that,
although the denominator in Eq. (2.8) is not strictly necessary in order to recover normal
statistics for the estimates of σ2 and Ω, it does help keep us as close as possible to |Ψ|2 and
thus the zero variance principle by smoothly switching off the modification when the value of
the wave function magnitude is large relative to its average. This way, the divergences that
occur near the nodes of Ψ are avoided, while at the same time the probability distribution
is left essentially unmodified in regions of space where the wave function magnitude is large.

By exploiting the table method [42], it is possible to employ ΨM without changing the
overall cost scaling of the Markov chain propagation. Although we now must evaluate
∇2Ψ = −2ΨKL every time we move one of our electrons, the local kinetic energy KL has
the same cost scaling as that of evaluating Ψ itself once the matrices A, B, T , and M
(see section 2.5) have been prepared. Thanks to the Sherman Morrison formula, these
matrices can be updated efficiently during each one-electron move, and although the new
per-move need for M and KL does increase the update cost, it does not change the scaling.
Overall, our experience has been that the practical benefits of using ΨM to achieve normally
distributed estimates for σ2 and Ω more than make up for the additional cost of its Markov
chain propagation.

Before discussing our method’s efficacy in predicting excitation energies, we would like to
emphasize the benefit of drawing samples from the modified guiding wave function ΨM. As
seen in Figure 2.1, even the relatively simple optimization of a 6-configuration wave function
for the first excited singlet of thioformaldhyde benefits significantly from the recovery of
normal statistics for our estimates of Ω. For a sample size of Ns = 768, 000 drawn from
either |ΨM|2 or |Ψ|2, the worst uncertainties seen in Ω during the last 25 iterations (as
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measured by a blocking analysis that assumes the statistics are normal) are a factor of 4
smaller for the modified guiding case. Even if |Ψ|2 resulted in normal statistics (which
it does not), this would imply that our modified guiding function reduces the number of
samples needed to reach a given uncertainty by a factor of 16, which more than makes up
for the roughly 3 to 4 times increased cost per sample of propagating the Markov chain for
|ΨM|2. It is also worth noting that, thanks to the decreased uncertainty, the optimization
that employed |ΨM|2 (which is used as the guiding function not only when estimating Ω but
also when evaluating the derivatives needed by the linear method) was able to converge to
a lower average value of Ω. For more details on thioformaldhyde, see Section 3.2.
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Figure 2.1: The objective function Ω (in (Eh)−1) during the optimization of the first singlet
excited state of SCH2 using a 6 configuration wave function. Here we compare results using
the traditional |Ψ|2 guiding function (A) and our modified guiding function |ΨM|2 (B). The
first 25 steps hold the orbitals fixed while optimizing the CI and Jastrow parameters while
the last 25 steps optimize the orbitals as well.
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2.3 Configuration Selection

Two different methods were used to produce configurations for MSJ wave functions. For
the aperiodic systems we use S-CI, while for the periodic systems we use a method we dub
‘VMC-CI’.

Configuration selection for aperiodic systems

The rapid progress in selective CI methods in recent years has greatly simplified the selection
of configurations for MSJ wave functions. Although we expect that any modern selective
CI method would work well with our approach, we have taken advantage of existing links
between the QMCPACK code [104] and the CIPSI implementation within Quantum Package
[1] in order to extract configurations from the CIPSI variational wave function. As studied by
Dash et al, [45] a MSJ wave function can either be arrived at by stopping the CIPSI algorithm
once its expansion has reached the desired configuration number, or by intentionally running
CIPSI to a much larger configuration number and then truncating to the number desired for
use in MSJ. Following their recommendation that the latter method is more effective, we have
for each of our systems iterated CIPSI with all non-core electrons and orbitals active until
each state’s variational wave function contains at least 5,000 configurations, after which
we truncate to the (typically much smaller) set of configurations used in a state’s MSJ
wave function by retaining the configurations with the highest CIPSI weights for that state.
Although there is no guarantee that all of the first so many configurations from this procedure
will be needed after introducing Jastrow factors and orbital relaxations, we expect that this
strategy of converging CIPSI to a much larger number of configurations than needed will
help identify the most important configurations. Although 5,000 configurations is far too few
for even perturbatively-corrected CIPSI to be converged for most of the systems we consider,
the subsequent addition of state-specific orbital optimization, Jastrow factors, and variance
matching allows this lightweight approach to be quite accurate.

Configuration selection for periodic system

The VMC-CI method refers to ‘configuration interaction like’ calculation being performed
in the presence of a Jastrow factor. The steps are as follows...

1. Optimize the Jastrow Factor associated with a SJ wave function for the ground state.

2. Include all potential configurations one would like to consider in a linear expansion of
the wave function. In particular we begin with a CIS expansion, then select for the
most heavily weighted configurations as a starting point to produced double excitation
configurations. This procedure will be referred to as QMC-CIS(D).
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3. Evaluate the Hamiltonian matrix by performing Monte Carlo integration of the matrix
elements. Then diagonalize the matrix to have ground state and excited state eigen-
weights of the configuration

4. With the initial weights of these configurations determined, now optimize all parameter
in the wave function variationally via for both the ground and excited state.

2.4 Variance Matching

Two different methods were used for ‘variance matching’. For the aperiodic systems we use
an ‘implicit’ method, while for periodic systems the variance of the ground and excited state
were explicitly matched.

Variance matching aperiodic systems

In our previous work [161] we showed that, in practice, predictions of energy differences
can be improved by adjusting the sizes of different states’ MSJ CI expansions such that the
states’ energy variances σ2 were equal. The idea is to exploit the fact that σ2 is essentially a
measurement for how close a state is to being a Hamiltonian eigenstate, and, in the absence
of a more direct measure of a states’ energy error, this measurement should be useful in
ensuring that different states are modeled at similar levels of quality so as to avoid bias.
That this approach helps improve cancellation of error is likely due, at least in part, to the
fact that the energies of low-lying states tend to converge from above for large CI expansions,
as the missing tail of small-coefficient determinants means that what tends to be missing is
a full accounting of weak correlation effects, which in low-lying states tend to lower a state’s
energy.

As before, we take the approach of evaluating both E and σ2 for a series of ground state
wave functions of differing CI expansion lengths so that we can interpolate to the expansion
length for which the ground state variance matches that of the excited state. We perform
the interpolation via the nonlinear fitting function (NLFF)

f(N) = c+
d

Nα
(2.14)

where the functional form f is used to interpolate both the energy E and energy variance σ2

by fitting the values c, d, and α for each case separately based on an uncertainty-weighted
least-squares fit. Once these fits are made, we can estimate the expansion length N for
which the ground state variance would match that of the excited state, and then, for that
value of N , what we expect the ground state energy would be. Note that this is only one
possible approach, as we could equally well have fixed the ground state wave function and
varied the number of determinants in the excited state. An example of the variance and
energy matching fits and procedure (with switched roles for ground and excited states) for
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CH2NH is provided in Section 3.1 Figure 3.1. In some cases (e.g. see Section 3.3) it makes
more sense to seek an explicit match between two states’ variances rather than relying on
interpolation.

Variance matching periodic systems

Implicit variance matching scheme works well for aperiodic systems because the Multi-Slater
expansions achievable correspond to significant improvements in the variance, but this is not
the case for periodic systems. As we noted in section 1.3 much larger expansions of the
wave functions is necessary for periodic systems to achieve the same gains that are seen in
aperiodic systems (because of the necessary sampling of the Brillouin zone). To illustrate
this point consider an aperiodic system with N electrons with a corresponding peridodic
system whose minimal unit cell contained N electrons and requires a 4x4x4 Monkhorst-Pack
k-point grid to sufficiently sample the Brillouin zone. Now lets suppose that the aperiodic
system necessitates an active space of 4 electrons in 4 orbitals for desired accuracy, the
corresponding active space for the periodic system would be 256 electrons in 256 orbitals.
This is far beyond what active space methods can currently achieve (see section 1.3).

So as an alternative to implicit variance matching we perform explicit variance matching
which is simply having the ground and excited state energy variances match. In practice if
the variances of the ground and excited state are within one standard error of each other
this is considered variance matched.

2.5 Orbital Optimization of Multi-Slater Jastrow

Wave Functions

The Table Method

First introduced by Clark and coworkers [42, 127] and recently improved by Filippi and
coworkers, [62, 12] the table method has dramatically increased the size of CI expansions
that can be handled by VMC within a MSJ wave function. While the reader is encouraged
to consult the above publications for a fully detailed explanation of the table method, we
will review the theory here as it will prepare us for the discussion of applying automatic
differentiation. To understand the table method’s efficacy, we will analyze the MSJ wave
function

Ψ(~r) = Φ(~r) ψJ(~r) (2.15)

Φ(~r) =
N∑
I=0

cIDI(~r) (2.16)

in which ψJ is the symmetric Jastrow correlation factor and Φ the linear combination of
antisymmetric Slater determinants DI . While in practice one can (and our software does)
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exploit the factorization DI = DI↑DI↓ in situations in which the number of electrons of
each spin is fixed, we will for ease of presentation describe the theory in terms of a fictitious
system in which all the electrons are spin up, in which case Eq. (2.16) applies without further
factorization of DI . The generalization to cases where electrons of both spins are present is
straightforward if a bit tedious.

In our system of n up-spin electrons and m orbitals, we may define an n×m matrix A
whose elements are the orbital values for each electron’s position,

Ai,j = φj(ri) (2.17)

with the first n columns corresponding to the orbitals in the reference determinant D0. Note
that we are using notation where ~r is a length 3n vector of all the electron coordinates, while
ri is a length 3 vector of the ith electron’s coordinates. We write the determinants in our
multi-Slater (MS) expansion as

DI = det(AI) (2.18)

where the n × n matrix AI is formed by taking only those columns of A that correspond
to orbitals that are occupied in the Ith electron configuration. We will designate the I = 0
configuration as the reference configuration, typically the Aufbau configuration, so that,
starting from the matrix A0, we may construct the matrix AI via kI column replacements,
where kI is the number of single-electron excitations required to transform configuration 0
into configuration I. Using two n×kI matrices UI and PI , one can express this relationship
as

AI = A0 +UIP
T
I . (2.19)

Specifically, each column of PI has one element with value 1 and the rest zero, while each
column of UI contains the difference between the column of A needed for the Ith config-
uration and the one it replaces from the reference configuration. Noting that P T

I PI is the
kI × kI identity matrix, we can rearrange Eq. (2.19) as

UI = (AI −A0)PI , (2.20)

which, along with the matrix determinant lemma, allows us to write DI in terms of D0 and
the determinant of a kI × kI matrix αI ,

αI = P T
I A

−1
0 AIPI (2.21)

DI = det(AI)

= det(A0) det(I + P T
I A

−1
0 UI)

= D0 det(I + P T
I A

−1
0 (AI −A0)PI)

= D0 det(αI). (2.22)
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As originally recognized by Clark et al, [42] αI can be constructed efficiently by simply
copying the appropriate elements from the precomputed n×m “table” matrix

T = A−1
0 A (2.23)

from whence the table method takes its name. Thus the cost of evaluating the contribution
each additional configuration makes to the wave function value goes as only (kI)

3, which
since in practice kI tends to be small represents a large speedup compared to the n3 per-
configuration cost that would be incurred if the different determinants DI were evaluated
directly as det(AI). All together, the wave function logarithm can now be expressed as

ln(Φ) = lnD0 + lnQ (2.24)

Q = c0 +
N∑
I=1

cI det(αI) (2.25)

where lnD0 is the result in the single-Slater case and lnQ corrects for the presence of
additional configurations.

Following the presentation of Filippi and coworkers, [62, 12] we can see how this efficiency
can be extended to evaluating the local energy by defining a Jastrow-dependent one-body
operator Ô.

Ôi = −1

2

(
∇2
iψJ
ψJ

+
2∇iψJ · ∇i

ψJ
+∇2

i

)
(2.26)

Ô =
n∑
i=1

Ôi (2.27)

By forming the intermediates

tI =
n∑
i=1

−1

2

∇2
i (ψJDI)

ψJDI

=
1

DI

n∑
i=1

−1

2

[
∇2
iψJ
ψJ

+
2∇iψJ · ∇i

ψJ
+∇2

i

]
DI

=
1

DI

n∑
i=1

ÔiDI

=
ÔDI

DI

(2.28)

the kinetic part of the local energy EL can be written as

KL =

∑
I cIDItI∑
I cIDI

. (2.29)
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The kinetic energy intermediates tI can be converted into a particularly convenient form by
defining the n×m matrix B with elements

Bi,j = Ôi φj(ri), (2.30)

from which n×n matrices BI for each configuration can be constructed in the same fashion
as the matrices AI were derived from A. Crucially, one can now use the Leibniz formula to
rewrite the intermediates as

tI =
ÔDI

DI

=
∂

∂λ
ln
(
det(AI + λBI)

)∣∣∣
λ=0

. (2.31)

Now, for a generic invertable matrix G with cofactor matrix C, one can use the cofactor
formulas for the determinant and the matrix inverse to arrive at the identity

∂

∂ξ
ln(det(G)) =

∑
i,j

∂ ln(det(G))

∂Gi,j

∂Gi,j

∂ξ

=
∑
i,j

Ci,j
det(G)

∂Gi,j

∂ξ

=
∑
i,j

G−1
j,i

∂Gi,j

∂ξ

= Tr[G−1∂G

∂ξ
]. (2.32)

For the reference configuration, this identity gives us

t0 = Tr[A−1
0 B0]. (2.33)

For the other configurations, we note that Eq. (2.22) remains valid under the replacement
A→ A+ λB, which we use with Eqs. (2.31) and (2.32) to find that

tI =
∂

∂λ

[
ln
(
det(A0 + λB0)

)
+ ln

(
det
(
P T
I (A0 + λB0)−1(AI + λBI)PI

))]
λ=0

= t0 + Tr[α−1
I βI ] (2.34)

where we have defined the kI × kI matrix

βI =
∂

∂λ

(
P T
I (A0 + λB0)−1(AI + λBI)PI

)∣∣∣
λ=0

= P T
I (A−1

0 BI −A−1
0 B0A

−1
0 AI)PI . (2.35)
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As for αI and T , we can define a second table matrix

M = A−1
0 B −A−1

0 B0A
−1
0 A (2.36)

such that each βI can be built by simply copying the appropriate elements from the pre-
computed matrix M . Combining Eqs. (2.22), (2.25), (2.29), and (2.34) leads us to our final
expression for the kinetic portion of the local energy

KL = t0 +
1

Q

N∑
I=1

cI det(αI)Tr[α−1
I βI ] (2.37)

in which the local kinetic energy t0 of the reference-configuration-based single-Slater-Jastrow
wave function is corrected by the second term to produce the local kinetic energy of the full
MSJ wave function. We therefore see that the table method allows the local energy to be
evaluated for a cost that goes as n2m for the construction of T , M , and t0 plus an additional
per-configuration cost that goes as just (kI)

3.
To achieve state-specific orbital optimization, we minimize the excited state objective

function Ω via a generalization of the linear method. [190] In practice, this requires evaluating
the derivatives of EL and ln(Ψ) with respect to the wave function variables at every sample
of the electron positions, an endeavor that has recently been made drastically more efficient
thanks to the approach of Filippi and coworkers. [62, 12] In their derivation, they construct
the matrix

Γ =

(
∂ ln Φ

∂A

)T
(2.38)

and reformulate the local kinetic energy as

KL = Tr [ΓB] , (2.39)

which they then combine with efficient derivatives of Γ to provide a general and efficient
approach for determining wave function and local energy derivatives with respect to arbitrary
variables, such as orbital parameters or nuclear coordinates. Compared to the original table
method, this approach greatly reduces the cost of evaluating these derivatives.

Automatic Differentiation

Inspired by Filippi’s efficiency breakthrough, we set out to discover whether there would be
any advantage to instead directly applying AD to the wave function and local kinetic energy
expressions. In short, we found that the AD route leads to a formulation very similar to
Filippi’s in which the terms that involve summing over the MSJ’s configurational expansion
are identical, and so it does not seem to offer any practical advantages. It is however
interesting to confirm that AD essentially agrees with the existing method.
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To get started with an AD approach, we recognize that, for a given set of electron
positions, both KL and ln(Φ) are many-input/single-output functions of the wave function’s
variational parameters, and so we expect that the AD approach of reverse accumulation [75,
201, 191] will yield all derivatives of these functions for a cost that is a small constant multiple
of the cost to evaluate the functions themselves. Reverse accumulation is essentially a careful
exploitation of the chain rule, and so, starting with Eqs. (2.24) and (2.25) and recalling that
αI is a kI×kI matrix with elements copied from T , we formulate the wave function derivative
with respect to a variable µ as

∂ ln Φ

∂µ
=
∂ lnD0

∂µ
+ Tr

[(
∂ lnQ

∂T

)T
∂T

∂µ

]
. (2.40)

The first term here is the derivative for a single-Slater wave function, with the second term
giving the correction for the multi-Slater case. Once the derivative matrix ∂ lnQ/∂T has
been found, reverse accumulation can continue via the back propagation graph of T itself at
a cost that is independent of the number of configurations N . Note especially that the cost
and difficulty of this stage of reverse accumulation is not made substantially harder if we
wish to have derivatives with respect to multiple types of variables, such as orbital rotations
and nuclear positions, as reverse accumulation graphs for simple matrix expressions like Eq.
(2.23) and the construction of A from atomic orbitals are straightforward. Crucially, reverse
accumulation does not require us to explicitly form ∂T /∂µ for all the different quantities µ
we wish to differentiate with respect to, so the key challenge in this approach is the evalu-
ation of the derivatives ∂ lnQ/∂T that are to be fed in to the rest of the back propagation
computational graph.

To evaluate these derivatives ∂ lnQ/∂T , we use the determinant derivative

∂

∂x
det(αI) = det(αI)Tr

[
α−1
I

∂αI
x

]
(2.41)

with Eq. (2.25) to get

∂ lnQ

∂Tij
=

1

Q

N∑
I=1

cI det(αI)Tr

[
α−1
I

∂αI
∂Tij

]
. (2.42)

It is important to note that the matrix ∂αI/∂Tij is either filled with zeros or with all zeros
except for a single element with value one, depending on whether the element Tij was one of
those copied in to αI during its construction. Combined with the fact that α−1

I has already
been evaluated for the formation of KL, this sparsity means that only O(k2

I ) operations are
needed for each configuration’s contribution to the construction of ∂ lnQ/∂T in this first
stage of back propagation. To compare this with Filippi’s approach, we note that Eq. (2.42)
is equivalent to and under sparse evaluation has the same evaluation cost as Eq. (21) of Ref.
[12].
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For the kinetic energy, the chain rule in the first step of reverse accumulation gives

∂KL

∂µ
=
∂t0
∂µ

+ Tr

[(
∂KL

∂T

)T
∂T

∂µ

]

+ Tr

[(
∂KL

∂M

)T
∂M

∂µ

]
. (2.43)

Taking the last term first and noting that ∂βI/∂Mij and ∂αI/∂Tij are equal as βI is formed
from M via the same copying pattern by which αI is formed from T , we have

∂KL

∂Mij

=
1

Q

N∑
I=1

cI det(αI)Tr

[
α−1
I

∂βI
∂Mij

]
=
∂ lnQ

∂Tij
(2.44)

which has already been evaluated when constructing the wave function derivatives and so
incurs no additional cost. The middle term in Eq. (2.43) does require additional work, but
by again using the determinant derivative and also the relationship

∂

∂αI
Tr[α−1

I βI ] = −(α−1
I βIα

−1
I )T (2.45)

we can write

∂KL

∂Tij
= (t0 −KL)

∂ lnQ

∂Tij

+
N∑
I=1

cIdet(αI)

(
Tr[α−1

I βI ]Tr

[
α−1
I

∂αI
∂Tij

]

− Tr

[
α−1
I βIα

−1
I

∂αI
∂Tij

])
(2.46)

whose evaluation incurs an additional cost that goes as O(k3
I ) per configuration after again

exploiting the sparsity of the ∂αI/∂Tij derivatives. At this point we find a second important
parallel between the AD approach and that of Filippi and coworkers, as Eq. (2.46) is equiv-
alent to and has the same per-configuration cost as the configurational sum within Eq. (33)
of Ref. [12]. With both ∂KL/∂T and ∂KL/∂M evaluated, reverse accumulation can now
proceed through the back propagation graphs of T and M at a cost that is independent of
the number of configurations. Again, it is crucial to point out here that regardless of how
many and what type of parameters µ we are taking derivatives for, the derivatives ∂T /∂µ
and ∂M/∂µ need not be explicitly constructed when performing reverse accumulation. In
the case of orbital rotations or nuclear positions, the computational graphs for T and M
are simple to back propagate through, and this last step will have essentially the same cost
as their initial construction.
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In summary, the direct application of AD to the wave function and local kinetic energy
derivatives results in expensive terms (those that scale with the number of configurations N)
that are entirely equivalent to the analogous terms in Filippi’s approach. The details of the
terms that do not scale with configuration number appear to be different, but in calculations
with large numbers of configurations the cost of such terms is negligible. Thus, we find
that AD offers no clear advantage over the methodology of Ref. [12], but it is nice to see it
confirm the form of that methodology’s most expensive and complicated components.

Simple Orbital Optimization Test

As an initial test of our orbital optimization implementation, we verify that it can remove
the wave function’s dependence on the initial orbitals in a low-symmetry, strongly correlated
arrangement of four hydrogen atoms in which we construct a MSJ wave function for the
ground state using the 10 most important configurations from a ground state CASSCF
(4e,10o) calculation. With these configurations, we construct three different MSJ wave
functions by employing molecular orbitals from RHF, B3LYP, and the (4e,10o) CASSCF.
As seen in Figure 2.2A, ground state energy optimizations in which the orbitals are held
fixed and only the Jastrow and CI coefficients varied result in three distinct energies, but
when we then optimize the orbitals as well all three wave functions converge to the same
energy, showing that the orbital optimization successfully removes the dependence on starting
orbitals in this case.

Although the effects are not large, the orbital optimization does have a statistically
significant effect on DMC energies, as Figure 2.2B shows the orbital-optimized nodal surface
to be superior to that of any of the three wave functions in which only the Jastrow and CI
coefficients were optimized.
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Figure 2.2: A: Energy vs optimization step for H4 starting from different initial guesses for
the orbitals. The orbitals are held fixed and only the CI coefficients and Jastrow variables
optimized during the first 25 steps, after which all variables are optimized together. B:
Time-step extrapolated DMC energies using the optimized trials wave functions before and
after orbital optimization.
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Chapter 3

Aperiodic systems

3.1 Formaldimine (CH2NH)

Photoisomerization is an important phenomenon that is responsible for many interesting
chemical events both in nature and the laboratory setting and is an excellent example of
the intersection between multi-reference wave functions and excited states. Molecules that
undergo photoisomerization include rhodopsins, retinal proteins involved in the conversion
of light to electrical signals [122], and azobenzene, the prototypical photo switch studied
for potential applications as a molecular motor. [136] One of the smallest molecules that
undergoes photoisomerization is formaldimine (CH2NH), in which the process proceeds fol-
lowing an absorption that promotes it to its lowest singlet excited state. [197, 52, 177] The
subsequent rotation around the C=N bond mixes the σ and π orbitals and has been well
studied, including by molecular dynamics simulations, [65, 202] and so this molecule makes
for an excellent system in which to test the effects of state-specific orbital optimization and
variance matching with modest MSJ expansions.

We model the ground and HOMO-LUMO (n→ π∗) excitation for torsion angles of 0, 45,
and 90 degrees (an A′ → A′′ transition for the 0◦ and 90◦ geometries where the molecule has
Cs symmetry) using BFD effective core potentials and their VTZ basis. At each geometry,
we ran a CIPSI calculation on the two lowest singlet states until it had accumulated at least
5,000 configurations. MSJ wave functions were then constructed by taking configurations
with CI coefficients above a threshold (we tested three different thresholds: 0.02, 0.01, and
0.005) for both the ground and excited states. The resulting QMC calculations were then
used to create our NLFFs to perform variance matching (an example of NLFFs is presented
in Figure 3.1 for the 0◦ torsion coordinate). As twisting the C=N double bond introduces
correlation, the number of configurations associated with a certain threshold varies at differ-
ent torsion coordinates. For example, the ground state at a CI threshold of 0.01 corresponds
to 5 configurations for the 0◦ geometry, 74 configurations for the 45◦ geometry, and 122
configurations for the 90◦ geometry.

The reader will likely have noticed that, for the 0◦ geometry presented in Figure 3.1,
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we have reversed the role of ground and excited state in the variance matching procedure.
This was done because of the unusual fact that, at this geometry, the ground state variances
for the different CI thresholds were higher than the corresponding thresholds’ excited state
variances. Indeed, Figure 3.1 reveals that the lowest-threshold ground state variance that we
used as the variance to be matched was higher even than the excited state’s middle-threshold
variance. In all cases we have studied in both this paper and elsewhere, this is the only one
where we have observed the excited state having lower variances at a given threshold. Rather
than changing the thresholds and hoping the situation would reverse itself, we instead simply
reversed the role of ground and excited state in the variance matching in order to keep with
the procedure’s intention of fitting points on the lower-variance state to match the best wave
function available for the higher-variance state.

For determining the rotational barrier heights, we took energy differences between the
90◦ and 0◦ geometries for both the ground S0 and excited S1 state. In this case, variance
matching was performed separately for the S0 and S1 state barriers. As when computing
excitation energies, we used the three different expansions coming from our three different
thresholds to construct NLFFs for variance matching. As mentioned above, the ground state
at the 0◦ geometry had a high variance compared to all other geometries and states. It was
therefore most appropriate to use the lowest-threshold variance at the 0◦ geometry as the
variance to be matched and to interpolate via NLFFs between variances of the different
expansions at the 90◦ geometry, which we did separately for evaluating both the S0 and S1
barrier heights.

One interesting observation here is that the CI expansions derived from truncated CIPSI
had as many as 57% of their configurations lying outside of a full valence (12e,12o) active
space, which echoes previous studies in which selective CI wave functions often find many
out-of-active-space configurations that prove to be more important than most of the active
space configurations. That more than half of the 600 most important determinants in a CIPSI
wave function lie outside of an active space that contains 853,776 determinants reminds us
how significant this effect can be. It is also important to note that, thanks to starting from
a truncated CIPSI wave function, our approach does not require selecting an active space
in this molecule, which removes one of the more vexing difficulties of many multi-reference
methods. In general this approach might be expected to lead to unaffordable selective CI
calculations, but since we are truncating these wave functions to very modest CI expansion
lengths anyways, we do not necessarily need CIPSI to converge to form a useful MSJ wave
function out of it, a point to which we will return in Section 3.3.

As seen in Figure 3.2, our approach — which incorporates modest CI expansions, state-
specific orbital optimization, and variance matching — predicts energy differences for ex-
citations and barrier heights that are within 0.1 eV of full-valence active space (12e,12o)
state-averaged MRCI+Q in all cases. It is especially noteworthy that the alternative ap-
proach of taking energy differences between fully optimized MSJ wave functions in which
configurations for both states are selected via a shared CI coefficient threshold is much less
reliable than the variance matching approach. This juxtaposition is a reminder that balanc-
ing wave function quality is crucial when working with unconverged CI expansions. Although
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Figure 3.1: Plots of the NLFF fits from Eq. (2.14) (blue curves) for CH2NH at the 0o

geometry. The excited state variance and energy data points being fit to are shown in
red. The arrows demonstrate the variance matching procedure. In the top plot, the arrow
takes the ground state variance and uses the NLFF to find the corresponding number of
determinants the excited state would need to match that variance. In the bottom plot, the
NLFF is used to convert this number into a ground state energy. Note that in this case
(for reasons discussed in Section 3.1) we fit the excited state data and interpolate based on
an input ground state variance, but the procedure is more typically applied by fitting the
ground state data and interpolating based on an excited state variance.

this system is of course small enough that large brute force expansions are feasible (indeed
CASPT2 also gives highly accurate results when used with a full-valence CAS), we emphasize
that in large systems such an exhaustive approach will not be feasible and CI-based methods
will be forced to work with incomplete CI expansions if they are to be used at all. The fact
that our overall approach is able to be successful in this case despite using incomplete CI
expansions is thus quite encouraging.
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Figure 3.2: Top row: excitation energies for CH2NH at various torsion angles. Bottom row:
barriers to rotation on the ground state (S0) and excited state (S1) surfaces. Statistical
uncertainties were less than 0.04 ev in all cases

3.2 Thioformaldehyde (SCH2)

Although CH2S undergoes similar chemical reactions as CH2O [171, 43] and sees a similar
change (about 0.8 Debeye) in its MRCI dipole moment during its low-lying n → π∗ singlet
excitation (an A1 → A2 transition), this absorption band is red-shifted so that what lay in
the near ultraviolet in CH2O lies in the visible region [43] for CH2S. Given sulphur’s more
labile valence electrons and the persistence of modest charge transfer character, CH2S makes
for an interesting test case, especially because exact results can be benchmarked against even
in a triple zeta basis by employing large-core pseudopotentials so that only 12 electrons need
to be simulated explicitly.

We took the approach described in the theory sections in order to try to ensure balanced
MSJ descriptions of the two states. Specifically, we optimized the orbitals, CI coefficients,
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and Jastrow variables for an 875 determinant MSJ expansion for the first excited singlet state
using determinants drawn from a two-state CIPSI calculation in the RHF orbital basis. We
then performed a series of analogous ground state optimizations using expansions with 2,
5, 10, 50, 100, and 875 determinants taken from the same CIPSI calculation to perform
our NLFF. After fitting our NLFF to the resulting energies and variances, our variance-
matched approach predicts an excitation energy similar to that of full-valence state-specific
CASPT2, as seen in Table 3.1. The correct excitation energy in this basis — confirmed by the
agreement of MRCI+Q with extrapolated SHCI — is about 0.2 eV higher. We therefore see
that, although our approach to balancing the accuracies of the different states’ descriptions
is not perfect, it is able to provide reasonably high accuracy with very short CI expansions.

A feature of CH2S that is worth noting is that our multi-reference quantum chemistry
results are quite insensitive to whether we a) ignore the molecule’s symmetry and arrive at
the ground and first excited singlets via a 2-state state average or b) exploit the molecule’s
symmetry in order to treat both the ground and excited state as ground states of their respec-
tive symmetry representations. Table 3.1 shows that the CASSCF, CASPT2, and MRCI+Q
excitation energies are little changed when we switch between these state-averaged and state-
specific approaches. Certainly our ability to afford a full-valence CAS in thioformaldehyde
contributes to this insensitivity, but in any case our MSJ approach’s ability to tailor the
orbitals in a state-specific manner is clearly not essential here. We now turn to a case in
which state averaging is more problematic in order to emphasize the advantages of a fully
variational approach with state-specific orbitals.

Table 3.1: Excitation energies for the lowest singlet excitation in thioformaldehyde.
CASSCF, CASPT2, and MRCI+Q used a full-valence (12e,10o) active space, while SHCI
(and the CIPSI calculation from which we generated the MSJ expansion) was performed for
all 12 electrons in all orbitals.

Method hν / eV
2-state-SA-CASSCF 2.68
SS-CASSCF 2.65
2-state-SA-CASPT2 2.16
SS-CASPT2 2.13
2-state-SA-MRCI+Q 2.31
SS-MRCI+Q 2.32
SHCI 2.31(1)
EOM-CCSD 2.40
Variance Matched VMC 2.07(2)
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3.3
[
C3N2O2H4Cl

]−
Compared to CH2S, many of the low-lying excited states of

[
C3N2O2H4Cl

]−
, shown in Figure

3.3, have very strong charge transfer character. In the ground state, this system localizes the
extra electron on the Cl atom, which although not bonded covalently to the main molecule
is attracted by dipole/charge interactions and dispersion forces (we determined its location
through MP2/cc-pVDZ geometry optimization). According to EOM-CCSD, the first four
singlet excited states all transfer an electron into the lowest π∗ orbital. In order of increasing
excitation energy, these transfers come from the two Cl in-plane p orbitals (3.56 and 3.74
eV), the Cl out-of-plane p orbital (3.86 eV), and an oxygen in-plane p orbital (3.91 eV). In
addition, there are multiple other n→π∗ and π→π∗ singlet transitions in the 4−7 eV range.
Although some of these states have strong charge transfer character, EOM-CCSD is a good
reference for their excitation energies thanks to: (a) the fact that they are all singly excited
states and (b) EOM-CCSD’s doubles operator’s ability to provide the state-specific orbital
relaxations that are so crucial for charge transfer.

In contrast, multi-reference methods are harder to use effectively here, both due to the
molecule’s larger size and due to the difficulties that state averaging encounters when faced
with states that have large differences between their charge distributions. Most notably, the
ground state and any excited states that do not involve the chlorine atom have dipoles that
differ by more than 10 Debeye compared to excited states that have transferred an electron
from the chlorine into the π network. These differences mean that even orbitals outside the
active space are expected to relax significantly when transferring between these two sets of
states, making it exceedingly challenging to arrive at a good set of state averaged orbitals
that are appropriate for all of the low-lying states. This difficulty can be seen even if we

Figure 3.3: The
[
C3N2O2H4Cl

]−
anion used in our chlorine-to-π∗ charge transfer example.

In the ground state, the charge is localized on the (green) chlorine atom, while many of the
excited states have the charge distributed in the π network.
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Table 3.2: Excitation energies in eV for the totally symmetric chlorine-to-π∗ transition in[
C3N2O2H4Cl

]−
using BFD effective core potentials and the corresponding VDZ basis set.

[29] CASSCF and CASPT2 results are based on either state averaged (SA) orbitals or nearly
state specific (SS) orbitals. CASPT2 employed either Roos-Andersson (RA) level shifts [164]
or the ionization potential electron affinity (IPEA) approach [69] to deal with intruder states.
See Section 3.3 for details. VM-VMC (g,e) stands for Variance Matched VMC with g/e being
an integer value representing the number of determinants used in the ground (g) and excited
(e) state wave functions.

Method Level Shift hν
4-state-SA-CASSCF N/A 2.127
2-state-SA-CASSCF N/A 3.980
(95/5)-SS-CASSCF N/A 4.669
4-state-SA-CASPT2 RA ε = 0.2 3.369
4-state-SA-CASPT2 RA ε = 0.3 3.340
4-state-SA-CASPT2 IPEA ε = 0.25 3.461
2-state-SA-CASPT2 RA ε = 0.2 3.285
2-state-SA-CASPT2 RA ε = 0.3 3.304
2-state-SA-CASPT2 IPEA ε = 0.25 3.546
(95/5)-SS-CASPT2 RA ε = 0.2 3.365
(95/5)-SS-CASPT2 RA ε = 0.3 3.387
(95/5)-SS-CASPT2 IPEA ε = 0.25 3.541
PBE0 N/A 1.233
B3LYP N/A 0.903
M06-2X N/A 0.903
wB97X-V N/A 3.348
wB97M-V N/A 3.187
EOM-CCSD N/A 3.856
VM-VMC(10,200) N/A 3.80(3)
VM-VMC(99,1000) N/A 3.87(1)

restrict our attention to the two lowest states in the totally symmetric representation, which
are the ground state (charge on the chlorine) and the out-of-plane-Cl-3p→ π∗ excitation (a
totally symmetric A′ → A′ transition). As seen in Table 3.2, there is a 0.7 eV difference
in the excitation energy predicted by an equally-weighted 2-state state averaged CASSCF
calculation and a calculation in which we attempt to optimize the orbitals state specifically by
using 95%/5% and 5%/95% weightings (note that our active space distributed ten electrons
among the three chlorine 3p orbitals and the five π/π∗ orbitals closest to the gap). The
CASSCF sensitivity to state averaging is thus much higher here than it was in CH2S, and,
as we discuss in the Supporting Information and show in the 4-state-SA-CASSCF results of
Table 3.2, the problem would be worse-still if the molecule’s symmetry plane were not present.
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As real chemical environments such as protein superstructures or solvents typically remove
symmetry, one realizes that these types of state averaging difficulties will be quite common
when attempting to model charge transfer in large molecules and realistic environments.

Of course, one should not expect quantitative accuracy from CASSCF excitation ener-
gies whether or not there are state averaging concerns, as these calculations omit the weak
correlation effects of orbitals and electrons outside the active space. For larger molecules
and active spaces, CASPT2 is much more affordable than MRCI+Q, and so we have em-
ployed it here both to include weak correlation effects and in the hope that it can via its
singles excitations help to put back the state-specific orbital relaxations that are inevitably
compromised during state averaging. Unfortunately, we found that the excited state we
are after suffers from intruder state [164] problems in all cases here, regardless of how the
state-averaging was handled, and so we were forced to employ level shifts in order to avoid
unphysically large perturbative corrections. We found that for each of our state-averaging
and state-specific approaches, the value and type of level shift made a noticeable difference
in the CASPT2 excitation energies, which is not ideal. Overall, the CASPT2 results’s errors
ranged from about 0.3 to 0.5 eV when compared to EOM-CCSD, which does leave something
to be desired but is nonetheless an improvement over TD-DFT.

For our MSJ treatment of this system, we began by iterating the variational stage of a
4 state CISPI calculation (ignoring symmetry) in the RHF orbital basis until it had identi-
fied more than 5,000 important determinants. At this point we found that the out-of-plane
charge transfer state we are focusing on was the fourth CIPSI root and we ended the CIPSI
iterations, even though for a system of this size the expansion procedure was certainly far
from converged. This incomplete CIPSI does not present an issue for us, though, as we
imported only the fourth root’s 200 most important determinants into our MSJ wave func-
tion, and we expect that by the time CIPSI has reached 5,000 determinants the identity
of its leading 200 will be well established. We then applied our variational excited state
methodology to optimize the orbitals, CI coefficients, and Jastrow variables for this MSJ
wave function and evaluated its variance. Repeating this procedure for the ground state
(the first root from the same incomplete CIPSI expansion) we found that its MSJ wave
function required just 10 determinants in order to match the excited state variance. Given
that the ground state variance will be a much more noticeably discreet function of deter-
minant number for such short expansions, we decided to forgo the NLFF (which makes
more sense when the variance is changing close to continuously with determinant number)
and instead varied the number of ground state determinants by hand to find the expansion
whose variance most closely matched that of the excited state. This approach found that the
10-determinant ground state MSJ wave function (with optimized orbitals, CI, and Jastrow)
made for the best match, which resulted in a predicted excitation energy within 0.1 eV of
the EOM-CCSD benchmark, as seen in Table 3.2. To test the robustness of this estimate,
we repeated the procedure using the fourth root’s 1,000 most important CIPSI determinants
to construct a larger excited state wavefunction and in turn found that a 99 determinant
ground state matched its variance. Using the larger wave functions changed the variance
matching estimate for the excitation energy by less than 0.1 eV and moved it even closer
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to the EOM-CCSD benchmark number. Thus, as in the smaller systems, we find that a
combination of short CIPSI-derived expansions, orbital optimization, and variance matching
delivers a reasonably high accuracy even in a case whose size and strong charge transfer
character complicates the application of traditional multi-reference methods.
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Chapter 4

Periodic Systems

4.1 Finite size error and explicit variance matching

In this section we describe the finite size error correction used for periodic system, not needed
in our aperiodic systems. Then we describe in detail the procedure to calculate optical band
gaps using explicit variance matching.

To address the finite size errors of our simulation cell for MgO and PAE we performed
VMC-CIS followed by orbital optimization (which we define as VMC-CIS-OO) calculations
with supercells containing N, 2N, and 4N atoms (in which N is the number of atoms in
the minimal supercell that contains the optical transition of interest) and then performed
an extrapolation for the predicted gap.[228] For MnO this type of finite size effect is too
costly to perform because the minimal supercell that contains the optical transition is very
large. Instead, for MnO, we perform a DMC finite size effect correction based on simple
single-Slater wave functions for the ground and excited state similar to that done by others.
[228, 111, 175]

The steps taken in the prediction of the optical gap are as follows ...

1. Construct and optimize a SJ wave function with chosen SPO set for the ground state.

2. Perform a VMC-CIS or VMC-CIS(D) calculation (see section 2.3) to determine initial
excited state configuration weights

3. Optimize Jastrow, and Orbital coefficients for the ground state. Then Optimize Jas-
trow, CI, and Orbital coefficients for the excited state.

4. Perform explicit variance matching (see section 2.4) by varying the number of configu-
rations in the excited state. If necessary repeat the last two steps for the excited state
with an active space that is larger or smaller.

5. Repeat all previous steps for different supercell sizes. Then use data points to perform
finite size correction of the optical gap via linear extrapolation.
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The details of chosen pseudopotentials, SPO set, supercells sizes, matched variances,
number of determinants in MSJ, finite size extrapolation, and DMC time step extrapolation
can all be found in the Supplemental Material.

4.2 Magnesium Oxide (MgO)

Magnesium Oxide is a simple rocksalt structure material with a lattice constant of 4.21
Å.[225] The conventional picture of the material’s band diagram is that the valence band is
dominated by O 2p character and the conduction band is of Mg 3s character. The optical
excitation can then be interpreted as causing an electron donation from O 2p → Mn 3s. It
has been shown that standard single particle theories are quite adequate at predicting the
optical gap of MgO.[26, 181] Although these single particles theories do not describe the
essential electron-hole interaction of an optical absorption, the singlet excited state of MgO
has only a small exciton binding energy [181, 16] making the approximation of noninteracting
electron and hole acceptable.

Method gap (eV)

Expt 1 7.83(2)
LDA 2 4.98
HF 3 8.9
B3LYP 4 7.6
G0W0

5 7.7
VMC-CIS-OO 6 7.7(2)

Table 4.1: The optical band gap of MgO determined by different methods.

Table 4.1 summarizes prediction of various methods. As is commonly known LDA is
underestimating the gap while HF overestimates the gap. The G0W0 approach under the
random phase approximation taken by Schönberger and Aryasetiawan correctly increases
the LDA gap by including dynamically screened Coulomb potential (which is known to work
well for s-p systems such as MgO).[181]

Our approach to the optical band gap is also an improvement compared to the single
particle theories and produces a result on par with the G0W0 approximation. We constructed
our MSJ wave function with HSE06 orbitals and given the success of B3LYP at correctly
describing MgO[26] are not surprised at the success of our approach. With qualitatively
correct quasiparticle states our QMC orbital optimization does not need to overcome large
barriers to produce a reasonable estimate to the optical band gap. See section 4.1 and B.1
for details of our VMC-CIS-OO calculation.
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4.3 Trans-Polyacetylene (PAE)

In 2000 the Nobel prize in chemistry was awarded to Alan J. Heeger, Alan MacDiarmid
and Hideki Shirakawa[203] for their 1977 work synthesizing conductive iodine-doped Poly-
acetylene (PAE).[193] Conducting and insulating polymers continue to be of interest due to
their promising applications as organic light emitting diodes (O-LED) and subsequent use
in display technologies.[31, 66]

Despite PAE being a very simple polymer, its insulating nature is not so simple. If one
were to rely on elementary models for a one dimensional system such a “particle in a box”
and “Hükel method” the HOMO-LUMO gap would vanish as the system size continued to
increase which suggests metal behavior. But experimentally there is an observed insulating
behavior with an optical gap of 1.5 eV.[113] By considering Peierl’s theorem one can ratio-
nalize that the polymer chain undergoes distortion to produce a alternating short-long-short
bond length and produces a band gap (analogous to a Jahn-Teller distortion lifting the de-
generacy of electronic states).[149] In fact, this Peierl’s distortion has been demonstrated
experimentally in pristine PAE films[35]

While the Peierls distortion allows for a qualitatively correct prediction of a band gap
there are other effects that still must be considered in order to produce a quantitative pre-
diction of the optical gap. One must consider that the system is not truly one-dimensional
but instead exists in a three-dimensional film. There are also of course the correlation ef-
fects between electrons, the interaction of π molecular orbitals on different chains, and the
electron-hole binding effects to consider as well.

Because DFT/G0W0 calculations are intended for fundamental band gap predictions,
these calculation can only serve as a first order approximation for the optical gap of PAE.
DFT is known to underestimate band gaps, and while G0W0 calculation can be used to
predict the fundamental gap well, it does not take into account an exciton binding energy
necessary for an optical gap prediction. Theoretical prediction for the binding energy ranges
from approximately 0.1 eV to 1.0 eV.[163, 39, 105, 90] The possibly large exciton binding
energy necessitates solving the Beth-Salpeter equations to produce accurate results.[163,
204]. Furthermore comparing single chain to crystal studies of PAE reveal that interchain
interactions are responsible for a reduction of both the electronic energy gap (relative to the
G0W0 fundamental gap) and the binding energy of bound excitons.[204] [163]

In this work we study the lowest singlet transition of PAE using VMC-CIS-OO. We use
the experimentally determined structure by Shimamura and coworkers.[192] Their electron
diffraction work led to the assignment of an orthorhombic unit cell structure which contains
two monomer units and belongs to the Pnam space group.[192]

For the construction of our wave function we use HF orbitals instead of HSE06 as a
starting point because a VMC-CIS calculation resulted in CI vectors that were easy to
interpret for HF orbitals while that of HSE06 were not. But, as can be seen in Table
4.2, the HF orbitals on their own vastly overestimate the gap. By performing parameter
optimization of the Jastrow and orbital parameters in QMC we allow the orbitals to relax
and accommodate the exciton and ultimately produce a reasonable optical gap of 1.38(2)
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a

b

c

Figure 4.1: Packing arrangement of PAE represented in a 2x2x3 supercell.

eV. A value that is close to the experimental 1.5 eV gap [113] and on par with Beth-Salpeter
results of 1.65 eV[204]. See section 4.1 and B.1 for details of our VMC-CIS-OO calculation.

Method gap (eV)

Expt [113] 1.5
PBE 0.02
HF 16.70
HSE06 0.53
G0W0 [204] 1.8
G0W0/BSE [204] 1.65
VMC-CIS-OO 1.38(2)

Table 4.2: The optical band gap of PAE determined by different methods.

4.4 Iron Oxide (FeO)

Iron Oxide (a cubic, anti-ferromagnetic, transition metal oxide, bulk system) is a challenge
for present day electronic structure theory. Its diverse structural, electronic, and magnetic
transformations across a range of pressures and temperatures make it a difficult system to
study both experimentally and theoretically. [32] But even at ambient temperature and
pressure functions, such as the ability to reduce water and create hydrogen gas upon irradia-
tion, are difficult to theoretically model. [123] A proper calculation of Iron Oxide’s electronic
structure need to include: the electron-electron interactions in d orbital subshells, the d-p
orbital hybridization, and the charge transfer character exhibited in excited states, which
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is just plain difficult to do simultaneously. [123] In fact, current theoretical methods fail to
accurately predict its electronic, magnetic and structural properties simultaneously, and rely
on empirical parameters. [123]

Figure 4.2: VMC (left) / DMC (right) strain curves constructed from various QMC wave
functions.[210] The solid lines represent quadratic polynomial fits to the data points to guide
the eye. The grey arrow indicates the experimentally determined lattice distortion.

For the study of FeO we demonstrate that Slater-Jastrow wave functions with orbital
optimization can produce orbital starting point independent DMC energies, spin-density,
and equilibrium lattice distortion that coincide with experimental values. Furthermore the
simple Slater-Jastrow wave function with orbital optimization outperforms traditionally more
sophisticated wave functions regardless of whether the SPOSet was PBE or PBE+U (U =
4.3 eV).

Figure 4.2 illustrates the various strain curves determined by different wave functions.
Details of the all wave functions calculations can be found in (Townsend 2020 [210]). In the
VMC plot it appears that the minimum of the strain curve produced is highly dependent on
the chosen SPO set but less so on the type of QMC wave function used. PBE+U orbitals
produce a negative strain minimum while PBE orbitals produce a positive strain minimum.
Considering a set of wave functions using the same SPO set the ordering of the strain curves
with respect to energy from highest to lowest is SJ, MSJ, BF whether PBE or PBE+U
orbitlas are used. Now considering the DMC plot, we see that the minimum strain of the
PBE orbitals is now positive, and the minimum strain of the PBE+U curves is now negative
(the opposite of the VMC plot). Again, considering the wave function with a common SPO
set the order from highest energy to lowest is now MSJ, SJ and BF.

Now we consider the wave function that is PBE+SJ+OO referred to simply as ‘OO’. The
OO curve in the VMC plot has a significant improvement in the energy over any other wave
function by about 0.1 Eh. Although, despite the variational improvement of the energy the
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Figure 4.3: Spin density plots of FeO using various types of QMC wave functions.[210]

minimum of the strain curve is still predicted to be negative. But the OO curve in the DMC
plot correctly predicts a positive strain minimum and again is the lowest curve with respect
to energy.

With the data presented so far one would like to conclude that orbital optimization is
drastically correcting the nodal surface of the wave function to produce correct DMC result
regardless of starting orbital set. Although the OO performance in the VMC plot casts doubt
to whether this is actually true. Comparing the spin density plots of the various SJ wave
functions with different starting orbitals would help clarify if the nodal surface is truly being
transformed consistently. Figure 4.3 plots the difference in density of the specified wave
function with respect to a PBE+SJ wave function. The plots illustrate how the density
for PBE+U wave functions increases at the Fe centers (as is expected for a +U correction
of transition metal oxide systems). The PBE+MSJ and PBE+BF wave functions seem to
change the spin density very little. Now the most significant finding is that PBE+SJ+OO
and PBE+U+SJ+OO both produce vary similar spin density plots. This suggests that
indeed that the orbitals are being robustly optimized.

The most important consequence of this study is not that the minimum of the strain
curve is correctly produced but that it was arrived at in a way that was parameter free
(by avoiding the need of using +U correction or a particular functional). We discuss the
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motivations and consequences of using the +U correction later in section 4.5 when exploring
the optical gap of the bulk MnO system. But for now suffice it to say that the even if
PBE+U produces qualitatively correct SPO description of the state there is a question of
how to select a value of the U parameter that will lead to reliable quantitative description
of the system. Therefore this ‘parameter free’ QMC approach can be invaluable for systems
in which chemical intution may not be available to include corrections like +U.

4.5 Manganese Oxide (MnO)

Although decades of work have been performed on Transition metal oxides (TMOs) a truly
ab initio prediction of the gap and the nature of the excitation remains elusive. TMOs have
been of theoretical interest as far back as 1937, when single particle theory (band theory)
predicted metallic behavior while experimental evidence revealed an insulating nature.[21]
In this section we take particular interest in the Γ → Γ and Z → Γ optical transitions of
MnO, a TMO with partially filled d-orbitals.

MnO crystallizes into an almost rock-salt (cubic) structure with a small rhombohedral
distortion of α = 90.624(8)◦ and a lattice constant of 4.4316(3) Å.[129, 170] Below it’s Neel
temperature of 116K the system transforms into an AF2 phase.[129, 170] Although decades
of work have been performed on TMOs a truly ab initio prediction of MnO’s optical gap
remains elusive. In addition whether its optical excitation is “charge transfer” or Mott-
insulator type is still unclear theoretically and experimentally. [111, 223, 184, 224]

Past progress on optical gap prediction

Through the 1940s-1960s work on model systems, that included strong on site coulombic
repulsion, by Mott and Hubbard laid the conceptual foundation for how we presently think
of TMOs as Mott-insulators that can be understood via the Hubbard model.[132, 92] These
models helped scientist understand that the failure of band theory and DFT is due to the
inability of these theories to describe the on site effects of strongly localized and correlated
d-electrons of the transition metal.

Brandow created a qualitative picture of the electronic structure of MnO by considering
the crystal field theory splitting of the transition metal d-orbitals surrounded by oxygens
in an octehedral geometry, and then defining a Hubbard like Hamiltonian with parameters
for different d-orbitals interactions. These Hubbard parameters included U (local coulombic
interaction of two opposite spin electrons occupying the same d-oribital), U’ (local coulom-
bic interaction of two opposite spin electrons occupying different d-oribitals), and J (local
exchange interaction of two parallel spin electrons occupying different d-orbitals).[25] Us-
ing spectroscopic data to determine the values of these parameters Brandow could make
semi-quantitative assements of many features of NiO and CoO.[25]

With the insight provided by Brandow it was shown in 1994 that Unrestricted Hartree
Fock (UHF) can qualitatively produce the correct ground state for NiO and MnO.[209]
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Towler and others explain that the fact that UHF correctly captures exact exchange elim-
inates the self interaction error present in DFT but also reproduces an ‘orbital occupation
dependent potential’ (which is generally referred to in the literature as ‘orbital polarization’)
that Brandow produced via his Hubbard-Hamiltonian.[209]

Although UHF produces an adequate ground state picture of TMOs it lacks correlation
effects and therefore it was desirable to find a way to adjust the approximations of DFT
in order to capture the ‘orbital polarization’. In 1997 the LDA+U method was introduced,
which takes into account orbital dependence of the Coulomb and exchange interactions
(absent in LDA) through a Hubbard like U parameter, and gives a much improved description
of some Mott insulators.[11, 44]

Throughout the 1990s to early 2000s hybrid functionals for DFT (such as B3LYP, PBE0
and HSE) that included a fraction of exact-exchange were introduced.[15, 150, 87] These
functionals mitigated the self interaction error, which allow for d-orbitals to become more
localize and help reproduce more correct band gaps.[68]

The progressive success of every theory/model that has been summarized has depended
on a approximate description of orbital polarization to produce quality single particle orbital
(SPO) sets. The one particle Green’s function can be constructed from these SPO sets
under the assumption that the DFT Kohn-Sham states are good approximations to the
quasiparticle states. If the best SPO sets produced are similar enough to each other then
subsequent G0W0 calculations should be able to add the many body effects necessary to
correctly predict a consistent insulating gap.

Throughout the 2000s to present day these G0W0 calculation have been attempted but
a wide range of band gaps that depend on the SPO set utilized resulted.[174, 100] Creating
correct orbitals to describe TMOs has proven a difficult task and has been accomplished by
introducing empirical approximations (+U and mixing exact exchange). It is unfortunate
that the best SPO sets from these approximation do not produce consistentG0W0 results, and
even self consistent versions of the calculation (GW0) have strong starting point dependence
on the SPO set.[174] For example, Jiang and coworkers found that varying the value of the
‘U’ parameter from 0-8 eV led to predicted G0W0 gaps in the range of ≈ 1.5 − 8 eV for
MnO.[100]

In 2004 Wagner and coworkers investigated the optical gap of MnO via DMC and made
comparisons among various SPO sets.[111] They built the simplest possible trial wave func-
tions (single Slater Jastrow) consisting of the Aufbau configuration for the ground state,
and only a single particle-hole excitation for the excited state. These wave functions were
constructed using orbitals from UHF, and the DFT functionals PW86 and B3LYP. They
were able to evaluate the cohesive and excitation energies of MnO and found that using
Ne-core pseudopotentials for Mn was important. In their comparison of various SPO sets
from UHF, PW86, and B3LYP they also showed that the fraction of exact exchange present
in the exchange correlation functional dictated the degree of s-p hybridization.

In Wagner and coworkers more recent 2015 work with MnO they used the “PBE1 x ”
framework, in which the degree of exact exchange mixing is determined by parameter α,
to again show that α was indeed essentially a tuning parameter for hybridization. [180]
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Because the FN-DMC description of the the optimal phase and lattice constant of MnO
differed from the DFT description an analysis of site-resolved charge fluctuations, also known
as the compressibility, was also done.[180] The result of the analysis showed that DMC
tended to localize charge when compared to PBE, PBE0, HSE06 but delocalized the charge
compared to HF. Using the optimal α parameter for the ground state they also estimated
the fundamental gap and optical gap of MnO via FN-DMC using SJ wave functions but
ultimately produced overestimates when compared to experiments.[180]

Past insight into the nature of optical gap

Typical analysis of the type of transition for MnO begins with the ‘ionic model’ of the system.
That is, when considering the bulk MnO system ground state we can interpret the electrons
of the Mn 4s-orbital to be donated to an O 2p-orbital which creates the ionic ground state
picture of Mn+2 O−2. [224, 184, 223, 25] Next the crystal field theory splitting of the d-
orbtials centered at the Mn atom is considered. Due to the octahedral arrangement of oxygen
atoms the center Mn atom’s d-orbitals split into two higher eg states (dx2−y2 and dz2) three
lower t2g states (dxy, dxz, dyz). It is expected that the occupied d-orbitals associated with
the transition metal are localized and do not overlap much with neighboring atoms due to
the high Z value of Mn.[25]

From the current picture described there are four main transitions of the band gap of
MnO that have been discussed in the literature, the two most popular being “Mott Hubbard”
and “charge transfer”. [224, 184, 223, 25]

• TM d → TM d (Mott Hubbard)

• TM d → TM 4s

• anion p → TM d (charge transfer)

• anion p → TM 4s

Although there have been much attention to the “Mott Hubbard” and “charge transfer”
transitions there has been less so for the remaining two.

Traditional analysis from this point continues by one of two ways. The first is building
a model Hamiltonian with parameters that are either rationalized or extracted from experi-
mental findings. Then there is verification of the model Hamiltonian via experimental trends.
[224, 184, 223, 25] The second is performing an ab initio calculation and then reconciling
its result with one of the mentioned descriptions of the gap. In this work we attempt the
second route of performing an ab initio calculation and reconciling its results with one of
the above descriptions of the gap. It should be noted that previous QMC studies of MnO
simply performed DMC using SJ wfn while we will be attempting to use more sophisticated
methods.
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QMC wave function creation

Our VMC-CIS(D) with orbital optimization method (referred to as VMC-CIS(D)-OO) method
allows us to work with the correlated many-body wave function for excited states directly
and we use it to predict the optical gap of MnO. The Jastrow factor will take into account
the dynamic correlation associated with interelectronic cusps, and nuclear cusps directly.
Relaxation and screening effects that are missing in single particle theories are then cor-
rected for by using orbital optimization to variationally improve the excited state. Finally
if strong correlation is present our VMC-CIS(D) method for configuration selection could
capture the necessary configurations. See section 4.1 and B.1 for details of our calculations.

Choice of active space

By considering all the configuration that correspond to the transition types mentioned in
Section 4.5 in our VMC-CIS-OO wave function we can determine the nature of the excitation.
We therefore performed a VMC-CIS(D) calculation in an active space that includes the
orbitals relevant for the determination of “charge transfer” / “Mott Hubbard” / “other”
nature. These orbitals include the set of O 2p, O 3s, Mn 3d, and Mn 4s of all atoms in the
unit cell.

Choice of SPO set

Now that an active space is chosen, we simply need to decide on a starting orbital set for
the wave function. Traditionally QMC methods must use and is limited by an input SPO
set just as G0W0 calculations do and are.[63, 142, 185] It is therefore worth highlighting the
shortcoming of the various SPO sets to explain why G0W0 calculations fall short, and to
justify the decision for an input SPO set for our work.

Hartree-Fock orbitals are known to overestimate the band gap of materials due to the
virtual orbitals experiencing the mean potential produced by the N occupied-orbitals as
opposed to correctly experiencing the N-1 electrons that should be felt by a neutral excitation
(and of course no correlation effects are included). These shortcomings cause UHF to produce
a band gap of 12.9 eV for MnO, which is over three times the experimental value.[209]

DFT orbitals are known to underestimate the band gap due to the self-interaction error.
LDA incorrectly cannot split the energies of the d-orbitals due to how the functional takes
into account the effect of exchange in an average manner.[209] Although hybrid functionals
and the +U approximation ameliorate the issue they present their own problems in ambi-
guity of how to be parameterized. [88] For hybrid functions this can be as simple as what
percentage of exact exchange to use. For +U approximations there is the question of how to
determine the U parameter unbiasedly and how to account for the double counting error of
the energy.[88] But even without these errors, by assuming the exact exchange correlational
functional was known, the Kohn-Sham band structure does not provide the fundamental
band gap of the real interacting-electron system as it does not include the finite and posi-
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tive derivative discontinuity of the Exchange-Correlation energy as a function of number of
particles. [153, 151, 187, 172]

Now that we have compared the SPO set choices we must make a selection. But before
making a selection we show here that with QMC orbital optimization the dependency of
the starting orbitals can be lifted (assuming that optimization is robust and the basis is
sufficiently ‘complete’). For the minimal 4-atom magnetic unit cell we summarize the resul-
tant ground state energy for a single Slater wave function that uses either LDA or LDA+U
orbitals and one/two body Jastrow factors in Table 4.3. We see a difference of 59 mEh
between the two wave functions for the VMC energy and a difference of 8 mEh for resultant
DMC energies.

Method LDA LDA+U

VMC -240.065(1) -240.124(1)
DMC -240.504(1) -240.512(1)
VMC-OO -240.175(1) -240.175(1)
DMC -240.518(1) -240.517(1)

Table 4.3: Table of energies from various QMC wave functions that include the one and two
body Jastrow factor and an orbital basis determined from LDA or LDA+U DFT calculations.
The parameter values of U = 4.7 eV and J = 0.8 eV values were obtained from constrained
DFT calculations determined by Jiang and co-workers [100]

Table 4.3 also shows resultant VMC / DMC energies after QMC orbital optimization has
been performed. The VMC and DMC energies of the LDA wave function improved by 110
mEh and 14 mEh respectively. While the LDA+U VMC and DMC energies improved by 51
and 6 mEh respectively. It is exciting that our VMC optimization improves the orbitals even
generated from LDA+U. But the most significant result is that with orbital optimization
both wave function minimized to the same energy (similar to our FeO example in the previous
section summarized in figure 4.3). Considering the decades of work and insight it took to
produce qualitatively correct orbitals on the DFT front it is a significant result that our
QMC calculation can make improvements.

Although we have demonstrated optimizing the orbitals within QMC will remove the
starting point dependence of the orbitals and produce the best possible orbitals in the pres-
ence of the full interacting Hamiltonian for the minimal unit cell, for our more expensive
supercell calculations it would be advantageous to have the best possible description of the
orbitals to begin with. Work from others in the community indicate that HSE provides a
good starting point choice for orbitals. [68, 97, 162] This functional incorporates exchange
so that proper splitting of the d-orbitals occur, and self interaction is mitigated for both
occupied and virtual orbitals. But it also produces an estimated band gap of 2.5 eV [162]
which is larger than the gap produced by LDA+U (with reasonable U/J values). [100] Fur-
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thermore G0W0 calculations of the band diagram using these orbitals show that there is only
a slight shift of the bands compared to the DFT band diagram. [162] The minor shift of the
band diagram suggests that the nonlocal screened-exchange contribution of HSE is similar
to the G0W0 self-energy, and therefore HSE is a reliable functional.

4.6 MnO (Γ→ Γ)

With our wave function construction constraints chosen we perform our calculation for the
Γ→ Γ transition on a 16 atom super cell (which is a 2x2x2 super cell of the minimal 2 atom
chemical unit cell (Figure 4.4).

Figure 4.4: The 16 atom super cell (with atoms at the boundary displayed) illustrating
the AF2 phase (an antiferromagnetic phase with planes of spin-up and spin-down polarized
Mn atoms that alternate in the [111] direction). The purple and gold atoms correspond to
spin-up and spin-dn polarized Mn atoms. The red atoms correspond to Oxygen atoms.

QMC MnO optical gap prediction

We compare our variance matched VMC-CIS-OO and DMC results to other current bench-
marks in table 4.4. We found that our variance matched VMC-CIS-OO band gap over-
estimates the experimental gap and the subsequent DMC band gap result from the same
wave functions lowers the gap by 1.6 eV. We suggest two errors that could contribute to the
overestimate of the optical band gap prediction: (1) the value of the energy variance used
to variance match is too high, and (2) the finite size correction for this particular system is
inappropriate. In regard to the first error, if the energy variance for variance matching it too
high it is less likely that a cancellation of error will occur between the ground and excited
state. Therefore this band gap prediction at the very least suggests that correlation effects
in the ground and excited state are different enough that they do not cancel entirely. In the
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supplemental information it can be seen that the energy variance value used for matching
is approximately ten times larger for MnO than that for MgO and PAE, but it is the best
that could be computationally afforded. With respect to the second error, as mentioned
in section 4.1 we addressed finite size errors for MnO in a manner different than that of
MgO and PAE. For MnO we addressed finite size errors of the gap by performing simple
single-particle hole gap DMC calculations with supercell sizes of 16, 32, and 64 atoms. Then
we determined the correction to the 16 atom case that would be necessary to produce the
extrapolated gap value, and applied this same correction to our VMC-CIS-OO gap and its
corresponding DMC gap. The wave functions corresponding to the simple single-particle
hole DMC calculations are not as sophisticated as that used for our VMC-CIS-OO calcula-
tion. With no orbital optimization and only a single-determinant the nodal surfaces of those
calculations are certainly different than that of our VMC-CIS-OO wave functions. Therefore
the slope of the extrapolation could be inappropriate to determine a finite size correction.

Method gap (eV)

PBE 1.55
PBE+G0W0 1.39
HSE06 3.97
VMC-CIS-OO 6.5(3)
DMC 4.9(3)
Expt (opt. abs.)[144] 4.44

Table 4.4: The optical band gap of MnO determined by different methods.

QMC nature of MnO optical gap

Although we did not predict the experimental band gap of MnO to high accuracy we can
provide insight into the nature of the optical excitation. Because CIS is the starting point
for many excited state methods it can be argued that our VMC-CIS wave function captures
the main qualitative physics of the exciton associated with the optical gap of MnO.

As stated earlier we have an active space for our VMC-CIS that includes all configurations
that corresponds to the four types of transitions dissuced in literature. As we are working
in the full interacting Hamiltoninan we can determine which of these transition correspond
to the optical gap of MnO by analyzing the resultant VMC-CIS eigenvectors for the ground
and first excited state.

The ground state had a weight of 94% for the reference determinant which suggests that
HSE06 orbitals do qualitatively describe the ground state well. The excited state eigenvector
had 14 determinants make up 93% of the wave function. Of those 14 determinants all
corresponded (Mn 3d / O 2p)→ (Mn 4s / O 3s). The analysis so far from the CI eigenvectors



CHAPTER 4. PERIODIC SYSTEMS 67

suggest the transition to be of a mixture of (TM d→ TM 4s) and (anion p→ anion s). The
second of these transitions is not one the four commonly suggested transitions listed earlier,
but was discovered by Wagner and coworkers in 2004. [111]

It is well known that the 4s-orbital lies close in energy to the 3d-orbitals of isolated tran-
sition metal atoms. When considering the bulk MnO system ground state we can interpret
the electrons of the 4s-orbital to be donated to the O 2p-orbital which creates the ionic
ground state picture of Mn+2 O−2. The 5 d-electrons take on their high spin configuration
and cause a significant exchange splitting between the occupied and virtual d-orbitals. This
pushes the occupied orbitals lower in energy and raises the virtual d-orbitals (both relative to
the 4s-orbital) which is summarized pictorially in figure 4.5. Then when considering optical
absorption we see that the transition is Mn 3d → Mn 4s. For simplicity we have ignored
hybridization in this description of the excitation but as we describe next these transitions
in reality involve hybridized states.

Mn 3d

Mn 3d

Mn 4s

En
er

gy

Figure 4.5: A sketch illustrating the high spin arrangement of d-electrons in d-orbitals deter-
mined by crystal field splitting of an octahedral geometry and the AF2 phase of MnO. The
Mn 3d-orbitals are divided into two neighboring Mn sites (purple or gold) which reside in
different ferromagnetic planes (refer to figure 4.4). The relative energy position of d-orbitals
on neighboring Mn site is higher than that of the 4s Mn orbital.

To further characterise the exciton (correlated electron hole pair) associated with optical
gap transition we use the single particle transition density matrix (T ) defined by Martin as
equation 4.1. [118] The matrix T is a No by Nv matrix in which No is the number of occupied
orbitals, Nv is the number of virtual orbitals, Ψex is the excited state wave function and Ψ0

is the ground state wave function. The singular value decomposition of the matrix T results
in a new set orbitals constructed via the unitary transformation determined by matrices U
and V . This allows the T matrix to be expressed as equation 4.2 and the new set of orbitals
are referred to as the Natural Transition Orbitals (NTO).
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Tia =
∑
σ

< Ψex|c†iσcaσ|Ψ0 > (4.1)

[U †TV ]ij =
√
λiδij (4.2)

The NTO decomposition provides a way of measuring the multi-configuartion nature of
the excited state. In the case that a transition can be described simply between two orbitals
the NTO analysis would result in a single singular value of λ11 = 1 and the picture of the
particle and hole can be simply summarized as a single particle hole transition.

Our NTO analsysis of MnO results in this simple single particle hole transition which is
pictorially summarized in figure 4.6. We refer to the particle-NTO as Ψe and the hole-NTO
as Ψh. Notice that the hole takes on a form that one would expect from a d2sp3 hybridization
of orbitals on a Mn site in an octahedral arrangement, mixed with some 2p character from
the surrounding oxygens. There is symmetry in how the lobes of the d2sp3 point towards
the 2p oxygen and this motif repeats throughout the ferromagnetic plane and between all
ferromagnetic planes uniformly. Just like our CI eigenvector analysis found the NTO depicts
the optical transition to be a mixture of (TM d → TM 4s) and (anion p → anion s).

One may wonder “if the MnO optical gap can be so simply summarized is there a func-
tional that can capture this?”. To answer this question we compared the particle hole pairs
produced from the most commonly used functionals (which include LDA, LDA+U, HF,
HSE06) and found that while they all surprisingly produce consist description of Ψe with
each other and with our NTO-Ψe none produced a Ψh consistent with our NTO-Ψh. Dur-
ing the comparison of these functionals we found that the HOMO (ψH), HOMO-1 (ψH−1),
HOMO-2 (ψH−2) orbitals were degenerate (explicitly so for LDA+U and HSE06 while there
was a minor difference of 10−4 eV for HF and LDA) and so there was a question of whether
a simple mixing of these degenerate orbitals could reproduce the NTO-Ψe/NTO-Ψh. To
answer that question we performed a least squares fit to equation 4.3 to investigate how
well the NTO hole could be described by the highest occupied orbitals produced by these
functionals.

||(a ∗ ψ2
H + b ∗ ψ2

H−1 + c ∗ ψ2
H−2)− (Ψh)2||2 (4.3)

The resultant holes from minimizing equation 4.3 for LDA, LDA+U, HSE06, and HF
are summarized in figure 4.7 with HSE06 providing the best fit. All functionals seem to be
able to reproduce the shape of the d-orbital on the center Mn from our NTO-Ψh but none
reproduce the shape of the orbitals centered on the oxygen atoms from our NTO-Ψh. The
hole orbital produced by the set of functionals commonly have sp characer on the oxygen
ligands. Note that for these sp orbitals the lobe closer to the Mn site is larger than the
one further and that the difference in their sizes decreases in the order of LDA, LDA+U,
HSE06 and HF. At the extreme of HF the oxygen orbitals seem more like 2p character than
sp character. Another trend moving from LDA through to HF is that as the 2p character of
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F
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Figure 4.6: The NTO-VMC isosurfaces associated with the particle (Ψe) in the conduction
band and the hole (Ψh) in the valence band.
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LDA

UHF

LDA+U

HSE06

Figure 4.7: Comparison of the hole (Ψh) in the valence band from various single particle
theories.

the oxygen orbitals grows the d amplitude of the center Mn orbitals seems to be shrinking.
When compared to NTO-Ψh LDA and LDA+U put too much density on the center Mn while
UHF puts to little and HSE06 has an intermediate amount most similar to the NTO-Ψh.
These trends are consistent with the findings of Wagner who noted that the modulation of
exact exchange mixing causes a modulation of the hybridization of the orbitals.[111] So it
seems that the VMC-CIS-OO wave function can correct the degree of hybridization but also
fundamentally changes the shape of the orbitals centered on the oxygens to some degree.

4.7 MnO (Z → Γ)

For the Z → Γ transition we performed calculation on the 32 atom supercell (which is the
2x2x2 supercell of the minimal 4 atom magnetic unit cell). Note that this supercell is the
minimal unit cell that can capture the indirect band gap transition.
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QMC MnO optical gap prediction

The 32 atom supercell presents a difficult system to perform computations on, limiting the
techniques we can apply to it for study. We produce a prediction for the gap using variance
matched VMC-CIS(D) wave function. Then we evaluate various SPO sets for use in G0W0

calculations. The results of our VMC and G0W0 calculations are in table 4.5.
For a VMC-CIS(D)-OO calculation the number of parameters necessary for orbital op-

timization alone requires more RAM than current standard HPC resources offer. Therefore
we cannot perform orbital optimization for this system and instead only perform a VMC-
CIS(D) calculation. But we can still have a unique set of orbitals for the ground state and
excited state by simply using orbitals from different functionals. So as a substitution to ex-
plicit rotation of orbital on the VMC side we vary the fraction of exact exchange for hybrid
functionals when producing SPO sets and evaluate the best exact exchange fraction to use
for the ground state and the excited state individually using VMC and variance matching.
As we noted in our study of the Γ → Γ transition the HSE06 orbitals provided a good de-
scription of the ground state, so we decided to use HSE06 orbitals with standard screening
and exchange parameters (ω = 0.20 and a = 0.25 ) for the ground state. To variance match
the ground state we varied the amount of exact exchange involved in the excited state and
found that HSE06 parameters of (ω = 0.20 and a = 0.35) did well to explicitly variance
match (refer to appendix B.1).

We evaluate the quality of various SPO sets for a G0W0 calculation in the same manner
as was done previously by Zhao and Neuscamman.[228] The steps are briefly summarized
as: 1) select a functional, 2) produce a histogram of ∆DFT

ia − ∆VMC
ia (in which ∆DFT

ia is
the gap predicted by DFT between Kohn-Sham states indexed by ‘i’ and ‘a’ and ∆VMC

ia is
the gap predicted by VMC using SJ wave functions for the ground/excited states with a
simple single promotion from orbital ‘a’ to orbital ‘i’ in the excited state) 3) repeat steps
1/2 with another functional until a histogram centered around zero with small variance is
found. The motivation for this method of selecting the best functional is that quasiparticle
energies are computed according to equation 1.22, so ‘more realistic’ Kohn-Sham eigenvalues
would require less correction. Because VMC gaps are computed using the full interacting
Hamiltonian we use those gaps as a the standard for ‘correct’ when evaluating Kohn-Sham
eigenvalues. Although in reality the excitations from VMC correspond to optical absorption
energies while the quasiparticle energies correspond to photo emission energies so it is not
quite a fair comparison. To construct the histograms for MnO we simply use a PBE0
functional while varying the fraction of exact exchange (examples of these histograms can be
found in appendix B.1). We found that an exchange fraction of 0.55 produces a histogram
centered around zero, and a choice of 0.45 produced a histogram skewed the right of zero.
But because the transition of interest ∆DFT

LUMO,HOMO − ∆VMC
LUMO,HOMO was smallest for an

exchange fraction of 0.45 this exchange fraction is chosen to produce the SPO set for G0W0.
Just as it was for the Γ→ Γ transition, our VMC-CISD gap estimation is an overestimate

of the Z → Γ transition gap. We explain the overestimation with the same shortcomings
that the Γ→ Γ study revealed. But in the case of Z → Γ the short comings are more severe.
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Method gap (eV)

UHF [209] 12.9
GGA [162] 0.7
GGA+U [162] 1.3
HSE03 [162] 2.5
GGA+G0W0 [162] 1.6
HSE03+G0W0 [162] 3.2
HSE06 3.29
VMC 6.31
VMC-CISD 4.87
PBE(0.45) 6.33
PBE(0.45)+G0W0 4.90
Expt (photoem.) [53] 3.9(4)
Expt (cond.) [48] 3.8..4.2
Expt (opt. abs.) [96] 3.6..3.8
Expt (eng. loss.) [67] 3.1 (or 4.9)
Expt (opt. abs.) [144] 3.4

Table 4.5: The optical band gap of MnO determined by different methods.

Just as before, the variance used for variance matching could be much too high to have a
cancellation of the correlation errors between the ground and excited state. In this case no
orbital relaxation could occur so there was less flexibility in these wave functions than there
was in the wave functions used to investigate Γ→ Γ.

QMC nature of MnO optical gap

The orbitals participating in the transition of Z → Γ are not qualitatively different from
those involved in Γ→ Γ so we forego the same analysis for this transition because the same
conclusions will be drawn. Instead we present some thought provoking questions of why the
gap of MnO is difficult to predict quantitatively.

Are the ground or lowest excited state of MnO strongly correlated?

Our VMC-CIS(D) calculation with HSE06 orbitals suggest that neither the ground nor
excited state is strongly correlated. Performing VMC-CISD calculations does not contribute
additional configurations with significant weight for the ground state or excited state. Both
states are described well with a single Slater Jastrow wave functions. Of course there is an
unknown factor of what would happen if the active space were increased and if excitation
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of higher degree were included. But our VMC-CISD calculation utilizes a reasonable active
space and we cannot provide a chemical intuitive explanation of any deficiency.

If both states are weakly correlated are we completely capturing that weak
correlation?

The one-body and two-body Jastrow factors used for our calculation of MnO contain only a
few terms of the expansion of the Jastrow factor in many body terms (Uee+Uen+Ueen+ ...).
Therefore we are certainly not capturing all the available dynamic correlation. In the limit
of including all the many body terms we would simply have the DMC result and are limited
by the quality of the nodal surface of the trail wave function.

If weak correlation is captured sufficiently why are the gap predictions
overestimating?

Our scheme of variance matching the ground and excited state only works at the limit of
the variance approaching zero. When the variance is far from zero there is no guarantee
that the ground state and excited state each have captured an amount of correlation energy
that makes the gap accurate. To approach the limit of zero variance we simply need to
continue variationally improving the wave functions, but this of course leads to the need for
an exponential amount of parameters.

Why not perform variance matching using DMC energy variances?

One might suggest performing DMC calculations to work with lower energy variances and
capture significant additional weak correlation, but we argue that it is premature to pursue
that avenue at this time.

Wagner and coworkers have already attempted to use DMC to predict the gap but ul-
timately produced an overestimation.[180] They noted that varying the fraction of exact-
exchange varies the degree of hybriziation of orbitals significantly, which vary the nodal
surface and therefore affect the DMC outcome.[180] But their technique of scanning values
of exact exchange fraction to find the variationally lowest DMC energy for the ground state
does not guarantee that the SPO set produces equal quality nodal surfaces for the ground
and excited state.

One may hope that because we used VMC variance matching to determine separate
values of exact exchange fraction for the ground and excited state SPO sets that the quality
of the nodal surfaces of the ground and excited state will now be more equal, but this is
far from being a guarantee. The first issue is that variance matching the VMC energies
will not necessarily lead to variance matched DMC energies. At this point one may say
to simply perform multiple DMC energy evaluations with various values of exact exchange
fraction being used to perform variance matching. That is an incredibly expensive task to
do for MnO and has not been proven to be fruitful with smaller systems yet. That approach
also has an implication that scanning the exact exchange fraction is the same a scanning
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all plausible SPO sets that can be used, which is not true. We mentioned in section 1.4
that hybrid functionals are not free of self-interaction error[8] and it is abundantly clear
through our work (and the work of others[180]) that the localization of electron density
(which self interaction error affects) is what needs to be address for accurate SPO description
of ground and excited MnO states. Therefore simply scanning the exact exchange fraction
for DMC variance matching in all liklihood could be insufficient to produce a quantitiatively
correct optical gap. In addition performing DMC on multiple functionals with multiple
parameterizations is a brute force ‘needle in a haystack’ approach to the band gap of MnO
which is what our work endeavours to avoid.
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Chapter 5

Conclusion

We have shown in this dissertation that orbital optimization of Multi-Slater Jastrow wave
functions and its coupling to an excited state targeting function, configuration selection for
QMC wave functions, a variance matching scheme for optical gaps, and a modified guiding
function for sampling within QMC produce reliable optical gaps.

For aperiodic systems we found that our QMC optical gap workflow produces predictions
on par in terms of accuracy with other standard techniques (e.g. MRCI+Q, CASSCF,
CASPT2, EOM-CCSD) for small molecules (e.g. Formaldimine, Thioformaldehyde). The
modified guiding function was found to be quite useful and necessary to produce energy
variance values with low standard errors, which improved both the optimization and the
reliability of our variance matching scheme. Furthermore, we found that the configurations
captured through S-CI contained many that were not capture through a standard active
space choice. Finally, when constructing VMC wave functions for the ground and excited
state, simply using a threshold weight to select configurations from S-CI calculations to
construct the wave function did not produce vertical excitations values as accurate as the
implicit variance matching scheme.

The case of
[
C3N2O2H4Cl

]−
is a larger stress for standard techniques and provided

opportunity for our workflow to demonstrate its advantages over active space methods for
various reasons. It’s size made it so that brute force large active space would not be enough
to capture dynamic correlation and the large dipole change from ground to excited state
would mean a state averaging of the orbitals most likely would not allow for appropriate
relaxation for either the ground or excited state. During the CASSCF+CASPT2 workflow
we found that CASSCF with various active space choice, number of states and weighting of
these state all created a zeroth order starting point that produced ‘intruder states’ during the
CASPT2 calculation. Therefore a choice in shift value and type resulted in a range of optical
gaps from 2.127 eV to 4.669 eV being produced. Meanwhile, our explicit variance matched
VMC calculation produced an estimate of the vertical excitation on par with EOM-CCSD
when 200 or 1000 configurations were included for the excited state.

For periodic systems we found that our QMC optical gap workflow produces predictions
on par in terms of accuracy with other standard techniques (e.g. DFT, G0W0) for simple



CHAPTER 5. CONCLUSION 76

bulk materials (e.g. MgO, Trans-Polyaceylene). Bulk MgO was a system that DFT could
predict the optical gap for easily. With a great SPO set from DFT, G0W0 and our approach
could also produce estimates of a gap similar to the experimentally reported value. The
more challenging Trans-Polyaceylene proves difficult for hybird functional DFT to get right.
The HSE06 estimate of a gap of 0.53 eV suggests that the functional has shortcomings, but
both G0W0 and VMC-CIS(D)-OO can correct the gap to be on par with experimentally
reported value. For bulk FeO we show that VMC orbital optimization reduced the starting
point dependence of the SPO set for DMC. For bulk MnO we produce an overestimate of
the optical gap and are no closer in accuracy than DFT, G0W0 or past QMC work. But
we performed an in depth analysis of the nature of the exciton for the opitical gap which
allows us to state that the lowest transition is a mixture of (TM d → TM 4s) and (anion p
→ anion s). Our close analysis also explains that this system is so difficult for a wide variety
of methods due to the difficulty of capturing its weak correlation.

The work in this dissertation suggests that future directions could include improving the
scaling of optimization of VMC parameters, or creating a S-CI native to VMC to take into
account the affect of the Jastrow factor in describing weak correlation. Both directions would
help improve the ability to perform VMC on large systems for accurate optical gaps. The
first direction would help allow orbital optimization on larger systems. As stated in section
4.7 the amount of parameters necessary to perform orbital optimization for systems like the
32 atom MnO supercell simply exceed what current computational resources can handel.
The second direction, a VMC native S-CI, would eliminate the need for QMC to interface
with other active space methods, and be more efficient than VMC-CIS(D). An active space
method with orbital optimization native to QMC would make a truly standalone QMC
method (QMC-CASSCF).



77

Bibliography

[1] A. Scemama et al. “Quantum Package v1.1”. In: (). DOI: 10.5281/zenodo.825872.
doi: 10.5281/zenodo.825872.

[2] ABINIT. The generation of atomic data. [Online; accessed April 24, 2019]. 2019.
url: https://www.abinit.org/sites/default/files/infos/8.6/tutorial/
generated_files/lesson_paw2.html.

[3] A.A. Abrikosov, L.P. Gorkov, and E. Dzyaloshinskii. Methods of quantum field theory
in statistical physics. Dover, New-York, 1975.

[4] Paulo H. Acioli and David M. Ceperley. “Generation of pseudopotentials from corre-
lated wave functions”. In: The Journal of Chemical Physics 100.11 (1994), pp. 8169–
8177. doi: 10.1063/1.466811. eprint: https://doi.org/10.1063/1.466811. url:
https://doi.org/10.1063/1.466811.

[5] Carlo Adamo and Vincenzo Barone. “Exchange functionals with improved long-range
behavior and adiabatic connection methods without adjustable parameters: The m
and m models”. In: The Journal of Chemical Physics 108.2 (Jan. 1998), pp. 664–675.
issn: 0021-9606, 1089-7690. doi: 10.1063/1.475428. url: http://dx.doi.org/10.
1063/1.475428.

[6] Reinhart Ahlrichs. “Methods for efficient evaluation of integrals for Gaussian type
basis sets”. In: Theoretica chimica acta 33.2 (1974), pp. 157–167.

[7] H Ahmad et al. “Hydrogen from photo-catalytic water splitting process: A review”.
In: Renewable and Sustainable Energy Reviews 43 (2015), pp. 599–610.

[8] C-O Almbladh and Ulf von Barth. “Exact results for the charge and spin densities,
exchange-correlation potentials, and density-functional eigenvalues”. In: Physical Re-
view B 31.6 (1985), p. 3231.

[9] James B Anderson. “A random-walk simulation of the Schrödinger equation: H+ 3”.
In: The Journal of Chemical Physics 63.4 (1975), pp. 1499–1503.

[10] James B Anderson. “Quantum chemistry by random walk.” In: The Journal of Chem-
ical Physics 65.10 (1976), pp. 4121–4127.

[11] Vladimir I Anisimov, Ferdi Aryasetiawan, and AI Lichtenstein. “First-principles cal-
culations of the electronic structure and spectra of strongly correlated systems: the
LDA+ U method”. In: Journal of Physics: Condensed Matter 9.4 (1997), p. 767.



BIBLIOGRAPHY 78

[12] Roland Assaraf, S. Moroni, and Claudia Filippi. “Optimizing the Energy with Quan-
tum Monte Carlo: A Lower Numerical Scaling for Jastrow–Slater Expansions”. In:
J. Chem. Theory Comput. 13.11 (2017), pp. 5273–5281. doi: 10.1021/acs.jctc.
7b00648.

[13] Rodney J Bartlett and Isaiah Shavitt. “Determination of the size-consistency error in
the single and double excitation configuration interaction model”. In: International
Journal of Quantum Chemistry 12.S11 (1977), pp. 165–173.

[14] Federico Becca and Sandro Sorella. Quantum Monte Carlo approaches for correlated
systems. Cambridge University Press, 2017.

[15] Axel D. Becke. “A new mixing of Hartree Fock and local density functional theories”.
In: The Journal of Chemical Physics 98.2 (1993), pp. 1372–1377. doi: 10.1063/1.
464304. eprint: https://doi.org/10.1063/1.464304. url: https://doi.org/10.
1063/1.464304.

[16] Lorin X. Benedict, Eric L. Shirley, and Robert B. Bohn. “Optical Absorption of
Insulators and the Electron-Hole Interaction: An Ab Initio Calculation”. In: Phys.
Rev. Lett. 80 (20 May 1998), pp. 4514–4517. doi: 10.1103/PhysRevLett.80.4514.
url: https://link.aps.org/doi/10.1103/PhysRevLett.80.4514.

[17] M. Chandler Bennett et al. “A new generation of effective core potentials from cor-
related calculations: 2nd row elements”. In: The Journal of Chemical Physics 149.10
(2018), p. 104108. doi: 10.1063/1.5038135. eprint: https://doi.org/10.1063/1.
5038135. url: https://doi.org/10.1063/1.5038135.
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Appendix A

Appendix for Aperiodic Systems

A.1 Computational Details

For quantum Monte Carlo calculations, all wave function parameters were optimized by
variationally minimizing Ω using the ω-update scheme presented in Ref. [190]. Both the
two-body and all one-body Jastrow factors took a Bspline form with a cutoff at 10 bohr and
used 10 spline points. [104]

H4

Our skew arrangement of four H atoms was chosen to remove all symmetry and to create a
simple, small system in which strong correlation was present so that orbital relaxations in a
small MSJ expansion would be expected to make a difference. We employed BFD effective
core potentials and the corresponding VTZ basis [29] and placed the atoms at the positions
given below in Angstroms. The configurations for the MSJ were chosen by using the 10 most
important configurations from a ground state CASSCF (4e,10o) calculation.

H 0.0000000000 0.0000000000 0.0000000000
H 1.8897259877 0.0000000000 0.0000000000
H 0.0000000000 0.0000000000 2.8345889816
H 0.0000000000 0.0000000000 5.6691779632

H2O

For our calculations on water we employed BFD effective core potentials with the VDZ basis
[29] at the experimental equilbirum geometry [91] given in Angstroms below. The 100 con-
figurations for the MSJ excited state singlet were chosen as the largest-weight configurations
in the excited state of a two-state full-valence CIPSI calculation in the RHF orbital basis.
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O 0.0000 0.0000 0.1173
H 0.0000 0.7572 -0.4692
H 0.0000 -0.7572 -0.4692

CH2S

For thioformaldehyde we used BFD effective core potentials with their VTZ basis [29] and
the following geometry, in Angstroms.

S -4.9615006425 2.6553412397 0.0000217073
C -4.9017991394 1.0716634201 -0.0001062888
H -5.5890742022 0.4742274771 0.5685871400
H -4.1719760160 0.5275278631 -0.5685025585

[
C3N2O2H4Cl

]−
For our chlorine-to-π∗ charge transfer system, we used the geometry given in Angstroms
below that was arrived at via an MP2/cc-pVDZ geometry optimization in Molpro for the
closed-shell anionic ground state. For all excitation energy evaluations, we employed BFD
effective core potentials with the corresponding VDZ basis. [29]

N -2.9058516510 0.0000000000 -1.4601212300
C -1.6406693060 0.0000000000 -1.1581565780
C -1.2646457880 0.0000000000 0.2633575220
C 0.0390698630 0.0000000000 0.6172500750
N 0.4054577830 0.0000000000 2.0353753730
O 1.6182721380 0.0000000000 2.2841014810
O -0.4846283820 0.0000000000 2.8946943050
Cl 1.5876389750 0.0000000000 -2.3723480080
H 0.8777584070 0.0000000000 -0.1013594360
H -2.0565965790 0.0000000000 1.0201589650
H -0.7953016620 0.0000000000 -1.8742706390
H -2.9621125330 0.0000000000 -2.4917011270

CH2NH

For formaldimine, we used BFD effective core potentials and their VTZ basis. [29] All
active space methods were based on equally-weighted two-state state averaged CASSCF
wave functions. A (2e,2o) active space ground state CASSCF geometry optimization was
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performed with the constraint that the dihedral angle of the molecule remain fixed at 0, 45,
or 90 degree.

Torsion Coordinate 0◦

C 0.0000000000 0.0222705613 -0.6225060885
N 0.0000000000 -0.0820734375 0.6148349963
H 0.0000000000 0.9991273614 -1.0742328325
H 0.0000000000 -0.8651411291 -1.2314451255
H 0.0000000000 0.7411514791 1.1797292763

Torsion Coordinate 45◦

C -0.0079599003 0.0166001095 -0.6325884466
N 0.0416062329 -0.0648316530 0.6270535275
H 0.1330377950 0.9587507613 -1.1388276756
H -0.1929029663 -0.8533530806 -1.2431487361
H -0.4234569109 0.5977132175 1.2063798375

Torsion Coordinate 90◦

C -0.0144604887 0.0000000000 -0.6239939985
N 0.0700010603 0.0000000000 0.6267505389
H -0.0579593274 0.8804123024 -1.2681443330
H -0.0579593274 -0.8804123024 -1.2681443330
H -0.6845247458 0.0000000000 1.2624877883

A.2 State Averaging Without Symmetry

While the state-averaging sensitivity we observed for
[
C3N2O2H4Cl

]−
in the main text

was already worrisome, the situation would be drastically worse were this molecule not Cs
symmetric. In that case, it is not clear that it is possible to accurately model the out-of-
plane-Cl-3P→ π∗ excitation energy via standard state-averaged multi-reference methods.
Indeed, when we did not exploit the symmetry and instead treated the molecule as if it
were C1, we were unable to find either a 2-state or 3-state state averaged CASSCF that
contained the out-of-plane-Cl-3p→ π∗ excitation, despite trying numerous initial guesses
and optimization methods. Either one or both of the two in-plane-Cl-3p→ π∗ excitations
ended up being lower in energy, or, for some initial guesses, the orbitals optimized to be so
favorable for states with ground-state-like charge distributions that none of the excitations
turned out to involve moving charge away from the chlorine atom. It was only when we
resorted to a 4-state state average CASSCF that we were able to find the desired state,
which turned out to come out alongside the ground state and the two in-plane-Cl-3p→ π∗

excitations. In this case, three of the four states in the state average have a dipole greatly
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different from that of the ground state, and so as one would expect the orbital optimization
favored them at the expense of the ground state, resulting in a much too small CASSCF
excitation energy, as seen in Table II of the main text. As real chemical environments such
as protein superstructures or solvents typically remove symmetry, one realizes that these
types of state averaging difficulties will be quite common when attempting to model charge
transfer in large molecules and realistic environments.
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Appendix B

Appendix for Periodic Systems

B.1 Computational Details

Below are the Mathematica notebooks containing the computational details for periodic
system calculations.



SupplementaryInformation

SergioPinedaFlores

All Jastrow parameters had a cut off radius equal to the Wigner-Seitz radius

one/two body jastrow had 8 parameters (spline points)

three body had 26 parameters (spline spoints)

MgO (HSE06 starting Orbitals, Ne core BFD ECP, kinetic energy cutoff  = 320 Ry) Variance matched gaps and finite size

corrections
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In[ ]:= data = {

{0.5, 1.3204296800356},

{0.255, 4.38405636282429},

{0.125, 6.35192910364676}

};

errors = {0.032818862339022,

0.07185461381465,

0.145435011293214};

withError = Transpose[{data[[All, 1]], data[[All, 2]], errors}];

nlm = NonlinearModelFit[data, m x + b, {m, b}, {x}, Weights → 1 / errors^2]

nlm[{"BestFit", "ParameterTable"}]

Needs"ErrorBarPlots`"
Show[Plot[nlm[x], {x, -0.1, 0.5}], ListPlot[data],

ErrorListPlot[withError, PlotStyle → Red]]

Out[ ]= FittedModel 7.74333 - 12.8575 x 

Out[ ]= 7.74333 - 12.8575 x,

Estimate Standard Error t-Statistic P-Value

m -12.8575 0.488358 -26.328 0.0241687

b 7.74333 0.223734 34.6096 0.0183892



Out[ ]=

-0.1 0.1 0.2 0.3 0.4 0.5

2

4

6

8

PAE (HF starting Orbitals, BFD ECP, kinetic energy cutoff  = 200 Ry) Variance matched gaps and finite size corrections

2 test.nb
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In[ ]:= data = {

{0.125, 6.01041372130406},

{0.0625, 3.68398850223182},

{0.03125, 2.55638266566293}

};

errors = {0.059792948751601,

0.11841508575809,

0.166752843045092};

withError = Transpose[{data[[All, 1]], data[[All, 2]], errors}];

nlm = NonlinearModelFit[data, m x + b, {m, b}, {x}, Weights → 1 / errors^2]

nlm[{"BestFit", "ParameterTable"}]

Needs"ErrorBarPlots`"
Show[Plot[nlm[x], {x, -0.01, 0.14}], ListPlot[data],

ErrorListPlot[withError, PlotStyle → Red]]

Out[ ]= FittedModel 1.38348 + 37.007 x 

Out[ ]= 1.38348 + 37.007 x,

Estimate Standard Error t-Statistic P-Value

m 37.007 0.21962 168.505 0.003778

b 1.38348 0.0241623 57.2579 0.0111173



Out[ ]=

0.02 0.04 0.06 0.08 0.10 0.12 0.14

2

3

4

5

6

Gamma -> Gamma transition of MnO

VMC MnO HSE06 starting orbitals (RRKJ ECP for Mn and Shin ECP for O, kinetic energy cutoff  = 400 Ry)

In[ ]:= (* optical gap in eV *)

(-960.351282 + 960.556514) * 27.2114

Out[ ]= 5.58465

test.nb 3

APPENDIX B. APPENDIX FOR PERIODIC SYSTEMS 104



In[ ]:= (* standard error of gap in eV*)

 0.001382 + 0.000992 * 27.2114

Out[ ]= 0.0462153

16 atom unit cell

ATOMIC_POSITIONS crystal

Mn1 0.00 0.00 0.00

Mn2 0.50 0.50 0.50

Mn2 0.50 0.00 0.00

Mn2 0.00 0.50 0.00

Mn2 0.00 0.00 0.50

Mn1 0.50 0.50 0.00

Mn1 0.50 0.00 0.50

Mn1 0.00 0.50 0.50

O 0.25 0.25 0.25

O 0.75 0.75 0.75

O 0.75 0.25 0.25

O 0.25 0.75 0.25

O 0.25 0.25 0.75

O 0.75 0.75 0.25

O 0.75 0.25 0.75

O 0.25 0.75 0.75

CELL_PARAMETERS alat

1.0000000000000000000 1.0000000000000000000 - 0.010909629518976782

-0.010909629518976782 1.0000000000000000000 1.000000000000000000

1.0000000000000000000 - 0.010909629518976782 1.000000000000000000

Lattice constant = 8.326106103444015 bohr

4 test.nb
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MnO DMC Time step extrapolation for excited state

In[ ]:= data = {

{0.05, -961.969336},

{0.0250, -961.908226},

{0.0125, -961.896861},

{0.00625, -961.896630},

{0.0015625, -961.899623}

};

errors = {

0.003610,

0.003408,

0.002606,

0.003265,

0.002685};

withError = Transpose[{data[[All, 1]], data[[All, 2]], errors}];

nlm = NonlinearModelFitdata, a x
2 + m x + b, {a, m, b}, {x}, Weights → 1 / errors^2

nlm[{"BestFit", "ParameterTable"}]

Needs"ErrorBarPlots`"
Show[ListPlot[data], Plot[nlm[x], {x, 0, 10}],

ErrorListPlot[withError, PlotStyle → Red],

PlotRange → {{data[[1]][[1]], data[[5]][[1]]}, {data[[1]][[2]], data[[5]][[2]]}}]

Out[ ]= FittedModel -961.9 + 0.801096 x - 43.6445 x
2 

Out[ ]= -961.9 + 0.801096 x - 43.6445 x
2
,

Estimate Standard Error t-Statistic P-Value

a -43.6445 1.26405 -34.5276 0.000837763

m 0.801096 0.0669826 11.9598 0.00691878

b -961.9 0.000560463 -1.71626×106 3.39506×10-13



Out[ ]=

In[ ]:=

test.nb 5
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MnO DMC Time step extrapolation for ground state

In[ ]:= data = {

{0.05, -962.117958},

{0.0250, -962.056149},

{0.0125, -962.043055},

{0.00625, -962.043887},

{0.0015625, -962.045936}

};

errors = {

0.003215,

0.002726,

0.002579,

0.003385,

0.002717

};

withError = Transpose[{data[[All, 1]], data[[All, 2]], errors}];

nlm = NonlinearModelFitdata, a x
2 + m x + b, {a, m, b}, {x}, Weights → 1 / errors^2

nlm[{"BestFit", "ParameterTable"}]

Needs"ErrorBarPlots`"
Show[ListPlot[data], Plot[nlm[x], {x, 0, 10}],

ErrorListPlot[withError, PlotStyle → Red],

PlotRange → {{data[[1]][[1]], data[[5]][[1]]}, {data[[1]][[2]], data[[5]][[2]]}}]

Out[ ]= FittedModel -962.047 + 0.730692 x - 43.2485 x
2 

Out[ ]= -962.047 + 0.730692 x - 43.2485 x
2
,

Estimate Standard Error t-Statistic P-Value

a -43.2485 2.15855 -20.0359 0.00248178

m 0.730692 0.115475 6.32772 0.0240767

b -962.047 0.00105415 -912624. 1.20071×10-12



Out[ ]=

In[ ]:=

6 test.nb
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MnO (HSE06 starting Orbitals) Band Gap from DMC

In[ ]:= (* optical gap in eV *)

-961.9003939533226` + 962.0465547653065` * 27.2114

Out[ ]= 3.97724

In[ ]:= (* standard error of gap in eV*)

 0.0005604629614023827`2 + 0.0010541548469112532`2 * 27.2114

Out[ ]= 0.0324873

test.nb 7
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Finite size effect correction to DMC gap

DMC band gaps calculated via simple particle-hole excitation of ‘homo-lumo’ of HSE06 orbital Slater Determinant

Timestep = 0.003125 for all calculations

In[ ]:= data = {

{0.0625, 4.02445721440163},

{0.03125, 4.54463033680309},

{0.015625, 4.28394512479923}

};

errors = {0.106879815148777,

0.207994892295513,

0.630707559700845};

withError = Transpose[{data[[All, 1]], data[[All, 2]], errors}];

nlm = NonlinearModelFit[data, m x + b, {m, b}, {x}, Weights → 1 / errors^2]

nlm[{"BestFit", "ParameterTable"}]

Needs"ErrorBarPlots`"

(*Show[Plot[nlm[x],{x,data[[3]][[1]],data[[1]][[1]]}],ListPlot[data],

ErrorListPlot[withError,PlotStyle→Red]]*)

Show[ListPlot[data, PlotRange → {{-0.1, 0.1}, {2, 6}}],

ErrorListPlot[withError, PlotStyle → Red], Plot[nlm[x], {x, -10, 10}]]

Out[ ]= FittedModel 4.92311 - 14.2828 x 

Out[ ]= 4.92311 - 14.2828 x,

Estimate Standard Error t-Statistic P-Value

m -14.2828 4.99137 -2.8615 0.214031

b 4.92311 0.283522 17.3641 0.0366225



Out[ ]=

-0.10 -0.05 0.00 0.05 0.10

3

4

5

6

8 test.nb
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DMC correction via `dmc extrapolation’.

(* difference between parameter b and 16-atom band gap*)

4.92311 - 4.02445721440163

Out[ ]= 0.898653

(* propagated error *)

In[ ]:= 0.106879815148777
2 + 0.28352183541302217`2

Out[ ]= 0.302998

Final correction to DMC calculation

(* corrected gap *)

3.977240319219197` + 0.8986527855983706`

Out[ ]= 4.87589

(* propagated error *)

In[ ]:= 0.03248727977210656`
2 + 0.3029982277872357`2

Out[ ]= 0.304735

Final correction to VMC calculation

In[ ]:= (* corrected gap *)

5.585 + 0.8986527855983706`

Out[ ]= 6.48365

(* propagated error *)

In[ ]:= 0.05
2 + 0.3029982277872357`2

Out[ ]= 0.307096

test.nb 9
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Z -> Gamma transition of MnO

Unit cell information (2x2x2 Monkhorst-Pack grid)

(RRKJ ECP for Mn and Shin ECP for O, kinetic energy cutoff  = 300 Ry)

4 atom unit cell

lattice constant 8.326099506257146 bohr

CELL_PARAMETERS alat

1.0 0.4945446 0.4945446

0.4945446 1.0 0.4945446

0.4945446 0.4945446 1.0

ATOMIC_POSITIONS crystal

Mn1 0.0000 0.0000 0.0000

Mn2 0.5000 0.5000 0.5000

O 0.2500 0.2500 0.2500

O 0.7500 0.7500 0.7500

G0W0 extrapolation of MnO Z->Gamma transition

extrapolation of G0W0 gap from Abinit using PAW+GW+PBE.

Just to illustrate the extrapolation method is reasonable

 The yellow cell (0.8461) represents the extrapolated value while the converged value was (0.8375)

To produce the extrapolated value take the (2x2x2+256_bnds) gap value and correct with the the difference between 

(4x4x4+28_bnds - 2x2x2+28_bnds)

extrapolation of G0W0 gap from BerkeleyGW using  the same technique from the above abinit test.
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This is the Z->Gamma transition

2 ZtoGamma.nb
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This is the Gamma->Gamma transition

Attempts to variance match explicitly by varying the percentage of exact exhange mixture for both PBE0 and HSE06.

   The solid black line corresonds to the variance of the ground state and the dash lines are at + /- 1 std_err

ZtoGamma.nb 3
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In[ ]:= (* Closest variance matched result gap result / eV *)

(-1920.551767 + 1920.800445) * 27.2114

Out[ ]= 6.76688

In[ ]:= (* Closest variance matched result gap result / eV *)

(-1920.612763 + 1920.791562) * 27.2114

Out[ ]= 4.86537

4 ZtoGamma.nb
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MnO: exact exchange fraction determination to determine best
PBE0 SPO set to use for G0W0
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