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Testing charge quantization with axion
string-induced cosmic birefringence

Weichen Winston Yin,a Liang Dai,a and Simone Ferrarob,a

aDepartment of Physics, 366 Physics North MC 7300, University of California, Berkeley, CA
94720, USA

bLawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

E-mail: winstonyin@berkeley.edu, liangdai@berkeley.edu, sferraro@lbl.gov

Abstract. We demonstrate that the Peccei-Quinn-electromagnetic anomaly coefficient A
can be directly measured from axion string-induced cosmic birefringence by applying scatter-
ing transform to the anisotropic polarization rotation of the cosmic microwave background.
This breaks the degeneracy between A and the effective number of string loops in traditional
inference analyses that are solely based on the spatial power spectrum of polarization rotation.
Carrying out likelihood-based parameter inference on mock rotation realizations generated
according to phenomenological string network models, we show that scattering transform is
able to extract enough non-Gaussian information to clearly distinguish a number of discrete
A values, for instance A = 1/9, 1/3, 2/3, in the ideal case of noise-free rotation reconstruction,
and, to a lesser but interesting degree at reconstruction noise levels comparable to that ex-
pected for the proposed CMB-HD concept. In the event of a statistical detection of cosmic
birefringence by Stage III or IV CMB experiments, our technique can be applied to test the
stringy nature of the birefringence pattern and extract fundamental information about the
smallest unit of charge in theories beyond the Standard Model.
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1 Introduction

It has been a fundamental quest in physics to understand the smallest unit of electric charge,
from the measurement of the elementary charge e in the oil drop experiment [1] to the search
for magnetic monopoles as the source of charge quantization [2]. It has recently been proposed
that measuring cosmic birefringence in the cosmic microwave background (CMB) induced by
ultralight axion strings is a promising way to probe charge quantization beyond the Standard
Model (SM) [3]. In this paper, we build on this idea and demonstrate that non-Gaussian
statistical inference using scattering transform coefficients can extract this information from
the anisotropic polarization rotation in the CMB in a realistic future experiment.

1.1 Axions and charge quantization

Axions are neutral pseudo-scalar fields that generically arise from a spontaneously broken
Peccei-Quinn symmetry and are often invoked in beyond-the-SM theories.1 For example, the
QCD axion provides one of the most compelling solutions to the strong CP problem [4, 5]
and is a proposed candidate of the astrophysical dark matter [6–8]. The mixed anomaly

1Some authors only refer to the QCD axion as “axion”, but in this work “axions” generally include all
axion-like particles.
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between the Peccei-Quinn symmetry and SM electromagnetism gives rise to a Chern-Simons
coupling between the QCD axion and the photon as an addition to the SM Lagrangian [9]:

L ⊃ Aαem

4πfa
aF F̃ , (1.1)

where a is the axion field, F is the electromagnetic field strength tensor, fa is the periodicity
of the field value such that a is identified with a+ 2π fa, αem is the fine structure constant,
and A is the Peccei-Quinn-electromagnetic anomaly coefficient.

In particular, the dimensionless anomaly coefficient A reveals crucial information about
the structure of the theory beyond the SM in the following way. While the periodicity fa
is subject to renormalization, A is not, so its value is fixed on all energy scales [9]. If the
high-energy theory introduces any new electrically charged fermions, then

A =
∑
f

Qa,f Q
2
f , (1.2)

where f ranges over the new fermions, Qa,f are the corresponding Peccei-Quinn charges, and
Qf are the corresponding electric charges. Since Qa,f are necessarily integers, A is an integer
multiple of the square of the smallest charge in the theory [3]. For any SM-like theory with
fractional charges 1/3 and 2/3, such as minimal Grand Unified Theories, A is expected to be
a multiple of 1/9. See Ref. [10] for a detailed discussion on the quantized nature of A. If
A is experimentally measured to be close to a ratio of small integers, the possible charge
assignments in the beyond-SM theory will be strongly constrained.

Motivated by this, Ref. [3] proposes a method to directly measure A independently of
fa. The axion-photon coupling in Eq. (1.1) implies that, as a distant photon travels through
the axion field, its polarization rotates by an angle

∆Φ =
Aαem

2πfa
∆a, (1.3)

where ∆a is the net change in axion field value between the end points of the photon’s
path [11–13]. This effect, called cosmic birefringence, induces parity violation in the ob-
served CMB polarization anisotropies as CMB photons propagate through the axion-filled
cosmic medium [14]. In ordinary situations, a ≪ 2πfa as the axion settles down toward the
minimum of the potential, rendering birefringence an extremely weak effect. Remarkably,
the periodicity of a allows field configurations with topological defects, called cosmic strings,
in which ∆a ≈ n 2πfa for n ∈ Z along a typical line of sight. Each string has a cosmological-
scale length, but only has a microscopic size in the transverse directions. The polarization
rotation along a typical direction is then greatly enhanced, ∆Φ ≈ nAαem, which is quantized
in a way that depends only on A but not on fa [3].

Axion field configurations with cosmic strings can naturally arise in our Universe. If
the Peccei-Quinn symmetry is broken after cosmic inflation, the axion field value in different
causal patches will take unrelated values. Along an imagined superhorizon closed path, the
axion field value often changes by one or more periods. Thus, the path has a non-zero axion
winding number and must enclose cosmic strings, along which the axion field is singular and
the Peccei-Quinn symmetry is restored [15–17]. Since axion strings are topologically stable,
the cosmic string network could have survived until long after recombination.

The primary subject of this work are ultralight axions whose masses are less than
the Hubble scale at recombination, ma ≲ 3Hcmb ≃ 8 × 10−29 eV. While such ultralight
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axions neither solve the strong CP problem nor contribute a significant fraction of the dark
matter [18], they may drive the current accelerated expansion of the universe [19] and are
commonly predicted in string theory scenarios [20–22]. For ma ≳ 3H0 ≃ 4 × 10−33 eV, the
formation of domain walls becomes relevant to the dynamics of the axion string network. For
this mass range, we only consider the case in which each string is attached to at least two
domain walls (NDW > 1), where the balance of forces ensures the stability of the string-wall
network. String-wall networks with NDW = 1 in this mass range collapse and dissipate into
a bath of axion radiation at a time before the present day depending on ma [23, 24]. The
string-wall collapse scenario can in principle be studied with the technique expounded in this
work, but we omit it for clarity and simplicity. See Ref. [25] for a detailed study of cosmic
birefringence due to axion string-wall networks.

1.2 CMB polarization rotation

In a universe teeming with axion cosmic strings, the polarization of each CMB photon rotates
by ±Aαem if the photon passes through a string loop or by ±1

2Aαem if it passes by a long
open string [3]. The stacked effect of the entire string network will manifest in the CMB
as the division of the sky into many domains of nearly uniform polarization rotation. The
rotation angle in each domain will be quantized as integer multiples of Aαem.

If the anistropic polarization rotation of the CMB could be measured with arbitrary
precision at arbitrarily high spatial resolution, then any individual cosmic string would be
resolved. The value of A can be extracted from the difference in the polarization rotation
angle on both sides of the string. However, since the intrinsic CMB polarization along
any line of sight is not known, the rotation angle has to be statistically inferred from the
correlation between Fourier modes on the sky. Current experiments (e.g. Planck) do not
measure sufficiently many signal-dominated Fourier modes to locally detect a single string
for interesting values of A. Instead, statistical detection based on accumulated significance
over a large sky patch containing multiple strings is a more promising approach [3].

Motivated by numerical simulations, Ref. [26] developed a phenomenological model of
cosmic string network called the loop-crossing model, which can be used to efficiently generate
random realizations of birefringence and semi-analytically calculate its power spectrum. On
the other hand, previous studies have employed quadratic estimators for statistical detection
and measurement of the polarization rotation, and the power spectrum of these quadratic
estimators is well understood [27, 28].

Besides A, the loop-crossing model introduces other phenomenological parameters that
characterize the cosmic string network, including ξ0, the effective length of strings per Hub-
ble volume in Hubble units. In a previous work [28], we applied quadratic estimators to
the loop-crossing model and forecast detectability of a string network by forthcoming CMB
experiments. Quoting binned rotation power spectrum derived from the Planck 2015 po-
larization data [29], we constrain A2 ξ0 < 0.93 at a 95% confidence level [28]. Upcoming
experiments (Simons Observatory, CMB-S4, etc.) will be sensitive enough to discover or
falsify anisotropic rotations from an axion string network in the theoretically plausible pa-
rameter space A = 0.1 ∼ 1 and ξ0 = 1 ∼ 100.

1.3 Breaking the degeneracy between the strength and number of strings

Analyses based on the rotation power spectrum unfortunately suffer from a shortfall for
phenomenological models like the loop-crossing model. Since the power spectrum is optimized
for Gaussian random fields but misses all non-Gaussian spatial information in the rotation
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field, it is only sensitive to A2 ξ0, a combination of “strength” and “quantity” of the string
network, but otherwise is unable to constrain A or ξ0 separately. Anticipating a future
detection of cosmic birefringence from axion strings, and given the theoretical significance of
A, it will be highly rewarding to develop a methodology that breaks the degeneracy between
A and ξ0, which will confirm the string origin of the anisotropic rotation and place tight
constraints on A.

We suggest in this paper alternative summary statistics that extract a substantial
amount of non-Gaussian information. Scattering transform, which manipulates input fields
in a way similar to what a convolutional neural network does but requires no training, of-
fers precisely this advantage over the power spectrum. In recent applications to cosmology,
by exploiting non-Gaussian features in the weak lensing field [30, 31] or in the large-scale
structure [32], scattering transform is shown to significantly reduce the degeneracy between
cosmological parameters at the power spectrum level, such as σ8 and Ωm.

We show in this paper that in the event of a detection of axion string birefringence at
Stage III and/or Stage IV CMB experiments using quadratic estimators, scattering trans-
form can be further employed to break the degeneracy between A and ξ0, for noise levels
achievable by the conceived next-generation high-sensitivity experiment CMB-HD [33]. The
methodology may distinguish different discrete values of A, which will provide a strong test
of charge quantization beyond the SM.

1.4 Outline

The remainder of this paper is organized as follows. In Section 2, we briefly review the
loop-crossing model, explains how it is realized on the flat sky, and shows that the A2 ξ0
degeneracy arises in the power spectrum. In Section 3, we discuss the technique of scattering
transform and compare it with the power spectrum analysis, guided by understanding of
the underlying mathematics. In Section 4, we design a numerical study in which the mock
reconstruction noise is generated and added to the string birefringence signal. In Section 5,
we detail the parameter inference procedure. In Section 6, we forecast inference results for
both noise-free and noisy rotation field, with a comparison between scattering transform and
power spectrum analysis. Throughout this work, we adopt c = 1 units.

2 Loop-crossing model

The spatial pattern of string induced birefringence in the CMB depends on the string network
structure which is dictated by string dynamics. While the precise distribution of string loops
as a function of loop size and redshift is the subject of ongoing numerical investigations [34–
36], phenomenological string network models are useful to approximate the range of cosmic
string networks found by physical simulations, and they enable efficient comparison between
mock data and theoretical predictions in forecast studies.

One example is the loop-crossing model developed in Ref. [26] , in which the Universe is
populated by circular string loops with a redshift dependent radius distribution. At a given
redshift z, the comoving number density of string loops of comoving radii in the interval
[r, r + dr] is

dn = ν(r, z) dr. (2.1)
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String loop orientations are assumed to be random and isotropic. It is convenient to re-
parametrize the radius distribution ν(r, z) as

ν(r, z) =
[a(z)H(z)]4

2π ζ
χ(ζ, z), (2.2)

where the dimensionless parameter ζ = r aH is the proper radius of a string loop expressed
in units of the Hubble length at redshift z. The radius distribution χ(ζ, z) completely char-
acterizes the string network in the loop-crossing model.

In what follows, we will consider two different loop radius distributions in which the
energy density in the cosmic string network scales with the dominant energy density in
the Universe. This stable distribution is achieved through the dynamical process of string
motion and recombination (not to be confused with cosmological recombination) [35]. The
resultant network is said to be “in scaling”, and its distribution of dimensionless string radii
is redshift-independent, χ(ζ, z) = χ(ζ). Although this property of axion string networks
has recently been called into question [35, 36], the method described in this paper would
only need minimal modification by simply allowing for a redshift-dependent string radius
distribution χ.

The first model (Model I hereafter) assumes that all string loops have the same radius
in Hubble units ζ = ζ0:

χI(ζ) = ξ0 δ(ζ − ζ0). (2.3)

The second model (Model II hereafter) assumes that a fraction fsub of the loops are sub-
Hubble scale loops, distributed logarithmically between a variable ζmin and ζmax = 1, while
the rest of the loops have a Hubble-length radius:

χII(ζ) = (1− fsub) ξ0 δ(ζ − ζmax) + fsub ξ0
Θ(ζmax − ζ)Θ(ζ − ζmin)

ζmax − ζmin
. (2.4)

Model I and Model II become the same if fsub = 0 and ζ0 = ζmax = 1. The logarithmic loop
length distribution of Model II is consistent with recent simulations [36].

Both distributions are normalized to∫ ∞

0
χ(ζ) dζ = ξ0. (2.5)

The parameter ξ0 can be interpreted as the number of Hubble-scale loops per Hubble volume
there would have to be in order to account for the same mean energy density as in the string
network described by the distribution χ(ζ). It is therefore called the effective number of
strings per Hubble volume.

In the parameter inference procedure of Section 5, we will treat (A, ξ0, ζ0) as the pa-
rameter space of Model I and (A, ξ0, fsub) as the parameter space of Model II, and set
ζmin = 10−1. We note that a smaller ζmin would lead to a reduction of the birefringence
signal.

2.1 Implementation of models

We describe the procedure for generating random realizations of polarization rotation in the
CMB generated by a string network described by a given loop radius distribution χ(ζ, z),
where the z-dependence is kept for generality. The procedure consists of three steps:
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1. Determine the average number of string loops whose centers lie within a chosen patch
on the sky.

2. Sample the redshifts and radii of string loops according to the distributions specified
by the model, and draw loop centers uniformly within the chosen patch of the sky.

3. Calculate the rotation pattern due to each individual string loop. Find the superposi-
tion of constributions from all generated string loops.

We work in the flat-sky approximation for simplicity. A similar process taking into account
the curvature of the sky can be found in Ref. [25].

Using the parametrization in Eq. (2.2), the comoving number density of string loops is

dn =
(aH)3

2π ζ
χdζ. (2.6)

The specific number of string loops in the redshift interval between z and z +dz and within
a solid angle dΩ on the sky is

dn dVC =
(aH)3 s2

2π ζ H
χdζ dz dΩ, (2.7)

where dVC is the comoving volume within solid angle dΩ in the redshift interval between z
and z+dz, and s is the comoving distance out to redshift z. The expected number of string
loops observed within a patch of the sky of solid angle Ω is obtained by integrating over
radius, redshift, and solid angle:

⟨n⟩ = Ω

∫ 1

0
dζ

∫ zcmb

0
dz

(aH)3 s2

2π ζ H
χ, (2.8)

where we assume no string loop exceeds the Hubble scale, i.e. 0 < ζ ≤ 1. In practice, the
actual number of string loop centers within a finite patch of sky is drawn from a Poisson
distribution with a mean number ⟨n⟩.

We may simplify the expression when χ(ζ, z) has a separable functional form:

χ(ζ, z) = X(ζ)Y (z). (2.9)

Define rescaled variables ζ̃ = ζ̃(ζ) and z̃ = z̃(z) such that

dζ̃ =
1

2π ζ
X(ζ) dζ, dz̃ =

(aH)3 s2

H
Y (z) dz. (2.10)

Then, Eq. (2.7) becomes
dn dVC = dζ̃ dz̃ dΩ, (2.11)

and Eq. (2.8) becomes
⟨n⟩ = Ω∆ζ̃∆z̃, (2.12)

where ∆ζ̃ and ∆z̃ are the ranges of the transformed variables corresponding to the ranges of
ζ and z in Eq. (2.8).

With Eq. (2.11), the radii and redshifts of the string loops can be generated by first
drawing uniformly in the (ζ̃, z̃)-space within the ranges ∆ζ̃ and ∆z̃, and then converting the
values back to the (ζ, z)-space.

For each string loop with parameters (ζ, z), we calculate its induced spatial rotation
pattern in the sky. Since ζ/aH is the proper radius of the loop, its angular radius is
tan−1(ζ/aH s) 2. The string loop center is uniformly drawn from within the solid angle

2We do not approximate tan−1 x ∼ x due to the large size of string loops at low redshift.
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Ω of the sky. The unit vector k̂ normal to the plane of the string loop circle, which is sam-
pled from an isotropic distribution, defines an apparent ellipse as the projection of this circle
along the line of sight. Finally, the rotation field is assigned the value of 0 outside the ellipse
and ±Aαem inside, where the sign depends on whether k̂ points away from or towards the
observer. The total birefringence signal of a string network is simply the sum of signals due
to individual string loops.

In practice, we draw the coordinates of string loop centers from a larger sky area Ω′ > Ω
than the one analyzed, so as to include string loops that overlap with Ω but have centers
outside of Ω. To determine Ω′, we set a lower limit on the string redshift zmin = 0.001 and
calculate an upper limit on the angular radius.

We show in Figure 1 several uncurated noise-free realizations of Model I (uniform radii).
We plot the rotation field in a 128◦ × 128◦ patch of sky (40% of the full sky) for a selection
of model parameter sets, while fixing the overall scaling A = 1. Note that if we rescale each
map in Figure 1 to keep A2 ξ0 constant, realizations in the same column (with the same
ζ0) correspond to the same power spectrum. We expect the scattering transform to break
this degeneracy. It is visible to the naked eye that the rotation field has more contiguous
patches of (nearly) constant rotation angle at lower ξ0 and ζ0. This is because a low number
density of string loops (the expected number of string loops is proportional to ξ0) allows
for large patches of coherent rotation, while the smaller radius ζ0 minimizes the chance that
the largest projected string loops intersect with other large string loops. These contiguous
features render the rotation field significantly non-Gaussian. We therefore expect that scat-
tering transform analysis can mitigate the parameter degeneracy present in power spectrum
analysis, and that the improvement is more pronounced in this part of the parameter space.

Similarly, we show in Figure 2 several uncurated realizations of Model II (log-flat radius
distribution). Realizations having smaller ξ0 but larger fsub appear more non-Gaussian. Due
to a wide range of string loop radii, the degree of non-Gaussianity in this model is less obvious
than Model I with a unique string loop radius.

2.2 Power spectrum degeneracy

Studies on the detection of the CMB birefringence signal have thus far focused on exploit-
ing Gaussian information through the power spectrum analysis [27, 28]. Given the Fourier
transform of a polarization rotation field α(L), the (isotropic) power spectrum of the rotation
angle, Cαα

L , is defined through

⟨α(L)α∗(L′)⟩ = (2π)2 δ(2)(L− L′)Cαα
L , (2.13)

where δ(2) denotes the two-dimensional Dirac delta function. It is a general feature of phe-
nomenological string network models that the birefringence power spectrum only depends on
the combination A2 ξ0 but not on A or ξ0 separately.

The total polarization rotation field α is the superposition of n independent and identi-
cally distributed fields αi, each due to a single cosmic string. It is also reasonable to assume
that ⟨αi⟩ = 0, as cosmic strings of opposite orientations about the plane of the sky must
occur equally likely. For a fixed string loop number n:

⟨α(L)α∗(L′)⟩ =

〈
n∑

i=1

n∑
j=1

αi(L)α
∗
j (L

′)

〉
= n ⟨α1(L)α

∗
1(L

′)⟩. (2.14)
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ξ 0
=
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ζ0 = 100 ζ0 = 100.5 ζ0 = 101

ξ 0
=
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ξ 0
=
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1
.5

Figure 1: Uncurated noise-free realizations of Model I (uniform radius). We plot the rotation
field in a 128◦ × 128◦ patch of sky for a selection of model parameters, keeping A2 ξ0 = 1.
With all other parameters fixed, the rotation field scales linearly with A.

If instead n is drawn from a Poisson distribution with a rate ⟨n⟩, then the same logic leads
to

⟨α(L)α∗(L′)⟩ =
∞∑
k=0

⟨n⟩ke−⟨n⟩

k!

〈
k∑

i=1

k∑
j=1

αi(L)α
∗
j (L

′)

〉
= ⟨n⟩ ⟨α1(L)α

∗
1(L

′)⟩. (2.15)

The expected string loop number ⟨n⟩ is proportional to ξ0, the effective number of horizon-
scale loops per Hubble volume; each αi strictly scales linearly with A. We therefore conclude
that

Cαα
L ∝ A2 ξ0. (2.16)
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ξ 0
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0

fsub = 0.1 fsub = 0.55 fsub = 1
ξ 0

=
10

0
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5
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=

10
1
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Figure 2: Uncurated noise-free realizations of Model II (log-flat radius distribution). We
plot the rotation field in a 128◦ × 128◦ patch of sky for a selection of model parameters,
keeping A2 ξ0 = 1.

This exact property is true for the loop-crossing model, a fact already pointed out in Ref. [26].
Since A is a fundamental parameter of new physics at high energy scales that informs

us about charge assignment while ξ0 depends on the dynamic evolution of the string network
over cosmic times, it is important to break the degeneracy between A and ξ0. Given the
deficiency of any power spectrum-based inference method in this regard, we are motivated
to study alternative inference techniques that exploit a substantial amount of non-Gaussian
information.
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3 Scattering Transform

In this section, we describe scattering transform and motivate its use as a parameter inference
technique that can efficiently exploit non-Gaussian information that is unavailable to power
spectrum-based methods. We refer to Ref. [30] for a more detailed exposition of scattering
transform, where this technique is applied to other problems in cosmology.

Like in power spectrum analysis, scattering transform takes in an input field I0(x), the
polarization rotation field α(x) in our case, and outputs a set of coefficients that serve as
summary statistics used for parameter estimation. When computing the power spectrum,
the input field is convolved with a family of plane wave mode functions ϕk(x) = eik ·x to
produce a set of fields:

Pk(x) = ⟨|I0 ∗ ϕk|2⟩(x), (3.1)

where the average is taken over random realizations of the input field. It is non-zero only
when x = 0, thus only Pk(0) is a meaningful quantity. If statistical isotropy holds for the
input fields, one further reduces this set by averaging over the direction of the Fourier wave
vector k to obtain the coefficients P (k) = ⟨Pk(0)⟩k̂.

In scattering transform, the mode functions used for convolution are spatially localized
wavelets, rather than plane waves. One common choice are the Morlet wavelets—plane waves
modulated by a 2D Gaussian envelope. Given a template wavelet ψ(x), a family of wavelets
ψj,l(x) are generated by dilation (labelled by j = 1, · · · , J − 1) and rotation (labelled by
l = 1, · · · , L). Convolution then leads to a set of fields

Ij,l1 (x) = ⟨|I0 ∗ ψj,l|⟩(x), (3.2)

where the average is again performed over randommap realizations. If statistical homogeneity
and isotropy hold for the input fields, one obtains first-order reduced coefficients by averaging
over wavelet position and orientation:

sj1 = ⟨Ij,l1 ⟩x,l. (3.3)

As pointed out in Ref. [30], the similarity between Eq. (3.1) and Eq. (3.2) means that
the information contained in first-order scattering transform coefficients is similar to that in
binned power spectrum. However, whereas the power spectrum has fine-grained information
in the Fourier space (Npix/2 coefficients for a square input field Npix pixels across), scatter-
ing transform only gathers course-grained information (log2Npix reduced coefficients). This
means that scattering transform is expected to have a weaker constraining power than binned
power spectrum in the direction orthogonal to the A2 ξ0 degeneracy. As we demonstrate in
Section 6, the best parameter inference procedure is one that combines both summary statis-
tics.

The above scattering transform process can be repeated to produce the second-order
reduced coefficients by treating first-order fields produced by convolution as input fields:

Ij1,l1,j2,l22 (x) = ⟨|Ij1,l11 ∗ ψj2,l2 |⟩(x), sj1,j22 = ⟨Ij1,l1,j2,l22 ⟩x,l1,l2 . (3.4)

In principle, the procedure can be iterated to produce higher-order convoluted fields and the
associated high-order reduced coefficients. In this work, scattering transform coefficients up
to only the second-order will be used in our analysis.

Power spectrum, as well as higher-order N -point moments, have the following disadvan-
tages compared to scattering transform. The power spectrum is insensitive to the statistical
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deviation of the input field from a Gaussian random field, and in string network models it has
a degenerate dependence on A and ξ0 (Section 2.2). Higher-order N -point moments in prin-
ciple supply the non-Gaussian information, but they suffer from computational complexity
and slow convergence for highly non-Gaussian fields (such as the ones resulting from the loop
crossing model). The number of coefficients that must be computed increases dramatically
with N , with useful non-Gaussian information greatly diluted amongst them. In practice,
reliable computation of the higher-order moments also suffers from the problem of large sam-
ple variance. Scattering transform, on the other hand, is expected to be very sensitive to
highly non-Gaussian input fields, with key non-Gaussian information efficiently captured by
only a small set of first- and second-order coefficients [30].

Figure 1 and Figure 2 have shown that, for some model parameters, cosmic strings
imprint a highly non-Gaussian rotation pattern in the CMB. The non-Gaussian features are
primarily the result of large coherent patches corresponding to a handful of string loops of
large angular size. Scattering transform should be well suited for breaking the degeneracy
between A and ξ0 by quantifying the degree of non-Gaussianity as ξ0 varies.

To show how scattering transform sensitively extracts parameters of the loop-crossing

model, we plot log sj11 and log
(
sj1,j22 /sj11

)
for different parameter values in Figure 3, assuming

the case of a unique string loop radius. Both the mean and standard deviation of each
coefficient are plotted, computed from a large set of realizations. By fixing the combination
A2 ξ0 and varying ξ0 and ζ0 separately, we see that first-order scattering transform coefficients
are able to strongly distinguish different ζ0 but not different ξ0, the same limitation as power
spectrum. However, second-order coefficients show great promise at distinguishing different
ξ0 with a fixed A2 ξ0, a marked improvement over the power spectrum analysis.

4 Reconstruction noise

The polarization rotation along any individual line of slight is not directly measurable by
instruments. Instead, direction-dependent rotation angles are statistically estimated from
the observed CMB primary anisotropies in temperature (T ) and polarization (E and B).
This is commonly done via the quadratic estimator (QE), which is an optimally weighted
sum of quadratic combinations of the observed T,E,B anisotropy modes to give an unbiased,
least-variance estimate of the anisotropy modes of the rotation field [27].

Both the conventional power spectrum analysis [3, 28] and the proposed scattering
transform method take the estimated rotation field as the input field, which includes a noise
component resulting from both the statistical variance inherent to the estimator and the
instrumental noise of observation. In other words, if αo(L) denotes the quadratic estimation
of one Fourier mode of the true polarization rotation field α with a Fourier wave vector L,
then

αo(L) = α(L) + αn(L), (4.1)

where αn(L) is the noise component. We assume this noise component does not correlate
with the true signal α(L), and that it is a Gaussian random field entirely determined by a
noise power spectrum:

⟨αn(L)α
∗
n(L

′)⟩ = (2π)2 δ(2)(L− L′)N(L). (4.2)

The noise spectrum N(L) depends on the exact choice of quadratic estimator and instru-
mental parameters, but it generally dominates over the signal power spectrum Cαα

L at large
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Figure 3: First- and second-order log-reduced scattering transform coefficients, log sj11 and

log
(
sj1,j22 /sj11

)
across the parameter space of the loop-crossing model. Data points and error

bars correspond to the means and standard deviations of coefficients measured from a large
number of noise-free realizations. Blue and orange curves correspond to effective string loop
numbers of ξ0 = 1 and ξ0 = 101.5, respectively. Solid and dashed curves correspond to string
loop radii of ζ0 = 0.1 and ζ0 = 1, respectively. In all cases, we fix A2 ξ0 = 1, which is a
degenerate combination in the power spectrum analysis. It is the second-order coefficients
that more significantly distinguish between models through their non-Gaussian information.

multipoles L, where
⟨α(L)α∗(L′)⟩ = (2π)2 δ(2)(L− L′)Cαα

L . (4.3)

For example, using Model II (see Section 2) with fsub = 0.6 and A2 ξ0 = 1, the noise spectrum
of the Hu-Okamoto estimator dominates over the signal when L ≳ 25 for Planck SMICA and
L ≳ 100 for CMB-S4 [28].

After producing noise-free realizations of the polarization rotation signal as described
in Section 2.1, we generate a Gaussian random field αn(L) following a noise spectrum N(L)
according to the instrumental parameters3, and then linearly superimpose it onto the rotation
signal α(L) to obtain a mock observed (estimated) rotation field αo(L).

5 Method

The procedure for parameter inference using any summary statistics consists of an observed
input field αo(x), the summary statistics d[αo] computed from αo, the covariance matrix Cd

of the summary statistics of αo, and the theoretical summary statistics as a function of model
parameters dth(θ). The model parameters for αo are estimated by maximizing the following
log-likelihood function:

lnL[αo|θ] = −1

2
(d[αo]− dth(θ))

T C−1
d (d[αo]− dth(θ)). (5.1)

3We choose the EB quadratic estimator for calculating N(L), as it in practice has comparable reconstruc-
tion noise level to the Hu-Okamoto estimator and the global minimum variance estimator [28].
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In the case of scattering transform, we choose d to be the log-reduced first- and second-

order coefficients: ln sj11 and ln
(
sj1,j22 /sj11

)
, where j1 = 1, · · · , J , and j2 = j1 + 1, · · · , J .

Coefficients with j2 ≤ j1 are well defined but contain no useful information about the input
field, so we do not include them in the analysis. Logarithms of the scattering transform
coefficients are chosen because empirically it is found that the distributions of the logarithms
are better approximated as multivariate normal distributions [30].

To obtain the theoretical summary statistics dth(θ), a large number of realizations of
the rotation field α(x)|θ are generated for a given set of parameters θ and their summary
statistics d[α|θ] computed. Then,

dth(θ) = ⟨d[α|θ]⟩, (5.2)

where the average is performed over realizations. In reality, we discretize the parameter space
into a finite number of regular grid points θi and only compute dth(θi) at these grid points.
Summary statistics at intermediate points θ are computed using cubic spline interpolation
from the values at the grid points. We check a number of realizations at selected intermediate
parameter points θ to ensure that interpolation errors are well within the standard error due
to sample variance.

The set of realizations {α(x)|θ} generated at each point θ also defines a covariance matrix
Cd(θ) for the summary statistics d. For an arbitrary input field, neither the parameters θ nor
the covariance matrix are known a priori. Similar to the strategy widely practiced in power
spectrum-based analyses in cosmology [37], we fix a fiducial covariance matrix C = C(θ0) at
an initial guess θ0 when evaluating the likelihood function. Once a posterior is obtained, we
verify that θ0 is consistent with the posterior. If not, the likelihood maximization procedure
has to be iterated by updating the covariance matrix to C(θmax), where θmax is the parameter
set that maximizes the likelihood function in each iteration.

For the (A, ξ0, ζ0) parameter space of the first model described in Section 2, we choose
nine grid points for ξ0 evenly spaced between 100 and 101.71 ≈ 52 on the logarithmic scale,
and eight grid points of ζ0 evenly spaced between 10−1 and 100 again on the logarithmic
scale. In the noise-free case, because of the exact scaling behavior sj11 (Aα) = |A| sj11 (α)

and sj1,j22 (Aα) = |A| sj1,j22 (α) for any rotation field α (see Eqs. (3.3)–(3.4)), we can simply
compute the scattering transform coefficients for A = 1 and analytically obtain the likelihood
for general values of A. This eliminates the need to create a grid along the direction of A in
the parameter space.

For the (A, ξ0, fsub) parameter space corresponding to string network Model II de-
scribed in Section 2, we discretize ξ0 as what is done for Model I. We choose eight grid points
of fsub that are evenly spaced between 0.1 and 1 on the linear scale.

After A = 1 has been fixed, 2000 realizations of the rotation field in a 128◦×128◦ patch
of sky are generated at a 1024×1024 pixel resolution, at each grid point in either the (ξ0, ζ0)-
space or the (ξ0, fsub)-space, and according to the procedure outlined in Section 2.1. This is
a computationally expensive step, which involves painting 103 to 106 ellipses per realization.
Applying scattering transform to each of the realizations, we obtain the statistics of the
scattering transform coefficients of the noise-free rotation field at each grid point in the
parameter space.

For the case in which instrumental and reconstruction noise is taken into account, it is
necessary to introduce grid points to sample a range of signal strengths (A2 ξ0) in comparison
to the noise. By a simple rescaling, each noise-free realization of the rotation signal generated
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with A = 1 now becomes sixteen noise-free realizations with A2 ξ0 evenly spaced between
10−3 and 102.5 on the logarithmic scale. This is done twice for each noise-free realization and
each signal strength A2 ξ0. Unique realizations of the reconstruction noise (corresponding to
CMB-HD noise level) are then generated and added to each of the noise-free realizations of
the signal. The scattering transform calculation is then performed for each noisy rotation
field realization.

Scattering transform for large two-dimensional pixelated images is in general computa-
tionally expensive. Therefore, we down-sample each 1024×1024-pixel map to a 128×128-pixel
map by filtering out Fourier modes of high spatial frequencies. This removes information that
is potentially dependent on the aliasing properties of the pixelated ellipses, while ensuring
that the rotation power spectrum of each map is preserved at low spatial frequencies.

We use the implementation of scattering transform in the Python package Kyma-
tio [38] and compute coefficients for L = 8 azimuthal orientations and J = 6 logarithmically
spaced dilation scales. This results in 6 first-order and 15 second-order reduced scattering
transform coefficients.

To demonstrate parameter inference, we generate a mock signal with known model
parameters θmock, and then use the Markov Chain Monte Carlo (MCMC) method with the
log-likelihood function Eq. (5.1) to estimate the posterior distribution of θ. The fiducial
covariance matrix Cd is chosen to be C(θmock). In each MCMC run, 32 parallel walkers are
used, taking 104 steps each. The first 100 samples in each chain are discarded.

Flat priors are chosen for the logarithmic quantities log10A, log10 ξ0, and log10 ζ0, and
for the linear quantity fsub. The priors are defined within ranges that are constrained by the
ranges of parameters used to generate realizations for the theoretical scattering transform
coefficients. These are summarized in Table 1.

log10(A2 ξ0) log10 ξ0 log10 ζ0 or fsub
Uniform radius, noise-free −10 ∼ 10 0 ∼ 1.71 −1 ∼ 0
Uniform radius, noisy −3 ∼ 2.5 0 ∼ 1.71 −1 ∼ 0

Log-distributed radii, noise-free −10 ∼ 10 0 ∼ 1.71 0.1 ∼ 1
Log-distributed radii, noisy −3 ∼ 2.5 0 ∼ 1.71 0.1 ∼ 1

Table 1: Ranges for (log-)flat priors used in posterior estimation.

To compare between the rotation power spectrum and scattering transform coefficients
as summary statistics, the aforementioned likelihood maximization procedure is also repeated
with d chosen to be the logarithm of 20 binned power spectrum points between L = 1 and
L = 240. Finally, joint inference is performed by combining the binned power spectrum
points and the scattering transform coefficients as a single set of summary statistics. Taking
into account the information from both types of summary statistics is expected to improve
the parameter inference results.

6 Results

6.1 Noise-free case

We first study the constraining power of scattering transform on the value of A for the loop-
crossing model in the noise-free case. This corresponds to an ideal “best-case” scenario in
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which the the impact of polarization measurement errors, foreground contamination, and the
statistical variance in the reconstruction of the rotation angle is negligibly small.

If a single cosmic string in the sky could be resolved angularly, then A could be obtained
directly by measuring the difference in CMB polarization angle on both sides of the string.
The finite angular resolution achievable for the rotation field is the primary limitation in
the measurement of A from the polarization rotation field, even in the noise-free case. The
angular resolution of rotation field used here is 1/8 degrees, corresponding to multipoles up
to L = 1440.

Noise-free rotation realizations are independently generated according to the method
explained in Section 2.1 and are treated as mock input fields for the inference procedure of
Section 5. The posteriors of (A, ξ0, ζ0) estimated from the mock input fields using MCMC
on the likelihood in Eq. (5.1) are presented in Figure 4 for Model I and Figure 5 for Model II
for select parameters. Posteriors obtained from the same realization by power spectrum and
scattering transform are consistent with each other as well as the true parameter values. The
A2 ξ0 parameter degeneracy in the power spectrum inference (posteriors in grey) is apparent,
and the 1D posteriors for A and ξ0 individually are essentially flat within the bounds set
by our adopted priors (Table 1). In all cases, scattering transform successfully breaks this
degeneracy by reducing the width of the posterior along the degenerate direction to a finite
value. In some cases, sharp straight edges in the contours of the 2D joint distributions
artificially arise as a result of the boundaries of the adopted priors. Figure 4 shows that
parameter degeneracy is most significantly diminished for lower ξ0 (and hence higher A
at fixed A2 ξ0) and lower ζ0, corresponding to rotation fields with a higher degree of non-
Gaussianity.

We notice that the scattering transform method results in less tightly constrained pos-
teriors in the direction perpendicular to the A2 ξ0 degeneracy. We attribute this to the fact
that the first-order scattering transform coefficients, while conceptually analogous to binned
power spectrum, have a poorer resolution in Fourier space (6 vs. 20 points). Significantly im-
proved inference results can be achieved by trivially combining binned power spectrum and
scattering transform coefficients into an overall set of summary statistics, whose resultant
posteriors are shown in blue in the figures.

Our goal is to distinguish realizations with different values of A while keeping the com-
bination A2 ξ0 constant. For A2 ξ0 = 0.6, which is just below the current Planck constraint,
we consider mock rotation fields with A = 1/9, 1/3, 2/3, [comments on which UV models give
these values]. For A2ξ0 = 0.15, which Simons Observatory would be able to detect at a 3σ
level, we consider A = 1/9, 1/3. For each of these five choices of parameters, we also consider
ζ0 = 0.3, 0.7 and fsub = 0.3, 0.8 for the two loop-crossing models, respectively. Figure 6
marks these points in the parameter space, which can be compared to the theoretically com-
pelling region of the parameter space in grey, as well as to the regions of detectability by
several representative CMB experiments.

The 1D posteriors of A obtained from realizations of the chosen sets of parameters
using scattering transform as the summary statistics are summarized in Figure 7. In this
demonstration of the best-case scenario, realizations with different values A = 1/9, 1/3, 2/3 can
all be clearly distinguished from each other. Therefore, scattering transform shows dramatic
improvement over the power spectrum method, which produces completely flat posteriors of
A (up to the boundaries set by the prior) due to the A2 ξ0 degeneracy. We also observe that
A = 1/9, 1/3 can be better distinguished for a lower value of A2 ξ0, as a result of a lower ξ0
and hence stronger non-Gaussian features in the rotation field, which scattering transform is
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Figure 4: Posterior distributions for the parameters of the loop-crossing string network
model with a unique string loop radius (Model I). Inference is performed in the limit of
negligible reconstruction noise for the polarization rotation. Three sets of summary statistics
are exploited: rotation power spectrum (grey), scattering transform coefficients (red), and
the combination of the two (blue). True parameter values used for the input maps are marked
with grey lines and given in the captions.

able to exploit.
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Figure 5: Posterior distributions for the parameters of the loop-crossing string network
model with log-flat distributed string loop radii (Model II). Inference is performed in the
limit of negligible reconstruction noise for the polarization rotation.

6.2 Noisy case

We now examine the parameter inference power of the scattering transform method for the
loop-crossing model, taking into account realistic reconstruction noise for the rotation field.

The forecast reconstruction noise of CMB-S4 is low enough that the rotation signal of an
axion string network described by the loop-crossing model can be either confirmed or falsified
within the theoretically favored region of the parameter space [28]. Should such a signal be
discovered in experiments, it will be imperative to quantify it in more detail to distinguish
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points—three along A2 ξ0 = 0.6 and two along A2 ξ0 = 0.15—chosen for the mock input
rotation fields from which A will be estimated. Colored lines mark the 3σ (solid) and 30σ
(dashed) detectability of a string network described by Model II (fsub = 0.6), for three CMB
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The region of parameter space of the most theoretical interest is shaded in grey [3].
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model using scattering transform as the summary statistics. This demonstrates the best-case
scenario of the estimation of A for the chosen parameters in Figure 6. Vertical lines mark
the true values A = 1/9, 1/3, 2/3 of the corresponding input fields.
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between patterns that resemble Gaussian random fields and patterns that arise from an
axion string network. It will also be important to measure the value of the electromagnetic
anomaly coefficient A to gain insight into the charge quantization in beyond-SM theories.
Although CMB-S4 will be capable of statistically detecting the rotation signal, an even more
sensitive experiment will be needed to adequately break the A2 ξ0 parameter degeneracy at
the power spectrum level and reveal the non-Gaussian nature of the rotation pattern in the
sky. For demonstration, we set experimental parameters to be those of the proposed concept
CMB-HD: ∆T = 0.5µKarcmin, ∆P =

√
2∆T , and ΘFWHM = 0.25 arcmin [33].

Realizations of the rotation field with reconstruction noise injected are independently
generated according to the procedures explained in Section 2.1 and Section 4. They are
treated as mock input to the parameter inference procedure of Section 5. The posteriors of
(A, ξ0, ζ0) estimated from the mock input fields using MCMC on the likelihood in Eq. (5.1)
are presented in Figure 8 for Model I and Figure 9 for Model II for select parameters. The joint
posteriors show the same qualitative features as the ones in the noise-free case (Section 6.1),
albeit less tightly constrained.

For the same choices of 10 sets of parameters each for Model I and II, we present in
Figure 10 the 1D posteriors of A obtained from realizations with CMB-HD reconstruction
noise level using scattering transform as the summary statistics. Although the posteriors are
wider than in Figure 7, they nevertheless demonstrate that CMB-HD will be able to clearly
distinguish A = 2/3 from 1/9 and 1/3 and marginally distinguish A = 1/9 from 1/3, by exploiting
the non-Gaussian information in the rotation field of a string network with A2 ξ0 = 0.6, just
below the sensitivity of Planck SMICA. We conclude that the scattering transform of string-
induced cosmic birefringence can provide a strong test of charge quantization in beyond-SM
physics.

7 Discussion

The contrast in the first rows of Figure 8 and Figure 9 shows that the inference power of
various summary statistics also depends on the choice of phenomenological model of cosmic
string networks. Since scattering transform excels by extracting non-Gaussian information
from the input field, its improvement over power spectrum is greatest when the chosen
phenomenological model produces strongly non-Gaussian features, such as large patches with
coherent polarization rotation.

The loop-crossing model has the advantage of being easy to compute, but in any realiza-
tion of it (for any distribution of radii), it produces a large number of angularly small string
loops at high redshift. The aggregate of these small string loops is similar to Poisson shot
noise, which for high ξ0 contributes a Gaussian random field. The inference power of scat-
tering transform may be significantly hampered by this specific feature of the loop-crossing
model.

In contrast, one can imagine an alternative phenomenological model of cosmic string
networks in which circular arc segments are rearranged into irregular non-circular loops while
preserving the overall distribution of string length as a function of radius of curvature. This
mimics the more realistic situation in which strings loops are not perfect circles, but have
“wiggles” that result from string network dynamics. By keeping the same ξ0 and therefore
the same mean energy density, such a phenomenological model would produce fewer, hence
larger, patches of coherent rotation. This corresponds to higher non-Gaussian information in
the rotation field, so the best-case estimates of A using scattering transform are expected to
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Figure 8: Posterior distributions for the parameters of the loop-crossing string network
model with a unique string loop radius (Model I). Inference is performed at the CMB-HD
reconstruction noise level.

be even more stringent than those shown in Figure 7. Compared to string networks realized
in physical simulations, the loop-crossing model perhaps represents a pessimistic scenario
regarding the measurement of A using non-Gaussian information of the CMB polarization
rotation field. It will be valuable to study whether more realistic string networks based on
physical simulations have more non-Gaussian information that can be exploited to signifi-
cantly improve parameter inference.

The models we used to generate string network realizations in this paper assume that
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Figure 9: Posterior distributions for the parameters of the loop-crossing string network
model with log-flat distributed string loop radii (Model II). Inference is performed at the
CMB-HD reconstruction noise level.

the axion string network evolves according to a scaling solution, for which the effective
string length per Hubble volume ξ0 is constant. Recent simulations cast doubt on this
assumption, with numerical evidence of a logarithmic violation [35, 36]. This implies a
redshift-dependent ξ0, which can be accounted for in the loop-crossing model by adopting
a generally redshift-dependent radius distribution χ(ζ, z). The analysis of this paper could
then be straightforwardly extended by replacing ξ0 with a different choice of dimensionless
characteristic length scale upon which ξ0(z) would depend.
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Figure 10: 1D posteriors of A obtained from realizations of the loop-crossing model with
CMB-HD reconstruction noise level using scattering transform as the summary statistics.
This demonstrates that CMB-HD will be able to constrain beyond-SM theories by constrain-
ing A from a string network detectable at the Simons Observatory. Vertical lines mark the
true values A = 1/9, 1/3, 2/3 of the corresponding input fields.

By the same token, a string-wall network that collapses at a time before the present
day depending on the axion mass ma can also be described by a redshift-dependent radius
distribution χ(ζ, z) and therefore analyzed by the technique in this paper.

8 Conclusion

We have presented the first demonstration using mock axion string network realizations
that the Peccei-Quinn-electromagnetic anomaly coefficient A can be measured from axion
string-induced cosmic birefringence signals with future experiments comparable to the re-
cently conceived CMB-HD concept. This is achieved by applying scattering transform to the
anisotropic polarization rotation pattern that is estimated using quadratic estimators, and
extract the non-Gaussian spatial information therein. This information has been hitherto in-
accessible through the traditional power spectrum analysis, which suffers from a degeneracy
between A and the effective number of string loops per Hubble volume, ξ0. At the experi-
mental capability of CMB-HD, the likelihood-based parameter inference procedure described
in this paper is able to clearly distinguish high-energy-scale physics that has A = 2/3 from
ones that have A = 1/9 or 1/3, and marginally distinguish A = 1/9 from 1/3. In the event
that a axion string network is detected by next-generation CMB experiments such as Simons
Observatory or CMB-S4, the technique explored in this work will provide crucial insight into
the nature of charge quantization in new physics beyond the Standard Model.
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