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ABSTRACT 

 

Model-driven design of anaerobic consortia for lignocellulose valorization 

 

by 

 

Patrick A. Leggieri 

 

It is urgent that we develop and implement bio-based alternatives to our existing 

petroleum chemical and energy infrastructure. Lignocellulose is the most abundant 

renewable carbon resource on the planet, making it a promising biofeedstock. However, its 

recalcitrance to degradation via chemicals and model microbes like E. coli and yeast 

precludes its utilization for bioenergy or production of commodity and specialty chemicals. 

So-called “non-model” anaerobic microbial consortia found in the rumen of large herbivores 

have evolved as specialized biomass degraders and have potential for lignocellulose-based 

bioproduction if they can be onboarded, characterized, and deployed at scale. 

Anaerobic gut fungi (AGF) in rumen consortia produce nature’s greatest known 

variety and abundance of lignocellulose-degrading carbohydrate-active enzymes (CAZymes). 

This, combined with their mixed-acid fermentation profile, makes them interesting 

candidates for industrial CAZyme production and/or biomass deconstruction and conversion. 

However, AGF are not genetically tractable, and their physiology and primary metabolism 

are poorly understood, which limits our ability to predict and manipulate phenotypes for 

user-specified culture outcomes. AGF could therefore be deployed in communities alongside 
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genetically tractable workhorse strains, wherein AGF specialize in degradation of 

lignocellulose to sugars and conversion to bioproduct precursors. 

 Microbial communities are, in principle, capable of virtually limitless chemical 

transformations. In practice, designing consortia with predictable, prescribed functions is 

challenging, especially with a largely uncharacterized constituent species such as an AGF. 

Before we can deploy anaerobic consortia industrially, we must understand AGF physiology 

and metabolism. Specifically, we must know the entire space of achievable AGF phenotypes 

and how to accentuate the functions that we desire (fast growth, production of CAZymes, 

high flux of certain metabolites, etc.). 

Without genetic tools, we require creative and multifaceted approaches to 

characterize and tune AGF growth and metabolism. Toward this goal, we synthesized multi-

omic and biochemical data into the first AGF genome-scale metabolic model, offering the 

most complete description of AGF growth and metabolism available. The model established 

the theoretical AGF phenotype space; from there, we exposed AGF to myriad culture 

conditions (some resembling their natural habitat and some more artificial) to explore which 

phenotypes are both biotechnologically useful and achievable in practice. 

Using a non-rhizoidal AGF, Caecomyces churrovis, we developed simple, yet vital 

methods for quantification of AGF growth and metabolic flux that are routine in model 

systems but have been unavailable to AGF. By stirring C. churrovis cultures, we elicited a 

suspended culture morphology that grows faster and expresses significantly more CAZymes 

per cell than typical biofilm cultures. We leveraged these well-mixed suspended cultures to 

develop methods for non-destructive quantification of AGF growth and flux in co-culture 

with prokaryotes, and showed that methanogens significantly increased AGF growth rate and 
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altered AGF metabolic flux to yield different fermentation product profiles. In a significant 

step towards industrial deployment of AGF, we demonstrated the first steady state 

continuous culture of AGF using a DIY Arduino-based continuous flow bioreactor. 

Turbidostat bioreactor operation uncovered relationships between setpoint titer and AGF 

growth rate and flux, enabling users to specify continuous production rates of target 

metabolites and enzymes and vary them depending on the application at hand. 

Our understanding of AGF physiology remains far from comprehensive. However, 

the research presented in this dissertation has elucidated design rules for AGF cultures with 

measurable, predictable, and tunable growth and metabolite production rates, moving us 

closer to deployment of AGF and anaerobic consortia for industrial lignocellulose 

valorization.  
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1 

I. Characterization and modeling of microbial communities and 

anaerobic fungi 

Reprinted with permission from (Leggieri et al., 2021b). 

Microbiomes are complex and ubiquitous networks of microorganisms whose 

seemingly limitless chemical transformations could be harnessed to benefit agriculture, 

medicine, and biotechnology. The spatial and temporal changes in microbiome composition 

and function are influenced by a multitude of molecular and ecological factors. This 

complexity yields both versatility and challenges in designing synthetic microbiomes and 

perturbing natural microbiomes in controlled, predictable ways. In this section, we describe 

factors that give rise to emergent temporal and spatial microbiome properties and the meta-

omics and computational modeling tools that can be used to understand microbiomes on the 

cellular and system-levels. We describe strategies for designing and engineering 

microbiomes to enhance or build novel functions. Throughout, we discuss key knowledge 

and technology gaps for elucidating the networks and deciphering key control points for 

microbiome engineering, and highlight examples where multiple omics and/or modeling 

approaches can be integrated to address these gaps. 

A microbiome system with particular biotechnological promise is the 

lignocellulolytic microbial consortium native to the rumen of large herbivores. These 

communities have evolved to degrade crude lignocellulosic biomass, Earth’s most abundant 

renewable carbon resource (Abdel-Hamid et al., 2013), which is highly recalcitrant to 

degradation via chemicals and model microbes. Anaerobic consortia could be leveraged to 

valorize lignocellulose industrially if they can be onboarded, characterized, and cultivated at 

scale. Within these consortia, alongside myriad prokaryotes, anaerobic gut fungi (AGF) 
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produce nature’s greatest known variety and abundance of biomass-degrading carbohydrate-

active enzymes (CAZymes), making them interesting candidates for lignocellulose-based 

bioproduction. The challenges of designing and deploying microbiomes are particularly 

daunting for systems that include AGF, as AGF physiology and metabolism are poorly 

understood, increasing the degrees of freedom in microbiome design space to intractable 

levels. To enable design and deployment of microbial communities with AGF for 

lignocellulose valorization, tools must be developed and implemented to characterize AGF 

growth and metabolism comprehensively. 

A. Introduction 

Diverse communities of microorganisms inhabit every known environment, including 

oceans, soil, the surface and proximity of plants and intestines of humans, animals, and 

insects. Owing to the seemingly unbounded range of functions they perform, from 

biogeochemical cycling of nutrients to the transformation of dietary substrates into nutrients 

for multicellular hosts, microbiomes attract immense attention from industry and academic 

researchers alike. Efforts to understand and engineer microbiomes frequently require 

integrated approaches that blur the lines between microbiology, ecology, medicine, computer 

science, mathematics and engineering. Natural and synthetic microbiomes that robustly 

perform target functions could be exploited to address grand challenges facing society in 

human health, agriculture, bioremediation, and bioprocessing.  

Target microbiome engineering goals include the ability to predictably modulate 

community composition, enhance existing functions or install novel capabilities. Harnessing 

the properties of microbiomes remains difficult, because we do not yet fully understand the 

molecular and ecological mechanisms that govern systems-level behaviors and therefore lack 
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the capability to predict their multi-functional properties. Microbiomes are immensely 

complex since they can consist of hundreds to thousands of organisms, exhibit temporal and 

spatial variability and can establish dynamic feedback loops with the environment. A detailed 

and quantitative understanding of microbiomes could ultimately inform the design of 

interventions to predictably modify system properties or guiding principles for how to 

construct desired community functions from the bottom up. Exploiting and understanding the 

full functional potential of microbiomes necessitates integration of multiple experimental and 

computational methodologies that bridges many different disciplines. 

Microbiomes can be studied and engineered through two different and 

complementary approaches: top-down and bottom-up (Gilmore et al., 2019; Lawson et al., 

2019; Peng et al., 2016). A top-down approach investigates natural communities by 

introducing them into highly controlled laboratory environments. Such top-down 

manipulations can be used to understand microbiome dynamics and functions in response to 

environmental inputs (e.g., nutrient availability or antibiotic stress) (Scarborough et al., 

2018).  By contrast, isolated species can also be assembled in vitro to form synthetic 

communities, which have reduced complexity compared to natural microbiomes and greater 

controllability via manipulation of initial community composition (Gutiérrez and Garrido, 

2019; Venturelli et al., 2018). While molecular and ecological mechanisms of synthetic 

communities can be more easily dissected, these simplified systems can display reduced 

temporal stability in composition and/or function, limiting their deployment in real-world 

environments and for biotechnological applications (Gilmore et al., 2019). At the core, if we 

understand the temporal changes in “who is there” and “who can do what; when; and how?” 

we become better equipped to tailor microbiomes for e.g., medical and agricultural purposes. 
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A promising approach is to combine ecological studies, quantitative measurements and 

computational modeling to map the functional potential of microbiomes with increasing 

resolution (Robinson et al., 2014). 

Here, we describe tools that are currently used to understand microbiomes in diverse 

habitats and outline how “meta-omics” tools may be used and integrated to characterize 

microbiome composition and function. We describe representative case studies that showcase 

the various spatial and temporal scales that influence the composition and collective function 

of microbiomes, and how interactions between microorganisms can lead to emergent 

functions that cannot be predicted based on each community member’s behaviors in 

isolation. We discuss the relative advantages of several microbiome modeling approaches of 

varying degree of coarse-graining, and highlight recent efforts to integrate multi-omic data 

and multi-scale considerations into a single model. Throughout, we highlight opportunities to 

improve our understanding of the causal links between microbiome composition and function 

and our ability to engineer them for societal benefit.  

B. Tools for understanding microbiomes 

To harness the properties of microbiomes, we must develop tools that decipher which 

microbes have the capability and flexibility to perform specific functions, quantify their 

functional activities across space and time, and decipher interactions between organisms and 

between organisms and the environment. High-throughput sequencing has significantly 

enhanced our ability to investigate microbiome composition and functional activities, as 

today’s next generation and emerging so-called third generation sequencing tools (van Dijk 

et al., 2018) can rapidly process billions of DNA base pairs (bp) with continuous read lengths 
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greater than 100 kilo-bp (Amarasinghe et al., 2020) (>2% of the average bacterial genome 

size). These technologies enable characterization of phylogeny (amplicon sequencing), 

functional potential (shotgun metagenomics), and gene expression (metatranscriptomics) in 

thousands of species or synthetic communities simultaneously. Beyond nucleic acid 

sequencing, metaproteomics and metabolomics can analyze the activities of microbiomes by 

quantifying the abundance of enzymes that perform key chemical transformations and the 

metabolites mediating interspecies interactions (Figure 1).     

Figure 1. Different meta-omics tools are suited to answer different questions about microbiome 

composition and function. Amplicon metagenomics can reveal which organisms are present in a 
microbiome but not necessarily what each microbe’s role in the community is. Shotgun 

metagenomics elucidates which microbes are present in the community and what functions they have 

the capacity to perform. Metatranscriptomics and metaproteomics are necessary to uncover which 

functions are actually being performed in the community; assigning these transcripts and proteins to 

the microbes that produced them typically requires high-quality reference genomes or concurrent 

metagenomics analyses. Metabolomics and fluxomics quantify the chemical composition of the 

microbiome environment; however, linking metabolites to the microbes that produce or consume 

them is challenging, even with reference genomes. Linking microbiome composition and function is 

facilitated by integrating multiple meta-omics techniques, for example, concurrent shotgun 

metagenomics, metaproteomics, and metabolomics studies to assess which enzymes are producing an 

observed small molecule of interest and which microbes could produce those enzymes. 
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 Such meta-omics tools can be applied to quantify the spatial distribution of organisms 

within microbiomes, characterize low-abundance members and assess cellular heterogeneity, 

identify the organisms that perform key chemical transformations, and elucidate the web of 

metabolic interactions that ultimately drive microbiome functions.    

 1. Quantifying microbiome composition and functional potential via metagenomics

 Quantitative measurements of microbial abundance are critical for understanding the 

spatial and temporal behaviors of microbiomes. Microbiome composition is frequently 

determined via highly conserved marker genes for ribosomal RNA (rRNA), usually the 16S 

rRNA gene in prokaryotes and the 18S, 28S, and internal transcribed spacer (ITS) regions in 

eukaryotes (Raja et al., 2017). Amplicon sequencing is particularly useful for community 

composition characterization in systems contaminated by host DNA or samples with low 

DNA template concentrations. However, these methods provide a genus-level resolution, and 

sequence-dependent variations in (nominally) universal primer affinity between clades can 

bias abundance results, along with extraction efficiencies of DNA and variation in gene copy 

numbers (Campanaro et al., 2018; Wilson et al., 2019).      

 In shotgun metagenomics, a library is constructed with all community DNA and the 

reads can be assembled into genomes of individual species called metagenome-assemble 

genomes (MAGs). These genome sequences provide simultaneous quantification of the 

microbiome’s functional potential and its phylogenetic composition. Shotgun metagenomics 

has several advantages including finer phylogenetic resolution than amplicon-based 

sequencing down to the strain-level (Nayfach et al., 2016; Scholz et al., 2016; Shi et al., 

2019; Truong et al., 2017), detection of viral DNA, with the tradeoff that more reads are 

needed to confidently quantify more genes. To probe rare microbes with potentially unique 



7 

functions, DNA extraction methodologies targeted for different species have been leveraged 

to assemble near-complete genomes of bacteria present below 1% relative abundance within 

a community by employing differential coverage binning (Albertsen et al., 2013). In addition, 

the variation in genome copy numbers in different regions of the chromosome have been 

used to infer the bacterial replication rates in natural environments (Brown et al., 2016), 

providing key insights into the distribution of metabolic activity states within a community.

 Sequencing based methods provide relative abundance or compositional data, which 

presents challenges for statistical analyses and can lead to spurious correlations. Therefore, 

methods to quantify absolute abundance are critical to understanding microbiomes including 

determining correlations between organisms, growth rates, per-cell metabolic activities, or 

total microbial loads present in a host. Absolute DNA-based quantification of microbiome 

composition is a major challenge that has been approached with spike-in (Tkacz et al., 2018), 

quantitative polymerase chain reaction (qPCR) (Lou et al., 2018), flow cytometry 

(Vandeputte et al., 2017), and total DNA quantification (Contijoch et al., 2019) methods; 

however all of these have inherent biases and limitations. Recently, amplicon sequencing was 

coupled to digital PCR in a microfluidic format for absolute DNA-based quantification of 

microbiome composition with the advantage of concurrent evaluation of the limits of both 

clade detection and clade quantification (Barlow et al., 2020).    

 The spatial distribution of clades within a microbiome can be studied by sampling 

from different locations using sequencing methods. This approach has been used to map the 

biogeography of the mammalian gut (Sheth et al., 2019), and to demonstrate how anaerobic 

digestion communities self-assemble into distinct microbiomes when reactors are connected 

in series (Fontana et al., 2018). While the spatial resolution that can be achieved by sampling 
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different locations is limited (~20 µm), micron- and nanometer-level spatial variation can be 

elucidated using imaging approaches. To uncover how spatial clustering of clades influences 

community functions and interactions, it is necessary to elucidate both the spatial distribution 

of functions and the identity of organisms.         

 The information in MAGs can be used to predict the range of chemical 

transformations the system is capable of performing by evaluating putative metabolic 

pathways, as well as which metabolites may be taken up or secreted by certain microbes. For 

example, lignocellulose-degrading enzymes in the porcupine gut microbiome were identified 

via shotgun metagenomics and expressed in E. coli, leading to the discovery of an active 

endo-1,4--xylanase even though the microbe encoding this gene was unknown (Thornbury 

et al., 2019). Accurate predictions of functional potential heavily rely on reference genomes 

and metagenomic datasets.         

 Our ability to collect metagenomic data has outpaced our ability to functionally 

annotate it for interpretation of biological context (i.e., “who has the capability to do what” in 

the microbiome). In genetically tractable organisms, a powerful approach to functionally 

annotate genes involves quantification of strain fitness within pooled genome-wide mutant 

libraries that can be grown in monoculture or co-culture (Ibberson et al., 2017) across many 

different environmental conditions (Price et al., 2018). However, since the majority of strains 

lack genetic tools, bioinformatic approaches including the Integrated Gut Genomes Database 

and associated IGGsearch tool (Nayfach et al., 2019), and Distilled and Refined Annotation 

of Metabolism (DRAM) tool (Shaffer et al., 2020) can be used to analyze large sequencing 

data sets containing potentially thousands of interacting species.   
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2. Metatranscriptomics maps organism identities to functional activities 

Metatranscriptomics, in which total community mRNA is extracted, reverse 

transcribed to cDNA, and sequenced, provides insight into the potential functions performed 

by organisms within a community as well as which microbes may be performing them. For 

example, metagenomic and metatranscriptomics were combined to identify sugar fermenting 

and fatty-acid chain elongating microbes in an anaerobic bioreactor and propose routes of 

metabolite exchange between the clades (Scarborough et al., 2018). Gomez-Godinez et al. 

reported by quantifying nitrogen fixation transcripts that Azospirillum brasilense was the 

predominant nitrogen-fixing bacterium in a synthetic consortium of plant growth-promoting 

bacteria on maize roots (Gómez-Godínez et al., 2019). While metatranscriptomics also 

generates a large number of unannotated “hypothetical genes,” the ability to identify genes 

that change across different conditions greatly facilitates the downstream identification of 

genes involved in microbiome processes including the breakdown of lignocellulose or the 

biogeochemical cycling of elements. Further, investigating the genome-wide transcriptional 

activity of organisms within a community may guide the development of hypotheses about 

mechanisms involved in observed microbiome states (dysbiosis, steady state recovery after 

perturbation, etc.). For example, a combined metagenomic and metatranscriptomic study of 

the fecal microbiome of 308 adult men revealed that pathways that were encoded in the 

genomes of many members of the microbiome were actually transcribed by a small subset of 

species (Abu-Ali et al., 2018).  

Notably, even when reference genomic data is lacking, metatranscriptomics can be 

used to mine microbiomes for enzymes with desired function. A transcriptomic survey of 

anaerobic gut fungi harvested from the intestinal tract of herbivores, revealed that these 
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unusual and understudied eukaryotes produce an unrivalled array of biomass-degrading 

enzymes (Solomon et al., 2016), marking these fungi as attractive targets for sourcing of 

valuable enzymes (Seppälä et al., 2017). Similarly, He et al. identified 125,252 putative 

CAZymes in a sheep gut microbiome, most of which had less than 75% identity to known 

proteins in the CAZy database or the NCBI database (He et al., 2019), but 19 out of 30 that 

showed cellulase activity when heterologously expressed.  

 In microbes, mRNA transcripts represent <10% of total RNA, therefore, rRNA 

should typically be removed prior to sequencing. Methods for prokaryotic rRNA depletion 

vary in efficacy based on microbiome type (biofilm vs. planktonic) and composition, and tool 

development is an active area of research (Petrova et al., 2017). Methods for single-cell 

prokaryotic rRNA depletion are only beginning to show some success (Fang and Akinci‐

Tolun, 2016; Wangsanuwat et al., 2020), and will be useful for interrogating the unique 

activities of low-abundance organisms as well as the cell-to-cell heterogeneity of gene 

expression within a given species that is not observable with bulk methods. Identifying the 

optimal spatial locations and timepoints to discover ecological driver organisms or novel 

biochemical pathways mediating microbiome functions remains unresolved. Further, since 

transcript number does not always correlate with protein abundance or activity, it is difficult 

to estimate the relative contribution of different metabolic reactions and pathways to the 

overall function of the microbiome from metatranscriptomics data alone.  

3. Quantifying microbiome functional capabilities via metaproteomics 

Metaproteomics, which studies all proteins recovered from a microbiome sample, can 

provide critical information about microbiome functional capabilities. Liquid 

chromatography can be coupled to mass spectrometry or to tandem mass spectrometry (LC-
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MS or LC-MS/MS) for detection of tens of thousands of peptides in one sample (Kleiner, 

2019; Mueller and Pan, 2013). In the future, nanopore-based devices hold promise to 

revolutionize proteomics and biotechnology by enabling amino acid sequencing of intact 

proteins, enabling structural characterization of larger proteins than LC-MS (Chinappi and 

Cecconi, 2018). In addition to differential enzyme expression, metaproteomics may be 

employed to quantify the abundance of individual organisms in a microbiome on a biomass 

basis (Kleiner et al., 2017), which offers an alternative method for microbiome composition. 

Indeed, proteinaceous biomass may be a better representation of composition for systems 

composed of eukaryotic and prokaryotic cells where the size and weight of organisms varies 

significantly, but perhaps more biased in cases where the intracellular protein content varies 

widely across species. 

Beyond prospecting for genes with predicted functions, metaproteomics can be used 

to identify post-translational modifications as well as directly quantify the abundance of 

proteins in a community, which may not necessarily correlate with transcript abundances 

(Speda et al., 2017). This approach is greatly improved by integration with metagenomic 

analysis, due to the difficulties of mapping fragmented peptide sequences to genes. In 

particular, mining microbiomes for membrane proteins such as transporters is critical to 

elucidating molecular mechanisms involved in interspecies interactions, but remains 

challenging due to their low abundance compared to soluble proteins and technical/analytical 

challenges due to their hydrophobicity (Vit and Petrak, 2017).  

4. Metabolomics reveals the chemical repertoire of microbiomes   

Microbes are exquisite chemists and these chemical mediators produced and utilized 

by constituent community members are a major driving force of microbiome functions. 
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Metabolomics can be used to detect small molecule metabolites, including intermediates and 

end products of cellular metabolism. Integration of metabolomics with metagenomics is 

particularly useful for formulating hypotheses about the role of measured metabolites in 

interspecies interactions and microbiome functions, as metabolites typically cannot be 

assigned to specific organisms. Therefore, it is necessary to integrate other meta-omics tools 

to determine which metabolic pathways are active in a community to hypothesize how 

different metabolites may be utilized, released, and exchanged to form an integrated 

community metabolic network. 

Many metabolomic approaches employ gas chromatography (GC) to precede MS 

analysis instead of LC, offering greater chromatographic separation of metabolites. Nuclear 

magnetic resonance (NMR) spectroscopy offers an alternative, more quantitative measure of 

metabolites without the sample preparation and derivatization steps required in MS studies, 

but typically cannot detect metabolites below micromolar concentration (Emwas, 2015). 

Untargeted metabolomics seeks to characterize the structures of as many metabolites present 

in the sample as possible that can be identified. However, it is impossible to characterize all 

classes of metabolites with a single solvent and column chemistry, and many metabolites in 

databases remain unannotated (Zamboni et al., 2015). Therefore, strategies must be 

developed to predict unknown chemical structures and link them to the microbes and 

biosynthetic pathways. Recently, Henry et al. developed the Pickaxe tool (Jeffryes et al., 

2015) for generating novel metabolites and predicting the enzymes and putative pathways 

based on Enzyme Commission (EC) numbers and the MINE database. 
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5. Investigating metabolic flux in microbial communities 

Metabolic flux analysis (MFA) can quantify the distribution (flux) of carbon in 

cellular metabolism, providing a direct measurement of the activity of metabolic networks. 

Using this method, cells are typically exposed to 13C-labeled carbon and the degree of 

labeling of biomass components like glycogen and proteins is quantified via GC-MS (Long 

and Antoniewicz, 2019). Based on these data, software, such as METRAN, is used to 

estimate the flux through each pathway using a organism specific metabolic model. While 

MFA has been used to study well-characterized and simplified communities (Gebreselassie 

and Antoniewicz, 2015), the challenge associated with assigning metabolites to microbes in 

complex communities has stymied the broader application of MFA. However, analysis of 

isotopic labeled peptides, which can be mapped to individual microbes with reference 

genomes using metaproteomics may unlock MFA for microbiomes (Ghosh et al., 2014). 

Nevertheless, this method may perform best on communities composed of microbes with 

dissimilar metabolisms or that can be spatially separated. To quantify interspecies metabolic 

interactions and community-wide fluxes, development of “metafluxomic” protocols and 

software is necessary to translate isotopic labeling and multi-omic data into quantitative 

descriptions of community metabolic networks (Antoniewicz, 2020).  

6. Stable isotope probing (SIP) in microbiomes 

Stable isotope probing (SIP) has emerged as a promising technique to enrich rare 

microbes and link microbe identities to functions, and investigate interaction networks within 

microbiomes. In DNA or RNA SIP, isotopically labelled substrates are differentially taken up 

and incorporated into nucleic acids by community members. After extraction, nucleic acids 

are fractionated by density to simultaneously enrich for nucleic acids from rare microbes and 
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link the affinity for the labeled substrate to microbe identity (Coyotzi et al., 2016; Egert et al., 

2018). For example, DNA-SIP was used to curate a complete genome of a Saccharibacteria 

with < 1X coverage in the bulk metagenome and decipher the metabolite exchange networks 

within the Saccharibacteria’s surrounding community (Starr et al., 2018). 

A major limitation is that the SIP culturing procedure may not mimic a microbiome’s 

natural microenvironment. While the vast majority of microbes remain uncultivated, meta-

omics analyses may elucidate clues for isolating and culturing previously uncharacterized 

species (Nayfach et al., 2019). Nucleic acid-SIP requires that isotopes be incorporated 

directly into nucleic acids, and the incubation time with the isotope influences the degree of 

community labelling. For example, short incubation times exclude isotope uptake by slow-

growing microbes, and long incubations may lead to non-specific cross-feeding of isotopes 

across the community, skewing which clades initially metabolized the substrate (Fortunato 

and Huber, 2016; Radajewski et al., 2003).  

In principle, SIP can also be used to quantify incorporation of labels into proteins 

(Protein-SIP) (Seifert et al., 2012), metabolites (Metabolome-SIP), and phospholipid-derived 

fatty acids (PLFA-SIP), though linking these to microbe identity requires excellent reference 

genomes or concurrent metagenomic and/or metatranscriptomic analyses. When integrated 

with meta-omics analyses, SIP may link microbe identity to function, and uncover 

interspecies metabolite exchange mechanisms and community-wide metabolic networks. For 

example, Protein-SIP coupled to amplicon sequencing and shotgun metagenomics was used 

to map acetate metabolism to organism identity in anaerobic digester consortia (Mosbæk et 

al., 2016). In addition, RNA-SIP, metagenomics, and metatranscriptomics have been 

integrated to characterize the predominant CO2 fixation pathways and their transcribing 
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microbes in deep-sea hydrothermal vent microbiomes at a range of temperatures (Fortunato 

and Huber, 2016). Finally, DNA-SIP has been combined with differential coverage binning 

to enhance resolution of MAGs with specific activity in anaerobic digesters (Ziels et al., 

2018). See (Berry and Loy, 2018) for a review of SIP applied to in vivo and ex vivo human 

and animal gut systems. 

C. Computational models predict microbiome dynamics and functions 

Mathematical models can be used to simulate microbiome population dynamics and 

metabolic functions on many time and length scales, based on ecological, thermodynamic, 

and biochemical principles. These range from data-driven differential equation-based models 

of community composition and interactions to mechanistic genome-scale models of 

metabolic flux and interspecies metabolite exchange (Figure 2). Below, we discuss relative 

advantages and limitations of several modeling approaches, and how they may be used to 

enable microbiome engineering. 

1. ODE and EGT models of microbiome population dynamics and interactions 

Ordinary differential equation (ODE) models, such as the generalized Lotka-Volterra 

(gLV) model (Venturelli et al., 2018), have been used to model microbiome population 

dynamics using time-series data of absolute organism abundance for parameter estimation 

and experimental validation (Kumar et al., 2019; Song et al., 2014). In the gLV model, the 

temporal changes in abundance of each species is a function of its growth rate, intra-species 

and inter-species interactions  (Cao et al., 2019). The gLVs models can be used to analyze 

dynamic behaviors including the response to perturbations such as dilution rate, response to 

antibiotics and temperature fluctuations (Dam et al., 2016; Stein et al., 2013). In addition, the 

inferred parameters of the gLV model can be visualized as an interaction network to examine 
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the distribution of negative and positive interactions and identify ecological driver species 

(Venturelli et al., 2018). The gLV model could be used to design community cultivation 

strategies to achieve desired community compositions and stability properties.  

Evolutionary game theory (EGT) can also be used to model microbiome population 

dynamics, as described in these reviews (Frey, 2010; Pusa et al., 2019; Song et al., 2014). 

Figure 2. Microbiomes can be modeled on many scales, and the choice of modeling technique depends on the 

question at hand. At the most mechanistic level, molecular simulations may be used to model the 

thermodynamics and kinetics of individual enzymes identified through metaproteomics; however, these are 

not scalable to encompass the entire microbiome. GEMs enable prediction of the metabolic fluxes and end-

product profiles within a microbiome and can offer mechanistic insight into metabolomic observations given 

high-quality genomic reconstructions and sufficient experimental model validation. Evolutionary game theory 

models and differential equation–based models are particularly useful when microbiome population dynamics 

are of the greatest interest, because detailed metabolic reconstructions are not needed for each organism to be 

modeled. AbMs offer flexibility in that the user may define which inputs and outputs to include in the model, 

and are often the technique of choice when integrating both metabolic and physical interactions between 
microbes. Data-driven models, including emerging machine learning–based models, offer empirical 

predictions of microbiome behaviors under specified conditions given appropriate training data. Although less 

mechanistic than GEMs, machine learning–based models are a pragmatic approach to synthesizing large 

amounts of different data types into interpretable conclusions, for example, rate constant estimations for 

process-level models of microbiome function. The structure of the molecular enzyme model is from PDB ID 

4QLK. The structure of the AbM is reproduced with permission from Reference 162. The microbes in the 

evolutionary game theory models panel and the entire machine learning–based models panel were adapted 

from images created with BioRender.com. Abbreviations: AbM, agent-based model; EGT, evolutionary game 

theory; GEM, genome-scale model; ODE, ordinary differential equation; PDB, Protein Data Bank. 
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The fitness parameters that dictate the outcome of metabolic “games” in microbiomes can be 

difficult to estimate, as they are influenced by nonlinear environmental and intracellular 

conditions. For this purpose, EGT can be integrated with genome-scale models (GEMs, 

described below), enabling prediction of interspecies interactions and stable steady state 

fluxes and species abundances. The system states at which each microbe locally maximizes 

its own growth, but not necessarily the global maximum community growth, can be 

identified as Nash equilibria and evolutionarily steady solutions (a subset of Nash equilibria) 

(Nowak, 2006), or asymptotically stable solutions to dynamic replicator equations, all of 

which pose candidates for stable coexistence states that the microbiome could exhibit. 

Evolutionary stability is a key factor to consider when designing bottom-up communities or 

altering the composition of a native system. While gLV and EGT models capture context-

dependent pairwise interactions, these models fail to capture higher-order or metabolite-

based interactions in the community. Public goods games (PGGs) are, in principle, 

extendable to multispecies interactions and integrable with other modeling approaches like 

genome-scale models; some associated challenges are reviewed in (Pusa et al., 2019).  

2. Predicting microbiome fluxes and interactions with genome-scale models (GEMs) 

 and machine learning 

Mechanistic genome-scale models (GEMs) offer prediction of microbial behaviors in 

untested conditions and serve as useful platforms for synthesizing multi-omic data into one 

comprehensible and interactive format. GEMs mathematically represent an organism’s 

metabolic pathways (with gene-protein-reaction associations (GPR) in metadata) as a 

stoichiometric matrix of reactions and metabolites (Gu et al., 2019; Thiele and Palsson, 

2010). Through flux balance analysis (FBA) (Orth et al., 2010) and related techniques 
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including flux variability analysis (FVA) (Gottstein et al., 2016; Gudmundsson and Thiele, 

2010), GEMs can be used to assess the effects of media and substrate changes and genetic 

edits on fluxes of target compounds; this approach has been used extensively to guide 

metabolic engineering (Hartmann et al., 2017; Kim et al., 2015; Zhang and Hua, 2016). As 

metabolic engineers look to co-cultures for specialty products (Sgobba and Wendisch, 2020; 

Wang et al.) and systems biology is applied to medicine (Thiele et al., 2020; Zhang and Hua, 

2016), genome-scale modeling of microbiomes is becoming increasingly useful. 

3. Automated genome-scale reconstructions: scaffolds for GEMs 

Advances in meta-omics tools described previously have enabled semi-automated 

construction of metabolic networks for hundreds of species that encompass a microbiome 

(tools reviewed in (Mendoza et al., 2019)); however, manual curation is needed to accurately 

recapitulate metabolism in silico (Reimers et al., 2017). For example, Magnusdottir et al. 

published the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) 

database, complete with 773 genome-scale reconstructions of human gut microbes, and 

simulated pairwise microbial interactions when fed with different diets (Magnúsdóttir et al., 

2017). Follow-ups to this report highlight the distinction between a reconstruction and a 

context-specific predictive genome-scale model, and the importance of identifying and 

applying appropriate constraints before attempting to simulate metabolism in silico (Babaei 

et al., 2018; Magnúsdóttir et al., 2018).  

Databases exist for published genome-scale reconstructions such as BiGG (Norsigian 

et al., 2020), Model SEED (Seaver et al., 2020). Significant progress has been made in 

cataloguing reconstructions for the human gut microbiome and human body at large 

(Magnúsdóttir et al., 2017; Noronha et al., 2019; Robinson et al., 2020). These 
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reconstructions serve as templates for context-specific GEMs, such as a known viral 

infection of a macrophage cell (Aller et al., 2018) or dysbiosis of the gut (Kumar et al., 

2018). In an important step towards universalizing GEMs over different sequence annotation 

styles, programming languages, and operating systems, Lieven et al. recently published 

MEMOTE, which scores GEMs for completeness and feasibility (Lieven et al., 2020). 

However, owing to the highly variable and environment-dependent nature of enzyme kinetics 

and transcriptional regulation, the individual constraints that make models predictive cannot 

yet be generally catalogued this way. 

4. Constraining and optimizing community GEMs 

In curating a GEM from a GENRE, integration of multi-omic data and experimental 

metabolite concentrations (Kuang et al., 2020) facilitates filling in pathway gaps, 

constraining the solution space (Tian and Reed, 2018), and validating and improving 

simulations of microbiome function. To this end, Pandey et al. recently published REMI 

(Relative Expression and Metabolomics Integrations) for integrating transcriptomic, 

thermodynamic, and metabolomic data from differential expression analyses into GEMs 

(Pandey et al., 2019), which Hadadi et al. used to simulate the transition of Pseudomonas 

veronii from exponential to stationary phase, as well as from culture in liquid media to soil, 

demonstrating advancement in our ability to model microbial adaptation to environmental 

perturbations (Hadadi et al., 2020).  

In addition to flux constraints, choosing and defining the objective function to be 

optimized is particularly challenging for community models (Gottstein et al., 2016). In 

single-organism FBA, the objective function is usually to maximize flux through a biomass-

forming “reaction” based on the organism’s macromolecular composition (i.e., to grow as 
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fast as possible).  For multispecies FBA systems, many optimization strategies exist. In so-

called “supra-organism” approaches, the metabolic pathways in all organisms are combined 

into one stoichiometric matrix, and organisms are partitioned into separate “compartments” 

that exchange metabolites (Song et al., 2014; Stolyar et al., 2007). Optimization of the 

weighted community growth rate may require individual species to grow at sub-optimal 

growth rates, which is not always an accurate assumption (especially in competitively 

interacting systems). Bi-level optimization has been implemented to maximize individual and 

community growth rates together in algorithms such as OptCom (Zomorrodi and Maranas, 

2012) and CASINO (Shoaie et al., 2015).  

To model microbiome fluxes at steady state, Community FBA (cFBA) (Khandelwal 

et al., 2013) and SteadyCom (Chan et al., 2017), impose a fixed community growth rate that 

is adopted by all organisms, however this is not always achievable in practice. Alternatively, 

EGT can be integrated with FBA to predict evolutionarily stable interactions and steady state 

flux distributions (Zomorrodi and Segrè, 2017). In other bi-level optimization strategies, a 

microbe may be predicted to produce a metabolite that benefits the community but does not 

necessarily maximize its own growth rate. To avoid imposing this “forced altruism,” Cai et 

al. developed NECom, which predicts steady state community fluxes and pairwise 

interactions by identifying Nash Equilibria and removes any influence from the community 

optimization problem on a microbe’s incentive to secrete a metabolite in community GEMs 

(Cai et al., 2019).  

While highly useful for predicting and describing microbial fluxes and interactions, 

GEMs require significant time and resources to construct and curate predictive models from 

automated reconstructions. Since a microbiome’s composition must be fully defined to 
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accurately apply FBA, GEMs are currently limited to bottom-up microbiomes with a few 

representative species, which often lack long-term stability. Further, experimental 

measurements of community growth rates and fluxes are critical to GEM validation 

improvement but remain a challenge to obtain for large (>3 member) communities. 

5. Machine learning can identify complex mappings between microbiome inputs and 

 outputs 

Machine learning can be employed to predict and link microbiome composition and 

functions using multi-omic data, as reviewed in (Namkung, 2020; Zhou and Gallins, 2019). 

Machine learning can create nonlinear mappings between microbiome inputs (cultivation 

conditions, species pairings, etc.) and outputs (metabolite concentrations, gene expression 

profiles, relative organism abundances, etc.) that may enable design of novel microbial 

consortia with target functions without the need to rigorously characterize each organism in 

isolation. A major limitation is that these models may not provide insight into the biological 

mechanisms that generate the observed microbiome states. To address this challenge, 

machine learning has been integrated with GEMs to extract information from multi-omic 

experiments and metabolic simulations that are relevant to the engineering objective at hand 

(Zampieri et al., 2019). 

6. Dynamic models of microbiome flux 

Dynamic computational models are particularly useful when the time-varying 

microbiome fluxes or 3D structure are of interest (Øyås and Stelling, 2018). Dynamic FBA 

(dFBA) has been used extensively to model transient compositions and flux distributions in 

small (2-3 member) microbial communities, as reviewed in (Gottstein et al., 2016). In these 

cases, estimation of metabolite uptake and secretion kinetics is particularly important for 
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accurately simulating growth and fluxes. Characterization of transporter membrane protein 

specificity and influx/efflux kinetics promises to significantly improve both dynamic and 

steady state FBA simulations (Nilsson et al., 2017; Zeng and Yang, 2020), but remains a 

major challenge (Boyarskiy and Tullman-Ercek, 2015). 

Spatial heterogeneity can be incorporated into community GEMs (Harcombe et al., 

2014; Lillington et al., 2020; Øyås and Stelling, 2018), typically by using FBA to find each 

species’ growth rate at each time step in numerical solutions of reaction-diffusion partial 

differential equations (Chen et al., 2016). Biofilms, in particular, are increasingly being 

modeled with spatiotemporal GEMs (Harcombe et al., 2014; Henson and Phalak, 2017; Patel 

et al., 2019; Phalak et al., 2016). To account for their moving boundary conditions brought 

on by film growth/expansion, it is useful to simulate them as collections of individual 

microbes in so-called agent-based models (AbMs). 

7. Agent-based models (AbMs) simulate predefined physical and metabolic 

 interactions in microbiomes 

In AbMs, microbes are treated as individuals with specified traits, rather than 

concentration state variables as in other methods. AbMs can capture gene regulation 

(Gorochowski et al., 2012), metabolic and mechanical interactions between microbes in a 

community, and are well-suited to model biofilm formation, deformation, and disruption 

(Jayathilake et al., 2017). Metabolism can be coarse-grained to allow only for reactions 

involving exchange with the environment; or AbMs can integrate genome-scale metabolism 

to compute fluxes with FBA. The latter approach is taken in BacArena, an R package that 

was demonstrated to model spatiotemporal metabolic interactions among seven human gut 

microbes (Bauer et al., 2017). 
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Although they are computationally demanding, AbMs are versatile models that 

suggest priority experiments for answering specific questions of microbiome function. For 

example, van Hoek et al. simulated metabolism in the human large intestine with a coupled 

dFBA-mass transport model of individuals from a supra-organism “metabacterium” (Hoek 

and Merks, 2017). Although they did not include experimental validation, their model 

generated hypotheses for the effects of diarrhea (a macro-scale system state) on the micro-

scale spatial organization and relative abundance of microbes with various flux profiles, 

which can be explored experimentally. Similarly, Doloman et al. used a multispecies AbM 

(without genome-scale metabolism) to predict cultivation conditions that maximize methane 

productivity in spatially-structured anaerobic sludge granules (Doloman et al., 2017). 

D. Deploying lignocellulose-valorizing microbial consortia with anaerobic

  fungi requires detailed understanding of AGF physiology and metabolism 

Reprinted and adapted with permission from (Wilken et al., 2021).   

 Microbiome engineering should consider the complex interplay and feedback loops 

between the environment and the resident microbiome, which together drive community 

dynamics and multifunctional properties. Advancements in our understanding of 

microbiomes gleaned from ecology and systems biology must be leveraged to develop new 

strategies to program prescribed functions using tools from synthetic biology. Top-down 

design of microbiomes presents challenges in predictably modifying composition and 

function, whereas the engineering of stable and highly functional synthetic communities from 

the bottom-up also remains difficult. Development of microbiome engineering that can 

achieve high precision, robust and predictable outcomes holds promise for diverse 

applications in biotechnology, medicine, agriculture and the environment. A comprehensive 
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understanding of microbiomes necessitates an integration of multi-omic data as well as 

quantification of the spatial and ecological factors that contribute to community functions.

 1. The anaerobic fungal genome scale model: iNlan20   

 Microbial communities including AGF have significant potential to valorize 

lignocellulose through biomass degradation and production of valuable enzymes and 

bioproducts. However, before AGF can be deployed in communities, AGF physiology and 

metabolism must be understood in detail. Toward this goal, we developed the first 

experimentally validated AGF GEM. The 3-compartment (extracellular, cytosolic, and 

hydrogenosomal compartments) model, named iNlan20, is composed of 1,018 genes, 1,023 

reactions, and 816 metabolites, and captures the primary metabolism of N. lanati. The model 

is stoichiometrically consistent as well as mass and charge balanced.   

 Experimental, genomic, transcriptomic, and 13C metabolic flux analysis data were 

used to build and validate the model, which recapitulates extracellular metabolite production 

rates and accurately models the observed fungal growth rate. The model suggests possible 

pathways within the AGF hydrogenosome (an anaerobic mitochondrion-like organelle 

capable of energy production) and can be used as a platform upon which to base future 

experiments to understand AGF metabolism comprehensively.    

 2. iNlan 20 captures carbon, amino acid, vitamin, fatty acid, nucleotide, and lipid 

 metabolism          

 The model focuses on the primary metabolism but includes CAZymes as generalized 

cellulase and hemicellulase reactions. Of the 791 metabolic genes included in the model, 216 

do not have gene assignments, reflecting how superficial our understanding of AGF 

physiology is and motivating improvement of the existing AGF genomes. Energy-generating 
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pathways in AGF include the Embden-Meyerhof-Parnas variant of glycolysis, mixed-acid 

fermentation, and the hydrogenosome. It remains unclear which hydrogenosomal pathways 

carry significant flux in vivo, however the model described herein offers informed 

hypotheses based on both FBA simulations and experimental results and offers a starting 

point for further characterization of AGF metabolism in the hydrogenosome and at large. 

 The major components of anabolic metabolism (amino acids, nucleotides, vitamins, 

fatty acids, and lipids) are present in the N. lanati genome, which agrees with its ability to 

grow in defined M2 medium without addition of any of these components. Specifically, the 

genome contains complete biosynthesis pathways for all the proteogenic amino acids and the 

modeled fatty acids. Most of the canonical vitamin and cofactor (vitamin B5, vitamin B6, 

riboflavin, and thiamine) biosynthesis pathways are complete, except for folate, where no 

synthesis mechanism of 4-aminobenzoate was found. The heme and biotin biosynthesis 

pathways are incomplete in the genome; however, the latter vitamin is not required for 

growth in defined medium, suggesting that the pathway is either poorly annotated or that the 

fungus does not require it for growth. The model accurately predicts the experimentally 

observed growth rate (predicted: μ = 0.044 h-1; observed: μ = 0.045 ± 0.003 h−1 using only 

the measured flux of glucose (1.5 mmol/gDW h) as an input constraint. However, it should 

be noted that, based on comparisons between stirred and unstirred AGF cultures (Leggieri et 

al., 2022), this observed N. lanati growth rate is likely based on substrate diffusion rate, 

rather than intrinsic growth rate, motivating extension of the model to well-mixed AGF 

systems. 
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3. iNlan20 accurately predicts in vivo fluxes when constraints are applied 

 Metabolic flux analysis (MFA) was used to experimentally verify the predicted 

intracellular fluxes of the GEM using a 1,2-13C-labeled glucose tracer in conjunction with a 

carbon atom transition model built from the N. lanati metabolic reconstruction. For the MFA 

model, metabolic degeneracy caused by the ability of the hydrogenosome to metabolize both 

malate and pyruvate resulted in large bounds on the fluxes involving these metabolites. To 

circumvent this, the MFA model was constrained to only import pyruvate into the 

hydrogenosome based on previous observations (Boxma et al., 2004). Extracellular 

fermentation product measurements (ethanol, formate, hydrogen, acetate, succinate, and 

lactate) were also used to constrain the MFA model. This resulted in accurate internal 

Figure 3. The genome-scale metabolic 

model accurately predicts the in vivo 

carbon metabolism of N. lanati. 

Experimentally determined MFA fluxes 
and predicted pFBA fluxes (top and 

bottom, respectively) for glycolysis, the 

TCA cycle, and the hydrogenosome of 

N. lanati. Error estimates denote one 

standard deviation from the reported 

mean for the MFA measurements. 

Three serially passaged [1,2-
13C]glucose tracer experiments, grown 

in M2 medium at 39°C and harvested 

during exponential phase, were used to 

measure the in vivo fluxes. 
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metabolic flux measurements based on a statistically significant fit between measured and 

simulated proteinogenic amino acid labeling patterns (Figure 3).  

These 13C measured fluxes were then compared to the fluxes predicted using the 

GEM with independently measured metabolite flux constraints (Table 1). We then used 

parsimonious flux-based analysis (pFBA) to find unique flux predictions. Using these 

constraints, the coefficient of determination between the pFBA and MFA simulation was 

found to be 0.98 (linear regression fit p < 0.01), suggesting that the constrained metabolic 

model accurately predicts the (assumed) steady state measured intracellular fluxes of N. 

lanati. However, this steady-state assumption is limited to a few hours of growth in this 

unmixed batch system, motivating method development to culture AGF continuously at true 

metabolic steady state. 

The aforementioned external flux constraints used in the MFA model are required for 

accurate FBA predictions, which represents a significant limitation of the model. As is 

typical of unconstrained GEMs, the modeled gut fungal metabolism displays significant 

degeneracy. This degeneracy is primarily due to the ability of N. lanati to regenerate NAD+ 

in several different ways using its mixed acid fermentation pathways, i.e., through a 

combination of lactate dehydrogenase, acetaldehyde dehydrogenase, and alcohol 

Table 1. Experimentally measured external fluxes of metabolites produced by N. lanati grown on cellobiose 

in M2 medium 
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dehydrogenase. As shown in Figure 4, experimental fluxes of fermentation products can 

only be predicted with reasonable accuracy when the experimental acetate flux is used to 

constrain the model. 

We must provide the model with a piece of the solution, and it fills in the blanks. This 

is useful in a descriptive sense, but not a predictive one. Acetate is only produced in the 

hydrogenosome, therefore Figure 4 implies that the model cannot predict hydrogenosome 

flux without constraints. This is logical, as myriad pathways are transcribed in the 

hydrogenosome for both ATP production and NAD+ consumption and generation. 

Stoichiometrically, we cannot predict which pathways the fungus would prefer to use, and 

biological regulation likely plays the deciding role. iNlan20 includes all of these pathways; 

however, as described below, it is unclear which pathways carry significant flux (Boxma et 

al., 2004; Marvin-Sikkema et al., 1994). 

Figure 4. The absolute relative error between the model predictions and the experimentally measured values 

suggest that constraining the flux of acetate production has the biggest impact on the model’s accuracy. The 

flux of acetate (Ac), ethanol (EtOH), formate (For), H2, and lactate (Lac) was constrained, individually, to 

their observed ranges (variables on the x axis). The resultant predicted fluxes of these metabolites (generated 
by sampling 2,000 possible solutions where the biomass objective function was within 90% of its optimal 

value and subject to the respective additional constraints as shown in the figure) were then compared to the 

experimental observations as shown in the legend. 
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4. iNlan20 includes an expanded model of hydrogenosomal metabolism 

Anaerobic gut fungi possess a variant of the hydrogenosome, with the core set of 

enzymes that catalyze the conversion of malate and pyruvate to acetate, hydrogen, and 

formate already identified, as shown in Figure 5 (Boxma et al., 2004; Hackstein et al., 2019; 

Marvin-Sikkema et al., 1994; Yarlett et al., 1986). However, the metabolic pathways leading 

to hydrogen production are not resolved, with literature suggesting either pyruvate ferredoxin 

oxidoreductase (PFO) or pyruvate formate lyase (PFL) as possible routes (Figure 5). Both 

enzymes are present in the N. lanati genome and transcriptome and are thus included in the 

model of the hydrogenosome. 

Earlier enzymatic characterization of hydrogenosomal proteins in 

Neocallimastigomycota suggested that PFO is the primary route for hydrogen production 

Figure 5. An expanded model of the hydrogenosome is included in the model based on genomic annotation, 

literature, and predicted localization data (14–16). Core hydrogenosome enzymes are colored in blue, while 

speculative enzymes are shown in black. PFL, pyruvate formate lyase; PFO, pyruvate ferredoxin 
oxidoreductase; Ac, acetate; SucCoA, succinyl coenzyme A; CoA, coenzyme A; AcCoA, acetyl coenzyme A; 

Frdx, ferredoxin. 
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through an associated ferredoxin hydrogenase, as found in the hydrogenosomes of other 

organisms (Marvin-Sikkema et al., 1994, 1993; Müller et al., 2012; Yarlett et al., 1986). 

However, more recent studies suggest that PFO is either absent or of only marginal 

importance in the gut fungal hydrogenosomal metabolism (Akhmanova et al., 1999; Boxma 

et al., 2004). These later studies suggest that PFL is significantly more active than PFO. It 

has been suggested that hydrogen evolution occurs through a hydrogen dehydrogenase 

working in an energetically infeasible reverse direction (Boxma et al., 2004; Youssef et al., 

2013). PFL and proteins with some similarity to PFO were identified in all published gut 

fungal genomes as well as in N. lanati. The model was used to assess the role and relative 

importance of these two enzymes to hydrogenosome function in N. lanati. 

Since there is no energetic cost associated with using PFO versus PFL (both produce 

one ATP molecule per pyruvate) (Figure 5), the model predicts that both could be used to 

maximize ATP production in the hydrogenosome. However, external metabolite flux 

measurements show only modest hydrogen production (Table 1), suggesting that cellular 

regulation may play a role in diverting flux to PFL instead of PFO. Since PFO is the only 

(known) energetically feasible way to produce hydrogen, the model’s best guess is that PFL 

carries the most flux in the hydrogenosome, but PFO is used to produce hydrogen. 

By combining literature sources, gene annotation, transcriptomic expression, and 

subcellular localization data, we have included additional pathways in the model of the 

hydrogenosome for N. lanati (Figure 5). We have no definitive experimental evidence to 

confirm the activity of the ATP synthase or the proton pumping mechanism, and FBA 

simulations are most accurate when their fluxes are constrained to zero. Therefore, it is not 

likely that they carry significant flux, at least during the brief window of “steady state” N. 
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lanati growth that simulations were based on. However, they are included in the model for 

future iterations of AGF GEMs. As for the bifurcating hydrogenase, we find high-homology 

sequences in the N. lanati genome to all three of the bifurcating hydrogenase subunits that 

have been enzymatically characterized in Thermotoga maritima (Schut and Adams, 2009), 

however FBA also suggests negligible activity of such an enzyme. 

5. Conclusion and motivation of further work on AGF metabolism 

iNlan20 represented the state of the art of AGF metabolism as of 2021, however it is 

significantly limited in its predictive capacity. We built the model through integration of 

multi-omic, wet lab, and literature data, and found reasonable FBA solutions for most of our 

experimental growth and flux data after we supplied the model with part of the solutions. It is 

likely that flux in the AGF hydrogenosome and AGF metabolism at large are governed by 

highly complicated biological regulation, in part due to the unorthodox AGF lifecycle. Such 

systems are difficult to capture in genome-scale models, as their accuracy depends on user-

supplied (often empirical) constraints, as evidenced in Figure 4. The model deserves an 

update when it can accurately predict growth and flux in a well-mixed AGF system at true 

metabolic steady state without relying on user-supplied external flux constraints, because 

those fluxes are what we want the model to predict. This may require comprehensive 

understanding of the hydrogenosome, however if regulation is in fact as critical to the 

hydrogenosome as we expect, the system may simply be ill-suited for genome-scale 

modeling, at least until genetic tools become readily available for AGF. 

iNlan20, despite not being predictive, is highly useful as a descriptive model. It is a 

self-contained, interactive format to explore and understand all of our collective knowledge 

of AGF metabolism as of 2021. We based the model on N. lanati because, at the time, it was 
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our only strain that grew in defined media. With simple modifications to our media protocol 

(adding hemin after autoclaving, rather than before), I uncovered that all of our strains grow 

in defined media, enabling comparison and extrapolation of the results from iNlan20 to 

metabolism in Caecomyces churrovis, Anaeoromyces robustus, and AGF at large. The model 

showed us the wealth of CAZymes encoded in AGF genomes and the different fermentation 

products AGF could produce. Based on this information, I designed studies to assess how we 

could tune AGF growth, CAZyme production, and flux without genetic tools. The model 

showed us the theoretical design space for AGF phenotypes, and I set out to uncover which 

phenotypes would be advantageous for eventual industrial deployment, and which of these 

phenotypes are attainable. 
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II. Biofilm disruption enhances growth rate and carbohydrate-active 

enzyme production in anaerobic fungi 

Reprinted with permission from (Leggieri et al., 2022). 

Anaerobic gut fungi (AGF) are lignocellulose degraders that naturally form biofilms 

in the rumen of large herbivores and in standard culture techniques. While biofilm formation 

enhances biomass degradation and carbohydrate active enzyme (CAZyme) production in 

some bacteria and aerobic fungi, gene expression and metabolism in AGF biofilms have not 

been compared to non-biofilm cultures. Here, using the tunable morphology of the non-

rhizoidal AGF, Caecomyces churrovis, the impacts of biofilm formation on AGF gene 

expression, metabolic flux, growth rate, and xylan degradation rate are quantified to inform 

future industrial scale-up efforts. Contrary to previous findings, C. churrovis upregulated 

catabolic CAZymes in stirred culture relative to biofilm culture. Using a de novo 

transcriptome, 197 new transcripts with predicted CAZyme function were identified. Stirred 

cultures grew and degraded xylan significantly faster than biofilm-forming cultures with 

negligible differences in primary metabolic flux, offering a way to accelerate AGF biomass 

valorization without altering the fermentation product profile. The rhizoidal AGF, 

Neocallimastix lanati, also grew faster with stirring on a solid plant substrate, suggesting that 

the advantages of stirred C. churrovis cultures may apply broadly to other AGF.   
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A. Introduction 

Anaerobic gut fungi (AGF) native to the rumen of large herbivores are potent 

lignocellulose degraders with potential for industrial valorization of crude biomass (Hooker 

et al., 2019). Their diverse repertoire of biomass-degrading carbohydrate-active enzymes 

(CAZymes) enables physical association with plant substrates to facilitate mass transfer of 

hydrolytic enzymes and metabolites (Lillington et al., 2020). Most characterized AGF are 

rhizoidal (Hanafy et al., 2020), such as Neocallimastix lanati pictured in Figure 6A, and 

form dense biofilm-like mats as their rhizoids entangle with solid substrates and other 

microbial biomass.  

Biofilm formation enhances the rate and extent of biomass degradation in many 

cellulolytic microbes (Brethauer et al., 2020) and has been linked to increased cellulase 

activity (Chahal, 1985; Gamarra et al., 2010; Xiros and Studer, 2017) and upregulation of 

Figure 6. A) Rhizoidal AGF, which comprise the majority of AGF sequenced to date, only grow in mats as 

the rhizoids of multiple sporangia entangle with each other. This cannot be avoided, therefore biofilm 

formation in rhizoidal AGF cannot be controlled. Pictured: N. lanati. B) The non-rhizoidal morphology of C. 

churrovis enables control of biofilm formation. C. churrovis forms biofilms adhered to the culture surface 

when cultured without stirring. When mounted on a slide, films appear thick and dense at the interior, and 

with less tightly packed sporangia at the edge of the film. C) When continuously stirred, C. churrovis forms 
more homogeneous, nearly monodisperse cell suspensions, not biofilms. Created with BioRender.com. 
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CAZymes in anaerobic bacteria (Dumitrache et al., 2017) and aerobic fungi (Gamarra et al., 

2010; Zhao et al., 2019) relative to planktonic cultures. By contrast, the formation of biofilms 

by AGF cultures is not well described in the literature, and the biological advantage and 

function of biofilm formation in AGF remain unknown. 

In particular, the effects of biofilm formation on AGF growth rates, substrate 

degradation rates, metabolic fluxes, and gene expression have not been studied. Gene 

expression and metabolism may vary substantially between biofilm and planktonic cultures 

of the same organism, therefore detailed understanding of the physiological effects of biofilm 

formation is required to design microbial systems for robust biomass conversion. This is 

especially important for industrial scale-up, as large-scale anaerobic cultures may benefit 

from agitation for accelerated mass transfer, which could disrupt naturally forming biofilm 

structures in both rhizoidal and non-rhizoidal AGF. 

Typically, rhizoidal AGF grow exclusively in “mat” morphologies. The lack of well-

mixed, suspension-based cultures precludes the use of non-biofilm control cultures and limits 

the ability to isolate the effects of biofilm formation using most standard AGF culture 

techniques. It is noted that rhizoidal AGF mats may not fit the technical definition of a 

bacterial-derived biofilm, as they are composed primarily of entangled extracellular rhizoids 

enriched in polysaccharides like chitin, rather than solely secreted extracellular polymeric 

substances (EPS) (Brethauer et al., 2020; Chandrasekar and Manavathu, 2008).   

To allow for direct comparisons between biofilm-forming and suspended cultures, the 

focus here is on a non-rhizoidal AGF, Caecomyces churrovis. C. churrovis presents similar 

metabolism (97% of EC numbers shared with at least one other AGF) and CAZyme profiles 

to rhizoidal AGF (Henske et al., 2017; Leggieri et al., 2021a). However, C. churrovis forms 
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biofilms when cultured without stirring (Figure 6B), and forms nearly monodisperse cell 

suspensions in stirred culture (Figure 6C). Thus, C. churrovis allows for quantitative 

analysis of the direct effects of biofilm formation on AGF growth, gene expression, and 

metabolic flux. It is argued herein that understanding the effects of biofilm disruption and 

shear on gene expression and flux in C. churrovis can inform the understanding of the 

mechanisms and consequences of biofilm formation, as well as industrial scale-up efforts for 

all AGF (Gruninger et al., 2014; Vinzelj et al., 2020), even though the phenotypic response to 

shear may differ in rhizoidal strains. 

Here, a simple pipeline to isolate the impact of biofilm formation on AGF growth and 

functional properties using C. churrovis as a model system is presented. Via differential gene 

expression analysis in unstirred biofilm-forming cultures vs. stirred cultures of suspended 

planktonic cells, the effects of biofilm formation on the expression of biomass-degrading 

CAZymes, primary metabolic enzymes, substrate binding proteins, and other gene types are 

quantified. Obtained RNA-Seq transcriptional data are aligned to the existing C. churrovis 

genome, and a de novo transcriptome of the unmapped transcripts is assembled to uncover 

previously unannotated CAZymes and search for proteins potentially involved in biofilm 

formation. Growth rates, xylan degradation rates, and metabolic fluxes are measured in the 

stirred and biofilm cultures. Interestingly, while growth and xylan degradation were 

significantly faster in stirred cultures, few primary metabolic enzymes were differentially 

expressed, and accordingly, primary metabolic fluxes were not significantly altered. A 

significant number of differentially expressed genes and de novo transcripts could not be 

annotated, although some showed homology to proteins in other biofilm-forming organisms. 

Several of the unannotatable genes and de novo transcripts clustered by sequence similarity, 
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potentially laying a foundation for the discovery of the genes responsible for AGF biofilm 

formation. Further, the rhizoidal AGF, Neocallimastix lanati, showed significantly faster 

growth and biogas production on a solid plant biomass substrate in stirred culture than in 

unstirred culture, suggesting that the results observed in C. churrovis may potentially apply 

to other AGF and motivating the design of agitated/continuous AGF culture systems for 

CAZyme production and biomass conversion. 

B. Materials and Methods 

1. Culture of anaerobic gut fungi 

A fully defined, modified version of anaerobic Medium B (MB) (Leggieri et al., 

2021a; Theodorou et al., 1995) was used for both routine culture and growth experiments. 

The headspace of AGF cultures was 5% H2, 35% CO2, balance N2. All cultures were grown 

at 39 ºC in 75 mL anaerobic serum bottles with 45 mL of liquid medium. AGF were grown 

on xylan (from corn core, TCI America, Portland, OR) or dried, milled reed canary grass 

(milled with a 4 mm screen size, provided by the US Department of Agriculture, Agricultural 

Research Service, US Dairy Forage Research Center) at final concentrations of 5 g/L and 10 

g/L, respectively. 

Caecomyces churrovis was previously isolated from the feces of a large herbivore 

(Henske et al., 2017), and Neocallimastix lanati was isolated from the feces of a sheep 

(Wilken et al., 2021). For routine culture, AGF were transferred to new media every 2 days. 

In all growth experiments, starter cultures of AGF were grown for 48 hours and used for 

inoculation. All inoculums were 10% v/v. Growth of AGF was monitored using the pressure 

accumulation method described previously (Henske et al., 2018), which aligns with C. 
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churrovis concentrations measured via optical density and dry cell weight (Leggieri et al., 

2021a) and N. lanati dry cell weight concentrations (Wilken et al., 2021). 

Stirred cultures were grown with one 25 mm cylindrical magnetic stir bar in each 

bottle (autoclaved in the bottle) (Part No. SWN660, Globe Scientific, Mahwah, NJ) with 

constant stirring at 100 rpm on a VELP 15-position digital magnetic stir plate (Part No. 

F203A0180, VELP Scientifica, Usmate Velate, MB, Italy). Unstirred biofilm cultures were 

grown identically to stirred cultures, except with no stir bars in the bottles. 

Alongside three blank media bottles, six biological replicate C. churrovis cultures 

were grown for each condition. Three were harvested for RNA extraction, and three were 

used to complete the growth and metabolite curves. 

2. Microscopy 

 AGF were imaged using a Zeiss Primovert transmitted light microscope (Part No. 

415510-1101-000, Carl Zeiss Microscopy GmbH, Gottingen, Germany). Samples were 

imaged with a 10 air objective using a slide and coverslip without fixation. Images were 

collected and analyzed using a SPOT Idea 28.2 5-MP camera and the SPOT 5.1 imaging 

software (SPOT Imaging, Sterling Heights, MI). Lateral magnification was 2.5 µm/pixel. 

3. High performance liquid chromatography (HPLC) and gas chromatography 

 (GC) analysis of metabolites 

HPLC analysis was conducted as described previously (Leggieri et al., 2021a). Xylan 

and ethanol were detected using a refractive index detector; succinate, lactate, formate, 

fumarate, and acetate were detected using a variable wavelength detector set to 210 nm. 

Standards were created for all sugars and metabolites in deionized water at 1%, 0.1%, and 
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0.01% w/v concentrations and the above protocol was followed to run each standard. 

Standard curves were created via linear regression; R2 values ranged from 0.9996 to 1.000. 

Hydrogen was quantified via GC as described previously (Leggieri et al., 2021a). 

Hydrogen standards including 500 ppm H2, 2% H2, 5% H2, and 20% H2 with balance helium 

(Douglas Fluid & Integration Technology, Prosperity, SC), were run at each measurement 

timepoint to account for the detector baseline that varied slightly each day. Standard curves 

were created via linear regression; R2 values ranged from 0.9890 to 0.9979. 

Metabolic flux measurements for each metabolite were calculated based on 

measurements one and two days after inoculation as follows: the difference in amount 

(mmol) of that metabolite in each culture divided by the average calculated AGF mass (gram 

dry weight, GDW) present in the culture bottle during that time, divided by the elapsed time 

between the two measurements. Flux units reported here are mmol GDW-1 h-1. 

4. RNA extraction, library preparation, and sequencing 

The volume of each culture to harvest for RNA extraction was calculated to yield 

approximately the same mass of AGF cells. At the time of harvesting, a sample from each 

culture was added to RNAlater (Part No. R0901, Sigma-Aldrich, St. Louis, MO) in a 1:1 

volume ratio and immediately centrifuged for 20 minutes at 4 ºC and 12,000g. Following 

centrifugation, supernatants were removed, and each sample was flash-frozen in liquid 

nitrogen and stored at -80 ºC for one week. 

Cell pellet samples were removed from storage, thawed on ice, and lysed via liquid 

nitrogen grind using a pestle and mortar. Total RNA was then extracted from each lysed cell 

pellet with the RNeasy Mini Kit (Qiagen, Hilden, Germany) following the provided protocol 

for filamentous fungi, including the QIAshredder (Part No. 79656, Qiagen) and on-column 
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DNAse digest (Part No. 79254, Qiagen). 3 µL aliquots were taken from each purified RNA 

sample for quantification and quality analysis with a Qubit (Part No. Q33327, Thermo-Fisher 

Scientific) and TapeStation (Agilent), respectively. All RNA samples had RINe values above 

9 and concentrations above 100 ng/µL.  

Stranded RNA-Seq libraries were created with the NEBNext Ultra II RNA Library 

Prep Kit for Illumina (Part No. E7775, New England BioLabs, Ipswich, MA) and quantified 

via qPCR. Libraries were sequenced in the Biological Nanostructures Lab at the University 

of California, Santa Barbara using an Illumina NextSeq 500 with high output and 75 basepair 

single end reads (Illumina, San Diego, CA). 

5. RNA-Seq data analysis 

Filtered reads from each library were checked for quality using fastQC 

[https://www.bioinformatics.babraham.ac.uk/projects/fastqc/] and trimmed with 

Trimmomatic (Bolger et al., 2014). The C. churrovis genome was downloaded from 

Mycocosm [https://mycocosm.jgi.doe.gov/] and proteins with duplicate sequences within the 

genome were removed except for one representative protein (with the lowest protein ID). 

Trimmed reads were then aligned to this duplicate-checked C. churrovis genome using 

HISAT2 (Kim et al., 2019). StringTie2 (Kovaka et al., 2019) was used to assemble splice-

aware transcripts from the aligned reads and to assemble de novo transcripts from the 

unaligned reads (6.1% of the total reads). De novo transcripts that overlapped with existing 

genes in the genome were removed; the reads initially attributed to those de novo transcripts 

were assigned to the existing genes with which they overlapped. DESeq2 (Love et al., 2014) 

was used to determine which genes showed statistically significant per-cell differential 

expression between the stirred and unstirred culture conditions. 
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To provide greater statistical specificity for phenotypic changes in stirred vs. biofilm 

cultures, stringent requirements beyond q < 0.05 were imposed for a gene to be considered 

significantly differentially expressed. Namely, each protein or de novo transcript must also 

have a log2fold change > 1.5 (magnitude) between conditions to select for large-magnitude 

differences in expression, and TPM > 2 to omit genes that are extremely low in transcript 

number but technically meet the q < 0.05 cutoff. While no universally accepted TPM cutoff 

threshold exists for differential expression analysis, one is included here to omit extremely 

low-abundance transcripts (or sequencing/assembly artifacts) from the differentially 

expressed gene sets (e.g., 10 total transcript reads in stirred cultures and 0 in unstirred 

cultures). Figure 7 shows number of detected transcripts that mapped to the genome or were 

assembled as de novo transcripts, the number of these genes/transcripts that were 

differentially expressed (q < 0.05), and significantly differentially expressed according to the 

more stringent cutoffs. As seen in Figure 7, these cutoffs substantially reduce the number of 

genes/transcripts that are considered significantly differentially expressed. 

Figure 7. Total proteins in C. churrovis genome, de novo transcripts assembled, and statistically significant 

up- and down-regulated genes (q < 0.05) shown in dashed bars. Transcribed, and significantly differentially 
expressed with cutoffs (marked with *, q < 0.05, log2fold change > 1.5, max TPM > 2) genes shown in solid 

bars. 
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CloudBLAST (Matsunaga et al., 2008) was used to annotate de novo transcripts 

assembled by StringTie2. Conserved protein domains within unannotated genes and de novo 

transcripts were identified using the Conserved Domain Search (CD-Search) tool (Lu et al., 

2020; Marchler-Bauer and Bryant, 2004). CAZyme annotations were assigned to genes and 

de novo transcripts based on functional annotations in Mycocosm (Grigoriev et al., 2014) and 

dbCAN (Yin et al., 2012), using a cutoff of two tools to determine CAZyme classification. 

Gene Ontology (GO) numbers (The Gene Ontology Consortium, 2021; The Gene Ontology 

Consortium et al., 2000) and CAZyme annotations were assigned to detected genes and de 

novo transcripts using Python. DeepLoc (Almagro Armenteros et al., 2017) was used to 

localize transcripts to the cytosol, hydrogenosome, or other cellular compartments; here, it is 

assumed that localization to the mitochondria or plastid corresponds to the hydrogenosome in 

AGF. SignalP 5.0 was used to determine which genes and de novo transcripts are most likely 

secreted (Almagro Armenteros et al., 2019). UCLUST (Edgar, 2010) was used to cluster 

unannotated de novo transcripts and “hypothetical proteins” that aligned to the C. churrovis 

genome based on sequence similarity. 

6. Statistical analysis 

All statistical analyses (other than determination of differential expression with 

DESeq2) were conducted using the Prism 9.1.2 software (GraphPad, San Diego, CA). Prism 

9.1.2 was used to (i) interpolate the concentrations of metabolites detected via HPLC and GC 

using standard curves, (ii) determine significant differences in growth rates and metabolite 

fluxes between growth conditions via t-tests, (iii) and conduct contingency tests (Fisher’s 

Exact Tests) to determine significant up/downregulation of gene classes (a “class” being a 

particular CAZyme type, a GO term, etc.). Although most gene classes showed some genes 
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significantly upregulated and some genes significantly downregulated in biofilm culture, 

Fisher’s Exact Test determines whether a gene class is significantly overrepresented in the 

up/downregulated gene sets based on the number of genes in that class within the genome or 

transcriptome, the total number of genes in the genome or transcriptome, and the total 

number of genes up/downregulated. In all statistical tests, α = 0.05 was used. 

C. Results and Discussion 

1. Stirring prevents C. churrovis biofilm formation while enhancing xylan 

degradation and AGF growth 

Stirring produces physical forces within microbial cultures that are expected to 

impact culture function. Stirring within AGF culture vessels introduces mixing and 

turbulence, thereby enhancing the mass transfer of substrates, enzymes, and metabolites 

to/from AGF cell surfaces, which is in turn expected to increase growth rates in AGF cultures 

which may be otherwise limited by diffusion. However, stirring also introduces shear 

stresses, which in C. churrovis disrupts biofilm formation. At present time, it is not 

understood if biofilm disruption by stirring impacts AGF phenotypes and culture outcomes. 

To investigate the effects of stirring, the growth rate and xylan degradation rate of C. 

churrovis (Figure 8A and 8B, respectively) were measured in stirred cultures and biofilm-

forming cultures; both rates were significantly greater in stirred cultures (p < 0.0001, p < 

0.0001 respectively). This suggests that growth of C. churrovis on xylan in biofilms is 

limited by diffusion, rather than its intrinsic growth rate. Further, the disruption of C. 

churrovis biofilms either does not elicit a phenotypic response that slows growth and xylan 

degradation, or these effects are outweighed by the mass transfer advantages of mixing. 
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Therefore, biofilm disruption and culture mixing via stirring yields an easily achieved, 

potentially scalable C. churrovis phenotype for polysaccharide degradation. 

2. Catabolic CAZymes are significantly upregulated in stirred, faster-growing C. 

 churrovis cultures relative to biofilm-forming cultures 

AGF are promising candidates for bioprocessing primarily thanks to their abundant 

and diverse repertoire of CAZymes. However, no prior studies have compared CAZyme 

expression in biofilm vs. non-biofilm AGF cultures, and bacterial and aerobic fungal 

literature suggests significant differences likely exist (Dumitrache et al., 2017; Gutiérrez-

Figure 8. A) C. churrovis grew significantly faster on xylan when stirred (solid blue points) compared to 

unstirred (hollow red points), p < 0.0001. Dashed line represents time of harvest for RNA extraction during 

mid-exponential growth. B) C. churrovis degraded xylan significantly faster in stirred culture (solid blue 

points) than in unstirred culture (hollow red points), p < 0.0001. Dotted lines represent the 95% confidence 

intervals of each regression. 

 

Table 2. Differentially expressed CAZymes labeled by CAZyme type. Fisher’s Exact Tests show that the 

catabolic CAZyme classes (glycoside hydrolase, pectin lyase, carbohydrate esterase) are significantly 

downregulated in biofilm culture relative to stirred culture (p < 0.05). No CAZyme classes are significantly 

upregulated in biofilm culture relative to stirred culture. 197 de novo CAZyme transcripts that did not map to 

the existing C. churrovis genome were identified, along with 47 transcripts with DOC2 domains (see 

Supplementary Spreadsheets S1 and S2). 
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Correa et al., 2012; Zhao et al., 2019). As shown in Table 2, per-cell expression of the 

catabolic CAZyme classes (glycoside hydrolase, pectin lyase, carbohydrate esterase) were 

significantly upregulated in stirred cultures relative to biofilm-forming AGF cultures, as 

determined by Fisher’s Exact Test (see Supplementary Spreadsheet S1 for a list of 

CAZymes identified in the de novo transcriptome with sequences). 

 While downregulation of catabolic CAZymes in AGF biofilms contrasts previous 

findings in cellulolytic bacteria and aerobic fungi (Dumitrache et al., 2017; Gutiérrez-Correa 

et al., 2012; Zhao et al., 2019), this may be due to slower, diffusion limited growth of the 

fungus in biofilms, rather than specific repression of CAZymes brought on by the biofilm 

morphology alone. It is likely that growth is enhanced in the well-mixed stirred cultures 

mostly due to enhanced mass transfer of enzymes and substrates, and that upregulation of 

catabolic CAZymes plays only a minor role in increasing growth rate. 

In fact, the observed per-cell upregulation of catabolic CAZymes may be a 

consequence of faster growth in C. churrovis, rather than a cause. AGF downregulate 

CAZymes in response to increased concentration of monosaccharides released from 

polysaccharides (Henske et al., 2018; Solomon et al., 2016). They may also downregulate 

CAZymes under increased concentration of growth-inhibiting metabolic end products like 

formate and acetate. In co-culture with a methanogen, a system shown to grow faster than 

AGF mono-culture likely due to methanogen uptake of formate and hydrogen (Leggieri et 

al., 2021a), C. churrovis upregulated some CAZymes relative to mono-culture (Swift et al., 

2019). In turbulent stirred cultures, these inhibitors and monosaccharides (secreted or 

produced at or near the cell surface) are in lower local concentration near the cells than in 
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biofilm cultures in which they diffuse away from the cells on timescales that could influence 

gene expression (Shamir et al., 2016). 

Taken together, the results presented here and previous findings show that in two 

distinct systems (stirred cultures and co-cultures with methanogens), upregulation of 

CAZymes in C. churrovis is correlated with faster fungal growth and decreased local 

concentration of metabolic inhibitors. While enhanced CAZyme production may be more of 

a consequence than a cause of faster AGF growth in turbulent culture, stirring is a simple 

approach to grow AGF more quickly and with more CAZymes produced per cell, offering an 

approach to scale up non-rhizoidal AGF cultures that may be uniformly sampled to assess 

and optimize culture conditions. 

3.3) Metabolic fluxes and expression of primary metabolic enzymes are unchanged in 

stirred and biofilm-forming C. churrovis cultures 

Primary metabolic flux determines the profile of fermentation products that can be 

made or used downstream for bioproduction. Therefore, it is critical to understand how 

biofilm disruption impacts AGF metabolic flux if stirring or agitation is to be used to control 

AGF growth. As shown in Figure 9, no primary metabolic fluxes differed significantly 

between the stirred and unstirred cultures. Similarly, few primary metabolic enzymes were 

differentially expressed between the two conditions. While stirred cultures degraded xylan 

significantly faster, xylan flux did not differ between stirred and unstirred cultures, 

suggesting similar growth yields in both conditions (gDW/molxylan). 

  Many genes involved in primary metabolism showed q-values less than 0.05, but with 

the TPM and log2fold change cutoffs applied, only five primary metabolic enzymes were 

significantly differentially expressed. Pyruvate formate lyase (PFL) expression was 
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upregulated in both the cytosol (k) and hydrogenosome (u) in stirred cultures. Increased PFL 

expression could also be a consequence of faster AGF growth rather than a direct cause, as 

its upregulation here did not lead to increased PFL flux. Like catabolic CAZymes, PFL was 

upregulated in faster growing (Leggieri et al., 2021a) co-cultures of C. churrovis with a 

methanogen (Brown et al., 2021), although PFL flux also increased in co-culture systems.  

 Other significantly differentially regulated genes include an alcohol dehydrogenase 

(l), which was upregulated in unstirred biofilm cultures, and a phosphoenolpyruvate 

decarboxylase (m) and malic enzyme (q), which were upregulated in stirred cultures. It is 

possible that the upregulation (in biofilms) of an ethanol-producing enzyme in a strictly 

Figure 9. Fluxes and differential expression of central metabolism (glycolysis, TCA cycle, and hydrogenosome) 

of stirred and unstirred C. churrovis cultures. Fluxes in blue represent stirred cultures, red represent unstirred 

cultures. No fluxes were significantly different. Expression statistics are reported for each enzyme as (number of 

unique transcripts detected, number of upregulated transcripts, number of downregulated transcripts) using q < 

0.05 as the only threshold for significant regulation. Enzymes meeting the log2fold-change and TPM thresholds 

are denoted with numbers in colored boxes (blue significantly upregulated and red significantly downregulated). 

Enzymes [with EC numbers if available]: a) xylose isomerase [5.3.1.5] b) xylulokinase [2.7.1.17] c) 

glycoaldehydetransferase [2.2.1.1] d) triose-phosphate isomerase [5.3.1.1] e) glyceraldehyde 3-phosphate (G3P) 

dehydrogenase [1.2.1.12] f) phosophoglycerate kinase [2.7.2.3] g) G3P dehydrogenase (NADP+) [1.2.1.9] h) 

phosphopyruvate hydratase [4.2.1.11] i) PEP synthase [2.7.9.2] j) lactate dehydrogenase [1.1.1.28] k) pyruvate 

formate-lyase (PFL) cytosolic [2.3.1.54] l) alcohol dehydrogenase [1.1.1.1] m) PEP carboxykinase (GTP) 
[4.1.1.32] n) malate dehydrogenase [1.1.1.37] o) fumarase cytosolic [4.2.1.2] p) succinate dehydrogenase 

[1.3.5.1] q) malic enzyme [1.1.1.40] r) fumarase hydrogenosomal [4.2.1.2] s) complex 2 subunits A, B, C, D t) 

pyruvate ferredoxin oxidoreductase PFO) u) PFL hydrogenosomal [2.3.1.54] v) iron-hydrogenase protein w) 

bifurcating hydrogenase subunits A, B, G x) succinyl coenzyme A (CoA) synthase y) acetate succinyl CoA 

transferase z) ATP synthase subunits A, B, G, D. Created with BioRender.com. 
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cytosolic pathway and downregulation of two genes involved in malate production and 

eventual utilization in the hydrogenosome suggest a correlation between hydrogenosome 

activity and faster AGF growth (as shown in (Leggieri et al., 2021a)). However, no 

significant differences in hydrogenosomal fluxes were observed, and the uncertainty of the 

hydrogenosomal pathways in Figure 9 precludes quantitative assessment of this hypothesis. 

 The GO Enrichment analysis in Table 3 corroborates the phenotypic shift towards 

more plant cell wall catabolism in stirred cultures vs. biofilm cultures with negligible 

changes in primary metabolism. GO terms vary widely in specificity, however GO 

Enrichment analysis is useful to identify large-scale phenotypic differences between 

conditions if multiple related GO functions are overexpressed in one condition and not the 

other. The bold GO terms in Table 3A all relate to cell wall catabolism and/or hydrolysis of 

lignocellulose in plant cell walls, and they are all significantly overrepresented in the 

downregulated gene set and not the upregulated gene set, supporting the observed significant 

downregulation of the catabolic CAZyme classes in biofilm culture relative to stirred culture. 

In Table 3B, the overrepresented GO terms in biofilm cultures are not obviously connected 

to each other in a way that represents a phenotypic shift. This is expected, as AGF biofilm-

forming machinery is unannotated and therefore lacks GO identification.  

The combined gene expression and flux data suggest that primary metabolism is not 

significantly altered in AGF stirred vs. biofilm cultures. Interestingly, this implies that 

CAZyme expression and primary metabolic flux may not be correlated in AGF mono-

cultures. Therefore, researchers may choose to stir AGF cultures for faster polysaccharide 

degradation and CAZyme production without altering the fermentation product profile. 
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3.4) Differential expression identifies proteins that may be associated with biofilm 

 formation 

AGF biofilm-forming genes, or other genes directly involved in response to shear or 

biofilm disruption, have not yet been identified and annotated. However, they would likely 

be secreted and upregulated in biofilm-forming vs. stirred AGF cultures. To search for these 

Table 3. Enrichment analysis of significantly down-regulated and up-regulated GO IDs determined by Fisher’s 

Exact Test. Several GO IDs enriched in the down-regulated gene set (more expressed with stirring) relate to cell 

wall catabolism (bolded). GO IDs enriched in the up-regulated gene set (more expressed in biofilms) appear 

unrelated. 
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genes and spur future mechanistic research, the functions of the significantly differentially 

expressed unannotated genes and de novo transcripts, which comprise most of the dataset, 

were investigated. It is possible that biofilm-forming machinery is expressed in stirred 

cultures even though shear prevents biofilm development. Thus, unannotated genes and de 

novo transcripts downregulated in biofilm cultures were included in this search as well. 

 To annotate the significantly differentially expressed unannotated genes and de novo 

transcripts or identify homology with genes in known biofilm-forming organisms, the de 

novo transcripts and existing genes with “hypothetical protein” or “expressed protein” 

annotation were BLASTed via CloudBLAST (e-value threshold 10-4, % ID > 70%). This 

resulted in putative annotation of 100 of the 236 significantly downregulated genes and de 

novo transcripts (42%) and 69 of the 157 significantly upregulated genes and de novo 

transcripts (44%). This BLAST did not reveal any obvious biofilm-related functionality; 

however, some of these differentially expressed genes with secretion tags could possibly be 

involved in extracellular biofilm formation or modification. Therefore, all significantly 

differentially expressed de novo transcripts and secreted proteins were BLASTed using more 

lenient parameters (e-value threshold 10-3, % ID > 40%), identifying several proteins and de 

novo transcripts with homology to known biofilm and/or adhesion-related proteins, and even 

more proteins with no homology to any other proteins (see Supplementary Table S1). 

 The unannotated, significantly differentially expressed, de novo transcripts and 

secreted proteins are candidates for further investigation into their role in AGF biofilm 

function. Many show homology to subtilisin-like proteins, extracellular serine proteases 

produced by the most widely studied model biofilm-forming bacterium, Bacillus subtilis. 

While subtilisins typically degrade extracellular biofilms (Leroy et al., 2008; Liu et al., 2021; 
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Mitrofanova et al., 2017) rather than form them, their differential expression here suggests 

possible involvement in AGF biofilm growth and/or remodeling. As expected, more 

subtilisin-like secreted proteins and de novo transcripts were upregulated in biofilm cultures 

than downregulated. Protein 625875 could be influential to the mechanical properties of C. 

churrovis biofilms, as it is homologous with several eukaryotic titin-like proteins, large 

proteins which influence the elasticity of muscle tissues (Granzier and Labeit, 2004). Several 

differentially expressed de novo transcripts have chitin-binding GO annotations. While this 

GO category was not significantly overrepresented in the biofilm-upregulated gene set, these 

previously unannotated transcripts may participate in binding of AGF cell walls 

(predominantly made of chitin) to other cells and/or to substrates. 

 Some C. churrovis differentially expressed secreted “hypothetical proteins” and de 

novo transcripts showed no homology to any AGF proteins and could therefore contribute to 

C. churrovis’ unique morphology relative to the rest of the phylum (see Supplementary 

Table S1). Of these proteins present uniquely in C. churrovis (and no other AGF), some 

showed similarity with proteins involved extracellular cell adhesion or proteolysis, processes 

involved in biofilm formation and maturation. Others showed no appreciable homology to 

any known proteins and warrant further investigation to develop a better mechanistic 

understanding of whether or how they contribute to AGF biofilms.  

  Even after relaxing BLAST parameters, most significantly differentially expressed 

genes and de novo transcripts remained unannotated. To search these still-unannotated genes 

and transcripts for classes of proteins co-expressed to form biofilms or respond to shear, they 

were investigated for sequence similarity clustering. A greater proportion of the differentially 

expressed unannotated de novo transcripts clustered together (>25% sequence similarity) 
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than the unannotated differentially expressed proteins in the C. churrovis genome (see 

Supplementary Figure S1). These clusters of de novo transcripts were generally larger but 

showed lower sequence identity than the clusters of unannotated proteins in the genome. 

While these clusters may be performing coordinated biological functions, their 

conserved protein domains showed no obvious relationships within each cluster, 

complicating discovery of co-regulated biofilm-implicated genes. However, their co-

expression is at least correlated with either biofilm formation or stirred cultivation under 

shear. Therefore, their structures may be of interest for future investigation of AGF biofilm-

forming or shear response machinery. A master spreadsheet of all detected genes and de novo 

transcripts, their expression statistics, their amino acid or nucleotide sequence, whether they 

are most likely secreted, and their functional annotation (with any CAZyme prediction) is 

provided for further investigation (see Supplementary Spreadsheet S2). 

3.5) Rhizoidal N. lanati grew significantly faster on solid milled grass with stirring 

To determine whether the growth advantages observed in C. churrovis on soluble 

substrates also occur in suspended cultures of rhizoidal AGF, the properties of stirred 

cultures of rhizoidal N. lanati on a milled grass substrate were tested. As shown, non-

rhizoidal AGF such as C. churrovis have promise for industrial scale up; however, rhizoidal 

AGF comprise most of the phylum, and should therefore be considered for scale-up as well.  

Figure 10 shows that stirred cultures of rhizoidal N. lanati on solid reed canary grass 

grew significantly faster than unstirred cultures (p < 0.0001). N. lanati growth requires 

physical association with the plant substrate, i.e., formation of small biofilms around the 

grass. Therefore, biofilm vs. non-biofilm direct comparison experiments are not achievable 

with this strain. However, these results suggest that physical association occurs in the 
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turbulent stirred cultures, and the enhanced mass transfer introduced by stirring helps to 

accelerate AGF growth and biomass degradation. This is promising for use of rhizoidal AGF 

in mixed solid and liquid state cultures for future applications. 

D. Conclusions 

AGF, promising lignocellulose degraders, form biofilm-like mats which putatively 

facilitate biomass breakdown but have precluded industrial-scale cultures. In non-rhizoidal C. 

churrovis, biofilms are easily disrupted with stirring, thereby increasing AGF growth rate, 

catabolic CAZyme expression, and xylan degradation rate, with similar metabolic fluxes to 

biofilm-forming cultures. Stirring also increases the growth rate of rhizoidal N. lanati on 

solid plant substrate, a system that could resemble prototypical scaled-up AGF anaerobic 

digestion. Biofilm disruption in non-rhizoidal AGF via stirring enhances CAZyme 

production and polysaccharide degradation without altering the fermentation product profile, 

offering another knob to turn to optimize scaled, biomass-valorizing AGF cultures.  

Figure 10. Rhizoidal N. lanati grew significantly faster in stirred culture on a solid milled plant substrate 

compared to unstirred culture (p < 0.0001). Dotted lines represent the 95% confidence intervals of each 

regression. 
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III. Non-destructive quantification of anaerobic gut fungi and 

methanogens in co-culture reveals increased fungal growth rate and 

changes in metabolic flux relative to mono-culture 

Reprinted with permission from (Leggieri et al., 2021a). 

Quantification of individual species in microbial co-cultures and consortia is critical 

to understanding and designing communities with prescribed functions. However, it is 

difficult to physically separate species or measure species-specific attributes in most multi-

species systems. Anaerobic gut fungi (AGF) (Neocallimastigomycetes) are native to the 

rumen of large herbivores, where they exist as minority members among a wealth of 

prokaryotes. AGF have significant biotechnological potential owing to their diverse 

repertoire of potent lignocellulose-degrading carbohydrate-active enzymes (CAZymes), 

which indirectly bolsters activity of other rumen microbes through metabolic exchange. 

While decades of literature suggest that polysaccharide degradation and AGF growth are 

accelerated in co-culture with prokaryotes, particularly methanogens, methods have not been 

available to measure concentrations of individual species in co-culture. New methods to 

disentangle the contributions of AGF and rumen prokaryotes are sorely needed to calculate 

AGF growth rates and metabolic fluxes to prove this hypothesis and understand its causality 

for predictable co-culture design. 

We present a simple, microplate-based method to measure AGF and methanogen 

concentrations in co-culture based on fluorescence and absorbance spectroscopies. Using 

samples of < 2% of the co-culture volume, we demonstrate significant increases in AGF 

growth rate and xylan and glucose degradation rates in co-culture with methanogens relative 

to mono-culture. Further, we calculate significant differences in AGF metabolic fluxes in co-
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culture relative to mono-culture, namely increased flux through the energy-generating 

hydrogenosome organelle. While calculated fluxes highlight uncertainties in AGF primary 

metabolism that preclude definitive explanations for this shift, our method will enable 

steady-state fluxomic experiments to probe AGF metabolism in greater detail. 

The method we present to measure AGF and methanogen concentrations enables 

direct growth measurements and calculation of metabolic fluxes in co-culture. These metrics 

are critical to develop a quantitative understanding of interwoven rumen metabolism, as well 

as the impact of co-culture on polysaccharide degradation and metabolite production. The 

framework presented here can inspire new methods to probe systems beyond AGF and 

methanogens. Simple modifications to the method will likely extend its utility to co-cultures 

with more than two organisms or those grown on solid substrates to facilitate the design and 

deployment of microbial communities for bioproduction and beyond. 

A. Introduction 

 Microbial communities continue to attract significant attention from researchers in 

microbiology, engineering, agriculture, medicine, and beyond owing to their ability to 

perform seemingly limitless chemical transformations (Leggieri et al., 2021b). Physical and 

metabolic interactions in microbial communities present challenges for quantifying 

population specific growth rates, metabolic fluxes, and other characteristic metrics. 

Developing easy, rapid, and non-invasive methods to characterize consortium membership is 

critical. However, microbes in natural consortia are difficult to physically separate and can 

even form biofilms (Brethauer et al., 2020), making colorimetric or spectroscopic methods 

difficult to deploy. Here, we describe the identification of microbe-specific spectroscopic 

signals that enable quantification of growth rates and fluxes in co-cultures of anaerobic gut 
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fungi (AGF) and methanogenic archaea (methanogens). Ultimately, these metrics enable 

testing of hypotheses related to their biomass valorization performances in co-culture relative 

to mono-culture. 

AGF native to the rumen of large herbivores have promise for sustainable and 

economical degradation of lignocellulosic biomass and conversion to value-added products 

such as pharmaceuticals and commodity chemicals (Hooker et al., 2019), especially if they 

can be deployed in consortia with other rumen-native microbes. AGF possess nature’s 

greatest quantity and variety of biomass-degrading carbohydrate-active enzymes (CAZymes) 

(Solomon et al., 2016), which are readily produced in laboratory culture to degrade a variety 

of lignocellulose, polysaccharide, oligosaccharide, and monosaccharide substrates for 

downstream conversion to value-added products (Henske et al., 2018b; Hooker et al., 2019). 

AGF physically associate and exchange metabolites with bacteria and methanogens in the 

rumen (Lee et al., 2000; Leng, 2017; Solden et al., 2018), leading some to suggest that 

interactions between AGF and prokaryotes significantly enhance both the rate and extent of 

biomass degradation relative to isolated AGF (Li et al., 2019; Marvin-Sikkema et al., 1990). 

To leverage this effect for industrial bioproduction, researchers have formed “top-

down” microbial consortia via laboratory culture of microbes enriched from herbivore fecal 

samples (Gilmore et al., 2019). While communities with AGF and prokaryotes outperform 

AGF mono-cultures in biogas production rate (Gilmore et al., 2019) and show increased 

biomass degradation relative to solely prokaryotic communities (Peng et al., 2021), the 

mechanisms (gene regulation, flux redirection, etc.) that yield these desired outcomes are 

difficult to probe (Leggieri et al., 2021b). Top-down rumen-derived consortia exhibit 

interwoven syntrophies that could inform model-based design of simpler, more tractable 
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communities with prescribed functions. Quantification of growth rates and metabolic fluxes 

for populations in complex consortia is imperative for disentangling cross-feeding 

relationships but challenging to accomplish. 

“Bottom-up” assembly of synthetic consortia, in which species are isolated from 

enrichments and subsequently recombined, offers a way to probe two and three-member 

interactions in systems that are easier to characterize and model. Insights gained from these 

more tractable systems help to identify strategies to engineer larger, potentially more robust 

Figure 11. Illustrations of biofilm-like morphology of rhizoidal AGF which cannot be uniformly sampled to 

track growth in co-culture, and non-rhizoidal AGF such as C. churrovis, which form well-mixed co-cultures 

when shaken or stirred and enable tracking of both species’ concentrations (A) via the method outlined in B. 

Created with BioRender. 
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microbial communities. However, even in two-member co-cultures including AGF, the 

biofilm-like morphology of AGF caused by their extensive extracellular rhizoidal network 

(Figure 11A, Supplementary Figure S2) and their physical associations with prokaryotes 

preclude non-destructive quantification of each species, obscuring how co-culturing with 

prokaryotes alters the growth rate, per-cell metabolic activity, and CAZyme secretion 

associated with AGF.  

In co-cultures with AGF, methanogens remove putatively inhibitory AGF 

fermentation products such as formate and hydrogen (Joblin and Naylor, 1993; Wilken et al., 

2020), which might accelerate AGF growth and biomass deconstruction. However, published 

results are mixed regarding whether these co-cultures show significantly different rates of 

biomass degradation relative to AGF mono-cultures (Bauchop and Mountfort, 1981; Gilmore 

et al., 2019; Hungate, 1969; Joblin et al., 1990; Joblin and Williams, 1991; Marvin-Sikkema 

et al., 1990; Mountfort et al., 1982; Teunissen et al., 1992), and have been unable to quantify 

individual species growth rates or cell mass-normalized metabolic fluxes (Li et al., 2017). 

These metrics directly affect the rate and extent of biomass degradation and the profile of 

metabolites produced; therefore, they are irreplaceable if anaerobic communities with AGF 

are to be deployed for bioproduction (Lillington et al., 2020), especially if predictive 

metabolic models are to be developed for co-cultures with AGF (Wilken et al., 2018). 

Quantitative polymerase chain reaction (qPCR)-based methods may be developed to estimate 

species concentrations in microbial communities (Junicke et al., 2014; Traversi et al., 2012), 

and researchers have used them to quantify AGF in mono-culture (Dollhofer et al., 2016); 

however, these methods require thorough optimization, and can be time consuming to run, 

motivating the development of simpler methods. 
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 In this method, we leverage the non-rhizoidal morphology of the AGF species, 

Caecomyces churrovis (Henske et al., 2017), to form homogeneous shaken or stirred 

synthetic co-cultures of AGF with the autofluorescent rumen methanogen, 

Methanobrevibacter thaueri (Miller and Lin, 2002), that can be sampled for growth and flux 

quantification by harvesting as little as 0.5 mL of the culture at each timepoint (Figure 11A). 

Despite lacking extracellular rhizoids, C. churrovis produces a quantity and variety of 

biomass degrading enzymes comparable to rhizoidal AGF (Henske et al., 2017). C. churrovis 

is metabolically similar to other AGF, as 97% of its enzyme commission (EC) numbers are 

shared with at least one other AGF, making it a promising model AGF (Supplementary 

Table S2). 

We utilize non-interfering fluorescence intensity (characteristic of all methanogens) 

and optical density measurements to resolve the concentrations of both species in co-culture 

simultaneously, unlocking growth curves and metabolic fluxes for AGF in co-culture with 

prokaryotes for the first time. To date, measurements of gas accumulation have been the 

standard for indirectly tracking AGF growth. Optical density measurements offer a simple, 

more direct measurement of AGF concentration. We test and validate our method by 

assessing whether co-culturing with M. thaueri significantly alters the growth rate or 

metabolic flux of C. churrovis in defined media on both mono- and polysaccharide 

substrates. Concentration-normalized AGF metabolic flux measurements highlight major 

discrepancies with widely-accepted models of the AGF hydrogenosome, an energy-

generating organelle directly involved in metabolite exchange with methanogens and 

production of biorefinery precursors including formate and acetate. Further, limitations of the 

method are discussed, including how it may be extended to quantify individual species 
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populations in microbial communities with more or different species, as well as those without 

an autofluorescent organism. Ultimately, this method enables per-species measurements that 

are critical for the design and deployment of biotechnologically relevant microbial 

communities.  

B. Materials and Methods 

1. Culture of anaerobic gut fungi and methanogens 

A modified version of anaerobic Medium B (MB) (Theodorou et al., 1995) was used 

for both routine culture and growth experiments of AGF and methanogens, available in the 

online version of the article (Leggieri et al., 2021a); methanogen mono-cultures received the 

yeast extract and casitone/peptone supplements, and AGF mono- and co-cultures were grown 

in the fully defined formulation. The headspace of AGF mono- and co-cultures was 5% H2, 

35% CO2, balance N2, and the headspace of methanogen mono-cultures was 80% H2, balance 

CO2. All cultures were grown at 39 ºC in 75 mL anaerobic serum bottles with 45 mL of 

liquid medium. AGF were grown on the soluble carbon sources glucose (anhydrous, Thermo 

Fisher Scientific, Waltham, MA) or xylan (from corn core, TCI America, Portland, OR) at 

final concentrations of 5 g/L. 

Caecomyces churrovis was previously isolated from the feces of a large herbivore 

(Henske et al., 2017), and isolated Methanobrevibacter thaueri was purchased from DSMZ 

(DSM 11995). For routine culture, C. churrovis was transferred to new media every 2-4 days, 

and M. thaueri was transferred every 4-10 days. In all growth experiments, starter cultures of 

AGF and methanogens were grown for 48 hours and used for inoculation. All inoculums 

were 10% v/v. Growth of AGF and methanogens was monitored using the pressure 

accumulation method described previously (Henske et al., 2018b) and the combined 
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fluorescence intensity and optical density method outlined in Figure 11. Each condition (co-

culture and mono-culture) was grown in biological triplicate, alongside three blank media 

bottles. 

2. High performance liquid chromatography (HPLC) analysis of sugars and 

 metabolites 

Sulfuric acid (50 mM) was added (10% v/v) to AGF hydrolysate supernatant samples 

that were then vortexed, held at room temperature for 5 minutes, then centrifuged for 5 

minutes at 21,000g. The supernatants were then dispensed into HPLC vials and run on an 

Agilent 1260 Infinity HPLC (Agilent, Santa Clara, CA) using a Bio-Rad Aminex HPX-87H 

column (Part No. 1250140, Bio-Rad, Hercules, CA) with an inline 0.22 µm filter (Part No. 

50671551, Agilent) followed by a Micro-Guard Cation H guard column (Part No. 1250129 , 

Bio-Rad, Hercules, CA) before the analytical column. Samples were run with a 5 mM 

sulfuric acid mobile phase at a flow rate of 0.6 mL/min and a column temperature of 50 ºC. 

Glucose, xylan, and ethanol were detected using a refractive index detector; succinate, 

lactate, formate, fumarate, and acetate were detected using a variable wavelength detector set 

to 210 nm. Standards were created for all sugars and metabolites in deionized water at 1%, 

0.1%, and 0.01% w/v concentrations and the above protocol was followed to run each 

standard. Standard curve R2 values ranged from 0.9996 to 1.000. 

Metabolic flux measurements for each metabolite were calculated based on 

measurements one and two days after inoculation as follows: the difference in amount 

(mmol) of that metabolite in each culture divided by the average calculated AGF mass (gram 

dry weight, GDW) present in the culture bottle during that time, divided by the elapsed time 

between the two measurements. Flux units reported here are mmol GDW-1 h-1. 
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3. Gas chromatography analysis of hydrogen and methane 

To analyze the headspace composition of each culture at each measurement 

timepoint, 100 µL of headspace gas was collected and subsequently purged three times in a 

100 µL air-tight syringe and needle. Then, 20 µL of headspace gas was collected and injected 

directly into a Thermo Fisher Scientific TRACE 1300 gas chromatograph (Thermo Fisher 

Scientific) with a TracePLOT™ TG-BOND Msieve 5 A (Part No. 26003-6100, Thermo 

Fisher Scientific) and an Instant Connect Pulsed Discharge Detector (PDD) (Part No. 

19070014, Thermo Fisher Scientific). The oven temperature for each run was 30 ºC and the 

PDD temperature was 150 ºC. High-purity helium (Part No. HE 5.0UH-55, Praxair, Danbury, 

CT) was further purified with a heated helium purifier (Part No. HP2, VICI) and used as the 

carrier gas with a flow rate of 0.5 mL/min. The same flushing and analysis procedures were 

followed for methane and hydrogen standards (SPECS, respectively) including 500 ppm H2, 

2% H2, 5% H2, 20% H2, 0.5% CH4, 1% CH4, 5% CH4, 10% CH4, and 20% CH4 with balance 

helium (Douglas Fluid & Integration Technology, Prosperity, SC), which were run at each 

measurement timepoint to account for the PDD baseline that varied slightly each day. 

Standard curve R2 values ranged from 0.7370 to 0.9979. 

4. Quantification of anaerobic fungi and methanogens via plate reader and lyophilizer 

 AGF and methanogens were quantified with optical density at 450 nm and 

fluorescence intensity (excitation/emission: 425 nm/ 470 nm, bandwidth 10 nm) using a 

Tecan M1000 Infinite Microplate Reader (Tecan, Männedorf, Switzerland). Fluorescence 

intensity measurements were obtained with a manual gain setting of 77 for each sample and 

blank and were normalized by the fluorescence intensity of aliquots of Pacific Blue dye (100 

µg/L) (succinimidyl ester, Thermo Fisher Scientific, Canoga Park, CA). UV-transparent 96 
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well plates (Part No. 3635, Corning) were used for optical density measurements, and black 

MicroFluor2 96 well plates were used for fluorescence intensity measurements (Part No. 

437111, Thermo Fisher Scientific). 

 The dry cell weights of AGF and methanogens in culture vessels at the end of growth 

were determined by harvesting and centrifuging the cultures (10,000g for 20 minutes) in 

tared centrifuge tubes, washing the cell pellets with deionized water and centrifuging again, 

lyophilizing for 48 hours in a FreeZone 4.5 Liter Benchtop Freeze Dry System (Part No. 

77500200, Labconco Corp., Kansas City, MO), and weighing the dried samples in the 

centrifuge tubes. 

 5. Microscopy 

Micrographs of AGF and methanogens were captured with a Leica SP8 resonant 

scanning confocal microscope (Leica Microsystems, Wetzlar, Germany) with photomultiplier 

tube (PMT) and HyD detectors and 405 nm, argon, and white light lasers. AGF were imaged 

using the white light laser and transmitted light PMT to collect brightfield images, and 

methanogens were imaged using the 405 nm excitation laser with HyD detector set to detect 

emission between 460 and 480 nm. Images were collected and analyzed using the LAS X 

Life Science Microscope Software Platform (Leica Microsystems). Samples were imaged 

without fixation using a slide and coverslip. A 20x water objective (numerical aperture = 

0.75) was used to collect all images presented here. Lateral magnification was 284 nm/pixel. 

6. Statistical analysis 

All statistical analyses were conducted using the Prism 9.1.2 software (GraphPad, San 

Diego, CA). Prism 9.1.2 was used to (i) interpolate the concentrations of metabolites detected 

via HPLC and GC using standard curves, (ii) determine significant differences in growth 
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rates and metabolite fluxes between growth conditions via t-tests, (iii) compare calculated 

and measured co-culture concentrations via t-tests, and (iv) to determine the significance of 

the slopes and intercepts of linear regressions. In all statistical tests, α = 0.05 was used. 

C. Results and Discussion 

1. Development of a non-destructive co-culture species quantification method 

 All AGF with PacBio-sequenced genomes to date, except for C. churrovis, grow in 

dense, biofilm-like mats that cannot be uniformly sampled, precluding direct measurement of 

cell concentrations without harvesting and weighing the entire culture (Peng et al., 2018; 

Theodorou et al., 1995). Therefore, growth of AGF in mono-culture is typically tracked via 

pressure accumulation in sealed culture vessels, as AGF produce hydrogen and likely carbon 

dioxide as they grow (Peng et al., 2018; Wilken et al., 2020). However, uncertainties in the 

regulation of and relative flux through gas-generating pathways coupled with the pH-

dependent, gas-evolving bicarbonate buffer present in most AGF media (Peng et al., 2018; 

Vinzelj et al., 2020) make pressure accumulation an indirect measure of AGF growth. Using 

pressure as a proxy for AGF growth precludes analysis of per-cell hydrogen and carbon 

dioxide production and quantification of AGF concentration in continuous or even semi-

batch cultivation systems, both of which are critical for the eventual deployment of AGF for 

industrial biotechnology. Further, because methanogens utilize hydrogen and carbon dioxide 

gasses as well as formate produced by AGF to synthesize methane, it is not possible to 

account for the total moles of gas produced by AGF in co-culture, preventing pressure-based 

tracking of the growth of either species in co-culture altogether. 

Quantification of two species simultaneously in co-culture requires two independent 

signals that scale linearly with the concentration of either species or the concentration of the 
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total co-culture. If a signal scales with the concentration of one species, but not the other, 

then the presence of the other species must interfere with the signal from the first. Further, 

the co-culture must be well-mixed enough to enable uniform sampling, and the signals must 

be measurable with a small enough sample of the culture that growth is not disturbed. In the 

well-mixed AGF-methanogen co-cultures studied here, we use fluorescence intensity to 

quantify the methanogen and optical density to quantify the total mass concentration of the 

co-culture. We use the linear relationship between fluorescence intensity and absorbance 

during exponential phase in the methanogen to calculate the contribution of the methanogen 

to the total optical density signal, enabling calculation of the population-specific optical 

density and therefore concentration of the AGF. The equations and propagation of 

uncertainty associated with the method are given in Figure 11B and Supplementary Table 

S3, respectively. 

 To track growth and metabolite production in mono- and co-cultures, the workflow 

outlined in Figure 11B was conducted at each timepoint. First, the accumulated pressure was 

measured for each culture vessel and blank media vessel. Next, the headspace gas of each 

culture vessel was sampled and analyzed via GC. Then, 1 mL of each well-mixed culture 

vessel and blank was sampled with a needle and syringe and transferred to a microcentrifuge 

tube. Each tube was vortexed briefly, then pipetted into two separate wells each on clear 

microplates for measurements of optical density and black microplates for measurements of 

fluorescence. The remaining volume in each microcentrifuge tube was centrifuged, and the 

supernatant removed and stored at -80 º C for HPLC analysis. Finally, the culture and blank 

vessels were vented to 1 psig. 
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2. Normalized fluorescence intensity quantifies absolute methanogen concentration in

  co-culture 

 Methanogens are quantifiable with autofluorescence intensity due to the fluorescent 

coenzyme F420, which is present in all methanogens and is involved in all three major routes 

of anaerobic methanogenesis (hydrogenotrophic, acetoclastic, and methylotrophic) (Greening 

et al., 2016). The fluorescence spectrum of coenzyme F420 is well-characterized, with 

expected peak excitation and emission wavelengths near 420 nm and 470 nm, respectively 

(Doddema and Vogels, 1978). The intracellular F420 content has been shown to be constant in 

methanogens during exponential-phase growth (Heine-Dobbernack et al., 1988; Taya et al., 

1986), supporting the use of fluorescence intensity as a direct methanogen concentration 

measurement. Because fluorescence intensity units are arbitrary and values are subject to 

vary with nuisance variables such as the lamp power in the microplate reader, ambient 

temperature, etc., we normalize the observed fluorescence intensity of all samples in a run by 

the observed fluorescence intensity of a freshly thawed aliquot of Pacific Blue dye. Pacific 

Blue dye has a similar fluorescence spectrum to methanogens (excitation/emission max: 410 

nm/ 455 nm) and is subject to the same nuisance variables as the samples. Therefore, the 

normalized fluorescence intensity of a methanogen culture (Fculture/Fdye) may be used as an 

absolute measurement of methanogen concentration, as long as all aliquots of the Pacific 

Blue dye are of identical concentration. We observed no change in the fluorescence intensity 

of Pacific Blue dye dissolved in dimethyl sulfoxide over 15 months of storage at -20 º C 

(Supplementary Figure S3). 
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As seen in Figure 12A, we observed the expected fluorescence spectrum for M. 

thaueri, with peak excitation and emission wavelengths at 425 and 470 nm, respectively; we 

observed negligible fluorescence in C. churrovis in this channel (Figure 12B). The 

micrograph shown in Figure 12C confirms that M. thuaeri is visible in co-culture with C. 

churrovis using a 425/470 nm fluorescent filter, and that C. churrovis shows no fluorescence 

in this channel and is visible only in the brightfield overlay. 

As shown in Figure 13, the normalized fluorescence intensity of M. thaueri mono-

cultures scaled linearly with cell concentration when cells were diluted with blank Medium 

B, and the slope and intercept of this regression was not significantly different when M. 

thaueri was diluted with concentrated C. churrovis instead of blank medium (slopes p = 

0.663, intercepts p = 0.071). This further verifies that there is no measurable fluorescence of 

C. churrovis in the 425/470 nm channel and demonstrates that the presence of C. churrovis 

does not interfere with the fluorescence signal of M. thaueri. These results therefore establish 

that normalized fluorescence intensity may be used to quantify the absolute concentration of 

methanogens in co-culture with C. churrovis without physically separating the cell 

populations. 

Figure 12. Illustrations of biofilm-like morphology of rhizoidal AGF which cannot be uniformly sampled to 

track growth in co-culture, and non-rhizoidal AGF such as C. churrovis, which form well-mixed co-cultures 

when shaken or stirred and enable tracking of both species’ concentrations (A) via the method outlined in B. 

Created with BioRender. 
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3. Optical density quantifies the concentration of AGF and methanogens in co-culture  

 Optical density, often at 600 nm, is a well-established measurement of cell 

concentration for model microbes (Beal et al., 2020). However, the dense biofilm-like 

rhizoidal morphology characteristic of almost all AGF isolated and routinely cultured to date 

precludes uniform sampling of the culture for quantification via optical density. C. churrovis 

lacks this rhizoidal phenotype and can therefore be uniformly sampled for quantification via 

optical density when grown with constant stirring or when shaken prior to sampling (see 

Supplementary Figure S2 for a macroscopic visual comparison of rhizoidal AGF and C. 

churrovis morphologies). 

 As seen in Figure 14A, the peak absorbance values for C. churrovis and M. thaueri 

are both near 260 nm. However, the absorbance of blank Medium B is also large in this 

ultraviolet (UV) region, and the ratio of cell absorbance to media absorbance is at a minimum 

here (Figure 14B). Further, variable oxidation states of cofactors and other intracellular 

Figure 13. M. thaueri (combined pellet and supernatant) normalized fluorescence intensity scales linearly with 

cell concentration when diluted with blank Medium B, and with a mature C. churrovis culture, indicating that C. 

churrovis does not interfere with the fluorescent signal from M. thaueri. Dotted lines represent the 95% 

confidence interval of each regression. The p-values represent a test for significant differences in the values of 

the slopes and intercepts of the two regressions. 



69 

metabolites yield appreciable variation in per-cell UV-range absorbances from day to day 

and batch to batch, making them an unreliable measure of absolute cell concentration. 

Although the magnitude of absorbance at 450 nm is less than that at 260 nm for both C. 

churrovis and M. thaueri, A450 nm scales linearly with cell concentration for both species and 

offers the largest signal to background media ratio (Figure 14B), therefore 450 nm was used 

to determine the total cell concentration in co-cultures. 

 To calculate the optical density of C. churrovis in co-culture, we require an estimate 

of the optical density of M. thaueri, which is subtracted from the observed total co-culture 

optical density (A450 nm of the co-culture) to give the optical density of C. churrovis 

(mathematical steps outlined in Figure 11B). To estimate the optical density of M. thaueri 

using the normalized fluorescence intensity of the culture, the ratio of normalized 

fluorescence to absorbance at 450 nm must be constant for M. thaueri in mono-culture. As 

shown in Figure 15B, the relationship between absorbance and fluorescence intensity is 

linear (R2 = 0.968) during the exponential phase of growth (0 - 45 h in this case). Therefore, 

we assume that ratio of normalized fluorescence and absorbance is equal to the average value 

Figure 14. Absorbance spectra of late-exponential phase mono-cultures of C. churrovis and M. thaueri 

(with media blanks subtracted) (A) show peak values in UV range, but highest culture/media absorbance 

ratios at or near 450nm (B), highlighted with the dashed line. MB+ indicates the Medium B formulation 

with yeast extract and casitone added. 
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of the ratio during this period (1.93) for M. thaueri in co-culture. As shown in Figure 15A, 

normalized fluorescence provides an accurate estimate of the optical density of M. thaueri in 

mono-culture up to the point where the methanogen reaches stationary phase (when 

absorbance stops increasing, after 45 h in this case). Beyond this point, the fluorescence of 

the culture continues to increase while the absorbance remains constant, yielding the 

nonlinear relationship between absorbance and fluorescence after 45 h shown in Figure 15B. 

This divergent relationship between fluorescence and absorbance in stationary phase 

may be attributable to increased secretion of coenzyme F420 by the methanogens in stationary 

phase relative to exponential phase, and a greater fluorescence intensity of secreted F420 than 

intracellular F420. Some previous descriptions of fluorescence-based methanogen 

quantification recommend removing any culture supernatant and lysing the methanogens to 

measure only intracellular (and not extracellular) F420 (Peck, 1989). This approach yielded 

only minor increases in fluorescence intensity compared to the unlysed methanogen pellets 

(Supplementary Figure S4A). Further, unlike the combined pellet and supernatant samples 

shown in Figure 13, methanogen pellet fluorescence did not scale linearly with methanogen 

concentration when diluted with concentrated C. churrovis (Supplementary Figure S4B). 

Therefore, extracellular fluorescence was included in quantification of the methanogen in all 

mono-cultures and co-cultures. 

Most batch, semi-batch, and continuous co-cultures prioritize exponential-phase 

growth; therefore, the divergent ratio of fluorescence to absorbance in methanogens in 

stationary phase poses minimal practical drawbacks. To accurately calculate stationary phase 

methanogen concentrations  in co-cultures, we assume both species are at stationary phase 

when the total absorbance of the co-culture stops increasing with time, and assume that the 
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absorbance (and concentration) of the methanogen remains constant at its initial stationary 

phase value even tough fluorescence continues to increase. The ratio of normalized 

fluorescence to absorbance at 450 nm in M. thaueri is based on experimental values, 

therefore, we treat it as a random variate (1.93 ± 0.13) in all calculations to increase the 

sensitivity of statistical conclusions drawn based on the calculated concentrations of both 

species. As the observed fluorescence of a co-culture increases, so too does the uncertainty in 

the absolute methanogen concentration, and therefore in the AGF concentration as well 

(Supplementary Table S3). 

Table 4 shows the average ratios of optical density at 450 nm to cell concentration 

(determined via measurement of the culture dry weight after lyophilization) for C. churrovis 

and M. thaueri in mono-culture from six separate cultures of each species spread across two 

different batches with different inoculums.  

Figure 15. The slope of the ratio of fluorescence to absorbance vs. time during exponential phase (48h and 

before) is not significantly different from zero (A, p = 0.9845), demonstrating that fluorescence may be used to 

estimate the optical density of the methanogen in co-culture during exponential-phase growth. Normalized 

fluorescence and absorbance at 450 nm scale linearly during exponential phase growth (B), in agreement with 

previously observed constant intracellular coenzyme F420 content in methanogens. Dotted lines in (B) represent 

the 95% confidence interval of the linear regression of the ratio of fluorescence to absorbance vs. time during 

exponential phase. 
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The coefficients of variation for both species are below 15%, and the predicted total 

mass concentrations for co-cultures based on these correlations are not significantly different 

from the observed values (Table 5), supporting the accuracy of the method. 

Correlations are calculated using cell weight rather than cell number because the lytic 

lifecycle of AGF in which many zoospores develop inside a sporangium complicates the 

definition and detection of a single fungal “cell” via hemocytometry. While the 

concentrations of both species are calculable using only the fluorescence intensity and 

absorbance measurements outlined above, weighing the lyophilized co-cultures is a third, 

independent metric that may be used to validate the calculated concentrations. 

4. Potential expansions of the method to other co-culture systems 

 The method described here may be extended to any co-cultures which can be grown 

in well-mixed systems and possess two linearly independent signals such as optical density at 

a given wavelength, fluorescence intensity in a particular excitation/emission channel, 

Table 4. Individual species absorbance/concentration correlations for six replicate mono-cultures from two 

different inoculums for each species. 

Table 5. Total concentrations of co-cultures grown on xylan and glucose measured via lyophilization (left) and 

calculated using the individual species absorbance measurements (Figure 16; Supplementary Figure S5) and 

the absorbance/concentration correlations in Table 4 (right). 
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fluorescence lifetime, fluorescence polarization, or any other signal that reproducibly scales 

linearly with the concentration of one species or the total concentration of the co-culture. We 

leverage methanogen autofluorescence as one of the two signals here; for genetically 

tractable organisms, fluorescence may be introduced via genetic engineering. However, 

constant expression of the fluorescent protein over the course of growth would be required, 

which is particularly difficult in anaerobic systems (Ozbakir et al., 2020). 

In a simpler case, individual species concentrations may be resolved in a co-culture 

using absorbance signals at two different wavelengths, provided that the ratio of per-cell 

absorbance between those two wavelengths is different in the two organisms and constant 

over the course of growth in both organisms. The absorbance profiles of microbes depend on 

many factors including their size and intracellular composition; therefore it is likely that two 

linearly independent wavelengths exist for most co-culture pairs, even for prokaryote-

prokaryote systems. For tri-cultures, a third linearly independent absorbance wavelength 

must exist. 

For systems grown on solid substrates such as lignocellulosic biomass, the method we 

present here may still be applied if the culture (with substrate) can be uniformly sampled, and 

the microorganisms can be subsequently removed from the substrate entirely, potentially 

with a detergent-based procedure similar to the one described in (Nettmann et al., 2013). 

Such systems will likely require more samples, and thus larger cultures, to capture the 

heterogeneity of the multiphase culture, as well as thorough controlling of the background 

autofluorescence of the substrate and any detergents.  

5. Co-culturing C. churrovis with M. thaueri significantly increases AGF growth rate

  and xylan and glucose deconstruction rate relative to AGF mono-cultures 
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 We used the method outlined above to determine whether co-culturing with a 

methanogen increases the growth rate, polysaccharide and monosaccharide deconstruction 

rate, and mass-normalized flux of key metabolites in C. churrovis relative to mono-culture. 

We use xylan and glucose as the substrates in separate experiments, as they are soluble in 

Medium B and quantifiable via HPLC, and therefore allow uniform sampling of the culture 

for quantification of both species and the chemical composition of the supernatant. 

 The growth curves of C. churrovis and M. thaueri as well as the pressure 

accumulation and total co-culture optical density curves during growth on xylan are shown in 

Figure 16. Figure 16A shows that, at all timepoints, the optical density of the co-culture was 

greater than that of the mono-culture, as expected. Using the measured relationship between 

fluorescence intensity and optical density for M. thaueri, we can estimate how much of the 

total optical density of the co-culture is attributable to M. thaueri (Figure 16B), and therefore 

determine the concentration of C. churrovis at each timepoint (Figure 16C). Note that the 

fluorescence of the co-culture increases throughout stationary-phase growth (after 96 h in this 

case), but the absorbance of the methanogen is assumed constant, as discussed previously. As 

seen in Figure 16C, the slopes of the C. churrovis concentration vs. time regressions during 

the period of approximately constant growth rate are significantly different between co-

culture and mono-culture (p = 0.0148), indicating that co-culturing with M. thaueri does 

increase the growth rate of C. churrovis on xylan. These data represent the first evidence of a 

significant difference in growth rates of AGF in synthetic co-culture vs. mono-culture using 

direct AGF concentration-based measurements. Like previous studies (Li et al., 2019), we 

observe significantly enhanced rates of gas accumulation in co-culture vs. mono-culture 

(Figure 16D, p < 0.0001); however, this alone does not demonstrate faster growth of the 
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fungus, even though pressure accumulation curves typically correlate with AGF 

concentration in mono-culture (Theodorou et al., 1995). 

 As seen in Figure 17I, the rate of xylan degradation by AGF was significantly greater 

in co-culture than mono-culture (p = 0.0001). To the best of our knowledge, this is the first 

evidence of a significantly greater polysaccharide degradation rate in a synthetic AGF-

methanogen co-culture compared to an AGF mono-culture (see the supplement of (Gilmore 

et al., 2019) for a statistical analysis of previous studies related to this conclusion). These 

data support the previous finding that biomass-degrading CAZymes, including xylanases, 

Figure 16. Total culture absorbance (A), M. thaueri fluorescence + absorbance (B), C. churrovis concentration 

(C) and accumulated pressure (D) curves show that both the growth rate of C. churrovis and the rate of gas 

production are significantly increased in co-cultures with M. thaueri grown on xylan, relative to monocultures. 

Panel B shows the divergence of M. thaueri fluorescence relative to absorbance in stationary phase also 

observed in mono-culture; the absorbance of the methanogen was assumed to remain constant after the 

absorbance of the co-culture stops increasing (96h and after). Dotted lines represent the 95% confidence interval 
of each regression. The p-values in panels C and D represents a test for significant difference in the values of the 

slopes of the two regressions. 
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were upregulated in co-cultures of AGF and methanogens relative to AGF mono-cultures 

(Swift et al., 2019). 

Previously, it was shown that neither the rate of sugar release from cellulosic filter paper 

(Gilmore et al., 2019) nor the rate of xylose utilization (Li et al., 2017) by AGF were 

significantly increased by co-culturing with a methanogen. Interestingly, we observed a 

similar result in an AGF-methanogen co-culture grown on glucose and inoculated with a 

seven-day-old methanogen culture that was in stationary phase (Supplementary Figure S5). 

Figure 17. Metabolite profiles for mono- and co-cultures grown on xylan reveal significantly faster xylan 

degradation in co-culture (panel I), negligible hydrogen and formate accumulation in co-culture (panels C 

and G), greater lactate production in mono-culture (panel E), greater acetate, succinate, and ethanol 

production in co-culture (panels A, D, and F, respectively), and less accumulation of fumarate in co-culture 

(panel B). Metabolite concentrations at 24h and 43h shown here were used to calculate fluxes of each 

metabolite. Dotted lines represent the 95% confidence interval of each regression. The p-value in panel  I 

represents a test for significant difference in the values of the slopes of the two regressions. 
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Methanogen growth in co-culture was confirmed by increasing fluorescence and production 

of methane, but neither the growth rate of C. churrovis nor the rate of glucose utilization 

differed from mono-cultures (p = 0.5509, p = 0.1067, respectively). However, as seen in 

Supplementary Figures S6 and S7, when the glucose experiment was repeated with a 2 

day-old methanogen inoculum, the growth rate of C. churrovis was significantly greater in 

co-culture than mono-culture (p = 0.0107), the rate of glucose degradation was significantly 

greater in co-culture (p < 0.0001), and gas productivity was greater in co-culture (p = 

0.0025). Some dependence of AGF growth rate on the growth phase of the methanogen 

inoculum may partially explain the variable results of AGF-methanogen co-cultures in 

literature. 

6. AGF-methanogen co-cultures grown on xylan and on glucose show significantly 

 different mass-normalized metabolic fluxes compared to mono-cultures  

 The metabolite concentrations in Figure 17 combined with the C. churrovis 

concentrations in Figure 16C enable calculation of the flux of each metabolite in mono- and 

co-cultures grown on xylan. Because fluxes are typically most accurately analyzed in the 

context of predictive metabolic models during steady-state growth (Orth et al., 2010), we 

present fluxes at only one timepoint, 43h, the middle of the period of approximately constant 

growth rate. As seen in Figure 18, significant differences exist between mono- and co-

culture for the fluxes of all metabolites measured except for formate (which was utilized by 

M. thaueri1, precluding accurate calculation of formate flux in co-culture) and xylan. The 

lack of difference in xylan flux between mono- and co-culture implies similar growth yields 

 
1 Formate utilization was observed in M. thaueri mono-cultures (not shown) and co-cultures, despite a previous 

contrary description (Miller and Lin, 2002). Formate dehydrogenase subunits are present in the only published 

M. thaueri genome on NCBI. 
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(gDW/molxylan) and per-cell xylan deconstruction activities between the two conditions. 

Internal fluxes are often compared between conditions by normalizing by the influx of 

carbon substrate for each condition (Long and Antoniewicz, 2019); in this case, although we 

are concerned primarily with external fluxes, we may directly compare the absolute flux 

values of each metabolite in mono- and co-culture because the xylan influxes are similar.  

 Although the pathways within the AGF hydrogenosome and their relative utilization 

remain uncertain (Wilken et al., 2021), the fluxes presented in Figure 18 support the 

conclusion by Li et al. that co-culturing with methanogens causes AGF to direct more flux 

Figure 18. AGF mass-normalized fluxes reveal significant upregulation of acetate (via the hydrogenosome) 
and ethanol (via cytosolic PFL) fluxes, and significant downregulation of lactate and succinate flux in co-

cultures. Formate and hydrogen are consumed by M. thaueri and therefore do not accumulate in co-cultures. 

While xylan is consumed more quickly in co-culture, the flux of xylan into C. churrovis is equal in mono- 

and co-cultures. Fluxes for succinate in mono- and co-culture and lactate in co-culture assume metabolite 

concentrations of 0 mM at 24h, as observed values were below the detection limit. Bolded metabolites are 

detectable via our HPLC method. Metabolites in blue or red (also starred) showed significantly greater flux in 

co-culture or mono-culture, respectively. Arrow thickness correlates qualitatively with mono-culture flux 

values. Xu5P: xylulose-5-phosphate; G3P: glyceraldehyde-3-phosphate; PEP: phosphoenolpyruvic acid; 

OXAC: oxaloacetic acid; ADP: adenosine diphosphate; ATP: adenosine triphosphate; NAD+: nicotinamide 

adenine dinucleotide (oxidized); NADH: nicotinamide adenine dinucleotide (reduced); AcCoA: acetyl 

coenzyme A; PFL: pyruvate formate lyase; PFO: pyruvate:ferredoxin oxidoreductase. Created with 

BioRender. 
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through the hydrogenosome (Li et al., 2017). While the hydrogenosome model used in that 

work, proposed previously by Boxma et al. (Boxma et al., 2004), relies on an energetically 

unfavorable route of hydrogen production (reduction of protons to hydrogen coupled to 

regeneration of NAD(P)+ from NAD(P)H), the yield of one mole of acetate per mole of 

malate or pyruvate that enters the hydrogenosome in that model was supported by a recent 

genomic and transcriptomic characterization of the AGF hydrogenosome (Wilken et al., 

2021). Because acetate is putatively only produced in AGF in the hydrogenosome, and not in 

the cytosol via acetaldehyde dehydrogenase which would reduce additional NAD+ instead of 

regenerating it from NADH, we estimate acetate flux as a proxy for hydrogenosome flux 

(note the uncertainty of hydrogenosomal pathways in Figure 18). See (Wilken et al., 2021) 

for a description of all observed hydrogenosomal transcripts in Neocallimastix lanati, an 

AGF that is metabolically similar to C. churrovis (84% of EC numbers shared between both 

species, Supplementary Table S2). While significantly more work is needed to characterize 

the AGF hydrogenosome, the significantly greater acetate flux in co-culture than mono-

culture (p = 0.0320) implies increased flux through the hydrogenosome in co-culture than in 

mono-culture. 

 In support of the increased hydrogenosome vs. cytosol flux in co-culture, as shown in 

Figure 18, the fluxes of lactate and succinate, metabolites produced to regenerate oxidized 

NAD+ from NADH in the cytosol, were significantly lower in co-culture than mono-culture 

(p = 0.0177, 0.0012, respectively). The external flux of fumarate, an intermediate in cytosolic 

succinate production, was also lower in co-culture than mono-culture (p = 0.0197). The only 

cytosolic flux that increased in co-culture vs. mono-culture was that of ethanol (p = 0.0156), 

however the magnitude of this difference (0.03 mmol/gDW h) was lesser than the differences 
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between mono- and co-culture of lactate (0.33 mmol/gDW h) and succinate (0.10 

mmol/gDW h). 

It is possible that ethanol flux increases in co-culture because formate, a putative 

inhibitor of AGF growth which is produced during production of ethanol via the cytosolic 

pyruvate formate lyase (PFL) pathway, is taken up by methanogens. Production of ethanol 

regenerates two NAD+ from NADH per pyruvate, whereas production of lactate generates 

only one, giving the AGF incentive to produce ethanol over lactate if accumulation of 

inhibitory formate is not an issue. This may also explain why AGF redirect more flux 

through the hydrogenosome in co-culture with methanogens; more ATP can be generated 

without accumulating inhibitory formate (Li et al., 2017), facilitating faster AGF growth and 

polysaccharide deconstruction. However, the uncertain and likely degenerate mechanisms of 

oxidized cofactor regeneration in the hydrogenosome (Wilken et al., 2021) preclude 

definitive explanation of increased hydrogenosomal fluxes in co-culture. 

In co-cultures on glucose, significant differences in metabolite fluxes were the same 

as those described in Figure 18, with the exception that succinate fluxes did not differ 

significantly between mono- and co-culture on glucose (Supplementary Figure S7). 

7. Quantification of C. churrovis external metabolic fluxes highlights gaps in 

understanding of the AGF hydrogenosome 

 While a recent description of the AGF hydrogenosome in N. lanati showed 

transcription of several pathways for ATP and hydrogen production (Wilken et al., 2021), 

analysis of the fluxes of formate, acetate, and ethanol supported the hypothesis initially 

proposed by Boxma et al. (Boxma et al., 2004) that PFL is the dominant pathway in the 

hydrogenosome, and flux through other pathways is negligible. Because PFL is present in 
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both the cytosol and the hydrogenosome (Figure 18), the ratio of formate to ethanol plus 

acetate produced by the AGF will be unity only if acetate production in the hydrogenosome 

is always coupled to formate production, implying that only the PFL pathway carries 

significant flux in the hydrogenosome. 

This has been observed in at least two AGF to date (Boxma et al., 2004; Wilken et al., 

2021); however, as shown in Figure 19B, the ratio of formate to acetate plus ethanol fluxes 

was significantly different from unity during the phase of constant growth (48h) for C. 

churrovis (p = 0.0070). Further, the ratio of formate to acetate plus ethanol concentrations 

was significantly different from unity throughout growth on both substrates (Figure 19A) (p 

< 0.0015 for all timepoints), suggesting that PFL is not the sole dominant pathway in the 

hydrogenosome in C. churrovis. However, during late-exponential growth (76h, Figure 

19B), the ratio of formate to acetate plus ethanol flux did not differ significantly from unity 

(p = 0.7628), suggesting that hydrogenosome flux is dynamic and highly regulated, and PFL 

may dominate late in C. churrovis growth curves. In a separate study, all hydrogenosome 

components transcribed in N. lanati were also detected in C. churrovis (Brown et al., 2021), 

however, N. lanati showed PFL dominance throughout growth while C. churrovis did not. 
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The regulation and relative utilization of other hydrogenosomal pathways present in 

AGF genomes and transcriptomes, such as pyruvate:ferrodoxin oxidorectucase (PFO) 

(Marvin-Sikkema et al., 1994), a bifurcating hydogenase, and a putative ATP synthase 

remains unclear. Previous flux balance analysis predictions suggest that observed hydrogen 

fluxes are much lower than would be expected if all transcribed hydrogenosomal pathways 

could carry flux unregulated (Wilken et al., 2021). To characterize the AGF hydrogenosome 

to the level required for predictable degradation and conversion of biomass in co-cultures, 

accurate measurement of steady-state fluxes during chemostat growth may be necessary. 

Existing pressure-based methods of AGF quantification, even in mono-culture with high 

temporal resolution (Wilken et al., 2020), are not suitable to quantify AGF concentration and 

fluxes in a chemostat; however, the method we present here is.  

 

Figure 19. Mono-culture fluxes in MB on glucose suggest that C. churrovis hydrogenosome pathways differ 

from widely accepted PFL model. At all timepoints, the ratio of formate to acetate plus ethanol concentrations 

produced during growth differs significantly from unity (A) (p < 0.0015 for all timepoints). The ratio of 

formate flux to acetate plus ethanol flux differs significantly from unity during mid-exponential phase growth 

(48h, p = 0.0070), but not during late-exponential phase growth (76h, p = 0.7628) (B), suggesting that PFL may 
dominate hydrogenosome flux only after substrate is depleted and/or inhibitory metabolites have accumulated. 

Growth curve included (C) for reference of growth phases; 76h and before was considered exponential phase, 

and all timepoints after were considered stationary phase. 
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D. Conclusions 

Microbial communities can be leveraged to perform virtually infinite targeted 

chemical transformations, and new methods to track their performance in controlled systems 

are sorely needed. Individual species concentrations are critical metrics that enable many 

other analyses to understand communities but are challenging to obtain. Here, we have 

developed a method to obtain these metrics in biotechnologically promising co-cultures of 

biomass-degrading AGF and methanogens. While previous literature speculates that 

polysaccharide degradation and AGF growth is accelerated in co-culture with methanogens, 

methods have not been available to directly test this hypothesis. 

With the method we have presented here for rapid quantification of non-rhizoidal 

AGF and methanogens in co-culture, we have demonstrated significant increases in AGF 

growth rate and xylan and glucose degradation rate in co-culture with a methanogen. Further, 

quantitative differences in AGF metabolic fluxes suggest a shift towards more energy-

generating hydrogenosome flux in co-culture, however the highlighted uncertainties in the 

AGF hydrogenosome preclude definitive explanations for this shift. Detailed analyses of 

AGF that integrate flux measurements with transcriptomics and/or proteomics are likely 

necessary to characterize the AGF hydrogenosome and unlock their potential for predictable 

deployment in biotechnology applications; the method presented here is readily extendable to 

continuous or semi-batch systems for steady-state fluxomics to meet this need. 

Importantly, this method may be modified and applied to co-cultures of other 

organisms with or without autofluorescence for detailed characterization of each organism’s 

growth, flux, and other metrics that facilitate design and deployment of microbial 

communities with predictable, tunable functions.  
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IV. Continuous culture of anaerobic fungi enables growth and metabolic 

flux tuning without the use of genetic tools 

Anaerobic gut fungi (AGF) have significant potential to valorize lignocellulosic 

biomass thanks to the diverse repertoire of carbohydrate-active enzymes (CAZymes) 

encoded in their genomes. However, AGF metabolism is poorly understood, and with no 

genetic tools available, there are few ways to manipulate growth rates and metabolic fluxes 

to enhance production of target products, e.g., cell biomass, CAZymes, or fermentation 

metabolites. Here, we present a method to achieve continuous culture of the non-rhizoidal 

AGF isolate, Caecomyces churrovis, to probe fungal metabolism and predictably alter AGF 

fluxes for the first time. A DIY, Arduino-based continuous flow bioreactor was constructed 

with online optical density control for operation under turbidostat or chemostat control in 

multiple reactor volume configurations (18 mL and 55 mL) under anaerobic conditions. 

Different reactor setpoints uncovered relationships between C. churrovis titer and growth rate 

(ranging from 0.04 to 0.20 h-1), metabolic flux, and production rates of acetate, formate, 

lactate, and ethanol, demonstrating how continuous culture can be used to tune C. churrovis 

flux predictably and reproducibly to bolster target products without the use of genetic tools to 

reroute flux. Lactate, in particular, showed a > 8x increase in flux, a > 38x increase in 

concentration, and a > 11x increase in molar production rate in continuous cultures in high 

vs. low titer setpoints. End-product spike-ins revealed that formate reproducibly altered AGF 

fluxes, but not growth, offering another simple tool to tailor fermentation products to 

application-specific profiles in both batch and continuous cultures. Continuous culture of C. 

churrovis represents a significant step towards understanding AGF metabolism and 

deploying AGF for industrial bioproduction and lignocellulose valorization. 
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A. Introduction 

Anaerobic gut fungi (AGF) from the phylum Neocallimastigomycota native to the 

rumen of large herbivores have significant biomass valorization potential thanks to the large, 

diverse repertoire of lignocellulose-degrading carbohydrate-active enzymes (CAZymes) 

encoded in their genomes (Hooker et al., 2019; Lillington et al., 2020; Solomon et al., 2016). 

Amplifying AGF CAZyme production to free sugars from plant biomass (Leggieri et al., 

2022) is an attractive scheme to support more industrially tractable organisms in co-cultures 

(Jawed et al., 2019), or in multi-stage systems (Henske et al., 2018b). In addition to releasing 

sugars from biomass via CAZyme secretion, AGF produce several bioproduct precursors 

including lactate, acetate, formate, ethanol, succinate, and hydrogen. Depending on the target 

application, different profiles of these fermentation product are desirable. For example, 

hydrolysates rich in lactate or acetate are useful for medium-chain fatty acid (MCFA) 

production by chain elongating bacteria, (Scarborough et al., 2018), while high ethanol titers 

could be useful in bioenergy contexts (Toor et al., 2020).  

Applications for lignocellulose-based bioproduction with AGF are numerous, and 

they all require a means to predictably, reproducibly control growth rates and metabolic 

fluxes.  However, our control of AGF phenotypes is limited, and translation of AGF from 

academic research to industrial deployment for CAZyme production or crude biomass 

degradation and conversion to bioproduct precursors is precluded by several key challenges 

(Saye et al., 2021; Vinzelj et al., 2020). As non-model fungi, AGF physiology and primary 

metabolism are poorly understood. While the AGF are obligate anaerobes, many species are 

also filamentous and not easily amenable to standard process scaleup (Hanafy et al., 2020). 

Due to the uncertainty of the pathways in the AGF hydrogenosome (an anaerobic 
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mitochondrion-like organelle capable of ATP production) the existing genome-scale 

metabolic model is unable to accurately predict metabolic flux without experimental 

constraints (Wilken et al., 2021). Further, flux in AGF is highly regulated and changes over 

the course of batch growth (Leggieri et al., 2021a; Wilken et al., 2021). However, endpoint 

mixed acid metabolite profiles do not vary appreciably regardless of substrate, medium, or 

strain (Jin et al., 2011; Lankiewicz et al., 2023), and few strategies exist to elicit changes in 

AGF growth or metabolic flux to tailor fermentation profiles for different applications. 

AGF genetic tools are nascent and have only recently shown success in transient 

transformation (Hooker et al., 2023), therefore alternative strategies to control AGF 

phenotypes are required. Co-culturing with methanogens has been shown to increase growth 

rate and alter flux and endpoint fermentation profiles in AGF, yielding more acetate and less 

lactate (Bauchop and Mountfort, 1981; Leggieri et al., 2021a; Li et al., 2017, 2019; Marvin-

Sikkema et al., 1990). This is presumably due to removal of putatively inhibitory 

fermentation products, however co-cultures are notoriously difficult to maintain over long 

periods of time (Gilmore et al., 2019). Less precarious and more predictable means of tuning 

AGF flux are required if AGF are to be deployed for bioproduction at scale.  

AGF scale-up strategies are virtually absent from literature, chiefly due to the 

rhizoidal morphology of most AGF strains (Hanafy et al., 2020). These long, root-like 

structures facilitate physical association with plant substrates, but complicate laboratory 

culture and analysis. On both solid and soluble substrates, rhizoidal AGF form dense mats 

which cannot be uniformly sampled to quantify growth. Even with stirring, well-mixed, 

nearly monodispersed suspensions of rhizoidal AGF are unachievable, precluding steady 

state continuous culture. However, the non-rhizoidal AGF, Caecomyces churrovis, forms 
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biofilm-like mats when cultured without agitation and well-mixed cell suspensions when 

cultured with stirring. We recently demonstrated that continuous stirring enhanced growth of 

C. churrovis and rhizoidal AGF on xylan and lignocellulose substrates, respectively 

(Leggieri et al., 2022). C. churrovis in stirred cultures also significantly upregulated 

expression of CAZymes with no changes in metabolic flux relative to biofilm cultures. These 

well-mixed cultures can be used to increase production rates of CAZymes and organic acids 

without altering the fermentation product profile and may be valuable for industrial scale-up 

to large systems in which mixing is critical. Further, well-mixed cultures C. churrovis, and 

other non-rhizoidal AGF can be uniformly sampled to quantify cells and metabolites and are 

amenable to continuous culture. 

Continuous culture with turbidostat control can be used to tune AGF growth rates and 

fluxes to prescribed values to tailor AGF cultures to their many potential applications without 

genetic tools. Operators can take advantage of the regulated, dynamic flux profiles AGF 

demonstrate in batch culture to tune metabolic flux predictably. We hypothesize that by 

holding AGF cultures at constant, low titers, we will observe flux profiles that align with 

those from early batch growth, where cells experience a low-titer environment and mainly 

produce acetate and formate. Similar results are expected for high titers and late batch 

growth, where lactate production is expected to dominate. These various flux profiles enable 

biomass hydrolysates that are suited for different downstream applications, and the 

turbidostat control scheme presented herein allows operators to specify which products 

should be prioritized. 

Continuous culture also enables controlled assessment of the effects of putatively 

inhibitory metabolic end-products on AGF growth and flux (Joblin and Naylor, 1993). Batch 
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AGF growth typically stops short of complete substrate utilization at higher loadings (> 10 

g/L) for reasons that are not yet known (Saye et al., 2021) and need to be uncovered to 

optimize biomass degradation. In batch cultures, all metabolite concentrations increase 

together with time, precluding isolation of the effects of each species on growth and 

metabolism. Metabolite spike-ins at the start of batch culture begin to address this point; 

however AGF growth rate varies significantly with titer over the course of batch growth 

(Wilken et al., 2020), and the resolution of batch flux measurements is limited. Continuous 

culture offers more controlled analysis of the effects of varying metabolite concentrations on 

AGF growth and flux. 

Previous efforts have grown AGF with continuous liquid flow in systems with solid 

plant substrates using different liquid vs. solid retention times (Saye et al., 2021; Zhu et al., 

1997, 1996). While these studies provide valuable insight into how continuous supernatant 

flow may enhance biomass degradation in AGF, these systems do not achieve steady state as 

fungi adhered to solids accumulate in the system over time. Further, motile zoospores (the 

immature phase of the AGF lifecycle) exist primarily in the liquid phase of AGF cultures, 

therefore differences in liquid vs. solid retention times may bias growth and flux 

unpredictably. Steady state culture is irreplaceable for detailed understanding of metabolism 

and improvements to the existing AGF genome-scale metabolic model (Wilken et al., 2021). 

Here we present a simple, Arduino-based continuous flow bioreactor for continuous 

culture of anaerobic fungi in 18 mL or 55 mL configurations, assembled for under $400. The 

bioreactor is equipped with an online optical density sensor that samples the live culture 

every 300 milliseconds and is used for turbidostat control to hold cultures at prescribed cell 

densities. Alternatively, a fixed dilution rate can be applied to the bioreactor for operation in 
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chemostat control. We demonstrate steady state culture over several days and greater than 

five residence times in both control modes and argue that turbidostat control is more reliable 

for AGF systems whose growth and substrate uptake rates may vary with setpoint titer in 

ways that are difficult to predict. With turbidostat control, the growth rate that corresponds to 

the setpoint titer does not need to be known a priori; the bioreactor identifies the required 

dilution rate (and therefore growth rate) and holds it constant. In chemostat control, if the 

growth and substrate uptake rates are not guessed exactly correctly for a given target titer, 

cells accumulate or wash out and fail to achieve steady state. 

With this apparatus, faster AGF growth rates were achieved in continuous cultures 

compared to those previously reported for batch cultures, and they are based on direct optical 

density measurements rather than proxy measurements such as accumulated pressure 

(Theodorou et al., 1995) which are unreliable even at high resolution (Wilken et al., 2020) in 

systems with changing flux. By assessing steady state culture at several different prescribed 

titers, we uncover different flux profiles that maximize production of acetate, formate, and 

lactate. In batch culture, AGF flux profiles are difficult to resolve and only achievable for a 

few hours before regulation alters which metabolites are produced; with continuous culture 

we can produce each of these different fermentation product profiles indefinitely according to 

which products are desired.  

Turbidostat control uncovers which setpoint titers can be used to maximize 

production rates in AGF systems depending on the target product (cells, CAZymes, lactate, 

formate, etc.).  Because growth rate and flux both vary with titer, acetate and formate see 

their maximum production rate at low or intermediate titer, rather than high titer. Cell and 

CAZyme production rates are also maximized at intermediate titer. Lactate production, on 
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the other hand, is maximized at high titer. Further, metabolite spike-in experiments 

uncovered how formate concentration can be used to predictably control flux of formate, 

acetate, lactate, and ethanol in batch and continuous cultures.  

B. Materials and Methods 

1. Culture of anaerobic gut fungi 

A fully defined, modified version of anaerobic Medium B (MB) (Leggieri et al., 

2021a; Theodorou et al., 1995) was used for both routine culture and growth experiments; 

coenzyme M was not included in the formulation. The headspace of AGF cultures was 5% 

H2, 20% CO2, balance N2. All batch cultures were grown at 39 ºC in 16 mL anaerobic 

Hungate tubes with 10 mL of anaerobic liquid medium. Continuous cultures grown using the 

bioreactor under turbidostat or chemostat control were grown in 75 mL anaerobic serum 

bottles or 20 mL scintillation vials at culture volumes of 55 mL and 18 mL, respectively. 55 

mL cultures were stirred with one 25 mm cylindrical magnetic stir bar (Part No. SWN660, 

Globe Scientific, Mahwah, NJ); 18 mL cultures were stirred with one 13 mm cylindrical 

magnetic stir bar; stir bars were autoclaved in each culture bottle with the media. AGF were 

grown on glucose (anhydrous, Thermo Fisher Scientific, Waltham, MA) at final 

concentrations of either 5 g/L or 10 g/L. Continuous cultures contained chloramphenicol 

(Product No. C2255, TCI America, Portland, OR) at 100 µg/mL. In batch cultures, three 

biological replicate AGF cultures were grown for each condition alongside three blank media 

samples. 

Caecomyces churrovis and Neocallimastix lanati were both previously isolated from 

the feces of different sheep (Henske et al., 2017; Wilken et al., 2021). For routine culture, 

AGF were transferred to new media every day. All inoculums were 10% v/v. Growth of N. 
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lanati was monitored via pressure accumulation as described previously (Peng et al., 2018; 

Theodorou et al., 1995). Growth of C. churrovis was monitored via optical density (OD) at 

450 nm, which has been calibrated with C. churrovis dry cell weight (Leggieri et al., 2021a). 

In continuous bioreactor trials, C. churrovis OD was monitored in real time using the online 

OD sensor which was calibrated with OD measurements on a plate reader (Supplementary 

Figure S8). Additionally, samples were taken from the reactor over the course of growth to 

validate the accuracy of the online OD sensor; optical density measurements reported herein 

were measured from these samples using a Tecan M1000 96-well plate reader. 

2. High performance liquid chromatography (HPLC) analysis of metabolites 

 HPLC analysis was conducted as described previously (Leggieri et al., 2021a), with 

the exceptions that 60 ℃ was used instead of 50 ℃ and the refractive index detector (RID) 

was used to quantify all metabolites. Trace concentrations of fumarate impart a large signal 

on the variable wavelength detector at 210 nm which obstructs lactate and formate signals; 

the molar signal of fumarate is much smaller on the RID, therefore lactate and formate can be 

resolved cleanly. Standard curves were created for succinate, lactate, formate, acetate, and 

ethanol via linear regression; R2 values ranged from 0.9996 to 1.000. 

Metabolic flux measurements for each metabolite were calculated as follows for 

continuous cultures in specified time windows: the average concentration of each metabolite 

(mM) in the bioreactor times the average volumetric flow rate (L h-1) divided by the average 

AGF mass (GDW) in the bioreactor (units mmol GDW-1 h-1). In batch systems, metabolic 

flux was calculated as follows: the difference in amount (mmol) of each metabolite in each 

culture divided by the elapsed time between the two measurements divided by the difference 

in AGF mass (difference in gram dry weight, dGDW) between the beginning and end of that 
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time window (units mmol dGDW-1 h-1). See Supplementary Figure S9 for details regarding 

normalization of batch fluxes by the change in AGF mass rather than the average AGF mass. 

Where described, metabolic flux measurements are normalized by specific glucose uptake 

rates to enable direct comparison of fluxes between systems with different growth and/or 

glucose uptake rates. 

3. Bioreactor design and operation 

 An image, diagram, and parts list of all reactor components with connections to/from 

the Arduino Mega microcontroller and part costs are provided in Figure 20 and 

Supplementary Table S4. The Arduino IDE code varies depending on OD setpoint and 

reactor volume; representative scripts for turbidostat and chemostat control are provided in 

Supplementary Scripts S1 and S2, respectively. 

The bioreactor was run with both 18 mL and 55 mL volume configurations using 

different size vials as described above. All bioreactor runs were operated within an incubator 

at 39 ºC inside of an anaerobic chamber (5% H2, 20% CO2, balance N2). The incubator doors 

Figure 20. Image (A) and diagram (B) of the 18 mL configuration of the Arduino-based bioreactor for 
continuous culture of anaerobic gut fungi. Culture vessel is held in place by a polystyrene mold to ensure 

uniform path length of OD sensor. Culture vessel sits atop a stage with a magnetic stirrer underneath, 

controlled by the Arduino. Media reservoir (left) and culture vessel are both vented to atmospheric 

pressure through 0.22 µm filters. Reactor effluent drains to separate collection vessel (tubing runs out of 

frame at the bottom right). Arduino is powered by 9V DC, and motors for pumps and stirrer are powered 

by 12V DC. Data is wirelessly transmitted from the Arduino microcontroller to a computer outside of the 

incubator. (B) made with BioRender.com. 
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were sealed to prevent any outside light from interfering with online OD measurements. 

Bioreactor culture vials and media reservoirs were constantly vented to the chamber 

atmosphere using a needle and 0.22 µm filter to eliminate the effects of accumulated pressure 

on pump flow rates. A constant liquid level was maintained by fixing the outlet needle at the 

top of the liquid level in the culture vessel. All bioreactor runs were operated with turbidostat 

control except for the high-titer (OD setpoint 0.35) runs in the 55 mL configuration, which 

were operated at fixed dilution rates (chemostat control) due to loss of linearity in the OD 

signal at high cell concentrations in the 55 mL reactor. Each setpoint was run at least in 

duplicate. 

Samples were taken from the bioreactor in two ways: timepoint samples in which the 

reactor effluent was immediately collected and analyzed, and combined effluent samples in 

which total reactor effluent in a given time window was collected and analyzed. Both sample 

types are reported and identified herein. Reactor flow rates were calculated by measuring the 

volume of effluent in a given timeframe (> 1 hour). 

4. Statistical analysis 

All statistical analyses were conducted using the Prism 9.5.0 software (GraphPad, San 

Diego, CA). Prism 9.5.0 was used to (i) interpolate the concentrations of metabolites detected 

via HPLC using standard curves, and (ii) determine significant differences in growth rates 

and metabolite fluxes between growth conditions and timepoints via one-way ANOVA and 

multiple comparison t-tests. In all statistical tests, α = 0.05 was used. 

C. Results and Discussion 

1. C. churrovis produces formate and acetate early in batch growth, lactate later in 

 batch growth 
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 As shown in Figure 21, C. churrovis, and many other AGF (Bauchop and Mountfort, 

1981; Leggieri et al., 2021a; Srinivasan et al., 2001), produce more formate and acetate early 

in batch growth, and more lactate later in batch growth. We hypothesize that these different 

flux profiles are due to AGF sensing the culture microenvironment (titer) and that in 

continuous cultures held via turbidostat control at low titer (representative of early batch 

culture), C. churrovis will show greater formate and acetate flux and lesser lactate flux than 

continuous cultures held at high titer (representative of late batch culture). Operating 

continuous C. churrovis cultures at different, constant titers enables control and prescription 

of production rates of cells, CAZymes, and all primary metabolites. 

2. Continuous, steady state growth and flux in C. churrovis is achievable with the 

DIY anaerobic bioreactor 

 To achieve steady state growth and flux to understand and control AGF metabolism, 

the bioreactor must be able to reach and maintain different setpoint titers. Figure 22 

demonstrates that the bioreactor achieves the specified OD setpoint (0.35 in the provided 

Figure 21. Fluxes change over the course of growth in C. churrovis batch culture. Acetate and 

formate fluxes are significantly greater in early batch vs. late batch (defined as shown in the growth 

curve in panel A), and lactate and succinate flux are significantly greater in late batch. This 

endpoint cell titer (OD 0.35 – 0.40) is the maximum that is typically achieved in C. churrovis batch 

culture regardless of initial substrate concentration. 
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example) in turbidostat control with a constant flow rate over 10 days and 10 residence times. 

Accordingly, metabolite concentrations, and therefore fluxes, were also constant over this 

time, indicating that C. churrovis achieved metabolic steady state. In Figure 22, the culture 

was held at high titer, near the maximum concentration of C. churrovis typically achieved in 

batch culture (see Figure 21 for reference). At this high titer, lactate flux averaged 1.4 

mmol/gdW h, which is comparable to late batch growth, and greater than early batch growth. 

In addition to steady state continuous culture, the bioreactor presented herein 

produces batch OD-based growth curves for well-mixed C. churrovis cultures at far greater 

resolution than has been previously documented. These growth curves require no invasive 

sampling or destruction of the culture in any way and are more reliable than even high-

resolution pressure-based methods. A representative high-resolution batch growth curve is 

shown in Supplementary Figure S10. 

In turbidostat control, the OD is specified, and the flow rate required to maintain that 

setpoint OD is uncovered. When the flow rate is constant, metabolic steady state is implied, 

and that flow rate can be used to calculate the growth rate at that titer. In all cases, each 

bioreactor run showed constant OD, flow rate, and flux values over more than 5 residence 

Figure 22. Constant OD (A), flow rate (B), and metabolite fluxes (C) in 18 mL reactor with high-titer 

turbidostat control at an OD setpoint of 0.35 (C. churrovis concentration 0.67 g/L). Blue squares in (A) 

represent OD measured with a single sample at that timepoint. Red circles in (A) represent OD measured 

using the combined reactor effluent over several hours. 240 hours corresponds to over 10 reactor 

residence times. Concentrations, flow rates, and fluxes vary depending on setpoint titer, but the 

steadiness shown here is representative of all reactor runs. 
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times, suggesting metabolic steady state. However, the specific values of cell concentration, 

growth rate, and metabolite fluxes change depending on the setpoint OD, which can be 

leveraged to predicably prioritize production of cells/CAZymes or different mixed acid 

products. This enables understanding and modeling of the available AGF phenotype space 

and elucidates design rules for how to culture AGF for specific applications. 

 Alternatively, chemostat control was employed to achieve high titer continuous 

culture in the larger 55 mL reactor configuration in which the light path length was too long 

to maintain a linear signal at high cell titers (Supplementary Figure S8). As shown in 

Supplementary Figure S11, metabolic steady state was achieved, and growth rates and 

fluxes were comparable between the 18mL and 55mL configurations operated at the same 

setpoint titer using turbidostat and chemostat control, respectively. Chemostat control was 

enabled by turbidostat control because a previous turbidostat control experiment elucidated 

the growth rate at that setpoint titer. Without that knowledge, one is forced to guess the 

growth rate at that high titer which is difficult to estimate from batch data and likely requires 

iteration to avoid cell accumulation or washout. Only the 55 mL 0.35 OD setpoint trials were 

run with chemostat control, all others reported herein were operated with turbidostat control. 

 As shown in Figure 23, the OD setpoint for the reactor was altered in real time to 

demonstrate how steady state AGF cultures respond to disturbances. Three different OD 

setpoints (OD 0.18, 0.25, and 0.11) were reached (A), with steady state growth and flux 

established at each of them. Small changes in setpoint titer effected no change in growth rate 

(H) or flux (I) of any metabolite except for lactate, which differed significantly between all 

three setpoints. Lactate flux appears to have the greatest sensitivity to titer of all AGF 
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metabolites. With turbidostat control, these different setpoints are easily reached and 

maintained without washout or accumulation, and culture viability is maintained. 

After several days of continuous growth, flow was turned off, and C. churrovis was 

allowed to grow until all remaining substrate was depleted. As shown in Figure 23 (A-G), 

after stopping flow at 144 h (dotted lines), the concentrations of C. churrovis and all 

metabolic end products reached high levels which are greater than those typically achieved in 

Figure 23. Variable setpoint turbidostat control in the 55 mL reactor achieved three separate steady 

states in one reactor run (OD setpoints 0.18, 0.25, and 0.11, sequentially). Different setpoint regimes are 

marked off by dashed lines. Blue squares in (A-G) represent OD or [metabolite] measured with a single 

sample at that timepoint. Red circles in (A-G) represent measurements using the combined reactor 

effluent over several hours. Dotted line at 144h represents when flow wash shut off to allow 

consumption of remaining substrate and accumulation and cells and metabolites. Growth rates in (H) 
were not significantly different at these three OD setpoints. Fluxes (I) did not differ at between the three 

OD setpoints except for lactate, which was significantly differed at all three setpoints. 
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batch. The exact cause of this is not yet clear, however it is apparent that continuous culture 

may enable AGF phenotypes and titers that are not achievable in batch growth. 

Supplementary Figure S12 shows that growth stops in C. churrovis batch cultures 

near OD 0.40 even though almost half of the initial substrate remains. However, C. churrovis 

is able to grow in continuous culture near this OD setpoint, where all measured metabolites 

are at comparable concentration to the growth-arrested batch cultures. The unusual AGF 

lifecycle is poorly understood and is likely connected to what initiates and stops zoospore 

release and ultimately growth. While detailed characterization of the AGF lifecycle merits 

further investigation, pragmatically this lifecycle still allows C. churrovis to grow robustly in 

continuous culture at multiple different setpoint titers. 

3. C. churrovis growth rate and cell production rate vary non-monotonically with titer 

 AGF growth rate changes the course of batch growth as the culture environment 

increases in titer. Therefore, the maximum achievable continuous AGF growth rate also 

likely depends on titer, and this relationship is difficult to quantify a priori. Turbidostat 

control was used to identify the maximum growth rate achievable at several different setpoint 

titers to find the global maximum AGF growth rate. Figure 24A shows that C. churrovis 

growth rate in continuous culture peaks at intermediate cell titer (OD 0.18) and decreases 

significantly at high titer (OD 0.35). This aligns with batch cultures in which C. churrovis 

growth slows substantially near this cell concentration even when excess sugar remains in 

culture (Supplementary Figure S12). Growth rates did not vary significantly between the 18 

mL and 55 mL configurations at the same OD setpoints (0.35 and 0.11, dashed vs. solid bars 

of the same color, p > 0.05). Growth rates did not vary significantly between OD setpoint 

0.11, 0.18, or 0.25 (p > 0.05), implying that the culture microenvironment is similar enough 
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at low and intermediate titer that growth is not significantly altered. OD setpoint 0.18 grew 

significantly faster (p = 0.0030) than the fastest achievable stirred batch growth rate, showing 

promise for scale-up of C. churrovis growth for continuous production of CAZymes which 

are upregulated in stirred cultures (Leggieri et al., 2022). 

When trying to maximize continuous production of C. churrovis biomass or 

CAZymes, the goal is not to identify the fastest-growing titer nor the titer of greatest C. 

churrovis concentration. Rather, the product of cell concentration and growth rate (equaling 

the cell production rate) should be maximized. As shown in Figure 24, the titer of maximum 

C. churrovis cell productivity, and likely CAZyme productivity as well (Leggieri et al., 

2022), is OD 0.25, which is neither the highest cell titer nor the fastest-growing titer. 

Although cell titers are greater at OD 0.35 than OD 0.25, because growth is slower at high 

titer, OD 0.25 produces more C. churrovis biomass per unit time. Growth is slightly faster at 

OD 0.18 than OD 0.25 (although not significantly faster, p = 0.1698), however OD 0.25 still 

produces more C. churrovis biomass per time because the titer of cells in the reactor is 

greater. OD setpoints 0.35 and 0.11 have vastly different growth rates and titers, but they 

Figure 24) C. churrovis growth rate varies with titer non-monotonically (A). The maximum growth rate is 

at intermediate titer (OD 0.18); growth slows down significantly at higher titer (OD 0.35), whether 
chemostat or turbidostat control is used. OD setpoints 0.11, 0.18, and 0.25 all grew significantly faster than 

OD setpoint 0.35 (p < 0.05). (B) The titer that yields the maximum cell production rate in C. churrovis is 

OD 0.25, which is neither the highest titer nor the fastest growing titer (B). All continuous cultures 

produced C. churrovis at higher rates than batch cultures. 
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produce C. churrovis biomass at the same rate (p > 0.05). At all OD setpoints, the C. 

churrovis cell production rate was significantly greater in continuous culture than the fastest 

rate achievable in batch culture. 

4. Setpoint titer can be used to tune C. churrovis flux profiles and metabolite 

 production rates 

In many contexts, the target products from lignocellulose digestion are metabolites, 

which serve as precursors for bioproduction either downstream or in co-cultures (Patel and 

Shah, 2021; Zuroff and Curtis, 2012). Similar to growth rates, metabolic flux distributions, 

and therefore metabolite product profiles in C. churrovis continuous cultures change 

depending on the setpoint titer. As shown in Figure 25, low-to-intermediate titer (OD 

setpoints 0.11, 0.18, 0.25) fluxes resemble early-batch fluxes in which acetate and formate 

fluxes are dominant. At higher setpoint titer (OD 0.35), continuous flux resembles late-batch 

flux, in which acetate and formate fluxes decrease and lactate flux increases relative to early-

Figure 25) Metabolite fluxes normalized by glucose flux show greater lactate flux at high titer, and greater 
flux of acetate and formate at low titer. Similarly, formate and acetate fluxes are greater in early batch growth, 

and lactate flux is greater in late batch growth. No fluxes differed significantly between 18 mL and 55 mL 

configurations at the same OD setpoint (dashed vs. solid lines of the same color). 
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batch. All continuous flux distributions shown in Figure 25 were maintained for several days 

and over 4 reactor residence times, representing the first direct tuning of AGF steady state 

metabolic flux. Depending on the target metabolite (acetate, formate, or lactate), different 

setpoint titers can be used to prioritize production of that product.  

To maximize the continuous production rate of a given metabolite, rather than just the 

per-cell productivity represented by metabolic flux, the cell titer, growth rate, and flux must 

all be accounted for, as shown in Figure 26. Figure 26 shows that, although all metabolite 

concentrations are greater at high titer (A), because growth rates are greater at intermediate 

titers, the maximum molar productivity (B) of most metabolites (acetate, formate, ethanol) is 

achieved at intermediate titer (OD setpoint 0.25). Lactate productivity, on the other hand, is 

maximized at high titer (OD setpoint 0.35). Even though growth is slower at this titer, the 

increased lactate flux at high vs. low titer leads to a greater molar production rate of lactate at 

high titer. 

With this information, operators may easily tune the product profile of continuous 

AGF cultures using setpoint titers to maximize the production rate of the metabolite(s) of 

interest. For example, production of MCFAs via AGF co-cultures with chain-elongating 

bacteria is a burgeoning area of research. Depending on the specific chain-elongator and 

target MCFA product, operators may desire greater AGF fluxes of acetate or lactate 

(Stamatopoulou et al., 2020); the bioreactor presented here can predictably and reproducibly 

achieve those different desired flux profiles. As shown in Figure 26, all metabolites can be 

produced at significantly greater rates in continuous culture than in batch culture (p < 0.05), 

indicating a promising strategy for AGF-based bioproduction. 
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5. Endproduct concentrations do not affect C. churrovis growth rate or yield, but

 formate concentration can be used to control flux of lactate, formate, acetate, or 

 ethanol 

 Figure 25 establishes a relationship between titer and flux in C. churrovis, however it 

is still not known exactly what C. churrovis senses and responds to to regulate its flux. To 

test whether acetate, lactate, or formate concentration directly affect C. churrovis growth 

rate, yield, or flux, each metabolite was spiked into separate batch cultures at the time of 

inoculation to yield concentrations typical of the end of batch culture (15 mM, 25 mM, 20 

mM, respectively). AGF metabolism produces acetic acid, lactic acid, and formic acid which 

may decrease the culture pH as they accumulate, however most AGF media, including 

Medium B, is highly buffered and pH changes are small, but difficult to predict. Spiking in 

the conjugate bases, rather than the acids, removes any potential pH effects and assesses 

whether the anions themselves significantly alter AGF phenotypes via feedback on gene 

Figure 26) All metabolite concentrations (A) are greater at high titer setpoints than low or intermediate titer 

setpoints. However, intermediate titer (OD 0.25) maximizes the molar productivity (B) of acetate, formate, 

and ethanol because growth rates and fluxes are greater at this titer. High titer (OD setpoint 0.35) continuous 

growth maximizes lactate productivity despite the slower growth rate because of the significantly greater 

lactate flux at high titer compared to intermediate and low titers. All metabolites can be produced at 

significantly faster rate in at least one continuous culture setpoint than in batch culture. Molar flow rates 

here are normalized by reactor volume. 
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expression or enzyme activity. As seen in Figure 27A, none of these metabolite spike-ins 

had any effect on C. churrovis growth rate, yield, or glucose consumption rate, contrary to 

previous results based on accumulated pressure or hydrogen as a growth proxy (Joblin and 

Naylor, 1993; Srinivasan et al., 2001). 

Figure 27B shows that the only spike-in with any effect on flux was formate. As 

expected, batch lactate flux was significantly greater in all treatments later in growth (on day 

2 of growth) than early in growth (on day 1). However, day 1 lactate flux was significantly 

greater with formate spike-in than in all other treatments, suggesting that higher formate 

concentrations may influence C. churrovis to produce more lactate even at lower cell titers. 

Formate spike-in also led to decreased formate, acetate, and ethanol flux on day 1, implying 

feedback inhibition of the acetate and ethanol production pathways which also produce 

formate. Accordingly, significantly less endpoint formate was produced in cultures that 

received the formate spike-in (Figure 27D). These fluxes align with previous observations in 

AGF-methanogen co-cultures in which removal of formate by methanogens increased acetate 

and ethanol flux and decreased lactate flux in AGF (Leggieri et al., 2021a). 
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To test for a dose-response relationship between formate concentration and C. 

churrovis flux, formate was spiked into batch cultures at the time of inoculation at 1x typical 

end-batch concentration (20 mM), and 2x that concentration (40 mM). As shown in Figure 

27E, formate concentration again had no effect on C. churrovis growth rate, yield, or glucose 

consumption rate. However, formate spike-ins again significantly increased lactate flux on 

day 1 of growth with an observable dose-response relationship, and decreased ethanol flux on 

day 1. On day 2, greater formate concentrations led to greater lactate flux and decreased 

acetate, ethanol, and formate fluxes, as expected. Accordingly, endpoint acetate, ethanol, and 

formate concentrations significantly decreased with increasing concentration of formate 

Figure 27) Spike-ins of acetate, lactate, or formate during inoculation at typical batch endpoint concentrations 

had no effect on C. churrovis growth rate, yield, or glucose consumption (A); solid shapes represent culture 
OD, hollow shapes represent [glucose]. In panels B-D and F-H, different colors represent different spike-in 

treatments, while x-axis labels represent the fluxes or concentrations of the fermentation products produced. 

Spike-in of formate significantly increased day 1 lactate flux relative to all other conditions, and decreased day 

1 formate, acetate, and ethanol fluxes relative to control and acetate spike-in groups (B). Spike-in of formate 

led to a significantly lower formate production over the course of batch growth relative to all other conditions 

(D). In follow-up experiment, spike-in of formate during inoculation at 1x and 2x typical batch endpoint 

concentration (25 mM and 50 mM, respectively) had no effect on growth rate, yield, or glucose consumption 

(E); solid shapes represent culture OD, hollow shapes represent [glucose]. Formate spike-in significantly 

increased day 1 lactate flux relative to control with an observable dose-response relationship; day 1 ethanol 

flux decreased with formate spike-in (F). Day 2 lactate flux increased with formate spike-in; day 2 ethanol 

acetate, ethanol, and formate flux decreased with formate spike-in, with an observable dose-response 
relationship for ethanol and formate (G). Formate spike-in yielded significantly greater lactate concentrations, 

and significantly lower acetate, ethanol, and formate concentrations with a dose-response relationship (H). 
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spike-in, and endpoint lactate concentration significantly increased with increasing formate 

concentration. 

Decreased flux through formate-producing pathways at higher formate concentrations 

is logical. The only definite route to NAD(P)+ regeneration without production of formate is 

lactate production, possibly explaining the observed flux adjustments. Other pathways could 

exist in the hydrogenosome, however this organelle remains largely uncharacterized in AGF 

(Boxma et al., 2004; Leggieri et al., 2021a; Marvin-Sikkema et al., 1994; Wilken et al., 

2021).  

As shown in Supplementary Figure S13, formate spike-ins yielded similar growth 

and flux results in a different, rhizoidal AGF, Neocallimastix lanati. Consistency of these 

results across AGF from different genera with different morphologies suggests that the 

effects of formate concentration on AGF growth and flux may extend across AGF more 

broadly. A mechanistic explanation for AGF flux redirection in response to increased 

formate concentration is not obvious from the data reported here, however it presents an 

interesting opportunity for future work. Formate could possibly affect flux via feedback on 

metabolic pathway expression or alteration of enzyme activity. Although AGF produce 

formate, given the heterogeneity of the AGF lifecycle, formate could also be assimilated 

(Mao et al., 2020); however, our data neither support nor refute that possibility. Future efforts 

could interrogate these hypotheses with transcriptomics/RT-qPCR, enzyme activity assays, 

and/or isotopic tracers. 

6. Formate concentration can be used to tune flux of lactate, acetate, ethanol, and 

  formate in C. churrovis continuous culture 
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 To further verify that C. churrovis alters its flux profile in response to different 

formate concentrations, formate was spiked into a low-titer (OD setpoint 0.11) turbidostat-

controlled continuous culture, and growth rates and metabolite fluxes were compared pre- 

and post-spike.  First, the low-titer continuous culture was allowed to reach steady state for 

over 4 days (Figure 28A). At this low titer, low lactate fluxes were expected and observed. 

At 110 h of continuous culture, formate was spiked into the reactor and the media reservoir, 

effecting a step increase in formate concentration, as seen in Figure 28B. In response, lactate 

concentration (and flux) showed a step increase at this time (Figure 28C), supporting results 

from batch culture that formate concentration can be used to tune fluxes, most noticeably 

lactate. Specifically, formate supplementation can be used to suppress acetate and ethanol 

production and induce lactate production in low titer C. churrovis cultures which would 

otherwise produce little to no lactate. Acetate and ethanol concentrations did not decrease 

substantially after spiking in formate; however, because glucose flux increased (Figure 

28H), the ratios of acetate and ethanol flux to glucose flux both decreased (Figure 29I) 

analogous to the batch cultures shown in Figure 27. 



107 

 The lactate production rate achieved by artificially increasing formate concentration 

in otherwise low-titer (OD 0.11) C. churrovis continuous culture (0.75 +/- 0.06 mmol / h L) 

is significantly greater than the low-titer lactate production rate with no formate 

supplementation (0.16 +/- 0.03 mmol / h L), although it is lower than the high-titer (OD 0.35) 

lactate production rate (0.89 +/- 0.07 mmol / h L). The low-titer continuous system was 

chosen to demonstrate the most dramatic increase in lactate flux after vs. before spiking in 

Figure 28) Spike-in of formate at 110h into an established, steady state culture of C. churrovis (OD setpoint 

0.11) caused a step increase in lactate flux, and a decrease in flux of formate, acetate, and ethanol, analogous 

to batch culture. Growth rate was unaffected by the formate spike-in, however glucose flux significantly 

increased after the spike-in. Acetate, formate, and ethanol raw fluxes did not change significantly after the 

spike-in, however due to the increase in glucose flux, glucose-normalized acetate, formate, and ethanol fluxes 

decrease after the spike-in. Blue squares in (A-G) represent OD or [metabolite] measured with a single sample 

at that timepoint. Red circles in (A-G) represent measurements using the combined reactor effluent over 

several hours. 
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formate. To maximize lactate continuous productivity in C. churrovis systems moving 

forward, formate could be spiked into faster-growing intermediate titer systems (OD setpoint 

0.18, 0.25) to potentially produce more lactate using more cells. If genetic tools were 

available to AGF, lactate production could be increased by overexpressing the lactate 

dehydrogenase gene or possibly deleting pathways for production of succinate or ethanol. 

Without these tools, tuning formate concentrations and titer setpoints in continuous culture 

represent easily achievable strategies to predictably manipulate AGF metabolic flux. 

D. Conclusions 

We have presented a simple, cost-effective, Arduino-based continuous flow reactor 

for continuous, steady state culture of C. churrovis in defined media with both chemostat and 

turbidostat control modes. Turbidostat control uncovered relationships between titer and 

growth rate/metabolic flux profiles in C. churrovis, which may be used to prioritize 

production of different target products (cells, enzymes, or specific metabolites) at greater 

rates than have been achieved in batch culture. Formate concentration appears to have a 

significant effect on C. churrovis’ metabolic flux profile, but not growth rate, and this effect 

can be leveraged to predictably tune product profiles in both batch and continuous culture for 

numerous bioproduction applications that require CAZymes, lactate, formate, and/or acetate. 

Continuous culture in C. churrovis offers a way to manipulate growth and flux without 

genetic tools and represents a significant step towards understanding AGF metabolism and 

deploying AGF for industrial bioproduction, enzyme synthesis and lignocellulose 

valorization.  
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V. Conclusions, perspectives, outlook 

The biotechnological potential of AGF remains untapped, but the work presented 

herein represents a small step toward determining whether AGF can feasibly be deployed for 

industrial lignocellulose valorization, either alone or in communities. The ability to degrade 

lignocellulose is evident in AGF genomes; however, we cannot capitalize on this genomic 

potential without knowing design rules to accentuate desired AGF phenotypes in laboratory 

culture, even at small scales. 

Using a variety of modeling, bioinformatic, and wet lab approaches exposing AGF to 

myriad cultivation conditions (some resembling their natural environment and some more 

artificial), we have elucidated some of these design rules. We have developed and improved 

a fully defined culture medium for AGF to facilitate their growth and biochemical analysis. 

Although trivial for model microbes, we have a simple pipeline to quantify AGF via optical 

density, which uncovered the effects of co-culturing with methanogens on AGF growth and 

flux after decades of literature speculation. We can observe the AGF lifecycle in real time 

using live-cell microscopy, uncovering timescales and reproduction patterns that were 

previously unknown. We can culture AGF continuously at steady state and use the 

relationship between titer and AGF flux to tune metabolite production profiles predictably 

and reproducibly, thereby using chemical engineering principles to, essentially, metabolically 

engineer AGF without genetic tools. 

 Non-rhizoidal AGF, such as Caecomyces churrovis, are, in my opinion, the most 

useful AGF for laboratory characterization. Their ability to grow in both biofilms and well-

mixed suspensions makes them amenable to uniform sampling in both mono- and co-

cultures, continuous culture, and many of the routine analysis platforms enjoyed by model 
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microbes such as E. coli and yeast. These simple analyses were largely missing from AGF 

literature prior to this work. While bioprospecting for more AGF is an interesting effort in 

biology research, I believe it is most useful, in an engineering context, to devote efforts to 

comprehensively understanding the AGF we have already onboarded. 

 Of paramount importance in the near future is resequencing or at least better 

functional annotation of the genome of C. churrovis. C. churrovis is the model AGF thanks 

to its morphology and similarity to the rest of the Neocallimastigomycota phylum. However, 

its genome is of insufficient quality to enable comprehensive understanding of its 

metabolism, CAZyme productivity, lifecycle, or general behavior. 

With more complete functional annotation of the C. churrovis genome, the existing 

N. lanati AGF GEM could be updated to represent C. churrovis. The current C. churrovis 

genome and observed biochemical data suggest that C. churrovis is very similar 

metabolically to AGF at large. C. churrovis, unlike N. lanati (upon which the current AGF 

GEM is based), can grow in continuous culture at steady state, which is a requirement for 

accurate FBA-based metabolic modeling. Further, C. churrovis offers an easier route to 

isolation and characterization of the AGF hydrogenosome, as its morphology is easier lysed 

than rhizoidal AGF mats and therefore does not require zoospore isolation. 

The hydrogenosome is the single largest gap in our understanding of AGF 

metabolism. In its current state, the N. lanati GEM must be supplied with acetate flux (and 

therefore hydrogenosome flux) to accurately predict fluxes of any other metabolites. Lacking 

detailed hydrogenosome constraints, the GEM is currently descriptive, not predictive; this is 

still significantly beyond our understanding of AGF metabolism prior to the model, but it is 
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not sufficient to predict AGF behavior in communities or how AGF will respond to genetic 

edits once tools become available. 

C. churrovis could provide the required hydrogenosome information to improve the 

GEM, but only after genome curation and annotation efforts enable mapping of proteomic 

results to genes of known function. Proteomic characterization combined with biochemical 

assays on isolated AGF hydrogenosomes could help quantify hydrogenosome components to 

logically constrain flux in FBA simulations. However, any proteomic results or peptide 

standards are based on sequences and annotations from the genome which are incomplete 

and not fully reliable. Most putative AGF hydrogenosome components are labeled as such 

based on sequence similarity to homologs in hydrogen-producing bacteria or protists, with 

some of these similarities as low as 40%. Further, observed flux ratios of formate: (acetate + 

ethanol) suggest that at least one pathway in the cytosol or hydrogenosome is missing, 

incomplete, or erroneously considered complete. Quantitative proteomics with peptide 

standards may uncover the third case, but not the first two. To discover new pathways or 

parts of pathways, we require a more complete annotation of relevant genes within the C. 

churrovis genome.  

 AGF are bizarre in their lifecycle, morphology, and behavior in laboratory culture, 

and as such warranted thorough fundamental research into best practices for isolation, 

cultivation, cryopreservation, and genomic and biochemical characterization prior to any 

scale-up consideration. The AGF hydrogenosome remains an open question; however, even 

without knowing specific internal fluxes, our work has uncovered how growth, gene 

expression, and external fluxes can be tuned predictably with mixing, spike-ins, and 

continuous culture. Now, it is time to sincerely explore scale-up and deployment options for 
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AGF to assess whether they can truly improve the current industrial lignocellulose 

valorization paradigm. 

 The DIY bioreactor presented in Chapter IV is a useful proof-of-concept that C. 

churrovis can grow continuously. However, industrial systems will likely operate using solid 

plant substrates, which demand an entirely different suite of practical engineering 

considerations, especially at scale. Fortunately, Matt Reilly at the University of York is well 

on his way to developing one such multi-phase continuous flow bioreactor for pilot-scale 

cultivation of AGF on grass substrates. As demonstrated in Chapter II, both rhizoidal and 

non-rhizoidal AGF can be grown with mixing on solid plant substrates. Rhizoidal AGF are, 

in fact, more amenable to mixing on solid substrates than soluble substrates, extending the 

design space of large-scale, well-mixed biomass-degrading AGF systems to both non-

rhizoidal and rhizoidal AGF. 

 As for bioproduction, the mixed-acid fermentation pathways in AGF have industrial 

value, especially if their fluxes can be tuned and if they can reach high titers from crude 

biomass substrates. Whether product profiles are tuned via titer manipulation, metabolite 

spike-ins, or possibly genetic edits in the future, our newfound ability to predictably bias 

production of target compounds, including CAZymes or specific metabolites, makes AGF 

promising bioproduction candidates. Now, the work presented herein should be extended to 

assess whether the described strategies for predictable phenotype manipulation extend to 

systems grown on lignocellulose, potentially with comparisons between rhizoidal and non-

rhizoidal strains to determine best practices for achieving industrially relevant production 

rates of CAZymes and bioproduct precursors. 
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 Anaerobic communities have real potential to valorize recalcitrant lignocellulose and 

contribute to the imperative bio-based production of commodity, specialty, and energy 

products. Whether these communities can feasibly include AGF at industrial scales remains 

to be seen and should be considered an important area of research in the near future. As 

described in Chapter I, inclusion of prokaryotes or other co-culture partners with AGF 

significantly increases the degrees of freedom and decreases our ability to fully understand 

and reproduce the system over long periods of time. 

As such, AGF should only be included in communities with specific goals in mind, 

not just to increase complexity for complexity’s sake. AGF-methanogen co-cultures, for 

example, alter AGF flux and bring out different AGF fermentation product profiles that could 

be desirable in addition to producing methane instead of hydrogen; the desirability of this last 

feature is highly context-specific. An example of a well-designed AGF-bacterial system is a 

medium-chain fatty acid (MCFA)-producing community, in which AGF degrade 

lignocellulose and produce MCFA precursors that are converted to MCFAs (which have 

value in the makeup industry, for example) by chain-elongating bacteria. Another 

thoughtfully designed community is a co-culture of AGF with ZSC113, a strain of E. coli 

that consumes xylose but not glucose (Appendix D). In theory, in systems with both glucose 

and xylose available, such as lignocellulose hydrolysates, AGF should preferentially 

consume glucose, leaving xylose for the genetically tractable ZSC113 to consume and 

convert into target products. However, in C. churrovis – ZSC113 co-cultures, and to some 

extent in the MCFA-producing community, community membership is difficult to maintain, 

and death of one or more species results in loss of consortium function even though there is 
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no competition over substrates. This emphasizes the difficulty of designing microbial 

communities for even simple applications, especially when those communities contain AGF. 

 

Reflections – Don’t overcomplicate the problem 

While AGF are highly complex, non-model organisms, I have found that my most 

meaningful contributions to our understanding of them have been the simplest. We could not 

measure AGF concentrations because of their biofilm morphology, so I stirred them and 

identified a useful phenotype for both analysis and growth/CAZyme production. We wanted 

to quantify AGF in co-culture with methanogens; this is a system with two unknowns, so we 

needed two signals, and the easiest ones to measure were absorbance and florescence. We 

could not observe the AGF lifecycle in real time because their oxygen and temperature 

sensitivities complicated live-cell microscopy, so I grew them in spectroscopy cuvettes and 

stuck a light microscope inside an incubator. The bioreactor was sensitive to ambient light, 

temperature, and oxygen, so I scaled it down, operated it inside an incubator within an 

anaerobic chamber, and surrounded it with cardboard and duct tape. 

Anaerobic life is all about being efficient with the resources that are available. We, as 

researchers, should consider this for inspiration. Be resourceful, think like an engineer, and 

ask direct, actionable questions. Good science comes out of that. 
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Genetic Engineering Toolbox for the Lignocellulolytic Anaerobic Gut Fungus 

Neocallimastix frontalis. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.2c00502 

Hooker, C.A., Lee, K.Z., Solomon, K. V, 2019. Leveraging anaerobic fungi for 

biotechnology. Curr. Opin. Biotechnol. 59, 103–110. 



126 

https://doi.org/10.1016/J.COPBIO.2019.03.013 

Hungate, R.E., 1969. The Rumen and Its Microbes, 1st ed, Academic Press. Academic Press, 

New York-London. https://doi.org/10.1016/C2013-0-12555-X 

Ibberson, C.B., Stacy, A., Fleming, D., Dees, J.L., Rumbaugh, K., Gilmore, M.S., Whiteley, 

M., 2017. Co-infecting microorganisms dramatically alter pathogen gene essentiality 

during polymicrobial infection. Nat. Microbiol. 2, 17079. 

https://doi.org/10.1038/nmicrobiol.2017.79 

Jawed, K., Yazdani, S.S., Koffas, M.A., 2019. Advances in the development and application 

of microbial consortia for metabolic engineering. Metab. Eng. Commun. 

https://doi.org/10.1016/j.mec.2019.e00095 

Jayathilake, P.G., Gupta, P., Li, B., Madsen, C., Oyebamiji, O., González-Cabaleiro, R., 

Rushton, S., Bridgens, B., Swailes, D., Allen, B., McGough, A.S., Zuliani, P., Ofiteru, 

I.D., Wilkinson, D., Chen, J., Curtis, T., 2017. A mechanistic Individual-based Model of 

microbial communities. PLoS One 12. https://doi.org/10.1371/journal.pone.0181965 

Jeffryes, J.G., Colastani, R.L., Elbadawi-Sidhu, M., Kind, T., Niehaus, T.D., Broadbelt, L.J., 

Hanson, A.D., Fiehn, O., Tyo, K.E.J., Henry, C.S., 2015. MINEs: Open access 

databases of computationally predicted enzyme promiscuity products for untargeted 

metabolomics. J. Cheminform. 7, 44. https://doi.org/10.1186/s13321-015-0087-1 

Jin, W., Cheng, Y.-F., Mao, S.-Y., Zhu, W.-Y., 2011. Isolation of natural cultures of 

anaerobic fungi and indigenously associated methanogens from herbivores and their 

bioconversion of lignocellulosic materials to methane. 

https://doi.org/10.1016/j.biortech.2011.06.026 

Joblin, K.N., Naylor, G.E., 1993. Inhibition of the rumen anaerobic fungus Neocallimastix 



127 

frontalis by fermentation products. Lett. Appl. Microbiol. 16, 254–256. 

https://doi.org/10.1111/j.1472-765X.1993.tb01412.x 

Joblin, K.N., Naylor, G.E., Williams, A.G., 1990. Effect of Methanobrevibacter smithii on 

Xylanolytic Activity of Anaerobic Ruminal Fungi. Appl. Environ. Microbiol. 56. 

Joblin, K.N., Williams, A.., 1991. Effect of cocultivation of ruminal chytrid fungi with 

Methanobrevibacter smithii on lucerne stem degradation and extracellular fungal 

enzyme activities. Lett. Appl. Microbiol. 12, 121–124. https://doi.org/10.1111/j.1472-

765X.1991.tb00520.x 

Junicke, H., Abbas, B., Oentoro, J., van Loosdrecht, M., Kleerebezem, R., 2014. Absolute 

Quantification of Individual Biomass Concentrations in a Methanogenic Coculture. 

AMB Express 4, 1–8. https://doi.org/10.1186/s13568-014-0035-x 

Khandelwal, R.A., Olivier, B.G., Ling, R., Teusink, W., Bruggeman, B.J., 2013. Community 

Flux Balance Analysis for Microbial Consortia at Balanced Growth. PLoS One 8, 

64567. https://doi.org/10.1371/journal.pone.0064567 

Kim, B., Kim, W.J., Kim, D.I., Lee, S.Y., 2015. Applications of genome-scale metabolic 

network model in metabolic engineering. J. Ind. Microbiol. Biotechnol. 42, 339–348. 

https://doi.org/10.1007/s10295-014-1554-9 

Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome 

alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 

907–915. https://doi.org/10.1038/s41587-019-0201-4 

Kleiner, M., 2019. Metaproteomics: Much More than Measuring Gene Expression in 

Microbial Communities. mSystems 4, e00115-19. 

https://doi.org/10.1128/mSystems.00115-19 



128 

Kleiner, M., Thorson, E., Sharp, C.E., Dong, X., Liu, D., Li, C., Strous, M., 2017. Assessing 

species biomass contributions in microbial communities via metaproteomics. Nat. 

Commun. 8, 1558. https://doi.org/10.1038/s41467-017-01544-x 

Kovaka, S., Zimin, A. V., Pertea, G.M., Razaghi, R., Salzberg, S.L., Pertea, M., 2019. 

Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome 

Biol. 2019 201 20, 1–13. https://doi.org/10.1186/S13059-019-1910-1 

Kuang, E., Marney, M., Cuevas, D., Edwards, R.A., Forsberg, E.M., 2020. Towards 

Predicting Gut Microbial Metabolism: Integration of Flux Balance Analysis and 

Untargeted Metabolomics. Metabolites 10, 156. 

https://doi.org/10.3390/metabo10040156 

Kumar, M., Ji, B., Babaei, P., Das, P., Lappa, D., Ramakrishnan, G., Fox, T.E., Haque, R., 

Petri, W.A., Bäckhed, F., Nielsen, J., 2018. Gut microbiota dysbiosis is associated with 

malnutrition and reduced plasma amino acid levels: Lessons from genome-scale 

metabolic modeling. Metab. Eng. 49, 128–142. 

https://doi.org/10.1016/j.ymben.2018.07.018 

Kumar, M., Ji, B., Zengler, K., Nielsen, J., 2019. Modelling approaches for studying the 

microbiome. Nat. Microbiol. 4, 1253–1267. https://doi.org/10.1038/s41564-019-0491-9 

Lankiewicz, T.S., Choudhary, H., Gao, Y., Amer, B., Lillington, S.P., Leggieri, P.A., Brown, 

J.L., Swift, C.L., Lipzen, A., Na, H., Amirebrahimi, M., Theodorou, M.K., Baidoo, 

E.E.K., Barry, K., Grigoriev, I. V., Timokhin, V.I., Gladden, J., Singh, S., Mortimer, 

J.C., Ralph, J., Simmons, B.A., Singer, S.W., O’Malley, M.A., 2023. Lignin 

deconstruction by anaerobic fungi. Nat. Microbiol. https://doi.org/10.1038/S41564-023-

01336-8 



129 

Lawson, C.E., Harcombe, W.R., Hatzenpichler, R., Lindemann, S.R., Löffler, F.E., 

O’Malley, M.A., García Martín, H., Pfleger, B.F., Raskin, L., Venturelli, O.S., 

Weissbrodt, D.G., Noguera, D.R., McMahon, K.D., 2019. Common principles and best 

practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741. 

https://doi.org/10.1038/s41579-019-0255-9 

Lee, S.S., Ha, J.K., Cheng, K., Beever, D.E., Prins, R.A., 2000. Relative contributions of 

bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their 

interactions. Appl. Environ. Microbiol. 66, 3807–13. 

https://doi.org/10.1128/aem.66.9.3807-3813.2000 

Leggieri, P.A., Kerdman-Andrade, C., Lankiewicz, T.S., Valentine, M.T., O’Malley, M.A., 

2021a. Non-destructive quantification of anaerobic gut fungi and methanogens in co-

culture reveals increased fungal growth rate and changes in metabolic flux relative to 

mono-culture. Microb. Cell Factories 2021 201 20, 1–16. 

https://doi.org/10.1186/S12934-021-01684-2 

Leggieri, P.A., Liu, Y., Hayes, M., Connors, B., Seppälä, S., O’Malley, M.A., Venturelli, 

O.S., 2021b. Integrating Systems and Synthetic Biology to Understand and Engineer 

Microbiomes. Annu. Rev. Biomed. Eng. 23. https://doi.org/10.1146/annurev-bioeng-

082120-022836 

Leggieri, P.A., Valentine, M.T., O’Malley, M.A., 2022. Biofilm disruption enhances growth 

rate and carbohydrate-active enzyme production in anaerobic fungi. Bioresour. Technol. 

358, 127361. https://doi.org/10.1016/J.BIORTECH.2022.127361 

Leng, R.A., 2017. Biofilm compartmentalisation of the rumen microbiome: modification of 

fermentation and degradation of dietary toxins. Anim. Prod. Sci. 57, 2188–2203. 



130 

https://doi.org/10.1071/an17382 

Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C., Combes, D., 2008. Influence of 

subtilisin on the adhesion of a marine bacterium which produces mainly proteins as 

extracellular polymers. J. Appl. Microbiol. 105, 791–799. 

https://doi.org/10.1111/J.1365-2672.2008.03837.X 

Li, Y., Jin, W., Mu, C., Cheng, Y., Zhu, W., 2017. Indigenously associated methanogens 

intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as 

substrate. J. Basic Microbiol. 57, 933–940. https://doi.org/10.1002/jobm.201700132 

Li, Yuanfei, Li, Yuqi, Jin, W., Sharpton, T.J., Mackie, R.I., Cann, I., Cheng, Y., Zhu, W., 

2019. Combined Genomic, Transcriptomic, Proteomic, and Physiological 

Characterization of the Growth of Pecoramyces sp. F1 in Monoculture and Co-culture 

With a Syntrophic Methanogen. Front. Microbiol. 10. 

https://doi.org/10.3389/fmicb.2019.00435 

Lieven, C., Beber, M.E., Olivier, B.G., Bergmann, F.T., Ataman, M., Babaei, P., Bartell, 

J.A., Blank, L.M., Chauhan, S., Correia, K., Diener, C., Dräger, A., Ebert, B.E., 

Edirisinghe, J.N., Faria, J.P., Feist, A.M., Fengos, G., Fleming, R.M.T., García-Jiménez, 

B., Hatzimanikatis, V., van Helvoirt, W., Henry, C.S., Hermjakob, H., Herrgård, M.J., 

Kaafarani, A., Kim, H.U., King, Z., Klamt, S., Klipp, E., Koehorst, J.J., König, M., 

Lakshmanan, M., Lee, D.Y., Lee, S.Y., Lee, S., Lewis, N.E., Liu, F., Ma, H., Machado, 

D., Mahadevan, R., Maia, P., Mardinoglu, A., Medlock, G.L., Monk, J.M., Nielsen, J., 

Nielsen, L.K., Nogales, J., Nookaew, I., Palsson, B.O., Papin, J.A., Patil, K.R., 

Poolman, M., Price, N.D., Resendis-Antonio, O., Richelle, A., Rocha, I., Sánchez, B.J., 

Schaap, P.J., Malik Sheriff, R.S., Shoaie, S., Sonnenschein, N., Teusink, B., Vilaça, P., 



131 

Vik, J.O., Wodke, J.A.H., Xavier, J.C., Yuan, Q., Zakhartsev, M., Zhang, C., 2020. 

MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 

272–276. https://doi.org/10.1038/s41587-020-0446-y 

Lillington, S.P., Leggieri, P.A., Heom, K.A., O’Malley, M.A., 2020. Nature’s recyclers: 

anaerobic microbial communities drive crude biomass deconstruction. Curr. Opin. 

Biotechnol. 62, 38–47. https://doi.org/10.1016/j.copbio.2019.08.015 

Liu, J.J., Madec, J.Y., Bousquet-Mélou, A., Haenni, M., Ferran, A.A., 2021. Destruction of 

Staphylococcus aureus biofilms by combining an antibiotic with subtilisin A or calcium 

gluconate. Sci. Reports 2021 111 11, 1–12. https://doi.org/10.1038/s41598-021-85722-4 

Long, C.P., Antoniewicz, M.R., 2019. High-resolution 13C metabolic flux analysis. Nat. 

Protoc. 14, 2856–2877. https://doi.org/10.1038/s41596-019-0204-0 

Lou, J., Yang, L., Wang, H., Wu, L., Xu, J., 2018. Assessing soil bacterial community and 

dynamics by integrated high-throughput absolute abundance quantification. PeerJ 2018. 

https://doi.org/10.7717/peerj.4514 

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biol. 2014 1512 15, 1–21. 

https://doi.org/10.1186/S13059-014-0550-8 

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., 

Hurwitz, D.I., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Yang, M., 

Zhang, D., Zheng, C., Lanczycki, C.J., Marchler-Bauer, A., 2020. CDD/SPARCLE: The 

conserved domain database in 2020. Nucleic Acids Res. 48. 

https://doi.org/10.1093/nar/gkz991 

Magnúsdóttir, S., Heinken, A., Fleming, R.M.T., Thiele, I., 2018. Magnúsdóttir et al. Reply: 



132 

Babaei et al. Nat. Biotechnol. 36, 686–691. https://doi.org/10.1038/nbt.4212 

Magnúsdóttir, S., Heinken, A., Kutt, L., Ravcheev, D.A., Bauer, E., Noronha, A., 

Greenhalgh, K., Jäger, C., Baginska, J., Wilmes, P., T Fleming, R.M., Thiele, I., 2017. 

Generation of genome-scale metabolic reconstructions for 773 members of the human 

gut microbiota. Nat. Biotechnol. Vol. 35. https://doi.org/10.1038/nbt.3703 

Mao, W., Yuan, Q., Qi, H., Wang, Z., Ma, H., Chen, T., 2020. Recent progress in metabolic 

engineering of microbial formate assimilation. Appl. Microbiol. Biotechnol. 104, 6905–

6917. https://doi.org/10.1007/s00253-020-10725-6 

Marchler-Bauer, A., Bryant, S.H., 2004. CD-Search: Protein domain annotations on the fly. 

Nucleic Acids Res. 32. https://doi.org/10.1093/nar/gkh454 

Marvin-Sikkema, F.D., Driessen, A.J.M., Gottschal, J.C., Prins, R.A., 1994. Metabolic 

energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix: evidence 

for a functional relationship with mitochondria. Mycol. Res. 98, 205–212. 

https://doi.org/10.1016/S0953-7562(09)80187-1 

Marvin-Sikkema, F.D., Pedro Gomes, T.M., Grivet, J.P., Gottschal, J.C., Prins, R.A., 1993. 

Characterization of hydrogenosomes and their role in glucose metabolism of 

Neocallimastix sp. L2. Arch. Microbiol. 160, 388–396. 

https://doi.org/10.1007/BF00252226 

Marvin-Sikkema, F.D., Richardson, A.J., Stewart, C.S., Gottschal, J.C., Prins, R.A., 1990. 

Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. 

Appl. Environ. Microbiol. 56, 3793–3797. https://doi.org/10.1128/aem.56.12.3793-

3797.1990 

Matsunaga, A., Tsugawa, M., Fortes, J., 2008. CloudBLAST: combining MapReduce and 



133 

virtualization on distributed resources for bioinformatics applications, in: Proceedings - 

4th IEEE International Conference on EScience, EScience 2008. pp. 222–229. 

https://doi.org/10.1109/eScience.2008.62 

Mendoza, S.N., Olivier, B.G., Molenaar, D., Teusink, B., 2019. A systematic assessment of 

current genome-scale metabolic reconstruction tools. Genome Biol. 20, 158. 

https://doi.org/10.1186/s13059-019-1769-1 

Miller, T.L., Lin, C., 2002. Description of Methanobrevibacter gottschalkii sp. nov., 

Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and 

Methanobrevibacter wolinii sp. nov.. Int. J. Syst. Evol. Microbiol. 52, 819–822. 

https://doi.org/10.1099/00207713-52-3-819 

Mitrofanova, O., Mardanova, A., Evtugyn, V., Bogomolnaya, L., Sharipova, M., 2017. 

Effects of Bacillus Serine Proteases on the Bacterial Biofilms. Biomed Res. Int. 2017. 

https://doi.org/10.1155/2017/8525912 

Mosbæk, F., Kjeldal, H., Mulat, D.G., Albertsen, M., Ward, A.J., Feilberg, A., Nielsen, J.L., 

2016. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by 

combined protein-based stable isotope probing and metagenomics. ISME J. 10, 2405–

2418. https://doi.org/10.1038/ismej.2016.39 

Mountfort, D.O., Asher, R.A., Bauchop, T., 1982. Fermentation of cellulose to methane and 

carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. 

strain RA1 and Methanosarcina barkeri. Appl. Environ. Microbiol. 44, 128–134. 

https://doi.org/10.1128/aem.44.1.128-134.1982 

Mueller, R.S., Pan, C., 2013. Sample Handling and Mass Spectrometry for Microbial 

Metaproteomic Analyses. Methods Enzymol. 531, 289–303. 



134 

https://doi.org/10.1016/B978-0-12-407863-5.00015-0 

Müller, M., Mentel, M., van Hellemond, J.J., Henze, K., Woehle, C., Gould, S.B., Yu, R.-Y., 

van der Giezen, M., Tielens, A.G.M., Martin, W.F., 2012. Biochemistry and evolution 

of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–95. 

https://doi.org/10.1128/MMBR.05024-11 

Namkung, J., 2020. Machine learning methods for microbiome studies. J. Microbiol. 58, 

206–216. https://doi.org/10.1007/s12275-020-0066-8 

Nayfach, S., Rodriguez-Mueller, B., Garud, N., Pollard, K.S., 2016. An integrated 

metagenomics pipeline for strain profiling reveals novel patterns of bacterial 

transmission and biogeography. Genome Res. 26, 1612–1625. 

https://doi.org/10.1101/gr.201863.115 

Nayfach, S., Shi, Z.J., Seshadri, R., Pollard, K.S., Kyrpides, N.C., 2019. New insights from 

uncultivated genomes of the global human gut microbiome. Nature 568, 505–510. 

https://doi.org/10.1038/s41586-019-1058-x 

Nettmann, E., Fröhling, A., Heeg, K., Klocke, M., Schlüter, O., Mumme, J., 2013. 

Development of a flow-fluorescence in situ hybridization protocol for the analysis of 

microbial communities in anaerobic fermentation liquor. BMC Microbiol. 13, 278. 

https://doi.org/10.1186/1471-2180-13-278 

Nilsson, A., Nielsen, J., Palsson, B.O., 2017. Metabolic Models of Protein Allocation Call for 

the Kinetome. Cell Syst. 5, 538–541. https://doi.org/10.1016/j.cels.2017.11.013 

Noronha, A., Modamio, J., Jarosz, Y., Guerard, E., Sompairac, N., Preciat, G., Dröfn, A., 

Dröfn, D., Daníelsd´daníelsdóttir, D., Krecke, M., Merten, D., Haraldsdóttir, H.S., 

Haraldsdóttir, H., Heinken, A., Heirendt, L., Magnúsdóttir, S., Magnúsd, M., 



135 

Magnúsdóttir, M., Ravcheev, D.A., Sahoo, S., Gawron, P., Friscioni, L., Garcia, B., 

Prendergast, M., Puente, A., Rodrigues, M., Roy, A., Rouquaya, M., Wiltgen, L., 

Zagare, A., John, E., Krueger, M., Kuperstein, I., Zinovyev, A., Schneider, R., Fleming, 

R.M.T., Thiele, I., 2019. The Virtual Metabolic Human database: integrating human and 

gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 47. 

https://doi.org/10.1093/nar/gky992 

Norsigian, C.J., Pusarla, N., Mcconn, J.L., Yurkovich, J.T., Dräger, A., Dräger, D., Palsson, 

B.O., King, Z., 2020. BiGG Models 2020: multi-strain genome-scale models and 

expansion across the phylogenetic tree. Nucleic Acids Res. 48. 

https://doi.org/10.1093/nar/gkz1054 

Nowak, M.A., 2006. Evolutionary Dynamics: Exploring the Equations of Life. Harvard 

University Press. 

Orth, J.D., Thiele, I., Palsson, B.O., 2010. What is flux balance analysis? Nat. Biotechnol. 

28, 245–248. https://doi.org/10.1038/nbt.1614 

Øyås, O., Stelling, J., 2018. Genome-scale metabolic networks in time and space. Curr. Opin. 

Syst. Biol. 8, 51–58. https://doi.org/10.1016/J.COISB.2017.12.003 

Ozbakir, H.F., Anderson, N.T., Fan, K.C., Mukherjee, A., 2020. Beyond the Green 

Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. 

Bioconjug. Chem. 31, 293–302. https://doi.org/10.1021/acs.bioconjchem.9b00688 

Pandey, V., Hadadi, N., Hatzimanikatis, V., 2019. Enhanced flux prediction by integrating 

relative expression and relative metabolite abundance into thermodynamically 

consistent metabolic models. PLOS Comput. Biol. 15, e1007036. 

https://doi.org/10.1371/journal.pcbi.1007036 



136 

Patel, A., Carlson, R.P., Henson, M.A., 2019. In Silico Metabolic Design of Two‐Strain 

Biofilm Systems Predicts Enhanced Biomass Production and Biochemical Synthesis. 

Biotechnol. J. 14. https://doi.org/10.1002/biot.201800511 

Patel, A., Shah, A.R., 2021. Integrated lignocellulosic biorefinery: Gateway for production of 

second generation ethanol and value added products. J. Bioresour. Bioprod. 6, 108–128. 

https://doi.org/https://doi.org/10.1016/j.jobab.2021.02.001 

Peck, M.W., 1989. Changes in concentrations of coenzyme F420 analogs during batch 

growth of Methanosarcina barkeri and Methanosarcina mazei. Appl. Environ. 

Microbiol. 55, 940–945. https://doi.org/10.1128/aem.55.4.940-945.1989 

Peng, X. “Nick,” Gilmore, S.P., O’Malley, M.A., 2016. Microbial communities for 

bioprocessing: lessons learned from nature. Curr. Opin. Chem. Eng. 14, 103–109. 

https://doi.org/10.1016/J.COCHE.2016.09.003 

Peng, X., Swift, C.L., Theodorou, M.K., O’Malley, M.A., 2018. Methods for genomic 

characterization and maintenance of anaerobic fungi, in: Methods in Molecular Biology. 

Humana Press Inc., pp. 53–67. https://doi.org/10.1007/978-1-4939-7804-5_5 

Peng, X., Wilken, S.E., Lankiewicz, T.S., Gilmore, S.P., Brown, J.L., Henske, J.K., Swift, 

C.L., Salamov, A., Barry, K., Grigoriev, I. V., Theodorou, M.K., Valentine, D.L., 

O’Malley, M.A., 2021. Genomic and functional analyses of fungal and bacterial 

consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. 

Microbiol. 6, 499–511. https://doi.org/10.1038/s41564-020-00861-0 

Petrova, O.E., Garcia-Alcalde, F., Zampaloni, C., Sauer, K., 2017. Comparative evaluation of 

rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed 

pathogen culture transcriptomes. Sci. Rep. 7, 41114. https://doi.org/10.1038/srep41114 



137 

Phalak, P., Chen, J., Carlson, R.P., Henson, M.A., 2016. Metabolic modeling of a chronic 

wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst. 

Biol. 10, 90. https://doi.org/10.1186/s12918-016-0334-8 

Price, M.N., Wetmore, K.M., Waters, R.J., Callaghan, M., Ray, J., Liu, H., Kuehl, J. V., 

Melnyk, R.A., Lamson, J.S., Suh, Y., Carlson, H.K., Esquivel, Z., Sadeeshkumar, H., 

Chakraborty, R., Zane, G.M., Rubin, B.E., Wall, J.D., Visel, A., Bristow, J., Blow, M.J., 

Arkin, A.P., Deutschbauer, A.M., 2018. Mutant phenotypes for thousands of bacterial 

genes of unknown function. Nature 557, 503–509. https://doi.org/10.1038/s41586-018-

0124-0 

Pusa, T., Wannagat, M., Sagot, M.-F., 2019. Metabolic Games. Front. Appl. Math. Stat. 5, 

18. https://doi.org/10.3389/fams.2019.00018 

Radajewski, S., McDonald, I.R., Murrell, J.C., 2003. Stable-isotope probing of nucleic acids: 

a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14, 

296–302. https://doi.org/10.1016/S0958-1669(03)00064-8 

Raja, H.A., Miller, A.N., Pearce, C.J., Oberlies, N.H., 2017. Fungal Identification Using 

Molecular Tools: A Primer for the Natural Products Research Community. J. Nat. Prod. 

80, 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085 

Reimers, A.-M., Lindhorst, H., Waldherr, S., 2017. A Protocol for Generating and 

Exchanging (Genome-Scale) Metabolic Resource Allocation Models. Metabolites 7, 47. 

https://doi.org/10.3390/metabo7030047 

Robinson, C.D., Auchtung, J.M., Collins, J., Britton, R.A., 2014. Epidemic Clostridium 

difficile Strains Demonstrate Increased Competitive Fitness Compared to Nonepidemic 

Isolates. Infect. Immun. 82, 2815–2825. https://doi.org/10.1128/IAI.01524-14 



138 

Robinson, J.L., Kocabaş, P., Wang, H., Cholley, P.E., Cook, D., Nilsson, A., Anton, M., 

Ferreira, R., Domenzain, I., Billa, V., Limeta, A., Hedin, A., Gustafsson, J., Kerkhoven, 

E.J., Svensson, L.T., Palsson, B.O., Mardinoglu, A., Hansson, L., Uhlén, M., Nielsen, J., 

2020. An atlas of human metabolism. Sci. Signal. 13. 

https://doi.org/10.1126/scisignal.aaz1482 

Saye, L.M.G., Navaratna, T.A., Chong, J.P.J., O’Malley, M.A., Theodorou, M.K., Reilly, M., 

2021. The anaerobic fungi: Challenges and opportunities for industrial lignocellulosic 

biofuel production. Microorganisms 9, 694. 

https://doi.org/10.3390/microorganisms9040694 

Scarborough, M.J., Lawson, C.E., Hamilton, J.J., Donohue, T.J., Noguera, D.R., 2018. 

Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid 

Production Using an Anaerobic Microbiome. mSystems 3, e00221-18. 

https://doi.org/10.1128/mSystems.00221-18 

Scholz, M., Ward, D. V., Pasolli, E., Tolio, T., Zolfo, M., Asnicar, F., Truong, D.T., Tett, A., 

Morrow, A.L., Segata, N., 2016. Strain-level microbial epidemiology and population 

genomics from shotgun metagenomics. Nat. Methods 13, 435–438. 

https://doi.org/10.1038/nmeth.3802 

Schut, G.J., Adams, M.W.W., 2009. The iron-hydrogenase of Thermotoga maritima utilizes 

ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen 

production. J. Bacteriol. 191. https://doi.org/10.1128/JB.01582-08 

Seaver, S.M.D., Liu, F., Zhang, Q., Jeffryes, J., Faria, J.P., Edirisinghe, J.N., Mundy, M., 

Chia, N., Noor, E., Beber, M.E., Best, A.A., DeJongh, M., Kimbrel, J.A., D’haeseleer, 

P., Pearson, E., Canon, S., Wood-Charlson, E.M., Cottingham, R.W., Arkin, A.P., 



139 

Henry, C.S., 2020. The ModelSEED Database for the integration of metabolic 

annotations and the reconstruction, comparison, and analysis of metabolic models for 

plants, fungi, and microbes. bioRxiv 2020.03.31.018663. 

https://doi.org/10.1101/2020.03.31.018663 

Seifert, J., Taubert, M., Jehmlich, N., Schmidt, F., Völker, U., Vogt, C., Richnow, H.-H., von 

Bergen, M., 2012. Protein-based stable isotope probing (protein-SIP) in functional 

metaproteomics. Mass Spectrom. Rev. 31, 683–697. https://doi.org/10.1002/mas.21346 

Seppälä, S., Wilken, S.E., Knop, D., Solomon, K. V., O’Malley, M.A., 2017. The importance 

of sourcing enzymes from non-conventional fungi for metabolic engineering and 

biomass breakdown. Metab. Eng. 44, 45–59. 

https://doi.org/10.1016/j.ymben.2017.09.008 

Sgobba, E., Wendisch, V.F., 2020. Synthetic microbial consortia for small molecule 

production. Curr. Opin. Biotechnol. 62, 72–79. 

https://doi.org/10.1016/j.copbio.2019.09.011 

Shaffer, M., Borton, M.A., McGivern, B.B., Zayed, A.A., Rosa, S.L. La, Solden, L.M., Liu, 

P., Narrowe, A.B., Rodriguez-Ramos, J., Bolduc, B., Gazitua, M.C., Daly, R.A., Smith, 

G.J., Vik, D.R., Pope, P.B., Sullivan, M.B., Roux, S., Wrighton, K.C., 2020. DRAM for 

distilling microbial metabolism to automate the curation of microbiome function. 

bioRxiv 2020.06.29.177501. https://doi.org/10.1101/2020.06.29.177501 

Shamir, M., Bar-On, Y., Phillips, R., Milo, R., 2016. SnapShot: Timescales in Cell Biology. 

Cell 164, 1302-1302.e1. https://doi.org/10.1016/j.cell.2016.02.058 

Sheth, R.U., Li, M., Jiang, W., Sims, P.A., Leong, K.W., Wang, H.H., 2019. Spatial 

metagenomic characterization of microbial biogeography in the gut. Nat. Biotechnol. 



140 

37, 877–883. https://doi.org/10.1038/s41587-019-0183-2 

Shi, X., Shao, C., Luo, C., Chu, Y., Wang, J., Meng, Q., Yu, J., Gao, Z., Kang, Y., 2019. 

Microfluidics-Based Enrichment and Whole-Genome Amplification Enable Strain-

Level Resolution for Airway Metagenomics. mSystems 4. 

https://doi.org/10.1128/msystems.00198-19 

Shoaie, S., Ghaffari, P., Kovatcheva-Datchary, P., Mardinoglu, A., Sen, P., Pujos-Guillot, E., 

de Wouters, T., Juste, C., Rizkalla, S., Chilloux, J., Hoyles, L., Nicholson, J.K., Dore, J., 

Dumas, M.E., Clement, K., Bäckhed, F., Nielsen, J., 2015. Quantifying Diet-Induced 

Metabolic Changes of the Human Gut Microbiome. Cell Metab. 22, 320–331. 

https://doi.org/10.1016/j.cmet.2015.07.001 

Solden, L.M., Naas, A.E., Roux, S., Daly, R.A., Collins, W.B., Nicora, C.D., Purvine, S.O., 

Hoyt, D.W., Schückel, J., Jørgensen, B., Willats, W., Spalinger, D.E., Firkins, J.L., 

Lipton, M.S., Sullivan, M.B., Pope, P.B., Wrighton, K.C., 2018. Interspecies cross-

feeding orchestrates carbon degradation in the rumen ecosystem. Nat. Microbiol. 3, 

1274–1284. https://doi.org/10.1038/s41564-018-0225-4 

Solomon, K. V, Haitjema, C.H., Henske, J.K., Gilmore, S.P., Borges-Rivera, D., Lipzen, A., 

Brewer, H.M., Purvine, S.O., Wright, A.T., Theodorou, M.K., Grigoriev, I. V, Regev, 

A., Thompson, D.A., O’Malley, M.A., 2016. Early-branching gut fungi possess large, 

comprehensive array of biomass-degrading enzymes. Science 351, 1192–1195. 

https://doi.org/10.1126/science.aad1431 

Song, H.S., Cannon, W.R., Beliaev, A.S., Konopka, A., 2014. Mathematical modeling of 

microbial community dynamics: A methodological review. Processes 2, 711–752. 

https://doi.org/10.3390/pr2040711 



141 

Speda, J., Jonsson, B.-H., Carlsson, U., Karlsson, M., 2017. Metaproteomics-guided selection 

of targeted enzymes for bioprospecting of mixed microbial communities. Biotechnol. 

Biofuels 10, 128. https://doi.org/10.1186/s13068-017-0815-z 

Srinivasan, K., Murakami, M., Nakashimada, Y., Nishio, N., 2001. Efficient production of 

cellulolytic and xylanolytic enzymes by the rumen anaerobic fungus, neocallimastix 

frontalis, in a repeated batch culture. J. Biosci. Bioeng. 91, 153–158. 

https://doi.org/10.1016/S1389-1723(01)80058-X 

Stamatopoulou, P., Malkowski, J., Conrado, L., Brown, K., Scarborough, M., 2020. 

Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-

Chain Fatty Acid Production. Processes 8. https://doi.org/10.3390/pr8121571 

Starr, E.P., Shi, S., Blazewicz, S.J., Probst, A.J., Herman, D.J., Firestone, M.K., Banfield, 

J.F., 2018. Stable isotope informed genome-resolved metagenomics reveals that 

Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6, 122. 

https://doi.org/10.1186/s40168-018-0499-z 

Stein, R.R., Bucci, V., Toussaint, N.C., Buffie, C.G., Rätsch, G., Pamer, E.G., Sander, C., 

Xavier, J.B., 2013. Ecological Modeling from Time-Series Inference: Insight into 

Dynamics and Stability of Intestinal Microbiota. PLoS Comput. Biol. 9, e1003388. 

https://doi.org/10.1371/journal.pcbi.1003388 

Stolyar, S., Van Dien, S., Hillesland, K.L., Pinel, N., Lie, T.J., Leigh, J.A., Stahl, D.A., 2007. 

Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92. 

https://doi.org/10.1038/msb4100131 

Swift, C.L., Brown, J.L., Seppälä, S., O’Malley, M.A., 2019. Co-cultivation of the anaerobic 

fungus Anaeromyces robustus with Methanobacterium bryantii enhances transcription 



142 

of carbohydrate active enzymes. J. Ind. Microbiol. Biotechnol. 46, 1427–1433. 

https://doi.org/10.1007/s10295-019-02188-0 

Taya, M., Aoki, N., Kobayashi, T., 1986. Kinetic evaluation and monitoring of methanogen 

culture based upon fluorometry. Appl. Microbiol. Biotechnol. 23, 342–347. 

https://doi.org/10.1007/BF00257030 

Teunissen, M.J., Kets, E.P.W., Op den Camp, H.J.M., Huis in’t Veld, J.H.J., Vogels, G.D., 

1992. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants 

with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch. 

Microbiol. 157, 176–182. https://doi.org/10.1007/BF00245287 

The Gene Ontology Consortium, 2021. The Gene Ontology resource: Enriching a GOld 

mine. Nucleic Acids Res. 49, D325–D334. https://doi.org/10.1093/nar/gkaa1113 

The Gene Ontology Consortium, Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, 

H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, 

D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., 

Ringwald, M., Rubin, G.M., Sherlock, G., 2000. Gene Ontology: tool for the unification 

of biology. Nat. Genet. 25, 25. https://doi.org/10.1038/75556 

Theodorou, M.K., Davies, D.R., Nielsen, B.B., Lawrence, M.I.G., Trinci, A.P.J., 1995. 

Determination of growth of anaerobic fungi on soluble and cellulosic substrates using a 

pressure transducer. Microbiology 141, 671–678. https://doi.org/10.1099/13500872-

141-3-671 

Thiele, I., Palsson, B., 2010. A protocol for generating a high-quality genome-scale 

metabolic reconstruction. Nat. Protoc. 5, 93–121. 

https://doi.org/10.1038/nprot.2009.203 



143 

Thiele, I., Sahoo, S., Heinken, A., Hertel, J., Heirendt, L., Aurich, M.K., Fleming, R.M., 

2020. Personalized whole‐body models integrate metabolism, physiology, and the gut 

microbiome. Mol. Syst. Biol. 16. https://doi.org/10.15252/msb.20198982 

Thornbury, M., Sicheri, J., Slaine, P., Getz, L.J., Finlayson-Trick, E., Cook, J., Guinard, C., 

Boudreau, N., Jakeman, D., Rohde, J., McCormick, C., 2019. Characterization of novel 

lignocellulose-degrading enzymes from the porcupine microbiome using synthetic 

metagenomics. PLoS One 14, e0209221. https://doi.org/10.1371/journal.pone.0209221 

Tian, M., Reed, J.L., 2018. Integrating Proteomic or Transcriptomic Data into Metabolic 

Models Using Linear Bound Flux Balance Analysis. Bioinformatics 34, 3882–3888. 

https://doi.org/10.1093/bioinformatics/bty445 

Tkacz, A., Hortala, M., Poole, P.S., 2018. Absolute quantitation of microbiota abundance in 

environmental samples. Microbiome 6. https://doi.org/10.1186/s40168-018-0491-7 

Toor, M., Kumar, S.S., Malyan, S.K., Bishnoi, N.R., Mathimani, T., Rajendran, K., 

Pugazhendhi, A., 2020. An overview on bioethanol production from lignocellulosic 

feedstocks. Chemosphere 242, 125080. 

https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125080 

Traversi, D., Villa, S., Lorenzi, E., Degan, R., Gilli, G., 2012. Application of a real-time 

qPCR method to measure the methanogen concentration during anaerobic digestion as 

an indicator of biogas production capacity. J. Environ. Manage. 111, 173–177. 

https://doi.org/10.1016/j.jenvman.2012.07.021 

Truong, D.T., Tett, A., Pasolli, E., Huttenhower, C., Segata, N., 2017. Microbial strain-level 

population structure and genetic diversity from metagenomes. Genome Res. 27, 626–

638. https://doi.org/10.1101/gr.216242.116 



144 

van Dijk, E.L., Jaszczyszyn, Y., Naquin, D., Thermes, C., 2018. The Third Revolution in 

Sequencing Technology. Trends Genet. 34, 666–681. 

https://doi.org/10.1016/J.TIG.2018.05.008 

Vandeputte, D., Kathagen, G., D’Hoe, K., Vieira-Silva, S., Valles-Colomer, M., Sabino, J., 

Wang, J., Tito, R.Y., De Commer, L., Darzi, Y., Vermeire, S., Falony, G., Raes, J., 

2017. Quantitative microbiome profiling links gut community variation to microbial 

load. Nature 551, 507–511. https://doi.org/10.1038/nature24460 

Venturelli, O.S., Carr, A. V, Fisher, G., Hsu, R.H., Lau, R., Bowen, B.P., Hromada, S., 

Northen, T., Arkin, A.P., 2018. Deciphering microbial interactions in synthetic human 

gut microbiome communities. Mol. Syst. Biol. 14, e8157. 

https://doi.org/10.15252/msb.20178157 

Vinzelj, J., Joshi, A., Insam, H., Podmirseg, S.M., 2020. Employing anaerobic fungi in 

biogas production: challenges & opportunities. Bioresour. Technol. 300. 

https://doi.org/10.1016/j.biortech.2019.122687 

Vit, O., Petrak, J., 2017. Integral membrane proteins in proteomics. How to break open the 

black box? J. Proteomics 153, 8–20. https://doi.org/10.1016/j.jprot.2016.08.006 

Wang, R., Zhao, S., Wang, Z., Koffas, M.A.,. Recent advances in modular co-culture 

engineering for synthesis of natural products, Current Opinion in Biotechnology. 

Elsevier Ltd. https://doi.org/10.1016/j.copbio.2019.09.004 

Wangsanuwat, C., Heom, K.A., Liu, E., O’malley, M.A., Dey, S.S., 2020. Efficient and cost-

effective bacterial mRNA sequencing from low input samples through ribosomal RNA 

depletion. bioRxiv 2020.06.19.162412. https://doi.org/10.1101/2020.06.19.162412 

Wilken, S., Saxena, M., Petzold, L., O’Malley, M., 2018. In Silico Identification of Microbial 



145 

Partners to Form Consortia with Anaerobic Fungi. Processes 6, 7. 

https://doi.org/10.3390/pr6010007 

Wilken, S.E., Leggieri, P.A., Kerdman‐Andrade, C., Reilly, M., Theodorou, M.K., O’Malley, 

M.A., 2020. An Arduino based Automatic Pressure Evaluation System (A‐APES) to 

quantify growth of non‐model anaerobes in culture. AIChE J. 66. 

https://doi.org/10.1002/aic.16540 

Wilken, S.E., Monk, J.M., Leggieri, P.A., Lawson, C.E., Lankiewicz, T.S., Seppälä, S., 

Daum, C.G., Jenkins, J., Lipzen, A.M., Mondo, S.J., Barry, K.W., Grigoriev, I. V., 

Henske, J.K., Theodorou, M.K., Palsson, B.O., Petzold, L.R., O’Malley, M.A., 2021. 

Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic 

Model of an Anaerobic Neocallimastigomycota Fungus. mSystems 6. 

https://doi.org/10.1128/msystems.00002-21 

Wilson, J.-J., Brandon-Mong, G.-J., Gan, H.-M., Sing, K.-W., 2019. High-throughput 

terrestrial biodiversity assessments: mitochondrial metabarcoding, metagenomics or 

metatranscriptomics? Mitochondrial DNA Part A 30, 60–67. 

https://doi.org/10.1080/24701394.2018.1455189 

Xiros, C., Studer, M.H., 2017. A Multispecies Fungal Biofilm Approach to Enhance the 

Celluloyltic Efficiency of Membrane Reactors for Consolidated Bioprocessing of Plant 

Biomass. Front. Microbiol. 8, 1930. https://doi.org/10.3389/fmicb.2017.01930 

Yarlett, N., Orpin, C.G., Munn, E.A., Greenwood, C.A., 1986. Hydrogenosomes in the 

rumen fungus Neocallimastix patriciarum. Biochem. J. 236, 729–739. 

https://doi.org/10.1042/bj2360729 

Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., Xu, Y., 2012. dbCAN: a web resource for 



146 

automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–

W451. https://doi.org/10.1093/NAR/GKS479 

Youssef, N.H., Couger, M.B., Struchtemeyer, C.G., Liggenstoffer, A.S., Prade, R.A., Najar, 

F.Z., Atiyeh, H.K., Wilkins, M.R., Elshahed, M.S., 2013. The Genome of the Anaerobic 

Fungus Orpinomyces sp. Strain C1A Reveals the Unique Evolutionary History of a 

Remarkable Plant Biomass Degrader. Appl. Environ. Microbiol. 79, 4620–4634. 

https://doi.org/10.1128/AEM.00821-13 

Zamboni, N., Saghatelian, A., Patti, G.J., 2015. Defining the Metabolome: Size, Flux, and 

Regulation. Mol. Cell 58, 699–706. https://doi.org/10.1016/j.molcel.2015.04.021 

Zampieri, G., Vijayakumar, S., Yaneske, E., Angione, C., 2019. Machine and deep learning 

meet genome-scale metabolic modeling. PLOS Comput. Biol. 15, e1007084. 

https://doi.org/10.1371/journal.pcbi.1007084 

Zeng, H., Yang, A., 2020. Bridging substrate intake kinetics and bacterial growth phenotypes 

with flux balance analysis incorporating proteome allocation. Sci. Rep. 10, 1–10. 

https://doi.org/10.1038/s41598-020-61174-0 

Zhang, C., Hua, Q., 2016. Applications of genome-scale metabolic models in biotechnology 

and systems medicine. Front. Physiol. 6, 413. https://doi.org/10.3389/fphys.2015.00413 

Zhao, S., Liu, Q., Wang, J.X., Liao, X.Z., Guo, H., Li, C.X., Zhang, F.F., Liao, L.S., Luo, 

X.M., Feng, J.X., 2019. Differential transcriptomic profiling of filamentous fungus 

during solid-state and submerged fermentation and identification of an essential 

regulatory gene PoxMBF1 that directly regulated cellulase and xylanase gene 

expression. Biotechnol. Biofuels 12, 103. https://doi.org/10.1186/s13068-019-1445-4 

Zhou, Y.-H., Gallins, P., 2019. A Review and Tutorial of Machine Learning Methods for 



147 

Microbiome Host Trait Prediction. Front. Genet. 10, 579. 

https://doi.org/10.3389/fgene.2019.00579 

Zhu, W.Y., Theodorou, M.K., Longland, A.C., Nielsen, B.B., Dijkstra, J., Trinci, A.P.J., 

1996. Growth and survival of anaerobic fungi in batch and continuous-flow cultures. 

Anaerobe 2, 29–37. https://doi.org/10.1006/ANAE.1996.0004 

Zhu, W.Y., Theodorou, M.K., Nielsen, B.B., Trinci, A.P.J., 1997. Dilution rate increases 

production of plant cell-wall degrading enzymes by anaerobic fungi in continuous-flow 

culture. Anaerobe 3, 49–59. https://doi.org/10.1006/ANAE.1997.0070 

Ziels, R.M., Sousa, D.Z., Stensel, H.D., Beck, D.A.C., 2018. DNA-SIP based genome-centric 

metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic 

digesters with different feeding frequencies. ISME J. 12, 112–123. 

https://doi.org/10.1038/ismej.2017.143 

Zomorrodi, A.R., Maranas, C.D., 2012. OptCom: A Multi-Level Optimization Framework 

for the Metabolic Modeling and Analysis of Microbial Communities. PLoS Comput. 

Biol. 8, e1002363. https://doi.org/10.1371/journal.pcbi.1002363 

Zomorrodi, A.R., Segrè, D., 2017. Genome-driven evolutionary game theory helps 

understand the rise of metabolic interdependencies in microbial communities. Nat. 

Commun. 8, 1–12. https://doi.org/10.1038/s41467-017-01407-5 

Zuroff, T.R., Curtis, W.R., 2012. Developing symbiotic consortia for lignocellulosic biofuel 

production. Appl. Microbiol. Biotechnol. 93, 1423–1435. 

https://doi.org/10.1007/s00253-011-3762-9 

 

  



148 

VII. Appendices 

A. Appendix: Supplementary Materials for Chapter II 

Supplementary Table S1A. Significantly differentially expressed, secreted, unannotated proteins in C. churrovis 
with homology to potential biofilm-implicated proteins or homology to no AGF proteins at all. 

Upregulated, unannotated, secreted proteins of interest 

Protein ID Note 

465686 No BLAST hits 

450845 No BLAST hits 

626073 No AGF BLAST hits 

625875 Titin-like homology 

527394 Subtilisin-like homology 

527396 Subtilisin-like homology 

527393 Subtilisin-like homology 

527391 Subtilisin-like homology 

Downregulated, unannotated, secreted proteins of interest 

Protein ID Note 

604814 No BLAST hits 

442778 No BLAST hits 

465611 No BLAST hits 

266897 No BLAST hits 

472781 No BLAST hits 

447947 No BLAST hits 

457444 No BLAST hits 

535584 No BLAST hits 

273016 No BLAST hits 

444564 No BLAST hits 

74656 No BLAST hits 

496745 No BLAST hits 

457460 No BLAST hits 

457154 No BLAST hits 

69190 No BLAST hits 

551766 No BLAST hits 

628690 No AGF BLAST hits, homology to mammalian sperm-egg adhesion protein (zonadhesin) 

531507 No AGF BLAST hits, homology to extracellular peptidase in Streptococcus 

454075 No AGF BLAST hits, homology to 1,4-alpha-glucan branching protein in Blastococcus 

548363 Many AGF hits, also homology to zonadhesin in eel 

468469 Subtilisin-like homology 

522134 Subtilisin-like homology 
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Supplementary Table S1B. Significantly differentially expressed, unannotated de novo transcripts in C. 

churrovis with homology to potential biofilm-implicated proteins. 

Upregulated, unannotated de novo transcripts of interest 

de novo Transcript ID Note 

Novel_ST_.10883 Chitin-binding GO annotation 

Novel_ST_.11534 Subtilisin-like homology, chitin-binding GO annotation 

Novel_ST_.11829 Subtilisin-like homology 

Novel_ST_.12094 Chitin-binding GO annotation 

Novel_ST_.3363 Chitin-binding GO annotation 

Novel_ST_.3974 Subtilisin-like homology 

Novel_ST_.774 Chitin-binding GO annotation 

Novel_ST_.802 Subtilisin-like homology, chitin-binding GO annotation 

Novel_ST_.8811 Chitin-binding GO annotation 

Novel_ST_.9077 Chitin-binding GO annotation 

Novel_ST_.9371 Chitin-binding GO annotation 

Novel_ST_.9904 Chitin-binding GO annotation 

Downregulated, unannotated de novo transcripts of interest 

de novo Transcript ID Note 

Novel_ST_.12702 Chitin-binding GO annotation 

Novel_ST_.1576 Chitin-binding GO annotation 

Novel_ST_.3350 Chitin-binding GO annotation 

Novel_ST_.3931 Chitin-binding GO annotation 

Novel_ST_.4336 Chitin-binding GO annotation 

Novel_ST_.5771 Subtilisin-like homology, chitin-binding GO annotation 

Novel_ST_.7672 Chitin-binding GO annotation 

Novel_ST_.8864 Subtilisin-like homology, chitin-binding GO annotation 

Novel_ST_.9690 Chitin-binding GO annotation 
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Supplementary Spreadsheet S1. Spreadsheet of all C. churrovis de novo transcripts with CAZyme annotation 

and sequence. Available online (Leggieri et al., 2022). 

 

 

Supplementary Spreadsheet S2. Master spreadsheet of all C. churrovis genes and de novo transcripts with 
expression metrics, differential expression statistics, functional annotation, CAZyme annotation, secretion, and 

sequence. Available online (Leggieri et al., 2022). 

 

  

Supplementary Figure S1. A) More unannotated de novo transcripts show sequence similarity clustering 

than unannotated proteins in the C. churrovis genome. B) However, the percent sequence similarity is lower 

within de novo transcript clusters. More unannotated upregulated proteins cluster than downregulated 

proteins, however the function of these proteins remains uncertain. 
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B. Appendix: Supplementary Materials for Chapter III 

 

C. churrovis only 

(no other AGF) 

C. churrovis but 

not N. lanati 

N. lanati but not  

C. churrovis 

Amino acids 1 5 6 

Carbon 2 3 12 

Glycans 2 1 0 

Lipids 0 4 6 

Nucleotides 1 2 4 

Secondary met. 0 0 1 

Terpenoids 2 2 0 

Vitamins 3 3 3 

Uncertain 11 33 41 

Total 22 53 73 

Percent of total 

organism ECs 
3.1% 7.6% 10.1% 

 

Supplementary Figure S2. Images (left) and micrographs (right) of rhizoidal AGF N. lanati (top) in 

biofilm-like morphology and non-rhizoidal AGF C. churrovis (bottom) in well-mixed cell suspension. 

Both cultures shown here grown in Medium B on soluble sugars. The C. churrovis culture is amenable to 

growth tracking via optical density of small culture samples, while the N. lanati culture is not. 
 

Supplementary Table S2. Comparison of C. churrovis metabolic EC numbers with the rest of the AGF 

phylum (Neocallimastigomycota) and with N. lanati in particular shows significant similarity in metabolic 

potential between C. churrovis and the rest of the AGF. Bottom row represents the total EC numbers 

present only in the indicated organism, relative to all of that organism’s EC numbers. 
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Supplementary Table S3. Mathematical workflow for calculating absorbance and associated 

uncertainty of each species (A: AGF; B: methanogen) from total co-culture fluorescence (F) and 

absorbance (Abs) signals. ε is the pure species absorbance per cell and ℱis the pure species normalized 

fluorescence intensity per cell. 
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Supplementary Figure S3. The fluorescence intensity of aliquots of Pacific Blue dye in dimethyl sulfoxide 

(100 µg/L) stored at -20 ºC did not significantly change over 15 months of storage, indicating its utility as a 

standard for fluorescence normalization. The slope of the regression of fluorescence intensity vs. time (in 

weeks) is not significantly different from zero (p = 0.1366), suggesting that fluorescence remains constant 

over the time period shown. Dotted lines represent the 95% confidence interval of the regression. 

Supplementary Figure S4. The fluorescence intensity of M. thaueri cell pellets did not significantly 

increase when lysed according to the protocol outlined in (Peck, 1989) relative to unlysed (A) (paired t-test p 

= 0.3229). The fluorescence intensity of M. thaueri pellets did not scale linearly with concentration when 

diluted with concentrated C. churrovis (B), suggesting that C. churrovis may interfere with the fluorescence 

of M. thaueri pellets, and the combined pellet and supernatant samples of co-cultures should be used to 

quantify methanogens in co-culture with AGF. 
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Supplementary Figure S5. Total culture absorbance (A), M. thaueri fluorescence + absorbance (B), C. 

churrovis concentration (C), and glucose consumption (D) curves from co-cultures inoculated with seven 

day-old M. thaueri culture. While methanogen growth occurred (B), neither the growth rate (C) nor glucose 

consumption rate (D) of C. churrovis increased in co-culture. The fluorescence of the methanogen does not 

diverge relative to the absorbance (B) because these slow-growing co-cultures did not fully reach stationary 

phase. All of these results differ from the glucose co-cultures presented in Additional File 6, in which a 48 
hour-old M. thaueri culture was used for inoculation. Dotted lines represent the 95% confidence interval of 

each regression. The p-values in panels C and D represents a test for significant difference in the values of 

the slopes of the two regressions. 
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Supplementary Figure S6. Total culture absorbance (A), M. thaueri fluorescence + absorbance (B), C. 

churrovis concentration (C) and accumulated pressure (D) curves show that both the growth rate of C. 

churrovis and the rate of gas production are significantly increased in co-cultures with M. thaueri grown on 

glucose, relative to monocultures. Panel B shows the divergence of M. thaueri fluorescence relative to 

absorbance in stationary phase also observed in mono-culture; the absorbance of the methanogen was 

assumed to remain constant after the absorbance of the co-culture stops increasing (96h and after). Dotted 

lines represent the 95% confidence interval of each regression. The p-values in panels C and D represents a 

test for significant difference in the values of the slopes of the two regressions. 
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Supplementary Figure S7. Metabolite profiles (A) and cell mass-normalized fluxes (B) reveal significant 
upregulation (*U) of acetate and ethanol fluxes, and significant downregulation (*D) of lactate flux in co-

cultures. Fumarate is an intermediate to succinate production, and it is consumed more quickly in co-

cultures. Formate and hydrogen are consumed by M. thaueri and therefore do not accumulate in co-cultures. 

While glucose is consumed more quickly in co-culture, the flux of glucose into C. churrovis is equal in 

mono- and co-cultures. Dotted lines represent the 95% confidence interval of each regression. The p-value in 

panel (i) represents a test for significant difference in the values of the slopes of the two regressions. 
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C. Appendix: Supplementary Materials for Chapter IV 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S8) Calibrations of the reactor’s light sensor (lumens) against OD at 450 nm 

measured via plate reader. The 18 mL reactor configuration (A) showed linearity at all tested cell 
concentrations (R2 = 0.9941). The 55 mL reactor configuration (B) showed linearity at low to intermediate 

cell concentrations, with deviations at high cell concentrations (note the point near OD 0.30). Therefore, the 

55 mL reactor was run with turbidostat control only up to OD setpoint 0.25. For higher titers in the 55 mL 

configuration, chemostat control was used. The calibration using only low to intermediate cell 

concentrations is sufficiently linear (R2 = 0.9847). 
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Supplementary Figure S9) The ratio of (change in C. churrovis OD)/(change in [glucose]) is constant, while 

the ratio of (average C. churrovis OD)/(glucose consumption rate) is not. To demonstrate, the former ratio 

(R1) was used to calculate the expected OD for batch cultures by dividing the measured change in [glucose] 

concentration between timepoints 1 and 2 by R1, and adding the result to the OD at timepoint 1. As shown in 

(A), the agreement is good (R2 = 0.9830), suggesting that there is a constant, reproducible ratio between 
glucose consumed and increase in OD, and that this ratio holds for all measured cell titers, even late in batch 

growth. In (B), the expected glucose concentration is calculated by dividing the average C. churrovis 

concentration between timepoints 1 and 2 by the latter ratio (R2), multiplying the time between 

measurements, and subtracting from the glucose concentration at timepoint 1. (B) shows no agreement 

between measured and calculated glucose concentrations, suggesting that there is no fixed per-cell rate of 

glucose consumption in C. churrovis; this rate varies over the course of batch growth. The linearity of (A) and 

lack thereof in (B) suggest that the change in AGF concentration between two timepoints, not the average, 

should be used to normalize flux measurements in batch culture. 
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Supplementary Script S1) Representative Arduino IDE script for bioreactor turbidostat operation. This 

particular script is designed to operate the 18 mL configuration at high titer with turbidostat control. Available 

in online version of article. 

 

Supplementary Script S2) Representative Arduino IDE script for bioreactor operation. This particular script is 

designed to operate the 55 mL configuration at high titer with chemostat control with a fixed dilution rate. 

Pumps were calibrated offline; the known flow rate is used to set the dilution rate. 

 

Supplementary Table S4) Parts list with costs and hookup guide for Arduino-based bioreactor. 

Part Connection to Arduino Link Cost

Blue LED (+) 2

Blue LED (-) GND

TSL2591 Light Sensor (SDA) 20

TSL2591 Light Sensor (SCL) 21

TSL2591 Light Sensor (VCC) 5V

TSL2591 Light Sensor (GND) GND

Pump Motor Driver (In) (AIN1) 13

Pump Motor Driver (In) (AIN2) 11

Pump Motor Driver (In) (PWMA) 10

Pump Motor Driver (Out) (BIN1) 12

Pump Motor Driver (Out) (BIN2) 8

Pump Motor Driver (Out) (PWMB) 6

Pump Motor Driver (VCC) 5V

Pump Motor Driver (STBY) 7

Pump Motor Driver (VM) 9V, 2A DC (not Arduino)

Pump Motor Driver (GND) GND

Stirrer Motor Driver (AIN1) 43

Stirrer Motor Driver (AIN2) 41

Stirrer Motor Driver (PWMA) 5

Stirrer Motor Driver (VCC) 5V

Stirrer Motor Driver (STBY) 37

Stirrer Motor Driver (VM) 9V, 2A DC (not Arduino)

Stirrer Motor Driver (GND) GND

XBee S2C Wireless Communicator (DIN) 24

XBee S2C Wireless Communicator (DOUT) 22

XBee S2C Wireless Communicator (VCC) 5V

XBee S2C Wireless Communicator (GND) GND

XBee S2C Wireless Communicator (Receiver) Connected to PC via USB

Peristaltic Pumps Through motor driver https://a.co/d/ji9tvFI $  11.98 (x2)

Magnetic Stirrer Motor Through motor driver Taken from https://www.vernier.com/product/stir-station/ 139.00$        

Arduino Mega 2560 - https://store-usa.arduino.cc/products/arduino-mega-2560-rev3 38.72$          

Heat Sink for LED - https://a.co/d/fP2YRqa 7.99$             

Tubing - https://a.co/d/5FQI8RL 6.99$             

Fubing Fittings to Connect Needles - https://www.fishersci.com/shop/products/luer-w-locknut-m-1-16-nyl-25pk/NC1108514 29.95$          

331.95$        Total cost

5.49$             

6.95$             

13.50$          

13.50$          

$  22.95 (x2)

https://a.co/d/gF5o5mZ

https://www.adafruit.com/product/1980

https://www.sparkfun.com/products/14451

https://www.sparkfun.com/products/14451

https://www.adafruit.com/product/968
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Supplementary Figure S10) Representative high-resolution growth curve for C. churrovis in 18 mL reactor 

configuration. Black line is moving average of 200 measurements taken every 300 ms, blue shadow shows 

every measurement with no averaging. 

Supplementary Figure S11) High-titer chemostat operation showing constant OD (A) and constant 

metabolite fluxes (B) in the 55 mL reactor configuration. Blue squares in (A) represent OD measured with a 

single sample at that timepoint. Red circles in (A) represent measurements using the combined reactor 

effluent over several hours. The light path length in the 55 mL configuration is too long for linear detection 

of OD at this high titer setpoint, so chemostat control is required. The operating flow rate was 3.2 mL/h, 

corresponding to a dilution rate of 0.063 h-1. The high-titer setpoint is reached by choosing this slow 

dilution rate; C. churrovis concentration increases over the first 28 hours of operation at this dilution rate 

until a titer is reached that exhibits a growth rate matching the setpoint dilution rate. At this point, 28h 

(dotted line), OD remained constant for over 3 days. Metabolite fluxes were constant over this time with the 

exception lactate, which decreased after 72 h. It is not known why lactate flux alone decreased, however 

lactate flux appears to be the most variable in C. churrovis in continuous culture. Metabolic steady state is 

only assumed between 28 h and 70 h. 
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Supplementary Figure S12) Growth stops in C. churrovis batch cultures once they reach concentrations 

near OD 0.40 (A), even though substantial substrate remains (B). Continuous cultures are able to grow for 

several days near this OD (setpoint 0.35) in both turbidostat (18 mL) and chemostat (55 mL) configurations. 

The operating metabolite concentrations in continuous cultures are comparable to the endpoint 

concentrations in batch (C), so metabolite buildup alone is likely not responsible for growth stopping shy of 

complete substrate utilization in batch culture. 

Supplementary Figure S13) Spike-in of formate during inoculation at 1x and 2x typical batch endpoint 

concentration (25 mM and 50 mM, respectively) had no effect on growth rate, yield, or glucose consumption 

(A) in N. lanati; solid shapes represent culture accumulated pressure (growth) and hollow shapes represent 

[glucose]. Formate spike-in significantly increased day 1 lactate flux relative to control (C). Day 2 lactate 

flux increased with formate spike-in; day 2 ethanol acetate, ethanol, and formate flux decreased with formate 

spike-in (D). Formate spike-in yielded significantly greater lactate concentrations, significantly lower acetate 

and succinate concentrations, and significantly lower ethanol, and formate concentrations with a dose-
response relationship (B). Results align with those observed in C. churrovis, suggesting that formate may be 

used to control fluxes in AGF at large. 
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D. Appendix: Co-cultures of C. churrovis and E. coli ZSC113 

AGF liberate many different sugars from plant biomass (Henske et al., 2018b), but 

they are genetically intractable, precluding metabolic engineering efforts to produce designer 

biomolecules directly from lignocellulose using AGF alone. However, a workhorse strain of 

a genetically tractable model microbe, such as E. coli, could be co-cultured alongside AGF 

for bioproduction provided that the two species would not compete over sugars.  

E. coli strain ZSC113 consumes xylose, but not glucose (Eiteman et al., 2008). 

Therefore, if AGF release both xylose and glucose from biomass, ZSC113 and AGF should 

not compete for sugars provided that AGF preferentially utilize glucose when both glucose 

and xylose are available. Further, the method presented in Chapter III of this dissertation is, 

in principle, extendable to quantify co-cultures of C. churrovis and non-fluorescent 

prokaryotes, enabling growth and flux tracking. To test the feasibility of co-culturing C. 

churrovis with ZSC113 on plant biomass for one-pot bioproduction, we assessed whether the 

two microbes could both grow in co-culture in defined Medium B with both glucose and 

xylose available. 

Supplementary Figure S14. OD 

curves of C. churrovis (blue), 

ZSC113 (green) and co-cultures of C. 

churrovis and ZSC113 (red) grown in 

Medium B with both glucose and 

xylose. 
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As shown in Supplementary Figure S14, C. churrovis and ZSC113 both grew in 

mono-culture in Medium B with glucose and xylose. Co-cultures showed growth of at least 

one species. Supplementary Figure S15 shows that, in mono-culture, C. churrovis 

preferentially utilized glucose when both glucose and xylose were available, suggesting that 

C. churrovis and ZSC113 should not compete for substrates in co-culture. Mono-cultures of 

ZSC113 consumed xylose, but not glucose, as expected. In co-cultures, both glucose and 

xylose were partially consumed, indicating growth of at least C. churrovis. 

Micrographs of co-cultures show that, despite both species having substantial 

substrate available, only one species thrives in co-culture. Sometimes C. churrovis grew well 

(Supplementary Figure S16A), and sometimes ZSC113 grew well (Supplementary Figure 

S16B), but we did not observe any co-cultures with hearty growth of both species. We also 

attempted to co-culture C. churrovis and ZSC113 in Medium B with a plant biomass 

substrate and observed no growth of ZSC113. 

Supplementary Figure S15) Timecourses of glucose (A) and xylose (B) in cultures of C. churrovis 

(blue), ZSC113 (green) and co-cultures of C. churrovis and ZSC113 (red) grown in Medium B with both 

glucose and xylose. 
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It is possible that accumulation of fermentation products stunts growth in C. 

churrovis – ZSC113 co-cultures. The two species produce slightly different metabolite 

profiles (Supplementary Figure S17), so accumulation of products to higher titers than each 

species typically sees in mono-culture could result in reduced growth, however this 

hypothesis is unconfirmed. 

Because co-cultures did not grow robustly, we could not definitively verify whether 

an augmented version of the method presented in Chapter III (two absorbance signals rather 

than one absorbance and one fluorescence signal) would work to quantify C. churrovis and 

ZSC113 in co-culture. However, preliminary results suggest that the average size and shape 

of C. churrovis changes too much over the course of growth to precisely quantify both 

species using two different absorbance wavelengths. 

Supplementary Figure S16) Micrographs of co-cultures of C. churrovis and ZSC113 grown in Medium B 

with both glucose and xylose. (A) shows good growth of C. churrovis, but not ZSC113. (B) shows growth of 

ZSC113, but not C. churrovis.  
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The negative results presented here underscore the complexity of microbial co-

cultures and the challenges related to designing community systems for bioproduction. All 

mono-culture data suggests that these two species should grow together in co-culture; they 

grow in the same media, and they utilize different substrates. However, in practice, they 

could not coexist. Perhaps it is an interesting science question to determine exactly why. In 

an engineering context, this system is not capable of the application we designed it for, so we 

should look for other routes of AGF-based bioproduction from lignocellulose. 

  

Supplementary Figure S17) 

Metabolite timecourses in 

cultures of C. churrovis 
(blue), ZSC113 (green) and 

co-cultures of C. churrovis 

and ZSC113 (red) grown in 

Medium B with both glucose 

and xylose. 
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E. Appendix: Proteomic analysis of C. churrovis cultures and 

hydrogenosome enrichments and N. lanati cultures and zoospore enrichments 

Many different pathways appear to be transcribed in the AGF hydrogenosome, 

however it is not clear which of these pathways carry significant flux, and whether pathway 

activity changes over the course of batch growth. To determine which pathways may be the 

most active in AGF hydrogenosomes, we attempted to quantify proteins in hydrogenosome-

enriched lysate pellets from C. churrovis and zoospores (which may have greater 

hydrogenosome densities than sporangia (Yarlett et al., 1986)) enriched from N. lanati 

cultures. 

 Total culture proteomic samples of C. churrovis and N. lanati, with no enrichment of 

hydrogenosomes or zoospores, were analyzed for comparison, to determine whether putative 

hydrogenosome proteins were overrepresented in the samples that were expected to have 

greater hydrogenosome densities. As for hydrogenosome enrichments from C. churrovis, this 

was not the case. Further, we compared protein counts in samples from C. churrovis cultures 

at several different points of batch growth to assess whether enzyme counts aligned with 

observed changes in flux; they did not. These two shortcomings highlight the insufficient 

sensitivity of global proteomics to address these types of questions. 

 Targeted proteomics, with peptide standards, could provide better quantification of 

hydrogenosome proteins, and would eliminate any enrichment requirements. However, even 

targeted proteomics cannot identify proteins that are not annotated in the genome, as 

proteomic results are aligned to our reference genomes. As of today, no AGF genomes are of 

sufficient quality to fully understand the AGF hydrogenosome, motivating resequencing or at 

least better functional annotation. 
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 Protocols for zoospore enrichment with quantification and hydrogenosome 

enrichment with validation are provided below, followed by representative validation data. 

Proteomic results collected by PNNL and processed by PA Leggieri are available in 

O’Malley Lab data archives. 

 

Protocol: Zoospore Enrichment from N. lanati 

• Grow N. lanati in any suitable medium with a soluble carbon source. Plant debris 

makes zoospore enrichment intractable. 

• Harvest cultures by pouring them over a double layer of miracloth in a funnel, collect 

the filtrate. This step, and all others, can be done aerobically. 

• Centrifuge the filtrate for 5 minutes at 2,500 g, 4 oC. Remove the supernatant, 

resuspend the pellet in 1 mL of media (no substrate necessary) or PBS. 

• Centrifuge for 5 minutes at 2,500 g, 4 oC. Remove the supernatant. 

• Resuspend the pellet in 1 mL of media (no substrate necessary) or PBS. Use 10 µL of 

this suspension to quantify zoospores via hemocytometry. 

• Centrifuge for 5 minutes at 2,500 g, 4 oC. Remove the supernatant, store the pellet at  

-80 oC. 

• To estimate the mass of each zoospore sample for proteomic sample preparation, use 

the zoospore counts obtained via hemocytometry, and assume each zoospore is a 

sphere of 10 µm diameter with roughly the same density as water. 

Protocol: Hydrogenosome Enrichment from C. churrovis 

• In chamber, transfer culture(s) to 15 mL centrifuge tube(s) and close lid. 

• Remove centrifuge tubes from chamber, spin them 5 minutes, 2500 g, 4 oC to pellet. 
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• In chamber, remove supernatant, transfer cell pellet to 1.5 or 2mL microcentrifuge 

tube. 

• Wash pellet with MB salts + water solution, PBS, or M2 twice. 

• Apply chitinase solution to pellet. Vortex, incubate at 39 oC for 1 hour. 

• After incubation, centrifuge in chamber for 5 minutes, 2500 g. Wash, repeat. 

• Remove supernatant, transfer to Dounce homogenizer with 1 mL “hydrogenosome 

lysis buffer solution.” 

• Homogenize, 25 strokes with rotation. 

• Transfer homogenate to a new 1.5 mL microcentrifuge tube. 

• Spin 5 minutes, 400 g in chamber.  

• Remove supernatant and keep it, label it as S1. Set the pellet aside (P1). 

• Spin S1 5000g, 20 minutes in chamber. There should be a visible pellet after this step. 

Remove the supernatant, set it aside (S2). Wash the pellet, then repeat the spin. 

• Discard the supernatant from the second spin above. Keep the pellet (P2); this pellet 

should contain the most hydrogenosomes. 

• P2 is the fraction that can be used for further purification via ultracentrifugation. 

 

Protocol: Hydrogenase Assay 

• For each fraction (S1, S2, P1, P2), use the same volume of methyl viologen working 

solution, same total sample volume, and same microwell volume. Apply the methyl 

viologen quickly to each well immediately before starting the absorbance run.  

• Using the Absorbance96 software, plug the mini plate reader into the laptop, and set 

up your run to measure a 20 minute timecourse of absorbance at 600nm for all wells. 
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• Immediately after applying methyl viologen solution to each well, place the 

microplate in the plate reader in the incubator in the chamber. Start the run. 

• Keep in mind, if you want to further purify P2, you only want to use a small fraction 

of your pellet for this assay. 

Reagents 

• Hydrogenosome lysis buffer solution 

• MB salts + water (wash buffer) 

• Methyl viologen working solution 

o 200 mM phosphate buffer 

o Beta-mercaptoethanol 

o Methyl viologen 

  

Supplementary Figure S18) Example hydrogenase 

assay on a successful enrichment (PL March 2022) 
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F. Appendix: Live-cell AGF Microscopy 

Given the temperature and oxygen sensitivities of AGF, a resourceful approach is 

required to capture microscopic videos of their growth. The approach described below 

applies to all strains of AGF. Media and substrates can be varied as desired. 

 

Protocol: Live-cell AGF Microscopy 

• Place the light microscope (Zeiss Primovert) with camera (SPOT Idea 28.2) inside a 

2418 incubator set to 39 oC, with the middle rack removed. The microscope must be 

inserted at an angle to fit. Run the USB cable from the camera to the bottom right 

corner of the glass screen and close it. Plug that cable into a laptop near the incubator. 

 

• Use the SPOT imaging software to capture videos; the advanced version is preferable 

to the basic version because it displays the last captured image in a sequence, 

enabling real time monitoring. Capture images as TIFFs to avoid quality loss. Set the 

frequency and duration of image capture based on the goals of the experiment. Set 

exposure manually to achieve the best possible image quality. Remember that the 

focus through the eyepiece is different than the focus through the camera, so set fine 

focus based on the camera. 

 

• Long image sequences result in immense file sizes, so set the software to store all 

images (even the temporary cache) on an external solid-state drive with at least 50 

GB of free memory. Move or delete runs from the drive after analysis is complete. 
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• Grow AGF within sealable cuvettes from FireflySci. We have several different 

cuvettes with 1-2mm lightpaths, and PTFE plug or threaded cap stoppers. 

 

• Cleaning the cuvettes is somewhat challenging, but soaking in 10% HCl then using a 

needle and syringe to carefully rinse the inside several times with DI water works 

well. Be careful not to scratch the cuvettes with the needles. 

 

• Any typical growth medium or substrate should work. I used Medium B and glucose 

in my work. Plant substrates should work too and could provide interesting results. 

 

• Inoculate the cuvettes in the anaerobic chamber. No zoospore enrichment is 

necessary; a healthy, actively growing culture contains more than enough zoospores 

to inoculate using only a small sample of culture supernatant. 

 

• The cuvettes with stoppers do not lie flat, so it is prudent to create a small housing for 

the cuvette using tape, plastic, or whatever is available to provide a flat, fixed 

lightpath for the cuvette as it sits on the microscope stage. 

 

• Since AGF produce pressure, bubbles are very common, and they ruin timelapse 

videos. This remains the main challenge in capturing live-cell AGF videos using this 

method. 
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• I had small, airtight, translucent boxes made to fit 96-well or other plates for live-cell 

imaging. The acrylic is too thick to image using the 10X objective, but 4X and 20X 

seem to work. You’ll still want to seal the plate using a translucent seal to prevent 

evaporation within the box. Even with 384-well plates, our current 

microscope/camera setup likely only allows imaging of one well at a time. Bubbles 

may not be as much of an issue with this system, but condensation could be. 

 




