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ABSTRACT OF THE DISSERTATION

Computational Frameworks for Functional Subcellular Analysis of Spatial
Transcriptomics Data

by

Clarence K. Mah

Doctor of Philosophy in Bioinformatics & Systems Biology

University of California San Diego, 2023

Professor Hannah Carter, Chair
Professor Gene Yeo, Co-Chair

Emerging genomic technologies that measure spatial information about RNA molecules

promise to shed light on cell biology and function. However, most analytical techniques have

primarily concentrated on spatial relationships at the multicellular and cellular scale without fully

tapping into single-molecule spatial information. To address this gap, I introduce Bento, a toolkit

designed for discerning spatial relationships at the subcellular scale. Bento incorporates a suite

of statistical and machine learning methods within an intuitive Python programming interface,

emphasizing the FAIR data management principles. To showcase its capabilities, I utilized Bento

to study RNA localization changes in doxorubicin-treated cardiomyocytes profiled with spatial

transcriptomics. Our findings reveal that doxorubicin-induced stress leads to the depletion of

xiii



disease-associated genes in the endoplasmic reticulum, along with expression changes previously

associated with doxorubicin-induced cardiotoxicity. This places the endoplasmic reticulum as

a pivotal subcellular structure in the response to doxorubicin treatment. In essence, Bento

emerges as a potent toolkit for the subcellular analysis of spatial transcriptomics data, paving the

way for the discovery of new spatial relationships between subcellular structures and molecules.

Furthermore, I have created a framework tailored to streamline image processing for spatial

transcriptomics data called spotfish. Similar to Bento’s ethos, spotfish is built in alignment with

FAIR principles and leverages open-source standards like the Nextflow workflow language and

Open Microscopy Environment file formats. Collectively, Bento and spotfish empower researchers

to harness spatial transcriptomics technologies, enabling more comprehensive exploration of the

spatial and molecular organization of cells at an unprecedented throughput.
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Introduction

0.1 The importance of RNA localization

The fundamental unit of life is the cell, from unicellular organisms like bacteria to complex

multicellular organisms like humans. While it is convenient to think of cells as amorphous liquid

bags of lipids, proteins and sugars, cells are highly structured and and regulated. The genome

serves as the template for RNAs; they are synthesized then modified by tightly orchestrated

processes such as splicing, localization, translation, and degradation so a cell can function. We

can measure the abundance of a cell’s transcriptome, the complete repertoire of RNA, to loosely

quantify cellular activity. But what do these molecules physically interact with? Where do

these interactions occur in the cell and what causes them to interact? This layer of regulation,

RNA localization, plays an important role in cell processes such as protein synthesis, signaling

pathways and RNA degradation. For example, mRNAs exhibit asymmetric distributions in

developing Drosophila melanogaster embryos, compartment-specific localization in the neurites

of neurons, and colocalization with the actin cytoskeleton in fibroblasts1. The prevalence of RNA

localization across diverse cell types and organisms indicate that it is a highly conserved process.

Abnormal RNA localization has also been associated with many neurodegenerative diseases

such as Huntington’s disease (HD), where defects in axonal mRNA transport and subsequent

translation in human spiny neurons lead to cell death and neurodegeneration2. Despite these

repeated observations, the determinants of localization are not well understood.

0.2 Spatial transcriptomics technology

While we can easily quantify RNA expression with sequencing, RNA imaging techniques

have traditionally been limited to visualizing a handful of species per experiment. However,

2



recent multiplexed imaging technologies have unlocked much higher experimental throughput at

hundreds to thousands of species, enabling nearly transcriptome-scale analysis of spatial RNA

distributions. Single-molecule fluorescent in situ hybridization3 (smFISH) was one of the first

popularized techniques able to image RNAs by species using synthesized complementary DNA

(cDNA) sequences with fluorochromes. The cDNA probes hybridize to RNA targets and emit

light upon excitation, which is captured by microscope cameras as dots of light, less than a

micron wide. By designing specific probes for each RNA species of interest, it is possible to

image multiple unique species at a time in the same cells. In order to scale to target hundreds

to tens of thousands of unique RNA species, recent combinatorial FISH techniques compress

the number of imaging rounds needed to identify each target by designing sets of barcodes that

fluoresce in a specific sequence of images for individual RNA species. For example, MERFISH4

is one technique using a barcoding scheme that allows detection of 10,000 unique RNA targets in

69 rounds of sequential images. At such a scale, we can begin to study the RNA life cycle from

a new perspective, by observing the spatial organization of the transcriptome and uncovering

principles of RNA regulation linked to localization. The set of technologies able to capture the

spatial organization of RNA in cells and tissue is termed spatial transcriptomics.i

0.3 Current analysis trends

As spatial transcriptomics assays reaches the scientific main stream5, there is a growing

need for scalable analysis software and computational infrastructure. The most robust and

enduring tools adhere to FAIR principles6 — Findability, Accessibility, Interoperability, and

Reusability—a set of standards proposed by researchers to maximize reuse of research objects

for advancing scientific discovery. Data management strategies such as version control, software

containerization, and pipeline management are often second priority in academic research.

Consequentially, many academic tools do not see use outside of their initial projects and

collaborations due to low adoption. Mainstream media attention around the “reproducibility

crisis” and high profile cases of academic fraud have demonstrated the clear value of enforcing

iIn addition to imaging-based methods, there exists a host of slide-based methods that are just as prevalent
but not in the scope of this work. In summary these methods use a grid of barcoded wells on slides to capture and
sequence transcripts. The location of each well is used to spatially map transcripts.
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FAIR principles for academic research, both to researchers and for building trust with the average

citizen.

The field of spatial transcriptomics has witnessed an evolution of various tools and plat-

forms, each specializing in different aspects of analysis and data handling. For image processing,

tools like multi-fish 7, mcmicro 8, and MERlin 9 are tailored specifically for certain technologies.

In contrast, starfish/PIPEFISH 10;11 and spotfish (described in this work) attempt to be platform

agnostic and focus on pipeline building infrastructure instead of task-specific algorithms. In terms

of data structures, AnnData 12 specifically supports single-cell data matrices, while SpatialData 13,

SpatialExperiment 14 offer more complex representations, attempting supporting a spectrum of

data modalities and the relationships between them. Single-cell analysis is the de facto approach

to analyze spatial transcriptomics, and tools such as Giotto 15, Squidpy 16, Stereopy 17, stLearn 18,

and Voyager 19 are equipped to handle cell-centric functional analyses. Subcellular analysis, which

delves deeper into spatial interactions at the molecular level, features tools like INSTANT 20,

SpaGNN 21, and FISHfactor 22. Bigfish 23 and Bento 24 in this category are examples of software

packages developed with FAIR principles in mind. Overall, this brief listing highlights the growing

interest in the budding field of spatial transcriptomics and the need for FAIR tools to support

the maturation of the field.
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Chapter 1

Bento: A toolkit for subcellular analysis of
spatial transcriptomics data

1.1 Introduction

The spatial organization of molecules in a cell is essential for performing their functions.

While protein localization25 and disease-associated mislocalization are well appreciated26;27,

the same principles for RNA have begun to emerge. For instance, the spatial and temporal

regulation of RNA play a crucial role in localized cellular processes such as cell migration and cell

division28;29, as well as specialized cell functionalities like synaptic plasticity30–32. Mislocalization

of RNA has been associated with diseases such as Huntington’s disease (HD), where defects in

axonal mRNA transport and subsequent translation in human spiny neurons lead to cell death

and neurodegeneration2;33–35.

The study of subcellular RNA localization necessitates single-molecule measurements.

Since the development of single-molecule fluorescent in situ hybridization (smFISH), recent

advances in multiplexed methods such as MERFISH36, seqFISH+37, HybISS38, and Ex-Seq39

have enabled RNA localization measurements at near transcriptome scales, while maintaining

single-molecule resolution. A number of computational toolkits, such as Squidpy16, stLearn18,

Giotto15, Seurat40, and Scanpy41 enabled the characterization of tissue architecture, cell-cell

interactions, and spatial expression patterns. Despite the single-molecule measurements in spatial

transcriptomics, these analytical approaches are limited to investigating spatial variation at the

multicellular scale and lack the ability to investigate subcellular organization. To further our

understanding of RNA localization and its function in normal and abnormal cell activity, we
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need to expand our analytical capacity to the subcellular scale.

Recent methods such as FISH-quant-v223 and FISHFactor22 identify subcellular patterns

describing the spatial distribution of RNA species, but are unable to annotate more than a single

gene per cell or are limited to analyze at most 20,000 molecules on accessible computing resources.

In contrast, a single spatial transcriptomics experiment measures at least hundreds to thousands

of genes across hundreds of thousands of cells. Additionally, methods such as ClusterMap42 and

Baysor43 highlight the potential for transcript locations alone to inform meaningful domains

such as cell and nuclear regions Using spatial proteomics data, CAMPA44 and Pixie45 utilize

subcellular spatial variation in protein abundance to identify subcellular regions and annotate

pixel-level features.

Building on these promising approaches, we present Bento, an open-source Python toolkit

for scalable analysis of spatial transcriptomics data at the subcellular resolution. Bento ingests

single-molecule resolution data and segmentation masks, utilizing geospatial tools (GeoPandas46,

Rasterio47) for spatial analysis of molecular imaging data, and data science tools including

SciPy48, and Tensorly49 for scalable analysis of high-dimensional feature matrices. Furthermore,

Bento is a member of the Scverse ecosystem, enabling integration with Scanpy41, Squidpy16, and

more than thirty other single-cell omics analysis tools.

1.2 Results

1.2.1 Overview of Bento data infrastructure for subcellular analysis

In order to facilitate a flexible workflow, Bento is generally compatible with molecule-level

resolution spatial transcriptomics data (Fig. 1A), such as datasets produced by MERFISH4,

seqFISH+37, CosMx (NanoString)50, Xenium (10x Genomics)51;52, and Molecular Cartography

(Resolve Biosciences)53. Bento’s workflow takes as input 1. 2D spatial coordinates of transcripts

annotated by gene, and 2. segmentation boundaries (e.g. cell membrane, nuclear membrane, and

any other regions of interest) (Fig. 1B). While 3D molecular coordinates are commonly included,

3D segmentation information is limited to z-stacked 2D segmentation, limiting its usability. If

available, Bento can also handle arbitrary sets of segmentations for other subcellular structures

or regions of interest. These inputs are stored in the AnnData data format12, which links cell
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and gene metadata to standard count matrices, providing compatibility with standard single-cell

RNA-seq quality control and analysis tools in the Scverse ecosystem41. With a data structure for

segmentation boundaries and transcript coordinates in place, Bento can easily compute spatial

statistics and measure spatial phenotypes to build flexible multidimensional feature sets for

exploratory subcellular analysis and utilize these spatial metrics to augment quality control (Fig.

1C).

a

d

b c

AnnData

Molecular 
coordinates

Segmentation 
masks

Geospatial
Statistics

Subcellular
Compartments

Molecular
Gradients

Data
Visualization

0.5 1.0 1.5 2.0
1e5

area | cell

0 2 4
1e4

1e3

area | nucleus

1 2 3 4

aspect_ratio | cell

1.0 1.5 2.0 2.5

aspect_ratio | nucleus

0.0 0.1 0.2 0.3

density | cell

0 1 2 3 4

density | nucleus

Figure 1.1. Workflow and functionality of the Bento toolkit. A. Single-molecule resolved
spatial transcriptomics data from commercial or custom platforms are ingested into Bento where
it is converted to the AnnData format (B.), where it can be manipulated with Bento as well as a
wide ecosystem of single-cell omics tools. C. Geometric statistics are illustrated for the seqFISH+
dataset, including metrics describing cell and nuclear geometries and cell density to assess overall
data quality. D. Bento has a standard interface to perform a wide variety of subcellular analyses.

Bento offers a precise yet flexible palette of novel complementary subcellular analyses

(Fig. 1D). We present RNAforest, a multilabel approach for annotating RNA localization

patterns adapted from FISH-quant v254. We find that many RNAs are spatially distributed

according to gene function. We then implement RNAcoloc, a context-specific approach to quantify

colocalization to characterize how genes colocalize with each other in a compartment-specific

manner. Having established systematic patterning and organization of RNA transcripts, we

demonstrate RNAflux, an unsupervised method for semantic segmentation of subcellular domains.

RNAflux first quantifies subcellular expression gradients at pixel resolution before identifying

consistent subcellular domains via unsupervised clustering. We demonstrate the utility of Bento’s
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tools characterizing subcellular organization in two spatial transcriptomics datasets, a 10k gene

MERFISH dataset of U2-OS cells and a 130 gene seqFISH+ dataset of 3T3 cells. We find that

RNA localization patterns are associated with known gene function, and that genes with similar

localization patterns are functionally related. We also find that genes with similar localization

patterns are co-regulated at the transcriptional level. Finally, we find that RNAflux identifies

subcellular domains that are consistent across cells and are associated with known subcellular

structures.

1.2.2 RNAforest: Utilizing subcellular landmarks to predict RNA subcellu-
lar localization

In computer vision, key points or landmarks are commonly used for tasks like facial

recognition55 and object detection. Analogous to these classical applications, we derive spatial

features using cell and nucleus boundaries as landmarks to predict RNA localization patterns from

spatial summary statistics. Building on the summary statistics used for classifying smFISH data

in FISH-quant v223, RNAforest consists of an ensemble of five binary random forest classifiers

rather than a single multi-classifier model to assign one or more labels. These pattern labels,

adapted from several high-throughput smFISH imaging experiments in HeLa cells56–59, are

broadly applicable to eukaryotic cells: (i) nuclear (contained in the volume of the nucleus), (ii)

cytoplasmic (diffuse throughout the cytoplasm), (iii) nuclear edge (near the inner/outer nuclear

membrane), (iv) cell edge (near the cell membrane), and (v) none (complete spatial randomness).

It is important to note, as was done previously in FISH-quant v223 that because of the 2D

nature of the dataset, RNA that is in truth cytoplasmic but above or below the nucleus will still

appear as though in the nucleus when collapsed in the z-dimension. As we use the FISH-quant

v2 pattern simulation framework, this is accounted for in the training dataset.

We used the FISH-quant v2 simulation framework to generate realistic ground-truth

data58. Each sample is defined as a set of points with coordinates in two dimensions, representing

the set of observed transcripts for a gene in a particular cell. In total, we simulated 2,000

samples per class for a total of 10,000 samples (Methods). We used 80% of the simulated data

for training and held out the remaining 20% for testing. Each sample is encoded by a set of 13

input features, describing characteristics of its spatial point distribution, including proximity
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to cellular compartments and extensions (features 1-3), measures of symmetry about a center

of mass (features 4-6), and measures of dispersion and point density (feature 7-13) (Fig. 2A).

These features are normalized to morphological properties of the cell to control for variability in

cell shape. A detailed description of every feature is described in Supp. Table 1.

We applied RNAforest on the MERFISH dataset measuring 130 genes (low plexity) in

U2-OS cells and high detection efficiency per gene (111 molecules per gene per cell on average),

and on the seqFISH+ dataset measuring 10,000 genes (very high plexity) but lower detection

efficiency (8 molecules per gene per cell on average) (Fig. 2B-C, Supp. Fig. 1). In agreement

with previous work characterizing RNA localization of 411 genes59, we find that genes commonly

exhibit variability in localization across cells. This suggests that heterogeneity in localization

likely generalizes to the entire transcriptome. Of the localization patterns besides “none”,

“nuclear” was the most common (22.1%) in the U2-OS osteosarcoma cells (Fig. 2D & 2F), while

“cell edge” was the most common (15.9%) in the 3T3 fibroblast cells (Fig. 2E & 2G).

In the U2-OS cells, we found many genes to have preferential localization in different

subcellular compartments (Fig. 2H). In agreement with our RNAflux findings, we find genes

known to localize to the nucleus20;60 to be frequently labeled “nucleus” (MALAT1, SOD2) and

genes encoding secreted extracellular proteins36 to be frequently labeled “nuclear edge” (FBN1,

FBN2). As expected, we find genes preferentially “nuclear” and “nuclear edge” localized to

mirror nucleus and endoplasmic reticulum genes found in a 10k genes MERFISH study of U2-OS

cells that included ER staining61 (Supp. Fig. 2, Methods). Leveraging the 3T3 seqFISH+

dataset’s higher plexity, we were able to ask whether genes with similar localization preference are

functionally related. We applied gene set enrichment analysis to gene localization frequencies to

identify enriched gene ontology terms62 (Fig. 2I, Methods). Secretory processes were enriched in

the nucleus and nuclear edge, which may be linked to increased transcription of fibroblast-related

functions. Cell edge enriched pathways consisted of those with the cell membrane as their site

of function (e.g. endocytosis and tight junction suggesting local translation of these genes).

Additionally, the term for cell cycle was significantly enriched in the cytoplasm only. Genes

without strong localization preference (most frequently “none”) were not significantly associated

with any pathways. These genes likely do not undergo active transport and are functionally
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Figure 1.2. Subcellular localization pattern identification with RNAforest. A. Thirteen
spatial summary statistics are computed for every gene-cell pair describing the spatial arrangement
of molecules and boundaries in relation to one another. The features are inputs for RNAforest, a
multilabel ensemble classifier which assigns one or more subcellular localization labels: cell edge,
cytoplasmic, nuclear, nuclear edge, and none. Top 10 genes for each label visualized for each
label other than “none” in B. U2-OS cells, and C. 3T3 cells. D. and E. show the proportion of
measured transcripts assigned to each label. F. and G. show the relative label proportion across
cells for each gene and is colored by the majority label (F and G). H. Top 5 consistent genes for
each label. I. ssGEA identifies enrichment of GO cellular component domains for each label in
the 3T3 cell dataset.
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independent of local translation. RNAforest gives a user a facile method for annotating RNA

localization patterns and quantifying heterogeneity in a transcriptome-wide manner independent

of RNA abundance. Beyond known RNA localizations, we find that transcript location is

generally associated with known gene function, alluding to the systematic spatial regulation

of RNA transport. We foresee RNAforest will be a valuable addition to characterize RNA

localization across diverse spatial transcriptomics datasets.

1.2.3 RNAcoloc: An approach for context-specific RNA colocalization

In geospatial information processing, a fundamental feature that is often gleaned from

large datasets is the colocation of objects (e.g. gleaning socialization metrics from cell phone

colocation data in Singapore63). Colocation is similarly valuable in understanding co-translation

and interaction networks of genes in a biological context64. Recent spatial transcriptomics

approaches have used a number of colocalization metrics from the geographic information systems

and ecology fields e.g. the bivariate versions of the Ripley’s K function (also known as cross-k-

function)65, Moran’s I66, and the join count statistic67. These metrics are designed to measure

spatial associations between two populations i.e. gene A transcripts and gene B transcripts.

However, it is more appropriate to think of all transcripts in a single cell from a single population;

after all, RNA transcription and localization is not completely stochastic. We have shown that

the subcellular distribution of RNA is highly structured with RNAforest. As such, we developed

RNAcoloc, an approach that combines the Colocation Quotient (CLQ)68 metric and tensor

decomposition for context-specific RNA colocalization (Methods). The CLQ is a colocalization

statistic that is capable of accounting for the biophysical properties of RNA spatial distributions.

First, the CLQ considers how clustered the overall RNA population is in a cell and measures

whether specific pairs of genes are more clustered than expected given the spatial pattern of the

overall population. Second, the CLQ is inherently asymmetric, and captures the direction of

attraction i.e. the attraction of gene A to gene B is not the same as the attraction of gene B

to gene A. This is most common when gene A and gene B have very different expression levels,

which is prevalent due to overdispersion in gene expression data.

RNAcoloc calculates CLQ scores for each gene per cell in a compartment-specific manner,
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such that each sample has 2 scores, a nucleus and cytoplasm CLQ score. An initial comparison

of global colocalization between nuclear and cytoplasmic fractions unsurprisingly found that

transcripts from the same gene tend to cluster more tightly with themselves than with transcripts

from other genes (Fig. 3B). Additionally, self-colocalization is significantly stronger in the

cytoplasm than in the nucleus. In conjunction with our findings from RNAforest analysis that

genes of the same localization pattern tend to have similar functions, this suggests that the RNAs

are more tightly spatially regulated once exported from the nucleus.

By calculating CLQ scores for every gene-gene pair across compartments, RNAcoloc

constructs a tensor of shape P x C x S where P, C, and S represent the number of gene-gene

pairs, cells, and compartments, respectively (Fig. 3A, Methods).

RNAcoloc then applies tensor decomposition — specifically, non-negative parallel factor

analysis — a data-driven, unsupervised approach for discovering substructure in high-dimensional

data49;69 to decompose the U2-OS dataset colocalization tensor into k = 4 “colocalization factors”.

The number of factors was determined using the elbow method heuristic, optimizing for the

root mean squared error (RMSE) reconstruction loss (Methods). Unlike matrix dimensionality

reduction methods, such as PCA, the order of the components (factors) is unassociated with

the amount of variance explained. Each of the 4 colocalization factors is composed of 3 loading

vectors, which correspond to the compartments, cells and gene pairs. Higher values denote a

stronger association with that factor. Crucially for interpretation, factors derived from tensor

decomposition are not mutually exclusive and share overlapping sets of associated compartments,

cells, and gene pairs.

These trends are broken down into unique combinations of colocalization behavior (Fig.

3C). Factor 0 captures gene pairs in a subpopulation of cells that tend to colocalize across the

entire cell, with pairs including SLC38A1 showing the strongest signal. Factor 3 describes gene

pairs in mostly the same cell subpopulation, that colocalize specifically in the cytoplasm. Pairs

including PIK3CA dominate this behavior. Interestingly, PIK3CA and DYNC1H1 transcripts

colocalize cytoplasmically. While little is known about their RNA interactions, PIK3CA and

other members of the PI3K pathway are known regulators of mitotic organization, including the

regulation of dynein and dynactin motor proteins. DYNC1H1 specifically encodes cytoplasmic
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dynein, a motor protein critical for spindle formation and chromosomal segregation in mitosis70.

In the complementary cell population, Factors 1 and 2 highlight colocalized gene pairs in the

nucleus and cytoplasm respectively. Notably, Factor 2 associated cells have high loadings for

MALAT1 and CNR2 in the cytoplasm and low loadings in the nucleus. Even though MALAT1 is

abundantly localized to the nucleus, this demonstrates that the CLQ score identifies gene pairs

colocalizing more than expected given the overabundance of MALAT1 relative to CNR2, whereas

other approaches seem confounded by large differences in expression20.

We demonstrate the ability of RNAcoloc to quantify compartment-specific gene-pair

colocation by exploring cytoplasmic vs. nuclear colocalization. As we found separately with

RNAforest, RNAcoloc analysis finds evidence that RNA transport is spatially regulated, especially

after nuclear export. We highlight several examples of colocalization suggesting how RNA

localization allows the same gene to have multiple functions in a spatially-dependent fashion i.e.

depending on its molecular neighbors and local environment71;72. We foresee RNAcoloc will be

increasingly relevant as many spatial technologies are beginning to image proteins along with

RNA, which can be used to delineate more granular compartments, such as cell organelles or

distinct regions e.g. neuron cell bodies vs dendrites.

1.2.4 RNAflux: Unsupervised semantic segmentation of subcellular
domains in single cells

To build on RNAforest, we overcame the restricted number of localization patterns defined

by the supervised method by framing RNA localization as an unsupervised embedding problem.

RNAflux looks at local neighborhoods within the space of a cell and builds a normalized gene

composition per neighborhood. Differences in neighborhood compositions can be leveraged to

identify distinct subcellular domains in a manner that is entirely unsupervised and independent

of cell geometry.

We applied this embedding procedure to compute a gene composition vector for every

pixel in 2D coordinate space, generating a spatial composition gradient across entire cells (Fig.

4A, Methods).

Applied to a MERFISH dataset with a target panel of 130 genes across over 1153 U2-OS

cells, we demonstrate that RNAflux embeddings can detect transcriptionally distinct subcellular
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domains. Performing dimensional reduction of the embeddings showed that the top sources of

variation spatially correspond to the nucleus, the nuclear periphery, and cytoplasmic regions

consistently across cells (Fig. 4B, Methods) confirming that RNAflux measures intracellular

transcriptional variation, as opposed to intercellular variation. To delineate compositionally

similar domains in a data-driven manner, we cluster pixel embeddings using self-organizing

maps (SOMs), effectively performing unsupervised semantic segmentation (Methods). We denote

the resulting clusters as “fluxmap domains”. We found that this assigned pixels to 5 fluxmap

domains, consistently highlighting spatial regions across every cell (e.g. fluxmap 2 is always

nuclear while the remaining domains constitute the cytoplasm) (Fig. 4B). By considering the

spatial distribution of molecules across fluxmap domains, we can quantify the composition of

molecules for each gene across fluxmaps (Fig. 4C) e.g. nuclear-localized MALAT120;60.

Finally, we sought to characterize the fluxmap domains with known information about

RNA localization. We used data from a previous study that measured gene expression at

“distinct subcellular locales” via APEX-seq, a technique for proximity labeling and sequencing

of RNA73. Of the 3288 genes differentially enriched to one or more locales, 63 overlapped with

the 130 MERFISH genes. The location enrichment score for each pixel is calculated by taking

the weighted sum of its RNAflux embedding and the measured relative enrichment i.e. log

fold change measured by APEX-seq loadings for a given organelle-specific geneset (Methods).

Visualizing each pixel’s location-specific enrichment scores from the APEX-seq dataset highlights

the subcellular localization of these compartments, including the cytosol, nucleus, nucleolus,

nuclear pore, nuclear lamina, endoplasmic reticulum lumen (ER lumen), ER membrane (ERM),

and the outer mitochondrial membrane (OMM) (Fig. 4D). We find the nuclear compartments

have high scores in domain 2, while the cytoplasm scores rank highest in domains 4 and 5. Both

the ERM and OMM scores are the strongest in domain 1 (Fig. 4E).

In summary, RNAflux finds distinct subcellular domains with consistent spatial organiza-

tion and local gene composition. As an unsupervised method, RNAflux can be applied to any

cell type for inferring subcellular domains from transcript locations and functionally annotated

with biological enrichment analysis.
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Local neighborhoods of a fixed radius are arrayed across a cell and a normalized gene composition
is computed for each pixel coordinate, producing an RNAflux embedding. The first three principal
components of the RNAflux embedding are visualized for U2-OS cells coloring RGB values by
PC1, PC2, and PC3 values respectively for each pixel. Fluxmap domains are computed from
each RNAflux embedding to create semantic segmentation masks of each subcellular domain. B.
The left panel shows a field of view of U2-OS cells, dots denoting individual molecules colored by
gene species, nuclei and cell boundaries outlined in white. For the same field of view of cells, the
center panel shows RNAflux embeddings and the right panel shows fluxmap domains. C. The
scatter plot shows how the composition of each gene is distributed across fluxmap domains. The
position of each point denotes the relative bias of a given gene’s composition across fluxmaps.
D. Heatmap showing the fraction of pixels with a positive enrichment value for each APEX-seq
location for each fluxmap domain. E-I. The most highly enriched location is shown for each
fluxmap domain. Domain boundaries are denoted by white lines within each cell.
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1.3 Discussion

Bento seeks to interrogate biology via its “subcellular first” approach to spatial analysis,

complementary to “cell-type or tissue first” spatial analysis methods. The toolkit enables

quantitative, reproducible, and accessible analysis agnostic of spatial technology platforms

in a standardized framework. We implement three novel methods to interrogate subcellular

RNA organization: RNAforest for supervised annotation of localization patterns, RNAcoloc for

compartment-aware colocalization analysis, and RNAflux for identifying transcriptionally distinct

subcellular domains. We showed that with RNAflux, we were able to quantify RNA localization

in a variety of contexts, including domain-specific gene localization, drug-induced changes in

localization, and cell type specific localization. With both RNAflux and RNAforest, we find that

subcellular mRNA localization reflects gene function. With RNAcoloc, we explore the use of

CLQ scores to quantify pairwise gene colocalization with the context of asymmetric associations.

From these results, we found three main factors to limit the effectiveness of subcellular-

resolution analysis: molecule density, segmentation quality, and target panel composition. In

particular, RNAflux becomes uninformative if too few molecules are detected per cell or if the

number of molecules per gene is too sparse. We found that datasets with higher density i.e.

molecules per micrometer2 are less noisy and inform more coherent gradients and domains, such

as the U2-OS dataset. In contrast, RNAforest performs reliably beyond a minimum of 5-10

molecules per sample, but is sensitive to accurate segmentation for calculating cell morphology-

dependent features. The 3T3 cells were manually segmented and the U2-OS cells had relatively

accurate segmentation, and were therefore amenable to applying RNAforest. In the case of

RNAcoloc, the limiting factor to identify relevant biology is target panel composition. The

current focus of most target panels typically include cell type markers and highly expressed genes,

whereas it would be more informative to identify colocalizing members of protein complexes,

functional pathways, or ligand-receptor pairs.

A dimensional limitation of Bento is its current inability to process three-dimensional

spatial transcriptomic data. While some commercially available spatial transcriptomic methods

yield RNA molecular coordinates in 3D, the nuclear and cell segmentation is inevitably still
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two dimensional making it difficult to interpret z-dimensional positions lacking the context of

cellular geometry in 3D. However, the algorithms behind RNAforest, RNAcoloc, RNAflux, and

the plethora of feature calculation functions in Bento are inherently extensible to leveraging three

dimensionality. When three dimensional cell segmentation improves, we intend to extend Bento

to support three dimensional analysis.

1.4 Conclusion

Conventionally, RNA is treated as an intermediary vehicle encoding genomic information

for protein synthesis. We began our investigation of RNA localization with the hope of under-

standing how the spatial organization of RNA functions as a mechanism for post-transcriptional

regulation. However, RNAflux conceptually introduces using RNA molecular coordinates as

a latent layer of information encoding cellular space-time. Here, we used that latent layer of

information to identify subcellular domains. As spatial omic technologies improve to capture

more and more information, the potential applications of such latent embeddings will grow as well.

Indeed at the tissue level, this concept is already being leveraged with a recent tool, TensionMap,

using RNA localization information to predict mechanical tension74. As applications for spatial

transcriptomics grow in popularity and complexity, we hope Bento is a platform for the tools

needed to quantify the complex molecular dynamics governing normal and abnormal cellular

processes.

1.5 Methods

1.5.1 MERFISH and seqFISH+ data preprocessing

For the seqFISH+ dataset, we limited the scope of our analysis to the set of genes for

which at least 10 molecules were detected in at least one cell. This helped reduce sparsity in

the data, resulting in 3726 genes remaining. Because pattern classification requires nuclear

segmentation masks, we removed all cells lacking annotated nuclei for a remainder of 179 cells.

Because the MERFISH data had a much higher number of molecules detected per gene, no gene

needed to be removed. Again, cells without annotated nuclei were removed, leaving 1022 cells

for downstream analysis.
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1.5.2 RNAforest: model selection and training

We evaluated 4 base models for the multilabel classifier including random forests (RF),

support vector machines (SVM), feed-forward fully-connected neural networks (NN), and con-

volutional neural networks (CNN). While all other models use the 13 spatial features for input

(Supp. Table 1), the CNN takes 64x64 image representations of each sample as input. Each

multilabel classifier consists of 5 binary classifiers with the same base model. We used the

labeled 10,000 simulated samples for training, stratifying 80% of the simulated data for training

and holding out the remaining 20% for testing. To select the best hyperparameters for each

multilabel classifier, we sampled from a fixed hyperparameter space with the Tree-structured

Parzen Estimator algorithm, and evaluated performance with 5-fold cross validation (Supp. Table

3). We retrained the final model (random forest base model) on all training data with the best

performing set of hyperparameters (Supp. Fig. 1E).

1.5.3 RNAforest: Image rasterization of molecules and segmentation masks
for CNN

To generate an image for a given sample, point coordinates, the cell segmentation mask

and nuclear segmentation mask are used. The area of the cell is tiled as a 64 x 64 grid, where

each bin corresponds to a pixel in the final image. Values are stored in a single channel to render

a grayscale image. Pixels inside the cell are encoded as 20, inside the nucleus encoded as 40.

Bins with molecules are encoded as (40 + 20 x n) where n is the number of molecules. Finally

values are divided by 255 and capped to be between 0 and 1.

1.5.4 RNAforest: Simulating training data

We trained a multilabel classifier to assign each gene in every cell labels from five categories:

(i) nuclear (contained in the volume of the nucleus), (ii) cytoplasmic (diffuse throughout the

cytoplasm), (iii) nuclear edge (near the inner/outer nuclear membrane), (iv) cell edge (near the

cell membrane), and (v) none (complete spatial randomness). These categories are a consolidation

of those observed in several high-throughput smFISH imaging experiments in HeLa cells56–59.

We used the FISH-quant simulation framework to generate realistic ground-truth images using

empirically derived parameters from the mentioned high-throughput smFISH imaging experiments
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in HeLa cells58. In total, we simulate 2,000 samples per class for a total of 10,000 training

samples.

1. Cell shape: Cell morphology varies widely across cell types and for classifier generalizability,

it is important to include many different morphologies in the training set. We use a catalog

of cell shapes for over 300 cells from smFISH images in HeLa cells that captures nucleus

and cell membrane shape58. Cell shapes were obtained by cell segmentation with CellMask

and nuclear segmentation was obtained from DAPI staining.

2. mRNA abundance: We simulated mRNA abundance at three different expression levels

(40, 100, and 200 mRNA per average sized cell) with a Poisson noise term. Consequently,

total mRNA abundance per cell was between 5 and 300 transcripts.

3. Localization pattern: We focused on 5 possible 2D localization patterns, including cell

edge, cytoplasmic, none, nuclear, and nuclear edge. Each pattern was further evaluated

at 3 different degrees - weak, moderate, and strong. Moderate corresponds to a pattern

typically observed in a cell, whereas weak is close to spatially random. These 5 classes aim

to capture biologically relevant behavior generalizable to most cell types; there is room

for additional classes describing other biologically relevant localization patterns so long as

they can be accurately modeled.

4. RNAforest: Manual annotation of validation data

(a) Using 3 individual annotators, we annotated the same 600 samples across both datasets,

keeping samples with 2 or more annotator agreements as true annotations, resulting in

165 annotated seqFISH+ samples and 238 annotated MERFISH samples (403 total).

(b) We used Cohen’s kappa coefficient75 to calculate agreement between pairs of annotators

for each label yielding an overall coefficient of 0.602.

(c) We found that pairwise agreement between annotators across labels was fairly con-

sistent ranging between 0.588 and 0.628, while label-specific agreement varied more,

ranging between 0.45 and 0.72 (Supp. Table 4).
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1.5.5 RNAforest: Functional enrichment of gene pattern distributions

For enrichment of compartment-specific expression from Xia et al 201961, scores are

calculated by taking the weighted sum of gene pattern frequencies and published compart-

ment log fold-change values (Supp. Fig. 2). The Benjamini-Hochberg correction was used

to correct p-values for multiple hypothesis testing. For the seqFISH+ dataset, we performed

single-sample Gene Set Enrichment Analysis76;77 on gene pattern frequencies to compute en-

richment scores (Fig. 2I). ssGSEA was performed with the GSEApy Python package and the

“GO Cellular Component 2021” gene set library curated by Enrichr78. Gene sets with a minimum

size of 50 and a maximum size of 500 were analyzed.

1.5.6 Colocation quotient for RNA colocalization analysis

Pairwise colocalization of genes was determined for each compartment of every cell

separately. In this case, each cell was divided into compartments, cytoplasm and nucleus. The

colocation quotient (CLQ) was calculated for every pair of genes A and B. The CLQ is defined

as an odds ratio of the observed to expected proportion of B transcripts among neighbors of A

for a fixed radius r; it is formulated as:

CLQA→B =
CA→B/NA

NA
B /N − 1

Here CA→B denotes the number of A transcripts of which B transcripts are considered a

neighbor. NA denotes the total number of A transcripts, while NB stands for the total number

of B transcripts. In the case that A = B, NB equals the total number of B transcripts minus one.

N denotes the total number of transcripts in the cell. Following statistical recommendations from

the original formulation of the colocation quotient (CLQ), genes with fewer than 10 transcripts

were not considered to reduce sparsity and improve testing power68.

1.5.7 Tensor decomposition for compartment-specific colocalization

For tensor decomposition, we employed non-negative parallel factor analysis as imple-

mented in Tensorly49, which seeks to represent our dataset tensor X in a lower dimensional space

of R signatures by decomposing X as the sum of R rank-one 3-way tensors. Each of these tensors
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is described as the outer product of 3 vectors, xr, yr and zr. The collection of vectors across R

signatures we denote as xr (compartment loadings), yr (cell loadings) and zr (gene pair loadings)

respectively. We find the optimal rank-R decomposition of X by minimizing reconstruction error

as a function of the number of signatures R and use the elbow function heuristic to choose the

best-fit across the range of 2-12 factors. Missing values are ignored when calculating the loss.

X =
R∑

r=1

xryrzr

1.5.8 RNAflux: Unsupervised spatial embedding and subcellular domain
quantization

To generate RNAflux embeddings, first a set of query coordinates are generated tiling

across the cell area on a uniform grid. This effectively downsamples the original data units (pixels)

resulting in much fewer samples to compute embeddings. For the MERFISH U2-OS dataset, a

step size of 10 data units (pixels) was used to generate the uniform grid. Each query point is

assigned an expression vector, counting the abundance of each gene within a fixed radius of 40

and 50 data units respectively. Each expression vector is normalized to sum to one, converting

the expression vector to a composition vector. Similarly, the cell composition vector is calculated

by normalizing the total cell expression to sum to one. The RNAflux embedding at a given query

coordinate is defined as the difference between the query composition and its corresponding cell

composition, divided by the standard deviation of each feature within each cell.

The RNAflux embedding serves as an interpretable spatial gene embedding that quantifies

highly local fluctuations in gene composition. Dimensional reduction of the embeddings is

performed using truncated singular value decomposition (SVD). Truncated SVD was chosen over

PCA to better handle large but sparse data. Embeddings were reduced to the top 10 components.

To assign domains, self-organizing maps (SOM) were used for low-rank quantization of query

embeddings. In analysis of the MERFISH dataset, SOMs of size 1 x k were fit across a range of 2

to 12; the best model was determined using the elbow method heuristic to evaluate quantization

error. Similarly, domains were determined for the cardiomyocytes spatial transcriptomics data

by fitting the vehicle and treatment samples separately, for k across a range of 2 to 8. The
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elbow method heuristic determined an optimal k of 6; subsequently a k of 4 was used for further

analysis for ease of interpretation.

1.5.9 RNAflux: Visualizing spatial embeddings

The top 3 principal components of the RNAflux embeddings are transformed to map to

red, green and blue values respectively. Embeddings are first quantile normalized and scaled to a

minimum of 0.1 and 0.9 to avoid mapping extreme quantiles to white and black. These values

are then used for red, green, and blue color channels. To map the downsampled grid back to the

original data units, linear interpolation was used to rescale the computed color values and fill the

space between the uniform grid points.

1.5.10 RNAflux: Enrichment of locale-specific transcriptomes derived by
APEX-seq

The enrichment score for each pixel is calculated by first taking the weighted sum

of its RNAflux embedding and locale-specific log fold-change values as implemented by the

decoupler tool79. Scores for pixels within a given cell are normalized against a null distribution

constructed via random permutations of the input embeddings, to produce z-scaled enrichment

scores. Fluxmap domain enrichment scores are simply obtained by taking the mean score of all

pixels within the boundary of each domain. Fluxmap domain overlaps are computed by counting

the fraction of pixels within the boundary of each domain with a positive enrichment score.

1.5.11 MERFISH of U2-OS cells

MERFISH sample preparation. MERFISH measurements of 130 genes with five non-

targeting blank controls was done as previously described, using the published encoding60 and

readout probes80. Briefly, U2-OS cells were cultured on 40 mm #1.5 coverslips that are silanized

and poly-L-lysine coated60 and subsequently fixed in 4% (vol/vol) paraformaldehyde in 1x PBS

for 15 minutes at room temperature. Cells were then permeabilized in 0.5% Triton X-100 for 10

minutes at room temperature and washed in 1x PBS containing Murine RNase Inhibitor (NEB

M0314S). Cells were preincubated with hybridization wash buffer (30% (vol/vol) formamide in 2x

SSC) for ten minutes at room temperature with gentle shaking. After preincubation, the coverslip
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was moved to a fresh 60 mm petri dish and residual hybridization wash buffer was removed with

a Kimwipe lab tissue. In the new dish, 50 uL of encoding probe hybridization buffer (2X SSC),

30% (vol/vol) formamide, 10% (wt/vol) dextran sulfate, 1 mg ml-1 yeast tRNA, and a total

concentration of 5 uM encoding probes and 1 uM of anchor probe: a 15-nt sequence of alternating

dT and thymidine-locked nucleic acid (dT+) with a 5’-acrydite modification (Integrated DNA

Technologies). The sample was placed in a humidified 37C oven for 36 to 48 hours then washed

with 30% (vol/vol) formamide in 2X SSC for 20 minutes at 37C, 20 minutes at room temperature.

Samples were post-fixed with 4% (vol/vol) paraformaldehyde in 2X SSC and washed with 2X

SSC with murine RNase inhibitor for five minutes. The samples werZe finally stained with a

Alexa 488-conjugated anchor probe-readout oligo (Integrated DNA Technologies) and DAPI

solution at 1 ug/ml.

MERFISH imaging. MERFISH measurements were conducted on a home-built system

as described in Huang et al. 202180.

MERFISH spot detection. Individual RNA molecules were decoded in MERFISH images

using MERlin v0.1.69. Images were aligned across hybridization rounds by maximizing phase

cross-correlation on the fiducial bead channel to adjust for drift in the position of the stage

from round to round. Background was reduced by applying a high-pass filter and decoding

was then performed per-pixel. For each pixel, a vector was constructed of the 16 brightness

values from each of the 16 rounds of imaging. These vectors were then L2 normalized and

their euclidean distances to each of the L2 normalized barcodes from MERFISH codebook was

calculated. Pixels were assigned to the gene whose barcode they were closest to, unless the closest

distance was greater than 0.512, in which case the pixel was not assigned a gene. Adjacent pixels

assigned to the same gene were combined into a single RNA molecule. Molecules were filtered to

remove potential false positives by comparing the mean brightness, pixel size, and distance to

the closest barcode of molecules assigned to blank barcodes to those assigned to genes to achieve

an estimated misidentification rate of 5%. The exact position of each molecule was calculated as

the median position of all pixels consisting of the molecule.

MERFISH image segmentation. Cellpose v1.0.281 was used to perform image segmentation

to determine the boundaries of cells and nuclei. The nuclei boundaries were determined by
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running Cellpose with the ‘nuclei’ model using default parameters on the DAPI stain channel

of the pre-hybridization images. Cytoplasm boundaries were segmented with the ‘cyto’ model

and default parameters using the polyT stain channel. RNA molecules identified by MERlin

were assigned to cells and nuclei by applying these segmentation masks to the positions of the

molecules.

1.5.12 Data Availability

Preprocessed and raw datasets have been deposited at

https://doi.org/10.6084/m9.figshare.c.6564043.v1 and are accessible through the Bento Python

package. These include the seqFISH+37, MERFISH, and Molecular Cartography datasets. Raw

MERFISH and Molecular Cartography data is available upon request.

1.5.13 Code Availability

The source code for Bento is available on the GitHub repository:

https://github.com/ckmah/bento-tools. Analysis code for generating figures can be found at:

https://github.com/ckmah/bento-manuscript. Documentation for Bento can be found here:

http://bento-tools.readthedocs.io/.
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Chapter 2

Doxorubicin-induced stress in cardiomy-
ocytes results in RNA localization changes

2.1 Introduction

Doxorubicin (DOX) was once one of the most effective broad-spectrum anti-cancer

anthracycline antibiotics82;83 with particular efficacy against solid malignancies such as lung and

breast cancer, as well as hematologic neoplasia84;85. However, DOX’s propensity to cause cardiac

damage in patients has led to significant limitations in its clinical use86. There are two known

mechanisms of action by which DOX acts in cells87: generation of reactive oxygen species via

potential interactions with oxidation reaction pathways which then damage lipid membranes,

disrupt mitochondrial function, induce DNA damage and triggers apoptotic pathways; and direct

interaction with DNA topoisomerase II to induce single-stranded and double-stranded breaks.

The exact mechanism by which DOX induces heart failure is unclear, but significant evidence

suggests cardiomyocyte injury driven by oxidative stress as a major factor84;88–91. Specifically,

DOX causes stress and dysfunction in multiple cellular compartments in cardiomyocytes such

as mitochondria, Sarco/endoplasmic reticulum (SER), deficiencies in calcium signaling, and

lipid degradation at the cellular membrane92. There is growing evidence that DOX not only

interacts with DNA, but also with some affinity to double-stranded RNAs93, rRNAs94 and RNA

aptamers95.

Having established Bento’s utility to characterize RNA localization in cell lines (see

Chapter 1), we applied Bento to doxorubicin-treated and untreated cardiomyocytes, a cell

line model for these cardiomyopathies. We performed single molecule spatial transcriptomics
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(Molecular Cartography) on doxorubicin-treated and untreated cardiomyocytes to measure

consequential differences across multiple classes of phenotypes in a single experiment: RNA

localization, gene expression, cell morphology.

2.2 Results

We designed a panel of 100 genes to profile with spatial transcriptomics, capturing

pathways for cardiomyocyte health and function24. These include genes involved in cardiomyocyte

contraction and conduction; cellular cytoskeletal pathways including myofibril assembly and

cytoskeleton components; and also mitochondrial function to capture perturbations to oxidative

metabolism. We reasoned that we could recapitulate known dysfunction of subcellular domains

in cardiomyocytes upon DOX stress and measure novel RNA localization phenotypes that are

not explained by expression changes alone.

We utilized a chemically-defined protocol to differentiate human induced pluripotent

stem cells (iPSCs) into beating cardiomyocytes and treated them with either DMSO (vehicle) or

2.5 uM DOX for twelve hours, 24 hours, or 48 hours before fixation (Methods). Each treatment

had 2 replicates. Single molecule spatial transcriptomes were measured by Resolve Bioscience

using Molecular Cartography. The resulting data was segmented using ClusterMap42 for cell

boundaries and Cellpose81 for nuclei boundaries. Non-myocytes were filtered out using SLC8A1

as a canonical marker for cardiomyocytes (Methods, Supp. Fig. 1A).

Comparing vehicle and DOX treated cardiomyocytes, we found vehicles cells to cluster

distinctly from all DOX treated cells (Fig. 1) and DOX treated cells forming a duration-

dependent expression gradient from 12-48 hours. Notably, transcript density i.e. transcript count

dividedby cell area, decreases with treatment duration. Differential expression analysis of each

timepoint relative to vehicle indicate that DOX induces cellular stress as expected. NPPA and

NPPB are important biomarkers in clinical cardiology that become upregulated during cardiac

stress96;97. Elevated levels of NPPB have been used to diagnose patients with doxorubicin

induced cardiotoxicity and elevated levels of NPPB also correlate with severity of heart failure.

An increase in NPPA and NPPB levels upon Doxorubicin exposure at 24 and 48 hours indicates

that the cardiomyocytes have transitioned to a state of cellular stress (Fig. 2A,B).
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Figure 2.1. Single-cell expression of doxorubicin-treated caradiomyocytes time points
A. UMAP projection of single-cell expression of vehicle and doxorubicin-treated cardiomyocytes
across vehicle, 12 hour, 24 hour, and 48 hour time points. Two replicates per time point. B.
UMAP projection of single-cells colored by log-scaled total RNA expression and C. transcript
density (transcript count divided by cell area).
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We then restricted our analysis to focus on the 12 hour treatment and vehicle for spatial

analyses via Bento. Poor segmentation quality for the other timepoints limited the precision

and accuracy of 2-dimensional spatial analysis algorithms. We identified subcellular domains in

vehicle and 12 hour DOX treated cardiomyocytes using RNAflux, clustering the domains into

four fluxmap domains (Fig. 2C). Enrichment of location-specific gene expression aligned domains

to the nucleus (nuclear pore, nucleolus, and nucleus), ERM and OMM, ER lumen, and cytosol

respectively (Fig. 2C & D, Supp. Fig. 1C). Comparing the gene composition in each domain, we

observe an overall localization bias towards both the nucleus and ERM/OMM in vehicle treated

cells (**Fig. 2E top**), in agreement to prior poly(A) smFISH studies98. However, RNA in the

DOX treated cardiomyocytes demonstrated a shift in average RNA localization away from the

ERM/OMM and towards the nucleus (**Fig. 2C bottom**). There is evidence that 90% of genes

have a half life of less than 260 minutes99, far less than the 12 hour DOX treatment, indicating

that the shift in RNA localization is likely due to reduced nuclear export of newly synthesized

RNA from the nucleus to the ERM/OMM. Indeed, even low concentrations of DOX have been

demonstrated to alter structural fibrous proteins as well as mitochondrial depolarization and

fragmentation100. Of particular note, the RNA binding protein RBM20 – a critical regulator of

mRNA splicing of genes encoding key structural proteins associated with cardiac development

and function – had a pronounced depletion of RNA transcripts outside of the nucleus upon

DOX treatment (Fig. 2F). With further validation, this may indicate nuclear retention and

or degradation of nuclear exported RBM20 mRNA as a potential mechanism of DOX induced

cardiomyopathy. Similarly, we found the mRNA of calcium voltage-gated channel subunit

CACNB2 to also deplete outside of the nucleus (Fig. 2G). The loss of CACNB2 translation

outside of the nucleus may impact calcium signaling crucial to cardiomyocyte function101.

2.3 Discussion

In this study of DOX-induced stress in cardiomyocytes, we utilized single-molecule spatial

transcriptomics to identify changes in both gene expression and subcellular RNA localization

resulting from DOX treatment. Of particular interest was the RNA binding protein RBM20,

whose extranuclear depletion in mRNA represents a potential target for therapeutic intervention.
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Figure 2.2. Subcellular RNA localization changes upon Doxorubicin treatment in
iPSC-derived cardiomyocytes A. Cardiomyocytes derived from human iPSCs were treated
with DMSO or 2.5 uM DOX for 12 hours. The localizations of 100 genes relevant to cardiomyocyte
health and function were measured using Molecular Cartography. Cell boundaries were determined
using ClusterMap and nuclei were segmented using Cellpose. B. Top 10 upregulated and
downregulated genes in vehicle versus treatment. C. APEX-seq location-specific gene enrichment
of fluxmap domains for the cytosol, endoplasmic reticulum membrane (ERM), endoplasmic
reticulum lumen (ER Lumen), nuclear lamina, nucleus, nucleolus, nuclear pore and outer
mitochondrial matrix (OMM). D. Fluxmap domains visualized for a representative field of view
of cardiomyocytes for vehicle and treatment respectively highlighting cellular nuclei, ERM/OMM,
ER Lumen, and cytosol. E. RNAflux fluxmap enrichment of each gene averaged across vehicle
and treatment cardiomyocytes captures changes in subcellular RNA localization. Visualization
of RBM20 F. and CACNB2 G. confirms the depletion of transcripts from the perinuclear and
cytosolic compartments of cardiomyocytes upon DOX treatment.
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This localization behavior may be an early consequence leading to the functional mis-splicing of

RBM20’s cardiomyopathy-associated targets. Sequestration of the mRNA may be an indirect

mechanism of down-regulation. The ERM-associated fluxmap seems to be relatively larger in

DOX treated cells compared to vehicle, suggesting that remodeling of organelles may drive

movement of molecules or vice versa.

We found that the 2D spatial resolution of molecular coordinates and segmentation

data to limit the clarity of our analyses. While the Clustermap based cell segmentation was

sufficient to approximate subcellular domains with RNAflux in the vehicle and 12 hour treatment

samples, many regions of the 24 hour and 48 hour treatment samples have denser cells that sit

on top of one another due to tighter cell seeding densities. As a result, molecular coordinates

and segmentations were flattened to two dimensions, making it impossible to disambiguate

expression patterns from overlapping cells. We foresee that better resolution and 3D compatible

segmentation algorithms will alleviate this in the future. This is likely required for analysis to

achieve subcellular resolution in more complex systems e.g. tissue slices and organoids.

Due to the targeted nature of the particular spatial transcriptomics platform, the 100

gene panel is biased for genes annotated for cardiac function, limiting discovery of novel targets.

Expanding the panel size would allow us to capture a better picture of spatial perturbations to

the transcriptomic landscape. Additionally, generalizing spatial analyses in Bento from 2D to 3D

would enable finer segmentation of subcellular compartments and cells, in turn improving RNA

localization analysis. Overcoming these challenges will be useful not only for enabling spatial

analysis to other cell lines and conditions, but also to even more heterogeneous systems such as

tissue.

2.4 Methods

2.4.1 Preprocessing cardiomyocytes datasets

Single-cell expression matrices of both vehicle replicates and both DOX treatment samples

were concatenated as a single expression matrix. Cells were projected into two dimensions with

UMAP dimensional reduction. No significant batch effects were detected. Leiden clustering

was performed at resolution=0.5 to isolate and filter out a non-myocyte population depleted
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in SLC8A1 expression (Supp. Fig. 1A). All described preprocessing steps were performed in

Scanpy41.

2.4.2 RNAflux: Unsupervised spatial embedding and subcellular domain
quantization

For the iPSC-derived cardiomyocytes, a step size of 5 data units was used to compute

RNAflux embeddings. Visualization and enrichment of locale-specific transcriptomes derived by

APEX-seq were performed as described in Chapter 1.

2.4.3 Molecular Cartography

Cultured cell processing. After Doxorubicin treatment, cardiomyocytes were washed

with PBS (1x) twice and fixed in Methanol (-20°C) for 10 min. After fixation, Methanol was

aspirated and cells were dried and stored at -80°C until use. The samples were used for Molecular

CartographyTM (100-plex combinatorial single molecule fluorescence in-situ hybridization)

according to the manufacturer’s instructions Day 1: Molecular Preparation Protocol for cells,

starting with the addition of buffer DST1 followed by cell priming and hybridization. Briefly,

cells were primed for 30 minutes at 37°C followed by overnight hybridization of all probes specific

for the target genes (see below for probe design details and target list). Samples were washed

the next day to remove excess probes and fluorescently tagged in a two-step color development

process. Regions of interest were imaged as described below and fluorescent signals removed

during decolorization. Color development, imaging and decolorization were repeated for multiple

cycles to build a unique combinatorial code for every target gene that was derived from raw

images as described below. Probe Design. The probes for 100 genes were designed using Resolve’s

proprietary design algorithm. Briefly, the probe-design was performed at the gene-level. For every

targeted gene, all full-length protein coding transcript sequences from the ENSEMBL database

were used as design targets if the isoform had the GENCODE annotation tag ‘basic’102;103. To

speed up the process, the calculation of computationally expensive parts, especially the off-target

searches, the selection of probe sequences was not performed randomly, but limited to sequences

with high success rates. To filter highly repetitive regions, the abundance of k-mers was obtained

from the background transcriptome using Jellyfish104. Every target sequence was scanned once
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for all k-mers, and those regions with rare k-mers were preferred as seeds for full probe design. A

probe candidate was generated by extending a seed sequence until a certain target stability was

reached. A set of simple rules was applied to discard sequences that were found experimentally

to cause problems. After these fast screens, the remaining probe candidates were mapped to the

background transcriptome using ThermonucleotideBLAST105 and probes with stable off-target

hits were discarded. Specific probes were then scored based on the number of on-target matches

(isoforms), which were weighted by their associated APPRIS level106, favoring principal isoforms

over others. A bonus was added if the binding-site was inside the protein-coding region. From

the pool of accepted probes, the final set was composed by picking the highest scoring probes.

Probes with catalog numbers can be found in Supp. Table 124.

Imaging. Samples were imaged on a Zeiss Celldiscoverer 7, using the 50x Plan Apochromat

water immersion objective with an NA of 1.2 and the 0.5x magnification changer, resulting

in a 25x final magnification. Standard CD7 LED excitation light source, filters, and dichroic

mirrors were used together with customized emission filters optimized for detecting specific

signals. Excitation time per image was 1000 ms for each channel (DAPI was 20 ms). A z-stack

was taken at each region with a distance per z-slice according to the Nyquist-Shannon sampling

theorem. The custom CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45 um pixel size) was

used. For each region, a z-stack per fluorescent color (two colors) was imaged per imaging round.

A total of 8 imaging rounds were done for each position, resulting in 16 z-stacks per region. The

completely automated imaging process per round was realized by a custom python script using

the scripting API of the Zeiss ZEN software (Open application development).

Image Processing and Spot Segmentation. As a first step all images were corrected for

background fluorescence. A target value for the allowed number of maxima was determined

based upon the area of the slice in um² multiplied by the factor 0.5. This factor was empirically

optimized. The brightest maxima per plane were determined, based upon an empirically optimized

threshold. The number and location of the respective maxima was stored. This procedure was

done for every image slice independently. Maxima that did not have a neighboring maximum in

an adjacent slice (called z-group) were excluded. The resulting maxima list was further filtered

in an iterative loop by adjusting the allowed thresholds for (Babs-Bback) and (Bperi-Bback)
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to reach a feature target value (Babs: absolute brightness, Bback: local background, Bperi:

background of periphery within 1 pixel). This feature target values were based upon the volume

of the 3D-image. Only maxima still in a zgroup of at least 2 after filtering were passing the

filter step. Each z-group was counted as one hit. The members of the z-groups with the highest

absolute brightness were used as features and written to a file. They resemble a 3D-point cloud.

To align the raw data images from different imaging rounds, images had to be registered. To

do so the extracted feature point clouds were used to find the transformation matrices. For

this purpose, an iterative closest point cloud algorithm was used to minimize the error between

two point-clouds. The point clouds of each round were aligned to the point cloud of round one

(reference point cloud). The corresponding point clouds were stored for downstream processes.

Based upon the transformation matrices the corresponding images were processed by a rigid

transformation using trilinear interpolation. The aligned images were used to create a profile for

each pixel consisting of 16 values (16 images from two color channels in 8 imaging rounds). The

pixel profiles were filtered for variance from zero normalized by total brightness of all pixels in

the profile. Matched pixel profiles with the highest score were assigned as an ID to the pixel.

Pixels with neighbors having the same ID were grouped. The pixel groups were filtered by

group size, number of direct adjacent pixels in group, number of dimensions with size of two

pixels. The local 3D-maxima of the groups were determined as potential final transcript locations.

Maxima were filtered by the number of maxima in the raw data images where a maximum was

expected. Remaining maxima were further evaluated by the fit to the corresponding code. The

remaining maxima were written to the results file and considered to resemble transcripts of

the corresponding gene. The ratio of signals matching to codes used in the experiment and

signals matching to codes not used in the experiment were used as estimation for specificity

(false positives). The algorithms for spot segmentation were written in Java and are based on

the ImageJ library functionalities. Only the iterative closest point algorithm is written in C++

based on the libpointmatcher library (https://github.com/ethz-asl/libpointmatcher).

Image segmentation. Cellpose v1.0.281 was used to perform image segmentation to deter-

mine the boundaries of nuclei. The nuclei boundaries were determined by running Cellpose with

the ‘nuclei’ model using default parameters on the DAPI stain channel of the pre-hybridization
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images. Cytoplasm boundaries were determined with ClusterMap42 using spot coordinates.

2.4.4 iPSC Cardiac Differentiation and Doxorubicin Treatment

Matrigel (Corning, cat # 354277) coated plates were used to culture iPSCs with mTESR

Plus human iPSC medium (StemCell Technologies, cat # 100-0276) in a humidified incubator at

37°C with 5% CO2. iPSCs were dissociated with Gentle Cell Dissociation Reagent (StemCell

Technologies, cat # 100-0485) and passaged with mTESR Plus medium and 10uM ROCK inhibitor

(Tocris, cat #1254) at a ratio of 1:12. mTESR plus medium was replaced every other day until

the cells reached 80% confluency for maintenance and replating, or 90% confluency for cardiac

differentiation utilizing a chemically defined protocol107. On day 0 of cardiac differentiation,

cells were treated with 6uM CHIR99021 (Selleck Chem, cat # S1263) in RPMI 1640 media

(Gibco, cat # 11875) and B27 minus insulin supplement (Thermo Fisher, cat # A1895601).

On day 2, CHIR was removed, and cells were cultured with RPMI 1640 media and B27 minus

insulin supplement (Thermo Fisher, cat # A18956). On day 3, media was replaced with RPMI

media containing B27 minus insulin supplement and 5 uM Wnt-C59 (Cellagen Technologies,

cat # C7641-2s). On days 5, 7, and 9, media was replaced with RPMI media containing B27

insulin supplement (Thermo Fisher, cat # 17504). On days 11 and 13, media was replaced with

RPMI 1640 media without glucose (Thermo Fisher, cat # 11879020) containing B27 insulin

supplement for purification of cardiomyocytes. From days 15 onward, the cells were cultured

in RPMI 1640 media containing B27 supplement which was changed every other day until the

cells reached day 30 for replating. For replating, cells were incubated in 10X TrypLE (Thermo

Fisher, cat # A1217701) for 12 minutes at 37 C, neutralized with equal volumes of RPMI 1640

media containing B27 supplement with 20% FBS (Gibco, cat # 26140-079), gently dissociated

by pipetting, then spun down and resuspended for replating in RPMI 1640 media containing B27

supplement with 20% FBS. The next day, the cell media was replaced with RPMI 1640 media

containing B27 supplement which was replaced with fresh media every other day. On day 48 the

cells were replated onto chamber slides (Ibidi, cat # 80826) as described above and recovered for

10 days before doxorubicin treatments began (MedChemExpress, cat # HY-15142). On day 60,

doxorubicin treatments concluded, and the cells underwent methanol fixation.
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2.4.5 Data Availability

Preprocessed data for Molecular Cartography profiled cardiomyocytes is deposited at

https://doi.org/10.6084/m9.figshare.c.6564043.v1 and is accessible through the Bento Python

package.

2.4.6 Code Availability

Analysis code for generating figures can be found at: https://github.com/ckmah/bento-

manuscript.
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Chapter 3

Spotfish: A modular framework for decod-
ing spatial imaging data

3.1 Background

Image-based spatial transcriptomics is a rapidly evolving field that seeks to map the

spatial distribution of RNA molecules in situ. These technologies have enabled researchers to

study the spatial organization of cells and tissues at unprecedented resolution, with the potential

to uncover novel biological insights.The field has seen a surge in interest in recent years, with

the development of several novel technologies, including MERFISH4, seqFISH108, STARmap109,

ISS110, and Slide-seq111. Despite their varied underlying technologies, they consistently share

the same backbone with a unified objective: reporting the location and identity of individual

RNA molecules. A significant challenge in this domain is the difficulty in validating the quality of

image analysis outputs. This issue is confounded by the lack of standardized data quality metrics

accepted by researchers. While existing pipeline development tools for spatial transcriptomics

image analysis are functional, they often suffer from limited scalability, a lack of interoperability

with newer methodologies, and restricted portability across different computing environments.

Recognizing these limitations, there emerges a clear need for an unbiased framework to build

spatial transcriptomics pipelines.

To address these challenges, I developed spotfish, a modular pipeline building framework

that abstracts the series of tasks for processing spatial transcriptomics data by standardizing inputs

and outputs between workflow tasks. This allows swapping in new tools as new alternatives are

published frequently, by wrapping the chosen tool for compatible data formats. It also encourages
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reporting quality metrics for diagnosing data quality and evaluating the performance of chosen

tool/parameter combinations. The framework is built using Nextflow, a robust workflow language

specifically built for and heavily adopted by bioinformatics researchers112. Nextflow also abstracts

how the pipelines are executed on different computing environments, e.g. locally, on compute

clusters, or various cloud services, meaning spotfish is inherently usable for researchers regardless

of computational environment. In contrast to starfish’s approach to programmatic Python-based

pipeline construction, spotfish modules are programming language agnostic through the use of

containerization for each step of the process. Additionally, the pipeline prioritizes usage of open

file formats supported by the Open Microscopy Environment113 (OME) to ensure transparency

and compatibility with the rich ecosystem of bio-imaging analysis tools. Spotfish is guided by

FAIR principles6 and utilize modern open-source standards, ensuring accessibility for a broad

spectrum of users, from researchers and core facilities to technologists.

3.2 Properties of multiplexed transcriptomics imaging data

The raw data consists of a large mosaic of microscopy images. To resolve individual

fluorescent molecules, images are taken at roughly to 10-100 times magnification. A single image,

or field of view, contains roughly 1-100 cells depending on the magnification and cell type. The

same field of view is then imaged multiple times, in which the spectrum of light is limited to

specific frequency bands at each iteration. This allows us to assign a unique combination of

fluorescent probes that emit light at unique frequency bands to each target. The focal plane

is much narrower than the height of cells as a consequence of the high magnification, which

requires imaging the same field of view multiple times at different z-planes to maximize the

volume interrogated. This process is usually repeated for a grid of positions to capture a larger

cumulative area of the sample, which can produce upwards of a terabyte of data per experiment.

The challenge arises due to the multi-dimensional nature of these measurements, across spatial

dimensions x, y and z, channels (multiple laser wavelengths), and rounds (repeated imaging with

different combinations of probes).
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3.3 Framework Design

Imaging-based acquisition of spatial transcriptomics data requires coordinating a series of

tasks, including image stitching, registration, background correction, spot detection, and finally

barcode decoding to produce labeled molecular coordinates corresponding to a predesigned set

of gene targets. Every task can be accomplished with existing tools, but it remains difficult to

perform an end-to-end analysis outside of tailored pipelines without significant data wrangling.

Even though many studies utilize commercial platforms for spatial transcriptomics, only processed

data is usually available to the customer. Their analysis pipelines remains proprietary and

blackbox, forcing users to rely on arbitrarily defined quality metrics. In contrast, starfish is a

open-source unified pipeline framework implemented in Python, abstracting processing steps

using a object-oriented programming design10. It is extremely flexible and has accommodated

data processing for 7 different technologies. However, the API’s steep learning curve, many

parameters, and lack of maintenance makes it difficult to build pipelines and integrate cutting-

edge tools without significant refactoring of the tool or starfish itself. There has only been one

prominent third-party contribution by a recent development that integrated their novel barcode

decoding algorithm, CheckAll11.

Spotfish abstracts pipelines into two subworkflows: image registration and spot analysis.

Image registration is a common image processing step not unique to spatial transcriptomics and

is usually required for acquisitions across multiple fields of view. By decoupling this step, it

is convenient to adapt tools outside of the immediate domain. The spot analysis subworkflow

encompasses two tasks, spot detection and barcode decoding to produce molecular coordinate

tables with target i.e. gene annotations. This can then be combined with cell and nuclear

segmentation data for functional analysis in other software, such as Bento24, Squidpy16 and

Scanpy41.

3.4 Case Study: 69-bit MERFISH of U2-OS Cells

To demonstrate the utility of spotfish, I applied it to previously published 69-bit MERFISH

dataset of U2-OS cells designed to target 10,000 genes with a minimum hamming distance 4
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Figure 3.1. Spotfish workflow Overview of the analysis tasks in the spotfish workflow from
left to right. Image registration encompasses stitching, registration and background correction (as
needed). Intermediate output format of OME-ZARR. Spot analysis encompasses spot detection
and barcode decoding outputing coordinate tables with annotations. Tools used to implement
each subworkflow indicated below.

(HD4) encoding scheme61. Because the experiment had a total of 72 rounds of imaging, it

was suitable for testing the scalability of the the spotfish framework. Commercial platforms

reportedly use 16 rounds (CosMx50) and 15 rounds (Xenium51) to decode 980 and 313 targets

respectively. This meant the 10k MERFISH dataset uses roughly 4.5 times more imaging rounds

than the current largest commercial platforms. The specific tools implemented in the pipeline

were chosen based on their performance on the 10k MERFISH dataset. The image registration

step was performed using Ashlar114, a software package originally designed for stitching and

aligning multiplexed immunofluorescent samples acquired via cyclical imaging and tile-scanning.

The spot detection step was performed using trackpy115, a Python library for particle tracking

in 2D and 3D. The barcode decoding step was performed using the nearest neighbor approach

implemented in the scikit-learn analysis package116.

Spotfish allowed parallelization of the image registration step across all 69 rounds with

Ashlar. This step was ultimately limited by memory not computing speed, using 30 GB to

stitch each round in 16 cpu hours. The output of the image registration step was a 1.5 TB

OME-ZARR file storing a multi-scale representation of the image data registered to the same

coordinate system. By standardizing the output format, this eliminates the need for storing

additional metadata defining tile positions and channel orders. The spot detection step was

performed using trackpy, which was able to detect 477 million spot coordinates in 3 dimensions.
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The barcode decoding step was performed using the nearest neighbor approach implemented in

the scikit-learn analysis package. Without spotfish, the total compute time is estimated to be

1248 hours whereas parallelization reduced runtime over 26-fold, to 39 hours with 32 parallel

processes for spot detection and 8 parallel processes for spot calling. The output was then

visualized using Napari117 to assess the quality of the data interactively.

3.5 Conclusion

All together, I demonstrate spotfish’s flexibility in integrating heterogeneous set of tools

to build a scalable image analysis pipeline for spatial transcriptomics. By adhering to open file

formats and containerization, spotfish addresses existing technologies and is well positioned to

adapt to future advancements for image registration, spot detection and barcode decoding. Future

work will focus on creating quality control modules that provide quantitative metrics for assessing

the quality of the data at each step of the pipeline. This will allow researchers to identify the

optimal tool and parameter combinations for their data. To facilitate open discussion of spotfish’s

development, I aim to collaborate with the nf-core community, a consortium of bioinformatics

researchers that develop and maintain a collection of high quality modular bioinformatics pipelines.

This will ensure that spotfish is well maintained and accessible to the community. Finally, I

will continue to develop spotfish to support additional spatial transcriptomics technologies,

such as seqFISH and STARmap. This will allow researchers to compare the performance of

different technologies on the same dataset, and to integrate data from different technologies for

meta-analysis.
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Epilogue

4.1 Conclusion

In this dissertation, I have presented a series of computational methods to analyze spatial

transcriptomics data. I began by developing Bento, a computational framework for subcellular

analysis of spatial transcriptomics data. This work is one of the first to leverage the spatial

resolution of imaging-based spatial transcriptomics data to study subcellular RNA localization. I

demonstrated the utility of Bento by applying it to a variety of spatial transcriptomics datasets,

including cardiomyocytes to study changes in RNA localization as scale. Unexpectedly, we

found several genes mislocalized to the nucleus as a result of doxorubicin treatment, including

RBM20 and CACNB2, suggesting that RNA localization is an underappreciated cell phenotype

that has the potential to uncover functional biology. To lower the barrier to functional analysis

of spatial transcriptomics datasets, I also created spotfish, a modular framework for decoding

spatial imaging data. This framework is designed to be flexible, scalable, and interoperable

with existing tools. I demonstrated the utility of spotfish by applying it to a 69-bit MERFISH

dataset of U2-OS cells. The framework is aimed to be a community resource for building spatial

transcriptomics pipelines, and I hope to eventually collaborate with the nf-core community to

ensure that spotfish is well maintained and accessible to the community.

4.2 Limitations and Future Directions

There are a great deal of challenges with the current generation of spatial transcriptomics

data. During my graduate work, it was important to me that I focus on core problems that reveal

fundamental biology, not a transient technical property of any one technology. For example, the

most popular commercial spatial methods are slide-based capture assays paired with traditional
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sequencing for comprehensive transcriptome profiling. However, compared to imaging-based

approaches which have single-molecule resolution, each spatial location on the assay captures

several to tens of cells depending on the technology. This loss in fidelity has spawned an entire

subfield of deconvolution methods, specifically to estimate properties of each spatial location

such as the proportion of cell types, the expression of cells given predicted cell types, technical

dropout of expression, etc. These techniques may be useful now, but are ultimately tied to a

specific iteration of rapidly evolving spatial transcriptomic technologies. Instead, I chose to tackle

problems initially hampered by the lack of tangible datasets; the recent availability of public

datasets has indeed lowered the barrier to method development. The increasing throughput of

new technologies such as Xenium from 10x Genomics and STOmics from BGI Genomics will

only improve our ability to draw biological insights at the molecular resolution. Similarly, the

imminent move towards multi-omics spatial imaging will enable us to capture more snapshots of

the RNA life cycle than ever before.

While the current functionality of Bento is limited to 2-dimensional spatial analysis, the

obvious extension to 3 dimensions will enable subcellular analysis in biological systems more

complex than monolayer cell cultures such as tissue slices and organoids. This will also open

the door to exploring true physical molecular gradients in their natural 3 dimensions. While we

showed its value to discover spatial subcellular domains, one can imagine gradient shifts between

cells e.g. at the cell membrane, tight junctions, synapses etc. or even in the extracellular matrix

characterizing cell signaling molecules. These are some of the functional biology questions waiting

to be explored with spatial transcriptomics data. Bento is also capable of measuring morphological

phenotypes; paired with the appropriate experimental design, spatial transcriptomics will be

a powerful tool to interrogate the relationship between cell states, RNA localization, and cell

morphology. These are especially relevant in developmental biology, neurological diseases, and

cancer where changes to cell shapes and molecular condensates are frequently measured already.

Algorithmic improvements will also require computational scalability, which I hope to address by

interfacing with the global research community, including the Scverse Foundation118 developers

and the nf-core project members. Looking forward, this will manifest as integration with new

open-source data standards, such as SpatialData and distributed computing with Dask.
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4.3 Closing thoughts

The field of spatial transcriptomics is still in its infancy, and there are many exciting

opportunities for future computational work. I believe the most impactful innovations will come

from other fields, such as computer vision and genomics. Deep learning has already made its mark

in both fields to accomplish everything from self-driving cars to functional genomics with DNA

large language models, with the potential to bridge the gap between imaging and sequencing. I

am hopeful for the creativity in this field and am excited to see new applications beyond tissue

atlases and drug screening platforms. I hope that my work will contribute to the growing body

of open-source tools and resources for spatial transcriptomics, and that it will inspire others to

do the same.
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Appendix A

Supplemental Material for Chapter 1

All Supplemental Tables can be found in the version 2 bioRxiv preprint at the following lo-

cation: https://www.biorxiv.org/content/10.1101/2022.06.10.495510v2.supplementary-material.

A.1 Supplementary Figures
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Figure A.1. RNAforest performance evaluation. A. Cumulative distribution of sample
molecule copy number in U2-OS cells MERFISH dataset. B. Validation F1-score of each binary
classifier in RNAforest as a function of sample molecule copy number for MERFISH dataset.
C. Cumulative distribution of sample molecule copy number in 3T3 cells seqFISH+ dataset.
D. Validation F1-score of each binary classifier in RNAforest as a function of sample molecule
copy number for seqFISH+ dataset. E. Benchmarking performance of the 4 base models (RF
- random forest, SVM - support vector machine, NN - fully connected neural network, CNN -
convolutional neural network), showing AUROC in test and validation data.
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Figure A.2. Enrichment of compartment-specific expression for RNAforest gene
pattern frequencies. Compartment-specific enrichment of endoplasmic reticulum (ER) and
nucleus gene expression – from Xia et al 201961 – relative to RNAforest gene pattern frequencies
in the A. MERFISH dataset and B. seqFISH+ dataset.
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Appendix B

Supplemental Material for Chapter 2

B.1 Supplementary Figures
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Figure B.1. Filtering and RNAflux analysis of DOX treated cardiomyocytes. A. Left:
UMAP of all 4 cardiomyocyte samples, colors denote different samples. Center: Cells are colored
by log-scaled SLC8A1 RNA expression. Right: Leiden clustering identifies 5 clusters, separating
low expression SLC8A1 into cluster 4. Representative crop of B. vehicle and D. treatment samples,
colored by the first 3 principal components of its RNAflux embedding. Relative enrichment of
transcripts enriched for location-specific expression in C. vehicle and E. treatment samples. Red,
yellow, blue and green enrichment correspond to nuclear, OMM, ER lumen, and cytosol genesets
respectively.
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duplex RNA with higher affinity than ctDNA and favours the isothermal denaturation of
triplex RNA. RSC Advances, 6(103):101142–101152, October 2016. ISSN 2046-2069. doi:
10.1039/C6RA21387A.

[94] Ryan J. Marcheschi, Kathryn D. Mouzakis, and Samuel E. Butcher. Selection and char-
acterization of small molecules that bind the HIV-1 frameshift site RNA. ACS chemical
biology, 4(10):844–854, October 2009. ISSN 1554-8937. doi: 10.1021/cb900167m.

[95] Vaishali Bagalkot, Omid C. Farokhzad, Robert Langer, and Sangyong Jon. An Ap-
tamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Ange-
wandte Chemie International Edition, 45(48):8149–8152, 2006. ISSN 1521-3773. doi:
10.1002/anie.200602251.

[96] Joyce Man, Phil Barnett, and Vincent M Christoffels. Structure and function of the

62



Nppa–Nppb cluster locus during heart development and disease. Cell. Mol. Life Sci., 75
(8):1435–1444, April 2018.

[97] Wei Song, Hao Wang, and Qingyu Wu. Atrial natriuretic peptide in cardiovascular
biology and disease (NPPA). Gene, 569(1):1–6, September 2015. ISSN 03781119. doi:
10.1016/j.gene.2015.06.029.

[98] Yair E Lewis, Anner Moskovitz, Michael Mutlak, Joerg Heineke, Lilac H Caspi, and
Izhak Kehat. Localization of transcripts, translation, and degradation for spatiotemporal
sarcomere maintenance. J. Mol. Cell. Cardiol., 116:16–28, March 2018.

[99] Brendan M. Smalec, Robert Ietswaart, Karine Choquet, Erik McShane, Emma R. West,
and L. Stirling Churchman. Genome-wide quantification of RNA flow across subcellular
compartments reveals determinants of the mammalian transcript life cycle. Preprint,
Genomics, August 2022.

[100] Vilma A Sardão, Paulo J Oliveira, Jon Holy, Catarina R Oliveira, and Kendall B Wal-
lace. Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear,
mitochondrial, and cytoskeletal targets. Cell Biol. Toxicol., 25(3):227–243, June 2009.

[101] Marcel Meissner, Petra Weissgerber, Juan E Camacho Londoño, Jean Prenen, Sabine
Link, Sandra Ruppenthal, Jeffery D Molkentin, Peter Lipp, Bernd Nilius, Marc Freichel,
and Veit Flockerzi. Moderate calcium channel dysfunction in adult mice with inducible
cardiomyocyte-specific excision of the cacnb2 gene. J. Biol. Chem., 286(18):15875–15882,
May 2011.

[102] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jungreis, Jane
Loveland, Jonathan M Mudge, Cristina Sisu, James Wright, Joel Armstrong, If Barnes, An-
drew Berry, Alexandra Bignell, Silvia Carbonell Sala, Jacqueline Chrast, Fiona Cunningham,
Tomás Di Domenico, Sarah Donaldson, Ian T Fiddes, Carlos Garćıa Girón, Jose Manuel
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