Title

Harnessing Heterocyclic Arynes \& Amides as Synthetic Building Blocks

Permalink

https://escholarship.org/uc/item/6135d837

Author

Shah, Tejas K.

Publication Date

2016
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Los Angeles

Harnessing Heterocyclic Arynes \& Amides as Synthetic Building Blocks

Abstract

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry

by

Tejas Shah
(C) Copyright by

Tejas Shah

ABSTRACT OF THE DISSERTATION

Harnessing Heterocyclic Arynes \& Amides as Synthetic Building Blocks

by

Tejas Shah
Doctor of Philosophy in Chemistry University of California, Los Angeles, 2016

Professor Neil Kamal Garg, Chair

This dissertation describes the study of two synthetic building blocks, heterocyclic arynes and amides, and their applications in synthetic organic chemistry. Heterocyclic arynes are highly reactive intermediates that act as electrophilic arene surrogates. In contrast, amides are tradionally considered to be robust functional groups. However, recently the acyl-nitrogen bond of amides have been activated under mild transition metal-catalysis to act as acyl electrophiles and form $\mathrm{C}-$ heteroatom and $\mathrm{C}-\mathrm{C}$ bonds.

Chapter One reviews the field of heterocyclic arynes from a historial perspective with an emphasis on pyridyne and indolyne methodologies. Moreover, this chapter highlights the use of pyridynes, indolynes, and related strained intermediates in the synthesis of natural products.

Chapter Two describes the total syntheses of (-)-indolactam V and its C7-substituted natural product derivatives, (-)-pendolmycin, (-)-lyngbyatoxin A, and (-)-teleocidin A-2. The $\mathrm{C} 4-\mathrm{N}$ linkage is constructed with a distortion-controlled indolyne functionalization. The total
synthesis of (-)-indolactam V provides a platform for the divergent syntheses of the other three natural products via a palladium-catalyzed cross-coupling to functionalize C 7 and introduce a quaternary center.

Chapter Three pertains to accessing two new oxacyclic strained intermediates, the 4,5benzofuranyne and the 3,4-oxacyclohexyne. In situ trapping of these intermediates affords an array of heterocyclic scaffolds and the experimentally-determined ratio of regioisomers are consistent with predictions made using the distortion/interaction model. In addition, oxygencontaining strained intermediates were found to provide access to greater selectivities from trapping experiments compared to their corresponding nitrogen-containing counterparts.

Chapter Four illustrates the synthesis of six new indole-based conjugated trimers and their photophysical properties. These conjugated trimers are generated using highly reactive indolyne intermediates in the presence of a palladium catalyst. In addition, this reactivity could provide access to a variety of trimeric cores, which could have further applications in new materials.

Chapter Five depicts the activation of the carbon-nitrogen bond of amides under nickel catalysis and the utility of amides as electrophilic acyl cross-coupling partners. We first investigated the conversion of amides to esters, which is a challenging and underdeveloped transformation. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. This report provides a way to harness amides as synthons and has led to the further use of amides in the construction of carbonheteroatom or carbon-carbon bonds under nickel-catalysis.

The dissertation of Tejas Shah is approved.
Miguel A. García-Garibay
Andrea M. Kasko
Neil Kamal Garg, Committee Chair

University of California, Los Angeles
2016

"Be humble in everything you do ..."

- Drew Calvo, circa 2007

For my parents and brother: Kapil, Taruna and Kayur Shah

TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION ii
COMMITTEE PAGE iv
DEDICATION PAGE v
TABLE OF CONTENTS vi
LIST OF FIGURES xii
LIST OF SCHEMES xxv
LIST OF TABLES xxvii
LIST OF ABBREVIATIONS xxix
ACKNOWLEDGEMENTS xxxiv
BIOGRAPHICAL SKETCH xli
CHAPTER ONE: Pyridynes and Indolynes as Building Blocks for Functionalized Heterocycles and Natural Products 1
1.1 Abstract 1
1.2 Introduction and Historical Perspective 1
1.3 Hetaryne Experimental Results. 5
1.3.1 Pyridyne Methodology. 6
1.3.2 Indolyne Methodology 12
1.4 Use of Hetarynes in Total Synthesis 17
1.5 Conclusions 30
1.6 Notes and References 30
CHAPTER TWO: Total Syntheses of Indolactam Alkaloids (-)-Indolactam V, (-)-Pendolmycin,
(-)-Lyngbyatoxin A, and (-)-Teleocidin A-2 39
2.1 Abstract 39
2.2 Introduction 40
2.3 Results and Discussion 43
2.3.1 Optimization of the Total Synthesis of Indolactam V (2.1) 43
2.3.2 Cross-Coupling to Introduce the $\mathrm{C} 7 \mathrm{sp}^{2}-\mathrm{sp}^{3}$ Linkage and the Key
Quaternary Carbon 44
2.3.3 Total Synthesis of (-)-Pendolmycin (2.2) 46
2.3.4 Total Synthesis of (-)-Lyngbyatoxin A (2.3) and (-)-Teleocidin A-2 (2.4) 48
2.4 Conclusion 51
2.5 Experimental Section 51
2.5.1 Materials and Methods 51
2.5.2 Experimental Procedures 53
2.5.2.1 Optimization of the Total Synthesis of Indolactam V (2.1). 53
2.5.2.2 Cross-Coupling to Introduce the $\mathrm{C} 7 \mathrm{sp}^{2}-\mathrm{sp}^{3}$ Linkage 61
2.5.2.3 Total Synthesis of (-)-Pendolmycin (2.2) 63
2.5.2.4 Total Syntheses of (-)-Lyngbyatoxin A (2.3) and (-)-Teleocidin A-
2 (2.4) 68
2.6 Spectra Relevant to Chapter Two: 79
2.7 Notes and References 108
CHAPTER THREE: Expanding the Strained Alkyne Toolbox: Generation and Utility of
Oxygen-Containing Strained Alkynes 115
3.1 Abstract 115
3.2 Introduction 116
3.3 Results and Discussion 118
3.3.1 Prediction of Regioselectivities Based on the Distortion / Interaction Model118
3.3.2 Synthesis of Silyl Triflate Precursors 120
3.3.3 Generation \& Trapping of 4,5-Benzofuranyne 121
3.3.4 Generation \& Trapping of 3,4-Oxacyclohexyne (3.5) 124
3.3.5 Comparison of Regioselectivities for N - and O -Containing Strained Alkynes
... 127
3.4 Conclusion 129
3.5 Experimental Section 130
3.5.1 Materials and Methods 130
3.5.2 Experimental Procedures. 131
3.5.2.1 Synthesis of 3,4-Benzofuranyne Precursor 131
3.5.2.2 Synthesis of 3,4-Oxacyclohexyne Precursor 134
3.5.2.3 4,5-Benzofuranyne Trapping Experiments 135
3.5.2.4 Oxacyclohexyne Trapping Experiments 148
3.5.3 Computational Methods 159
3.5.3.1 Cartesian Coordinates of Strained Alkynes 159
3.5.3.2 Energies of Strained Alkynes 160
3.6 Spectra Relevant to Chapter Three: 161
3.7 Notes and References 238
CHAPTER FOUR: A New Class of Conjugated Trimeric Scaffolds Accessible Using Indolyne Cyclotrimerizations 245
4.1 Abstract 245
4.2 Introduction 246
4.3 Results and Discussion 247
4.3.1 Optimization of 4,5-Indolyne Cyclotrimerization 247
4.3.2 Cyclotrimerization of 5,6- and 6,7-Indolynes 249
4.3.3 Photophysical Properties of Trimers 250
4.3.4 Structural Analysis 252
4.4 Conclusion 254
4.5 Experimental Section 255
4.5.1 Materials and Methods 255
4.5.2 Experimental Procedures 256
4.5.2.1 Cyclotrimerization of Indolyne Precursors 256
4.5.3 Photophysical Properties 260
4.5.3.1 UV-Vis and Fluorescence Spectra 260
4.5.3.2 Cyclic Voltammetry Spectra. 261
4.6 Spectra Relevant to Chapter Four: 262
4.7 Notes and References 275
CHAPTER FIVE: Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide
C-N Bonds 280
5.1 Abstract 280
5.2 Introduction 281
5.3 Optimization and Substrate Scope 284
5.4 Computational Studies 289
5.5 Selective Amide Bond Activation 292
5.6 Conclusion 293
5.7 Experimental Section 294
5.7.1 Materials and Methods 294
5.7.2 Experimental Procedures 296
5.7.2.1 Syntheses of Amide Substrates 296
5.7.2.2 Methanolysis Control Experiments. 301
5.7.2.3 Screening of Amide Substrates 302
5.7.2.4 Comparison of Ligands and Relevant Control Experiments 303
5.7.2.5 Scope of Methodology 305
5.7.2.6 Selective Cleavage of Tertiary over Secondary Amide 316
5.7.2.7 Selective Cleavage of Aryl Amide Over Alkyl Amide 318
5.7.2.8 Selective Cleavage of Aryl Amide in the Presence of an Ester. 322
5.7.3 Verification of Enantiopurity 325
5.7.3.1 Racemic Compound Syntheses. 325
5.7.3.2 Chiral SFC Assays 327
5.7.4 Computational Methods 333
5.7.4.1 Complete Reference of Gaussian 09 333
5.7.4.2 Transition State Structures for Decarbonylation Pathway 334
5.7.4.3 Comparison of Acyl C-N and Aryl C-N Bond Activation Pathway334
5.7.4.4 Analysis of Amides Derived from Alkyl Carboxylic Acids 335
5.7.4.5 Analysis of $\mathrm{N}-\mathrm{Me}$,Boc Amide Esterification 336
5.7.4.6 Free Energy and Enthalpy of Amide and Ester Formation 338
5.7.4.7 Energies, Enthalpies, and Free Energy of the Calculated Structures 340
5.7.4.8 Cartesian Coordinates for the Optimized Structures. 341
5.8 Spectra Relevant to Chapter Five: 342
5.9 Notes and References 394

LIST OF FIGURES

CHAPTER ONE

Figure 1.1. Examples of Arynes 2
Figure 1.2. Initial Proposal of 2,3-Benzofuranyne Formation 3
Figure 1.3. Competing Aryne and Non-Aryne Mechanisms 4
Figure 1.4. Early ortho-Benzyne Studies 5
Figure 1.5. Pyridyne Isomers and Methods of Generation 7
Figure 1.6. Examples of 3,4-Pyridyne Studies 9
Figure 1.7. Our laboratory's 3,4-Pyridyne Studies 10
Figure 1.8. Examples of 2,3-Pyridyne Studies 12
Figure 1.9. Indolyne Isomers and Seminal Indolyne Example 13
Figure 1.10. Silyltriflates as Indolyne Precursors 14
Figure 1.11. Sample Reactivity of Indolyne Intermediates 15
Figure 1.12. Recent Examples of Indolyne Reactivity and Indolinyne Generation 16
Figure 1.13. 2,3-Indolyne and other 5-Membered Hetarynes 17
Figure 1.14. Natural Products Synthesized using Heterocyclic Arynes 18
Figure 1.15. Representative Indolactam Alkaloids 1.101-1.104 21
Figure 1.16. Synthesis of C7 Substituted Indolactam Alkaloids 24
Figure 1.17. [4.3.1]-Bicyclic Welwitindolinone Natural Products 25
Figure 1.18. Tubingensins A and B 28

CHAPTER TWO

Figure 2.1. Representative Indolactam Alkaloids 2.1-2.441

APPENDIX ONE

Figure A1.1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.14... 80
Figure A1.2. Infrared spectrum of compound 2.14. .. 81
Figure A1.3. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.14... 81
Figure A1.4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.16b.. 82
Figure A1.5. Infrared spectrum of compound 2.16b. .. 83
Figure A1.6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.16b. 83
Figure A1.7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.16c .. 84
Figure A1.8. Infrared spectrum of compound 2.16c.. 85
Figure A1.9. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 2.16c... 85
Figure A1.10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.24.. 86
Figure A1.11. Infrared spectrum of compound 2.24. ... 87
Figure A1.12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.24.. 87
Figure A1.13. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.25.. 88
Figure A1.14. Infrared spectrum of compound 2.25. .. 89
Figure A1.15. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.25... 89
Figure A1.16. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.26.. 90
Figure A1.17. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.27.. 91
Figure A1.18. Infrared spectrum of compound 2.27. .. 92
Figure A1.19. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.27... 92
Figure A1.20. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 2}$ 93
Figure A1.21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 2 9}$ 94
Figure A1.22. Infrared spectrum of compound 2.29 95
Figure A1.23. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 2 9}$ 95
Figure A1.24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 1}$ 96
Figure A1.25. Infrared spectrum of compound 2.31. 97
Figure A1.26. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 1}$ 97
Figure A1.27. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 3}$ 98
Figure A1.28. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 4}$ 99
Figure A1.29. Infrared spectrum of compound 2.34. 100
Figure A1.30. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 4}$ 100
Figure A1.31. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3}$ 101
Figure A1.32. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 2}$ 102
Figure A1.33. Infrared spectrum of compound 2.32. 103
Figure A1.34. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 2}$ 103
Figure A1.35. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 . 4 6}$ 104
Figure A1.36. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 4 7}$ 105
Figure A1.37. Infrared spectrum of compound 2.47. 106
Figure A1.38. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 4 7}$ 106
Figure A1.39. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.4 107

CHAPTER THREE

Figure 3.1. Well studied N-containing cyclic alkynes 3.1-3.3, O-containing strained alkynes 3.4 and 3.5 (present study), and representative drugs and natural products 118

Figure 3.2. Geometry optimized structures of 3.4-3.7 ... 120

APPENDIX TWO

Figure A2.1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 3.10 ... 162
Figure A2.2. Infrared spectrum of compound 3.10 .. 163
Figure A2.3. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3.10.. 163
Figure A2.4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) compound 3.13.. 164
Figure A2.5. Infrared spectrum of compound 3.13 .. 165
Figure A2.6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 1 3}$... 165
Figure A2.7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) compound 3.14.. 166
Figure A2.8. Infrared spectrum of compound 3.14 .. 167
Figure A2.9. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 3.14.. 167
Figure A2.10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 3.27 ... 168
Figure A2.11. Infrared spectrum of compound 3.27 .. 169
Figure A2.12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3.27....................................... 169
Figure A2.13. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 3.28 .. 170
Figure A2.14. Infrared spectrum of compound 3.28 .. 171
Figure A2.15. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3.28...................................... 171
Figure A2.16. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 3.29... 172
Figure A2.17. Infrared spectrum of compound 3.29 .. 173
Figure A2.18. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 2 9}$ 173
Figure A2.19. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound $\mathbf{3 . 3 0}$ 174
Figure A2.20. Infrared spectrum of compound $\mathbf{3 . 3 0}$ 175
Figure A2.21. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 . 3 0}$ 175
Figure A2.22. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 3 1}$ 176
Figure A2.23. Infrared spectrum of compound 3.31 177
Figure A2.24. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 1}$ 177
Figure A2.25. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 3 2}$. 178
Figure A2.26. Infrared spectrum of compound 3.32 179
Figure A2.27. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 2}$ 179
Figure A2.28. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound $\mathbf{3 . 3 3}$ 180
Figure A2.29. Infrared spectrum of compound $\mathbf{3 . 3 3}$ 181
Figure A2.30. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 3}$ 181
Figure A2.31. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound $\mathbf{3 . 3 4}$ 182
Figure A2.32. Infrared spectrum of compound $\mathbf{3 . 3 4}$ 183
Figure A2.33. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 4}$ 183
Figure A2.34. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 3 5}$ 184
Figure A2.35. Infrared spectrum of compound $\mathbf{3 . 3 5}$ 185
Figure A2.36. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 5}$ 185
Figure A2.37. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compounds $\mathbf{3 . 3 6}$ \& 3.37 186
Figure A2.38. Infrared spectrum of compounds 3.36 \& 3.37 187
Figure A2.39. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compounds $\mathbf{3 . 3 6} \& \mathbf{3 . 3 7}$. 187
Figure A2.40. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compounds $\mathbf{3 . 3 8} \& \mathbf{3 . 3 9}$ 188
Figure A2.41. Infrared spectrum of compound 3.38 \& 3.39 189
Figure A2.42. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 8}$ 189
Figure A2.43. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 0}$ 190
Figure A2.44. Infrared spectrum of compound $\mathbf{3 . 4 0}$ 191
Figure A2.45. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 0}$ 191
Figure A2.46. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound $\mathbf{3 . 4 1}$ 192
Figure A2.47. Infrared spectrum of compound 3.41 193
Figure A2.48. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 1}$ 193
Figure A2.49. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound 3.42 194
Figure A2.50. Infrared spectrum of compound 3.42 195
Figure A2.51. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 . 4 2}$ 195
Figure A2.52. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound $\mathbf{3 . 4 3}$ 196
Figure A2.53. Infrared spectrum of compound $\mathbf{3 . 4 3}$ 197
Figure A2.54. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 . 4 3}$ 197
Figure A2.55. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 4}$ 198
Figure A2.56. Infrared spectrum of compound 3.44 199
Figure A2.57. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 4}$ 199
Figure A2.58. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 5}$ 200
Figure A2.59. Infrared spectrum of compound 3.45 201
Figure A2.60. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 5}$ 201
Figure A2.61. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 6}$ 202
Figure A2.62. Infrared spectrum of compound 3.46 203
Figure A2.63. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 6}$ 203
Figure A2.64. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 7}$ 204
Figure A2.65. Infrared spectrum of compound 3.47 205
Figure A2.66. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 7}$ 205
Figure A2.67. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 8}$ 206
Figure A2.68. Infrared spectrum of compound 3.48 207
Figure A2.69. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 8}$ 207
Figure A2.70. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 9}$ 208
Figure A2.71. Infrared spectrum of compound 3.49 209
Figure A2.72. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3.49 209
Figure A2.73. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 5 0}$ 210
Figure A2.74. Infrared spectrum of compound $\mathbf{3 . 5 0}$ 211
Figure A2.75. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 0}$ 211
Figure A2.76. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound $\mathbf{3 . 5 1}$ 212
Figure A2.77. Infrared spectrum of compound $\mathbf{3 . 5 1}$ 213
Figure A2.78. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 1}$ 213
Figure A2.79. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound 3.52 214
Figure A2.80. Infrared spectrum of compound 3.52 215
Figure A2.81. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3.52 215
Figure A2.82. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 5 3}$ 216
Figure A2.83. Infrared spectrum of compound $\mathbf{3 . 5 3}$ 217
Figure A2.84. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 3}$ 217
Figure A2.85. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) compound 3.54. 218
Figure A2.86. Infrared spectrum of compound $\mathbf{3 . 5 4}$ 219
Figure A2.87. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 5 4}$ 219
Figure A2.88. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 5 5}$ 220
Figure A2.89. Infrared spectrum of compound 3.55 221
Figure A2.90. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 5}$ 221
Figure A2.91. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 5 6}$ 222
Figure A2.92. Infrared spectrum of compound 3.56 223
Figure A2.93. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 5 6}$ 223
Figure A2.94. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound $\mathbf{3 . 5 7} \& \mathbf{3 . 5 8}$ 224
Figure A2.95. Infrared spectrum of compound 3.57 \& 3.58 225
Figure A2.96. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 7} \& \mathbf{3 . 5 8}$ 225
Figure A2.97. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 5 9}$ 226
Figure A2.98. Infrared spectrum of compound $\mathbf{3 . 5 9}$ 227
Figure A2.99. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 9}$ 227
Figure A2.100. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) compound $\mathbf{3 . 6 0}$ 228
Figure A2.101. Infrared spectrum of compound $\mathbf{3 . 6 0}$ 229
Figure A2.102. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 6 0}$ 229
Figure A2.103. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compounds $\mathbf{3 . 6 1} \& \mathbf{3 . 6 2}$ 230
Figure A2.104. Infrared spectrum of compounds $3.61 \& 3.62$ 231
Figure A2.105. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compounds 3.61 \& $\mathbf{3 . 6 2}$ 231
Figure A2.106. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 6 3}$ 232
Figure A2.107. Infrared spectrum of compound $\mathbf{3 . 6 3}$ 233
Figure A2.108. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 6 3}$ 233
Figure A2.109. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 6 4}$ 234

Figure A2.110. Infrared spectrum of compound 3.64 .. 235
Figure A2.111. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3.64.................................... 235
Figure A2.112. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compounds $\mathbf{3} .65$ \& $\mathbf{3 . 6 6} \ldots . ~ 236$
Figure A2.113. Infrared spectrum of compounds 3.65 \& 3.66... 237
Figure A2.114. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compounds $\mathbf{3 . 6 5}$ \& $\mathbf{3 . 6 6}$......................... 237

CHAPTER FOUR

Figure 4.1. Previously studied conjugated trimers 4.1-4.3 and indole trimer (present study)
\qquad
Figure 4.2. Trimerization of indolyne precursors 4.9 and 4.12 250

Figure 4.3. UV-Vis absorbance and fluorescence emission spectra for trimers 4.7, 4.8, 4.10, 4.11, 4.13, and 4.14 in methylcyclohexane. ... 252

Figure 4.4. Geometry-optimized structures and computed energies of trimers. 254

APPENDIX THREE

Figure A3.1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound 4.7 .. 263
Figure A3.2. Infrared spectrum of compound 4.7 .. 264
Figure A3.3. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) of compound 4.7.. 264
Figure A3.4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound 4.8 .. 265
Figure A3.5. Infrared spectrum of compound 4.8 ... 266
Figure A3.6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of compound 4.8 .. 266
Figure A3.7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound 4.10 ... 267
Figure A3.8. Infrared spectrum of compound 4.10 .. 268
Figure A3.9. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound 4.10 268
Figure A3.10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound 4.11 269
Figure A3.11. Infrared spectrum of compound 4.11 270
Figure A3.12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of compound 4.11 270
Figure A3.13. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) compound 4.12 271
Figure A3.14. Infrared spectrum of compound 4.13 272
Figure A3.15. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of compound $\mathbf{4 . 1 3}$ 272
Figure A3.16. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound 4.14 273
Figure A3.17. Infrared spectrum of compound 4.14 274
Figure A3.18. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound 4.14 274
CHAPTER FIVE
Figure 5.1. Amide-bond cleavage using transition-metal catalysis 283
Figure 5.2. Computational study of catalytic cycle 291
Figure 5.3. Selective amide-bond cleavage processes. 293Figure 5.4. Analysis of Competing Pathways for Esterification of N-Me,Boc Substrate5.95336
Figure 5.5. Substitution Effects on Equilibrium of Amide Esterification 338
APPENDIX FOUR
Figure A4.1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 1}$ 343
Figure A4.2. Infrared spectrum of compound $\mathbf{5 . 3 1}$ 344
Figure A4.3. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 1}$ 344
Figure A4.4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 3}$ 345
Figure A4.5. Infrared spectrum of compound $\mathbf{5 . 3 3}$ 346
Figure A4.6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 3}$ 346
Figure A4.7. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 5}$ 347
Figure A4.8. Infrared spectrum of compound $\mathbf{5 . 3 5}$ 348
Figure A4.9. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 5}$ 348
Figure A4.10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 7}$ 349
Figure A4.11. Infrared spectrum of compound 5.37 350
Figure A4.12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 7}$ 350
Figure A4.13. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 9}$ 351
Figure A4.14. Infrared spectrum of compound 5.39 352
Figure A4.15. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 9}$ 352
Figure A4.16. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8}$ 353
Figure A4.17. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 4 0}$ 354
Figure A4.18. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 4 2}$ 355
Figure A4.19. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 4 4}$ 356
Figure A4.20. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 4 6}$ 357
Figure A4.21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5.48 358
Figure A4.22. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 4 9}$ 359
Figure A4.23. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 5 1}$ 360
Figure A4.24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 5 3}$ 361
Figure A4.25. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 5 4}$ 362
Figure A4.26. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 5 5}$ 363
Figure A4.27. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 5 6}$ 364
Figure A4.28. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 6 4}$ 365
Figure A4.29. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 6 6}$ 366
Figure A4.30. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 6 8}$ 367
Figure A4.31. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 0}$ 368
Figure A4.32. Infrared spectrum of compound 5.70 369
Figure A4.33. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 0}$ 369
Figure A4.34. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 2}$ 370
Figure A4.35. ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 5.21 371
Figure A4.36. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 4}$ 372
Figure A4.37. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 6}$ 373
Figure A4.38. Infrared spectrum of compound 5.76 374
Figure A4.39. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 6}$ 374
Figure A4.40. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 8}$ 375
Figure A4.41. Infrared spectrum of compound $\mathbf{5 . 7 8}$ 376
Figure A4.42. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 8}$ 376
Figure A4.43. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8 0}$ 377
Figure A4.44. Infrared spectrum of compound 5.80 378
Figure A4.45. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8 0}$ 378
Figure A4.46. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 1 9}$ 379
Figure A4.47. Infrared spectrum of compound 5.19 380
Figure A4.48. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 1 9}$ 380
Figure A4.49. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound $\mathbf{5 . 2 2}$ 381
Figure A4.50. Infrared spectrum of compound 5.22 382
Figure A4.51. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound $\mathbf{5 . 2 2}$ 382
Figure A4.52. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8 3}$. 383
Figure A4.53. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8 5}$ 384
Figure A4.54. Infrared spectrum of compound $\mathbf{5 . 8 5}$ 385
Figure A4.55. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8 5}$ 385
Figure A4.56. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 3}$ 386
Figure A4.57. Infrared spectrum of compound 5.23 387
Figure A4.58. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 3}$ 387
Figure A4.59. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 4}$ 388
Figure A4.60. Infrared spectrum of compound 5.24 389
Figure A4.61. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 4}$ 389
Figure A4.62. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 6}$ 390
Figure A4.63. Infrared spectrum of compound 5.26 391
Figure A4.64. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 6}$ 391
Figure A4.65. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 5}$. 392
Figure A4.66. Infrared spectrum of compound 5.25 393
Figure A4.67. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 5}$ 393

LIST OF SCHEMES

CHAPTER ONE
Scheme 1.1. Singh's Synthesis of Perlolidine (1.89) 19
Scheme 1.2. Guitián's Synthesis of Ellipticine (1.87) 20
Scheme 1.3. Julia's Formal Synthesis of Lysergic Acid (1.80) 20
Scheme 1.4. Total Synthesis of (-)-Indolactam V (1.101) 22
Scheme 1.5. Total Synthesis of Welwitindolinone Alkaloids 27
Scheme 1.6. Total Synthesis of (+)-Tubingensin A (1.84) 29

CHAPTER TWO

Scheme 2.1. Synthetic Strategy Toward 2.1 and C7 Substituted Indolactam Alkaloids 2.2-
\qquad
2.442
Scheme 2.2. Optimized Synthesis of Indolactam V (2.1) and 2.14 44
Scheme 2.3. C7 Functionalization of $\mathbf{2 . 1 4}$ and Introduction of Key $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ Linkage with a
Quaternary Carbon Substituent 47
Scheme 2.4. Total Synthesis of (-)-Pendolmycin (2.2) 48
Scheme 2.5. Synthesis of Morpholine Amide 2.29 and Cross-Coupling to Access
Diastereomeric Adducts $\mathbf{2 . 3 1}$ and $\mathbf{2 . 3 2}$ Possessing the Necessary All-Carbon Quaternary
Stereocenters. 49
Scheme 2.6. Total Synthesis of (-)-Lyngbyatoxin A (2.3) 50
Scheme 2.7. Total Synthesis of (-)-Teleocidin A-2 (2.4) 50

CHAPTER THREE

[^0]
LIST OF TABLES

CHAPTER TWO

Table 2.1. $\mathrm{C} 7 \mathrm{sp}^{2}-\mathrm{sp}^{3}$ Cross-Coupling on Model Substrate $\mathbf{2 . 1 5}$ 46
CHAPTER THREE
Table 3.1. Diels-Alder Cycloadditions of 4,5-Benzofuranyne (3.4) 122
Table 3.2. Reactions of Silyl Triflate $\mathbf{3 . 1 0}$ with Nucleophiles and Cycloaddition Partners
\qquad124
Table 3.3. Diels-Alder Cycloadditions of 3,4-Oxacyclohexyne (3.5) 125
Table 3.4. Reactions of Silyl Triflate $\mathbf{3 . 1 4}$ with Nucleophiles and Cycloaddition Partners

\qquad 127
Table 3.5. Comparison of 4,5-Indolyne and 4,5-Benzofuranyne Regioselectivities 128
Table 3.6. Comparison of Oxacyclohexyne and Piperidyne Regioselectivities 129
CHAPTER FOUR
Table 4.1. Optimization of Cyclotrimerization 249

CHAPTER FIVE

Table 5.1. Experimental and computational study of amide-bond activation during the conversion of benzamides 5.7 to methyl benzoate 5.8a .. 286
Table 5.2. Scope of our methodology. 289
Table 5.3. Attempted Conversion of Amide 5.7g to Methyl Benzoate 5.8a 301
Table 5.4. Survey of Amide Substrates 302
Table 5.5. Ligand Screening for Nickel-Catalyzed Esterification ${ }^{a}$ 304
Table 5.6. Comparison of Aryl vs. Alkyl Amide Substrates. 335
Table 5.7. Energies, enthalpies, and free energies of the structures calculated at the M06/SDD, 6-311+G(d,p)(SMD $\left.{ }^{\text {toluene }}\right) / / B 3 L Y P / L A N L 2 D Z, 6-31 G(d)$.............................. 340

LIST OF ABBREVIATIONS

\AA	angstrom
$[\alpha]_{\mathrm{D}}$	specific rotation at wavelength of sodium D line
Ac	acetyl, acetate
AcOH	acetic acid
α	alpha
app.	apparent
aq.	aqueous
atm	atmosphere
Bn	benzyl
br	broad
Boc	tert-butoxycarbonyl
Bu	butyl
$n-\mathrm{Bu}$	butyl (linear)
t-Bu	tert-butyl
s-Bu	sec-butyl
c	concentration for specific rotation measurements
${ }^{\circ} \mathrm{C}$	degrees Celsius
calcd	calculated
cat.	catalytic
Cbz	carboxybenzyl

COD	1,5-cyclooctadiene
CSA	camphorsulfonic acid
Cy	cyclohexyl
d	doublet
DABCO	1,4-diazabicyclo[2.2.2]octane
dba	dibenzylideneacetone
DCE	1,2-dichloroethane
DIC	N, N^{\prime}-diisopropylcarbodiimide
DMAP	4-dimethylaminopyridine
DME	dimethoxyethane
DMF	N, N-dimethylformamide
DMI	1,3-dimethyl-2-imidazolidinone
DMSO	dimethyl sulfoxide
dppe	1,2-bis(diphenylphosphino)ethane
dppf	1,1'-bis(diphenylphosphino)ferrocene
ee	enantiomeric excess
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
g	gram(s)
h	hour(s)
HMDS	hexamethyldisilane

HRMS	high resolution mass spectroscopy
Hz	hertz
IR	infrared (spectroscopy)
IMes	1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene
IPr	1,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene
$i-\operatorname{Pr}$	iso-propyl
J	coupling constant
L	liter
LDA	lithium diisopropylamide
M	molecular mass
m	multiplet or milli
m	meta
m / z	mass to charge ratio
μ	micro
Me	methyl
MHz	megahertz
min	minute(s)
mol	mole(s)
mp	melting point
MS	molecular sieves
NBS	N -bromosuccinimide
NMR	nuclear magnetic resonance

xxxi

o	ortho
p	para
PPA	polyphosphoric acid
PCC	pyridinium chlorochromate
Ph	phenyl
pH	hydrogen ion concentration in aqueous solution
PhH	benzene
ppm	parts per million
$i-\operatorname{Pr}$	isopropyl
PSI	Pounds per square inch
pyr	pyridine
q	quartet
rt	room temperature
R_{f}	retention factor
S	singlet
sat.	saturated
SIMes	1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene
SIPr	1,3-bis(2,6-di-i-propylphenyl)-4,5-dihydroimidazol-2-ylidine
t	triplet
TBAF	tetrabutylammonium fluoride

TBAI	tetrabutylammonium iodide
TBS	tert-butyldimethylsilyl
TBSCl	tert-butyldimethylsilyl chloride
TES	triethylsilyl
Tf	trifluoromethanesulfonyl (trifyl)
TFA	tetrahydrofuran
THF	thin layer chromatography
TLC	trimethylsilyl
TMEDA	trimethylsilyl chloride
TMS	p-toluenesulfonyl (tosyl)
TMSCl	ultraviolet
TMSOTf	wavelength
Ts	UV

ACKNOWLEDGEMENTS

My doctoral degree would not have been possible without the guidance, persistence, and general compassion from Professor Neil K. Garg. I appreciate being part of Neil's lab for a number of reasons but two have always stood out to me: 1 . Neil wasn't just a doctoral advisor but also a professional mentor and friend. Throughout my five years, he has taught me how to the best possible chemist in the laboratory and a polished individual in life. In between his chemistry tips, he has shared numerous life lessons and showed us how old he is through his 80 's references. Neil has truly shaped the person I am today and I am tremendously thankful for being part of his laboratory. 2. Hard work achieves greatness. From the first day in the laboratory, he has pushed me day after day because he knew I could always do better and I'm truly grateful for it. I appreciate Neil for not just pushing me to work harder but for tireless working along side his students. Whether it is finishing a BACON tutorial, reviewing a fellowship application, or editing a manuscript (for a thesis ()), Neil has taught me to work as hard as you want people to work for you and be a role model to younger students. I am deeply indebted to him for allowing me to be apart of the Garg Lab Family, shaping the scientist and person I am today, and for countless other things that I can't begin to write because that would require another chapter.

Additional, I would like to acknowledge Professor Miguel Garcia-Garibay for serving on my doctoral committee and being an advisor for the Organization for Cultural Diversity in Science (OCDS). It was a true honor to be the co-president of this organization and I hope to see it grow under your tutelage. I am also thankful to Professors Andrea Kasko and Louis Bouchard for taking the time to serve on my doctoral committee and advising me in my professional ambitions.

I have to thank a number of teachers, mentors, and friends who have guided me toward and through graduate school. First, I'd like to thank my undergraduate research advisor, Professor Daniel Seidel, for taking me into his research group after interviewing me for only ten minutes! I'm so grateful to him for allowing me to work in his laboratory and earn my first two publications, which changed my career path from a M.D. to a Ph.D. Of course my graduate mentor and role model in the Seidel group, Dr. Eric Klauber, had an enormous impact on me. He taught me the ropes and showed me how to be a leader in a research group. Our numerous column chromatography races and Giants vs. Jets bets were some of my fondest memories. My hoodmate, now Dr. Marlena Konieczynaska was always a constant source of encouragement. We will always be "The Babes"! I'm grateful to the rest of the Seidel lab, in particular Dr. Chandra Kante De, Dr. Nisha Mittal, Dr. Deepankar Das, and Dr. Indu Deb, for their friendship and for making my research experience so memorable. In addition, I must give a huge shout out to my high school teachers, Mrs. Ruth Tinverin, Mr. Nicolas Hunter, and Mr. Drew Calvo, whom I have looked up to and value for their opinions and advice.

The research in this dissertation would not have been possible without the great coworkers and friends I've made in the Garg group. When I joined the lab I was mentored by Dr. Sarah Bronner, who is a very interesting, intelligent, and intense (at times) mentor. I learned so much from her about cats and chemistry! I will always appreciate her for taking me under her wing and making me her little chemistry kitten \dot{O}^{-}.

Then there was my unofficial mentor, little conscience, and friend, Dr. Adam Goetz whom I've grown to admire and I hope one day can be half the chemist/man he is today. Adam is a no "BS" kind of guy but always willing to help anyone in need! I really have to attribute Adam
for helping me pass my cumulative exams and develop as a scientist. Regardless the number of times I screwed up, Adam would be there to lend a hand. Thank you Big Playa G!

Dr. Noah Fine Nathel has been my longest project partner and a consistent source of curious conversations. Noah has helped me conquer natural products and nickel-catalysis but also has taught me so much about physical organic chemistry. The work in this dissertation would LITERALLY not be possible without him! Outside the lab, he's been an incredible friend and I will miss your movie nights and our fancy dinners and drinks.

My work-wife, project partner, and friend forever, Dr. Liana Hie has always been there for me over the last five years. Even though she was intimidating our first year, I've grown to love her like a sister! She has been one of the few people I can always count on for anything, personal or professional, and her opinions are always something I've trusted. I'm so happy we survived five long years together and I wouldn't want anyone else by my side. Thank you for being an amazing friend and letting me lean on you for inspiration and encouragement. Working next to her the last two years has brought us even closer together and I know we will have many more wonderful adventures and memories to come (including approving my future wife!).

I've had the privilege of overlapping with the first four classes of graduates from the Garg Laboratory whom all have taught me something essential to my education and development. When I first started out in the lab, Dr. Tehetena Mesganaw gave me some tough love but she was a true sweetheart inside. She is one of the most encouraging individuals I have ever met and her perfectionism is a trait I'm still jealous of! Along with Mrs. Kanya West, I had the joy of working around some older gifted chemists, Drs. Kyle Quasdorf, Ben Boal, Alex Schammel, and Alex Huters. Kyle was a shy and quiet guy but I sincerely enjoyed his chemistry insights and his hilarious behavior after numerous group outings. Ben was also a quiet chemist
but had a unique taste in rap music. Schammel and Huters were both individuals whom always had suggestions for me on how to solve the challenges I encountered in my first year.

Dr. Grace Chiou was the first person I talked to in California and we've been best friends every since! During the beginning of my doctoral degree she was the person who would give me the blunt truth and would be a "Tiger Mom" whenever I needed it. I have come to miss our cooking, wine, Walking Dead nights, but I know we will still be great friends for many years to come. Dr. Stephen Ramgen is a character to say the least. I have learned more about the glove box from Stephen then I ever asked for. But I thank Stephen for always challenging me and making me a better scientist. Although I did not interact with Dr. Amanda Silberstein on a daily basis, she always impressed me with her witty sense of humor and uncanny ability to find typos. I wish her good luck in her academic career. It was a pleasure to work and live with Dr. Evan Styduhar. Although he hated my music selections in 5235, Adam, Evan and I could always agree on Christmas dubstep! Thank you for helping me through my second year talk, candidacy exam, and being an overall good friend.

I've also had the opportunity to witness a number of younger graduate students develop into intelligent, distinguished scientists. My roommate for the last three years and loyal friend, Jesus Moreno has been a huge part of my life inside and outside the lab. I'm truly grateful to have met him and will miss our unforgettable nights out. I'm excited to see him go off into the pharmaceutical industry and discover the next anti-cancer drug! I have also had the chance to get to know Mike Corsello, Jose Medina, and Nick Weires in my time in the Garg group. These three individuals are a constant source of entertainment and fun and it has been a pleasure to overlap with them. Emma Baker is a sweet girl whom I enjoy conversing about food, Los Angeles, and dating lives. Of course there is Junyong Kim aka JunPuppy aka JunBug who has an

Adele-like singing voice or so he thinks. I will miss our hectic, sleep-deprived BACON days. Over the last two years, I've gotten to know Elias Picazo, a guy that will never stop smiling or take a sick day! I have always adored his 'go-get'em' attitude and his positivity in chemistry and his personal life.

There is a number of budding first and second years I'd like to acknowledge. Joyann Barber always has a smile on her face and could brighten anyone's day. Lucas Morrill has a special singing voice that could wake anyone up ($2 / 3$ of the MSB 5234 choir)! I also will miss our Patriots/Jets banter during the Fall season. Bryan Simmons is a witty and funny individual whom I'm jealous of his so eloquent presentation style. In my last year, I was able to meet Robert Susick, a cheesey, happy-go-lucky guy whom I had the opportunity to mentor. Although he left me, I enjoyed our time together and I'm anxiously waiting to see the brilliant scientist that graduates in 2020! Besides Robert, I was able to interact with two crazy comedians named Jacob Dander and Michael Yamano.

In addition to the graduate students, I have interacted with two postdoctoral scholars. First there is Dr. Travis McMahon whom always had a different prespective on solving challenging chemistry problems but also was a levelheaded individual you could count on.

In my last nine months, I've had the privilege of interacting with a gifted postdoctoral scholar named Dr. Marie Hoffmann. Marie, in her short time, has taught me an assortment of topics ranging from NMR tricks and gold catalysis to French culture and partying. In addition, she is one of the most caring, genuine, and intelligent people I have ever met! I thank her for her friendship and will visit soon! I wish all the graduate students and postdoctoral fellows of the Garg Lab the best of luck on their research and professional aspirations.

I had the chance to get to know a number of undergraduates in the Garg Lab including Sonam Kumar, Josh Melamed, Jordan Cisneros, Josh Demeo, Ashley Pournamdari, Sarah Anthony, and JJ Hwang, I wish Sonam, Josh M., Jordan, Ashley good luck on their futures in their respective medical fields. To Josh D., Sarah, and JJ, I wish them all the best in their chemistry ambitions.

My best friends, Timothy Yiu, Lindsey Stevens, and Robin Rubinstein, have been back home in Jersey for last five years but have never left my side. For over twenty-two years, you three have believed in me and supported in all my crazy desires (e.g. like moving across the country after never traveling passed Ohio!). Even though I'd be crazy busy or stressed, seeing a text from any one of you would put a smile on my face.

Finally, I'd like to thank my family for their unconditional love and support. I am certain I would not be where I am today without their wisdom and support. Thank you to my mother for her unwavering care and concern for me. Also, of course, the endless fifty pound packages of food every six months even when I said NO! My father, I thank him for his never-ending encouragement and allowing me to pursue anything I believed in. In addition, I'd like to thank my brother for always being there for me, regardless of our ideological differences. He would come help me from across the country in a heartbeat. Lastly, I would like to thank my grandfather for always looking out for me and inspiring me through his stories.

Chapter One is a version of Goetz, A. E.; Shah, T. K.; Garg, N. K. Chem. Commun. 2015, 51, 34-45. Goetz, Shah, and Garg were responsible for writing the manuscript.

Chapter Two is a version of Fine Nathel, N. F. ${ }^{\dagger}$; Shah, T. K. ${ }^{\dagger}$; Bronner, S. M.; Garg, N. K. Chem. Sci. 2014, 5, 2184-2190. Fine Nathel, Shah, and Bronner were responsible for experimental work.

Chapter Three is a version of Shah, T. K.; ${ }^{\dagger}$ Medina, J. M.; ${ }^{\dagger}$ Garg, N. K. J. Am. Chem. Soc. 2016, 138, 4948-4954. Shah and Medina were responsible for experimental work.

Chapter Four is a version of Shah, T. K; Lin, J.; Goetz, A. E.; Houk, K. N.; Garg, N. K. manuscript in preparation. Shah and Goetz were responsible for experimental work. Lin was responsible for computional work.

Chapter Five is a version of Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79-83. Hie, Fine Nathel, Shah and Baker were responsible for experimental work. Hong, Yang, and Liu were responsible for computational work.

BIOGRAPHICAL SKETCH

Education:

University of California, Los Angeles, CA

- Ph.D. in Organic Chemistry, anticipated Spring 2016
- Graduate Research Assistant, August 2011 to present
- Cumulative GPA: 3.8/4.0

Rutgers University, New Brunswick, NJ

- B.A. Degree in Chemistry and Molecular Biology \& Biochemistry, May 2011
- Cumulative GPA: 3.4/4.0

Professional and Academic Experience:

Graduate Research Assistant - University of California, Los Angeles, CA

- July 2011 to present, studying in the laboratory of Professor Neil K. Garg
- Completed the total synthesis of indolactam alkaloids: (-)-indolactam V, (-)pendolmycin, (-)-lyngbyatoxin A, and (-)-teleocidin A-2.
- Synthesized a new hetaryne, the 4,5-benzofuranyne, and demonstrated its utility as a synthetic building block.
- Discovered the first catalytic activation of amide C-N bonds using nickel-catalysis, which allowed for the conversion of amides to esters.
- Synthesized novel small molecule organic photovoltaics using hetarynes methodology for application in organic solar cell devices.

Educational Content Developer - University of California, Los Angeles, CA

- January 2014 to Present
- Created "BACON AT UCLA: Biology And Chemistry, \underline{O} nline Notes And Tutorials, UCLA" in collaboration with Professor Neil K. Garg.
- Introduced online weekly tutorials to over 5000 students that connect organic chemistry with topics in health, the real world, and pop culture.
- Aided in securing funding from the UCLA Office of Instructional Development and crowdfunding sources.

Teaching Assistant - University of California, Los Angeles, CA

- Undergraduate organic chemistry for life science majors and physical science majors. (Winter 2012, Spring 2012, Fall 2012, and Spring 2013)
- Senior level undergraduate biochemistry laboratory (Fall 2011)

Undergraduate Research Assistant - Rutgers University, New Brunswick, NJ

- May 2009 to July 2011
- Investigated the kinetic resolution of propargylic and allylic amines through anion binding catalysis under the guidance of Professor Daniel Seidel.
- Assisted in synthesizing a large scope of thiourea-type hydrogen bonding catalysts for a number of organocatalytic reactions.

Undergraduate Research Assistant - Rutgers University, New Brunswick, NJ

- May 2008 to July 2010
- Studied the excitation of carbon monoxide molecules on a copper surface via helium beam scattering methodology under the direction of Professor Barbara J. Hinch
- Created a LabView program to automatically analyze thousands of helium beam scattering data files.

Honors and Awards:

- Hanson-Dow Award for Excellence in Teaching, 2015
- UCLA Excellence in Chemical Research Fellowship, 2015
- Christopher S. Foote Graduate Fellowship in Organic Chemistry, 2014-2016
- Rutgers University - Highest Honors in Research Award, 2011
- Henry Rutgers Research Scholarship, 2011
- Jerome and Lorraine Aresty Research Scholarship, 2010
- Aresty Undergraduate Research Grant, 2008-2011
- Dean's List, 2008-2011

Publications:

8. A New Class of Conjugated Trimeric Scaffolds Accessible Using Indolyne Cyclotrimerizations. Tejas K. Shah, Janice Lin, Adam E. Goetz, K. N. Houk, and Neil K. Garg, Manuscript in preparation.
9. Expanding the Strained Alkyne Toolbox: Generation and Utility of Oxygen-containing Strained Alkynes. Tejas K. Shah, ${ }^{\dagger}$ Jose Medina, ${ }^{\dagger}$ and Neil K. Garg. J. Am. Chem. Soc. 2016, 138, 4948-4954. (${ }^{\dagger}$ indicates joint first authorship))(Highlighted in J. Am. Chem. Soc. 2016, 138, 5171.)
10. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C-N Bonds. Liana Hie, Noah F. Fine Nathel, Tejas K. Shah, Emma Baker, Xin Hong, Yun-Fang Yang, Peng Liu, K. N. Houk, and Neil K. Garg. Nature 2015, 524, 79-83. (Highlighted in C\&EN 2015, 93, 9; Nat. Chem. 2015, 7, 682; Angew. Chem. Int. Ed. 2015, 54, 13856-13858; Synform 2016, A3-A8.)
11. Pyridynes and Indolynes as Building Blocks for Functionalized Heterocycles and Natural Products. Adam E. Goetz, Tejas K. Shah, and Neil K. Garg. Chem. Commun. (Feature Article) 2015, 51, 34-45.
12. Total Syntheses of Indolactam Alkaloids (-)-Indolactam V, (-)-Pendolmycin, (-)-Lyngbyatoxin A, and (-)-Teleocidin A-2. Noah F. Fine Nathel, ${ }^{\dagger}$ Tejas K. Shah, ${ }^{\dagger}$ Sarah M. Bronner, and Neil. K. Garg. Chem. Sci. 2014, 5, 2184-2190. (${ }^{\dagger}$ indicates joint first authorship)
13. A Dual-Catalysis/Anion-Binding Approach to the Kinetic Resolution of Allylic Amines. Eric G. Klauber, Nisha Mittal, Tejas K. Shah, Daniel Seidel, Org. Lett. 2011, 13, 2464-2467. (Highlighted in Synfacts 2011, 675.)
14. Merging Nucleophilic and Hydrogen Bonding Catalysis: An Anion Binding Approach to the Kinetic Resolution of Propargylic Amines. Eric G. Klauber, Chandra Kanta De, Tejas K. Shah, Daniel Seidel, J. Am. Chem. Soc. 2010, 132, 13624-13626. (Highlighted in Synfacts 2010, 1426.)
15. Isolation of an mRNA from Artemia franciscana for sarcoplasmic calcium-binding protein. Pratik Padooru, Tejas K. Shah, Andrew K. Vershon, Marty E. Nemeroff. NCBI, December 19, 2007. Accession \# EU358113.1.

CHAPTER ONE

Pyridynes and Indolynes as Building Blocks for

Functionalized Heterocycles and Natural Products

Adam E. Goetz, Tejas K. Shah, and Neil K. Garg

Chem. Commun. 2015, 51, 34-45.

Abstract

1.1 Abstract

Heterocyclic arynes, or hetarynes, have been studied for over 100 years. However, challenges associated with observing these reactive species, as well as developing synthetically useful methods for their generation and trapping, have limited their use. This review provides a brief historical perspective on the field of hetarynes, in addition to a discussion of pyridyne and indolyne methodologies. Moreover, this review highlights the use of pyridynes, indolynes, and related strained intermediates in natural product synthesis.

1.2 Introduction and Historical Perspective

The importance of heterocyclic compounds in modern chemistry cannot be overstated. Methods for the synthesis of functionalized heterocyclic compounds are highly prized because of their applications in pharmaceutical chemistry, materials chemistry, natural products synthesis, organometallic chemistry, and many other fields. Among the various methods for functionalizing heterocycles, the use of highly reactive heterocyclic arynes, or hetarynes, ${ }^{1}$ offers a strategically different approach compared to many conventional methods. Arynes have a rich history, and
despite being studied experimentally for over 60 years, many of these species are still treated as scientific curiosities rather than as useful synthetic intermediates. The majority of studies related to arynes focus on carbocyclic arynes, such as ortho-benzyne (1.1), ${ }^{2}$ rather than heterocyclic arynes (e.g., 1.2-1.6, Figure 1.1).

Figure 1.1. Examples of Arynes

The first appearance of any type of aryne in the literature comes from Stoermer and Kahlert's 1902 report invoking 2,3-benzofuranyne (1.2) as an intermediate (Figure 1.2). ${ }^{3}$ The authors proposed that treatment of 3-bromobenzofuran (1.7) with sodium ethoxide led to hetaryne 1.2, which was trapped by excess ethoxide to give $\mathbf{1 . 8}$. This proposal, despite its influence on the field of aryne chemistry, has been called into question. ${ }^{\text {lb }}$ In the original report, compound 1.8 was not isolated, but rather was inferred based on the formation of $\mathbf{1 . 9 a}$ and $\mathbf{1 . 9 b}$, which were thought to arise from ring opening of $\mathbf{1 . 8}$. Alternative proposals suggest that contamination of precursor 1.7 with the isomeric 2-bromobenzofuran (1.11) would readily give the proposed intermediate $\mathbf{1 . 8}$ through an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ pathway. ${ }^{1 \mathrm{~b}}$ Given that bromide $\mathbf{1 . 7}$ was prepared through elimination of dibromide $\mathbf{1 . 1 0}$, the alternate mechanism is certainly plausible.

Figure 1.2. Initial Proposal of 2,3-Benzofuranyne Formation

This example highlights one of the inherent challenges with the study of arynes and hetarynes; specifically, the fact that they cannot be readily observed. Typically, the strongest evidence for the presence of an aryne intermediate is the identity of the products obtained. However, even this can lead to incorrect conclusions. As shown in Figure 1.3, it is possible to arrive at so-called "aryne products" through pathways that do not involve aryne formation. This possibility is especially relevant when strong bases, which are also nucleophilic, are employed to generate arynes through dehydrohalogenation, as is demonstrated using pyridine 1.12. In what is termed the addition/elimination pathway, nucleophilic attack by the amide on the electrophilic C4 position generates stabilized adduct $\mathbf{1 . 1 3}$, which then undergoes ejection of the leaving group to give product 1.14. This is in contrast to the elimination/addition pathway. In this route, pyridine $\mathbf{1 . 1 2}$ can undergo deprotonation at C 3 followed by elimination of the leaving group to generate 3,4-pyridyne (1.4). Attack on this species by a nucleophile at C 4 followed by protonation then provides product $\mathbf{1 . 1 4}$. Additionally, it is also possible that both aryne and nonaryne mechanisms are operating competitively in a given reaction. Since many of the early aryne
studies relied on this method of aryne generation, not all claims of aryne generation are likely accurate, and care must be taken in interpretation of results. Previous reviews have sought to identify certain aryne precursors that are prone to favor one mechanism over the other. ${ }^{1}$

Figure 1.3. Competing Aryne and Non-Aryne Mechanisms

Despite uncertainty over the generation of arynes such as $\mathbf{1 . 2}$, solid evidence for the intermediacy of these highly reactive species was obtained in the 1950s. Following several reports of unexplained "rearrangements" in reactions of halobenzenes with amide bases, ${ }^{4}$ Roberts demonstrated that treatment of ${ }^{14} \mathrm{C}$-labeled chlorobenzene (1.15) with potassium amide gave an equimolar mixture of products $\mathbf{1 . 1 6 a}$ and $\mathbf{1 . 1 6 b}$ (Figure 1.4). ${ }^{5}$ This was rationalized by the presence of the symmetrical "benzyne" (1.1) intermediate. Shortly thereafter, Huisgen demonstrated that treating either 2- or 3-fluoroanisole (1.17a or $\mathbf{1 . 1 7 b}$) with phenyllithium followed by CO_{2} led to the isolation of compounds $\mathbf{1 . 1 9 a}$ and $\mathbf{1 . 1 9 b}$ with a strong preference for 1.19a (Figure 1.4). ${ }^{6}$ Similar to Roberts' reasoning, Huisgen noted that since the two isomeric starting materials gave the same major product with similar ratios, a common intermediate, $\mathbf{1 . 1 8}$, was likely involved. He also noted that the π-system of the proposed intermediate $\mathbf{1 . 1 8}$ would be orthogonal to the aromatic system. Finally, Wittig demonstrated that treatment of dihalobenzene 1.20 with lithium amalgam in furan led to the isolation of cycloadduct $\mathbf{1 . 2 1}$, which further
suggested the intermediacy of benzyne (1.1). ${ }^{7}$ These three studies represent the first solid evidence for the intermediacy of any aryne and inspired the development of much of the hetaryne chemistry reported since.

Huisgen's Study using Isomeric Substrates (1955)

Wittig's Benzyne Cycloaddition (1955)

Figure 1.4. Early ortho-Benzyne Studies

1.3 Hetaryne Experimental Results

Throughout the years, many heterocyclic arynes have been proposed as intermediates. As discussed above, it is likely that some of the reported reactions do not actually involve the reported aryne as an intermediate. ${ }^{1}$ Additionally, aryne reactions frequently give low yields of products, likely due to a combination of the high instability of these intermediates, as well as the harsh conditions that have been traditionally used to generate these species. As a result, the following sections focus on the aryne derivatives of pyridines and indoles, two of the most wellstudied classes of hetarynes. Both of these families of hetarynes have undergone an evolution
from their initial discovery to their current uses as versatile intermediates for organic synthesis. Emphasis is placed on developments that have sought to address key challenges related to the utility of these species. This article also highlights the application of hetarynes in the total synthesis of natural products, including our own laboratory's recent syntheses of tubingensin A, the [4.3.1]-bicyclic welwitindolinones, and several indolactam alkaloids.

1.3.1 Pyridyne Methodology

Considering all classes of heterocyclic arynes, pyridynes have been the most intensely studied over the past 60 years. Of the three pyridyne isomers shown in Figure 1.5, 3,4-pyridyne (1.4) is suggested computationally ${ }^{8}$ to be the most stable, followed by 2,3-pyridyne (1.22). Attempts to study 1,2-pyridyne (1.23, alternatively represented as the 2-pyridyl cation) in solution have been unsuccessful, ${ }^{9}$ however, studies in the gas phase have shown evidence of this species. ${ }^{10}$ All of these isomers have long been recognized as promising intermediates for the preparation of substituted pyridines and, collectively, have been the target of much synthetic effort. ${ }^{11,12}$
Pyridyne Isomers

Figure 1.5. Pyridyne Isomers and Methods of Generation

The 3,4-pyridyne can be used to illustrate the wide range of methods typically used to generate arynes. Most of the methods are derived from analogous precursors to o-benzyne, illustrating that similar strategies could be applicable for the generation of other hetarynes. For example, 3,4-pyridyne (1.4) is accessible from 3-halopyridines upon treatment with strong base $\left(\mathbf{1 . 2 4} \boldsymbol{\rightarrow}\right.$ 1.4), ${ }^{13}$ oxidation of aminotriazoles with $\mathrm{Pb}(\mathrm{OAc})_{4}(\mathbf{1 . 2 5} \rightarrow \mathbf{1 . 4}),{ }^{14}$ photolysis of anhydrides $(\mathbf{1 . 2 6} \rightarrow \mathbf{1} .4),{ }^{15}$ magnesium-sulfur exchange followed by elimination $(\mathbf{1 . 2 7} \rightarrow \mathbf{1 . 4}),{ }^{16}$ thermolysis of diazonium carboxylates $(\mathbf{1 . 2 8} \boldsymbol{\rightarrow 1 . 4}),{ }^{17}$ or fluoride-induced elimination of orthotrialkylsilyl pyridyl triflates $(\mathbf{1 . 2 9} \boldsymbol{\rightarrow} \mathbf{1 . 4}) .{ }^{18}$ Of note, this latter method, which was first pioneered by Kobayashi for o-benzyne generation, ${ }^{19}$ has demonstrated the most functional group tolerance in terms of both the trapping agents that can be utilized and the substituents present on the precursors. Although there is always the possibility that some precursors may react through non-
aryne mechanisms, the isolation of pyridyne 1.4 in an N_{2} matrix and subsequent characterization by IR spectroscopy ${ }^{20}$ demonstrated that pyridyne $\mathbf{1 . 4}$ is a valid intermediate.

The 3,4-pyridyne has been demonstrated to be useful for the preparation of 3- and 4substituted pyridines as well as 3,4-disubstituted derivatives. ${ }^{21}$ Leake and Levine reported the first generation of 3,4-pyridyne (1.4) utilizing 3-bromopyridine (1.30), ${ }^{22}$ which upon treatment with acetophenone and sodium amide in liquid ammonia gave low yields of 4-aminopyridine (1.31) and adduct 1.32, the latter of which arises from attack by the enolate of acetophenone (Figure 1.6). Many early studies that relied on dehydrohalogenation for pyridyne generation were limited in the scope of the trapping agent employed. In order to minimize the byproducts resulting from attack by the base used for pyridyne generation, strongly nucleophilic groups such as alkoxides, amide salts, and thiolates were often employed. In an example of the latter reported by Zoltewicz, treatment of bromopyridine $\mathbf{1 . 3 0}$ with sodium methanethiolate and sodium amide led to an equimolar mixture of adducts $\mathbf{1 . 3 3 a}$ and $\mathbf{1 . 3 3 b} \mathbf{b}^{23}$ This lack of regioselectivity is characteristic of pyridyne $\mathbf{1 . 4}$, and has limited the synthetic utility of this intermediate.

Original 3,4-Pyridyne Example

Figure 1.6. Examples of 3,4-Pyridyne Studies

Several studies have focused on the development of methods to control regioselectivity in reactions of 3,4-pyridynes, ${ }^{18,24}$ and include a report by our laboratory in 2013, which systematically explored the use of substituents to control selectivity via aryne distortion. ${ }^{25} \mathrm{We}$ prepared three pyridyne precursors, $\mathbf{1 . 3 4}, \mathbf{1 . 3 6}$, and $\mathbf{1 . 3 8}$, and then performed a series of pyridyne generation and trapping experiments (Figure 1.7). For example, using 3,4-pyridyne precursor $\mathbf{1 . 3 4}$ in a nitrone cycloaddition yielded products $\mathbf{1 . 3 5 a}$ and $\mathbf{1 . 3 5 b}$ in a 1.9 to 1 ratio. However, by employing the sulfamoylated precursor $\mathbf{1 . 3 6}$ in the corresponding reaction, higher regioselectivity could be achieved favoring attack at C 4 . In a complementary sense, selectivity could be reversed by use of the brominated precursor $\mathbf{1 . 3 8}$ in the aryne trapping experiment to now favor attack at C3. Of note, after performing aryne trapping experiments of silyltriflates 1.36 and $\mathbf{1 . 3 8}$, the sulfamate and bromides remaining may be used in Ni- or Pd-catalyzed crosscoupling experiments. ${ }^{26,27}$ For example, after performing pyridyne trapping experiments with 1,3-dimethyl-2-imidazolidinone, ${ }^{28}$ similar to trapping experiments recently report by Sato and
coworkers, ${ }^{29} 1.40$ and $\mathbf{1 . 4 1}$ were obtained using catalytic $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond forming processes. Pyridyne precursors $\mathbf{1 . 3 4}$ and $\mathbf{1 . 3 8}$ are now available commercially. ${ }^{30}$
Pyridyne Cycloadditions

Substituted Pyridines from Pyridyne Trapping /Cross-Coupling Sequence

Figure 1.7. Our laboratory's 3,4-Pyridyne Studies

Early attempts to generate the 2,3-pyridyne (1.22) were more ambiguous than those targeting the 3,4-pyridyne (Figure 1.8). Dehydrohalogenation cannot be easily utilized, as 3halopyridine precursors (e.g., 1.30, Figure 1.6) have been shown to lead to formation of the 3,4pyridyne (1.4) selectively, ${ }^{13}$ and the use of 2-halopyridines makes it difficult to determine whether products arise through an aryne pathway or through an $S_{N} A r$ pathway. However, in

1962, Martens and den Hertog demonstrated that treatment of dihalide $\mathbf{1 . 4 2}$ with lithium amalgam in the presence of furan led to the isolation of quinoline (1.44) in moderate yield. ${ }^{31}$ The formation of this product was rationalized by a pathway involving 2,3-pyridyne (1.22) formation, cycloaddition to give $\mathbf{1 . 4 3}$, followed by reduction. The development of silyltriflate precursor 1.45, which is now commercially available, ${ }^{30}$ has allowed for a reliable means of generating the 2,3-pyridyne under mild conditions ${ }^{32}$ and can be used to demonstrate the high regioselectivity that is typically observed in these reactions. Treatment of precursor $\mathbf{1 . 4 5}$ with CsF leads to aryne 1.22, which undergoes attack by N-Me-aniline to exclusively give the 2 -amino product $\mathbf{1 . 4 6}{ }^{33}$ The high selectivity typically obviates the need to separate isomeric products, and can be used to form 2,3-disubstituted pyridines. Additionally, $\mathbf{1 . 5 0}$ was obtained through a formal $\mathrm{C}-\mathrm{N}$ bond insertion reaction between pyridyne 1.49 into carbamate $1.48{ }^{29}$

Early 2,3-Pyridyne Example

Typical 2,3-Pyridyne Reactivity

Figure 1.8. Examples of 2,3-Pyridyne Studies

1.3.2 Indolyne Methodology

Given the importance of the indole heterocycle, attempts to utilize the corresponding indolyne to prepare substituted indole derivatives has received significant attention. Of the four possible indolyne isomers, three contain the reactive triple bond within the benzenoid ring (1.3, 1.51, and 1.52, Figure 1.9), whereas the 2,3-indolyne (1.53) contains the triple bond in the pyrrole ring. The first report concerning indolynes came from Julia and coworkers, who in 1967 showed that treatment of 5-bromoindole (1.54) with potassium amide led to a mixture of 4 - and 5 -aminoindole products ($\mathbf{1 . 5 6 a}$ and $\mathbf{1 . 5 6 b}$), likely arising through indolyne intermediate $\mathbf{1 . 5 5} .{ }^{34}$ Despite the promise demonstrated by this early work, ${ }^{35}$ indolynes saw little attention over the
subsequent 40 years. ${ }^{36}$ In a series of reports beginning in 2007, Buszek and co-workers reported elegant studies of indolyne Diels-Alder reactions. ${ }^{37}$

Figure 1.9. Indolyne Isomers and Seminal Indolyne Example

Our laboratory has focused on mild methods for indolyne generation and trapping, with the hope that indolynes could be better exploited by synthetic chemists. We have shown that 4,5-, 5,6-, and 6,7-indolynes $\mathbf{1 . 5 7} \mathbf{- 1 . 5 9}$ can be generated from silyltriflate precursors $\mathbf{1 . 6 0} \mathbf{- 1 . 6 2}$, respectively (Figure 1.10). ${ }^{38}$ These precursors were accessible as $N-\mathrm{Me}, N-\mathrm{Boc}$, or $N-\mathrm{H}$ variants for each indolyne isomer and also left C3 available for later functionalization. ${ }^{38 \mathrm{c}}$ Indolyne formation could be achieved upon treatment of the indolyne precursors with fluoride sources such as TBAF or CsF. Buszek has also reported an alternative strategy for the preparation of similar silyltriflate precursors that contain a phenyl substituent at $\mathrm{C} 3 .{ }^{37 \mathrm{~b}}$

1.57

1.60

1.58

1.61

1.62

Figure 1.10. Silyltriflates as Indolyne Precursors

The mild fluoride-based conditions for indolyne generation allowed for the scope of trapping agents to be significantly expanded compared to prior indolyne studies. As seen in Figure 1.11, treatment of 4,5-indolyne precursor $\mathbf{1 . 6 4}$ with CsF in the presence of aniline led to the formation of C 5 adduct $\mathbf{1 . 6 3}$ preferentially over the formation of the corresponding C4substituted product in a ratio of 12.5:1. Trapping of the same indolyne with benzyl azide demonstrated the compatibility of cycloaddition reactions and provided triazole product $\mathbf{1 . 6 5}$ and its regioisomer in a 2.4:1 ratio. Further demonstrations of the scope of indolyne reactions can be seen in products $\mathbf{1 . 6 6} \mathbf{- 1 . 6 9}$. The regioselectivity observed in the formation of products $\mathbf{1 . 6 3}$, 1.65, 1.68, and 1.69 was explained using the Aryne Distortion Model. ${ }^{38 b, 38 c, 39}$ Generally speaking, both the 4,5- and 5,6-indolynes preferentially give products resulting from initial attack at C5, while the 6,7-indolyne typically gives products resulting from attack at C6.

Reactivity of N -Me-4,5-indolyne

Figure 1.11. Sample Reactivity of Indolyne Intermediates

Recent reports of indolynes and related species have further demonstrated the utility of these hetarynes for the assembly of complex indole derivatives. Lautens and coworkers reported that treatment of bromoindole $\mathbf{1 . 7 0}$ with LDA led to the generation of 6,7-indolyne $\mathbf{1 . 7 1}$ (Figure 1.12). This species was found to undergo an intramolecular ene reaction involving the homoprenyl group on the indole nitrogen to afford tricyclic product $\mathbf{1 . 7 2}$. ${ }^{40}$ Interestingly, the observed regioselectivity is due to the fact that the homoprenyl group is tethered to the indole nitrogen.

The Hoye group has recently reported a novel method for the generation of arynes in which a molecule containing three alkynes undergoes a "Hexadehydro Diels-Alder (HDDA) Reaction" to provide the reactive intermediate. ${ }^{41}$ The authors demonstrated that molecules such as tri-yne $\mathbf{1 . 7 3}$ could be used to form indolinyne $\mathbf{1 . 7 4}$, which further reacted to furnish product 1.75 (Figure 1.12). ${ }^{41 \mathrm{a}}$ Of note, this reaction can be used to prepare indoline systems in which the benzenoid ring is fully substituted. Almost simultaneously, Lee and coworkers have reported a
nearly identical strategy for the generation of indolinynes and explored a variety of reactions of these species. ${ }^{42}$

Hexadehydro Diels-Alder (HDDA) Reaction to Make Indolinynes

Figure 1.12. Recent Examples of Indolyne Reactivity and Indolinyne Generation

In contrast to the benzenoid indolyne isomers discussed above, the 2,3-indolyne (1.53, Figure 1.13) likely experiences extreme strain due to the presence of the triple bond within the five-membered ring. Gribble has reported an extensive study of unsuccessful attempts to generate $\mathbf{1 . 5 3}{ }^{43}$ and, while there are claims of this intermediate being involved in reactions, ${ }^{44}$ unambiguous evidence has yet to be offered. In fact, there have been many attempts over the years to generate various 5-membered hetarynes, however, most claims are lacking in conclusive proof. ${ }^{1 \mathrm{~b}}$ In addition to the 2,3-indolyne (1.53), attempts to generate the 3,4-pyrrolyne (1.76) have been made, resulting only in $<5 \%$ yield of any products suggestive of an aryne mechanism. ${ }^{45}$ The strongest case for formation of any of the 5-membered hetarynes can be made for thiophynes $\mathbf{1 . 7 7}-\mathbf{1 . 7 9}$, especially the 3,4-thiophyne (1.78). ${ }^{46}$ It was suggested that the longer $\mathrm{C}-\mathrm{S}$ bond would help relieve some of the strain present in these molecules compared to other 5-
membered hetarynes. Unfortunately, isolated yields of cycloadducts suggestive of $\mathbf{1 . 7 8}$ are \leq 30%. Thus, although these species may be accessible, their synthetic utility is currently limited.

Figure 1.13. 2,3-Indolyne and other 5-Membered Hetarynes

1.4 Use of Hetarynes in Total Synthesis

Despite early limitations, hetarynes are now useful tools for the total synthesis of complex molecules. Many of the targets that have been accessed using hetaryne chemistry are shown in Figure 1.14. Indolynes (or related species) have found use in the synthesis of C4substituted indole derivatives, ${ }^{47}$ including lysergic acid (1.80), ${ }^{35 \mathrm{c}}$ various makaluvamines $\mathbf{(1 . 8 1)},{ }^{36}$ and members of the welwitindolinone (1.82) $)^{48}$ and indolactam $(\mathbf{1 . 8 3})^{49}$ alkaloid families. All of these syntheses utilize the electrophilic nature of the indolyne to functionalize C 4 of the indole ring, a position that is often difficult to access. Additionally, the indole diterpenoid, tubingensin $\mathrm{A}(\mathbf{1 . 8 4})$ was prepared by our laboratory using a related carbazolyne intermediate. ${ }^{50}$ Finally, indolynes have been utilized as cycloaddition partners for the synthesis of cis-trikentrin A (1.85) and herbindole B(1.86). ${ }^{37 c, e}$ Pyridynes have found use mainly as cycloaddition partners for the synthesis of molecules such as ellipticine (1.87) ${ }^{24 b, d, 51}$ and macrostomine (1.88) ${ }^{52}$ but also for intramolecular arylation reactions to build perlolidine (1.89) ${ }^{53}$ and eupolauramine (1.90). ${ }^{54}$

Iysergic acid (1.80) (Julia, 1969)

indolactam alkaloids (1.83)
(Garg, 2011)
(Garg, 2014)

makaluvamines (1.81) (Iwao, 1998)

N-methylwelwitindolinone C isothiocyanate (1.82)
(Garg, 2011)

tubingensin A(1.84)
(Garg, 2014)

(\pm)-cis-trikentrin A (1.85)
(\pm)-herbindole B (1.86)
(Buszek, 2009)
Accessible from Pyridynes

ellipticine (1.87) (Moody, 1984; Gribble, 1984; Sha, 1992; Guitian, 1998)

(S)-macrostomine (1.88) (Comins, 2010)

perlolidine (1.89) eupolauramine (1.90)
(Singh, 1976)

(Couture, 2001)

Figure 1.14. Natural Products Synthesized using Heterocyclic Arynes

Pyridynes have a rich history in total synthesis dating back to the seminal report by Singh and coworkers in 1976 on the synthesis of the grass alkaloid perlolidine (1.89, Scheme 1.1). ${ }^{53}$ Starting from readily available 2-amino-3-methylpyridine (1.91), the authors were able to quickly access compound 1.92. Exposure of this compound to standard aryne-forming conditions resulted in formation of the biaryl linkage to provide $\mathbf{1 . 9 4}$ in good yield. It is proposed that the aniline ring in compound $\mathbf{1 . 9 2}$ undergoes a Friedel-Crafts type intramolecular arylation reaction
with the highly reactive tethered pyridyne (see transition structure 1.93). Compound $\mathbf{1 . 9 4}$ was successfully elaborated to perlolidine (1.89) by oxidation, followed by benzyl ether cleavage.

Scheme 1.1. Singh's Synthesis of Perlolidine (1.89)

Another prominent example utilizing pyridynes in total synthesis comes from studies of ellipticine (1.87), which has been targeted by multiple groups. ${ }^{24 b, d, 51}$ In an exciting approach, Guitián examined the effect of employing substituted 3,4-pyridynes as the dienophile with a variety of dienes (Scheme 1.2). ${ }^{24 b, d}$ Although other substituted pyridynes showed variable levels of selectivity depending on the diene present, when 2-chloro-3,4-pyridyne precursor $\mathbf{1 . 9 5}$ was reacted with CsF and decorated furan $\mathbf{1 . 9 6}$, the desired regioisomer 1.97 was formed as the major product. ${ }^{55}$ Compound 1.97 was then elaborated to ellipticine (1.87).

Scheme 1.2. Guitián's Synthesis of Ellipticine (1.87)

Likewise, indolynes and related intermediates have been judiciously exploited in total synthesis. A seminal example was reported by Julia and coworkers in their formal synthesis of lysergic acid (1.80) in 1969 (Scheme 1.3). ${ }^{35 \mathrm{c}}$ The authors found that treatment of 5bromoindoline $\mathbf{1 . 9 8}$ with NaNH_{2} led to cyclized product $\mathbf{1 . 1 0 0}$ in a modest 15% yield. Tetracycle $\mathbf{1 . 1 0 0}$ presumably arises from attack of the vinylogous enolate onto the C 4 position of the indolinyne (see transition structure 1.99), where the regiochemistry is controlled by geometrical constraints. Of note, the authors reported that the use of C3-epi-1.108 did not provide any of the corresponding product when reacted under the same conditions. Tetracycle $\mathbf{1 . 1 1 0}$ could be elaborated to the natural product following the procedure reported by Woodward and coworkers. ${ }^{56}$ Despite the low yield in the key aryne step, this synthesis validated the notion that indolyne-type intermediates could be used to build complex heterocyclic compounds.

Scheme 1.3. Julia's Formal Synthesis of Lysergic Acid (1.80)

As mentioned earlier, our laboratory has been interested in the development of indolyne methodology, and we have recently employed these intermediates in several total syntheses. One class of compounds that appeared ideally suited for a test of indolyne methodology was the indolactam alkaloids (e.g., Figure $1.15, \mathbf{1 . 1 0 1}-1.104) .{ }^{57}$ These compounds have been widely studied for decades because of their interesting structures and pharmacological properties. Although these compounds are most well known for their use in studies aimed at better understanding tumor growth, indolactam $\mathrm{V}(\mathbf{1 . 1 0 1})$ is also known to function as a stem cell differentiator. ${ }^{58}$ Structurally, these alkaloids are characterized by several unique features including a conformationally-flexible 9-membered lactam and a 3,4-disubstituted indole core. Additionally, compounds $1.102-1.104$ possess $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ linkages at C 7 , which present a significant challenge for synthesis.

(-)-indolactam V (1.101)
(tumor promoter; stem cell differentiator)

(-)-pendolmycin (1.102)
(tumor promoter)

(-)-lyngbyatoxin A (1.103) (skin tumor promoter; stem cell differentiator; cervical carcinoma cytotoxicity)

(-)-teleocidin A-2 (1.104) (tumor promoter)

Figure 1.15. Representative Indolactam Alkaloids 1.101-1.104

With the goal of accessing the four natural products $\mathbf{1 . 1 0 1} \mathbf{- 1 . 1 0 4}$ through common latestage intermediates, we first pursued an efficient means to assemble the common core of these targets (Scheme 1.4). ${ }^{49}$ Beginning from commercially available 5-benzyloxyindole (1.105), we were able to access multi-gram quantities of bromosilyltriflate $\mathbf{1 . 1 0 6}$. Of note, this efficient
conversion proceeded in 7 steps with an overall yield of 62%. With silyltriflate $\mathbf{1 . 1 0 6}$ in hand, we were poised to build the $\mathrm{C} 4-\mathrm{N}$ linkage using indolyne chemistry. We found that exposure of silyltriflate $\mathbf{1 . 1 0 6}$ to CsF and peptide $\mathbf{1 . 1 0 7}$ furnished adduct $\mathbf{1 . 1 0 9}$ in $\mathbf{7 5 \%}$ yield, presumably by way of 4,5-indolyne intermediate $\mathbf{1 . 1 0 8}$. Although 4,5-indolynes typically react to give products of C5 substitution, the presence of the C6 bromide in $\mathbf{1 . 1 0 8}$ overturns the usual preference by perturbing the distortion of the aryne. ${ }^{49 \mathrm{a}}$ Indolyne adduct $\mathbf{1 . 1 0 9}$ could be elaborated to the natural product $\mathbf{1 . 1 0 1}$ in several steps including reductive removal of the aryl bromide and ring closure at C3.

Scheme 1.4. Total Synthesis of (-)-Indolactam V (1.101)

Having synthesized indolactam V (1.101) using indolyne methodology, we used $\mathbf{1 . 1 0 1}$ as a stepping-stone toward indolactam alkaloids $\mathbf{1 . 1 0 2}-\mathbf{1 . 1 0 4}$ (Figure 1.16). ${ }^{49 \mathrm{~b}}$ To access pendolymycin (1.102), $\mathbf{1 . 1 0 1}$ was elaborated to bromide $\mathbf{1 . 1 1 0}$ using a simple two-step sequence. We then surveyed a variety of reaction conditions to assemble the critical $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ linkage at C 7 . We were delighted to find that bromide $\mathbf{1 . 1 1 0}$ underwent coupling with zinc enolate $\mathbf{1 . 1 1 1}$ to
furnish $\mathbf{1 . 1 1 2}$ in 61% yield using Hartwig's enolate coupling methodology. ${ }^{59}$ It is notable that this complexity-generating reaction proceeds smoothly, despite the presence of a tertiary amine and the free NHs present in $\mathbf{1 . 1 1 0}$. From $\mathbf{1 . 1 1 2}$, a three-step sequence involving amide reduction with Schwartz's reagent, olefination of the resulting aldehyde, and deprotection of the primary alcohol furnished pendolmycin (1.112). An analogous approach was used to prepare lyngbyatoxin A (1.113), in addition to its congener teleocidin A-2 (1.114) as suggested in Figure 1.16.
Total Synthesis of Pendolmycin

Total Synthesis of Lyngbyatoxin A and Teleocidin A-2

Figure 1.16. Synthesis of C7 Substituted Indolactam Alkaloids

In a more recent example, our laboratory has reported what is arguably one of the most complex aryne cyclizations to date while pursuing the welwitindolinone alkaloids that bear a
bicyclic [4.3.1] core (e.g., $\mathbf{1 . 8 2}$ and $\mathbf{1 . 1 1 5} \mathbf{- 1 . 1 1 9}$, Figure 1.17). The isolation of these compounds was reported by Moore and co-workers through two publications in 1994 and 1999. ${ }^{60}$ Although the structures of these compounds are relatively compact, these natural products bear highly functionalized cores that pose tremendous challenges to synthetic chemists. Over the past two decades, at least fifteen laboratories have reported approaches toward these captivating natural products ${ }^{61}$ and several recent total syntheses have been reported. ${ }^{62,63,48}$

N-methylwelwitindolinone C isothiocyanate (1.82)

C3-hydroxy-Nmethylwelwitindolinone C isothiocyanate (1.116)

N-methylwelwitindolinone D isonitrile (1.118)

N-methylwelwitindolinone C isonitrile (1.115)

C3-hydroxy-Nmethylwelwitindolinone C isonitrile (1.117)

N-methylwelwitindolinone B isothiocyanate (1.119)

Figure 1.17. [4.3.1]-Bicyclic Welwitindolinone Natural Products

As shown in Scheme 5, our synthesis began from known enone 1.120, which is prepared using a modification of Natsume's five-step procedure reported in the enantiomeric series. ${ }^{64}$

Cleavage of the pivalate ester, followed by iodine-catalyzed conjugate addition of 5-bromo- N methylindole provided indole $\mathbf{1 . 1 2 1}$ in 54% yield over two steps. Silyl protection of the alcohol then furnished TBS ether 1.122, the key substrate for constructing the complex [4.3.1]-bicyclic core. Exposure of bromoindole $\mathbf{1 . 1 2 2}$ to the complex base conditions first developed by Caubere ${ }^{65}$ led to generation of intermediate $\mathbf{1 . 1 2 3}$, which contains both an enolate and 4,5indolyne. Cyclization led to the desired C-arylated product $\mathbf{1 . 1 2 4}$ in 33% yield, as well as the corresponding O-arylated product in 13% yield. Product $\mathbf{1 . 1 2 4}$ possesses the necessary tetracyclic core, including the congested linkage at C 4 of the indole ring. This intermediate was successfully converted to the elusive natural product N-methylwelwitindolinone C isothiocyanate (1.82). ${ }^{48}$ The indolyne cyclization was subsequently utilized for the synthesis of a number of related family members including isonitrile derivative $\mathbf{1 . 1 1 5}$ and the C3-hydroxy derivatives 1.116 and $1.117 .{ }^{48 b}$ Additionally, indolyne cyclization product $\mathbf{1 . 1 2 4}$ has been converted to another family member, N-methylwelwitindolinone D isonitrile (1.118), ${ }^{48 \mathrm{~d}}$ which contains an additional ethereal linkage.

Scheme 1.5. Total Synthesis of Welwitindolinone Alkaloids

Most recently, we have further tested the viability of using heterocyclic arynes to construct complex scaffolds in our pursuit of the tubingensin natural products (1.84 and $\mathbf{1 . 1 2 5}$, Figure 1.18). Both tubingensins A and B were isolated in 1989 by Gloer and co-workers from the fungus Aspergillus tubingensis. ${ }^{66,67}$ In addition to possessing interesting biological activities
(e.g., antiviral, anticancer properties), these compounds have unique and challenging structures. For example, tubingensin $A(1.84)$ contains a densely functionalized cis-decalin scaffold, appended to a disubstituted carbazole unit. The decalin contains four stereogenic centers, all of which are contiguous and two of which are vicinal and quarternary. Although arynes have not previously been used to assemble vicinal quaternary stereocenters, we envisioned the use of a 'carbazolyne' intermediate to achieve this goal and ultimately establish the tubingensin A skeleton. ${ }^{50,68}$

tubingensin A(1.84)

tubingensin B(1.125)

carbazolyne (1.126)

Figure 1.18. Tubingensins A and B

Our concise total synthesis of tubingensin $\mathrm{A}(\mathbf{1 . 8 4})$ is summarized in Scheme 1.6. Beginning from silyl enol ether 1.127, which was readily obtained from (+)-dihydrocarvone, we implemented a hydroboration β-alkyl Suzuki-Miyaura coupling sequence. Thus, $\mathbf{1 . 1 2 7}$ was first treated with $9-\mathrm{BBN}$ to generate the requisite alkyl boron intermediate. Subsequent coupling with bromotriflate $\mathbf{1 . 1 2 8}$ in the presence of catalytic $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ furnished product $\mathbf{1 . 1 2 9}$ in 64% yield. Of note, neither the bromide or silyl enol ether were disturbed in this transformation. With the C12-C13 linkage intact, $\mathbf{1 . 1 2 9}$ was elaborated to silyl enol ether $\mathbf{1 . 1 3 0}$ in three steps. In the critical carbazolyne cyclization (see transition structure 1.131), exposure of $\mathbf{1 . 1 3 0}$ to NaNH_{2} / t -

BuOH delivered the desired product $\mathbf{1 . 1 3 2}$ in 84% yield. The transformation proceeds with complete diastereoselectivity and, importantly, introduces the challenging vicinal quaternary stereocenters of the natural product. Finally, a deprotection / reduction sequence furnished the natural product $\mathbf{1 . 8 4}$. The total synthesis of tubingensin $\mathrm{A}(\mathbf{1 . 8 4})$ requires only 9 steps (longest linear sequence), beginning from known compounds, and highlights the efficiency by which heterocyclic arynes may be used to build stereocenter-rich architectures.

Scheme 1.6. Total Synthesis of (+)-Tubingensin A (1.84)

1.5 Conclusions

Over the last 60 years, the chemistry of heterocyclic arynes has lagged behind that of their all-carbon counterparts such as ortho-benzyne. Although many of the early claims were questionable regarding the generation of these reactive intermediates, more recent studies have demonstrated that these species are not only accessible, but offer a unique alternative for the synthesis of substituted heterocycles. The increasing popularity of easy-to-handle precursors, such as o-trimethylsilyl triflates, allow for the generation of hetarynes under mild conditions that allow for a significantly expanded scope of trapping agents to be employed. In fact, some heterocyclic aryne silyltriflate precursors are now commercially available. Additionally, the high reactivity of hetarynes can be exploited for the construction of complex motifs that would otherwise be difficult to access. It is envisioned that the development of even more exotic heterocyclic arynes and trapping agents will be seen in the future, along with more challenging applications in the synthesis of drugs and natural products.

1.6 Notes and References

${ }^{1}$ For reviews of hetarynes, see: (a) Kauffmann, T. Angew. Chem. Int. Ed. 1965, 4, 543618. (b) Reinecke, M. G. Tetrahedron 1982, 38, 427-498. (c) Bronner, S. M.; Goetz, A. E. Garg, N. K. Synlett 2011, 2599-2604. (d) Goetz, A. E.; Garg, N. K. J. Org. Chem. 2014, 79, 846-851.
${ }^{2}$ For reviews of ortho-benzyne, see: (a) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191-218. (b) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550-3577. (c) Gampe C. M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012,

51, 3766-3778; (d) Bhunia, A.; Yetra S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140-
3152. (e) Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215-291. (f) Pellisier, H.; Santelli, M. Tetrahedron 2003, 59, 701-730.
(a) Gilman, H.; Avakian, S. J. Am. Chem. Soc. 1945, 67, 349-351. (b) Gilman H.; Kyle, R. H. J. Am. Chem. Soc. 1948, 70, 3945-3946. (c) Benkeser, R. A.; Severson, R. G. J. Am. Chem. Soc. 1949, 71, 3838-3839. (d) Benkeser, R. A.; Buting, W. E. J. Am. Chem. Soc. 1952, 74, 3011-3014. 1953, 75, 3290-3291. H. Justus Liebigs Ann. Chem. 1955, 594, 137-158.

Wittig, G.; Pohmer, L. Angew. Chem. 1955, 67, 348.
(a) Nam, H. H.; Leroi, G. E.; Harrison, J. F. J. Phys. Chem. 1991, 95, 6514-6519. (b) Debbert, S. L.; Cramer, S. L. Int. J. Mass Spectrom. 2000, 201, 1-15. (c) Mariet, N.; Ibrahim-Ouali, M.; Parrain, J.-L.; Santelli, M. J. Mol. Struct.: THEOCHEM 2004, 679, 53-58. (d) Rau, N. J.; Wenthold, P. G. J. Phys. Chem. A 2011, 115, 10353-10362. (e) Sánchez-Sanz, G.; Alkorta, I.; Trujillo, C.; Elguero, J. Tetrahedron 2012, 68, 6548-6556.
${ }^{10}$ (a) Gozzo, F. C.; Eberlin, M. N. J. Org. Chem. 1999, 64, 2188-2193. (b) Sparrapan, R.; Mendes, M. A.; Carvalho, M.; Eberlin, M. N. Chem. Eur. J. 2000, 6, 321-326.
${ }^{11}$ For the corresponding 2,3- and 3,4-pyridyne- N-oxides, see: (a) Kato, T.; Niitsuma, T. Chem. Pharm. Bull. 1965, 13, 963-968. (b) Martens, R. J.; den Hertog, H. J. Recl. Trav. Chim. Pays-Bas 1967, 86, 655-669. (c) Kato, T. Niitsuma, T. Heterocycles 1973, 1, 233-236.
${ }^{12}$ For studies pertaining to the related quinolynes, see references 29,33 , and the following: (a) Kauffmann, T.; Boettcher, F.-P.; Hansen, J. Justus Liebigs Ann. Chem. 1962, 659, 102-109. (b) Grig-Alexa, I.-C.; Garnier, E.; Finaru, A.-L.; Ivan, L.; Jarry, C.; Léger, J.M.; Caubère, P.; Guillaumet, G. Synlett 2004, 2000-2004. (c) Collis, G. E.; Burrell, A. K. Tetrahedron Lett. 2005, 46, 3653-3656. (d) Pangamte, H. N.; Lyngdoh, R. H. D. J. Phys. Chem. A 2010, 114, 2710-2726.
${ }^{13}$ Treatment of 3-halopyridines has been demonstrated to selectively generate 3,4-pyridyne (1.4) over 2,3-pyridyne (1.22), see: Zoltewicz, J. A.; Smith, C. L. Tetrahedron 1969, 25, 4331-4337.
${ }^{14}$ Fleet, G. W. J. Fleming, I. J. Chem. Soc. C 1969, 1758-1763.
${ }^{15}$ Kramer, J. Berry, R. S. J. Am. Chem. Soc. 1972, 94, 8336-8347.
${ }^{16}$ Furukawa, N.; Shibutani, T.; Fujihara, H. Tetrahedron Lett. 1987, 28, 2727-2730.
${ }^{17}$ Kauffmann, T.; Boettcher, F.-P. Chem. Ber. 1962, 95, 949-955.
18 Tsukazaki, M.; Snieckus, V. Heterocycles 1992, 33, 533-536.
${ }^{19}$ Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211-1214.
${ }^{20}$ Pyridyne 1.4 showed a strong absorbance at $2085 \mathrm{~cm}^{-1}$, similar to the signal observed at $2082 \mathrm{~cm}^{-1}$ for o-benzyne (1.1), which is attributed to the $\mathrm{C}-\mathrm{C}$ triple bond; see: Nam, H.H.; Leroi, G. E. J. Am. Chem. Soc. 1988, 110, 4096-4097.
${ }^{21}$ For metal-catalyzed $[2+2+2]$ cycloadditions involving 3,4-pyridynes, see: (a) Iwayama, T.; Sato, Y. Chem. Commun. 2009, 5245-5247. (b) Sato, Y.; Iwayama, T. Heterocycles 2010, 80, 917-924.
${ }^{22}$ Levine, R.; Leake, W. W. Science 1955, 121, 780.
${ }^{24}$ (a) Vinter-Pasquier, K.; Jamart-Grégoire, B.; Caubère, P. Heterocycles 1997, 45, 21132129. (b) Díaz, M. T.; Cobas, A.; Guitián, E.; Castedo, L. Synlett 1998, 157-158. (c) Wang, A.; Tandel, S.; Zhang, H.; Huang, Y.; Holdeman, T. C.; Biehl, E. R. Tetrahedron 1998, 54, 3391-3400. (d) Díaz, M. T.; Cobas, A.; Guitián, E.; Castedo, L. Eur. J. Org. Chem. 2001, 4543-4549.

Goetz, A. E.; Garg, N. K. Nat. Chem. 2013, 5, 54-60.
For recent reviews of nickel-catalyzed couplings involving $\mathrm{C}-\mathrm{O}$ bonds, see: (a) Rosen, B . M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346-1416. (b) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem. Eur. J. 2011, 17, 1728-1759. (c) Mesganaw, T.; Garg, N. K. Org. Process Res. Dev. 2013, 17, 29-39. (d) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013, 19-30.

For the Ni-catalyzed amination of aryl sulfamates, see: (a) Ramgren, S. D.; Silberstein, A. L.; Yang, Y.; Garg, N. K. Angew. Chem. Int. Ed. 2011, 50, 2171-2173. (b) Mesganaw, T.; Silberstein, A. L.; Ramgren, S. D.; Fine Nathel, N. F.; Hong, X.; Liu, P.; Garg, N. K. Chem. Sci. 2011, 2, 1766-1771. (c) Hie, L.; Ramgren, S. D.; Mesganaw, T.; Garg, N. K.; Org. Lett. 2012, 14, 4182-4185.
${ }^{28}$ Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2002, 41, 3247-3249.
${ }^{29}$ Saito, N.; Nakamura, K.-i.; Shibano, S.; Ide, S.; Minami, M.; Sato, Y. Org. Lett. 2013, 15, 386-389.
${ }^{30}$ Several silyltriflate hetaryne precursors are available from Aldrich Chemical Co., Inc. The precursors and their product numbers are as follows: 3,4-pyridyne precursor 1.34: L511633; bromopyridyne precursor 1.38: L511641; 2,3-pyridyne precursor 1.45: L511668; $1.60(\mathrm{R}=\mathrm{H})$ 4,5-indolyne precursor: L511625.

Martens, R. J.; den Hertog, H. J. Tetrahedron Lett. 1962, 3, 643-645.
Walters, M. A.; Shay, J. J. Synth. Commun. 1997, 27, 3573-3579.
Fang, Y.; Larock, R. C. Tetrahedron 2012, 68, 2819-2826.
${ }^{34}$ Julia, M.; Huang, Y.; Igolen, J. C. R. Acad. Sci., Ser. C 1967, 265, 110-112.
(a) Julia, M.; Le Goffic, F.; Igolen, J.; Baillarge, M. C. R. Acad. Sci., Ser. C 1967, 264, 118-120. (b) Igolen, J.; Kolb, A. C. R. Acad. Sci., Ser. C 1969, 269, 54-56. (c) Julia, M.; Le Goffic, F.; Igolen, J.; Baillarge, M. Tetrahedron Lett. 1969, 10, 1569-1572. (d) Julia, M.; Igolen, J.; Kolb, A. C. R. Acad. Sci., Ser. C 1971, 273, 1776-1777.

One exception is the work of Iwao and coworkers in the synthesis of a variety of Makaluvamine natural products: Iwao, M.; Motoi, O.; Fukuda, T.; Ishibashi, F. Tetrahedron 1998, 54, 8999-9010.
(a) Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N.; VanderVelde, D. Org. Lett. 2007, 9, 4135-4137. (b) Brown, N.; Luo, D.; VanderVelde, D.; Yang, S.; Brassfield, A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 63-65. (c) Buszek, K. R.; Brown, N.; Luo, D.

Org. Lett. 2009, 11, 201-204. (d) Garr, A. N.; Luo, D.; Brown, N.; Cramer, C. J.; Buszek, K. R.; VanderVelde, D. Org. Lett. 2010, 12, 96-99. (e) Brown, N.; Luo, D.; Decapo, J. A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 7113-7115. (f) Thornton, P. D.; Brown, N.; Hill, D.; Neuenswander, B.; Lushington, G. H.; Santini, C.; Buszek, K. R. ACS Comb. Sci. 2011, 13, 443-448. (g) Nerurkar, A.; Chandrasoma, N.; Maina, L.; Brassfield, A.; Luo, D.; Brown, N.; Buszek, K. R. Synthesis 2013, 45, 1843-1852.
(a) Bronner, S. M.; Bahnck, K. B.; Garg, N. K. Org. Lett. 2009, 11, 1007-1010. (b) Cheong, P. H.-Y.; Paton, R. S.; Bronner, S. M.; Im, G-Y. J.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267-1269. (c) Im, G-Y. J.; Bronner, S. M.; Goetz, A. E.; Paton, R. S.; Cheong, P. H.-Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010, 132, 17933-17944.
${ }^{39}$ For additional references regarding the aryne distortion model, see references $1 \mathrm{c}, 1 \mathrm{~d}, 25$, and the following: Bronner, S. M.; Mackey, J. L.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 13966-13969.
${ }^{40}$ Candito, D. A.; Dobrovolsky, D.; Lautens, M. J. Am. Chem. Soc. 2012, 134, 1557215580.
${ }^{41}$ (a) Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P. Nature 2012, 490, 208-212. (b) Niu, D.; Willoughby, P. H.; Woods, B. P.; Baire, B.; Hoye, T. R. Nature 2013, 501, 531-534. (c) Chen, J.; Baire, B.; Hoye, T. R. Heterocycles 2014, 88, 11911200. (d) Niu, D.; Hoye, T. R. Nat. Chem. 2014, 6, 34-40. (e) Hoye, T. R.; Baire, B.; Wang, T. Chem. Sci. 2014, 5, 545-550. (f) Niu, D.; Wang, T.; Woods, B. P.; Hoye, T. R. Org. Lett. 2014, 16, 254-257.

42 (a) Yun, S. Y.; Wang, K.-P.; Lee, N.-K.; Mamidipalli, P.; Lee, D. J. Am. Chem. Soc. 2013, 135, 4668-4671. (b) Wang, K.-P.; Yun, S. Y.; Mamidipalli, P.; Lee, D. Chem. Sci. 2013, 4, 3205-3211. (c) Karmakar, R.; Mamidipalli, P.; Yun, S. Y.; Lee, D. Org. Lett. 2013, 15, 1938-1941. (d) Karmakar, R.; Yun, S. Y.; Wang, K.-P.; Lee, D. Org. Lett. 2014, 16, 6-9.

43

44
(a) Muller, H. Dissertation, University of Heidelberg, 1964. (b) Bergman, J.; Eklund, N. Tetrahedron 1980, 36, 1439-1443.

Liu, J.-H.; Chan, H.-W.; Xue, F.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. J. Org. Chem. 1999, 64, 1630-1634.

46
(a) Ye, X.-S.; Li, W.-K.; Wong, H. N. C. J. Am. Chem. Soc. 1996, 118, 2511-2512. (b) Reinecke, M. G.; Newsom, J. G.; Chen, L.-J. J. Am. Chem. Soc. 1981, 103, 2760-2769.

A recent Reaxys search showed >700 natural products contain a C 4 -substituted indole motif.
(a) Huters, A. D.; Quasdorf, K. W.; Styduhar, E. D.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 15797-15799. (b) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo, D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 1396-1399. (c) Styduhar, E. D.; Huters, A. D.; Weires, N. A.; Garg, N. K. Angew. Chem. Int. Ed. 2013, 52, 12422-12425.
${ }^{49}$ (a) Bronner, S. M.; Goetz, A. E.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 3832-3835. (b) Fine Nathel, N. F.; Shah, T. K.; Bronner, S. M.; Garg, N. K. Chem. Sci. 2014, 5, 2184-2190.

50
Goetz, A. E.; Silberstein, A. L.; Corsello, M. A.; Garg, N. K. J. Am. Chem. Soc. 2014, 136, 3036-3039.
${ }^{51}$ (a) May, C.; Moody, C. J. J. Chem. Soc. Chem. Commun. 1984, 926-927. (b) Gribble, G. W.; Saulnier, M. G.; Sibi, M. P.; Obaza-Nutaitis, J. A. J. Org. Chem. 1984, 49, 45184523. (c) May, C.; Moody, C. J. J. Chem. Soc. Perkin Trans. 1 1988, 247-250. (d) Sha, C.-K.; Yang, J.-F. Tetrahedron 1992, 48, 10645-10654.
${ }^{2}$ Enamorado, M. F.; Ondachi, P. W.; Comins, D. L. Org. Lett. 2010, 12, 4513-4515.
${ }^{53}$ (a) Kessar, S. V.; Gupta, Y. P.; Pahwa, P. S.; Singh, P. Tetrahedron Lett. 1976, 17, 32073208. (b) Kessar, S. V.; Singh, P. Indian J. Chem., Sec. B 2001, 40B, 1129-1131.
${ }^{54}$ Hoarau, C.; Couture, A.; Cornet, H.; Deniau, E.; Grandclaudon, P. J. Org. Chem. 2001, 66, 8064-8069.
${ }^{55}$ A mixture of cycloaddition adducts was obtained in a 2.4:1 ratio.
${ }^{56}$ Kornfeld, E. C.; Fornefeld, E. J.; Kline, G. B.; Mann, M. J.; Morrison, D. E.; Jones, R. G.; Woodward, R. B. J. Am. Chem. Soc. 1956, 78, 3087-3114.
${ }^{57}$ For pertinent reviews on (-)-indolactam V isolation, tumor-promoting activity, and derivatives, see: (a) Irie, K.; Koshimizu, K. Mem. Coll. Agric. Kyoto Univ. 1988, 132, 159. (b) Irie, K.; Koshimizu, K. Comments Agric. Food Chem. 1993, 3, 1-25. (c) Irie, K. Nippon Nogei Kagaku Kaishi 1994, 68, 1289-1296. (d) Irie, K.; Nakagawa, Y.; Ohigashi, H. Curr. Pharm. Des. 2004, 10, 1371-1385. (e) Irie, K.; Nakagawa, Y.; Ohigashi, H. Chem. Rec. 2005, 5, 185-195.

58 Chen, S.; Borowiak, M.; Fox, J. L.; Maehr, R.; Osafune, K.; Davidow, L.; Lam, K.; Peng, L. F.; Schreiber, S. L.; Rubin, L. L.; Melton, D. Nat. Chem. Biol. 2009, 5, 258-265.

60
(a) Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson, G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am. Chem. Soc. 1994, 116, 9935-9942. (b) Jimenez, J. L.; Huber, U.; Moore, R. E.; Patterson, G. M. L. J. Nat. Prod. 1999, 62, 569572.
${ }^{61}$ Huters, A. D.; Styduhar, E. D.; Garg, N. K. Angew. Chem. Int. Ed. 2012, 51, 3758-3765 and see references therein.
${ }^{62}$ For formal total syntheses, see: (a) Fu, T.-h.; McElroy, W. T.; Shamszad, M.; Martin, S. F. Org. Lett. 2012, 14, 3834-3837. (b) Fu, T.-h.; McElroy, W. T.; Shamszad, M.; Heidebrecht, Jr., R. W.; Gulledge, B.; Martin, S. F. Tetrahedron 2013, 69, 5588-5603.
${ }^{63}$ (a) Bhat, V.; Allan, K. M.; Rawal, V. H. J. Am. Chem. Soc. 2011, 133, 5798-5801. (b) Allan, K. M.; Kobayashi, K.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 1392-1395.
${ }^{64}$ Sakagami, M.; Muratake, H.; Natsume, M. Chem. Pharm. Bull. 1994, 42, 1393-1398.
${ }^{65}$ Caubere, P. Acc. Chem. Res. 1974, 7, 301-308.
${ }^{66}$ TePaske, M. R.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Org. Chem. 1989, 54, 4743-4746.
${ }^{67}$ TePaske, M. R.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. Tetrahedron Lett. 1989, 30, 5965-5968.
${ }^{68}$ For an elegant total synthesis of 1.84, see: Bian, M.; Wang, Z.; Xiong, X.; Sun, Y.; Matera, C.; Nicolaou, K. C.; Li, A. J. Am. Chem. Soc. 2012, 134, 8078-8081.

CHAPTER TWO

Total Syntheses of Indolactam Alkaloids (-)-Indolactam V, (-)-Pendolmycin, (-)-Lyngbyatoxin A, and (-)-Teleocidin A-2

Noah F. Fine Nathel, Tejas K. Shah, Sarah M. Bronner, and Neil K. Garg.

Chem. Sci. 2014, 5, 2184-2190.

2.1 Abstract

We report the total syntheses of $(-)$-indolactam V and the C 7 -substituted indolactam alkaloids (-)-pendolmycin, (-)-lyngbyatoxin A, and (-)-teleocidin A-2. The strategy for preparing indolactam V relies on a distortion-controlled indolyne functionalization reaction to establish the $\mathrm{C} 4-\mathrm{N}$ linkage, in addition to an intramolecular conjugate addition to build the conformationally-flexible nine-membered ring. The total synthesis of indolactam V then sets the stage for the divergent synthesis of the other targeted alkaloids. Specifically, late-stage $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ cross-couplings on an indolactam V derivative are used to introduce the key C 7 substituents and the necessary quaternary carbons. These challenging couplings, in addition to other delicate manipulations, all proceed in the presence of a basic tertiary amine, an unprotected secondary amide, and an unprotected indole. Thus, our approach not only enables the enantiospecific total syntheses of four indolactam alkaloids, but also serves as a platform for probing complexitygenerating and chemoselective transformations in the context of alkaloid total synthesis.

2.2 Introduction

Natural products belonging to the family of indolactam alkaloids ${ }^{1}$ (e.g., 2.1-2.4, Figure 2.1) have been widely studied for their pharmacological properties. The most well-known of these compounds is indolactam V(2.1), which was first isolated in $1984 .{ }^{2}$ Indolactam V (2.1) functions as an efficient tumor promoter as a result of its ability to bind to protein kinase C (PKC). Accordingly, 2.1 has been used in a variety of studies to better understand mammalian tumor growth. ${ }^{3,4}$ Similarly, C7-substituted indolactams 2.2-2.4 have been valued for their tumorpromoting abilities. It should be noted that each of 2.1-2.4 and their derivatives exhibit biological functions which range from stem-cell differentiation ${ }^{5}$ to anti-bacterial, ${ }^{6}$ anti-malarial ${ }^{7}$ and anti-cancer ${ }^{8}$ activities.

The attractive biological profiles of indolactam alkaloids have prompted numerous synthetic investigations. These efforts have led to several total syntheses of 2.1, ${ }^{9,10}$ as well as completed syntheses of 2.2-2.4. ${ }^{11,12}$ A central challenge to accessing each of these alkaloids involves assembly of the parent 3,4-disubstituted indole framework possessing a conformationally-flexible ${ }^{13} 9$-membered lactam. To this end, most strategies to access the medium-sized ring have involved amide bond formation as the key step. ${ }^{9}$ With regard to 2.2-2.4, introduction of the $\mathrm{C} 7 \mathrm{sp}^{2}-\mathrm{sp}^{3}$ linkage presents an additional challenge. The few successful approaches to 2.2-2.4 all involve early introduction of the C7-linked quaternary carbon, followed by assembly of the indole core. ${ }^{11,12}$

(-)-indolactam V (2.1) (tumor promoter; stem cell differentiator)

(-)-pendolmycin (2.2)
(tumor promoter)

(-)-lyngbyatoxin A (2.3)
(skin tumor promoter; stem cell differentiator; cervical carcinoma cytotoxicity)

(-)-teleocidin A-2 (2.4) (tumor promoter)

Figure 2.1. Representative Indolactam Alkaloids 2.1-2.4

We envisioned a strategically distinct approach to indolactam V (2.1) and related C7substituted alkaloids 2.2-2.4, which is summarized in Scheme 2.1. Specifically, the 9-membered ring would be introduced through two key steps from an appropriate indole building block: namely, intermolecular assembly of the $\mathrm{C} 4-\mathrm{N}$ bond and ring closure at C 3 . This would be implemented in practice by accessing an indolyne in situ, ${ }^{14,15,16}$ which would undergo selective C4-trapping by an amine nucleophile ($\mathbf{2 . 5} \boldsymbol{\rightarrow} \mathbf{2 . 6}$). Elaboration of adduct $\mathbf{2 . 6}$ to ester $\mathbf{2 . 7}$ would be followed by a challenging conjugate addition at C 3 to forge the 9 -membered ring en route to 2.1. We hypothesized that 2.1 could be used as a precursor to the C 7 -substituted indolactam alkaloids, without the use of N-protecting groups. Our divergent strategy would require the use of efficient cross-couplings to build the $\mathrm{sp}^{2}-\mathrm{sp}^{3} \mathrm{C}-\mathrm{C}$ linkages and introduce the quaternary carbons (2.1 $\boldsymbol{\rightarrow} \mathbf{2 . 8} \boldsymbol{\rightarrow} \mathbf{2 . 2 - 2 . 4}$). Achieving alkylative cross-couplings at C 7 of indoles can be difficult, and only a few such examples are known in the presence of unprotected indole nitrogens. ${ }^{17}$ Moreover, to our knowledge, there are no examples of $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ cross-couplings to introduce quaternary C 7 substituents on indole substrates in the literature.

Scheme 2.1. Synthetic Strategy Toward 2.1 and C7 Substituted Indolactam Alkaloids 2.2-2.4

Synthetic Challenges

- Regioselective indolyne trapping to forge C4-N bond
- Cyclization at C3 to build 9-membered ring
- Late-stage introduction of C7 substituent ($s p^{2}-s p^{3} C-C$ bond, quaternary carbon)
- Late-stage manipulations with free NHs and tertiary amine

We herein describe the enantiospecific total syntheses of indolactam alkaloids 2.1-2.4. As we have previously reported a formal total synthesis of 2.1, ${ }^{10}$ aside from a brief discussion of optimization of key steps, this manuscript focuses on C7 functionalization studies and the divergent total syntheses of the less well-studied targets 2.2-2.4. This study not only leads to the generation of several natural products enantiospecifically, but also serves as an exercise aimed at probing complexity-generating and chemoselective transformations in alkaloid total synthesis.

2.3 Results and Discussion

2.3.1 Optimization of the Total Synthesis of Indolactam V (2.1)

Although our previous studies toward 2.1 validated our approach, we sought to improve several key steps of our formal synthesis ${ }^{10}$ and render the route suitable for scale-up (Scheme 2.2). We first optimized the synthesis of indolyne precursor $\mathbf{2 . 9}$, which can now be obtained in 7 steps from commercially available materials in 62% overall yield (previously 27% yield, over 7 steps). ${ }^{18}$ Next, treatment of silyltriflate $\mathbf{2 . 9}$ with peptide $\mathbf{2 . 1 0}$ in the presence of CsF in acetonitrile efficiently furnished indolyne adduct $\mathbf{2 . 1 1}$ and established the key $\mathrm{C} 4-\mathrm{N}$ linkage. ${ }^{19,20}$ The regioselectivity in the indolyne trapping is governed by aryne distortion, ${ }^{15 a, b}$ which arises from the presence of the inductively-withdrawing C6 bromide substituent. ${ }^{10}$ After elaborating 2.11 to α, β-unsaturated ester 2.7, ZrCl_{4}-mediated cyclization ${ }^{21}$ provided 2.12 as a single diastereomer in 90% yield. ${ }^{22}$ As $\mathbf{2 . 1 2}$ possesses the undesired stereochemical configuration at C9, we developed optimal conditions to facilitate its epimerization based on the protocol reported by Nakatsuka. ${ }^{9}$ c Treatment of $\mathbf{2 . 1 2}$ with NaHCO_{3} in MeOH at $40{ }^{\circ} \mathrm{C}$ delivered a separable mixture of recovered $\mathbf{2 . 1 2}$ and the desired epimer 2.13. Reduction of $\mathbf{2 . 1 3}$ delivered indolactam V (2.1), which was subsequently protected to give silyl ether $\mathbf{2 . 1 4}$ in 90% yield over two steps. Using our optimized route, we have prepared over 500 mg of $\mathbf{2 . 1 4}$ for use in subsequent functionalization efforts.

Scheme 2.2. Optimized Synthesis of Indolactam V (2.1) and 2.14

2.3.2 Cross-Coupling to Introduce the $\mathbf{C} 7 \mathbf{s p}^{\mathbf{2}}-\mathbf{s p}^{\mathbf{3}}$ Linkage and the Key Quaternary Carbon

With access to late-stage compound $\mathbf{2 . 1 4}$, we turned our attention to the previously unexplored divergent approach to alkaloids 2.2-2.4. One of the most challenging aspects of this strategy involves functionalization of C7. Importantly, the methodology would have to build a new $\mathrm{sp}^{2}-\mathrm{sp}^{3} \mathrm{C}-\mathrm{C}$ linkage, containing a quaternary center, on an unprotected indole. In general, $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ couplings are far less common compared to their $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ counterparts and, as mentioned previously, no examples of such couplings to introduce quaternary carbons at C 7 of indoles are available.

We tested the viability of our alkylative coupling strategy using readily available unprotected bromoindole substrate $\mathbf{2 . 1 5}$ (Table 2.1). Enolate precursors 2.19-2.22 were examined, as the carbonyls in the presumed products could plausibly be elaborated to the olefins present in 2.2-2.4. Unfortunately, attempts to use isobutyraldehyde (2.19) as the coupling partner ${ }^{23}$ led predominantly to the recovery of starting material $\mathbf{2 . 1 5}$ with or without formation of desbromo indole 2.17 (entries 1^{24} and 2, respectively). We also tested ester 2.20 as a coupling partner, ${ }^{25}$ but only observed recovered substrate 2.15 (entries 3 and 4). Next, silylketene acetal 2.21 was employed in the desired coupling. ${ }^{26}$ To our delight, using $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$, some of the desired product 2.16b was formed, albeit with recovered substrate $\mathbf{2 . 1 5}$ (entry 5). By simply increasing the catalyst loading to $5 \mathrm{~mol} \%$, full conversion to product $\mathbf{2 . 1 6 b}$ was observed (entry 6). Zinc enolate 2.22, which was generated in situ from the corresponding a-bromoamide, was also evaluated as a potential coupling partner using Hartwig's methodology. ${ }^{27}$ Although no reaction was observed using literature conditions (entry 7), we found that the desired product 2.16c could be obtained under more forcing conditions (i.e., $15 \mathrm{~mol} \% \mathrm{Pd}$ and $80^{\circ} \mathrm{C}$) (entry 8). It should be noted that desbromo compound 2.17 and dimer 2.18 were also formed in minor quantities. To our knowledge, the successful formation of 2.16b and 2.16c represents the first simultaneous formation of an $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ bond and quaternary center at the C 7 position of an indole with an unprotected nitrogen.

Table 2.1. $\mathrm{C} 7 \mathrm{sp}^{2}-\mathrm{sp}^{3}$ Cross-Coupling on Model Substrate $\mathbf{2 . 1 5}$

entry	cross-coupling partner	conditions ${ }^{\text {a }}$	$\begin{gathered} \text { ratio }^{b} \\ 5.15: 5.16: 5.17: 5.18 \\ \hline \end{gathered}$
1		$2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, Ligand 2.23^{C} $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, dioxane, $80^{\circ} \mathrm{C}$	3.7: $0: 1$: 0
2		$2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, Ligand 2.23^{C} LiNCy_{2}, dioxane, $80^{\circ} \mathrm{C}$	1:0:0:0
3		$1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{P}(\mathrm{t}-\mathrm{Bu})_{3}$ LiNCy_{2}, toluene, $23^{\circ} \mathrm{C}$	1:0:0:0
4	2.20	$5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{P}(t-\mathrm{Bu})_{3}$ LiNCy_{2}, toluene, $23^{\circ} \mathrm{C}$	1:0:0:0

5

$1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{P}(t-\mathrm{Bu})_{3}$
$\mathrm{ZnF}_{2}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$
$5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{P}(t-\mathrm{Bu})_{3}$
ZnF
1: 3: 0: 0
6
7

$2.5 \mathrm{~mol} \%\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{PdBr}\right]_{2}$
1:0:0:0
$15 \mathrm{~mol} \%\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{PdBr}\right]_{2} \quad 0: 11.3: 2.1: 1$ toluene, $80^{\circ} \mathrm{C}$
${ }^{a}$ For detailed reaction conditions, see the experimental procedures. ${ }^{b}$ Ratios determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixtures. ${ }^{c}$ Ligand $2.23=$ diisopropyl[2'-methoxy-1,1'-binaphthalen]-2-yl.

2.3.3 Total Synthesis of (-)-Pendolmycin (2.2)

Our promising results for the cross-coupling on the model system prompted us to shift our efforts to the complex indolactam scaffold (Scheme 2.3). Treatment of $\mathbf{2 . 1 4}$ with NBS led to C7 bromination to furnish 2.24. ${ }^{28}$ Next, the critical coupling reactions using the aforementioned conditions (see Table 2.1, entries 6 and 8) were tested. Despite our previous success in coupling silylketene acetal 2.21, attempts to effect the corresponding coupling on indolylbromide $\mathbf{2 . 2 4}$ led
to no reaction. However, the coupling of bromide 2.24 with zinc enolate $\mathbf{2 . 2 2}$ delivered crosscoupled product $\mathbf{2 . 2 5}$ in 61% yield. As this complexity-generating transformation proceeds on an advanced late-stage intermediate in the presence of two free NHs and a tertiary amine to introduce an $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ linkage with a quaternary carbon, its success demonstrates the exceptional tolerance and utility of Hartwig's parent methodology. ${ }^{59}$

Scheme 2.3. C7 Functionalization of $\mathbf{2 . 1 4}$ and Introduction of Key $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ Linkage with a Quaternary Carbon Substituent

Having installed the necessary C7 substituent and the key quaternary carbon, we were able to complete the total synthesis of pendolmycin (2.2), as shown in Scheme 2.4. The morpholine amide of $\mathbf{2 . 2 5}$, which neighbors the sterically-congested quaternary carbon, was selectively reduced with the Schwartz reagent (i.e., $\left.\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}\right)^{29}$ to furnish aldehyde 2.26. Of note, competitive reduction of the secondary amide was not observed. ${ }^{30}$ Subsequent Wittig olefination of $\mathbf{2 . 2 6}$ provided the penultimate compound 2.27. Finally, exposure of $\mathbf{2 . 2 7}$ to TBAF in THF revealed the primary alcohol to deliver (-)-pendolmycin (2.2). This three-step sequence
provides a concise means to convert amide $\mathbf{2 . 2 5}$ to the natural product (2.2), without the use of N-protecting groups.

Scheme 2.4. Total Synthesis of (-)-Pendolmycin (2.2)

2.3.4 Total Synthesis of (-)-Lyngbyatoxin A (2.3) and (-)-Teleocidin A-2 (2.4)

Although structurally similar to pendolmycin (2.2), lyngbyatoxin A (2.3) and teleocidin A-2 (2.4) present additional degrees of complexity. Specifically, the sidechains appended to C7 of the indole each contain a quaternary stereocenter, in addition to an electron-rich olefin. We envisioned that both natural products 2.3 and 2.4 could be obtained from bromoindole 2.24 (see Scheme 2.3) and a prochiral cross-coupling partner.

To enable this approach, we prepared amide $\mathbf{2 . 2 9}$ and tested the key cross-coupling reaction (Scheme 2.5). Ester 2.28, which was obtained from commercial sources, first underwent α-bromination under standard conditions. ${ }^{31}$ Subsequent saponification, ${ }^{32}$ followed by CDI-
mediated coupling with morpholine, afforded amide 2.29. ${ }^{33}$ Reaction of amide $\mathbf{2 . 2 9}$ with Zn metal resulted in conversion to the corresponding zinc enolate 2.30. Gratifyingly, treatment of bromoindole 2.24 with in situ-generated enolate $\mathbf{2 . 3 0}$ under Pd-catalyzed coupling conditions gave the desired diastereomeric products $\mathbf{2 . 3 1}$ and $\mathbf{2 . 3 2}$ in 75% combined yield (d.r. $=1: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis). ${ }^{34}$ Isomers 2.31 and 2.32 were separable by silica gel chromatography. ${ }^{35}$ The formation of $\mathbf{2 . 3 1}$ and $\mathbf{2 . 3 2}$ represents the first implementation of Hartwig's amide enolate coupling methodology in the assembly of stereogenic quaternary carbons. ${ }^{59}$

Scheme 2.5. Synthesis of Morpholine Amide 2.29 and Cross-Coupling to Access Diastereomeric Adducts $\mathbf{2 . 3 1}$ and 2.32 Possessing the Necessary All-Carbon Quaternary Stereocenters

With coupled products $\mathbf{2 . 3 1}$ and $\mathbf{2 . 3 2}$ in hand, we completed the total syntheses of (-)lyngbyatoxin A (2.3) and (-)-teleocidin A-2 (2.4), respectively (Schemes 2.6 and 2.7). Amide $\mathbf{2 . 3 1}$ was reduced to aldehyde $\mathbf{2 . 3 3}$, which in turn, underwent Wittig homologation to give $\mathbf{2 . 3 4}$ (Scheme 2.6). To complete the total synthesis of (-)-lyngbyatoxin (2.3), it was necessary to deprotect the primary alcohol. Although attempts to employ TBAF led to decomposition, we
found that exposure of $\mathbf{2 . 3 4}$ to LiBF_{4} and camphorsulfonic acid (CSA) in THF at ambient temperature afforded natural product 2.3. ${ }^{28,36}$ We were delighted to find that the analogous 3-step reaction sequence facilitated the conversion of diastereomer 2.32 to (-)-teleocidin A-2 (2.4) as summarized in Scheme 2.7. Spectral data for our synthetic samples of natural products 2.2-2.4 matched literature reports. ${ }^{11,12}$

Scheme 2.6. Total Synthesis of (-)-Lyngbyatoxin A (2.3)

Scheme 2.7. Total Synthesis of (-)-Teleocidin A-2 (2.4)

2.4 Conclusion

We have completed the total syntheses of four indolactam alkaloids: (-)-indolactam V, (-)-pendolmycin, (-)-lyngbyatoxin A, and (-)-teleocidin A-2. Our approach to these alkaloids features a number of key steps, including: a) a distortion-controlled indolyne functionalization reaction to assemble a key $\mathrm{C}-\mathrm{N}$ bond; b) a Lewis acid-mediated cyclization to assemble the ninemembered lactam; and specifically, for the divergent syntheses of 2.2-2.4; c) late-stage $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ cross-couplings to introduce the C 7 sidechains and the challenging quaternary carbons; and d) a series of delicate functional group manipulations in the absence of N-protecting groups. Our studies demonstrate that indolynes serve as valuable electrophilic indole surrogates and provide an unconventional tactic for use in total synthesis. Moreover, these efforts showcase a series of complexity-generating (e.g., $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ cross-couplings) and chemoselective transformations in the context of alkaloid synthesis.

2.5 Experimental Section

2.5.1 Materials and Methods

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed through activated alumina columns). All commercially obtained reagents were used as received unless otherwise specified. 6-Benzyloxyindole was obtained from Combi-Blocks, Inc. Cesium fluoride (CsF), tris(dibenzylideneacetone)dipalladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)$, di- μ-bromobis(tri-tert-butylphosphino)dipalladium $(\mathrm{I})\left(\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{PdBr}\right]_{2}\right)$, and bis(cyclopentadienyl)zirconium(IV) chloride hydride (Schwartz's reagent) were purchased from Strem Chemicals. Tri-tert-butylphosphine and methyl trimethyl dimethylketene acetal was purchased from Sigma-Aldrich. The following reagents
were distilled prior to use: chlorotrimethylsilane (TMSCl), tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf), and tetramethylethylenediamine (TMEDA); 1,2dibromoethane was passed over basic Brockman Grade I $58 \AA$ activated alumina and then stirred over $4 \AA$ molecular sieves for 7 h before distillation. Diethylamine $\left(\mathrm{Et}_{2} \mathrm{NH}\right)$ was stirred over KOH for 1 h and then passed over basic Brockman Grade I $58 \AA$ activated alumina prior to use. DBU was stirred over $4 \AA$ molecular sieves for 3 h and then passed over basic Brockman Grade I $58 \AA$. N-pentane was dried over MgSO_{4}. N-bromosuccinamide (NBS) was purified by recrystallization from deionized water. Reaction temperatures were controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were performed at room temperature (rt, approximately $23^{\circ} \mathrm{C}$). Melting points were determined using a MEL TEMP II melting point apparatus. Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates $(0.25 \mathrm{~mm})$ and visualized using a combination of UV, anisaldehyde, iodine, vanillin, ninhydrin, and potassium permanganate staining. Silicycle Siliaflash P60 (particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers (at 500 MHz or 600 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Spectrometers (at 125 or 150 MHz). Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift. IR spectra were recorded on a Perkin-Elmer 100 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured with a Rudolf Autopol III Automatic Polarimeter. High-resolution mass spectra were obtained from the UC Irvine Mass Spectrometry Facility and the UCLA Molecular Instrumentation Center.

2.5.2 Experimental Procedures

2.5.2.1 Optimization of the Total Synthesis of Indolactam V (2.1)

\boldsymbol{N}-TIPS benzyloxyindole 2.36. To a flask containing NaH (60% dispersion in mineral oil, 0.700 $\mathrm{g}, 17.5 \mathrm{mmol}, 1.3$ equiv) at $0^{\circ} \mathrm{C}$ was added a solution of 5-benzyloxyindole $2.35(3.00 \mathrm{~g}, 13.5$ mmol) in 1,2-dimethoxyethane (40 mL). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 20 min , then TIPSCl ($4.34 \mathrm{~mL}, 20.3 \mathrm{mmol}, 1.5$ equiv) was added dropwise over 5 min . The resulting mixture was removed from the $0{ }^{\circ} \mathrm{C}$ bath and allowed to warm to $23^{\circ} \mathrm{C}$. After stirring for an additional 90 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The biphasic mixture was concentrated under reduced pressure, then further diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated, and then the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation of the solvent under reduced pressure afforded the crude product, which was further purified by flash chromatography ($3: 1$ Hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford known $\mathbf{2 . 3 6}{ }^{15 \mathrm{~b}}(4.82 \mathrm{~g}, 94 \%$ yield) as a white solid.

\boldsymbol{N}-TIPS carbamate 2.38 . Carbamate 2.38 was prepared following the general procedure described by Igarashi. ${ }^{37}$ To a solution of N-TIPS benzyloxyindole ($4.72 \mathrm{~g}, 12.4 \mathrm{mmol}$) in 1:1:1 i PrOH:Hexanes:EtOAc (108 mL) was added $5 \% \mathrm{Pd} / \mathrm{C}(0.67 \mathrm{~g}, 0.32 \mathrm{mmol}, 2.6 \mathrm{~mol} \% \mathrm{Pd})$. The
mixture was placed under an atmosphere of hydrogen (double-balloon), stirred for 2.5 h at $23{ }^{\circ} \mathrm{C}$, and then filtered over celite (EtOAc eluent). Evaporation of the solvent under reduced pressure afforded crude 2.37 as a pink solid, which was used in the subsequent step without further purification.

To a solution of crude 2.37 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60.0 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.518 \mathrm{~mL}, 3.72 \mathrm{mmol}, 0.3$ equiv $)$, was added i - $\operatorname{PrNCO}\left(3.64 \mathrm{~mL}, 37.2 \mathrm{mmol}, 3\right.$ equiv. The solution was stirred at $23^{\circ} \mathrm{C}$ for 24 h , then concentrated to dryness under reduced pressure. Purification by flash chromatography (2:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) provided known N-TIPS carbamate $\mathbf{2 . 3 8}^{15 \mathrm{~b}}(4.48 \mathrm{~g}, 97 \%$ yield, 2 steps) as a white solid.

N-TIPS silylcarbamate 2.39. Silyl carbamate 2.39 was prepared following the general procedure described by Hoppe and Snieckus for o-lithiation of isopropyl carbamates, with minor modifications. ${ }^{38,39}$ To a solution of N-TIPS carbamate $2.38(4.48 \mathrm{~g}, 11.98 \mathrm{mmol})$ and TMEDA ($2.51 \mathrm{~mL}, 16.8 \mathrm{mmol}, 1.4$ equiv) in $3: 1 \mathrm{Et}_{2} \mathrm{O}:$ THF $(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of TBSOTf in n-pentane ($1.30 \mathrm{M}, 17.3 \mathrm{~mL}, 14.4 \mathrm{mmol}, 1.2$ equiv). After stirring for 5 min , the white suspension was allowed to warm to $23{ }^{\circ} \mathrm{C}$ over 30 min . TMEDA ($6.28 \mathrm{~mL}, 41.9 \mathrm{mmol}, 3.5$ equiv) was added, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of n - BuLi in hexanes $(1.43$ M, $29.3 \mathrm{~mL}, 41.9 \mathrm{mmol}, 3.5$ equiv) was added dropwise over 55 min . The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h , then neat $\mathrm{TMSCl}(10.6 \mathrm{~mL}, 83.9 \mathrm{mmol}, 7$ equiv) was added dropwise over 1 h . The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , quenched with $1 \mathrm{M} \mathrm{NaHSO} 4(50 \mathrm{~mL})$, and
allowed to warm to $23{ }^{\circ} \mathrm{C}$ over 45 min with vigorous stirring. The biphasic mixture was further diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, the layers were separated, and then the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation of the solvent under reduced pressure afforded the crude product, which was further purified by flash chromatography (2:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) to afford known silylcarbamate $\mathbf{2 . 3 9}^{15 \mathrm{~b}}$ (2.33 g , quantitative yield) as a white solid.

6-Bromo silylcarbamate $\mathbf{2 . 4 0}$. 6-Bromo silylcarbamate 2.40 was prepared following the general procedure described by Snieckus for o-lithiation, with modifications. ${ }^{40}$ To a solution of silylcarbamate $2.39(2.19 \mathrm{~g}, 4.90 \mathrm{mmol})$ in $3: 1 \mathrm{Et}_{2} \mathrm{O}: T H F(69.6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added TMEDA ($1.02 \mathrm{~mL}, 6.86 \mathrm{mmol}, 1.4$ equiv), followed by a solution of TMSOTf in n-pentane (1.30 M, $3.91 \mathrm{~mL}, 5.90 \mathrm{mmol}, 1.2$ equiv). After stirring for 5 min , the white suspension was allowed to warm to $23^{\circ} \mathrm{C}$ over 28 min , by which time TMEDA•TfOH had formed as an oil on the bottom of the flask. The mixture was placed in a hexanes and liquid nitrogen bath at $-100^{\circ} \mathrm{C}$ and TMEDA ($2.56 \mathrm{~mL}, 17.2 \mathrm{mmol}, 3.5$ equiv) was added. A solution of $\sec -\mathrm{BuLi}$ in cyclohexane (1.18 M , $37.4 \mathrm{~mL}, 44.1 \mathrm{mmol}, 9$ equiv) was added dropwise over 1.2 h . The mixture was stirred at -100 ${ }^{\circ} \mathrm{C}$ for 4.5 h , then neat 1,2-dibromoethane ($5.09 \mathrm{~mL}, 58.8 \mathrm{mmol}, 12.0$ equiv) was added dropwise over 10 min . The resulting mixture was stirred at $-100^{\circ} \mathrm{C}$ for 3 h , quenched with 0.5 M aqueous $\mathrm{NaHSO}_{4}(50 \mathrm{~mL})$, and warmed to $23{ }^{\circ} \mathrm{C}$ over 40 min with vigorous stirring. The layers were separated, and the organic layer was washed successively with 1 M aqueous $\mathrm{NaHSO}_{4}(50 \mathrm{~mL})$
and brine $(50 \mathrm{~mL})$, then dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was purified by flash chromatography (5:1 Benzene: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford known 6-bromo silylcarbamate $\mathbf{2 . 4 0}{ }^{10}$ ($2.12 \mathrm{~g}, 82 \%$ yield) as a white solid.

\boldsymbol{N}-TIPS 6-bromo silyltriflate 2.41. To a solution of 6-bromo silylcarbamate $\mathbf{2 . 4 0}$ ($0.636 \mathrm{~g}, 1.21$ $\mathrm{mmol})$ in $\mathrm{MeCN}(24 \mathrm{~mL})$ were added $\mathrm{DBU}(0.427 \mathrm{~mL}, 3.03 \mathrm{mmol}, 2.5$ equiv $)$ and $\mathrm{Et}_{2} \mathrm{NH}(0.187$ $\mu \mathrm{L}, 1.82 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was placed in a heating bath maintained at 40 ${ }^{\circ} \mathrm{C}$ for 15 min , then allowed to cool to $23{ }^{\circ} \mathrm{C}$. Next, a solution of $\mathrm{PhNTf}_{2}(0.650 \mathrm{~g}, 1.82 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{MeCN}(2.1 \mathrm{~mL})$ was added. After stirring for 25 min , the reaction mixture was passed over a plug of silica gel (EtOAc eluent). Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography ($30: 1$ Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) to provide known N-TIPS 6-bromo silyltriflate $\mathbf{2 . 4 1}{ }^{10}(0.654 \mathrm{~g}, 95 \%$ yield $)$ as a white solid.

\boldsymbol{N}-H 6-bromo silyltriflate 2.9. To a solution of N-TIPS 6-bromo silyltriflate 2.41 ($0.143 \mathrm{~g}, 0.250$ $\mathrm{mmol})$ in THF $(9.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of TBAF in THF $(1.0 \mathrm{M}, 250 \mu \mathrm{~L}, 0.250$ mmol, 1 equiv) dropwise over 3 min . The solution was stirred for 15 min , then quenched with $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$. The biphasic mixture was further diluted with EtOAc $(12 \mathrm{~mL})$. The layers were
separated, and then the aqueous layer was extracted with EtOAc $(2 \times 12 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography (2.5:1 Hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide known bromo silyltriflate $\mathbf{2 . 9}{ }^{10}$ ($90.9 \mathrm{mg}, 87 \%$ yield) as a white solid.

Indolyne adduct 2.11. To a stirred solution of N-H 6-bromo silyltriflate $2.9(52.1 \mathrm{mg}, 0.125$ $\mathrm{mmol})$ and peptide $\mathbf{2 . 1 0}{ }^{10}$ ($87.1 \mathrm{mg}, 0.375 \mathrm{mmol}, 3$ equiv) in $\mathrm{MeCN}(1.25 \mathrm{~mL})$ was placed in a 0 ${ }^{\circ} \mathrm{C}$ bath and added $\mathrm{CsF}\left(38.0 \mathrm{mg}, 0.250 \mathrm{mmol}, 2\right.$ equiv). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h , and was then allowed to warm to $23{ }^{\circ} \mathrm{C}$. After stirring for an additional 12 h , the reaction mixture was filtered over silica gel (EtOAc eluent). Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography (1:0.7:0.7 Hexanes: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}\right)$ to provide known indolyne adduct $\mathbf{2 . 1 1}{ }^{10}(40.0 \mathrm{mg}, 75 \%$ yield $)$ as a clear oil.

Unsaturated ester 2.7. Indolyne adduct 2.11 was converted to $\mathbf{2 . 4 2}$ in 84% yield using our previously reported two-step procedure. ${ }^{10}$ To a solution of $\mathbf{2 . 4 2}(98.2 \mathrm{mg}, 0.252 \mathrm{mmol})$ in DMF
(2.5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(69.7 \mathrm{mg}, 0.504 \mathrm{mmol}$, 2 equiv). The resulting mixture was placed in a heating bath maintained at $65^{\circ} \mathrm{C}$ for 10 h , then allowed to cool to $23^{\circ} \mathrm{C}$. The reaction mixture was passed over a plug of cotton (EtOAc eluent). Evaporation at $60^{\circ} \mathrm{C}$ under reduced pressure afforded the crude product, which was further purified by flash chromatography (5:1 Hexanes:EtOAc) to provide known ester $\mathbf{2 . 7} \mathbf{7}^{10}(79.7 \mathrm{mg}, 96 \%$ yield) as a white solid.

Tricycle 2.12. A modification of Piersanti's procedure for alkylation of indoles was employed to construct the desired 9-membered ring. ${ }^{21}$ Inside a glove box, $\mathrm{ZrCl}_{4}(336.5 \mathrm{mg}, 1.45 \mathrm{mmol}, 15$ equiv) and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.96 \mathrm{~mL})$ were added to a vial containing $2.7(31.7 \mathrm{mg}, 0.096 \mathrm{mmol})$. The reaction vessel was placed into an aluminum block maintained at $34^{\circ} \mathrm{C}$. After 16 h , the vial was transferred out of the glove box and the reaction mixture was added dropwise to saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solids were removed by filtration over celite (EtOAc eluent). The layers were separated and the aqueous layer was extracted with EtOAc (15 $\mathrm{mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography (5:1 $\rightarrow 2: 1$ Hexanes:EtOAc) to afford known tricycle $\mathbf{2 . 1 2}{ }^{10}(28.5 \mathrm{mg}, 90 \%$ yield $)$ as a white solid.

Ester 2.13. Tricycle 2.12 was epimerized following the protocol described by Nakatsuka, with
 NaHCO_{3} ($294.4 \mathrm{mg}, 3.5 \mathrm{mmol}, 27.4$ equiv). The resulting mixture was placed in a heating bath maintained at $40{ }^{\circ} \mathrm{C}$ for 3 d , then allowed to cool to $23{ }^{\circ} \mathrm{C}$. The reaction mixture was concentrated and diluted with EtOAc (50 mL) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was separated, and then the organic layer was washed with brine (50 mL), and dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude mixture, which was purified by flash chromatography (95:5 \rightarrow 90:10 Benzene: $\mathrm{CH}_{3} \mathrm{CN}$) to afford known ester $\mathbf{2 . 1 3}{ }^{9 \mathrm{~d}}(21.0 \mathrm{mg}, 50 \%$ yield) and recovered epimer $\mathbf{2 . 1 2}{ }^{9 \mathrm{~d}}$ ($19.0 \mathrm{mg}, 45 \%$ yield) as a white solid.

Indolactam V (2.1). Ester 2.13 was reduced following the protocol described by Nakatsuka, with modifications. ${ }^{\text {9d }}$ Inside a glove box, a vial was charged with $\mathbf{2 . 1 3 (1 2 5 . 4 ~ \mathrm { mg } , 0 . 3 8 1 \mathrm { mmol }) \text { , }}$ $\mathrm{LiBH}_{4}(54.8 \mathrm{mg}, 2.515 \mathrm{mmol}, 6.6$ equiv) and THF (0.381 mL). The vial was removed from the glove box and allowed to stir for 2 h at $23^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was poured into ice water (5 mL). The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic layers were
combined, washed with brine (15 mL), and dried over MgSO_{4}. Evaporation of the solvent under reduced pressure afforded crude indolactam V (2.1), which was used in the subsequent step without further purification. Spectral data match those previously reported. ${ }^{9 \mathrm{~d}}$

Silylether 2.14. Indolactam V (2.1) was silyl protected following the protocol described by Kishi. ${ }^{36}$ To a stirred solution of indolactam V (2.1) (41.7 mg, 0.317 mmol$)$ in DMF (1.4 mL) was added $\operatorname{TBSCl}(20.6 \mathrm{mg}, 0.137 \mathrm{mmol}, 1.0$ equiv), imidazole ($46.5 \mathrm{mg}, 0.684 \mathrm{mmol}, 5.0$ equiv), and TBAI ($5.0 \mathrm{mg}, 0.014 \mathrm{mmol}, 0.1$ equiv). The resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$. After 12 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and diluted with EtOAc (10 mL). The organic layer was separated, and then the organic layer was washed with brine (50 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure afforded the crude product, which was purified by flash chromatography (4:1 Hexane:EtOAc) to afford known silylether 2.14 ($118.5 \mathrm{mg}, 90 \%$ yield over two steps) as a white solid. Silylether 2.14: $\mathrm{Mp}=192-$ $195{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.65\left(1: 1\right.$ Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.08(\mathrm{t}, J$ $=7.9,1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.7,1 \mathrm{H}), 6.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $10.2,1 \mathrm{H}), 4.24(\mathrm{~d}, J=3.9,1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.1,4.3,1 \mathrm{H}), 3.48(\mathrm{t}, J=9.5,1 \mathrm{H}), 3.17(\mathrm{~d}, J=$ $17.4,1 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4,3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.64(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.1$, $148.0,139.5,123.0,121.4,118.1,114.7,106.4,104.0,71.3,65.5,55.2,34.2,33.0,28.7,26.0$,
21.7, 19.6, 18.4, -5.2, -5.3; IR (film): 3320, 2928, 1643, $1251 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{Na}]^{+}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SiNa}$, 438.2553; found, 438.2554; $[\alpha]^{20}{ }_{\mathrm{D}}-124.00^{\circ}$ (c = 0.100, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

2.5.2.2 Cross-Coupling to Introduce the $C 7 \mathrm{sp}^{2}-\mathrm{sp}^{3}$ Linkage

Ester 2.16b. Ester 2.16b was prepared following the general coupling protocol described by Hartwig for the cross-coupling of silyl ketene acetals with aryl bromides, with modifications. ${ }^{26} \mathrm{~A}$ flame-dried vial under N_{2}, containing 7-bromoskatol ($\left.\mathbf{(2 . 1 5}\right)^{41}(9.9 \mathrm{mg}, 0.047 \mathrm{mmol})$, was transferred to a glovebox. A magnetic stir bar was added, followed by $\mathrm{P}(t \mathrm{Bu})_{3}(4.7 \mu \mathrm{l}, 4.7 \mu \mathrm{~mol}$, 0.1 equiv), ZnF_{2} ($2.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5$ equiv), and a solution of $\operatorname{Pd}(\mathrm{dba})_{2}(1.4 \mathrm{mg}, 2.4 \mu \mathrm{~mol}$, 0.05 equiv) in DMF (0.47 mL). Trimethylsilyldimethylketene (2.21) ($14.4 \mu \mathrm{l}, 0.071 \mathrm{mmol}, 1.5$ equiv) was added and the vial was sealed with a teflon-coated cap and removed from the glovebox. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 12 h , cooled to $23^{\circ} \mathrm{C}$, and then filtered over silica (100% EtOAc eluent) and concentrated in vacuo. The crude residue was purified by preparative thin layer chromatography ($3: 1: 1$ Hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtO}_{2}$) to afford ester 2.16b (9.9 $\mathrm{mg}, 91 \%)$ as an amorphous tan solid. Ester 2.16b: $R_{\mathrm{f}} 0.6\left(3: 1: 1\right.$ Hexanes: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.52(\mathrm{ddd}, J=7.8,1.0,1.0,1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.5,1.01 \mathrm{H})$, $7.12(\mathrm{dd}, J=7.8,7.51 \mathrm{H}), 6.96(\mathrm{ddd}, J=1.0,1.0,1.0,1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~d}, J=1.0,3 \mathrm{H})$, $1.71(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.7,134.1,129.2,126.5,121.9,119.2,118.4$,
$117.9,111.4,52.8,45.3,25.2,9.8$; IR (film): $3428,2950,1713,1434,1264,1152 \mathrm{~cm}^{-1}$; HRMSESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$, 232.1332; found, 232.1328 .

Morpholine amide 2.16c. Amide 2.16c was prepared following the general protocol for the cross-coupling of α-bromoamides with aryl bromides described by Hartwig, with modifications. ${ }^{59}$ Inside a glove box, a vial was charged with morpholine amide 2.43 (390.0 mg, 1.65 mmol , 5 equiv), activated zinc dust ($112.0 \mathrm{mg}, 1.71 \mathrm{mmol}, 5.2$ equiv) and THF (1.4 mL). The vial was sealed and placed into a heating block maintained at $40{ }^{\circ} \mathrm{C}$ for 4 h . This heterogeneous solution was removed from the heat and immediately added to a solution of 7bromoskatol $\mathbf{2 . 1 5}{ }^{41}$ ($69.0 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{PdBr}\right]_{2}(38.3 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.15$ equiv $)$ in toluene (3.2 mL). The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to $23{ }^{\circ} \mathrm{C}$, the reaction mixture was loaded directly onto a silica gel column and separated by flash chromatography (5:1 Hexane:EtOAc) to afford morpholine amide $\mathbf{2 . 1 6 c}(50.3 \mathrm{mg}, 53 \%$ yield) as a clear oil. Morpholine Amide 2.16c: $R_{\mathrm{f}} 0.08$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 1 \mathrm{H}), 3.89-2.45$ (br m, 8H), $2.32(\mathrm{~d}, J=1.1,3 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 176.2, 133.7, 129.3, 128.1, 121.9, 119.6, 118.0, 116.1, 111.6, 67.1, 65.8, 47.5, 45.3, 43.7, 9.8; IR (film): 3365, 2920, 1619, 1426, 1245, $1112 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$, 285.1609; found, 285.1610.

2.5.2.3 Total Synthesis of (-)-Pendolmycin (2.2)

Bromoindole 2.24. Silylether 2.14 was functionalized following the general protocol described by Kishi, with modification. ${ }^{28}$ To a stirred solution of silylether $\mathbf{2 . 1 4}(9.5 \mathrm{mg}, 0.023 \mathrm{mmol})$ in THF (2.3 mL) at $-78{ }^{\circ} \mathrm{C}$ was added N-bromosuccinimide ($4.1 \mathrm{mg}, 0.023 \mathrm{mmol}, 1.0$ equiv) in THF (2.3 mL). After 10 min , the reaction warmed to $-15^{\circ} \mathrm{C}$ and stirred for an additional 10 min . The reaction was quenched with water $(1 \mathrm{~mL})$, diluted with EtOAc $(10 \mathrm{~mL})$ and then washed sequentially with water $(10 \mathrm{~mL})$, and brine $(5 \mathrm{~mL})$. The organic layers were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure afforded the crude product, which was purified by flash chromatography (3:1 Hexane:EtOAc) to afford bromoindole $\mathbf{2 . 2 4}(6.8 \mathrm{mg}, 87 \%$ yield) as a white solid. Bromoindole 2.24: Mp: 188-190 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.6$ (2:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.3,1 \mathrm{H}), 6.94(\mathrm{t}, J=1.8,1 \mathrm{H}), 6.41(\mathrm{~d}, J$ $=8.3,1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=10.2,1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.2,4.4,1 \mathrm{H})$, $3.48(\mathrm{dd}, J=10.0,9.11 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 1 \mathrm{H}) 0.93(\mathrm{~d}, J$ $=6.3,3 \mathrm{H}), 0.90-0.88(\mathrm{~m}, 9 \mathrm{H}), 0.62(\mathrm{~d}, J=6.8,3 \mathrm{H}), 0.04(\mathrm{~d}, J=11.9,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 172.7,147.6,137.3,125.1,121.8,119.1,116.1,107.6,95.9,71.5,65.4,55.0,34.1$, 33.0, 28.7, 26.0, 21.7, 19.7, 18.4, -5.2, -5.3 ; IR (film): 3369, 3325, 2928, 2857, 1647, 1502, 1251, $1104 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{SiNa}, 516.1658$; found, 516.1659; $[\alpha]^{20}{ }_{D}-384.00^{\circ}\left(c=0.100, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Morpholine amide 2.25. Amide 2.25 was prepared following the general protocol described by Hartwig for the cross-coupling of α-bromoamides with aryl bromides, with modifications. ${ }^{59}$ Inside a glove box, a vial was charged with morpholine amide $2.43(19.1 \mathrm{mg}, 0.081 \mathrm{mmol}, 10.0$ equiv), activated zinc dust ($5.5 \mathrm{mg}, 0.084 \mathrm{mmol}, 10.4$ equiv) and THF (0.3 mL). The vial was sealed and placed into a heating block maintained at $40^{\circ} \mathrm{C}$ for 4 h . This heterogeneous solution was removed from the heat and immediately added to a solution of bromoindole $\mathbf{2 . 2 4}(4.0 \mathrm{mg}, 8$ $\mu \mathrm{mol})$ and $\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{PdBr}\right]_{2}(0.9 \mathrm{mg}, 1 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ in toluene $(0.2 \mathrm{~mL})$. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the reaction mixture was loaded directly onto a silica gel column and separated by flash chromatography (1:1 Hexane:EtOAc) to afford morpholine amide $\mathbf{2 . 2 5}$ ($2.8 \mathrm{mg}, 61 \%$ yield) as a light yellow oil. Morpholine amide $\mathbf{2 . 2 5}$: $R_{\mathrm{f}} 0.4$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.52$ (br s, 1 H), 6.96 (d, $J=8.0$, $1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=10.0,1 \mathrm{H}), 4.25-4.16(\mathrm{~m}$, $1 \mathrm{H}), 3.70-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.47(\mathrm{t}, J=10.0,1 \mathrm{H}), 3.39-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=17.4,3 \mathrm{H}), 2.66-$ $2.55(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.6,3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6,4 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.55(\mathrm{~d}, J=6.6,3 \mathrm{H}), 0.05(\mathrm{~d}, J=12.5,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.6,172.9,170.9$, $147.0,136.7,122.0,120.5,118.7,117.2,114.3,106.3,71.2,65.5,56.7,55.0,44.8,36.4,34.1$, 32.9, 28.7, 26.0, 23.4, 21.7, 20.7, 19.7, 18.4-5.2, -5.3; IR (film): 3375, 2956, 2928, 2857, 1665,

1620, $1508 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{SiNa}, 593.3498$; found, 593.3499; $[\alpha]^{22}{ }_{\mathrm{D}} 317.80^{\circ}\left(\mathrm{c}=0.100, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Olefin 2.27. Aldehyde $\mathbf{2 . 2 6}$ was prepared following the general protocol described by Georg for the reduction of tertiary amides, with modifications. ${ }^{29}$ Inside a glove box, $\mathrm{Cp}_{2} \mathrm{ZrHCl}(33.9 \mathrm{mg}$, $0.131 \mathrm{mmol}, 5$ equiv) and THF (0.7 mL) were added to a vial containing $2.25(15.0 \mathrm{mg}, 0.026$ $\mathrm{mmol})$. The reaction vessel was placed in an aluminum block maintained at $60^{\circ} \mathrm{C}$. After stirring for 2 h , the vial was transferred out of the glove box and the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and EtOAc $(5 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine (15 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure afforded the crude product, which was used in the subsequent step without further purification. Aldehyde 2.26: $R_{\mathrm{f}} 0.8$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.33$ (s, 1H), 8.39 (br s, 1H), 7.07 (d, $J=8.2$, $1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=10.1,1 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 1 \mathrm{H})$, $3.62(\mathrm{dd}, J=10.1,4.2,1 \mathrm{H}), 3.45(\mathrm{t}, J=10.1,1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.86$ $(\mathrm{m}, 1 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 1 \mathrm{H}) 1.56(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.3,3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.62(\mathrm{~d}, J=6.7,3 \mathrm{H})$, 0.09-0.0 (m, 9H).

To a solution of methyl triphenylphosphonium bromide ($48.8 \mathrm{mg}, 0.137 \mathrm{mmol}, 12$ equiv) in THF $(0.29 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added potassium tert-butoxide $(15.3 \mathrm{mg}, 0.137 \mathrm{mmol}, 12$ equiv). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min then warmed $23^{\circ} \mathrm{C}$. After 30 min the vial was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of aldehyde $2.26(5.5 \mathrm{mg}, 0.011 \mathrm{mmol})$ in THF (0.29 mL) was added. After 1 h , the reaction was warmed to $23{ }^{\circ} \mathrm{C}$ for 2 h . The reaction is quenched with water (5 mL) and diluted with EtOAc $(10 \mathrm{~mL})$. The layers were separated, and then the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (5 mL) and dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography ($4: 1$ Hexanes:EtOAc $+2 \% \mathrm{Et}_{3} \mathrm{~N}$) to provide olefin 2.27 ($2.9 \mathrm{mg}, 52 \%$ yield) as a light yellow oil. Olefin 2.27: $R_{\mathrm{f}} 0.3$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.46$ $(\mathrm{m}, 1 \mathrm{H}), 6.24-6.10(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=17.8,1.2,1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.5,1.21 \mathrm{H}), 4.32(\mathrm{~d}, J=$ $10.5,1 \mathrm{H}) 4.29-4.21(\mathrm{~m}, 1 \mathrm{H}) 3.63(\mathrm{dd}, J=10.5,4.2,1 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.15(\operatorname{app} \mathrm{~d}, J=$ $17.8,1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.95-$ $0.90(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.65(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 173.2,149.8,146.8,137.6,122.8,121.2,119.2,118.8,114.3,111.4,106.5,71.3,65.5$, 55.1, 40.3, 34.1, 33.1, 28.7, 27.4, 26.9, 26.0, 21.7, 19.7, 18.4, -5.2, -5.3; IR (film): 3452, 3380, 2956, 2929, 2858, 1656, $1507 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SiNa}$, 506.3179; found, 506.3182; $[\alpha]^{20}{ }_{\mathrm{D}}-126.00^{\circ}\left(\mathrm{c}=0.100, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Pendolmycin (2.2). To a solution of olefin $2.27(6.7 \mathrm{mg}, 0.014 \mathrm{mmol})$ in THF $(0.276 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added a solution of TBAF in THF ($1.0 \mathrm{M}, 138 \mu \mathrm{~L}, 0.138 \mathrm{mmol}, 10$ equiv) dropwise over 3 min . The solution was stirred for 15 min , and then quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The biphasic mixture was further diluted with EtOAc $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The layers were separated, and then the aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography $\left(5: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}\right)$ to provide pendolmycin (2.2) ($3.6 \mathrm{mg}, 70 \%$ yield) as a viscous oil. Spectral data for synthetic 2.2 was consistent with literature reports. ${ }^{11}$ Pendolmycin (2.2): $\mathrm{R}_{f} 0.2\left(5: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): Major conformer: $\delta 8.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J$ $=8.0,1 \mathrm{H}), 6.19(\mathrm{dd}, J=17.8,10.5,1 \mathrm{H}), 5.32(\mathrm{dd}, J=17.8,1.4,1 \mathrm{H}), 5.21(\mathrm{dd}, J=10.5,1.0$, $1 \mathrm{H}), 4.34(\mathrm{~d}, J=10.0,1 \mathrm{H}), 4.36-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.74(\operatorname{app~d}, J=12.0,1 \mathrm{H}), 3.62-3.39(\mathrm{~m}, 2 \mathrm{H})$, $3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.17(\operatorname{appd}, J=17.0,1 \mathrm{H}), 3.08(\mathrm{dd}, J=17.0,4.0,1 \mathrm{H}), 2.9(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.55$ $(\mathrm{m}, 1 \mathrm{H}) 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0,3 \mathrm{H}), 0.64(\mathrm{~d}, J=7.0,3 \mathrm{H})$; Minor conformer [26/31 protons were discernable]: $\delta 8.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8,1 \mathrm{H})$, $6.97(\mathrm{~d}, J=2.0,1 \mathrm{H}), 6.21(\mathrm{dd}, 17.8,10.5,1 \mathrm{H}), 5.37(\mathrm{dd}, J=17.8,1.4,1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.5$, $1.4,1 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.43(\operatorname{app~d}, J=7.2,1 \mathrm{H}), 3.44-3.39(\mathrm{dd}, J=1.8,1.4,1 \mathrm{H}), 2.99(\mathrm{~d}, J$ $=10.5,1.4,1 \mathrm{H}), 2.80(\mathrm{dd}, J=15.0,2.0,1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.52$ $(\mathrm{s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.7,1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7,3 \mathrm{H})$.

2.5.2.4 Total Syntheses of (-)-Lyngbyatoxin A (2.3) and (-)-Teleocidin A-2 (2.4)

Bromo ester 2.44. α-Bromo methyl ester 2.44 was prepared following the known protocol described by Webber for the α-bromination of esters, with modifications. ${ }^{31}$ A flask containing THF (33.4 mL) and diisopropylamine ($2.81 \mathrm{~mL}, 20.03 \mathrm{mmol}, 2.4$ equiv) was cooled to $-78^{\circ} \mathrm{C}$ and then a solution of $n-\operatorname{BuLi}(8.8 \mathrm{~mL}, 2.55 \mathrm{M}$ in hexanes, 2.7 equiv) was added dropwise over 5 min . The reaction was stirred for an additional 10 min at $-78^{\circ} \mathrm{C}$ and then warmed to $23{ }^{\circ} \mathrm{C}$ over 1 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{TMSCl}(2.8 \mathrm{~mL}, 21.8 \mathrm{mmol}, 2.61$ equiv) was added dropwise over 5 min . To the resulting clear solution was added ester $2.28(1.42 \mathrm{~g}, 8.35 \mathrm{mmol})$ as a solution in THF (41.7 mL) over 10 min . The resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and N -bromosuccinamide ($3.86 \mathrm{~g}, 21.7 \mathrm{mmol}$, 2.6 equiv) was added quickly under a stream of nitrogen. The flask was purged with nitrogen for 1 min and allowed to warm to $23^{\circ} \mathrm{C}$ in the absence of light over 2.5 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30$ $\mathrm{mL})$ and further diluted with water $(200 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The organics were combined, washed with brine $(50 \mathrm{~mL})$, and dried over MgSO_{4}. Evaporation under reduced pressure provided a crude light yellow oil, which was purified by flash chromatography ($60: 1$ Hexane: $\mathrm{Et}_{2} \mathrm{O}$) to afford bromo ester $2.44\left(2.03 \mathrm{~g}, 98 \%\right.$ yield) as a yellow oil. Bromo ester 2.44: ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.12-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}$, $3 \mathrm{H})$.

$\boldsymbol{\alpha}$-Bromo amide 2.29. Carboxylic acid 2.45 was prepared following the general protocol by Xia for the saponification of methyl esters, with modifications. ${ }^{42}$ To a stirred solution of α-bromo methyl ester $2.44(12.50 \mathrm{~g}, 50.1 \mathrm{mmol})$ in THF $(157 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate ($3.13 \mathrm{~g}, 74.6 \mathrm{mmol}$, 1.4 equiv) in $\mathrm{H}_{2} \mathrm{O}(133 \mathrm{~mL})$ dropwise via syringe pump. After 7 h , the reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ and then diluted with EtOAc $(100 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation of the solvent under reduced pressure afforded crude $\mathbf{2 . 4 5}$, which was used in the subsequent step without further purification.

Amide $\mathbf{2 . 2 9}$ was prepared from crude $\mathbf{2 . 4 5}$ following a general protocol for the coupling of esters to amines using 1,1 '-carbonyldiimidazole, with modifications. ${ }^{33}$ To a solution of crude 2.45 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added 1,1'-carbonyldiimidazole ($12.99 \mathrm{~g}, 80.16 \mathrm{mmol}, 1.6$ equiv). After stirring for 15 min , morpholine ($10.83 \mathrm{~mL}, 125.25 \mathrm{mmol}, 2.5$ equiv) was added and the reaction was allowed to stir for 6 h . The reaction was quenched with 5% citric acid (400 mL), concentrated in vacuo, and then diluted with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The organic layer was separated, washed with brine (50 mL), and then dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was purified by flash chromatography (5:1 Hexanes:EtOAc) to afford α-bromo amide $2.29(11.0 \mathrm{~g}, 72 \%$ yield, over two steps) as a yellow oil. α-bromo amide 2.29: $R_{\mathrm{f}} 0.7$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.11-5.05$ $(\mathrm{m}, 1 \mathrm{H}), 4.00-3.66(\mathrm{~m}, 8 \mathrm{H}), 2.30-1.90(\mathrm{~m}, 7 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz ,
CDCl_{3}): $\delta 168.6,133.1,122.3,66.6,61.4,43.0,30.5,25.7,24.7,17.7$; IR (neat): 2967, 2916, 2855, 1635, $1418 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{BrNO}_{2}$, 304.0907; found, 304.0901.

Morpholine amides $\mathbf{2 . 3 1}$ and 2.32. Amides $\mathbf{2 . 3 1}$ and $\mathbf{2 . 3 2}$ were prepared following the general protocol described by Hartwig for the cross-coupling of α-bromoamides with aryl bromides, with modifications. ${ }^{59}$ Inside a glove box, a vial was charged with a magnetic stir bar, α-bromo amide 2.29 ($41.2 \mathrm{mg}, 0.135 \mathrm{mmol}, 10$ equiv), activated zinc dust ($8.8 \mathrm{mg}, 0.134 \mathrm{mmol}, 9.9$ equiv), and THF (0.32 mL). The vial was sealed and placed into a heating block maintained at $50^{\circ} \mathrm{C}$ for 12 h. This clear, pale yellow solution was removed from the heat and immediately added to a solution of bromoindole $2.24(6.7 \mathrm{mg}, 0.0135 \mathrm{mmol}), \mathrm{LiBr}(1.2 \mathrm{mg}, 0.0135 \mathrm{mmol}, 1.0$ equiv) and $\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{PdBr}\right]_{2}(1.6 \mathrm{mg}, 2 \mu \mathrm{~mol}, 15 \mathrm{mmol} \%)$ in toluene $(0.2 \mathrm{~mL})$. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was passed through a silica gel plug (EtOAc eluent) and concentrated in vacuo. The crude residue was separated by preparatory thin layer chromatography (2:1 Hexane:EtOAc) to afford two separate diastereomeric amides 2.31 (1.8 mg , 43\% yield) and 2.32 ($2.4 \mathrm{mg}, 32 \%$ yield) as light yellow viscous oils. Morpholine amide 2.31: R_{f} 0.7 (2:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2,1 \mathrm{H})$, $6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.40-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=10.2,1 \mathrm{H})$,
4.28-4.20(m, 1H), $3.65(\mathrm{dd}, J=10.2,4.3,2 \mathrm{H}), 3.48(\mathrm{t}, J=9.9,1 \mathrm{H}), 3.39-2.70(\mathrm{~m}, 14 \mathrm{H}), 2.69-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.45-1.66(\mathrm{~m}, 10 \mathrm{H}), 0.94-0.91(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, 0.02 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9,146.9,136.8,124.5,121.8,118.7,114.1$, $106.2,71.3,67.2,65.9,65.6,61.6,55.1,54.5,47.5,46.0,43.7,38.8,34.1,32.9,29.9,28.7,26.0$, $25.8,23.2,21.7,20.3,19.7,17.6,-5.2,-5.3$; IR (film): $3383,2928,1664,1508,1115 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[M+H]^{+}$calculated for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}$, 639.4305; found, 639.4301; $[\alpha]^{22}{ }_{\mathrm{D}}-$ $108.00\left(\mathrm{c} 0.10 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Morpholine amide 2.32: $R_{\mathrm{f}} 0.7$ (2:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.14$ (br s, 1H), $5.25-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=10.0,1 \mathrm{H}), 4.24-4.16(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.70-3.42(\mathrm{~m}, 1 \mathrm{H})$ $3.64(\mathrm{dd}, J=10.0,4.1,2 \mathrm{H}), 3.46(\mathrm{t}, J=9.9,1 \mathrm{H}), 3.40-3.0(\mathrm{~m}, 6 \mathrm{H}), 2.90(\mathrm{dd}, J=17.9,4.1,1 \mathrm{H})$ $2.90(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.35-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 8 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 4 \mathrm{H}), 0.87$ $(\mathrm{s}, 9 \mathrm{H}), 0.52(\mathrm{~d}, J=6.6,3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)[28 / 36$ carbons were discernable]: $\delta 175.5,172.9,171.3,147.0,136.6,118.7,114.2,106.2,71.2,67.2$, $65.9,65.5,60.6,55.0,47.5,34.2,32.9,29.8,29.4,28.8,26.0,21.7,21.2,19.7,18.4,14.4,-5.2,-$ 5.3; IR (film): $3375,2928,1666,1508,1115 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{36} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}$, 637.4149; found, 637.4147; $[\alpha]^{22}{ }_{\mathrm{D}}-106.00\left(\mathrm{c}=0.100, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Note: ${ }^{1} H$ NMR and ${ }^{13}$ C NMR integrations and peaks were complicated by the presence of major and minor conformers. ${ }^{13}$ Empirical data is therefore reported for compounds 2.31-2.34, 2.46 and 2.47. Absolute stereochemical configuration for amides 2.31 and 2.32 were determined by subjecting each compound to the subsequent synthetic steps and matching each resulting compound to known spectral data for the natural products 2.3 and 2.4.

Olefin 2.34. Aldehyde $\mathbf{2 . 3 3}$ was prepared following the general protocol described by Georg for the reduction of tertiary amides, with modifications. ${ }^{29}$ Inside a glove box, $\mathrm{Cp}_{2} \mathrm{ZrHCl}(7.3 \mathrm{mg}$, $0.03 \mathrm{mmol}, 10$ equiv) and THF (0.3 mL) were added to a vial containing $2.31(1.8 \mathrm{mg}, 3 \mu \mathrm{~mol})$. The reaction vessel was placed into an aluminum block maintained at $50^{\circ} \mathrm{C}$. After stirring for 12 h, the vial was transferred out of the glove box. The reaction mixture was quenched with silica gel (10.0 mg) and EtOAc with $2 \% \mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL})$, and then stirred for 1 h . The mixture was eluted through a plug of silica gel (EtOAc with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ eluent). Evaporation under reduced pressure afforded crude 2.33, which was used in the subsequent step without further purification. Aldehyde 2.33: $R_{\mathrm{f}} 0.9$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.5(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.83(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.18-5.01(\mathrm{~m}$, $1 \mathrm{H}), 4.33(\mathrm{~d}, J=9.9,1 \mathrm{H}), 4.26-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.9,4.8,1 \mathrm{H})$, $3.45(\mathrm{t}, J=9.9,1 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.43-1.76(\mathrm{~m}, 5 \mathrm{H})$, $1.65(\mathrm{~s}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 2 \mathrm{H}), 1.42-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 9 \mathrm{H}), 0.86-0.80(\mathrm{~m}, 3 \mathrm{H}), 0.82(\mathrm{dd}, J$ $=9.9,6.7,2 \mathrm{H}) 0.58(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$.

A vial was charged with methyl triphenylphosphonium bromide $(266.5 \mathrm{mg}, 0.746 \mathrm{mmol}, 265$ equiv) and placed in a $0{ }^{\circ} \mathrm{C}$ bath. To this vial was added a solution of potassium tert-butoxide ($79.0 \mathrm{mg}, 0.704 \mathrm{mmol}, 250$ equiv) in THF $(1.0 \mathrm{~mL}$) dropwise over 2 min , and the resulting yellow mixture was allowed to warm to $23^{\circ} \mathrm{C}$ over 30 min . After 1 h , an aliquot of the resulting
ylide stock solution (20.0μ l, 5 equiv) was added dropwise to a solution of aldehyde 2.33 (3 $\mu \mathrm{mol})$ in THF $(0.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction was warmed up to $23^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction was quenched with water $(1 \mathrm{~mL})$ and $\operatorname{EtOAc}(1 \mathrm{~mL})$. The layers were separated, and then the aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography (1:199 Acetone:Benzene) to provide olefin $\mathbf{2 . 3 4}$ ($1.0 \mathrm{mg}, 64 \%$ yield over two steps) as a viscous light yellow oil. Olefin 2.34: $R_{\mathrm{f}} 0.5$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54-8.47(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1$, $1 \mathrm{H}), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.17(\mathrm{dd}, J=17.6,10.6,1 \mathrm{H}), 6.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.36-$ $5.23(\mathrm{~m}, 3 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=10.0,1 \mathrm{H}), 4.24(\mathrm{dd}, J=10.0,3.6,1 \mathrm{H}), 3.63(\mathrm{dd}, J$ $=10.0,3.6,1 \mathrm{H}), 3.46(\mathrm{t}, J=10.0,1 \mathrm{H}), 3.13(\mathrm{~d}, J=17.6,1 \mathrm{H}), 3.00-2.85(\mathrm{~s}, 5 \mathrm{H}), 2.85-2.73(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.55-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.65(\mathrm{app} \mathrm{s}, 2 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.64(\mathrm{~d}, J=6.8,3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,148.6$, 146.7, 137.7, 131.6, 124.8, 121.6, 121.0 120.1, 118.9, 114.2, 112.6, 106.5, 71.3, 65.5, 55.1, 43.4, 39.8, 38.7, 34.1, 33.0, 32.1, 28.7, 26.0, 24.2, 23.2, 21.7, 19.7, 18.4, 17.7, 14.3, -5.2, -5.3; IR (film): 2927, 2856, 1662, 1508, $1105 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}, 550.38233$; found, $550.38368 ;[\alpha]^{20}{ }_{\mathrm{D}}-98.00\left(\mathrm{c}=0.100, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Lyngbyatoxin A (2.3). Lyngbyatoxin A (2.3) was prepared following the general protocol for desilylation described by Kishi, with modifications. ${ }^{36}$ A vial was charged with lithium tetrafluoroborate $\left(85.0 \mathrm{mg}, 0.91 \mathrm{mmol}, 500\right.$ equiv) and $\mathrm{CH}_{3} \mathrm{CN}(0.91 \mathrm{~mL})$. An aliquot of the resulting mixture ($1.0 \mathrm{M}, 9 \mu \mathrm{~L}, 9 \mu \mathrm{~mol}, 5$ equiv) was added dropwise to a solution of 2.34 (1.0 $\mathrm{mg}, 1.8 \mu \mathrm{~mol})$ in THF $(0.25 \mathrm{~mL})$ over 1 min . After the solution was stirred for $20 \mathrm{~min},(\pm)$ camphorsulfonic acid ($2.1 \mathrm{mg}, 9 \mu \mathrm{~mol}, 5$ equiv) was added and the reaction was stirred for 24 h at $23{ }^{\circ} \mathrm{C}$. The mixture was diluted with EtOAc $(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated, and then the aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography (17:2:1 Hexanes: $\left.\mathrm{CHCl}_{3}: i \mathrm{PrOH}\right)$ to provide lyngbyatoxin A (2.3) ($0.5 \mathrm{mg}, 63 \%$ yield) as a viscous light yellow oil. Lyngbyatoxin A (2.3): $\mathrm{R}_{f} 0.6(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major conformer) $8.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=18.0$, $10.5,1 \mathrm{H}), 5.32(\mathrm{~d}, J=18.0,1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.5,1 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=10.0$, $1 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.7,4.21 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{br} \mathrm{d}, J=17.0$, $1 \mathrm{H}), 2.99(\mathrm{dd}, J=15.0,11.0,1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dqq}, J=10.7,6.5,6.5,1 \mathrm{H}), 2.04-2.16(\mathrm{~m}$, $5 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) 0.92(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.64(\mathrm{~d}, J=6.5,3 \mathrm{H}) ; \delta$ (minor conformer) [27/39 protons were discernable] $8.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.0,1 \mathrm{H}), 5.34(\mathrm{~d}, J=18.0,1 \mathrm{H}), 4.46-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=11.0,6.7,1 \mathrm{H}), 3.38(\mathrm{dd}, J=$
$11.0,6.7,1 \mathrm{H}), 2.80(\mathrm{dd}, J=15.0,1.5,1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{dqq}, J=10.8,6.5,6.5,1 \mathrm{H}), 1.63$ $(\mathrm{s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5,3 \mathrm{H})$.

Olefin 2.47. Aldehyde 2.46 was prepared following the general protocol described by Georg for the reduction of tertiary amides, with modifications. ${ }^{29}$ Inside a glove box, $\mathrm{Cp}_{2} \mathrm{ZrHCl}(7.7 \mathrm{mg}$,
 The reaction vessel was placed into an aluminum block maintained at $50^{\circ} \mathrm{C}$. After stirring for 12 h, the vial was transferred out of the glove box. The reaction mixture was quenched with silica gel (10.0 mg) and EtOAc with $2 \% \mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL})$, and then stirred for 1 h . The mixture was eluted through a plug of silica gel (EtOAc with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ eluent). Evaporation under reduced pressure afforded crude 2.46, which was used in the subsequent step without further purification. Aldehyde 2.46: $R_{\mathrm{f}} 0.9$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.5$ (br $\mathrm{s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4,1 \mathrm{H}), 6.84(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.4,1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.15-4.98(\mathrm{~m}, 1 \mathrm{H})$, 4.47-3.97 (m, 2H), $4.43(\mathrm{~d}, J=10.0,1 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.0,4.3,2 \mathrm{H}), 3.44$ $(\mathrm{t}, J=10.0,1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.23-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{~m}, 9 \mathrm{H}), 0.77(\mathrm{dd}, J=10.0,6.7,3 \mathrm{H}) 0.57(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$. A vial was charged with methyl triphenylphosphonium bromide $(117.0 \mathrm{mg}, 0.328 \mathrm{mmol}, 110$ equiv) and placed in a $0^{\circ} \mathrm{C}$ bath. To this vial was added a solution of potassium tert-butoxide
($33.3 \mathrm{mg}, 0.297 \mathrm{mmol}, 100$ equiv) in THF $(1.0 \mathrm{~mL}$) dropwise over 2 min and the resulting yellow mixture was allowed to warm to $23^{\circ} \mathrm{C}$ over 30 min . After 1 h , an aliquot of the resulting ylide stock solution (50.0μ l, 5 equiv) was added dropwise to a solution of aldehyde 2.46 (3 $\mu \mathrm{mol})$ in THF $(0.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction was warmed up to $23^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction was quenched with water $(1 \mathrm{~mL})$ and EtOAc $(1 \mathrm{~mL})$. The layers were separated, and then the aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography (1:199 Acetone:Benzene) to provide olefin 2.47 ($1.2 \mathrm{mg}, \mathbf{7 3} \%$ yield over two steps) as a viscous light yellow oil. Olefin 2.47: $R_{\mathrm{f}} 0.5$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54$ (br m, 1H), 6.98 (d, $J=8.1$, $1 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.21(\mathrm{dd}, J=17.6,10.6,1 \mathrm{H}), 6.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.32-$ $5.22(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=10.1,1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.1,4.5$, $1 \mathrm{H}), 3.45(\mathrm{t}, J=10.1,1 \mathrm{H}), 3.13(\mathrm{~d}, J=17.7,1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.10-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.85(\mathrm{dd}, J=6.8,4.5,2 \mathrm{H}), 0.83-0.78(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{dd}, J=4.5,6.8,2 \mathrm{H}), 0.60(\mathrm{~d}, J=6.8,3 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,149.3,146.7,137.6,131.6$, $124.7,121.2,120.4,118.7,114.1,112.2,106.0,71.3,65.5,55.0,43.5,39.6,38.1,34.2,32.9$, 32.1, 28.7, 26.0, 24.9, 23.3, 22.7, 21.8, 19.6, 18.4, 17.5, 14.3, -5.2, -5.3; IR (film): 2927, 2854, 1662, 1466, $1105 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$, 550.38233; found, $550.38371 ;[\alpha]^{20}{ }_{D}-136.00\left(\mathrm{c}=0.100, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Teleocidin A-2 (2.4). Teleocidin A-2 (2.4) was prepared following the general protocol for desilylation described by Kishi, with modifications. ${ }^{36}$ A vial was charged with lithium tetrafluoroborate $\left(63.7 \mathrm{mg}, 0.68 \mathrm{mmol}, 250\right.$ equiv) and $\mathrm{CH}_{3} \mathrm{CN}(0.68 \mathrm{~mL})$. An aliquot of the resulting mixture ($1.0 \mathrm{M}, 14 \mu \mathrm{~L}, 14 \mu \mathrm{~mol}, 5$ equiv) was added dropwise to a solution of 2.47 (1.5 $\mathrm{mg}, 3 \mu \mathrm{~mol})$ in THF (0.25 mL) over 1 min . After the solution was stirred for $20 \mathrm{~min},(\pm)$ camphorsulfonic acid ($3.2 \mathrm{mg}, 14 \mu \mathrm{~mol}, 5$ equiv) was added and the reaction was stirred for 24 h at $23{ }^{\circ} \mathrm{C}$. The mixture was diluted with EtOAc $(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated, and then the aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Evaporation under reduced pressure afforded the crude product, which was further purified by flash chromatography (17:2:1 Hexanes: $\left.\mathrm{CHCl}_{3}: i \mathrm{PrOH}\right)$ to provide teleocidin A-2 (2.4) ($0.5 \mathrm{mg}, 63 \%$ yield) as a viscous light yellow oil. Teleocidin A-2 (2.4): $\mathrm{R}_{f} 0.6(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major conformer) 8.53 (br s, 1H), $6.98(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.20(\mathrm{dd}, J=18.0,10.5,1 \mathrm{H}), 5.30$ $(\mathrm{d}, J=18.0,1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.5,1 \mathrm{H}), 5.10-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=10.5,1 \mathrm{H}), 4.37-4.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.8,4.01 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{br} \mathrm{d}, J=17.0,1 \mathrm{H}), 2.96(\mathrm{dd}, J=$ $17.0,4.01 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}) 2.60(\mathrm{dqq}, J=10.8,6.5,6.5,1 \mathrm{H}), 2.51-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) 0.92(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.60(\mathrm{~d}, J=6.5,3 \mathrm{H}) ; \delta$ (minor conformer) [31/39 protons were discernable] $8.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.97(\mathrm{~s}$, $1 \mathrm{H}), 6.22(\mathrm{dd}, J=17.9,10.3,1 \mathrm{H}), 5.35(J=17.9,1 \mathrm{H}), 5.33(\mathrm{~d}, J=11.0,1 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 1 \mathrm{H})$
4.48-4.39 (m, 1H), $3.46(\mathrm{dd}, J=11.0,6.5,1 \mathrm{H}), 3.39(\mathrm{dd}, J=11.0,6.5,1 \mathrm{H}), 2.80(\mathrm{dd}, J=15.0$, $1.5,1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{dqq}, J=11.0,6.5,6.5,1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.25(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.5,3 \mathrm{H})$.

2.6 Spectra Relevant to Chapter Two:

Total Syntheses of Indolactam Alkaloids (-)-Indolactam V, (-)-Pendolmycin, (-)-Lyngbyatoxin A, and (-)-Teleocidin A-2

Noah F. Fine Nathel, Tejas K. Shah, Sarah M. Bronner, and Neil K. Garg.
Chem. Sci. 2014, 5, 2184-2190.

Figure A2.3. Infrared spectrum of compound 2.14.

Figure A2.4. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.14.

Figure A2.6. Infrared spectrum of compound 2.16b.

Figure A2.7. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 1 6 b}$.

Figure A2.9. Infrared spectrum of compound 2.16c

Figure A2.10. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 1 6 c}$.

Figure A2.12. Infrared spectrum of compound 2.24.

Figure A2.13. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 2 4}$.

Figure A2.15. Infrared spectrum of compound 2.25.

Figure A2.16. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 2 5}$.

Figure A2.19. Infrared spectrum of compound 2.27.

Figure A2.20. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.27.

Figure A2.21. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{2 . 2}$

Figure A2.22. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 2 9}$

Figure A2.23. Infrared spectrum of compound 2.29.

Figure A2.24. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.29.

Figure A2.26. Infrared spectrum of compound 2.31.

Figure A2.27. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 1}$.

Figure A2.30. Infrared spectrum of compound 2.34.

Figure A2.31. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 . 3 4}$.

Figure A2.34. Infrared spectrum of compound 2.32.

Figure A2.35. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.32.

Figure A2.38. Infrared spectrum of compound 2.47.

Figure A2.39. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2.47.

2.7 Notes and References

${ }^{1}$ For pertinent reviews on (-)-indolactam V isolation, tumor-promoting activity, and derivatives, see: (a) Irie, K.; Koshimizu, K. Mem. Coll. Agric. Kyoto Univ. 1988, 132, 1-59. (b) Irie, K.; Koshimizu, K. Comments Agric. Food Chem. 1993, 3, 1-25. (c) Irie, K. Nippon Nogei Kagaku Kaishi 1994, 68, 1289-1296. (d) Irie, K.; Nakagawa, Y.; Ohigashi, H. Curr. Pharm. Des. 2004, 10, 1371-1385. (e) Irie, K.; Nakagawa, Y.; Ohigashi, H. Chem. Rec. 2005, 5, 185-195.

2 Irie, K.; Hirota, M.; Hagiwara, N.; Koshimizu, K.; Hayashi, H.; Murao, S.; Tokuda, H.; Ito, Y. Agric. Biol. Chem. 1984, 48, 1269-1274.
${ }^{3}$ For pioneering studies of (- -indolactam V's ability to bind PKC see: (a) Fujiki, H.; Suginuma, M.; Nakayasu, M.; Tahira, T.; Endo, Y.; Shudo, K.; Sugimura, T. Gann 1984, 75, 866-870. (b) Irie, K.; Hagiwara, N.; Koshimizu, K.; Hayashi, H.; Murao, S.; Tokuda, H.; Ito, Y. Agric. Biol. Chem. 1985, 49, 221-223.

4 For recent studies, see: (a) Meseguer, B.; Alonso-Díaz, D.; Griebenow, N.; Herget, T. and Waldmann, H. Angew. Chem. Int. Ed. 1999, 38, 2902-2906. (b) Meseguer, B.; Alonso-Díaz, D.; Griebenow, N.; Herget, T.; Waldmann, H. Chem. Eur. J. 2000, 6, 3943-3957. (c) Masuda, A.; Irie, K.; Nakagawa, Y.; Ohigashi, H. Biosci. Biotechnol. Biochem. 2002, 66, 1615-1617. (d) Nakagawa, Y.; Irie, K.; Yanagita, R. C.; Ohigashi, H.; Tsuda, K.-i. J. Am. Chem. Soc. 2005, 127, 5746-5747. (e) Nakagawa, Y.; Irie, K.; Yanagita, R. C.; Ohigashi, H.; Tsuda, K.i.; Kashiwagi, K.; Saito, N. J. Med. Chem. 2006, 49, 2681-2688. (f) Yanagita, R. C.; Nakagawa, Y.; Yamanaka, N.; Kashiwagi, K.; Saito, N.; Irie, K. J. Med. Chem. 2008, 51, 4656. (g) Sugimoto, T.; Itagaki, K.; Irie, K. Bioorg. Med. Chem. 2008, 16, 650-657.

5
(a) Oka, S.; Owa, T.; Sugie, M.; Tanaka, H. Agric. Biol. Chem. 1989, 53, 2261-2262. (b) Chen, S.; Borowiak, M.; Fox, J. L.; Maehr, R.; Osafune, K.; Davidow, L.; Lam, K.; Peng, L. F.; Schreiber, S. L.; Rubin, L. L.; Melton, D. Nat. Chem. Biol. 2009, 5, 258-265.

6 Yamashita, T.; Imoto, M.; Isshiki, K.; Sawa, T.; Naganawa, H.; Kurasawa, S.; Zhu, B.-Q.; K. Umezawa, K. J. Nat. Prod. 1988, 51, 1184-1187.

Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; Zhang, S.; Zhang, C.; Ju, J. J. Nat. Prod. 2011, 74, 2122-2127.
(a) Gallimore, W. A.; Galario, D. L.; Lacy, C.; Zhu, Y.; Scheuer, P. J. J. Nat. Prod. 2000, 63, 1022-1026. (b) Izumikawa, M.; Khan, S. T.; Komaki, H.; Takagi, M; Shin-ya, K. J. Antibiot. 2010, 63, 33-36.
(a) Endo, Y.; Shudo, K.; Itai, A.; Hasegawa, M.;Sakai, S.-i. Tetrahedron 1986, 42, 59055924. (b) de Laszlo, S. E.; S. V. Ley, S. V.; Porter, R. A. J. Chem. Soc., Chem. Commun. 1986, 344-346. (c) Nakatsuka, S.-I.; Masuda, T.; Sakai, K.; Goto, T. Tetrahedron Lett. 1986, 27, 5735-5738. (d) Masuda, T.; Nakatsuka, S.-i.; Goto, T. Agric. Biol. Chem. 1989, 53, 22572260. (e) Kogan, T. P.; Somers, T. C.; Venuti, M. C. Tetrahedron 1990, 46, 6623-6632. (f) Mascal, M.; Moody, C. J.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc. Perkin Trans. 1 1992, 823-830. (g) Semmelhack, M. F.; Rhee, H. Tetrahedron Lett. 1993, 34, 1395-1398. (h) Quick, J.; Saha, B.; Driedger, P. E. Tetrahedron Lett. 1994, 35, 8549-8552. (i) Suárez, A. I.; García; M. C.; Compagnone, R. S. Synth. Commun. 2004, 34, 523-531. (j) Xu, Z.; Zhang, F.; Zhang, L.; Jia, Y. Org. Biomol. Chem. 2011, 9, 2512-2517. (k) Mari, M.; Bartoccini, F.; Piersanti, G. J. Org. Chem. 2013, 78, 7727-7734.
${ }^{10}$ Bronner, S. M.; Goetz, A. E.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 3832-3835.
${ }^{11}$ For the total synthesis of (-)-2.2, see: (a) Okabe, K.; Muratake, H.; Natsume, M. Tetrahedron 1990, 46, 5113-5120. (b) Okabe, K.; Natsume, M. Tetrahedron 1991, 47, 76157624.
${ }^{12}$ For the total synthesis of (-)-2.3 and (-)-2.4, see: (a) Muratake, H.; Natsume, M. Tetrahedron Lett. 1987, 28, 2265-2268. (b) Muratake, H.; Okabe, K.; Natsume, M. Tetrahedron 1991, 47, 8545-8558.
${ }^{13}$ For discussions on conformational analysis of indolactam alkaloids, see: (a) Endo, Y.; Hasegawa, M.; Itai, A.; Shudo, K.; Tori, M.; Asakawa, Y.; Sakai, S.-i. Tetrahedron Lett., 1985, 26, 1069-1072. (b) Kawai, T.; Ichinose, T.; Endo, Y.; Shudo, K.; Itai, A.; J. Med. Chem. 1992, 35, 2248-2253.
${ }^{14}$ For seminal indolyne studies, see: (a) Julia, M.; Huang, Y.; Igolen, J. C. R. Acad. Sci., Ser. C 1967, 265, 110-112. (b) Igolen, J.; Kolb, A. C. R. Acad. Sci., Ser. C 1969, 269, 54-56. (c) Julia, M.; Le Goffic, F.; Igolen, J.; Baillarge, M. Tetrahedron Lett. 1969, 10, 1569-1571.
${ }^{15}$ For hetaryne studies from our laboratory, see reference 10 and the following: (a) Cheong, P. H.-Y.; Paton, R. S.; Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267-1269. (b) Im, G-Y. J.; Bronner, S. M.; Goetz, A. E.; Paton, R. S.; Cheong, P. H-Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010, 132, 17933-17944. (c) Bronner, S. M.; Bahnck, K. B.; Garg, N. K. Org. Lett. 2009, 11, 1007-1010. (d) Bronner, S. M.; Goetz, A. E.; Garg, N. K. Synlett 2011, 2599-2604. (e) Huters, A. D.; Quasdorf, K. W.; Styduhar, E. D.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 15797-15799. (f) Goetz, A. E.; Garg, N. K. Nat. Chem. 2013, 3, 54-60. (g) Goetz, A. E.; Garg, N. K. J. Org. Chem. 2014, 79, 846-851.
${ }^{16}$ For other indolyne studies, see: (a) Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N.; VanderVelde, D. Org. Lett. 2007, 9, 4135-4137. (b) Brown, N.; Luo, D.; VanderVelde, D.; Yang, S.; Brassfield, A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 63-65. (c) Buszek, K. R.; Brown, N.; Luo, D. Org. Lett. 2009, 11, 201-204. (d) Brown, N.; Luo, D.; Decapo, J. A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 7113-7115. (e) Thornton, P. D.; Brown, N.; Hill, D.; Neuenswander, B.; Lushington, G. H.; Santini, C.; Buszek, K. R. ACS Comb. Sci. 2011, 13, 443-448. (f) Nguyen, T. D.; Webster, R.; Lautens, M. Org. Lett. 2011, 13, 1370-1373. (g) Candito, D. A.; Panteleev, J.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14200-14203. (h) Candito, D. A.; Dobrovolsky, D.; Lautens, M. J. Am. Chem. Soc. 2012, 134, 15572-15580. (i) Chandrasoma, N.; Brown, N.; Brassfield, A.; Nerurkar, A.; Suares, S.; Buszek, K. R. Tetrahedron Lett. 2013, 54, 913-917. (j) Nerurkar, A.; Chandrasoma, N.; Maina, L.;Brassfield, A.; Luo, D.; Brown, N.; Buszek, K. R. Synthesis 2013, 45, 1843-1852.
${ }^{17}$ (a) Endo, Y.; Sato, Y.; Shudo, K. 1987, 43, 2241-2247. (b) Nakagawa, Y.; Irie, K.; Nakamura, Y.; Ohigashi, H. Biosci. Biotechnol. Biochem. 1998, 62, 1568-1573. (c) Mckittrick, B.; Failli, A.; Steffan, R. J.; Soll, R. M.; Hughes, P.; Schmid, J.; Asselin, A. A.; Shaw, C. C.; Noureldin, R.; Gavin, G. J. Heterocyclic Chem. 1990, 27, 2151-2163. (d) Haenchen, A.; Suessmuth, R. D. Synlett 2009, 2483-2486. (e) Wu, Y.-S.; Coumar, M. S.; Chang, J.-Y.; Sun, H.-Y.; Kuo, F.-M.; Kuo, C.-C.; Chen, Y.-J.; Chang, C.-Y.; Hsiao, C.-L.; Liou, J.-P.; Chen, C.-P.; Yao, H.-T.; Chiang, Y.-K.; Tan, U. K.; Chen, C.-T.; Chu, C.-Y.; Wu, S.-Y.; Yeh, T.-K.; Lin, C.-Y.; Hsieh, H.-P. J. Med. Chem. 2009, 52, 4941-4945. (f) Shi, L., Aza-ring Fused Indole and Indoline Derivatives. U.S. Patent 0152308A1, Jun 23, 2011. (g) Chakravarty, S., Hart, B. P., Jain, R. P., Pyrido[4,3-b]indole et derives de Pyrido[3,4-b]indole
et Procédés d’Utilisation. U.S. Patent 0217675A1, Aug 25, 2011. (h) Dahmann, G., Fiegen, D., Fleck, M., Hoffmann, M., Klicic, J., East, S. P., Napier, S. C. R., Scott, J., Substituted Pyridyl-Pyrimidines and their Use as Medicaments. U.S. Patent 023502A1, Jan 24, 2013.

The transformations used to prepare 2.9 are identical to those previously developed in our laboratory, but with modified procedures to improve the yields. See the experimental procedures for details.
${ }^{19}$ Our previously reported yield for the formation of $\mathbf{2 . 1 1}$ from $\mathbf{2 . 9}$ and $\mathbf{2 . 1 0}$ was $\mathbf{6 2 \%}$; see reference 10 .
${ }^{20}$ Less than 5% of the corresponding C5-substituted product was detected.
${ }^{1}$ Angelini, E.; Balsamini, C.; Bartoccini, F.;Lucarini, S.; Piersanti, G. J. Org. Chem. 2008, 73, 5654-5657.
${ }^{22}$ Our previously reported yield for the formation of $\mathbf{2 . 1 2}$ was 56%; see reference 10 .
Martín, R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2007, 46, 7236-7239.
${ }^{24}$ The use of $\mathrm{K}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaO} t \mathrm{Bu}$ gave similar results.
Jørgensen, M.; Lee, S.; Liu, X.; Wolkowski, J. P.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 12557-12565.
(a) Hama, T.; Liu, X.; Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 1117611177. (b) Liu, X.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5182-5191. Organic Synthesis, Chlorobis(cyclopentadienyl)hydridozirconium.
http://onlinelibrary.wiley.com/doi/10.1002/047084289X.rc074.pub2/abstract, (accessed

January 2014). For reduction of tertiary amides using the Schwartz reagent, see: White, J. M.;
Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc., 2000, 122, 11995-11996.
For the reduction of secondary amides using the Schwartz reagent, see: (a) Schedler, D. J. A.;
Godfrey, A. G.; Ganem, B. Tetrahedron Lett. 1993, 34, 5035-5038. (b) Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115-4119.

Webber, M. J.; Weston, M.; Grainger, D. M.; Lloyd, S.; Warren, S. A.; Powell, L.; Alanine, A.; Stonehouse, J. P.; Frampton, C. S.; White, A. J. P.; Spivey, A. C. Synlett 2011, 26932696.
${ }^{32}$ Crowley, P., Salmon, R., Quinolin-Isoquinolin-and Quinazolin-Oxyalkylamides and their Use as Fungicides. U.S. Patent 0072884A1, Mar 29, 2007.
${ }^{33}$ Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5970-5978.
${ }^{34}$ The addition of LiBr helped to suppress the competitive formation of des-bromo compound

2.14.

${ }^{35}$ The stereochemical configurations at the newly formed quaternary centers of $\mathbf{2 . 3 1}$ and $\mathbf{2 . 3 2}$ were assigned after conversion to the natural products 2.3 and $\mathbf{2 . 4}$, respectively.
${ }^{36}$ Moreno, O. A.; Kishi, Y. Bioorg. Med. Chem. 1998, 6, 1243-1254.
${ }^{37}$ Igarashi, Y.; Yanagisawa, E.; Ohshima, T.; Takeda, S.; Aburada, M.; Miyamoto, K. Chem. Pharm. Bull. 2007, 55, 328-333.
${ }^{41}$ Dobbs, A. J. Org. Chem. 2001, 66, 638-641.
42 Jelf, C. P.; Salmon, R. (Syngenta LTD, USA). Quinolin-, isoquinolin-, and quinazolinoxyalkylamides and their use as fungicides. US Patent 0072884, March 29, 2007.

CHAPTER THREE

Expanding the Strained Alkyne Toolbox: Generation and Utility of Oxygen-Containing Strained Alkynes

Tejas K. Shah, Jose M. Medina, and Neil K. Garg.
J. Am. Chem. Soc. 2016, 138, 4948-4954.

3.1 Abstract

We report synthetic methodology that permits access to two oxacyclic strained intermediates, the 4,5-benzofuranyne and the 3,4-oxacyclohexyne. In situ trapping of these intermediates affords an array of heterocyclic scaffolds by the formation of one or more new C C or C-heteroatom bonds. Experimentally determined regioselectivities were consistent with predictions made using the distortion / interaction model and were also found to be greater compared to selectivities seen in the case of trapping experiments of the corresponding N containing intermediates. These studies demonstrate the synthetic versatility of oxacyclic arynes and alkynes for the synthesis of functionalized heterocycles, while further expanding the scope of the distortion / interaction model. Moreover, these efforts underscore the value of harnessing strained heterocyclic intermediates as a unique approach to building polycyclic heteroatomcontaining frameworks.

3.2 Introduction

New approaches for the synthesis of decorated heterocycles remain highly sought after because of the prevalence of heterocycles in drugs, agrochemicals, materials, and natural products. ${ }^{1}$ One unique strategy for heterocycle construction involves the trapping of transient heterocyclic arynes or alkynes. ${ }^{2}$ For example, pyridynes, ${ }^{2 \mathrm{~m}, 3}$ indolynes, ${ }^{4,5,6}$ and piperidynes ${ }^{7}$ (e.g., 3.1-3.3, Figure 3.1) can now be used as building blocks for the synthesis of functionalized heterocycles in a predictable manner using the distortion / interaction model. ${ }^{8}$

Whereas advances in heterocyclic aryne and alkyne chemistry have focused on nitrogencontaining reactive intermediates, the corresponding chemistry of oxacycles has remained underdeveloped. The first aryne ever proposed was the 2,3-benzofuranyne; ${ }^{9}$ however, this structural assignment was later called into question. ${ }^{2 b}$ Subsequent contributions in the area of oxacyclic arynes are limited to scattered examples involving dehydrohalogenation of benzofuran derivatives ${ }^{10}$ and access to the 6,7-benzofuranyne using butyllithium reagents. ${ }^{11}$ With regard to oxacyclohexynes, even less is known, with only two studies involving metalated oxacyclohexynes in the literature. ${ }^{12}$ Silyl triflate precursors to oxacyclic arynes or alkynes have not been synthesized previously; likewise, no general methodologies for oxacyclic aryne or alkyne trapping have been reported to date.

We reasoned that mild methodologies involving the trapping of oxacyclic arynes and alkynes through a multitude of cycloadditions would provide a new avenue for building O containing compounds. Oxygenated heterocycles, such as benzofuran and pyran derivatives, are often seen in natural products and drugs. ${ }^{13}$ Notable examples include Saprisartan (treatment of hypertension), ${ }^{14}$ hopeafuran (antimicrobial agent), ${ }^{15}$ artemisinin (antimalarial drug), ${ }^{16}$ rhoeadine (sedative \& antitussive), ${ }^{17}$ and frenolicin B (kinase inhibitor). ${ }^{18}$ Moreover, some oxygen-
containing heterocycles are known bioisosteres for their nitrogen and sulfur-containting counterparts in medicinal chemistry. ${ }^{19}$

In the present study, we describe synthetic methodology to access two oxacyclic strained intermediates: the 4,5-benzofuranyne (3.4) and the 3,4-oxacyclohexyne (3.5) (Figure 3.1). In addition to establishing synthetic routes to silyl triflate precursors to $\mathbf{3 . 4}$ and $\mathbf{3 . 5}$ and using these species to build an assortment of functionalized heterocycles, we show that reliable regioselectivity predictions can be made prior to experiment using the distortion / interaction model. Selectivities are compared to those seen in the case of trapping experiments of the corresponding N-containing intermediates. Overall, our studies demonstrate that oxacyclic arynes and alkynes can be harnessed to efficiently construct decorated oxygen-containing heterocycles. The methodology is expected to prove useful in the synthesis of new pharmaceuticals and natural products.
N-Containing Strained Alkynes (Previous Studies)

3,4-pyridyne (3.1)

4,5-indolyne
(3.2)

$\underset{\text { (3.3) }}{\text { 3,4-piperidyne }}$
O-Containing Strained Alkynes (Present Study)

4,5-benzofuranyne (3.4)

3,4-oxacyclohexyne
Benzofuran- and Pyran-Containing Natural Products and Pharmaceuticals

Saprisartan treatment for hypertension \& heart failure

Hopeafuran/Shoreaphenol antimicrobial

Artemisinin antimalarial

Rhoeadine sedative \& antitussive

Frenolicin B AKT1 kinase inhibitor

Figure 3.1. Well studied N-containing cyclic alkynes 3.1-3.3, O-containing strained alkynes 3.4 and 3.5 (present study), and representative drugs and natural products

3.3 Results and Discussion

3.3.1 Prediction of Regioselectivities Based on the Distortion / Interaction Model

An attractive aspect of using strained alkynes as synthetic building blocks is the ability to make reliable regioselectivity predictions prior to experiments using the distortion / interaction
model. ${ }^{8}$ Briefly stated, substituted arynes or cyclic alkynes are unsymmetrically distorted in their ground state. Nucleophilic addition occurs at the terminus of the aryne (or alkyne) that is more distorted toward linearity (i.e., the site that possesses a larger internal angle). The geometry of the unsymmetrical aryne or alkyne can readily be determined by performing simple geometry optimization calculations using DFT methods. In addition to revealing the preferred site of attack by nucleophiles, these calculations can also be used to roughly assess the degree of regioselectivities. The greater the difference in internal angles between the two aryne (or alkyne) termini $(\Delta \theta)$, the more pronounced regioselectivities are expected.

With the aim of predicting the site of nucleophilic attack on 4,5-benzofuranyne (3.4) and 3,4-oxacyclohexyne (3.5), while drawing comparisons to the corresponding N-containing heterocyclic alkynes $\mathbf{3 . 6}$ and $\mathbf{3 . 7}$, we performed geometry optimizations using DFT calculations (B3LYP/6-31G(d)) (Figure 3.2). ${ }^{20}$ First, we compared the optimized structures of 4,5benzofuranyne (3.4) and 4,5-indolyne (3.6); each is distorted such that nucleophilic addition is expected to occur at C 5 , which is the more linear terminus. 4,5-Benzofuranyne (3.4) was found to be unsymmetrically distorted with the $\mathrm{C} 5-\mathrm{C} 4 \Delta q$ being 7°. In comparsion, 4,5-indolyne (3.6) is less distorted, with the $\mathrm{C} 5-\mathrm{C} 4 \Delta \theta$ being $4^{\circ} \cdot{ }^{5 e, 5 f}$ As the $\Delta \theta$ is greater in the case of $4,5-$ benzofuranyne (3.4), we predicted this species would react with greater regioselectivity compared to 4,5 -indolyne (3.6). To see if this trend extended to non-aromatic strained alkynes, we compared 3,4-oxacyclohexyne (3.5) and 3,4-piperidyne 3.7. For both cyclic alkynes, nucleophilic attack is preferred to occur at C4, the site further distorted toward linearity. C4C3 $\Delta \theta$ is 15° in the case of 3,4-oxacyclohexyne (3.5), but slightly less (i.e., 12°) for 3,4piperidyne 3.7. ${ }^{\text {c }}$ As such, we surmised that 3,4-oxacyclohexyne (3.5) would react with greater regioselectivities compared to 3,4-piperidyne 3.7.

Figure 3.2. Geometry optimized structures of 3.4-3.7 obtained at the B3LYP/6-31G(d) level and predicted site of nucleophilic attack. $\Delta \theta$ represents the net distortion of the alkyne

3.3.2 Synthesis of Silyl Triflate Precursors

Our study relied on developing efficient syntheses of suitable precursors to 4,5benzofuranyne (3.4) and 3,4-oxacyclohexyne (3.5). Given the well-known versatility of silyl triflate precursors to arynes, ${ }^{21}$ we targeted silyl triflates $\mathbf{3 . 1 0}$ and $\mathbf{3 . 1 4}$ (Scheme 3.1). The benzofuranyne precursor was derived from 5-hydroxybenzofuran (3.8), which is commercially available or readily accessible from hydroquinone. ${ }^{22}$ Bromination of $\mathbf{3 . 8}$ proceeded smoothly to deliver the known bromoalcohol 3.9. ${ }^{23}$ Subsequent O-silylation, followed by retro-Brook rearrangement and triflation, furnished silyl triflate $\mathbf{3 . 1 0}$ in 81% yield. 3,4-Oxacyclohexyne precursor 3.14 could be synthesized in four steps beginning from commercially available 4oxotetrahydropyran 3.11. α-Bromination of 3.11 was performed using a known two-step sequence to provide bromoketone 3.12. ${ }^{24}$ Treatment of $\mathbf{3 . 1 2}$ with DABCO and TESCl afforded
silyl enol ether 3.13 in 91% yield. Finally, lithiation, retro-Brook rearrangement, and triflation delivered silyl triflate 3.14.

Scheme 3.1. Syntheses of Silyl Triflates $\mathbf{3 . 1 0}$ and $\mathbf{3 . 1 4}$

3.3.3 Generation \& Trapping of 4,5-Benzofuranyne

With the silyl triflate precursors in hand, we first investigated the generation and trapping of the 4,5-benzofuranyne (3.4) with symmetrical cycloaddition partners (Table 3.1). Thus, silyl triflate $\mathbf{3 . 1 0}$ was exposed to 2-pyrone and CsF in MeCN at $50^{\circ} \mathrm{C}$; to our delight the desired benzannulated product was obtained via a Diels-Alder / retro-Diels-Alder sequence (entry 1). We also performed trapping experiments with furan and N-Boc pyrrole (entries 2 and 3). In each case, the corresponding [2.2.1]-bridged bicyclic adduct was formed in synthetically useful yields. These results not only validated that the 4,5-benzofuranyne (3.4) can be generated, but also demonstrated how this intermediate can be used to build two new $\mathrm{C}-\mathrm{C}$ bonds on the benzofuran
motif in an efficient manner. In the latter case, the two linkages formed are $\mathrm{sp}^{2}-\mathrm{sp}^{3} \mathrm{C}-\mathrm{C}$ bonds, which would be difficult to introduce by known means.

Table 3.1. Diels-Alder Cycloadditions of 4,5-Benzofuranyne (3.4)

With the aim of probing regioselectivity trends and accessing functionalized benzofurans, we shifted our attention to trapping benzofuranyne 3.4 with nucleophiles and unsymmetrical cycloaddition partners (Table 3.2). We found that p-cresol, morpholine, and N -Me-aniline could be employed as trapping agents, ${ }^{25}$ to furnish benzofuranyne adducts in good yields (entries $1-3$). In all cases, the major product was indicative of nucleophilic attack occurring at C 5 , consistent with the prediction made by the distortion / interaction model. To access more unique scaffolds and further examine regioselectivities, we surveyed trapping agents that would allow for the
appendage of seven-, six-, or five-membered heterocycles on the benzofuran motif. In situ trapping of 3.4 with 1,3-dimethyl-2-imidazolidinone ${ }^{26}$ furnished the corresponding product of formal C-N bond insertion in 90\% yield (entry 4). Only one constitutional isomer was observed in this case, although the subsequent trappings led to mixtures with a preference for initial bond formation also occurring at C 5 . The use of an amido acrylate trapping agent ${ }^{27}$ allowed for the appendage of substituted pyridine rings to the benzofuran unit (entry 5). With regard to the formation of 5-membered rings, several trapping agents were deemed successful and could be used to forge $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$, and $\mathrm{C}-\mathrm{N}$ bonds (entries 6-11). ${ }^{28-33} \mathrm{In}$ all cases, synthetically useful yields of substituted heterocycles were prepared with the expected regioselectivities. Thus, with access to a single new aryne precursor (i.e., 3.10), one can build arrays of decorated benzofurans using this methodology.

Table 3.2. Reactions of Silyl Triflate $\mathbf{3 . 1 0}$ with Nucleophiles and Cycloaddition Partners

${ }^{a}$ Reported yields are the average of two experiments and are based on the amount of isolated products. ${ }^{b}$ Reaction performed neat with 1,3-dimethyl-2-imidazolidinone (10 equiv) at $50^{\circ} \mathrm{C}$ with yield determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as an external standard.

3.3.4 Generation \& Trapping of 3,4-Oxacyclohexyne (3.5)

Efforts were also put forth to generate and trap 3,4-oxacyclohexyne (3.5). To confirm the in situ formation of the strained alkyne, we first examined trappings with dienes to give DielsAlder adducts (Table 3.3). Thus, silyl triflate $\mathbf{3 . 1 4}$ was treated with CsF in the presence of 3 equivalents of tetracyclone in THF at $60^{\circ} \mathrm{C}$. This furnished the desired benzannulated product in quantitative yield (entry 1). Trapping with 2-pyrone, delivered the expected benzannulated product (entry 2). To arrive at more complex, heterocyclic adducts, Diels-Alder trappings were
performed with 2,5-dimethylfuran and N-Boc-pyrrole. In each case, the desired [2.2.1]-bicycles, which would arguably be difficult to make by other means, were formed (entries 3 and 4).

Table 3.3. Diels-Alder Cycloadditions of 3,4-Oxacyclohexyne (3.5)

${ }^{a}$ Reported yields are the average of two experiments and are based on the amount of isolated products.

Analogous to our studies involving the 4,5-benzofuranyne (3.4), we tested the generation and trapping of 3,4-oxacyclohexyne (3.5) with nucleophiles and unsymmetrical cycloaddition partners (Table 3.4). Trapping with imidazole was examined primarily as a means to probe regioselectivity (entry 1). In this case, the 4 -substituted adduct was obtained in $>20: 1$
regiochemical preference. Addition at C 4 was also seen in a variety of other trapping experiments, consistent with the predictions made by the distortion / interaction model. For example, interception of $\mathbf{3 . 5}$ with methyl salicylate ${ }^{34}$ gave two products, both indicative of the same regioselectivity trend (entry 2). We also performed the trapping with an amido acrylate species, ${ }^{27}$ which led to the appendage of pyridine motifs, albeit with modest selectivity (entry 3). Several efforts to annulate the oxacyclohexyne with 5-membered heterocycles were also put forth. Trapping with an iodoniun ylide ${ }^{28}$ led to the introduction of a furan (entry 4), whereas nitrone trapping ${ }^{29}$ gave the expected isoxazoline product (entry 5). Similarly, an azide cycloaddition ${ }^{31}$ proceeded smoothly to give triazole-containing products (entry 6). In two additional examples, pyrazole derivatives could be obtained by trapping the oxacyclohexyne intermediate with either a sydnone ${ }^{32}$ or diazoester ${ }^{33}$ (entries 7 and 8). With this methodology, a variety of annulated oxacycles can be readily accessed from silyl triflate 3.14, with good to excellent control of regioselectivity. It should be noted that the products obtained from these trapping studies possess significant sp^{3} character. The generation of such sp^{3}-rich heterocyclic frameworks is an important direction in modern drug discovery. ${ }^{35}$

Table 3.4. Reactions of Silyl Triflate $\mathbf{3 . 1 4}$ with Nucleophiles and Cycloaddition Partners

${ }^{a}$ Reported yields are average of two experiments and are based on the amount of isolated products. ${ }^{b}$ Reaction performed with MeCN as the solvent.

3.3.5 Comparison of Regioselectivities for \boldsymbol{N} - and \boldsymbol{O}-Containing Strained Alkynes

As noted earlier, we predicted that the 4,5-benzofuranyne (3.4) and the 3,4oxacyclohexyne (3.5) would react with significant regioselectivities to give nucleophilic addition preferentially at C5 and C4, respectively. These predictions were verified, as described above. Additionally, we predicted that 3.4 and 3.5 would undergo trapping with more significant regioselectivities in comparison to their N -containing analogs, $\mathbf{3 . 2 2}$ and 3.7.

Table 3.5 shows a comparison of regioselectivities for trapping experiments of 4,5benzofuranyne (3.4) and N-Me-4,5-indolyne (3.22). When p-cresol was used as the nucleophile (entry 1), the indolyne reacted to furnish the C 5 - and C 4 -substituted adducts in a $3.0: 1$ ratio. In the case of benzofuranyne 3.4, a higher degree of selectivity was observed ($8.5: 1$). Similarly, in
the trapping of the arynes with benzylazide (entry 2), selectivity was greater in the case of the benzofuranyne ($2.4: 1$ vs $6.2: 1$), consistent with predictions.

Table 3.5. Comparison of 4,5-Indolyne and 4,5-Benzofuranyne Regioselectivities

[^1]Similar comparisons were made between the 3,4-oxacyclohexyne (3.5) and the corresponding N-Cbz-protected piperidyne 3.7 using cycloaddition reactions (Table 3.6). In the case of nitrone trapping (entry 1), the piperidyne undergoes cycloaddition to give a $12.7: 1$ ratio of products. However, use of the oxacyclic variant gave $>20: 1$ selectivity. Likewise, slightly higher selectivities were seen in the trapping of oxacyclohexyne 3.5 with benzyl azide, compared to the trapping of piperidyne 7 (entry 2). The more pronounced selectivities seen in the case of the 4,5-benzofuranyne (3.4) and the 3,4-oxacyclohexyne (3.5), compared to their nitrogen-
containing counterparts, can be attributed to the greater electronegativity of oxygen. The oxygen atom has a stronger inductive effect that leads to increased distortion, ${ }^{36}$ which in turn parlays into the more significant selectivities observed.

Table 3.6. Comparison of Oxacyclohexyne and Piperidyne Regioselectivities

[^2]
3.4 Conclusion

In summary, we have developed methodology that allows for the generation and trapping of two oxacyclic strained intermediates, the 4,5-benzofuranyne and the 3,4-oxacyclohexyne. Interception of these species by nucleophiles and cycloaddition partners provides a new means to prepare arrays of heterocyclic scaffolds by the formation of one or more new $\mathrm{C}-\mathrm{C}$ or C heteroatom bonds. The distortion / interaction model was used to make regioselectivity predictions about the preferred sites of reactivity, which were validated by experiments.

Moreover, greater selectivities were seen in the trapping of the oxacyclic strained intermediates compared to the corresponding N-containing compounds, also consistent with computational predictions. Our studies demonstrate that oxacyclic arynes and alkynes can be generated from silyl triflate precursors and strategically harnessed to build decorated oxygen-containing heterocycles. Given the abundance of aryne trapping reactions available in the literature, this methodology is expected to find utility in the synthesis of medicinal substances and natural products.

3.5 Experimental Section

3.5.1 Materials and Methods

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere of nitrogen using anhydrous solvents (freshly distilled or passed through activated alumina columns). All commercially obtained reagents were used as received unless otherwise specified. Cesium fluoride (CsF) was obtained from Strem Chemicals. Trifluoromethanesulfonic anhydride $\left(\mathrm{Tf}_{2} \mathrm{O}\right)$ and Triethylsilyl chloride (TESCl) were obtained from Oakwood Products, Inc. and distilled before use. Furan, N-tert-butyl- α-phenylnitrone, methyl 2-acetamidoacrylate, and methyl salicylate were obtained from Alfa Aesar. Hexamethyldisilane, N -Boc-pyrrole, N methylaniline, 1,3-dimethyl-2-imidazolidinone, ethyl diazoacetate, tetracyclone, and 2,5dimethylfuran were obtained from Sigma Aldrich. 2-Pyrone, p-cresol was obtained from Acros Organics. Morpholine was obtained from Spectrum Chemical and distilled before use. Reaction temperatures were controlled using an IKAmag temperature modulator and, unless stated otherwise, reactions were performed at room temperature (rt , approximately $23^{\circ} \mathrm{C}$). Thin layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.25 mm) and
visualized using a combination of UV light and potassium permanganate staining. Preparative thin layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates $(0.5$ mm) and visualized using UV light. Silicycle Siliaflash P60 (particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ NMR and 2D-NOESY spectra were recorded on Bruker spectrometers $(500 \mathrm{MHz})$ and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker spectrometers (125 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift and, when necessary, multiplicity, and coupling constant (Hz). IR spectra were obtained using a Perkin-Elmer UATR Two FT-IR spectrometer and are reported in terms of frequency absorption $\left(\mathrm{cm}^{-1}\right)$. High-resolution mass spectra were obtained on Waters LCT Premier with ACQUITY LC and Thermo Scientific ${ }^{\text {TM }}$ Exactive Mass Spectrometers with DART ID-CUBE. Images in Figure 3.2 were created using CYLview. ${ }^{37}$

3.5.2 Experimental Procedures.

3.5.2.1 Synthesis of 3,4-Benzofuranyne Precursor

5-Benzyloxybenzofuran (3.25). To a solution of known diethylacetal ${ }^{22} 3.24$ ($13.0 \mathrm{~g}, 41.1 \mathrm{mmol}$) in benzene ($550 \mathrm{~mL}, 0.075 \mathrm{M}$) was added polyphosphoric acid (13.0 g , 1 equiv by weight). The flask was topped with a water condenser and the system placed under N_{2}. The reaction was heated to reflux and stirred for 2 h . After cooling, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$
$(150 \mathrm{~mL})$ and EtOAc $(150 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}. Evaporation under reduced pressure and further purification by flash chromatography (20:1 Hexanes:EtOAc) afforded known 5-benzyloxybenzofuran $\mathbf{3 . 2 5}^{22}(6.6 \mathrm{~g}, 72 \%$ yield) as an off white solid.

4-Bromo-5-hydroxybenzofuran (3.9). To a solution of 5-benzyloxybenzofuran (3.25) (3.08 g, $13.73 \mathrm{mmol})$ in $\mathrm{MeOH}(137 \mathrm{~mL}, 0.1 \mathrm{M})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(146 \mathrm{mg}, 0.137 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$ Pd). The mixture was placed under an atmosphere of hydrogen (double-balloon), stirred for 4 h at $23^{\circ} \mathrm{C}$, and then filtered over celite (EtOAc eluent). Evaporation of the solvent under reduced pressure afforded crude product $\mathbf{3 . 8} \mathbf{8}^{38}$ as an off white solid, which was used in the subsequent step without further purification.

To a stirred solution of 5-hydroxybenzofuran (3.8) (1.8 g, 13.73 mmol$)$ in $\mathrm{MeOH}(274 \mathrm{~mL}, 0.05$ M) at $-78{ }^{\circ} \mathrm{C}$ was added a solution of Br_{2} in MeOH ($14.4 \mathrm{~mL}, 1.0 \mathrm{M}, 13.73 \mathrm{mmol}, 1$ equiv) dropwise over 30 min . The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , quenched with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and then diluted with EtOAc $(100 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}. Evaporation under reduced pressure and further purification by flash chromatography (20:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded known 4-bromo-5-hydroxybenzofuran ${ }^{23}$ (3.9) as a yellow solid ($2.3 \mathrm{~g}, 77 \%$ yield).

Silyl Triflate 3.10. To a solution of 4-bromo-5-hydroxybenzofuran (3.9) ($900 \mathrm{mg}, 4.22 \mathrm{mmol}$) in THF ($7.7 \mathrm{~mL}, 0.55 \mathrm{M}$) was added hexamethyldisilane ($1.9 \mathrm{~mL}, 9.3 \mathrm{mmol}, 2.2$ equiv). The flask was fitted with a reflux condenser, flushed with N_{2}, and then heated to reflux. After 12 h , the reaction mixture was cooled to room temperature. Evaporation of the volatiles under reduced pressure afforded the silyl ether, which was used in the subsequent step without further purification.

To the crude material was added THF $(8.5 \mathrm{~mL}, 0.5 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$, followed by $n-\mathrm{BuLi}(2.9 \mathrm{~mL}$, 1.75 M in hexanes, $5.07 \mathrm{mmol}, 1.2$ equiv) dropwise over 5 min . The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for an additional 20 min , and then neat $\mathrm{Tf}_{2} \mathrm{O}(0.85 \mathrm{~mL}, 5.07 \mathrm{mmol}, 1.2$ equiv) was added dropwise over 5 min . The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and allowed to warm to $23{ }^{\circ} \mathrm{C}$ over 12 h . The reaction was quenched with sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and then diluted with EtOAc $(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}. Evaporation under reduced pressure and further purification by flash chromatography (50:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded silyl triflate $\mathbf{3 . 1 0}$ as a colorless oil ($1.2 \mathrm{~g}, 81 \%$ yield). Silyl triflate 3.10: $\mathrm{R}_{f} 0.6$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74$ (d, $J=2.3,1 \mathrm{H}$), 7.53 (dd, $J=9.0,0.9$, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=9.0,1 \mathrm{H}), 6.96(\mathrm{dd}, J=2.3,0.9,1 \mathrm{H}), 0.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 152.7,150.4,147.0,133.2,125.9,118.7\left(\mathrm{q}, J=320.0, \mathrm{CF}_{3}\right), 116.8,113.6,108.5,0.9$; IR (film): 2960, 1398, $1205 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSi}$, 337.01722; found, 337.01828 .

3.5.2.2 Synthesis of 3,4-Oxacyclohexyne Precursor

Silyl Enol Ether 3.13. To a stirred solution of known bromoketone $\mathbf{3 . 1 2}^{24}(2.31 \mathrm{~g}, 12.88 \mathrm{mmol})$ and $\operatorname{DABCO}\left(3.34 \mathrm{~g}, 29.62 \mathrm{mmol}, 2.3\right.$ equiv) in $\mathrm{DMF}(12.0 \mathrm{~mL}, 1.1 \mathrm{M})$ was added $\mathrm{Et}_{3} \mathrm{SiCl}(3.55$ $\mathrm{mL}, 20.61 \mathrm{mmol}, 1.6$ equiv). The reaction vessel was purged with N_{2} gas and sealed. The solution was stirred for 24 h , and then quenched with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}. Evaporation under reduced pressure and further purification by flash chromatography (95:5 Hexanes:EtOAc) afforded silyl enol ether $\mathbf{3 . 1 3}$ as a faint yellow oil (3.4 g , 91% yield). Silyl enol ether 3.13: $\mathrm{R}_{f} 0.72$ (9:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 4.16(\mathrm{t}, J=2.3,2 \mathrm{H}), 3.43(\mathrm{t}, J=5.5,2 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=$ 8.1, 9H), $0.63(\mathrm{q}, J=8.1,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 145.1,98.1,69.9,64.8,32.9,7.0$, 6.0; IR (film): 2954, 2907, 2874, 1673, 1457, $1246 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{BrO}_{2} \mathrm{Si}$, 293.05670; found, 293.05675

Silyl Triflate 3.14. To a stirred solution of silyl enol ether $\mathbf{3 . 1 3}$ ($250 \mathrm{mg}, 0.85 \mathrm{mmol}$) in THF ($8.5 \mathrm{~mL}, 0.1 \mathrm{M}$) at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.06 \mathrm{~mL}, 2.16 \mathrm{M}$ in hexanes, $2.30 \mathrm{mmol}, 2.7$ equiv) dropwise over 5 min . The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for an additional 15 min , and then neat $\mathrm{Tf}_{2} \mathrm{O}(186 \mu \mathrm{~L}, 1.02 \mathrm{mmol}, 1.2$ equiv) was added dropwise over 2 min . The
resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and allowed to warm to $23{ }^{\circ} \mathrm{C}$ over 30 min . The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}. Evaporation under reduced pressure and further purification by flash chromatography (95:5 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded silyl triflate $\mathbf{3 . 1 4}$ as a colorless oil ($120 \mathrm{mg}, 41 \%$ yield). Silyl triflate 3.14: $\mathrm{R}_{f} 0.55$ (9:1 Hexanes:Et $\left.{ }_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 4.03(\mathrm{t}, J=2.7,2 \mathrm{H}), 3.31(\mathrm{t}, J=$ $5.5,2 \mathrm{H}), 2.15$ (sept, $J=2.7,2 \mathrm{H}), 0.87(\mathrm{t}, J=8.1,9 \mathrm{H}), 0.63(\mathrm{q}, J=8.1,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 151.5,125.7,118.8\left(\mathrm{q}, J=319.9, \mathrm{CF}_{3}\right), 68.0,64.0,28.9,7.3,2.9$; IR (film): 2958, 2879, 1654, 1415, 1213, $1138 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSi}$, 347.09547; found, 347.09571.

3.5.2.3 4,5-Benzofuranyne Trapping Experiments

Representative Procedure (Preparation of Benzofuran 3.26 is used as an example).

Benzofuran 3.26 (Table 3.1, entry 1). To a stirred solution of silyl triflate 3.10 ($50.0 \mathrm{mg}, 0.148$ mmol) and 2-pyrone ($35 \mu \mathrm{~L}, 0.443 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{MeCN}(2.9 \mathrm{~mL}, 0.05 \mathrm{M}$) was added CsF ($67.3 \mathrm{mg}, 0.443 \mathrm{mmol}, 3.0$ equiv). The reaction vessel was purged with N_{2} gas, sealed, and placed in a preheated aluminum heating block maintained at $50^{\circ} \mathrm{C}$ for 12 h . After cooling to 23 ${ }^{\circ} \mathrm{C}$, the reaction mixture was filtered over silica gel (EtOAc eluent, 10 mL). Evaporation under reduced pressure and further purification by preparative thin layer chromatography (20:1

Hexanes:EtOAc) afforded known benzofuran $\mathbf{3 . 2 6}^{39}$ as a white solid (68% yield, average of two experiments).

Any modifications of the conditions shown in this representative procedure are specified in the following schemes, which depict all of the results shown in Tables 3.1 and 3.2.

Benzofuran 3.27 (Table 3.1, entry 2). Purification by preparative thin layer chromatography (10:1 Hexanes:EtOAc) afforded benzofuran 3.27 as a white solid (96% yield, average of two experiments). Benzofuran 3.27: $\mathrm{R}_{f} 0.25$ (10:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.60(\mathrm{~d}, J=2.9,1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{dd}, J=2.3,0.9,1 \mathrm{H}), 5.96$ (app t, $J=0.9,1 \mathrm{H}), 5.83\left(\mathrm{dd}, J=1.7,0.7,1 \mathrm{H} ;{ }^{13} \mathrm{C}\right.$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,146.5$, $144.8,144.1,142.9,142.7,122.2,116.5,106.5,104.0,82.9,81.7$; IR (film): 3309, 3013, 1278, $864 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2}, 185.06025$; found, 185.05825 .

Benzofuran 3.28 (Table 3.1, entry 3). Purification by preparative thin layer chromatography (20:1 Hexanes:EtOAc) afforded benzofuran $\mathbf{3 . 2 8}$ as a \tan solid (75% yield, average of two
experiments). Benzofuran 3.28: $\mathrm{R}_{f} 0.21$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 7.62-7.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.15-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.73(\mathrm{br} \mathrm{s}$, 1H), $5.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 52{ }^{\circ} \mathrm{C}\right): \delta 155.2,154.1,146.4$, 144.7, 143.7, 142.8, 142.1, 122.8, 117.1, 106.5, 104.1, 80.7, 67.2, 65.9, 28.4; IR (film): 2977, 1701, 1338, $1163 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}, 284.12867$; found, 284.12601.

Ethers 3.29 and 3.30 (Table 3.2, entry 1). Purification by preparative thin layer chromatography (20:1 Hexanes:EtOAc) afforded ether 3.29 (65% yield, average of two experiments) as a colorless oil and ether $\mathbf{3 . 3 0}$ (8% yield, average of two experiments) as a colorless oil. Ether 3.29: $\mathrm{R}_{f} 0.42$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~d}$, $J=1.9,1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8,1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.8$, $2.4,1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4,2 \mathrm{H}), 6.70(\mathrm{appt}, J=1.1,1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 156.1,153.1,151.3,146.1,132.2,130.2,128.3,118.1,116.6,112.0,110.8,106.8$, 20.7; IR (film): 3030, 2925, 1595, 1505, 1460, $1218 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}$, 225.09101; found, 225.08969. Ether 3.30: $\mathrm{R}_{f} 0.48$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.67(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.31(\mathrm{dt}, J=8.3,0.9,1 \mathrm{H}), 7.26(\mathrm{t}, J=8.0,1 \mathrm{H})$, 7.22-7.17 (m, 2H), 6.96-6.92 (m, 2H), 6.75 (dd, $J=7.8,0.8,1 \mathrm{H}), 6.64(\mathrm{dd}, J=2.2,0.9,1 \mathrm{H})$, 2.32 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): δ 156.7, 154.9, 150.8, 145.0, 133.3, 130.3, 125.1,
$119.3,118.6,111.2,106.4,103.8,19.7$; IR (film): $3030,2855,1596,1506,1481,1242 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}$, 223.07536; found, 223.07630.

Amines 3.31 and 3.32 (Table 3.2, entry 2). Purification by preparative thin layer chromatography ($10: 1$ Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded amine $\mathbf{3 . 3 1}$ (63% yield, average of two experiments) as a brown solid and amine 3.32 (15% yield, average of two experiments) as a white amorphous solid. Amine 3.31: $\mathrm{R}_{f} 0.27$ (10:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.41(\mathrm{dt}, J=8.8,0.7,1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4,1 \mathrm{H}), 6.99(\mathrm{dd}, J=$ $8.8,2.4,1 \mathrm{H}), 6.69(\mathrm{dd}, J=2.2,0.9,1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 4 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.3,148.1,145.5,128.0,115.8,111.6,107.9,106.7,67.1,51.5$; IR (film): 3123, 2958, 2828, 1592, 1447, 1266, 1119, $736 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}$, 204.10245; found, 204.10179. Amine 3.32: $\mathrm{R}_{f} 0.36$ (10:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=1.6,1 \mathrm{H}), 6.71$ $(\mathrm{d}, J=7.2,1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.16(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.3$, 146.4, 143.7, 125.1, 120.3, 109.7, 106.1, 105.3, 67.3, 51.8; IR (film): 2960, 2854, 1604, 1490, 1240, 1118, $749 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}, 204.10245$; found, 204.10192.

Amines 3.33 and 3.34 (Table 3.2, entry 3). Purification by preparative thin layer chromatography ($10: 1$ Benzene: $\mathrm{Et}_{2} \mathrm{O}$) afforded amine 3.33 (75% yield, average of two experiments) as a white amorphous solid and amine $\mathbf{3 . 3 4}$ (8\% yield, average of two experiments) as a colorless oil. Amine 3.33: $\mathrm{R}_{f} 0.46$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.63(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8,1 \mathrm{H}), 7.38(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=$ 8.8, 2.2, 1H) , 6.86-6.79(m, 3H), $6.73(\mathrm{dd}, J=2.1,0.8,1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 152.2,150.1,145.8,144.8,129.1,128.5,122.5,118.7,117.3,116.2,112.3,106.8$, 41.0; IR (film): $3060,2873,2809,1597,1495,1216 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}$, 224.10754; found, 224.10671. Amine 3.34: $\mathrm{R}_{f} 0.52$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 7.56(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=$ $7.4,1.1,1 \mathrm{H}), 6.91-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.20(\mathrm{dd}, J=2.3,0.9,1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 157.0,150.3,145.1,143.4,129.9,126.2,123.3,121.0,119.0,117.4,107.6,106.5$, 41.1; IR (film): $3025,2872,2808,1597,1495,1216 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}, 224.10754$; found, 224.10675.

Benzofuran 3.35 (Table 3.2, entry 4). The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an external standard (90% yield of 3.35, average of two experiments). The crude reaction mixture was placed under reduced pressure until most of the DMI was removed, and then purified by preparative thin layer chromatography ($100 \% \mathrm{EtOAc}$) to give analytical sample of benzofuran 3.35. Benzofuran 3.35: $\mathrm{R}_{f} 0.54(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=2.1,1 \mathrm{H}), 6.47(\mathrm{dd}, J=8.7$, $0.9,1 \mathrm{H}), 7.01(\mathrm{dd}, J=2.2,0.9,1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8,1 \mathrm{H}), 3.42(\mathrm{t}, J=5.8,2 \mathrm{H}), 3.30(\mathrm{t}, J=5.8$, 2H), $3.26(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4,151.1,146.5,142.9$, 128.2, 121.3, 114.8, 113.9, 107.4, 55.9, 48.4, 40.9, 34.4; IR (film): 2939, 1628, 1485, 1438, 1253, $1033 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}, 231.11280$; found, 231.11300 .

The structure of $\mathbf{3 . 3 5}$ was verified by 2D-NOESY, as the following interaction was observed:

3.35

Pyridines 3.36 and 3.37 (Table 3.2, entry 5). Purification by preparative thin layer chromatography (2:1 Hexanes:EtOAc) afforded an inseparable mixture of pyridines 3.36 and 3.37 (51% yield, average of two experiments) as a white amorphous solid. $\mathbf{3 . 3 6}$ and 3.37: $\mathrm{R}_{f} 0.13$ (2:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\mathbf{3 . 3 6}$ (major isomer): $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}$, $J=8.3,1 \mathrm{H}), 7.93(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8,1 \mathrm{H}), 7.48(\mathrm{~d}, J=1.9,1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.25$ (s, 3H); 3.37 (minor isomer): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=9.1,1 \mathrm{H})$, $7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=1.9,1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.8,166.7,157.7,154.8,154.7,146.1,145.6,141.0,139.9,134.0,131.2,126.0$, 125.7, 124.5, 123.7, 123.6, 122.7, 122.3, 119.3, 117.5, 115.6, 109.0, 106.1, 53.1, 53.0, 27.0, 23.6; IR (film): 3704, 2969, 2864, 1705, 1365, 1275, 1033, $1012 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+$ H^{+}calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{3}$, 242.08172; found, 242.07926.

The structure of $\mathbf{3 . 3 6}$ and $\mathbf{3 . 3 7}$ was verified by 2D-NOESY, as the following interactions were observed:

3.36

3.37

Furans 3.38 and 3.39 (Table 3.2, entry 6). Purification by preparative thin layer chromatography (20:1 Hexanes:EtOAc) afforded an inseparable mixture of furan adducts $\mathbf{3 . 3 8}$ and 3.39 (66% yield, average of two experiments) as a white solid. Furan 3.38: $\mathrm{R}_{f} 0.45$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~d}, J=8.7,1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.2,1 \mathrm{H})$, $7.49(\mathrm{dd}, J=8.7,0.9,1 \mathrm{H}), 7.00(\mathrm{dd}, J=2.2,0.9,1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.2,162.5,154.3,146.2,145.1,120.8,117.3,112.7,109.6,108.2,102.8$, 51.6, 14.6; IR (film): $3145,2953,1714,1597,1444,1261,1099,746 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}$ $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{4}, 231.06519$; found, 231.06430.

The structure of $\mathbf{3 . 3 8}$ was verified by 2D-NOESY, as the following interaction was observed:

Isoxazolines 3.40 and 3.41 (Table 3.2, entry 7). Purification by preparative thin layer chromatography (50:1:1 Hexanes:Benzene: $\mathrm{Et}_{2} \mathrm{O}$) afforded isoxazoline $\mathbf{3 . 4 0}$ (69% yield, average of two experiments) as a yellow solid and isoxazoline $\mathbf{3 . 4 1}$ (13% yield, average of two experiments) as an off white solid. Isoxazoline 3.40: $\mathrm{R}_{f} 0.61$ (50:1:1 Hexanes:Benzene: $\left.\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.48(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7,1 \mathrm{H}), 6.27(\mathrm{dd}, J=2.2,0.9,1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 152.6,151.3,146.4,143.3,128.7,127.8,127.7,123.1,119.4,111.1$, 103.9, 103.8, $67.4,61.2,25.6$; IR (film): $2973,1607,1478,1432,1223,759,697 \mathrm{~cm}^{-1}$; HRMSESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}$, 294.14886; found, 294.14917. Isoxazoline 3.41: R_{f} 0.66 (50:1:1 Hexanes:Benzene:Et O_{2}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, J=2.2,1 \mathrm{H}$), $7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.3,0.7,1 \mathrm{H}), 6.80(\mathrm{dd}, J$ $=2.2,0.8,1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.3,1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta$ 157.7, 149.9, 146.3, 145.8, 129.5, 128.2, 128.0, 123.7, 120.1, 110.6, 104.8, 103.8, 67.5, 62.0, 25.4; IR (film): 2974, 1601, 1473, 1210, 1050, $754,699 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}, 294.14886$; found, 294.14895.

The structure of $\mathbf{3 . 4 1}$ was verified by 2D-NOESY, as the following interaction was observed:

3.41

Diazolidines 3.42 and 3.43 (Table 3.2, entry 8). Purification by preparative thin layer chromatography (9:1 Benzene:Acetone) afforded diazolidine 3.42 (54% yield, average of two experiments) as a yellow solid and diazolidine 3.43 (12% yield, average of two experiments) as a orange solid. Diazolidine 3.42: $\mathrm{R}_{f} 0.40$ (9:1 Benzene:Acetone); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): δ $7.64(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.08(\mathrm{dd}, J=2.2,0.7,1 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 3.55(\mathrm{dt}, J=8.7,1.6,1 \mathrm{H}), 3.27(\mathrm{ddd}, J=12.6,8.8,8.0,1 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.68$ (ddd, $J=16.3,7.8,1.6,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 164.2,154.0,148.4,140.0,131.4$, 129.7, 129.7, 130.0, 127.0, 124.5, 112.0, 109.8, 104.7, 74.8, $52.8,36.8,36.8$; IR (film): 3114, 3032, 2834, 1682, 1438, 1070, $702 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$, 291.11280; found, 291.11424. Diazolidine 3.43: $\mathrm{R}_{f} 0.52$ (9:1 Benzene:Acetone); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 7.74(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}$, $1 \mathrm{H}), 7.26(\mathrm{dd}, J=2.2,0.9,1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.4,0.8,1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.4,0.8,1 \mathrm{H}), 5.34(\mathrm{~s}$, $1 \mathrm{H}), 3.56(\mathrm{dt}, J=8.6,1.5,1 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.72(\mathrm{ddd}, J=16.2$, $7.8,1.6,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{CN}$): $\delta 163.9,157.2,146.5,140.5,129.7,129.6,129.3$,
$129.3,127.6,120.4,115.2,108.3,107.8,74.9,52.9,36.8$; IR (film): 3124, 3032, 2836, 1691, 1477, 1098, $704 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}, 291.11280$; found, 291.11346.

The structure of $\mathbf{3 . 4 3}$ was verified by 2D-NOESY, as the following interaction was observed:

3.43

Triazoles 3.44 and 3.45 (Table 3.2, entry 9). Purification by preparative thin layer chromatography ($10: 1$ Benzene: $\mathrm{Et}_{2} \mathrm{O}$) afforded triazole 3.44 (61% yield, average of two experiments) as an off white solid and triazole 3.45 (10% yield, average of two experiments) as an off white solid. Triazole 3.44: $\mathrm{R}_{f} 0.43$ (10:1 Benzene: $\mathrm{Et}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.80(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.59(\mathrm{dd}, J=9.0,0.9,1 \mathrm{H}), 7.38(\mathrm{dd}, J=2.1,0.8,1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 5 \mathrm{H})$, $7.21(\mathrm{~d}, J=9.0,1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,146.1,140.4,134.9$, 130.3, 129.2, 128.6, 127.6, 117.9, 113.2, 105.5, 105.4, 52.7; IR (film): 3118, 3033, 1597, 1499, 1457, 1249, 1144, 1059, $721 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}, 250.09804$; found, 250.09552. Triazole 3.45: $\mathrm{R}_{f} 0.48$ (10:1 Benzene: $\mathrm{Et}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$7.96(\mathrm{~d}, J=9.1,1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.56(\mathrm{dd}, J=9.2,0.8,1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=2.1,0.9,1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.5$, $145.3,143.5,135.1,129.1,128.5,127.3,126.9,115.8,110.3,110.1,104.4,52.9$; IR (film): 3116, 3033, 1637, 1499, 1455, 1242, 1147, 1052, $730 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}, 250.09804$; found, 250.09587.

The structure of $\mathbf{3 . 4 4}$ was verified by 2D-NOESY, as the following interaction was observed:

3.44

Pyrazoles 3.46 and 3.47 (Table 3.2, entry 10). Purification by preparative thin layer chromatography (20:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) afforded pyrazole 3.46 (48% yield, average of two experiments) as a black solid and pyrazole 3.47 (37% yield, average of two experiments) as a dark green solid. Pyrazole 3.46: $\mathrm{R}_{f} 0.21$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.46(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{dd}, J=2.0,0.8,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.5,144.8,143.7,140.7,129.7$, 127.8, 121.7, 121.0, 120.2, 116.6, 115.1, 111.0, 105.8; IR (film): 3123, 2923, 1635, 1599, 1519,

1415, 1043, $735 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}, 235.08714$; found, 235.08663. Pyrazole 3.47: $\mathrm{R}_{f} 0.21$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54$ $(\mathrm{s}, 1 \mathrm{H}), 7.96-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.60(\mathrm{~d}, J=9.3,1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.40$ $(\mathrm{t}, J=7.4,1 \mathrm{H}), 7.01(\mathrm{dd}, J=2.0,0.8,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.3,148.5,144.2$, $140.8,129.8,127.8,120.9,118.9,116.8,116.7,114.9,114.8,106.7$; IR (film): 3120, 3070, 1600, 1517, 1504, 1387, 1062, $754 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}$, 235.08714; found, 235.08643 .

The structure of $\mathbf{3 . 4 6}$ was verified by 2D-NOESY, as the following interaction was observed:

Pyrazoles 3.48 and 3.49 (Table 3.2, entry 11). Purification by preparative thin layer chromatography (3:1:1 Hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$) afforded pyrazole 3.48 (46% yield, average of two experiments) as a white solid and pyrazole 3.49 (19\% yield, average of two experiments) as a white solid. Pyrazole 3.48: $\mathrm{R}_{f} 0.48$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.04(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.51(\mathrm{dd}, J=9.0,0.7,1 \mathrm{H}), 7.17(\mathrm{dd}, J=2.8,0.8,1 \mathrm{H})$, $4.48(\mathrm{q}, J=7.2,2 \mathrm{H}) 1.39(\mathrm{t}, J=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.3,155.0$ 144.5,
$136.9,135.8,118.8,117.7,111.2,109.8,104.7,61.3,14.4$; IR (film): 3195, 3123, 2980, 1714, 1485, 1251, 1150, $740 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}$, 231.07697; found, 231.07500. Pyrazole 3.49: $\mathrm{R}_{f} 0.48$ (20:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.79(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.1,1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.9,1 \mathrm{H}), 7.56(\mathrm{~d}, J=9.1,1 \mathrm{H}), 4.59(\mathrm{q}, J$ $=7.1,2 \mathrm{H}), 1.51(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.9,152.0,145.0,139.4$, $136.3,119.1,116.2,113.4,108.7,107.3,61.5,14.7$; IR (film): 3246, 3168, 2980, 1710, 1447, 1227, 1148, $768 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}, 229.06132$; found, 229.06117.

The structure of $\mathbf{3 . 4 8}$ was verified by 2D-NOESY, as the following interaction was observed:

3.48

3.5.2.4 Oxacyclohexyne Trapping Experiments

Representative Procedure (Preparation of Pyran 3.50 is used as an example).
Pyran 3.50 (Table 3.3, entry 1). To a stirred solution of silyl triflate 3.14 ($50.2 \mathrm{mg}, 0.145$ $\mathrm{mmol})$ and tetracyclone ($168 \mathrm{mg}, 0.434 \mathrm{mmol}, 3.0$ equiv) in THF $(5.0 \mathrm{~mL}, 0.03 \mathrm{M})$ was added

CsF ($100 \mathrm{mg}, 0.725 \mathrm{mmol}, 5.0$ equiv). The reaction vessel was purged with N_{2} gas, sealed, and placed in a preheated aluminum heating block maintained at $60^{\circ} \mathrm{C}$ for 24 h . After cooling to 23 ${ }^{\circ} \mathrm{C}$, the reaction mixture was filtered over silica gel (EtOAc eluent, 12 mL). Evaporation under reduced pressure and further purification by preparative thin layer chromatography (1:1 Benzene:Hexanes) afforded pyran $\mathbf{3 . 5 0}$ as a faint yellow amorphous solid (100% yield, average of two experiments). Pyran 3.50: $\mathrm{R}_{f} 0.52$ (9:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 10 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=5.8,2 \mathrm{H})$, $2.64(\mathrm{t}, J=5.8,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [24/33 carbons were discernable]: $\delta 140.7$, $140.2,139.9,139.8,139.4,139.0,138.8,137.8,132.3,131.4,131.3,131.1,130.3,130.0,127.9$, $127.8,126.7,126.6,126.4,125.4,125.3,68.2,65.4,28.6$; IR (film): 3080, 3057, 2244, 1950, 1809, $1603 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{O}, 439.20564$; found, 439.19306.

Any modifications of the conditions shown in this representative procedure are specified in the following schemes, which depict all of the results shown in Tables 3.3 and 3.4.

Isochroman (3.51) (Table 3.3, entry 2). Purification by preparative thin layer chromatography (2:1 Hexanes:EtOAc) afforded isochroman (3.51) as a colorless oil (49\% yield, average of two experiments). Isochroman (3.51): $\mathrm{R}_{f} 0.50$ ($9: 1 \mathrm{Hexanes}: \mathrm{Et}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.18-7.10 (m, 3H), 6.99-6.96(m, 1H), 4.78(s, 2H), $3.99(\mathrm{t}, J=5.7,2 \mathrm{H}), 2.87(\mathrm{t}, J=5.7,2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.1,133.4,129.1,126.5,126.1,124.5,68.1,65.5,28.5$; IR (film): 3061, 2930, 2832, 1649, 1495, $1452 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}$, 135.08044; found, 135.07911 .

Pyran 3.52 (Table 3.3, entry 3). Purification by preparative thin layer chromatography (1:1 Hexanes:EtOAc) afforded pyran $\mathbf{3 . 5 2}$ as a colorless oil (50% yield, average of two experiments). Pyran 3.52: $\mathrm{R}_{f} 0.25$ (9:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{~s}, 2 \mathrm{H}), 4.46$ (app. $\mathrm{dt}, J=16.3,3.7,1 \mathrm{H}), 3.97$ (app. ddd, $J=16.3,3.7,0.8,1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.0,149.6$, 148.1, 147.7, 91.0, 90.1, 64.7, 63.8, 24.1, 15.4, 15.1; IR (film): 2972, 2930, 2898, 1715, 1668, $1387 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}, 179.10666$; found, 179.10518.

Pyran 3.53 (Table 3.3, entry 4). Purification by preparative thin layer chromatography (1:1 Hexanes:EtOAc) afforded pyran 3.53 as a faint orange oil (48\% yield, average of two experiments). Pyran 3.53: $\mathrm{R}_{f} 0.78$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60{ }^{\circ} \mathrm{C}$): δ $7.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.97(\operatorname{app} . \mathrm{d}, J=9.6,2 \mathrm{H}), 4.49(\operatorname{app} . \mathrm{d}, J=15.8,1 \mathrm{H}), 4.02(\mathrm{dt}, J=16.4,3.2,1 \mathrm{H})$,
$3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.44($ app. d, $J=16.4,1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$): $\delta 154.9,147.3,146.8,143.3,143.0,80.5,68.8,66.8$, 66.0, 64.1, 28.4, 26.4; IR (film): 2977, 2921, 1701, 1368, 1335, $1255 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-\mathrm{ESI}(m / z)[\mathrm{M}$ $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3}$, 250.14377; found, 250.14157.

Pyran 3.54 (Table 3.4, entry 1). Purification by preparative thin layer chromatography (5:4:1 Benzene: $E t O A c: \mathrm{Et}_{3} \mathrm{~N}$) afforded pyran $\mathbf{3 . 5 4}$ as a colorless oil (59\% yield, average of two experiments). Pyran 3.54: $\mathrm{R}_{f} 0.35$ (5:4:1 Benzene:EtOAc: $\mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $7.44(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{sept}, J=1.5,1 \mathrm{H}), 3.79(\mathrm{q}, J=2.7,2 \mathrm{H}), 3.35(\mathrm{t}, J=$ 5.5, 2H), 1.73-1.68(m, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 134.3,131.1,130.5,115.7,112.2$, 64.2, 63.5, 26.8; IR (film): 3381, 2930, 2841, 1678, 1495, $1382 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}, 151.08659$; found, 151.08530.

The structure of $\mathbf{3 . 5 4}$ was verified by 2D-NOESY, as the following interaction was observed:

Pyrone 3.55 and Enol Ether 3.56 (Table 3.4, entry 2). Purification by preparative thin layer chromatography (9:1 Benzene:EtOAc) afforded adduct $\mathbf{3 . 5 5}$ (41% yield, average of two experiments) as a white amorphous solid and $\mathbf{3 . 5 6}$ (38% yield, average of two experiments) as a colorless oil. Pyrone 3.55: $\mathrm{R}_{f} 0.20$ (9:1 Benzene:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (dd, $J=8.0,1.5,1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.40($ app. dd, $J=8.4,0.5,1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H})$, $4.65(\mathrm{t}, J=1.8,2 \mathrm{H}), 4.00(\mathrm{t}, J=5.7,2 \mathrm{H}), 2.77(\mathrm{tt}, J=5.7,1.8,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 175.8,160.9,156.1,133.5,125.7,125.0,123.6,117.9,117.2,63.9,62.7,27.7$; IR (film): 3066, 2855, 1649, 1607, 1471, $1429 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-\operatorname{ESI}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3}$, 203.07027; found, 203.06829. Enol ether 3.56: $\mathrm{R}_{f} 0.40$ (9:1 Benzene:EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{dd}, J=7.7,1.7,1 \mathrm{H}), 7.49(\mathrm{ddd}, J=8.1,7.7,1.7,1 \mathrm{H}), 7.19(\mathrm{dt}, J=7.7$, $1.1,1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.1,1.1,1 \mathrm{H}), 4.62(\mathrm{sept}, J=1.1,1 \mathrm{H}), 4.13(\mathrm{q}, J=2.5,2 \mathrm{H}), 3.90(\mathrm{t}, J=$ 5.6, 2H), $3.89(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 165.7,154.9,153.1$, 133.3, 132.2, 124.6, 124.1, 122.7, 101.0, 64.5, 64.4, 51.7, 28.2; IR (film): 2949, 2836, 1729, 1678, 1603, $1485 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}, 235.09649$; found, 235.09445 .

The structure of $\mathbf{3 . 5 6}$ was verified by 2D-NOESY, as the following interaction was observed:

3.56

Pyridines 3.57 and 3.58 (Table 3.4, entry 3). Purification by preparative thin layer chromatography (9:1 Benzene:Acetone) afforded an inseparable mixture of pyridine adducts 3.57 and 3.58 (71% yield, average of two experiments) as a white amorphous solid. Pyridines 3.57 and 3.58: $\mathrm{R}_{f} 0.50$ (9:1 Benzene:Acetone); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.57 (major isomer): $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{t}, J=5.8,2 \mathrm{H}), 2.87(\mathrm{t}, J=5.8,2 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}) ; 3.58$ (minor isomer): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J$ $=5.8,2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=5.8,2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.57$ (major isomer): $\delta 166.1,154.5,145.0,143.6,133.1,123.7,65.7,64.1,53.0,28.2,21.3 ; 3.58$ (minor isomer): $\delta 166.1,157.8,144.6,144.4,131.7,119.2,67.2,64.9,53.0,25.8,22.0$; IR (film): 3451, 2949, 2850, 1715, 1598, $1433 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}$, 208.09682; found, 208.09521.

The structure of $\mathbf{3 . 5 7}$ was verified by 2D-NOESY, as the following interaction was observed:

3.57

The solvent used in this reaction was acetonitrile. The solubility of the trapping agent prevented the use of tetrahydrofuran.

Furan 3.59 (Table 3.4, entry 4). Purification by preparative thin layer chromatography (9:1 Hexanes:EtOAc) afforded furan 3.59 (70% yield, average of two experiments) as a colorless oil. Furan 3.59: $\mathrm{R}_{f} 0.52$ (9:1 Benzene:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{t}, J$ $=5.5,2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.1$, 158.6, 146.2, 115.3, 112.7, 65.4, 63.2, 51.3, 23.9, 14.0; IR (film): 2954, 2846, 1715, 1584, 1443, $1293 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}, 197.08084$; found, 197.07904 .

The structure of $\mathbf{3 . 5 9}$ was verified by 2D-NOESY, as the following interaction was observed:

Isoxazoline 3.60 (Table 3.4, entry 5). Purification by preparative thin layer chromatography (1:1 Hexanes:EtOAc) afforded isoxazoline $\mathbf{3 . 6 0}$ (73% yield, average of two experiments) as a colorless oil. Isoxazoline 3.60: $\mathrm{R}_{f} 0.95$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.37$ (app. d, $J=8.1,2 \mathrm{H}), 7.18$ (app. d, $J=7.6,2 \mathrm{H}), 7.07(\mathrm{tt}, J=7.0,1.3,1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J$ $=14.1,1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.1,1 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 146.0,143.6,128.4,127.1,127.0,105.2,68.3,63.4$, 62.9, 60.0, 24.9, 23.0; IR (film): 2972, 2902, 1729, 1457, 1363, $1232 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}$ $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}$, 260.16451; found, 260.16226.

The structure of $\mathbf{3 . 6 0}$ was verified by 2D-NOESY, as the following interaction was observed:

Triazoles 3.61 and 3.62 (Table 3.4, entry 6). Purification by preparative thin layer chromatography (4:1 EtOAc:Hexanes) afforded an inseparable mixture of triazoles $\mathbf{3 . 6 1}$ and $\mathbf{3 . 6 2}$ (69% yield, average of two experiments) as a white amorphous solid. Triazoles $\mathbf{3 . 6 1}$ and $\mathbf{3 . 6 2}$: R_{f} 0.30 (4:1 EtOAc:Hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\mathbf{3 . 6 1}$ (major isomer): $\delta 7.37-7.31$ (m, $3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{t}, J=1.2,2 \mathrm{H}), 3.86(\mathrm{t}, J=5.5,2 \mathrm{H}), 2.54(\mathrm{tt}, J=5.5$, $1.2,2 \mathrm{H}$); 3.62 (minor isomer): $\delta 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=$ $1.2,2 \mathrm{H}), 3.85(\mathrm{t}, J=5.5,2 \mathrm{H}), 2.88(\mathrm{tt}, J=5.5,1.2,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \mathbf{3 . 6 1}$ (major isomer): $\delta 142.3,134.5,129.7,129.2,128.7,127.7,64.2,64.0,52.3,21.9 ; \mathbf{3 . 6 2}$ (minor isomer): $\delta 141.3,134.0,130.4,129.3,128.9,127.9,65.2,61.8,52.9,23.5$; IR (film): 3446, 2925, 2855, 2353, 1499, $1189 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}, 216.11314$; found, 216.11143.

The structure of $\mathbf{3 . 6 1}$ was verified by 2D-NOESY, as the following interaction was observed:

Pyrazoles 3.63 and 3.64 (Table 3.4, entry 7). Purification by preparative thin layer chromatography (4:1 Benzene:EtOAc) afforded pyrazole 3.63 (53% yield, average of two experiments) as a yellow oil and pyrazole 3.64 (35% yield, average of two experiments) as a yellow oil. Pyrazole 3.63: $\mathrm{R}_{f} 0.65$ (4:1 Benzene:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~s}$, $1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.7,1.9,2 \mathrm{H}), 7.42(\mathrm{tt}, J=7.5,1.2,2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.7,7.5,1 \mathrm{H}), 4.85(\mathrm{~s}$, $2 \mathrm{H}), 3.92(\mathrm{t}, J=5.6,2 \mathrm{H}), 2.76(\mathrm{t}, J=5.6,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.0,140.4$, $129.5,126.2,124.0,118.9,115.0,65.6,65.2,21.8$; IR (film): $3113,3052,2841,1598,1504$, $1391 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$, 201.10224; found, 201.10053. Pyrazole 3.64: $\mathrm{R}_{f} 0.55$ (4:1 Benzene:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.61(\mathrm{~m}, 3 \mathrm{H})$, 7.45-7.39 (m, 2H), 7.27-7.23 (m, 1H), $4.77(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=5.8,2 \mathrm{H}), 2.91(\mathrm{t}, J=5.8,2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 147.8,140.4,129.5,126.2,121.4,119.0,116.6,65.6,63.3,24.5 ;$ IR (film): 2944, 2846, 1598, 1570, 1509, $1377 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}, 201.10224$; found, 201.10039.

The structure of $\mathbf{3 . 6 3}$ was verified by 2D-NOESY, as the following interaction was observed:

Pyrazoles 3.65 and 3.66 (Table 3.4, entry 8). Purification by preparative thin layer chromatography (9:1 Benzene: MeOH) afforded an inseparable mixture of pyrazoles $\mathbf{3 . 6 5}$ and 3.66 (64% yield, average of two experiments) as a yellow oil. Pyrazoles $\mathbf{3 . 6 5}$ and 3.66: $\mathrm{R}_{f} 0.45$ (9:1 Benzene:MeOH); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\mathbf{3 . 6 5}$ (major isomer): $\delta 4.93$ (s, 2H), 4.01 (q, J $=7.2,2 \mathrm{H}), 3.61(\mathrm{t}, J=5.7,2 \mathrm{H}), 2.70(\mathrm{t}, J=5.7,2 \mathrm{H}), 0.95(\mathrm{t}, J=7.2,3 \mathrm{H}) ; \mathbf{3 . 6 6}$ (minor isomer): δ $4.89(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{q}, J=7.2,2 \mathrm{H}), 3.62(\mathrm{t}, J=5.7,2 \mathrm{H}), 2.77(\mathrm{t}, J=5.7,2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\mathbf{3 . 6 5}$ (major isomer): $\delta 161.5,144.9,134.9,116.6,64.9,64.3,60.6$, 23.3, 14.2; 3.66 (minor isomer): $\delta 161.7,142.3,134.9,117.9,64.3,64.2,60.7,23.8,14.1 ;$ IR (film): 3212, 2958, 2850, 1720, 1448, $1255 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}, 197.09207$; found, 197.09016.

The structure of $\mathbf{3 . 6 5}$ was verified by 2D-NOESY, as the following interaction was observed:

3.65

3.5.3 Computational Methods.

All computations were carried out using Spartan '10 Parallel Suite for Mac unless otherwise noted. ${ }^{40}$ All structures were minimized using Molecular Mechanics, and then further minimized using Density Functional Theory B3LYP/6-31G*. Computational data for structures $\mathbf{5 . 6}$ and $\mathbf{5 . 7}$ have previously been reported. ${ }^{5 e, 5 f, 7 c, 8 a}$

3.5.3.1 Cartesian Coordinates of Strained Alkynes

Structure 3.4

C	-0.915310	-1.508769	-0.000000
C	-1.136055	1.214394	0.000000
C	0.309699	-0.842830	-0.000000
C	-2.014499	-0.917769	0.000000
C	-2.312414	0.443151	0.000000
C	0.110164	0.568133	0.000000
H	-3.298649	0.893331	0.000000
H	-1.185215	2.298979	0.000000
C	1.732086	-1.043564	-0.000000
H	2.270565	-1.980214	-0.000000
O	1.328037	1.193936	0.000000
C	2.274967	0.201642	-0.000000
H	3.297172	0.550090	-0.000000

Structure 3.5

H	-2.395709	-0.204146	0.568566
C	-1.552912	-0.184770	-0.132100
C	0.647654	-1.340220	0.041322
C	1.506487	-0.118244	0.081443
C	-0.574405	-1.258131	-0.000894
C	-0.610478	1.052425	0.236791
H	1.897936	0.043069	1.096118
H	-0.560416	1.106573	1.334921
H	-1.951206	-0.099172	-1.149939
H	2.342505	-0.121492	-0.622200
H	-1.059463	1.971018	-0.152238
O	0.680025	0.996295	-0.325870

3.5.3.2 Energies of Strained Alkynes

Structure	Energy (hartrees)	Energy $(\mathbf{k c a l} / \mathbf{m o l})$
$\boldsymbol{z}_{3.4}$	-382.332940	-239917.743

Structure	Energy (hartrees)	Energy $($ kcal/mol)
0	-269.218809	-168937.494
0		

3.6 Spectra Relevant to Chapter Three:

Expanding the Strained Alkyne Toolbox: Generation and Utility of Oxygen-Containing Strained Alkynes

Tejas K. Shah, Jose M. Medina, and Neil K. Garg. J. Am. Chem. Soc. 2016, 138, 4948-4954.

809:0

Figure A3.4. Infrared spectrum of compound $\mathbf{3 . 1 0}$

[^3]Figure A3.5. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 1 0}$

Figure A3.7. Infrared spectrum of compound $\mathbf{3 . 1 3}$

Figure A3.8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 1 3}$

Figure A3.10. Infrared spectrum of compound $\mathbf{3 . 1 4}$

Figure A3.11. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 1 4}$

Figure A3.13. Infrared spectrum of compound 3.27

Figure A3.14. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 2 7}$

Figure A3.16. Infrared spectrum of compound 3.28

Figure A3.17. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 2 8}$

Figure A3.19. Infrared spectrum of compound 3.29

Figure A3.20. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 2 9}$

Figure A3.22. Infrared spectrum of compound 3.30

Figure A3.23. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 . 3 0}$

Figure A3.24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 3 1}$

Figure A3.25. Infrared spectrum of compound 3.31

Figure A3.26. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 1}$

Figure A3.28. Infrared spectrum of compound 3.32

Figure A3.29. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 2}$

	$\stackrel{\text { ¢ }}{\text { c }}$
 3.33	

Figure A3.30. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ compound $\mathbf{3 . 3 3}$

Figure A3.31. Infrared spectrum of compound 3.33

Figure A3.32. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 3}$

Figure A3.34. Infrared spectrum of compound 3.34

Figure A3.35. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 4}$

Figure A3.37. Infrared spectrum of compound 3.35

Figure A3.38. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 5}$

Figure A3.40. Infrared spectrum of compounds $\mathbf{3 . 3 6} \& 3.37$

Figure A3.41. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compounds $\mathbf{3 . 3 6}$ \& $\mathbf{3 . 3 7}$

Figure A3.43. Infrared spectrum of compound $\mathbf{3 . 3 8} \& 3.39$

Figure A3.44. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 3 8}$

Figure A3.46. Infrared spectrum of compound 3.40

Figure A3.47. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 0}$

Figure A3.49. Infrared spectrum of compound 3.41

Figure A3.50. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 1}$

Figure A3.52. Infrared spectrum of compound 3.42

Figure A3.53. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 . 4 2}$

Figure A3.55. Infrared spectrum of compound 3.43

Figure A3.56. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 . 4 3}$

Figure A3.58. Infrared spectrum of compound 3.44

Figure A3.59. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 4}$

Figure A3.60. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) compound $\mathbf{3 . 4 5}$

Figure A3.61. Infrared spectrum of compound 3.45

Figure A3.62. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 . 4 5}$

Figure A3.64. Infrared spectrum of compound 3.46

Figure A3.65. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 6}$

Figure A3.67. Infrared spectrum of compound 3.47

Figure A3.68. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 7}$

Figure A3.70. Infrared spectrum of compound 3.48

Figure A3.71. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 8}$

Figure A3.73. Infrared spectrum of compound 3.49

Figure A3.74. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 4 9}$

Figure A3.76. Infrared spectrum of compound $\mathbf{3 . 5 0}$

Figure A3.77. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 0}$

Figure A3.79. Infrared spectrum of compound 3.51

Figure A3.80. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 1}$

Figure A3.82. Infrared spectrum of compound 3.52

Figure A3.83. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 2}$

Figure A3.85. Infrared spectrum of compound 3.53

Figure A3.86. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 3}$

Figure A3.88. Infrared spectrum of compound $\mathbf{3 . 5 4}$

Figure A3.89. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 5 4}$

Figure A3.91. Infrared spectrum of compound 3.55

Figure A3.92. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 5}$

Figure A3.94. Infrared spectrum of compound $\mathbf{3 . 5 6}$

Figure A3.95. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 5 6}$

Figure A3.97. Infrared spectrum of compound $3.57 \& 3.58$

Figure A3.98. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 7} \& \mathbf{3 . 5 8}$

Figure A3.100. Infrared spectrum of compound $\mathbf{3 . 5 9}$

Figure A3.101. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 5 9}$
 $\begin{array}{cc}====== & \text { CHANNEL } f 1=== \\ \text { FO1 } \\ \text { FUC1 } & 500.1340010 \mathrm{MHz} \\ \text { P1 } & 1 \mathrm{H} \\ \text { PLW1 } & 13.00 \mathrm{usec} \\ & 13.50000000 \mathrm{~W}\end{array}$
 といトレ 606．1
LE6． 1
レ $+6^{\circ}$ に
$9 カ 6^{\circ}$－
0G6．1
$6 \angle 6{ }^{\circ}$－
786 1
$686^{\circ} \vdash$
766°
$766^{\circ} \downarrow$
$866^{\circ}-$
ع00ㄱ
800°
$68 \overbrace{}^{\circ}$
$68 乙^{\prime} \varepsilon$
$86 乙^{\prime} \varepsilon$
$\varepsilon 0 \varepsilon^{\circ} \varepsilon$
$\varepsilon 0 \varepsilon^{\prime} \varepsilon$
乙IE ε
$12 \varepsilon^{\prime} \varepsilon$

૬ટE．ε
$\varsigma \varepsilon \varepsilon^{\circ} \varepsilon$
89
$8 \angle \nabla^{\circ} \varepsilon$
$88 \nabla^{\circ} \varepsilon$
OOG＇$\varepsilon /$

七G8． \mathcal{E}
$268^{\circ} \varepsilon$
$866^{\circ} \varepsilon$
$200^{\circ} \dagger$
200° 七
$00^{\circ} \downarrow$

$600^{\circ} \downarrow$
920
\downarrow

عO＇ゥ
عとO＇\downarrow
LEO＇ゥ
SGO
GSO
L90
$990^{\circ} \angle$
$90^{\circ} \angle$
$690^{\circ} \angle$
$\varepsilon \angle 0^{\circ} \angle$
$280^{\circ} \mathrm{L}$
780°
$\angle 80^{\circ} \angle$
$091^{\circ} \angle$
$91^{\circ} \angle$
$\angle 1^{\circ} \angle$
GLL
$\angle 8 L^{\circ} \angle$
L81＇L
$061^{\circ} \angle$
$61^{\circ} \mathrm{L}$
G98＇\angle
$\angle 9 E^{\circ} \angle$
$8 \angle E^{\prime} \angle$
$8 \varepsilon^{\circ} L$
$\rightarrow 8 \varepsilon^{\circ} \angle$

Figure A3.103. Infrared spectrum of compound $\mathbf{3 . 6 0}$

Figure A3.104. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3 . 6 0}$

Figure A3.106. Infrared spectrum of compounds $3.61 \& 3.62$

Figure A3.107. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compounds $\mathbf{3 . 6 1} \& 3.62$

Figure A3.109. Infrared spectrum of compound $\mathbf{3 . 6 3}$

Figure A3.110. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 6 3}$

Figure A3.112. Infrared spectrum of compound 3.64

Figure A3.113. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 . 6 4}$

Figure A3.115. Infrared spectrum of compounds 3.65 \& 3.66

Figure A3.116. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compounds $\mathbf{3 . 6 5}$ \& $\mathbf{3 . 6 6}$

3.7 Notes and References

${ }^{1}$ (a) Vitaku, E.; Smith, B. R.; Smith, D. T.; Njardarson, J. T. http://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/Top\ US\ Pharma ceutical\%20Products\%20of\%202013.pdf (accessed February 9, 2016). (b) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348-1349. (c) Dinges, J., Lamberth, C., Eds. Bioactive Heterocyclic Compounds Classes: Agrochemicals; Wiley-VCH: Weinheim, Germany, 2012. (d) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999, 28492866.
${ }^{2}$ For reviews of arynes and hetarynes, see: (a) Kauffmann, T. Angew. Chem. Int. Ed. Engl. 1965, 4, 543-618. (b) Reinecke, M. G. Tetrahedron 1982, 38, 427-498. (c) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701-730. (d) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem. Int. Ed. 2003, 42, 502-528. (e) Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215-291. (f) Bronner, S. M.; Goetz, A. E.; Garg, N. K. Synlett 2011, 2599-2604. (g) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550-3557. (h) Gampe, C. M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 3766-3778. (i) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140-3152. (j) Yoshida, H.; Takaki, K. Synlett 2012, 1725-1732. (k) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191-218. (1) Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2, 116-125. (m) Goetz, A. E.; Garg, N. K. J. Org. Chem. 2014, 79, 846-851. (n) Goetz, A. E.; Shah, T. K.; Garg, N. K. Chem. Commun. 2015, 51, 34-45.

For a recent example from our laboratory, see: Goetz, A. E.; Garg, N. K. Nat. Chem. 2013, 5, 54-60.

4 (a) Julia, M.; Goffic, F. L.; Igolen, J.; Baillarge, M. C. R. Acad. Sci., Ser. C 1967, 264, 118120. (b) Julia, M.; Huang, Y.; Igolen, J. C. R. Acad. Sci., Ser. C 1967, 265, 110-112. (c) Igolen, J.; Kolb, A. C. R. Acad. Sci., Ser. C 1969, 269, 54-56. (d) Julia, M.; Igolen, J.; Kolb, M. C. R. Acad. Sci., Ser. C 1971, 273, 1776-1777.

5 (a) Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N. VanderVelde, D. Org. Lett. 2007, 9, 4135-4137. (b) Brown, N.; Luo, D.; VanderVelde, D.; Yang, S.; Brassfield, A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 63-65. (c) Bronner, S. M.; Bahnck, K. B.; Garg, N. K. Org. Lett. 2009, 11, 1007-1010. (d) Garr, A. N.; Luo, D.; Brown, N.; Cramer, C. J.; Buszek K. R.; VanderVelde, D. Org. Lett. 2010, 12, 96-99. (e) Cheong, P. H.-Y.; Paton, R. S.; Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267-1269. (f) Im, G.-Y. J.; Bronner, S. M.; Goetz, A. E.; Paton, R. S.; Cheong, P. H.-Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010, 132, 17933-17944. (g) Thornton, P. D.; Brown, N.; Hill, D.; Neuenswander, B.; Lushington, G. H.; Santini, C.; Buszek, K. R. ACS Comb. Sci. 2011, 13, 443-448. (h) Candito, D. A.; Dobrovolsky, D.; Lautens, M. J. Am. Chem. Soc. 2012, 134, 15572-15580. (i) Nerurkar, A.; Chandrasoma, N.; Maina, L.; Brassfield, A.; Luo, D.; Brown, N. Buszek, K. R. Synthesis 2013, 45, 1843-1852. (j) Picazo, E.; Houk, K. N.; Garg, N. K. Tetrahedron Lett. 2015, 56, 3511-3514.
${ }^{6}$ For the recent use of indolynes and related species in total synthesis, see: (a) Julia, M.; Le Goffic, F.; Igolen, J.; Baillarge, M. Tetrahedron Lett. 1969, 10, 1569-1572. (b) Iwao, M.; Motoi, O.; Fukuda, T.; Ishibashi, F. Tetrahedron 1998, 54, 8999-9010. (c) Moro-oka, Y.; Fukuda, T.; Iwao, M. Tetrahedron Lett. 1999, 40, 1713-1716. (d) Buszek, K. R.; Brown, N.; Luo, D. Org. Lett. 2009, 11, 201-204. (e) Tian, X.; Huters, A. D.; Douglas, C. J.; Garg, N. K.

Org. Lett. 2009, 11, 2349-2351. (f) Brown, N.; Luo, D.; Decapo, J. A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 7113-7115. (g) Bronner, S. M.; Goetz, A. E.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 3832-3835. (h) Huters, A. D.; Quasdorf, K. W.; Styduhar, E. D.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 15797-15799. (i) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo, D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 1396-1399. (j) Styduhar, E. D.; Huters, A. D.; Weires, N. A.; Garg, N. K. Angew. Chem. Int. Ed. 2013, 52, 12422-12425. (k) Chandrasome, N.; Brown, N.; Brassfield, A.; Nerukar, A.; Suarez, S.; Buszek, K. R. Tetrahedron Lett. 2013, 54, 913-917. (1) Fine Nathel, N. F.; Shah, T. K.; Bronner, S. M.; Garg, N. K. Chem. Sci. 2014, 5, 2184-2190. (m) Goetz, A. E.; Silberstein, A. L.; Corsello, M. A.; Garg, N. K. J. Am. Chem. Soc. 2014, 136, 3036-3039. (n) Weires, N. A.; Styduhar, E. D.; Baker, E. L.: Garg, N. K. J. Am. Chem. Soc. 2014, 136, 14710-14713. (o)

Chandrasome, N.; Pathmanathan, S.; Buszek, K. R. Tetrahedron Lett. 2015, 56, 3507-3510.
(a) Wentrup, C.; Blanch, R.; Briehl, H.; Gross, G. J. Am. Chem. Soc. 1988, 110, 1874-1880.
(b) Tlais, S. F.; Danheiser, R. L. J. Am. Chem. Soc. 2014, 136, 15489-15492. (c) McMahon,
T. C.; Medina, J. M.; Yang, Y.-F.; Simmons, B. J.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2015, 137, 4082-4085.

8 For our collaborative studies with Houk et al. on the distortion-interaction model, see references $2 \mathrm{~m}, 3,5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{j}, 6 \mathrm{~g}, 61,7 \mathrm{c}$, and the following: (a) Goetz, A. E.; Bronner, S. M.; Cisneros, J. D.; Melamed, J. M.; Paton, R. S.; Houk, K. N.; Garg, N. K. Angew. Chem. Int. Ed. 2012, 51, 2758-2762. (b) Bronner, S. M.; Mackey, J. L.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 13966-13969. (c) Medina, J. M.; Mackey, J. L.; Garg, N. K.; Houk, K.
N. J. Am. Chem. Soc. 2014, 136, 15798-15805. (d) Medina, J. M.; McMahon, T. C.; Jimenez-

Osés, G.; Houk, K. N. Garg, N. K. J. Am. Chem. Soc. 2014, 136, 14706-14709.
Stoermer, R.; Kahlert, B. Ber. 1902, 35, 1633-1640.
(a) Townsend, C. A.; Whittamore, P. R. O.; Brobst, S. W. J. Chem. Soc. Chem. Commun. 1988, 726-728. (b) Graybill, T. L.; Casillas, E. G.; Pal, K.; Townsend, C. A. J. Am. Chem. Soc. 1999, 121, 7729-7746. (c) Gilman, H.; Willis, H. B.; Swislowsky, J. J. Am. Chem. Soc. 1939, 61, 1371-1373.
${ }^{11}$ For studies on 6,7-benzofuranyne, see: Brown, N.; Buszek, K. R. Tetrahedron Lett. 2012, 53, 4022-4025.

12 (a) Harris, M. C. J.; Whitby, R. J.; Blagg, J. Synlett 1993, 705-707. (b) Closser, K. D.; Quintal, M. M.; Shea, K. M. J. Org. Chem. 2009, 74, 3680-3688.
${ }^{13}$ (a) Miyabe, H.; Miyata, O.; Naito, T. Pyran and its derivatives. In Heterocycles in Natural Product Synthesis; Majumdar, K. C., Chattopadhyay, S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2011; pp. 153-186. (b) Kaur, P.; Arora, R.; Gill, N.S. Indo Am. J. Pharm. Res. 2013, 3, 9067-9084. (c) Atul, G.; Amit, K.; Ashutosh, R. Chem. Rev. 2013, 113, 1614-1640. (d) Radadiya, A.; Shah, A. Eur. J. Med. Chem. 2015, 97, 356-376.
${ }^{14}$ (a) Aukakh, G. K.; Sodhi, R. K.; Singh, M. Life Sci. 2007, 81, 615-639. (b) Hilditch, A.; Hunt, A. A.; Travers, A.; Polley, J.; Drew, G. M.; Middlemiss, D.; Judd, D. B.; Ross, B. C.; Robertson, M. J. J. Pharmacol. Exp. Ther. 1995, 272, 750-757.
(a) Tanaka, T.; Ito, T.; Ido, Y.; Nakaya, K.-i.; Iinuma, M.; Chelladurai, V. Chem. Pharm. Bull. 2001, 49, 785-787. (b) Ge, H. M.; Huang, B.; Tan, S. H.; Shi, D. H.; Song, Y. C.; Tan, R. X.
J. Nat. Prod. 2006, 69, 1800-1802. (c) Kim, I.; Choi, J. Org. Biomol. Chem. 2009, 7, 27882795.
${ }^{16}$ (a) Klayman, D. L. Science 1985, 228, 1049-1055. (b) Dondorp, A. M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A. P.; Tarning, J.; Lwin, K. M.; Ariey, F.; Hanpithakpong, W.; Lee, S. J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S. S.; Yeung, S.; Singhasivanon, P.; Day, N. P. J.; Lindegardh, N.; Socheat, D.; White, N. J. N. Engl. J. Med. 2009, 361, 455-467.
${ }^{17}$ Montgomery, C. T.; Cassels, B. K.; Shamma, M. J. Nat. Prod. 1983, 46, 441-453.

18
Salaski, E. J.; Krishnamurthy, G.; Ding, W.-D.; Yu, K.; Insaf, S. S.; Eid, C.; Shim, J.; Levin, J. I.; Tabei, K.; Toral-Barza, L.; Zhang, W.-G.; McDonald, L. A.; Honores, E.; Hanna, C.; Yamashita, A.; Johnson, B.; Li, Z.; Laakso, L.; Powell, D.; Mansour, T. S. J. Med. Chem. 2009, 52, 2181-2184.
(a) Tomaszewski, Z.; Johnson, M. P.; Huang, X.; Nichols, D. E. J. Med. Chem. 1992, 35, 2061-2064. (b) Marugán, J. J.; Manthey, C.; Anaclerio, B.; Lafrance, L.; Lu, T.; Markotan, T.; Leonard, K. A.; Crysler, C.; Eisennagel, S.; Dasgupta, M.; Tomczuk, B. J. Med. Chem. 2005, 48, 926-934. (c) Nevagi, R. J.; Dighe, S. N.; Dighe, S. N. Eur. J. Med. Chem. 2015, 97, 561-581. (d) Zhang, S.; Zhen, J.; Reith, M. E. A.; Dutta, A. K. Bioorg. Med. Chem. 2004, 12, 6301-6315. (e) Zhang, S.; Reith, M. E. A.; Dutta, A. K. Bioorg. Med. Chem. Lett. 2003, 13, 1591-1595.

We have previously demonstrated that DFT calculations (B3LYP/6-31G(d)) are well suited for the aryne distortion model, although ab initio methods (MP2/6-311+G**) can also be used; see reference 8 a .

21
Arynes and cyclic alkynes can be generated from silyl triflates using mild fluoride-based conditions. In turn, an array of trapping experiments can be carried out in synthetically useful yields (see references $2 \mathrm{c}-2 \mathrm{n}$). For the initial use of silyl triflates as aryne precursors, see: Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211-1214.

22 (a) For benzylation of hydroquinone, see: Frlan, R.; Gobec, S.; Kikelj, D. Tetrahedron 2007, 63, 10698-10708. (b) For formation of diethyl acetal and subsequent benzofuran, see: Hisashi, S.; Takao, I.; Hideki, Y. US Patent 6410561 B1, 2002.
${ }^{23}$ Fliri, A. J.; O'Donnell, C. J.; Claffey, M.; Gallaschun; R. J. US Patent 0058361 A1, 2006
${ }^{24}$ Smith III, A. B.; Empfield, J. R.; Vaccaro, H. A. Tetrahedron Lett. 1989, 30, 7325-7328.
Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198-3209.
Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2002, 41, 32473249.
${ }^{7}$ Gilmore, C. D.; Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 1558-1559.
For the trapping of arynes with iodonium ylides, see: Huang, X.-C.; Liu, Y.-L.; Liang, Y.; Pi, S.-F.; Wang, F.; Li, J.-H. Org. Lett. 2008, 10, 1525-1528.

For the trapping of arynes with nitrones, see: Lu, C.; Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 2279-2284.

For the trapping of arynes with azomethine imines, see: Shi, F.; Mancuso, R.; Larock, R. C. Tetrahedron Lett. 2009, 50, 4067-4070.
${ }^{31}$ For the trapping of arynes with azides, see: Shi, F.; Waldo, J. P.; Chen, Y.; Larock, R. C. Org. Lett. 2008, 10, 2409-2412.
${ }^{32}$ For the trapping of arynes with sydnones, see: Wu, C.; Fang, Y.; Larock, R. C.; Shi, F. Org. Lett. 2010, 12, 2234-2237.
${ }^{33}$ For the trapping of arynes with diazoesters, see: Jin, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2007, 46, 3323-3325.
${ }^{34}$ Zhao, J.; Larock, R. C. Org. Lett. 2005, 7, 4273-4275.
${ }^{35}$ The ability to access heterocyclic scaffolds with significant aliphatic character is an important direction in modern drug discovery; see: (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752-6756. (b) Ritchie, T. J.; Macdonald, S. J. F. Drug Discovery Today 2009, 14, 1011-1020.
${ }^{36}$ Bent, H. Chem. Rev. 1961, 61, 275-311.
${ }^{37}$ Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke: Québec, Montreal, Canada, 2009; http://www.cylview.org.
${ }^{38}$ Also commercially available from Combi Blocks, Inc.
${ }^{39}$ Liu, Y.; Park, S. K.; Xiao, Y.; Chae, J. Org. Biomol. Chem. 2014, 12, 4747-4753.
${ }^{40}$ Spartan '10; Wavefunction, Inc: Irvine, CA, 2010.

CHAPTER FOUR

A New Class of Conjugated Trimeric Scaffolds Accessible Using Indolyne Cyclotrimerizations

Tejas K. Shah, Janice Lin, Adam E. Goetz, K. N. Houk, and Neil K. Garg Manuscript in preparation.

4.1 Abstract

We report the design and synthesis of a new class of indole-based conjugated trimers. The targeted compounds are accessed from in situ generated, highly reactive indolyne intermediates using Pd-catalyzed cyclotrimerization reactions. By harnessing three indolyne isomers, six isomeric indole trimers are accessible, none of which have been previously synthesized. We describe the photophysical properties of these unique compounds, in addition to structural analyses based on computational studies. Our efforts mark the first reported use of indolynes in transition metal-catalyzed reactions, while providing access to a new class of conjugated trimers, including several non-planar heteroaromatic compounds.

4.2 Introduction

Novel conjugated small molecules are highly sought after due to potential applications in organic electronics: light-emitting diodes, ${ }^{1}$ field-effect transistors, ${ }^{2}$ and photovoltaic devices. ${ }^{3}$ Most conjugated materials used in such applications rely on two-directional electron-rich fragments, (e.g., 2,5-disubstituted thiophenes). In contrast, tri-directional conjugated compounds are much less well studied, in part due to limitations in chemical synthesis. Perhaps the most well studied conjugated trimer is triphenylene (4.1) first prepared in 1880^{4} (Figure 4.1). More recently, indole-based variants 4.2 and 4.3 have also been reported. ${ }^{5}$ Collectively, 4.1-4.3 have been used in two-photon absorption spectroscopy, ${ }^{6}$ discotic liquid crystals, ${ }^{7,8}$ photovoltaics, ${ }^{9,10}$ and organic light emitting diodes, ${ }^{11}$ thus highlighting the importance of these types of trimeric scaffolds.

With the ultimate goal of accessing novel trimeric scaffolds using unusual synthetic transformations, we targeted the class of indole-based trimers, as suggested by structure 4.4. This structure and isomers that vary by positioning of the pyrrole unit have never been accessed previously. We hypothesized that such motifs could be directly synthesized using an unconventional approach, namely, using the transition metal-catalyzed trimerization of highly reactive hetarynes ${ }^{12}$ (e.g., 4,5-indolyne 4.5). ${ }^{13,14}$ Transition metal-catalyzed reactions of indolynes have not been described previously and, to our knowledge, no examples of hetaryne trimerizations have been reported. In this manuscript, we report the successful trimerization of three isomeric indolynes, which, in turn, permits access to six new bent aromatic indole trimers that display varying photophysical properties.

triphenylene (4.1) 1880

Previous Studies:

symmetrical 2,3-indole trimer (4.2)
(triazatruxene)

unsymmetrical 2,3-indole trimer (4.3) 1979 1980
Applications
two-photon absorption spectroscopy organic light-emitting diodes
discotic liquid crystals photovoltaics
Current Study:

symmetrical indole trimer (4.4) unknown

- Exploration of hetaryne cyclotrimerization
- New approach to conjugated trimers - 3 new carbon-carbon bonds in one transformation

Figure 4.1. Previously studied conjugated trimers 4.1-4.3 and indole trimer (present study)

4.3 Results and Discussion

4.3.1 Optimization of 4,5-Indolyne Cyclotrimerization

Although prior studies have established the feasibility of benzyne trimerization, ${ }^{15}$ the corresponding metal-catalyzed union of hetarynes was unknown, as noted above. Thus, our first objective was to elucidate reaction conditions that allow for the trimerization of indolynes to take place. We elected to initially perform trimerization studies using an in situ-generated 4,5-
indolyne. As shown in Table 4.1, 4,5-indolyne precursor 4.6^{13} was subjected to Pd-based conditions to effect trimerization. Initial studies involved the use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as the catalyst, in the presence of CsF in acetonitrile. At $35^{\circ} \mathrm{C}$, we were delighted to find that symmetrical trimer 4.7 and unsymmetrical trimer 4.8 were obtained in 34% yield, in a $1: 2.1$ ratio, respectively (entry 1). Increasing the temperature to $50^{\circ} \mathrm{C}$ led to an improvement in yield (entry 2), whereas heating to $65^{\circ} \mathrm{C}$ led to only modest change (entry 3). By performing the trimerization at $50{ }^{\circ} \mathrm{C}$ and at a concentration of 0.5 M , the yield increased to 85% (entry 4). The use of higher concentrations was less productive (entry 5), as was the use of $\operatorname{Pd}\left(\mathrm{P} t \text { - } \mathrm{Bu}_{3}\right)_{2}$ (entry 6). Finally, by maintaining the optimal temperature and concentration (i.e., $50^{\circ} \mathrm{C}$ and 0.5 M), but switching to the use of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and BINAP, isomers 4.7 and $\mathbf{4 . 8}$ were obtained in 93% yield (entry 7, 1:2 ratio, respectively). It should be noted that the trimerization allows for the formation three new $\mathrm{C}-\mathrm{C}$ bonds with excellent efficiency.

Table 4.1. Optimization of Cyclotrimerization

4.3.2 Cyclotrimerization of 5,6- and 6,7-Indolynes

Having achieved the trimerization of a 4,5-indolyne, we attempted the corresponding transformation using 5,6- and 6,7-indolyne precursors 4.9 and 4.12, respectively (Figure 4.2). ${ }^{13}$ In both cases, the use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave the most promising results. 5,6-indolyne precursor 4.9 underwent trimerization to give a $1: 3$ ratio of isomers 4.10 and $\mathbf{4 . 1 1}$, respectively, in 80% yield. The corresponding trimerization of 6,7-indolyne precursor 4.12 proved much more difficult.

Nonetheless, the two desired trimers, 4.13 and $\mathbf{4 . 1 4}$, could be accessed in a $1: 1$ ratio, albeit in modest yield. The fact that products 4.13 and 4.14 are formed to any extent, despite severe steric crowding, as discussed in Section 4.3.4 Structural Analysis, page 252, highlights the power of indolyne and aryne methodology for the synthesis of highly congested scaffolds.

Figure 4.2. Trimerization of indolyne precursors 4.9 and 4.12.

4.3.3 Photophysical Properties of Trimers

With the six new indole trimers in hand, we performed measurements of various photophysical properties. Figure 4.3 highlights UV-Vis absorption and fluorescence emission data. In the case of 4,5-indolyne trimers 4.7 and 4.8 , the UV-Vis data display variable characteristic peaks. Whereas the symmetrical isomer 4.7 exhibits a strong absorption band at 309 nm , the unsymmetrical isomer absorbs across a broader range, with a major band at 225 nm . Fluorescence emissions are similar, with both 4.7 and 4.8 displaying an emission band at roughly

410 nm . Similar variations are seen when comparing the symmetrical and unsymmetrical trimers of the 5,6 -indolyne. The $\lambda_{\max }$ for the symmetrical isomer 4.10 is 291 nm , whereas the $\lambda_{\max }$ for unsymmetrical isomer 4.11 is 235 nm . Fluorescence emission bands are roughly 400 nm for each trimer derived from the 5,6-indolyne. Finally, the UV-Vis and fluorescence data are very similar for the two trimers derived from the 6,7 -indolyne. Both isomers, $\mathbf{4 . 1 3}$ and 4.14 , display a $\lambda_{\max }$ of roughly 320 nm , along with fluorescence emissions bands around 433 nm . It is notable that the six isomers display varying photophysical properties. The change of photophysical properties based on structural variation is the subject of ongoing investigation.

Figure 4.3. UV-Vis absorbance and fluorescence emission spectra for trimers 4.7, 4.8, 4.10,
4.11, 4.13, and 4.14 in methylcyclohexane.

4.3.4 Structural Analysis

The novel trimers were also inspected by computational analysis. The geometry of each compound, 4.7, 4.8, 4.10, 4.11, 4.13, and 4.14, was minimized using DFT wB97X-D/6$31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ (Figure 4.4). Interestingly, both trimers 4.7 and 4.8 arising from the 4,5-indolyne are non-planar. In the case of the symmetrical trimer 4.7, all three branches are twisted out of
planarity by 11,21 , and 21 degrees. For the unsymmetrical trimer 4.8, the two symmetrical branches lie largely in the plan of the central arene; however, the unsymmetrical branch is twisted 18 and 30 degrees out of planarity. In both cases, the twisting occurs to relieve steric repulsion between neighboring $\mathrm{C}-\mathrm{H}$ bonds. On the other hand, trimers $\mathbf{4 . 1 0}$ and $\mathbf{4 . 1 1}$ derived from the 5,6-indolyne are completely flat. The most unusual of the trimers are 4.13 and $\mathbf{4 . 1 4}$, derived from the 6,7 -indolyne. Both isomers are plagued by severe steric repulsion, due to the trajectory of the N-Me substituents. For symmetrical isomer 4.13, out of plane twisting helps to alleviate interactions between the N -Me substituents and aryl $\mathrm{C}-\mathrm{H}$ bonds. In the case of unsymmetrical isomer 4.14, twisting relieves two types of steric interactions: those between two N -Me substituents (of neighboring indoles) and interactions between one N -Me substituent and proximal aryl $\mathrm{C}-\mathrm{H}$ bonds. The maximum out-of-plane twisting is 18° in $\mathbf{4 . 1 3}$ and 38° in $\mathbf{4 . 1 4}$. To our knowledge, 4.14 is the most bent heteroaromatic compound known to date. ${ }^{16}$

The distorted nature of the trimers correlates to the relative free energies of the molecules. Due to the steric repulsion, trimers 4.7 and 4.8 are 5.2 and $5.5 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy compared to planar trimer 4.10. The unsymmetrical counterpart to 4.10, 4.11, is only slightly higher in energy ($0.8 \mathrm{kcal} \mathrm{mol}^{-1}$). Lastly, the extremely distorted 6,7 indolyne trimers 4.13 and 4.14 are significantly higher in energy compared to 4.10 , with free energies of 20.0 and $15.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively.
4,5-Indolyne Adducts

6,7-Indolyne Adducts

(4.13) Free Energy
$20.0 \mathrm{kcal} \mathrm{mol}^{-1}$

Figure 4.4. Geometry-optimized structures and computed energies of trimers.

4.4 Conclusion

In summary, we have designed and synthesized a new class of indole-based conjugated trimers. Our approach to these unique scaffolds relies on the in situ generation of highly reactive indolyne intermediates, which undergo Pd-catalyzed cyclotrimerization. The process results in the formation of three new $\mathrm{C}-\mathrm{C}$ bonds and has proven useful to prepare six previously unknown trimers. The photophysical properties of these species are heavily influenced by structure. In fact, several of the trimers are severly bent out of planarity to alleviate steric interactions, as shown by
computational studies. Our efforts not only provide access to a new class of conjugated trimers, including several highly bent heteroaromatic compounds, but also mark the first reported use of indolynes in transition metal-catalyzed reactions.

4.5 Experimental Section

4.5.1 Materials and Methods

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere of nitrogen using anhydrous solvents (freshly distilled or passed through activated alumina columns). All commercially obtained reagents were used as received unless otherwise specified. Cesium fluoride (CsF), Bis(dibenzylideneacetone)palladium(0) $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)$, and tetrakis(triphenylphosphine)palladium $(0)\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right)$ were obtained from Strem Chemicals. BINAP was obtained from Sigma Aldrich. Reaction temperatures were controlled using an IKAmag temperature modulator and, unless stated otherwise, reactions were performed at room temperature (rt, approximately $23^{\circ} \mathrm{C}$). Thin layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates $(0.25 \mathrm{~mm})$ and visualized using a UV light. Preparative thin layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.5 mm) and visualized using UV light. Silicycle Siliaflash P60 (particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers (500 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker spectrometers (125 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift and, when necessary, multiplicity, and coupling constant (Hz). IR spectra were obtained using a

Perkin-Elmer UATR Two FT-IR spectrometer and are reported in terms of frequency absorption $\left(\mathrm{cm}^{-1}\right)$. UV-Vis spectra were recorded using an Ocean Optics USB2000 spectrophotometer equipped with DT-MINI-2-GS light source. Fluorescence spectra were recorded using an Edinburgh Instruments FLSP920 spectrometer equipped with a Xe900 xenon bulb. The UV-Vis and fluorescence spectra were recorded using a $1-\mathrm{mm}$ quartz cuvette, with spectra-grade methylcyclohexane as the solvent. High-resolution mass spectra were obtained on Thermo Scientific ${ }^{\mathrm{TM}}$ Exactive Mass Spectrometers with DART ID-CUBE.

4.5.2 Experimental Procedures

4.5.2.1 Cyclotrimerization of Indolyne Precursors

Symmetric \& Unsymmetric 4,5-Indole Trimers (4.7 \& 4.8). A 1-dram vial containing silyl triflate $4.6(20 \mathrm{mg}, 0.0569 \mathrm{mmol})$ and a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{dba})_{2}(3 \mathrm{mg}$, 0.0.00569 mmol, $10 \mathrm{~mol} \%$) and BINAP ($7 \mathrm{mg}, 0.01138 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in a glove box. Subsequently, $\mathrm{MeCN}(0.114 \mathrm{~mL}, 0.5 \mathrm{M})$ and then $\mathrm{CsF}(26 \mathrm{mg}, 0.170 \mathrm{mmol}, 3$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $50^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was filtered over a plug of silica gel (4:1 Benzene:Acetonitrile eluent, 10 mL). The volatiles were removed under reduced pressure, and the crude residue was purified by reiterative preparative thin layer chromatography (4 x) (20:1 Benzene:Acetonitrile) to afford symmetric trimer 4.7 ($2.3 \mathrm{mg}, 31 \%$ yield) as a brown solid
and unsymmetric trimer $4.8\left(4.6 \mathrm{mg}, 62 \%\right.$ yield) as a brown solid. Symmetric Trimer 4.7: $\mathrm{R}_{f} 0.2$ (20:1 Hexanes : EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.11$ (d, $J=9.1,3 \mathrm{H}$), 7.79 (dd, $J=9.1$, $0.8,3 \mathrm{H}), 7.59(\mathrm{~d}, J=3.1,3 \mathrm{H}), 7.43(\mathrm{~d}, J=3.1,3 \mathrm{H}), 3.99(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 136.7,129.6,126.9,124.4,124.0,122.0,110.1,104.7,33.7$; IR (film): 3103, 2911, 1510, 1343, $729 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3}, 388.18082$; found, 388.17728. Unsymmetric Trimer 4.8: $\mathrm{R}_{f} 0.3$ (20:1 Hexanes : EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.10$ $(\mathrm{d}, J=9.1,1 \mathrm{H}), 8.55(\mathrm{dd}, J=9.1,2.7,2 \mathrm{H}), 7.81(\mathrm{dd}, J=9.0,0.7,1 \mathrm{H}), 7.76(\mathrm{dd}, J=9.0,0.8$, $1 \mathrm{H}), 7.68(\mathrm{dd}, J=9.0,0.7,1 \mathrm{H}), 7.50(\mathrm{~d}, J=3.1,1 \mathrm{H}), 7.39(\mathrm{~d}, J=3.1,1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H})$, 7.13 (dd, $J=3.1,0.8,1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 136.1,135.8$, $135.6,128.4,126.6,126.4,126.0,125.6,125.0,124.9,124.8,124.7,124.3,123.4,123.2,121.1$, $117.8,117.7,110.4,110.1,109.5,106.1,106.0,104.2,33.5,33.4,33.4$; IR (film): 3103, 2926, 1508, 1412, $720 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3}, 388.18082$; found, 388.17737.

Symmetric \& Unsymmetric 5,6-Indole Trimers (4.10 \& 4.11). A 1-dram vial containing silyl triflate $4.9(151 \mathrm{mg}, 0.429 \mathrm{mmol})$ and a magnetic stir bar was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(99 \mathrm{mg}$, $0.0858 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a glove box. Subsequently, $\mathrm{MeCN}(0.85 \mathrm{~mL}, 0.5 \mathrm{M})$ and then CsF ($196 \mathrm{mg}, 1.29 \mathrm{mmol}, 3$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $50^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture
was filtered over a plug of silica gel $\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$ eluent, 10 mL$)$. The volatiles were removed under reduced pressure, and the crude residue was purified by preparative thin layer chromatography (3:1 Hexane:EtOAc) to afford symmetric trimer 4.10 ($11 \mathrm{mg}, 20 \%$ yield) as a brown solid and unsymmetric trimer 4.11 ($33 \mathrm{mg}, 60 \%$ yield) as a brown solid. Symmetric Trimer 4.10: $\mathrm{R}_{f} 0.4$ (20:1 Hexanes : EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.98$ (s, 3H), 8.62 $(\mathrm{s}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=3.1,3 \mathrm{H}), 6.64(\mathrm{dd}, J=3.1,0.7,1 \mathrm{H}), 3.99(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CD}_{3} \mathrm{CN}$): $\delta 138.3,132.6,129.5,127.5,124.7,115.5,103.4,101.2,33.4$; IR (film): 3098, 2926, 1492, 1453, $704 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}-\operatorname{ESI}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3}, 388.18082$; found, 388.17826. Unsymmetric Trimer 4.11: $\mathrm{R}_{f} 0.3$ (20:1 hexanes : EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.35$ (d, $J=3.1,1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.1,1 \mathrm{H}), 7.31(\mathrm{~d}, J=3.1,1 \mathrm{H}), 6.65(\mathrm{dd}, J=3.1,0.8,1 \mathrm{H}), 6.63(\mathrm{dd}$, $J=3.1,0.8,1 \mathrm{H}), 6.61(\mathrm{dd}, J=3.1,0.8,1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 137.6,137.4,137.3,131.8,131.7,131.4,129.2,129.1,128.8,126.8$, $126.5,126.3,124.8,124.7,124.3,114.8,114.8,114.6,102.5,102.4,102.4,100.9,100.9,100.8$, 33.5, 33.4, 33.3; IR (film): 3103, 2981, 1513, 1471, $723 \mathrm{~cm}^{-1}$; HRMS-ESI $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3}, 388.18082$; found, 388.17919 .

Symmetric \& Unsymmetric 6,7-Indole Trimers (4.13 \& 4.14). A 1-dram vial containing silyl triflate $4.12(40 \mathrm{mg}, 0.114 \mathrm{mmol})$ and a magnetic stir bar was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7 \mathrm{mg}$,
$0.0114 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a glove box. Subsequently, $\mathrm{MeCN}(0.228 \mathrm{~mL}, 0.5 \mathrm{M})$ and then CsF ($52 \mathrm{mg}, 0.340 \mathrm{mmol}, 3$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $50^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was filtered over a plug of silica gel $\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$ eluent, 10 mL$)$. The volatiles were removed under reduced pressure, and the crude residue was purified by reiterative preparative thin layer chromatography (3x) (10:10:1 Benzene:Hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford symmetric trimer 4.13 ($0.6 \mathrm{mg}, 4.4 \%$ yield) as a brown solid and unsymmetric trimer 4.14 ($0.6 \mathrm{mg}, 4.6 \%$ yield) as a light brown solid. Symmetric Trimer 4.13: $\mathrm{R}_{f} 0.2$ (20:1 Hexanes : EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.17(\mathrm{~d}, J=8.5,3 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5,3 \mathrm{H}), 7.32(\mathrm{~d}, J=3.1,3 \mathrm{H}), 6.81(\mathrm{~d}, J=$ 3.1, 3H), 3.79 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 137.3,135.3,130.6,126.7,124.2,122.1$, 120.1, 105.9, 40.7; IR (film): 3361, 2923, 1661, $1321,799 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3}$, 388.18082; found, 337.01828. Unsymmetric Trimer 4.14: $\mathrm{R}_{f} 0.2$ (20:1 Hexanes : EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.31$ (dd, $\left.J=8.5,0.4,1 \mathrm{H}\right), 8.27(\mathrm{dd}, J=8.5$, $0.4,1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.89(\mathrm{~d}, J=4.0,1 \mathrm{H}), 7.88(\mathrm{~d}, J=4.0,1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5,1 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.36(\mathrm{~d}, J=3.1,1 \mathrm{H}), 7.18(\mathrm{~d}, J=3.1,1 \mathrm{H}), 7.14(\mathrm{~d}, J=3.1,1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=3.1,1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.1,1 \mathrm{H}), 6.70(\mathrm{~d}, J=3.1,1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 136.2,136.2,135.6,134.2,133.3,131.8,130.2,129.3,128.9$, $128.3,128.2,125.3,121.5,121.1,120.9,120.0,119.1,116.1,115.5,114.1,113.3,104.7,103.7$, 103.5, 38.5, 35.1, 34.9; IR (film): 3101, 2924, 1676, 1317, $821 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3}, 388.18082$; found, 388.17688 .

4.5.3 Photophysical Properties

4.5.3.1 UV-Vis and Fluorescence Spectra

Note: The UV-Vis and fluorescence spectra were recorded using a 0.0001 M solution with spectra-grade methylcyclohexane in a 1-mm quartz cuvette

4.5.3.2 Cyclic Voltammetry Spectra

Note: The electrochemical cyclic voltammetry (CV) were carried out at room temperature conducted with Pt disk, Pt wire, and Silver wire as working electrode, counter electrode, and reference electrode, respectively, in a 0.1 mol L-1 tetrabutylammonium hexafluorophosphate (Bu ${ }_{4} \mathrm{NPF}_{6}$) dichloromethane solution, and the scan rate was $100 \mathrm{mV} \mathrm{s}^{-1}$.

4.6 Spectra Relevant to Chapter Four:

A New Class of Conjugated Trimeric Scaffolds Accessible Using Indolyne Cyclotrimerizations

Tejas K. Shah, Janice Lin, Adam E. Goetz, K. N. Houk, and Neil K. Garg Manuscript in preparation.

Figure A4.6. Infrared spectrum of compound 4.7

Figure A4.7. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound 4.7

Figure A4.8. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) compound 4.8

Figure A4.9. Infrared spectrum of compound 4.8

Figure A4.10. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of compound 4.8

Figure A4.12. Infrared spectrum of compound 4.10

Figure A4.13. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound 4.10

Figure A4.15. Infrared spectrum of compound 4.11

Figure A4.16. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of compound 4.11

Figure A4.18. Infrared spectrum of compound 4.13

$\begin{array}{llllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

Figure A4.19. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of compound 4.13

Figure A4.21. Infrared spectrum of compound 4.14

Figure A4.22. ${ }^{19} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{4 . 1 4}$

4.7 Notes and References

(a) Kulkarni, A. P.; Tonzola, C. J.; Babel A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 45564573. (b) Duan, L.; Hou, L.; Lee, T.-W.; Qiao, J.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y. J. Mater. Chem. 2010, 20, 6392-6407. (c) Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943-2970. (d) Yu, T.; Liu, L; Xie, Z; Ma, Y. Sci. China Chem. 2015, 58, 907-915.

2
(a) Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev. 2008, 37, 827-838. (b) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem. Int. Ed. 2008, 47, 4070-4098. (c) Sirringhaus, H. Adv. Mater. 2014, 26, 1319-1335. (d) Back, J. Y.; Kim, Y.; An, T. K.; Kang, M. S.; Kwon, S.-K.; Park, C. E.; Kim, Y.-H. Dyes Pigments 2015, 112, 220-226.

3 (a) Mishra, A.; Bäuerle, P. Angew. Chem. Int. Ed. 2012, 51, 2020-2067. (b) Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245-4272. (c) Roncali, J.; Leriche, P.; Blanchard, P. Adv. Mater. 2014, 26, 3821-3838.

4 Schmidt, H.; Schultz, G. Justus Liebigs Ann. Chem. 1880, 203, 118-137.
5 (a) H. Muller, PhD thesis, University of Heidelberg, 1964. (b) Kaneko, T.; Matsuo, M. Heterocycles 1979, 12, 471-474. (c) Bergman, J.; Eklund, N. Tetrahedron 1980, 36, 14391443. (d) Bergman, J.; Eklund, N. Tetrahedron 1980, 36, 1445-1450.

6
For studies on triazatruxene as two-photon absorption chromophores, see: (a) Ji, L.; Fang, Q.;
Yuan, M.-s.; Liu, Z.-q.; Shen, Y.-x.; Chen, H.-f. Org. Lett. 2010, 12, 5192-5195. (b) Shao, J.; Guan, Z.; Yan, Y.; Jiao, C.; Xu, Q.-H.; Chi, C. J. Org. Chem. 2010, 76, 780-790.

7
For a review on triphenylene-based discotic liquid crystals, see: Pal, S. K.; Setia, S.; Avinash, B. S.; Kumar, S. Liq. Cryst. 2013, 40, 1769-1816.

8 For studies on triazatruxene-based discotic liquid crystals, see: (a) Gómez-Lor, B.; Alonso, B.; Omenat, A.; Serrano, J. L. Chem. Commun. 2006, 5012-5014. (b) Talarico, M.; Termine, R.; García-Frutos, E. M.; Omenat, A.; Serrano, J. L.; Gómez-Lor, B.; Golemme, A. Chem. Mater. 2008, 20, 6589-6591. (c) García-Frutos, E. M.; Gutierrez-Puebla, E.; Monge, M. A.; Ramírez, R.; de Andrés, P.; de Andrés, A.; Ramírez, R.; Gómez-Lor, B. Org. Electron. 2009, 10, 643-652. (d) Zhao, B.; Liu, B.; Png, R. Q.; Zhang, K.; Lim, K. A.; Luo, J.; Shao, J.; Ho, P. K. H.; Chi, C.; Wu, J. Chem. Mater. 2010, 22, 435-449.
${ }^{9}$ For recent studies on triphenylene based solar cells, see: (a) KR Pat., KR20110098302, 2011. (b) WO Pat., WO2012048781, 2012. (c) Bajpai, M.; Yadav, N.; Kumar, S.; Srivastava, R. Dhar, R. Liq. Cryst. 2016, DOI: 10.1080/02678292.2016.1149239.
${ }^{10}$ For studies on triazatruxene based solar cells, see: (a) Bura, T.; Leclerc, N.; Fall, S.; Lévêque, P. Heiser, T.; Ziessel, R. Org. Lett. 2011, 13, 6030-6033. (b) Shelton, S. W.; Chen, T. L.; Barclay, D. E.; Ma, B. ACS Appl. Mater. Interfaces 2012, 4, 2534-2540. (c) Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad, S.; Grätzel, S.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2015, 137, 16172-16178.
${ }^{11}$ For a study on triazatruxene based organic light-emitting diodes, see: Lai, W.-Y.; He, Q.-Y.; Zhu, R.; Chen, Q.-Q.; Huang, W. Adv. Funct. Mater. 2008, 18, 265-276.
${ }^{12}$ For reviews of arynes and hetarynes, see: (a) Kauffmann, T. Angew. Chem. Int. Ed. Engl. 1965, 4, 543-618. (b) Reinecke, M. G. Tetrahedron 1982, 38, 427-498. (c) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701-730. (d) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem. Int. Ed. 2003, 42, 502-528. (e) Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215-291. (f) Bronner, S. M.; Goetz, A. E.; Garg, N. K. Synlett 2011, 2599-2604. (g) Tadross,
P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550-3557. (h) Gampe, C. M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 3766-3778. (i) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140-3152. (j) Yoshida, H.; Takaki, K. Synlett 2012, 1725-1732. (k) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191-218. (1) Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2, 116-125. (m) Goetz, A. E.; Garg, N. K. J. Org. Chem. 2014, 79, 846-851. (n) Goetz, A. E.; Shah, T. K.; Garg, N. K. Chem. Commun. 2015, 51, 34-45.
${ }^{13}$ For seminal studies on indolynes, see: (a) Julia, M.; Goffic, F. L.; Igolen, J.; Baillarge, M. C. R. Acad. Sci., Ser. C 1967, 264, 118-120. (b) Julia, M.; Huang, Y.; Igolen, J. C. R. Acad. Sci., Ser. C 1967, 265, 110-112. (c) Igolen, J.; Kolb, A. C. R. Acad. Sci., Ser. C 1969, 269, 54-56. (d) Julia, M.; Igolen, J.; Kolb, M. C. R. Acad. Sci., Ser. C 1971, 273, 1776-1777.
${ }^{14}$ For select studies involving indolynes, see: (a) Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N. VanderVelde, D. Org. Lett. 2007, 9, 4135-4137. (b) Brown, N.; Luo, D.; VanderVelde, D.; Yang, S.; Brassfield, A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 63-65. (c) Bronner, S. M.; Bahnck, K. B.; Garg, N. K. Org. Lett. 2009, 11, 1007-1010. (d) Garr, A. N.; Luo, D.; Brown, N.; Cramer, C. J.; Buszek K. R.; VanderVelde, D. Org. Lett. 2010, 12, 96-99. (e) Cheong, P. H.-Y.; Paton, R. S.; Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267-1269. (f) Im, G.-Y. J.; Bronner, S. M.; Goetz, A. E.; Paton, R. S.; Cheong, P. H.-Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010, 132, 17933-17944. (g) Thornton, P. D.; Brown, N.; Hill, D.; Neuenswander, B.; Lushington, G. H.; Santini, C.; Buszek, K. R. ACS Comb. Sci. 2011, 13, 443-448. (h) Candito, D. A.; Dobrovolsky, D.; Lautens, M. J. Am. Chem. Soc. 2012, 134, 15572-15580. (i) Nerurkar, A.;

Chandrasoma, N.; Maina, L.; Brassfield, A.; Luo, D.; Brown, N. Buszek, K. R. Synthesis 2013, 45, 1843-1852. (j) Picazo, E.; Houk, K. N.; Garg, N. K. Tetrahedron Lett. 2015, 56, 3511-3514.
(a) Peña, D.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. Angew. Chem. Int. Ed. 1998, 37, 2659-2661. (b) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827-5828. (c) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. Org. Lett. 1999, 1, 1555-1557. (d) Peña, D.; Cobas, A.; Pérez, D.; Guitián, E. Castedo, L. Org. Lett. 2000, 2, 1629-1632. (e) Peña, D.; Cobas, A.; Pérez, D.; Guitián, E.; Castedo, L. Org. Lett. 2003, 5, 1863-1866. (f) Iglesias, B.; Cobas, A.; Pérez, D.; Guitián, E.; Org. Lett. 2004, 6, 3557-3560. (g) Romero, C.; Peña, D.; Pérez, D.; Guitián, E. Chem. Eur. J. 2006, 12, 5677-5684. (h) Wang, Y.; Stretton, A. D.; McConnell, M. C.; Wood, P. A.; Parsons, S.; Henry, J. B.; Mount, A. R.; Galow, T. H. J. Am. Chem. Soc. 2007, 129, 13193-13200. (i) Peña, D.; Pérez, D.; Guitián, E. Chem. Rec. 2007, 7, 326-333. (j) Romero, C.; Peña, D.; Pérez, D.; Guitián, E. J. Org. Chem. 2008, 73, 7996-8000. (k) Yin, J.; Qu, H.; Zhang, K.; Luo, J.; Zhang, X.; Chi, C.; Wu, J. Org. Lett. 2009, 11, 3028-3031. (1) Lynett, P. T.; Maly, K. E.; Org. Lett. 2009, 11, 3726-3729. (m) Peña, D.; Pérez, D.; Guitián, E. Org. Biomol. Chem. 2010, 8, 3386-3388. (n) Alonso, J. M.; Díaz-Álvarez, A. E.; Criado, A.; Pérez, D.; Peña, D. Guitián, E. Angew. Chem. Int. Ed. 2012, 51, 173-177. (o) García-López, J.-A.; Greaney, M. F. Org. Lett. 2014, 16, 2338-2341. (p) Chen, L.; Zhang, C.; Wen, C.; Zhang, K.; Liu, W.; Chen, Q. Catal. Commun. 2015, 65, 8184.

Non-planar aromatic compounds are currently being sought after for new opportunities in materials chemistry. For recent examples, see: (a) Fujikawa, T.; Segawa, Y.; Itami, K. J. Am.

Chem. Soc. 2015, 137, 7763-7768. (b) Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2016, 138, 3587-3595.

CHAPTER FIVE

Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C-N Bonds

Liana Hie, Noah F. Fine Nathel, Tejas K. Shah, Emma L. Baker, Xin Hong, Yun-Fang Yang, Peng Liu, K. N. Houk \& Neil K. Garg

Nature 2015, 524, 79-83.

5.1 Abstract

Amides are common functional groups that have been studied for more than a century. ${ }^{1}$ They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. ${ }^{1,2}$ Although amides can readily be cleaved by enzymes such as proteases, ${ }^{3}$ it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthons and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

5.2 Introduction

The ability to interconvert functional groups is important in synthetic chemistry and many biological processes. Methodologies ${ }^{4,5}$ have been developed that enable chemists to strategically harness the reactivity of most functional groups. Likewise, breakthroughs in biochemistry have led to an understanding of how changes in functional groups regulate physiological processes. ${ }^{6}$

One particularly interesting dichotomy exists in considering the amide functional group, ${ }^{1}$ which is the key component of all proteins (Figure 5.1a). Since Schwann's initial discovery of pepsin-the first enzyme to be discovered-in 1836, scientists have been intrigued by the ability of enzymes to break down amide linkages. ${ }^{3,6}$ Such amide cleavage processes govern many cellular regulatory functions and are responsible for the degradation of proteins to amino acids. ${ }^{1,3}$ In contrast, the synthetic chemistry of amide-bond cleavage has remained underdeveloped, even though amides are well suited for use in multistep synthesis because of their stability under a variety of reaction conditions. Commonly used methods to break amide carbon-nitrogen ($\mathrm{C}-\mathrm{N}$) bonds include the reductive conversion of amides to aldehydes using Schwartz's reagent ${ }^{7}$ and the displacement of Weinreb's $N-\mathrm{OMe}-\mathrm{N}-\mathrm{Me}$ amides with organometallic reagents en route to ketones. ${ }^{8}$ Following Pauling's seminal postulate regarding amide planarity, ${ }^{2}$ the poor reactivity of amides is now well understood as being a result of the strength of the resonance-stabilized amide $\mathrm{C}-\mathrm{N}$ bond. ${ }^{1}$

To circumvent the long-standing problem involving the low reactivity of amides and their modest synthetic use in $\mathrm{C}-\mathrm{N}$ bond cleavage processes, we designed the general approach shown in Figure 5.1 b . The $\mathrm{C}-\mathrm{N}$ bond of amide 5.1 undergoes activation by a transition-metal catalyst. Following oxidative addition, the resultant acyl metal species $\mathbf{5 . 2}$ is trapped by an appropriate
nucleophile to furnish product 5.3, with the release of amine 5.4. This approach allows for the breakdown of amides, and renders amides useful synthetic building blocks. Although examples exist for the metal-catalyzed C-heteroatom bond activation of acid chlorides, ${ }^{9}$ anhydrides, ${ }^{9}$ and 2-pyridyl esters, ${ }^{10}$ to our knowledge, the direct metal-catalyzed activation of $\mathrm{C}-\mathrm{N}$ bonds of amides is unknown. This is notable given the widespread use of transition-metal catalysis in organic synthesis, where there exist many examples of catalytic transformations occurring smoothly in the presence of amide linkages.

We validate the strategy outlined in Figure 5.1b through the conversion of amides to esters (Figure 5.1c). Amide to ester conversion, much like transamidation, ${ }^{11,12}$ remains a challenging and underdeveloped synthetic transformation. Amides are often stable enough that esterification is difficult and requires the use of harsh acidic or basic conditions, while employing a large excess of nucleophile (for example, using the alcohol nucleophile as a solvent). ${ }^{1}$ Perhaps the most promising protocol to achieve amide-to-ester conversions is Keck's methylation/hydrolysis sequence, ${ }^{13}$ although this methodology is limited to the synthesis of methyl esters. Esterifications using acyl aziridines ${ }^{14}$ and N -methylamides (albeit with activation by nitrosation) ${ }^{15}$ have also been reported. Here we demonstrate the nickel-catalyzed conversion of amides to esters, which proceeds under exceptionally mild reaction conditions. In addition to establishing the scope of this methodology, we use density functional theory (DFT) calculations to predict whether the amide-to-ester conversion, or the reverse, is thermodynamically favored. DFT calculations are also used to predict a plausible catalytic cycle. These experimental and computational studies not only substantiate the notion of using non-precious-metal catalysis for the activation of amide $\mathrm{C}-\mathrm{N}$ bonds, but also lay the foundation for further studies aimed at the strategic manipulation of amides as synthetic building blocks using catalysis.

Figure 5.1. Amide-bond cleavage using transition-metal catalysis. a. An illustration of the stability of amides and the contrast between how amides are used in nature and in chemical synthesis. \mathbf{b}. Design of amide $\mathrm{C}-\mathrm{N}$ bond activation to deconstruct amides and exploit them as synthetic building blocks (nuc, nucleophile; L_{n}, ligands coordinated to transition metal; blue spheres, R', R", and R"', any carbon-based functional groups). c. Strategy for the conversion of amides to esters

5.3 Optimization and Substrate Scope

We examined the conversion of benzamides 5.7 to methyl benzoate 5.8a both computationally (using the Gaussian '09 software; see section 5.7.4.1 Complete Reference of Gaussian 09, page 333) and experimentally (Table 5.1). Because amides are known for their stability, we assessed whether the amide-to-ester conversion could be rendered thermodynamically favorable by the judicious choice of amide N-substituents. Using DFT methods, we calculated the change in Gibbs free energy ΔG for the reaction of amides 5.7 with methanol to give esters 5.8a and amines 5.4. Whether this transformation is favorable or not depends on the nature of the N-substituents (entries 1-8). Methanolysis of Weinreb amide 5.7d (entry 4) and N-arylated substrates $\mathbf{5 . 7 f}$ and $\mathbf{5 . 7}$ g (entries 6-8) were found to be the most energetically favorable. In contrast, esterifications of N-alkyl amides $\mathbf{5 . 7 a}, \mathbf{5 . 7 b}$, and 5.7 e were deemed thermodynamically unfavorable. This is in line with the experimentally measured equilibrium constant for the reaction of N, N-dimethylbenzamide $\mathbf{5 . 7 b}$ and methanol (entry 2), in which the reverse reaction is thermodynamically favored (see section 5.7.4.6 Free Energy and Enthalpy of Amide and Ester Formation, page 338 for further discussion). ${ }^{16}$

Encouraged by the unique ability of nickel to catalyze the activation of strong arylheteroatom bonds, ${ }^{17-19}$ particularly those in phenol, ${ }^{19}$ aniline, ${ }^{20-22}$ and phthalimide ${ }^{23}$ derivatives, we also calculated the activation free energies for acyl $\mathrm{C}-\mathrm{N}$ bond oxidative addition of each amide substrate using nickel catalysis. The barriers calculated for commercially available N heterocyclic carbene ligand SIPr (entries 1-8) reveal that the oxidative addition barriers are reasonable in some cases. We studied these reactions experimentally using $10 \mathrm{~mol} \% \mathrm{Ni}(\operatorname{cod})_{2}$, $10 \mathrm{~mol} \% \mathrm{SIPr}, 2.0$ equivalents of methanol, and toluene as solvent at $110^{\circ} \mathrm{C}$ for 12 h . There was good agreement between our observations and computational predictions. No reaction or low
yields were seen for substrates $5.7 \mathbf{a}-\mathbf{5 . 7}$ e (entries $1-5$). However, when the calculated ΔG and the oxidative addition barrier were favorable, substantial formation of product 5.8a was observed (entries 6 and 7). Coupling of substrate $\mathbf{5 . 7} \mathbf{g}$ gave a quantitative yield of product (entry 7), and further optimization showed that even with only 1.2 equivalents of methanol and a temperature of $80^{\circ} \mathrm{C}$, product formation occurred smoothly (entry 8) to give complete conversion to $\mathbf{5 . 8}$. Importantly, no reaction takes place if either the precatalyst or the ligand are omitted, whereas the use of alternative N-heterocyclic carbene or phosphine ligands typically leads to lower yields or no reaction. We conclude that nickel catalysis is indeed operative in the amide activation/esterification process.

Table 5.1. Experimental and computational study of amide-bond activation during the conversion of benzamides 5.7 to methyl benzoate 5.8a

Entry		Calculated ΔG^{a} (kcal/mol)	Calculated oxidative addition barrier with Ni /SIPr (kcal/mol) ${ }^{\text {b }}$	Temp	Equivalents of MeOH	Yield of ester ${ }^{\text {c }}$
1		+2.4	36.8	$110{ }^{\circ} \mathrm{C}$	2.0	0\%
2		0.0	36.2	$110{ }^{\circ} \mathrm{C}$	2.0	0\%
3		-1.1	34.0	$110{ }^{\circ} \mathrm{C}$	2.0	23\%
4		-6.1	31.9	$110{ }^{\circ} \mathrm{C}$	2.0	22\%
5		+3.1	39.0	$110{ }^{\circ} \mathrm{C}$	2.0	0\%
6		-4.3	30.6	$110{ }^{\circ} \mathrm{C}$	2.0	55\%
7		-6.8	26.0	$\begin{gathered} 110^{\circ} \mathrm{C} \\ 80^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & >99 \% \\ & >99 \% \end{aligned}$

${ }^{a}$ The $\Delta \mathrm{G}$ values for the overall reactions were obtained using DFT calculations (assuming a temperature of 298 K).
${ }^{b}$ DFT methods were used to calculate oxidative addition barriers using Ni/SIPr as the metal/ligand combination.
${ }^{c}$ Reactions were carried out with bis($1,5-\mathrm{cyc}$ looctadiene) nickel(0) ($\left.\mathrm{Ni}(\operatorname{cod})_{2}, 10 \mathrm{~mol} \%\right), \operatorname{SIPr}(10 \mathrm{~mol} \%)$, substrate ($50.0 \mathrm{mg}, 1.0$ equiv), methanol (1.2 or 2.0 equiv), and toluene (1.0 M), for 12 h at the specified temperatures. Yields were determined by ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) analysis using hexamethylbenzene as an internal standard. (Me, methyl; OMe, methoxy; Ph, phenyl).

Having determined the optimal reaction conditions, we examined the scope of the transformation with regard to the amide substrate (Table 5.2a). In addition to the parent benzamide (entry 1), substrates containing the electron-withdrawing trifluoromethyl or fluoride substituents (entries 2 and 3) or the electron-donating methoxy or methyl substituents (entries 4 and 5) were well tolerated. The transformation also proceeded smoothly using meta- and ortho-methyl-substituted
substrates to give the desired esters in excellent yields (entries 6 and 7). Beyond the use of phenyl derivatives, we examined naphthyl and heterocyclic substrates. Naphthyl compounds readily coupled (entries 8 and 9), as did furan, quinoline, and isoquinoline substrates (entries 10 12, respectively). However, amides derived from alkyl carboxylic acids did not undergo the nickel-catalyzed esterification under our reaction conditions. This attribute provides opportunities to realize selective amide $\mathrm{C}-\mathrm{N}$ bond cleavages in more complex substrates (see section 5.5 Selective Amide Bond Activation, page 292).

A variety of N-substituents were also surveyed, as shown in Table 5.2a. In addition to the longer N-butyl (Bu) and the branched N-iso-propyl alkyl chains (entries 13 and 14, respectively), we found that a cyclic amide derived from indoline was tolerated by the methodology (entry 15). Lastly, protected N-alkyl benzamides were tested. Although use of the N - p-toluenesulfonyl (Ts) derivative gave the corresponding ester in modest yield (entry 16), the corresponding N-tertbutyloxycarbonyl (Boc) substrate more efficiently underwent conversion to ester 5.8a (entry 17). The analogous N-benzyl, N-tert-butyloxycarbonyl (N-Bn,Boc) substrate was also evaluated and gave the desired ester in 89% yield (entry 18). These results show that the methodology is not restricted to anilide substrates, as long as the overall reaction energetics are thermodynamically favorable (see section 5.7.4.5 Analysis of $N-\mathrm{Me}, \mathrm{Boc}$ Amide Esterification, page 336 for energetics involving the N-Boc,Me substrate). Moreover, secondary benzamides can be used strategically as substrates for esterification, following a straightforward activation step (Bocprotection).

Using amide 5.7 g as the substrate, we evaluated the scope of the methodology with respect to the alcohol nucleophile (Table 5.2 b). As shown, synthetically useful yields of product were obtained using only 1.2 equivalents of the alcohol, even when complex and hindered
alcohols were used. Cyclohexanol, tert-butanol, and 1-adamantol coupled smoothly to give the corresponding esters (entries 19-21, respectively); tert-butyl esters can readily be hydrolyzed to carboxylic acids under acidic conditions. Similarly, we found that cyclopropyl carbinol and an oxetane-derived alcohol could be used in the esterification reaction (entries 22 and 23, respectively). The use of the hindered secondary alcohol (-)-menthol was also tested and the desired ester was obtained in 88% yield (entry 24). Furthermore, we found that N-Boc-L-prolinol was tolerated in the methodology (entry 25), in addition to an indole-containing alcohol (entry 26), which further demonstrates the promise our methodology holds for reactions of heterocyclic substrates. As shown in entries 27 and 28, a complex sugar-containing alcohol bearing two acetals and an estrone-derived steroidal alcohol, respectively, also underwent the desired esterification reaction.

Table 5.2. Scope of our methodology. a. b. The scope of the amide-to-ester transformation was evaluated with respect to the amide substrate (a), and with respect to the alcohol nucleophile, using 5.7 g as the amide substrate (b).

${ }^{a}$ Reactions were carried out with $\mathrm{Ni}(\operatorname{cod})_{2}(10 \mathrm{~mol} \%), \mathrm{S} \operatorname{Sr}(10 \mathrm{~mol} \%)$, substrate ($100.0 \mathrm{mg}, 1.00$ equiv), alcohol (1.2 equiv), and toluene $(1.0 \mathrm{M})$ at $80^{\circ} \mathrm{C}$ for 12 h . Yields shown reflect the average of two isolated experiments.
${ }^{b}$ The yield for entry 10 was determined by ${ }^{1} \mathrm{H}$ NMR analysis using hexamethylbenzene as an internal standard, owing to the volatility of the ester product. (t-Bu, tert-butyl; p, para; m, meta; o, ortho).

5.4 Computational Studies

Although nickel-catalyzed aryl and acyl $\mathrm{C}-\mathrm{O}$ bond activation processes have been previously studied computationally, ${ }^{24-28}$ no analogous studies involving $\mathrm{C}-\mathrm{N}$ bond activation have been reported. Thus, to shed light on the mechanism of the facile amide-to-ester conversion, the catalytic cycle was computed using DFT calculations. Figure 5.2 provides the free energy profile using amide substrate $\mathbf{5 . 7} \mathbf{g}$. The $\left[\mathrm{Ni}(\mathrm{SIPr})_{2}\right]$ complex, $\mathbf{5 . 9}$, is believed to be
the resting state of the catalytic cycle. Dissociation of one carbene ligand from complex $\mathbf{5 . 9}$ provides a coordination site for amide $\mathbf{5 . 7 g}$. Following coordination to give intermediate $\mathbf{5 . 1 0}$, oxidative addition occurs via transition state 5.11. This key event cleaves the amide $\mathrm{C}-\mathrm{N}$ bond and produces acyl nickel species 5.12. The next step of the catalytic cycle is ligand exchange, which proceeds by coordination of methanol to give intermediate 5.13. Subsequent ligand exchange via transition state 5.14 facilitates the deprotonation of methanol, giving nickel complex 5.15. Dissociation of N-Me-aniline produces acyl nickel species 5.16, which in turn, undergoes reductive elimination via transition state $\mathbf{5 . 1 7}$ to deliver the ester-coordinated complex 5.18. Finally, the ester product $\mathbf{5 . 8}$ a is released to regenerate catalyst 5.9. The rate-determining step in the catalytic cycle is the oxidative addition (transition state 5.11) with an overall barrier of $26.0 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to the resting state $\mathbf{5 . 9}$. The overall reaction is thermodynamically favored by $-6.8 \mathrm{kcal} \mathrm{mol}^{-1}$. Because decarbonylation of acyl nickel species have been observed, ${ }^{29,30}$ we also calculated the kinetic barrier for decarbonylation events (see section 5.7.4.2 Transition State Structures for Decarbonylation Pathway, page 334). Consistent with experiments, decarbonylation pathways from acyl nickel species $\mathbf{5 . 1 2}$ or $\mathbf{5 . 1 6}$ were found to be less favorable than the product formation pathways.

Figure 5.2. Computational study of catalytic cycle. DFT methods were used to calculate the full catalytic cycle for the amide-to-ester conversion (assuming a temperature of 298 K). We propose that the reaction occurs by oxidative addition, ligand exchange, and reductive elimination. Key transition state structures (5.11, 5.14, and 5.17) are shown at the bottom. (Dipp, 2,6-diisopropylphenyl)

5.5 Selective Amide Bond Activation

As highlighted by the experiments shown in Figure 5.3, the nickel-catalyzed conversion of amides to esters can be used to achieve selective and mild amide-bond cleavages. First, we performed the esterification of bis(amide) substrate 5.19 using (-)-menthol (Figure 5.3a). Although both amides are N-arylated benzamides, only the tertiary amide was cleaved to give ester 21, while also releasing aminoamide 5.22. Second, bis(amide) 5.23, which possesses two tertiary amides, was studied in the nickel-catalyzed esterification reaction (Figure 5.3b). In this case, the tertiary L-proline-derived alkyl amide was not disturbed, while the tertiary benzamide underwent cleavage to give ester 5.21 and aminoamide $\mathbf{5 . 2 4}$ in good yields. Lastly, we prepared L-valine derivative 5.25, which also bears an ester (Figure 5.3c). Upon exposure of $\mathbf{5 . 2 5}$ to 1.2 equivalents of (-)-menthol and the nickel-catalyzed conditions, ester $\mathbf{5 . 2 1}$ and aminoester $\mathbf{5 . 2 6}$ were obtained in 70% and 79% yields, respectively. We believe that the ester functionality withstands the reaction conditions because it is not attached to an arene, analogous to the lack of reactivity seen in our attempts to esterify amides derived from alkyl carboxylic acids (for example, 5.23). Compounds $\mathbf{5 . 2 4}$ and $\mathbf{5 . 2 6}$ were obtained in high enantiomeric excess, highlighting the mild nature of the reaction conditions, which avoid any substantial epimerization of the α stereocenters.

c

5.25

5.20

5.21
70% yield

5.26 79\% yield

Figure 5.3. Selective amide-bond cleavage processes. a. Cleavage of tertiary over secondary amide using menthol (1.2 equiv). b. Cleavage of benzamide over an alkyl prolinederived amide using menthol (1.2 equiv). c. Cleavage of valinederived amide in the presence of an ester using menthol (1.2 equiv). (ee, enantiomeric excess).

5.6 Conclusion

We have presented an efficient way to convert amides to esters. The methodology circumvents the classic problem of amides being poorly reactive functional groups by using nickel catalysis to achieve the previously unknown catalytic activation of amide $\mathrm{C}-\mathrm{N}$ bonds. DFT calculations support a catalytic cycle that involves a rate-determining oxidative addition step, followed by ligand exchange and reductive elimination. The methodology is broad in scope, particularly with respect to the alcohol nucleophiles, and proceeds under exceptionally mild
reaction conditions using just 1.2 equivalents of the alcohol nucleophile. Moreover, selective amide-bond cleavage is achieved in the presence of other functional groups, including less reactive amides and esters, without the epimerization of α stereocenters. We envision that this methodology will lead to advances such as the catalytic esterification of primary amides, additional N, N-disubstituted amides, amides derived from alkyl or vinyl carboxylic acids, and perhaps even polyamide substrates bearing multiple stereocenters. This study may also lead to further harnessing of amides as valuable building blocks for the construction of C-heteroatom or $\mathrm{C}-\mathrm{C}$ bonds using non-precious-metal catalysis.

5.7 Experimental Section

5.7.1 Materials and Methods

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere of nitrogen and commercially obtained reagents were used as received. Non-commercially available substrates were synthesized following protocols specified in section 5.7.2.1 Syntheses of Amide Substrates, page 296. Alcohols and toluene were purified by distillation and taken through five freeze-pump-thaw cycles or recrystallized prior to use. Carboxylic acid 5.38, amine 5.81, and ester $\mathbf{5 . 8 7}$ were obtained from Combi-Blocks. Acid chlorides 5.27, 5.29, 5.32, 5.34, 5.36, alcohols 5.63, 5.65, 5.67, 5.69, 5.71, 5.73, 5.75, 5.77, 5.79, 5.20, amines 5.28, 5.30, 5.82, 5.84, amide 5.7b, benzamide and ligand SIMes were obtained from Sigma-Aldrich. Boronic acid 5.86 was obtained from Oakwood Products, Inc. $\mathrm{Ni}(\operatorname{cod})_{2}, \mathrm{SIPr}$, IMes , $\mathrm{IPr}, \mathrm{PCy}_{3}$, dppe, and dppf were obtained from Strem Chemicals. Amide 5.7e, ligands $\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Cy}$, and $\mathrm{PCy}_{2} \mathrm{Ph}$ were obtained from Alfa Aesar. Reaction temperatures were controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were performed at room temperature
(approximately $23{ }^{\circ} \mathrm{C}$). Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.25 mm for analytical chromatography and 0.50 mm for preparative chromatography) and visualized using a combination of UV, anisaldehyde, ceric ammonium molybdate, iodine, vanillin, and potassium permanganate staining techniques. Silicycle Siliaflash P60 (particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers (at $300,400,500$, and 600 MHz) and are reported relative to residual solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (at 75,125 , and 150 MHz). IR spectra were recorded on a Perkin-Elmer 100 spectrometer and are reported in terms of frequency absorption $\left(\mathrm{cm}^{-1}\right)$. High-resolution mass spectra were obtained on Thermo Scientific ${ }^{\mathrm{TM}}$ Exactive Mass Spectrometer with DART IDCUBE. Determination of enantiopurity was carried out on a Mettler Toledo SFC (supercritical fluid chromatography) using a Daicel ChiralPak OJ-H column.

5.7.2 Experimental Procedures

5.7.2.1 Syntheses of Amide Substrates

Representative procedure for the synthesis of amide substrates from Table 5.1 and Table 5.2 (synthesis of amide 5.7 a is used as an example).

Amide 5.7a (Table 5.1, entry 1). To a solution of pyrrolidine 5.28 ($1.3 \mathrm{~mL}, 15.7 \mathrm{mmol}, 1.1$ equiv), triethylamine ($2.5 \mathrm{~mL}, 17.8 \mathrm{mmol}, 1.25$ equiv), and dichloromethane ($28.5 \mathrm{~mL}, 0.5 \mathrm{M}$) at $0^{\circ} \mathrm{C}$, was added acid chloride $5.27(2.0 \mathrm{~g}, 14.2 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was gradually warmed to $23{ }^{\circ} \mathrm{C}$ over 30 min and then stirred for 1 h . The reaction mixture was diluted with EtOAc (50 mL), and then washed successively with $1.0 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude solid material was purified by flash chromatography (1:1 Hexanes:EtOAc) to yield amide product 5.7 a ($2.5 \mathrm{~g}, 100 \%$ yield) as a white solid. Spectral data matched those previously reported. ${ }^{31 \mathrm{a}}$

Note: Experimental procedures for the syntheses of amides shown in Table 5.1 and Table 5.2 have previously been reported: 5.7a, $,{ }^{31 \mathrm{a}} \mathbf{5 . 7 c},{ }^{31 \mathrm{~b}} \mathbf{5 . 7 d},{ }^{31 \mathrm{c}} \mathbf{5 . 7 f},{ }^{31 \mathrm{~d}} \mathbf{5 . 7} \mathbf{~},{ }^{31 \mathrm{e}} \mathbf{5 . 4 1},{ }^{31 \mathrm{f}} \mathbf{5 . 4 3},{ }^{31 \mathrm{f}} \mathbf{5 . 4 5},{ }^{31 \mathrm{f}}$ $\mathbf{5 . 4 7},{ }^{31 \mathrm{~g}} \mathbf{5 . 5 0},{ }^{31 \mathrm{~g}} \mathbf{5 . 5 2},{ }^{31 \mathrm{~h}} \mathbf{5 . 5 7},{ }^{31 \mathrm{f}} \mathbf{5 . 5 8},{ }^{31 \mathrm{e}} \mathbf{5 . 5 9},{ }^{31 \mathrm{i}} \mathbf{5 . 6 0},{ }^{31 \mathrm{j}} \mathbf{5 . 6 1},{ }^{31 \mathrm{k}}$ and $\mathbf{5 . 6 2},{ }^{311}$ with the exception of p-trifluoromethyl amide 5.31, o-methyl amide 5.33, furan 5.35, quinoline 5.37, and isoquinoline 5.39. Syntheses for these latter compounds are as follows:

Amide 5.31 (Table 5.2, entry 2). To a solution of triethylamine ($2.1 \mathrm{~mL}, 15 \mathrm{mmol}, 1.25$ equiv) and N -Me aniline (5.30) (1.43 mL , $13.2 \mathrm{mmol}, 1.1$ equiv) in dichloromethane ($24.0 \mathrm{~mL}, 0.5 \mathrm{M}$) at $0{ }^{\circ} \mathrm{C}$, was added acid chloride $5.29(2.5 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.0$ equiv $)$. The resulting heterogeneous mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for 12 h . The mixture was then diluted with EtOAc (30 mL) and $1.0 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$. The organic layer was washed with brine $(2 \times 40 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure, and the crude oil was purified by flash chromatography (5:1 Hexanes:EtOAc) to yield amide product 5.31 ($3.3 \mathrm{~g}, 99 \%$ yield) as a white solid. Amide 5.31: $\mathrm{R}_{f} 0.27$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44$ $(\mathrm{q}, J=8.4,4 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4,1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.55,2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 169.3,144.3,139.6,131.4\left(\mathrm{q}, J_{C-F}=32.6 \mathrm{~Hz}\right), 129.5,129.1,127.2$, 127.0, 124.9 (q, $J_{C-F}=3.8 \mathrm{~Hz}$), 122.7, 120.5, 38.5; IR (film): 2971, 1738, 1639, 1596, 1496, 1371, 1322, 1165, 1122, 1108, 1065, $1019 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}$, 280.09492; found 280.09339.

Amide 5.33 (Table 5.2, entry 7). To a solution of acid chloride 5.32 ($2.5 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.0$ equiv) and dichloromethane (10 mL) at $0^{\circ} \mathrm{C}$, was added a solution of triethylamine ($2.1 \mathrm{~mL}, 15$ mmol, 1.25 equiv) and N-Me aniline (5.30) ($1.43 \mathrm{~mL}, 13.2 \mathrm{mmol}, 1.1$ equiv) in dichloromethane
$(22 \mathrm{~mL})$. The resulting heterogeneous mixture was warmed to $23^{\circ} \mathrm{C}$ and allowed to stir for 12 h . The mixture was then diluted with $\operatorname{EtOAc}(30 \mathrm{~mL})$ and $1.0 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The organic layer was washed with brine $(50 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure, and the crude oil was purified by flash chromatography (5:1 Hexanes:EtOAc) to yield amide product 5.33 ($3.2 \mathrm{~g}, 88 \%$ yield) as a white solid. Amide 5.33: $\mathrm{R}_{f} 0.30$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.18-7.03(\mathrm{~m}, 9 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.3,143.9,136.7,134.8,130.3,129.0,128.7,127.6,126.7$, 126.6, 125.2, 37.4, 19.6; IR (film): 3062, 2924, 1643, 1594, 1494, 1456, 1417, 1364, 1303, 1280, 1180, 1121, 1097, $1028 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}, 226.12319$; found 226.12159.

Amide 5.35 (Table 5.2, entry 10). To a flask containing a solution of N-Me aniline (5.30) (1.3 $\mathrm{mL}, 12.3 \mathrm{mmol}, 1.6$ equiv) and triethylamine ($1.1 \mathrm{~mL}, 7.7 \mathrm{mmol}, 1.0$ equiv) in dichloromethane $(11.5 \mathrm{~mL}, 0.67 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$, was added acid chloride $5.34(1.0 \mathrm{~g}, 7.7 \mathrm{mmol}, 1.0$ equiv). The resulting heterogeneous mixture was warmed to $23{ }^{\circ} \mathrm{C}$ over 30 min and then heated to reflux for 1 h . After cooling to $23^{\circ} \mathrm{C}$, the reaction mixture was stirred for 12 h and then quenched with 1.0 M HCl $(10 \mathrm{~mL})$. The organic layer was washed with brine $(30 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure, and the crude solid was purified by flash chromatography (5:1 Hexanes:EtOAc) to yield amide product 5.35 ($1.5 \mathrm{~g}, 97 \%$ yield) as a white solid. Amide 5.35: $\mathrm{R}_{f} 0.24$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.36$ (m,
$3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=1.78,1 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.11-6.10(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2,145.7,144.1,141.9,129.7,128.1,127.8,121.9$, 111.0, 38.2; IR (film): 3481, 3129, 2970, 1739, 1630, 1593, 1561, 1497, 1379, 1354, 1157, 1074, $1040 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}, 202.08680$; found 202.08580.

Amide 5.37 (Table 5.2, entry 11). To a solution of N-Me aniline (5.30) ($1.2 \mathrm{~mL}, 11.5 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine ($9.1 \mathrm{~mL}, 52.2 \mathrm{mmol}, 5.0$ equiv) in dichloromethane (100 $\mathrm{mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$, was added acid chloride $5.36(2.0 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.0$ equiv). The resulting heterogeneous mixture was allowed to stir at $23^{\circ} \mathrm{C}$. After 17 h , additional N -Me aniline (1.2 mL , $11.5 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine ($6.0 \mathrm{~mL}, 34.4 \mathrm{mmol}, 3.3$ equiv) were added sequentially. After stirring at $23{ }^{\circ} \mathrm{C}$ for 6 h , the reaction mixture was quenched with 1.0 M $\mathrm{HCl}(50 \mathrm{~mL})$. The organic layer was washed with brine $(50 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure, and the crude oil was purified by flash chromatography (5:1 Hexanes:EtOAc) to yield amide product $5.37(2.0 \mathrm{~g}, 71 \%$ yield) as a white solid. Amide 5.37: $\mathrm{R}_{f} 0.40$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03$ (br s, 1H), $7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.24-6.99(\mathrm{~m}, 5 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 168.9,154.2,146.9,144.4,136.4,129.9,129.8,129.1,127.7,127.5$, 127.5, 127.0, 126.7, 120.6, 38.2; IR (film): 3457, 2971, 1739, 1642, 1594, 1495, 1375.55, 1229, 1217, 1121, $1104 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}, 263.11844$; found 263.11718.

Amide 5.39 (Table 5.2, entry 12). To a mixture of carboxylic acid 5.38 ($1.0 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv), $\operatorname{EDC}(0.7 \mathrm{~g}, 4.4 \mathrm{mmol}, 1.1$ equiv), $\mathrm{HOBt}(0.6 \mathrm{~g}, 4.4 \mathrm{mmol}, 1.1$ equiv), and DMF (60.0 $\mathrm{mL}, 0.067 \mathrm{M})$ was added N -Me aniline ($\mathbf{5 . 3 0}$) ($0.5 \mathrm{~mL}, 4.4 \mathrm{mmol}, 1.1$ equiv). The resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h , and then diluted with deionized water (100 mL) and EtOAc (100 mL). The aqueous layer was separated and the organic layer was extracted with EtOAc (3 X 100 mL). The combined organic layer was washed with brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude oil was purified by flash chromatography with (1:1 Hexanes:EtOAc) to yield amide product $5.39(0.9 \mathrm{~g}, 80 \%$ yield $)$ as a white solid. Amide 5.39: $\mathrm{R}_{f} 0.50$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (major rotamer) $\delta 8.25(\mathrm{~d}, J=5.8,1 \mathrm{H}), 8.18-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.46$ $(\mathrm{d}, J=5.8,1 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 5 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) ;($ minor rotamer $)$ [10/14 protons were discernable] $\delta 8.60-8.58(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 5 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 168.4,155.8,143.4,141.4,136.2,130.5,128.9,128.0,127.1,126.9$, 126.7, 126.0, 125.9, 121.1, 37.3; IR (film): 3060, 2939, 1651, 1595, 1561, 1496, 1460, 1431, 1399 1372, 1119, 1054, $1033 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}, 263.11844$; found 263.11768 .

Note: $\mathbf{5 . 3 9}$ was obtained as a 7.5:1 mixture of rotamers. These data represent empirically observed chemical shifts and coupling constants from the ${ }^{1} H$ NMR spectrum

5.7.2.2 Methanolysis Control Experiments

Table 5.3. Attempted Conversion of Amide 5.7 g to Methyl Benzoate 5.8a Under Various Reaction Conditions ${ }^{a}$

$\begin{array}{rr}\text { Experimental Results } \\ \text { Recovered } 5.7 \mathrm{~g} & 5.8 a\end{array}$

Reaction Conditions	Experimental Results	
Conc. HCl (5.13 equiv), MeOH ($\mathbf{0 . 1 2 ~ M)}$ $23^{\circ} \mathrm{C}(2 \mathrm{~h}) \rightarrow 75^{\circ} \mathrm{C}(2 \mathrm{~h}) \rightarrow 100^{\circ} \mathrm{C}(17 \mathrm{~h})$	100\%	0\%
NaOMe (2.0 equiv), MeOH (0.12 M) $23^{\circ} \mathrm{C}(4 \mathrm{~h}) \rightarrow 80^{\circ} \mathrm{C}(4 \mathrm{~h}) \rightarrow 110^{\circ} \mathrm{C}(13.5 \mathrm{~h})$	93\%	7\%
NaOMe (10.0 equiv), MeOH (0.12 M) $23^{\circ} \mathrm{C}(1.5 \mathrm{~h}) \rightarrow 80^{\circ} \mathrm{C}(4 \mathrm{~h}) \rightarrow 110^{\circ} \mathrm{C}(14 \mathrm{~h})$	94\%	6\%
$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv), MeOH (0.12 M) $23^{\circ} \mathrm{C}(7 \mathrm{~h}) \rightarrow 110^{\circ} \mathrm{C}(12 \mathrm{~h})$	95\%	5\%
a Yields were determined by ${ }^{1} \mathrm{H}$ hexamethylbenzene as an internal standard.	NMR analysis	using

5.7.2.3 Screening of Amide Substrates

Table 5.4. Survey of Amide Substrates ${ }^{a}$

		HO-Me	$\begin{gathered} \begin{array}{c} \mathrm{Ni}(\operatorname{cod})_{2}(1) \\ \mathrm{SIPr}(10 \end{array} \\ \hline \text { toluene, ter } \end{gathered}$	$\begin{aligned} & 101 \%) \\ & \text { (\%) } \\ & \text { rature } \end{aligned}$	
Entry		Temp	Equivalents of MeOH	Yield of ester	Remainder of the mass
1		$110{ }^{\circ} \mathrm{C}$	2.0	0\%	5.7 a (100\%)
2		$110{ }^{\circ} \mathrm{C}$	2.0	0\%	5.7b (100\%)
3		$110{ }^{\circ} \mathrm{C}$	2.0	23\%	$5.7 c$ (77\%)
4		$110{ }^{\circ} \mathrm{C}$	2.0	22\%	$\begin{gathered} 5.7 d \text { (72\%) } \\ 5.7 e^{+}(6 \%) \end{gathered}$
5		$110{ }^{\circ} \mathrm{C}$	2.0	0\%	$5.7 e$ (100\%)
6	$\begin{array}{cc} \substack{s^{5} . N^{\prime} \\ 1 \\ \text { Ph }} & 5.7 f \\ \end{array}$	$110{ }^{\circ} \mathrm{C}$	2.0	55\%	5.77 (45\%)
7	3. ${ }^{\text {s. }}$. Me	$110^{\circ} \mathrm{C}$	2.0	quant.	-
8		$80^{\circ} \mathrm{C}$	1.2	quant.	-

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using hexamethylbenzene as an internal standard.

Note: The attempted esterification of benzamide using MeOH (2.0 equiv), Ni(cod) ${ }_{2}$ ($10 \mathrm{~mol} \%$),
SIPr (10 mol\%), and toluene (1.0 M) at $110{ }^{\circ} \mathrm{C}$ led to no reaction.

5.7.2.4 Comparison of Ligands and Relevant Control Experiments

Representative Procedure for Esterifications of Benzamides from Table 5.4 and Table 5.5 (coupling of amide $\mathbf{5 . 7} \mathbf{g}$ is used as an example). A 1-dram vial containing amide $\mathbf{5 . 7 g}$ (50.0 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv), hexamethylbenzene ($7.8 \mathrm{mg}, 0.48 \mathrm{mmol}, 0.2$ equiv), and a magnetic stir bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(6.6 \mathrm{mg}, 0.024 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and ligand $(0.024 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) in a glove box. Subsequently, toluene ($0.24 \mathrm{~mL}, 1.0 \mathrm{M}$) and then methanol (19.4 $\mu \mathrm{L}, 0.48$ mmol, 2.0 equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at 80 or $110{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was diluted with hexanes (0.5 mL) and filtered over a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure, and the yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis with hexamethylbenzene as an internal standard.

Any modifications of the conditions shown in the representative procedure above are specified in the following Table 5.4 and Table 5.5.

Table 5.5. Ligand Screening for Nickel-Catalyzed Esterification ${ }^{a}$

Reaction Conditions	Experimental Results	
	Recovered 5.7g	5.8a
MeOH (2.0 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}$ ($10 \mathrm{~mol} \%$), SIPr ($10 \mathrm{~mol} \%$) toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	0\%	100\%
$\mathrm{MeOH}\left(2.0\right.$ equiv), $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%), \operatorname{IPr}(10 \mathrm{~mol} \%)$ toluene (1.0 M), $110{ }^{\circ} \mathrm{C}$, 12 h	0\%	100\%
MeOH (2.0 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}$ ($10 \mathrm{~mol} \%$), SIMes ($10 \mathrm{~mol} \%$) toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	0\%	0\%
$\mathrm{MeOH}\left(2.0\right.$ equiv), $\mathrm{Ni}(\mathrm{cod})_{2}$ ($10 \mathrm{~mol} \%$), IMes ($10 \mathrm{~mol} \%$) toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	63\%	37\%
MeOH (2.0 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$ toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	100\%	0\%
MeOH (2.0 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{PPh}_{2} \mathrm{Cy}$ ($10 \mathrm{~mol} \%$) toluene (1.0 M), $110^{\circ} \mathrm{C}, 12 \mathrm{~h}$	100\%	0\%
$\mathrm{MeOH}\left(2.0 \text { equiv), } \mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(10 \mathrm{~mol} \%)\right.$ toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	85\%	15\%
MeOH (2.0 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%), \mathrm{PhPCy}_{2}(10 \mathrm{~mol} \%)$ toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	97\%	3\%
MeOH (2.0 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%)$, dppe $10 \mathrm{~mol} \%$) toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	100\%	0\%
MeOH (2.0 equiv), $\mathbf{N i (c o d)}{ }_{2}$ ($10 \mathrm{~mol} \%$), dppf ($10 \mathrm{~mol} \%$) toluene (1.0 M), $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	100\%	0\%
Control Experiments:		
MeOH (1.2 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}$ ($10 \mathrm{~mol} \%$), SIPr ($10 \mathrm{~mol} \%$) toluene (1.0 M), $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$	0\%	100\%
$\mathrm{MeOH}\left(1.2\right.$ equiv), toluene (1.0 M), $80{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	100\%	0\%
MeOH (1.2 equiv), SIPr (10 mol\%) toluene (1.0 M), $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$	100\%	0\%
MeOH (1.2 equiv), $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%)$ toluene (1.0 M), $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$	100\%	0\%

[^4]
5.7.2.5 Scope of Methodology

Representative Procedure (coupling of amide 5.7 g and methanol is used as an example). Ester 5.8a (Table 5.2a, entry 1). A 1-dram vial containing amide $5.7 \mathrm{~g}(100.0 \mathrm{mg}, 0.47 \mathrm{mmol}$, 1.0 equiv) and a magnetic stir bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(13.0 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\operatorname{SIPr}(18.4 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a glove box. Subsequently, toluene $(0.47 \mathrm{~mL}, 1.0$ $\mathrm{M})$ and then methanol ($23.0 \mu \mathrm{~L}, 0.56 \mathrm{mmol}, 1.2$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was diluted with hexanes $(0.5 \mathrm{~mL})$ and filtered over a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure, and the crude residue was purified by flash chromatography (20:1 Hexanes:EtOAc) to yield ester product 5.8a (88\% yield, average of two experiments) as a clear oil. Ester 5.8a: $\mathrm{R}_{f} 0.41$ (20:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{32}$

Any modifications of the conditions shown in the representative procedure above are specified in the following schemes, which depict all of the results shown in Table 5.2.

For each of the nickel-catalyzed reactions described herein, control experiments were performed concurrently where $\mathrm{Ni}(\mathrm{cod})_{2}$ and both $\mathrm{Ni}(\mathrm{cod})_{2}$ and SIPr were omitted from the reactions. In all cases, these control experiments led to the recovery of the amide substrates with no detectable conversion to the corresponding esters.

Ester 5.40 (Table 5.2a, entry 2). Purification by flash chromatography (10:1 Hexanes:EtOAc) generated ester 5.40 (80% yield, average of two experiments) as a clear oil. Ester 5.40: $\mathrm{R}_{f} 0.59$ (10:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{33}$

Ester 5.42 (Table 5.2a, entry 3). Purification by flash chromatography (20:1 Hexanes:EtOAc) generated ester 5.42 (92% yield, average of two experiments) as a clear oil. Ester 5.42: $\mathrm{R}_{f} 0.37$ (20:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{34}$

Ester 5.44 (Table 5.2a, entry 4). Purification by flash chromatography (5:1 Hexanes:EtOAc) generated ester 5.44 (90% yield, average of two experiments) as a white solid. Ester 5.44: $\mathrm{R}_{f} 0.59$ (10:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{35}$

Ester 5.46 (Table 5.2a, entry 5). Purification by flash chromatography (15:1 Hexanes:EtOAc) generated ester 5.46 (90% yield, average of two experiments) as a clear oil. Ester 5.46: $\mathrm{R}_{f} 0.60$ (20:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{35}$

Ester 5.48 (Table 5.2a, entry 6). Purification by flash chromatography ($20: 1$ Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) generated ester 5.48 (83% yield, average of two experiments) as a clear oil. Ester 5.48: $\mathrm{R}_{f} 0.52$ (15:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{36}$

Ester 5.49 (Table 5.2a, entry 7). Purification by flash chromatography (15:1 Hexanes:EtOAc) generated ester 5.49 (89% yield, average of two experiments) as a clear oil. Ester 5.49: $\mathrm{R}_{f} 0.69$ (15:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{34}$

Ester 5.51 (Table 5.2a, entry 8). Purification by flash chromatography (20:1 Hexanes:EtOAc) generated ester 5.51 (94% yield, average of two experiments) as a white solid. Ester 5.51: $\mathrm{R}_{f} 0.69$ (10:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{37}$

Ester 5.53 (Table 5.2a, entry 9). Purification by flash chromatography (15:1 Hexanes:EtOAc) generated ester 5.53 (94% yield, average of two experiments) as a clear oil. Ester 5.53: $\mathrm{R}_{f} 0.57$ (15:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{38}$

Ester 5.54 (Table 5.2a, entry 10). The yield was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture using hexamethylbenzene (0.3 equiv based on 5.35) as an external standard (91% yield, average of two experiments). Ester 5.54 : ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02-8.01$ $(\mathrm{m}, 1 \mathrm{H}), 7.43-7.42(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$. Spectral data of the crude mixture of ester $\mathbf{5 . 5 4}$ match those previously reported. ${ }^{39}$

Ester 5.55 (Table 5.2a, entry 11). Purification by flash chromatography (1:1 Hexanes:EtOAc) generated ester 5.55 (84% yield, average of two experiments) as a white solid. Ester 5.55: $\mathrm{R}_{f} 0.39$ (1:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{40}$

Ester 5.56 (Table 5.2a, entry 12). Purification by flash chromatography (1:1 Hexanes:EtOAc) generated ester 5.56 (56% yield, average of two experiments) as a clear oil. Ester 5.56: $\mathrm{R}_{f} 0.43$ (1:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{41}$

Ester 5.8a (Table 5.2a, entry 13). Purification by flash chromatography (10:1 Hexanes:Et $\mathrm{t}_{2} \mathrm{O}$) generated ester 5.8a (92% yield, average of two experiments) as a clear oil. Ester 5.8a: $\mathrm{R}_{f} 0.44$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{32}$

Ester 5.8a (Table 5.2a, entry 14). Purification by flash chromatography (10:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) generated ester 5.8a (78\% yield, average of two experiments) as a clear oil. Ester 5.8a: $\mathrm{R}_{f} 0.44$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{32}$

Ester 5.8a (Table 5.2a, entry 15). Purification by flash chromatography (10:1 Hexanes:Et ${ }_{2} \mathrm{O}$) generated ester 5.8a (58% yield, average of two experiments) as a clear oil. Ester 5.8a: $\mathrm{R}_{f} 0.44$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{32}$

Ester 5.8a (Table 5.2a, entry 16). Purification by flash chromatography (10:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) generated ester 5.8a (49\% yield, average of two experiments) as a clear oil. Ester 5.8a: $\mathrm{R}_{f} 0.44$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{32}$

Ester 5.8a (Table 5.2a, entry 17). Purification by flash chromatography (10:1 Hexanes:Et $\mathrm{E}_{2} \mathrm{O}$) generated ester 5.8a (84\% yield, average of two experiments) as a clear oil. Ester 5.8a: $\mathrm{R}_{f} 0.44$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{32}$

Ester 5.8a (Table 5.2a, entry 18). Purification by flash chromatography (10:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) generated ester 5.8a (89% yield, average of two experiments) as a clear oil. Ester 5.8a: $\mathrm{R}_{f} 0.44$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{32}$

Ester 5.64 (Table 5.2b, entry 19). Purification by flash chromatography (100:1 Hexanes:EtOAc) generated ester 5.64 (82% yield, average of two experiments) as a clear oil. Ester 5.64: $\mathrm{R}_{f} 0.59$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{42}$

Ester 5.66 (Table 5.2b, entry 20). Purification by flash chromatography (100:1 Hexanes:EtOAc) generated ester 5.66 (64% yield, average of two experiments) as a clear oil. Ester 5.66: $\mathrm{R}_{f} 0.71$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{43}$

Ester 5.68 (Table 5.2b, entry 21). Purification by flash chromatography (100:1 Hexanes:EtOAc) generated ester 5.68 (67% yield, average of two experiments) as a clear oil. Ester 5.68: $\mathrm{R}_{f} 0.76$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{44}$

Ester 5.70 (Table 5.2b, entry 22). Purification by flash chromatography (20:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) generated ester 5.70 (90% yield, average of two experiments) as a clear oil. Ester 5.70: $\mathrm{R}_{f} 0.88$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H})$, 7.46-7.42 (m, 2H), $4.16(\mathrm{~d}, J=7.2,2 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.57(\mathrm{~m}, 2 \mathrm{H}), 0.41-0.32(\mathrm{~m}$, $2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,132.9,130.7,129.7,128.4,69.8,10.0,3.4$; IR (film):

3079, 1451, 1712, 1272, $1114 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O} 2,177.09101$; found 177.09057 .

Ester 5.72 (Table 5.2b, entry 23). Purification by flash chromatography ($10: 1$ Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) generated ester 5.72 (49\% yield, average of two experiments) as a clear oil. Ester 5.72: $\mathrm{R}_{f} 0.41$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{45}$

Ester 5.21 (Table 5.2b, entry 24). Purification by flash chromatography (100:1 Hexanes:EtOAc) generated ester 5.21 (88% yield, average of two experiments) as a white solid. Ester 5.21: $\mathrm{R}_{f} 0.59$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{46}$

Ester 5.74 (Table 5.2b, entry 25). Purification by flash chromatography (5:1 Hexanes:EtOAc) generated ester 5.74 (67% yield, average of two experiments) as a clear oil. Ester 5.74: $\mathrm{R}_{f} 0.81$ (5:1 Hexanes:EtOAc). Spectral data match those previously reported. ${ }^{47}$

Ester 5.76 (Table 5.2b, entry 26). Purification by flash chromatography (100:1 Benzene:Acetone) generated ester 5.76 (65% yield, average of two experiments) as a clear oil. Ester 5.76: $\mathrm{R}_{f} 0.26$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06-8.03$ (m, 2H), $8.00-7.90$ (br s, 1H), 7.64-7.60 (m, 1H), $7.56(\mathrm{tt}, J=7.3,1.4,1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37$ (dt, J $=8.1,0.9,1 \mathrm{H}), 7.20(\mathrm{ddd}, J=11.6,7.5,1.2,1 \mathrm{H}), 7.12(\mathrm{ddd}, J=11.6,7.5,1.2,1 \mathrm{H}), 7.04-7.02$ $(\mathrm{m}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.40,2 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 2 \mathrm{H}) 2.24-2.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.9,136.5,133.0,130.6,129.7,128.5,127.5,122.2,121.6,119.4,118.9 .115 .5$, 111.3, 64.7, 29.2, 21.8; IR (film): 3411, 2360, 1702, 1273, $1117 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}$, 280.13321; found 280.13205.

Ester 5.78 (Table 5.2b, entry 27). Purification by flash chromatography (10:1 Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) generated ester 5.78 (91% yield, average of two experiments) as a clear oil. Ester 5.78: $\mathrm{R}_{f} 0.25$ (5:1 Hexanes:Et O); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H})$, 7.46-7.41 (m, 2H), $5.57(\mathrm{~d}, J=4.9,1 \mathrm{H}), 4.65(\mathrm{dd}, J=7.9,2.5,1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.5,4.9,1 \mathrm{H})$, $4.43(\mathrm{dd}, J=11.5,7.5,1 \mathrm{H}), 4.35(\mathrm{dd}, J=5.0,2.5,1 \mathrm{H}), 4.33(\mathrm{dd}, J=7.9,2.0,1 \mathrm{H}), 4.19(\mathrm{ddd}, J=$ $7.5,5.0,2.0,1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 166.6,133.1,130.2,129.9,128.5,109.9,109.0,96.5,71.3,70.9,70.7,66.3,64.0$, 26.2, 26.1, 25.1, 24.7; IR (film): 2989, 1720, $12761108,1070 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{7}, 365.15948$; found $365.15835 ;[\alpha]^{22.0}{ }_{\mathrm{D}}-70.4^{\circ}\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Ester 5.80 (Table 5.2b, entry 28). Purification by flash chromatography (100:1 Hexanes:EtOAc) generated ester 5.80 (74% yield, average of two experiments) as a clear oil. Ester 5.80: $\mathrm{R}_{f} 0.67$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09-8.03$ (m, 2H), 7.59-7.53 (m, 1H), 7.49-7.41 (m, 2H), 7.15-7.10(m, 1H), 6.64-6.59 (m, 1H), 6.58-6.54 (m,
$1 \mathrm{H}), 5.13-4.90(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.28$ $(\mathrm{m}, 6 \mathrm{H}), 0.99-0.86(\mathrm{~m}, 11 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,166.3,153.5$, $153.5,138.0,137.9,133.1,133.1,132.9,131.0,130.9,129.7,129.7,128.5,128.5,126.3,126.3$, $120.1,120.1,117.3,83.4,82.8,50.0,49.7,45.5,44.0,43.9,43.5,39.2,38.7,37.2,32.3,30.4$, 29.9, 29.8, 28.2, 27.9, 27.4, 25.9, 24.6, 23.6, 18.3, 17.0, 12.5, -4.2; IR (film): 2928, 1717, 1496, 1274, 1256, $1116 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{O}_{3} \mathrm{Si}, 491.28866$; found 491.29615; $[\alpha]^{22.0}{ }_{\mathrm{D}}+56.2^{\circ}\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Note: $\mathbf{5 . 8 0}$ was obtained as mixture of rotamers. These data represent empirically observed chemical shifts from the ${ }^{13} \mathrm{C}$ NMR spectrum.

5.7.2.6 Selective Cleavage of Tertiary over Secondary Amide

Amide 5.19 (Figure 5.3a). A mixture of amine salt 5.81 ($3.1 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.0$ equiv), dichloromethane ($96.0 \mathrm{~mL}, 0.5 \mathrm{M}$), and triethylamine ($8.9 \mathrm{~mL}, 64.0 \mathrm{mmol}, 8.9 \mathrm{~mL}$) was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The reaction vessel was cooled to $0^{\circ} \mathrm{C}$ and benzoyl chloride (5.27) (5.6 mL, 48.0 mmol , 3.0 equiv) was added dropwise over 15 min with stirring. The resulting heterogeneous mixture was warmed to $23{ }^{\circ} \mathrm{C}$ over 30 min and stirred for 18 h . The reaction mixture was then diluted with $\operatorname{EtOAc}(50 \mathrm{~mL})$ and then washed sequentially with $1.0 \mathrm{M} \mathrm{HCl}(50$ mL) and brine (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (1:1

Hexanes:EtOAc) to give amide 5.19 ($3.2 \mathrm{~g}, 61 \%$ yield) as a white solid. Amide 5.19: $\mathrm{R}_{f} 0.34$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58-7.44$ (m, 5H), 7.34-7.30 (m, 2H), 7.25-7.22 (m, 1H), 7.21-7.15 (m, 2H), $7.05(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.49 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 170.9,166.0,141.0,140.9,136.7,136.6,136.0$, $134.8,132.1,132.1,129.8,128.9,128.8,128.8,128.0,127.6,127.5,127.2,127.2,120.9,120.8$, 38.6; IR (film): 3299, 2971, 2245, 1737, 1625, 1602, 1578, 1509, 1372, 1316, 1292, 1244, 1101 cm^{-1}; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}, 331.14465$; found 331.14229.

Ester 5.21 and Aminoamide 5.22 (Figure 5.3a). A 1-dram vial containing amide 5.19 (100.0 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) and a magnetic stir bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(12.4 \mathrm{mg}, 0.045$ mmol, $15 \mathrm{~mol} \%$) and $\operatorname{SIPr}(35.2 \mathrm{mg}, 0.045 \mathrm{mmol}, 30 \mathrm{~mol} \%$) in a glove box. Subsequently, toluene ($0.45 \mathrm{~mL}, 1.0 \mathrm{M}$) and then (-)-menthol (5.20) $(56.0 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was diluted with hexanes $(0.5 \mathrm{~mL})$ and filtered over a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure, and the crude residue was purified by flash chromatography (10:1 $\rightarrow 1: 1$ Hexanes:EtOAc) generated ester 5.21 (82% yield, average of two experiments) as a white solid and aminoamide 5.22 (80% yield, average of two experiments) as a white solid. Ester 5.21: R_{f} 0.90 (1:1 Hexanes:EtOAc). Spectral data matched those previously reported. ${ }^{46}$ Aminoamide
5.22: $\mathrm{R}_{f} 0.30$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.93$ (d, $J=$ $7.6,2 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~d}, J=8.4,2 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=4.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO): $\delta 164.6,146.7 .135 .3,131.1,128.3,128.0,127.4,122.2,111.3,30.0 ;$ IR (film): 3268, 1639, 1535, 1517, 1468, 1402, 1310, 1246, 1177, $1026 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$, 227.11844; found 227.11649.

5.7.2.7 Selective Cleavage of Aryl Amide Over Alkyl Amide

Amide 5.83 (Figure 5.3b). To a solution of amine 5.82 ($7.7 \mathrm{~g}, 71.1 \mathrm{mmol}, 2.0$ equiv) and triethylamine ($6.2 \mathrm{~mL}, 44.5 \mathrm{mmol}, 1.25$ equiv) in dichloromethane ($356.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added benzoyl chloride 5.27 ($5.0 \mathrm{~g}, 35.6 \mathrm{~mL}$, 1.0 equiv) dropwise over 15 min . After stirring at $23{ }^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was then diluted with deionized water (200 mL) and dichloromethane $(200 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 500 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The resulting red solid was purified by flash chromatography ($1: 1$ Hexanes:EtOAc $\rightarrow 100 \%$ EtOAc) to give a white solid ($4.3 \mathrm{~g}, 57 \%$ yield). Amide 5.83: $\mathrm{R}_{f} 0.31$ (1:1 Hexanes:EtOAc). Spectral data matched those previously reported. ${ }^{48}$

Amide 5.85 (Figure 5.3b). To a mixture of amide 5.83 ($1.5 \mathrm{~g}, 7.1 \mathrm{mmol}, 1.0$ equiv) and carboxylic acid $5.84\left(1.52 \mathrm{~g}, 7.1 \mathrm{mmol}, 1.0\right.$ equiv) in dry DMF $(2.7 \mathrm{~mL}, 2.6 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added N, N^{\prime}-diisopropylcarbodiimide ($1.3 \mathrm{~mL}, 8.5 \mathrm{mmol}, 1.2$ equiv) dropwise over 5 min . The reaction was then stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and $23{ }^{\circ} \mathrm{C}$ for 12 h . The crude reaction mixture was poured into $1: 1 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$ solution $(1 \mathrm{~L})$. The resulting solid was collected to afford amide 5.85 ($2.1 \mathrm{~g}, 71 \%$ yield) as a white solid. Amide 5.85: $\mathrm{R}_{f} 0.69$ (3:1 Acetone:Benzene); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.53(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.65-7.52(\mathrm{~m}, 5 \mathrm{H})$, 7.52-7.46 (m, 2H), 4.59-3.18 (m, 3H), 2.68-1.74 (m, 4H), 1.50(s, 9H), ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.1,165.7,156.7,135.4,135.1,133.8,131.9,128.9,127.2,121.2,120.3,81.1,60.6$, 47.4, 28.6, 27.4, 24.8; IR (film): $3295,1668,1515,1405,1308,1162 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-\operatorname{ESI}(\mathrm{m} / \mathrm{z})[\mathrm{M}-$ H] calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{3}, 408.19178$; found 408.19340; $[\alpha]^{22.0}{ }_{\mathrm{D}}-50.0^{\circ}\left(c=0.100, \mathrm{CHCl}_{3}\right)$.

Note: $\mathbf{5 . 8 5}$ was obtained as mixture of rotamers. These data represent empirically observed chemical shifts and coupling constants from the ${ }^{1} H$ NMR and ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectra}$.

Amide 5.23 (Figure 5.3b). To a solution of amide 5.85 ($300.0 \mathrm{mg}, 0.73 \mathrm{mmol}$) in dry DMF $(12.0 \mathrm{~mL}, 0.06 \mathrm{M})$ at $0^{\circ} \mathrm{C}$, was added $\mathrm{NaH}(60 \%$ in oil dispersion, $62.0 \mathrm{mg}, 1.5 \mathrm{mmol}, 2.1$
equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then methyl iodide $(91.0 \mathrm{~mL}, 1.5 \mathrm{mmol}, 2.0$ equiv) was added. The solution was stirred at $0^{\circ} \mathrm{C}$ for an additional hour and then warmed to 23 ${ }^{\circ} \mathrm{C}$ over 30 min . After 14 h , the reaction was quenched with a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and diluted with deionized water $(50 \mathrm{~mL})$. The mixture was extracted with EtOAc $(4 \times 50 \mathrm{~mL})$ and the combined organic layers were washed succesively with water ($4 \times 50 \mathrm{~mL}$) and brine (50 mL), and then dried over MgSO_{4}. After concentration under reduced pressure, the crude residue was purified by flash chromatography ($2: 1 \rightarrow 1: 1$ Hexanes:EtOAc) to provide amide 5.23 ($272.0 \mathrm{mg}, 85 \%$ yield) as a clear oil. Amide 5.23: $\mathrm{R}_{f} 0.33$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.91-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 6 \mathrm{H}), 4.25-$ $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.52(\operatorname{app~d}, J=8.6,1 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.17(\mathrm{~m}$, $3 \mathrm{H}), 2.02-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{app} \mathrm{d}, J=3.2,9 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.6,172.5$, $170.8,154.5,153.9,144.6,144.4,141.7,141.4,135.9,135.8,130.1,129.9,128.8,128.8,128.5$, $128.2,127.9,127.9,127.2,79.9,79.5,57.2,56.9,47.3,47.2,38.3,37.8,37.7,31.6,30.3,28.8$, 28.7, 24.4, 23.6, 1.2; IR (film): 2974, 2876, 1643, 1509, 1364, $1119 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{3}, 438.23873$; found 438.23824; $[\alpha]^{22.0}{ }_{\mathrm{D}}+76.0^{\circ}\left(c=0.100, \mathrm{CHCl}_{3}\right)$.

Note: $\mathbf{5 . 2 3}$ was obtained as mixture of rotamers. These data represent empirically observed chemical shifts and coupling constants from the ${ }^{1} H$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

Ester 5.21 and Amine 5.24 (Figure 5.3b). A 1-dram vial containing amide 5.23 ($100.0 \mathrm{mg}, 0.23$ mmol, 1.0 equiv) and a magnetic stir bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(6.3 \mathrm{mg}, 0.023 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) and $\operatorname{SIPr}(8.9 \mathrm{mg}, 0.023 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a glove box. Subsequently, toluene (0.23 $\mathrm{mL}, 1.0 \mathrm{M})$ and then $(-)$-menthol (5.20) ($42.9 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.2$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was diluted with hexanes (0.5 mL) and filtered over a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure, and the crude residue was purified by flash chromatography (100:1 \rightarrow 1:1 Hexanes:EtOAc) provided ester 5.21 (78% yield, average of two experiments) as a white solid and amine 5.24 (83% yield, average of two experiments) as a clear oil. Ester 5.21: $\mathrm{R}_{f} 0.90$ (1:1 Hexanes:EtOAc). Spectral data matched those previously reported. ${ }^{46}$ Amine 5.24: $\mathrm{R}_{f} 0.18$ (1:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.16(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5,1 \mathrm{H}), 6.63(\mathrm{t}, J=8.5,2 \mathrm{H})$, $4.60-3.25(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.86(\operatorname{app~d}, J=7.3,3 \mathrm{H}), 2.03-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.47(\operatorname{app~d}, J=$ 14.4, 9 H) ; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 128.9,128.7,79.6,79.2,57.3,57.0,47.4,47.2,38.0$, $31.8,30.9,30.6,28.8,28.7,24.4,23.7$; IR (film): 3368, 2976, 1649, 1524, 1390, 1160, $1119 \mathrm{~cm}^{-}$
${ }^{1}$; HRMS-ESI $(m / z)[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}$, 334.21252; found 334.21195; $[\alpha]^{22.0}{ }_{\mathrm{D}}$ $+66.00^{\circ}\left(c=0.100, \mathrm{CHCl}_{3}\right)$.

Note: $\mathbf{5 . 2 4}$ was obtained as mixture of rotamers. These data represent empirically observed chemical shifts and coupling constants from the ${ }^{1} H$ NMR and ${ }^{13} C$ NMR spectra.

5.7.2.8 Selective Cleavage of Aryl Amide in the Presence of an Ester

Amine 5.26 (Figure 5.3c). A round bottom flask was charged with $4 \AA$ molecular sieves (14.0 g , 2.0 equiv), ester $5.87(7.0 \mathrm{~g}, 33.4 \mathrm{mmol}, 1.0$ equiv), boronic acid $\mathbf{5 . 8 6}(8.1 \mathrm{~g}, 66.8 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{Cu}(\mathrm{OAc})_{2}(6.7 \mathrm{~g}, 36.7 \mathrm{mmol}, 1.1$ equiv). The flask was evacuated by vacuum, backfilled with O_{2}, and then held under an O_{2} atmosphere by balloon. Dichloromethane (333.0 $\mathrm{mL}, 0.1 \mathrm{M}$) and triethylamine ($9.3 \mathrm{~mL}, 66.8 \mathrm{mmol}, 2.0$ equiv) were added sequentially, and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then quenched with a solution of ammonia in methanol ($6 \mathrm{~N}, 15 \mathrm{~mL}$). After removing the volatiles under reduced pressure, the crude mixture was purified via flash chromatography (10:1 Hexanes:EtOAc) to give amine 5.26 as a white solid ($3.2 \mathrm{~g}, 39 \%$ yield). Amide 5.26: $\mathrm{R}_{f} 0.65$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{tt}, J=7.3,1.0,1 \mathrm{H}), 6.66-6.61(\mathrm{~m}, 2 \mathrm{H})$, $4.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=5.6,1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{dd}, J=11.3,7.0$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 172.9,147.7,129.4,118.1,113.8,81.6,63.0,31.6,28.2$,
19.1, 18.8; IR (film): $3383,2970,1708,1605,1368,1156 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{1} \mathrm{O}_{2}, 250.18016$; found 250.17955; $[\alpha]^{22.0}{ }_{\mathrm{D}}-26.00^{\circ}\left(c=0.100, \mathrm{CHCl}_{3}\right)$

Amide 5.25 (Figure 5.3c). To a solution of amine 5.26 ($887 \mathrm{mg}, 3.55 \mathrm{mmol}$) in THF (35.5 mL , 0.1 M) was added DMAP ($86.7 \mathrm{mg}, 0.71 \mathrm{mmol}, 0.2$ equiv) and triethylamine ($2.46 \mathrm{~mL}, 17.75$ mmol, 5 equiv). Then, benzoyl chloride (5.27) ($2.05 \mathrm{~mL}, 17.75 \mathrm{mmol}, 5$ equiv) was added dropwise into the flask over 5 min and then refluxed. After 18 h , the reaction mixture was cooled to $23^{\circ} \mathrm{C}$, quenched with $1.0 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, extracted with EtOAc (3 X 50 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under reduced pressure and the crude residue was purified via flash chromatography ($30: 1$ Hexanes:EtOAc) to give amide 5.25 as a yellow solid (1.09 g , 87\% yield). Amide 5.25: $\mathrm{R}_{f} 0.43$ (5:1 Hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 8 \mathrm{H}), 4.56(\mathrm{~d}, J=9.7,1 \mathrm{H}), 2.59-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}$, $J=6.9,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,169.7,143.2,136.4,129.6,128.8,128.7$, 128.6, 127.8, 126.9, 81.6, 68.9, 28.8, 28.2, 21.4, 20.3; IR (film): 2973, 1734, 1649, 1493, 1368, $1153 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{2}$, 354.20692; found 354.20591; $[\alpha]^{22.0}{ }_{\mathrm{D}}-76.00^{\circ}\left(c=0.100, \mathrm{CHCl}_{3}\right)$.

Ester 5.21 and Amide 5.26 (Figure 5.3c). A 1-dram vial containing amide 5.25 ($100.0 \mathrm{mg}, 0.28$ mmol, 1.0 equiv) and a magnetic stir bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(7.8 \mathrm{mg}, 0.028 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$ and $\operatorname{SIPr}(11.1 \mathrm{mg}, 0.028 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a glove box. Subsequently, toluene (0.28 $\mathrm{mL}, 1.0 \mathrm{M})$ and then (-)-menthol (5.20) $(53.1 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.2$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was diluted with hexanes $(0.5 \mathrm{~mL})$ and filtered over a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure, and the crude residue was purified by flash chromatography (100:1 Hexanes:EtOAc) generated ester 5.21 (70% yield) as a white solid and amine $\mathbf{5 . 2 6}$ (79\% yield) as a clear oil. Ester 5.21: R_{f} 0.90 (1:1 Hexanes:EtOAc). Spectral data matched those previously reported. ${ }^{46}$ Amide 5.26: Spectral data of amide $\mathbf{5 . 2 6}$ matched the characterization data shown in page 322.

5.7.3 Verification of Enantiopurity

5.7.3.1 Racemic Compound Syntheses

Amine rac-5.24 (Figure 5.3b). Rac-5.23 was prepared using the procedure described earlier to synthesize (+)-5.23 (see section 5.7.2.7 Selective Cleavage of Aryl Amide Over Alkyl Amide, page 318), except using the racemic Boc-proline 5.84. A 1-dram vial containing rac-5.23 (40.0 $\mathrm{mg}, 0.09 \mathrm{mmol}, 1.0$ equiv) and a magnetic stir bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(3.1 \mathrm{mg}, 0.011$ $\mathrm{mmol}, 12.5 \mathrm{~mol} \%)$ and $\operatorname{SIPr}(4.5 \mathrm{mg}, 0.011 \mathrm{mmol}, 12.5 \mathrm{~mol} \%)$ in a glove box. Subsequently, toluene ($0.11 \mathrm{~mL}, 0.8 \mathrm{M}$) and then (-)-menthol $5.20(21.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.5$ equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at $80^{\circ} \mathrm{C}$ for 12 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was diluted with hexanes $(0.5 \mathrm{~mL})$ and filtered over a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure. The crude residue was purified by preparative thin-layer chromatography (1:1 Hexanes:EtOAc) to give amine rac-5.24 (13.2 mg, 43\% yield) as a clear oil. Spectral data matched those reported in the section 5.7.2.7 Selective Cleavage of Aryl Amide Over Alkyl Amide, page 318.

Amide rac-5.25 (Figure 5.3c). Rac-5.26 was prepared using the procedure described earlier to synthesize (+)-5.26 (see page 322), but using racemic ester 5.87. A 1 -dram vial containing a magnetic stir bar, aniline rac-5.26 ($20.0 \mathrm{mg}, 0.080 \mathrm{mmol}, 1.05$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(14 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.3$ equiv) and benzoyl chloride ($8.9 \mu \mathrm{~L}, 0.076 \mathrm{mmol}$). The mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 d and then diluted in water $(25 \mathrm{~mL})$. After extraction with EtOAc (4 x 25 mL), the combined organic layers were washed with brine (25 mL) and dried over MgSO_{4}. The solution was filtered and concentrated under reduced pressure. The crude residue was purified by preparative thin-layer chromatography (5:1 EtOAc:Hexanes) to give rac-5.25 ($2.2 \mathrm{mg}, 8 \%$ yield, unoptimized) as a clear oil.

Compound	Method Column /Temp	Polar Cosolvent	Method Flow Rate	Retention Times	Enantiomeric Ratio (er)
	Daicel ChiralPak OJ-H / $35^{\circ} \mathrm{C}$	7\% MeOH	$\begin{gathered} 2.00 \\ \mathrm{~mL} / \mathrm{min} \end{gathered}$	$\begin{gathered} 4.00 / 4.67 \\ \min \end{gathered}$	52:48
	Daicel ChiralPak OJ-H / $35^{\circ} \mathrm{C}$	7\% MeOH	$\begin{gathered} 2.00 \\ \mathrm{~mL} / \mathrm{min} \end{gathered}$	$\begin{gathered} 4.53 / 5.27 \\ \min \end{gathered}$	96:4
	Daicel ChiralPak OJ-H / $35^{\circ} \mathrm{C}$	$\begin{gathered} 15 \% \\ i-\mathrm{PrOH} \end{gathered}$	$\begin{gathered} 1.00 \\ \mathrm{~mL} / \mathrm{min} \end{gathered}$	$\begin{gathered} 7.96 / 9.09 \\ \min \end{gathered}$	52:48
	$\begin{aligned} & \text { Daicel } \\ & \text { ChiralPak } \\ & \text { OJ-H / } \\ & 35^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 15 \% \\ i-\mathrm{PrOH} \end{gathered}$	$\begin{gathered} 1.00 \\ \mathrm{~mL} / \mathrm{min} \end{gathered}$	$\begin{gathered} 7.60 / 8.78 \\ \min \end{gathered}$	96:4

No stereochemical erosion occurs during the nickel-catalyzed esterification.

Date:12/16/2014
Sample:nfn-6-199b-bbb1
Method Name:NOT DEFINED
Run Info:N.A.
CCPFB2.tmp.DAT - Maximum absorbance

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[\% Area]	[$\mu \mathrm{V}$]	[$\mu \mathrm{V}, \mathrm{Min}$]	[\%]
1	UNKNOWN	3.74	4.00	4.26	0.00	52.37	119.3	19.2	52.367
2	UNKNOWN	4.36	4.67	5.11	0.00	47.63	68.6	17.5	47.633
Total						100.00	187.9	36.7	100.000

Date:12/16/2014
Sample:nfn-6-107b1
Method Name:OJiso7\%MeOH
Run Info:N.A.

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[\% Area]	[$\mu \mathrm{V}$]	[μ V.M.Min]	[\%]
1	UNKNOWN	4.08	4.53	4.87	0.00	95.57	311.2	89.1	95.569
2	UNKNOWN	4.92	5.27	5.77	0.00	4.43	13.3	4.1	4.431
Total						100.00	324.5	93.2	100.000

Date:12/16/2014
Sample:nfn-6-197b-71
Method Name:OJiso15\%iPrOH-A
Run Info:N.A.

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[\% Area]	[$\mu \mathrm{V}]$	[μ V.Min]	[\%]
1	UNKNOWN	7.38	7.96	8.59	0.00	51.46	112.9	45.2	51.463
2	UNKNOWN	8.61	9.09	9.65	0.00	48.54	124.9	42.7	48.537
Total						100.00	237.8	87.9	100.000

Date:12/16/2014
Sample:nfn-6-197b-61
Method Name:OJiso15\%iPrOH-A
Run Info:N.A.
CCPFBF.tmp.DAT - HP1100 DAD Signal B

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[\% Area]	[μ V]	[μ V.Min]	[\%]
1	UNKNOWN	6.99	7.60	8.29	0.00	95.51	208.2	84.5	95.512
2	UNKNOWN	8.39	8.78	9.35	0.00	4.49	11.3	4.0	4.488
Total						100.00	219.5	88.5	100.000

Compound	Method Column /Temp	Polar Cosolvent	Method Flow Rate	Retention Times	Enantiomeric Ratio (er)
	Daicel ChiralPak OJ-H / $35^{\circ} \mathrm{C}$	0.5 \% MeOH	$\begin{gathered} 0.5 \\ \mathrm{~mL} / \mathrm{min} \end{gathered}$	$\begin{gathered} 12.24 / 13.55 \\ \min \end{gathered}$	50:50
	Daicel ChiralPak OJ-H / $35^{\circ} \mathrm{C}$	0.5 \% MeOH	$\begin{gathered} 0.5 \\ \mathrm{~mL} / \mathrm{min} \end{gathered}$	12.23 min	100:0
	Daicel ChiralPak OJ-H / $35^{\circ} \mathrm{C}$	$\begin{gathered} 5 \% \\ i-\mathrm{PrOH} \end{gathered}$	$\begin{aligned} & 2.00 \\ & \mathrm{~mL} / \mathrm{min} \end{aligned}$	4.73/4.95 min	50:50
 5.27	Daicel ChiralPak OJ-H / $35^{\circ} \mathrm{C}$	$\begin{gathered} 5 \% \\ i-\mathrm{PrOH} \end{gathered}$	$\begin{gathered} 2.00 \\ \mathrm{~mL} / \mathrm{min} \end{gathered}$	4.77/4.99 min	98:2

Minimal stereochemical erosion during the nickel-catalyzed esterification was observed.

Date:12/16/2014
Sample:nfn-6-201f-bb1
Method Name:OJiso. 5 iPrOH
Run Info:N.A.
CCPFAB.tmp.DAT - HP1100 DAD Signal B

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[\% Area]	[$\mu \mathrm{V}$]	[μ V.M.Min]	[\%]
1	UNKNOWN	11.70	12.24	12.91	0.00	49.67	91.0	44.6	49.672
2	UNKNOWN	12.94	13.55	14.28	0.00	50.33	84.6	45.2	50.328
Total						100.00	175.6	89.8	100.000

Date:12/16/2014
Sample:nfn-6-171a-k0
Method Name:OJisopoint5flow1-3
Run Info:N.A.
CCPFAF.tmp.DAT - HP1100 DAD Signal B

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[\% Area]	[$\mu \mathrm{V}$]	[$\mu \mathrm{V}, \mathrm{Min}$]	[\%]
1	UNKNOWN	11.78	12.23	12.85	0.00	100.00	100.4	34.7	100.000
Total						100.00	100.4	34.7	100.000

Date:12/16/2014
Sample:NFN-6-195bb1
Method Name:NOT DEFINED
Run Info:N.A.
CCPFB9.tmp.DAT - Maximum absorbance

Index		Name	Start		Time	End	RT Offset	Quantity	

Date:12/16/2014
Sample:nfn-6-195rrr1
Method Name:NOT DEFINED
Run Info:N.A.

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[\% Area]	[$\mu \mathrm{V}$]	[μ V. Min]	[\%]
1	UNKNOWN	4.59	4.77	4.92	0.00	97.64	509.0	50.9	97.643
2	UNKNOWN	4.93	4.99	5.07	0.00	2.36	17.4	1.2	2.357
Total						100.00	526.4	52.2	100.000

5.7.4 Computational Methods

All the calculations were carried out with the Gaussian 09 package. Geometry optimizations were performed with B3LYP. ${ }^{49}$ The LANL2DZ basis set ${ }^{50}$ with ECP was used for Ni, and the 6$31 \mathrm{G}(\mathrm{d})$ basis set ${ }^{51}$ was used for other atoms. Frequency analysis was conducted at the same level of theory to verify the stationary points to be minima or saddle points. The single-point energies and solvent effects in toluene were computed with $\mathrm{M} 06^{52} / \mathrm{SDD}^{53}-6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets by using SMD solvation model. ${ }^{54}$ Computed structures are illustrated using CYLView. ${ }^{55}$

5.7.4.1 Complete Reference of Gaussian 09

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Rev. D.01; Gaussian, Inc., Wallingford, CT, 2010.

5.7.4.2 Transition State Structures for Decarbonylation Pathway

5.7.4.3 Comparison of Acyl C-N and Aryl C-N Bond Activation Pathway

Calculations were performed on the competing aryl $C-N$ bond cleavage transition state.
Transition state 5.90 was found to be $9.3 \mathrm{kcal} / \mathrm{mol}$ higher compared to the barrier for acyl $\mathrm{C}-\mathrm{N}$ bond cleavage, via 5.11.

5.7.4.4 Analysis of Amides Derived from Alkyl Carboxylic Acids

Table 5.6. Comparison of Aryl vs. Alkyl Amide Substrates

We have performed computations involving two additional substrates: $N-\mathrm{Me}-\mathrm{N}$ phenylacetamide (5.91) and N, N-dimethylacetamide (5.93). In the case of $N-\mathrm{Me}-\mathrm{N}$ phenylacetamide, the oxidative addition barrier (transition state 5.92) was found to be 31.8 $\mathrm{kcal} / \mathrm{mol}$ with respect to the $\mathrm{Ni}(\mathrm{SIPr})_{2}$ resting state. Similarly, for N, N-dimethylacetamide, the oxidative addition barrier (transition state 5.94) was found to be $36.7 \mathrm{kcal} / \mathrm{mol}$ with respect to the $\mathrm{Ni}(\mathrm{SIPr})_{2}$ resting state. These high kinetic barriers are likely responsible for the inability of alkyl
carboxylic acids to participate in our nickel-catalyzed esterifications. Also, in the case of substrate 5.93, the amide to methyl ester conversion is not energetically favorable.

5.7.4.5 Analysis of N-Me,Boc Amide Esterification

AcyI C-N Bond Cleavage of Amide (Favored Pathway)

Acyl C-N Bond Cleavage of Carbamate (Disfavored Pathway)

Figure 5.4. Analysis of Competing Pathways for Esterification of N-Me,Boc Substrate $\mathbf{5 . 9 5}$

The calculations show that the desired esterification of substrate 5.95 with MeOH is thermodynamically favorable by $14.7 \mathrm{kcal} / \mathrm{mol}$. The oxidative addition transition state (transition
state 5.97) was found to be $29.0 \mathrm{kcal} / \mathrm{mol}$ with respect to the $\mathrm{Ni}(\mathrm{SIPr})_{2}$ resting state. We have also performed computations of a plausible competitive process involving cleavage of the carbamate acyl $\mathrm{C}-\mathrm{N}$ bond. This transformation is also thermodynamically favorable (11.5 $\mathrm{kcal} / \mathrm{mol}$). However, the oxidative addition barrier (transition state 5.99) was found to be 36.9 $\mathrm{kcal} / \mathrm{mol}$ with respect to the $\mathrm{Ni}(\mathrm{SIPr})_{2}$ resting state. Accordingly, carbamate $\mathrm{C}-\mathrm{N}$ bond cleavage is not observed and the desired esterification occurs smoothly.

5.7.4.6 Free Energy and Enthalpy of Amide and Ester Formation

Reaction	$\Delta_{\mathrm{r}} \mathrm{H}\left(\right.$ gas ${ }^{a}$	$\Delta_{\mathrm{r}} \mathrm{H}(\text { cond. })^{d}$	$\Delta_{\mathrm{r}} \mathrm{H}(\text { (methanol) })^{e}$	$\Delta_{\mathrm{r}} \mathrm{G}(\text { methanol })^{f}$	$\Delta_{\mathrm{r}} \mathrm{H}(\text { calc. })^{g}$	$\Delta_{\mathrm{r}} \mathrm{G}(\text { calc. })^{g}$
(a)	$+5.3^{b}$	+11.4			+2.3	+2.3
(b)	-0.3	+10.6	+3.6	+3.3	0.0	0.0
(c)	+3.8	+14.0			+3.4	+3.9
(d)	$+0.2^{c}$	+8.0			-3.0	-2.6

${ }^{a}$ Yields were determined by ${ }^{1}$ H NMR analysis using hexamethylbenzene as an internal standard. ${ }^{a}$ Reaction enthalpy calculated using gas phase standard enthalpy of formation data. ${ }^{56 \mathrm{~b}}$ Gas phase enthalpy of formation for the amide 5.100 is calculated from liquid phase standard enthalpy of formation and enthalpy of vaporization. ${ }^{56}{ }^{c}$ Gas phase enthalpy of formation for the amide $\mathbf{5 . 1 0 5}$ is calculated from solid phase standard enthalpy of formation and enthalpy of sublimation. ${ }^{56}{ }^{d}$ Reaction enthalpy calculated using condensed phase standard enthalpy of formation data. Solid phase enthalpies of formation were used for amides 5.7b and 5.105. Liquid phase enthalpies of formation were used for other compounds. ${ }^{56 e}$ Reaction enthalpy calculated from enthalpies of reaction and solution. ${ }^{57 f}$ Reaction free energy derived from the equilibrium constant of ester aminolysis in methanol. ${ }^{57}{ }^{g}$ Energies are calculated with M06/6$311+\mathrm{G}(\mathrm{d}, \mathrm{p}) / \mathrm{SMD}($ toluene $) / / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d}) .{ }^{h}$ All energies are in $\mathrm{kcal} / \mathrm{mol}$.

Figure 5.5. Substitution Effects on Equilibrium of Amide Esterification

Figure 5.5 shows how substituents effect the equilibrium of amide esterification. We performed DFT calculations on the reaction enthalpies and free energies of the esterification of four amides, for which the experimental enthalpy of formation data are available. The enthalpies of reaction are also calculated using experimental enthalpy of formation data in the gas phase
$\left(\Delta_{\mathrm{r}} H(\right.$ gas $\left.)\right)$ and in the condensed phase $\left(\Delta_{\mathrm{r}} H\right.$ (cond.)). ${ }^{56}$ Interestingly, the esterification reaction is significantly more endothermic if condensed phase enthalpy of formation data were used. One of the major factors that contribute to this deviation is the greater intermolecular stabilizing forces in neat methanol liquid. The equilibrium of reaction (b) in methanol has been investigated by Guthrie et al. ${ }^{57}$ The standard free energy of reaction derived from equilibrium constant $\left(\Delta_{\mathrm{r}} G(\right.$ methanol $)$) and the standard enthalpy of reaction in methanol solution derived from enthalpies of solution data both indicate the amide esterification is less endothermic than the prediction by $\Delta_{\mathrm{r}} H$ (cond.). Based on these considerations, we postulate that the gas phase thermodynamic data $\left(\Delta_{\mathrm{r}} H(\right.$ gas $\left.)\right)$ would better represent the experimental conditions with the nonpolar toluene solvent. Unfortunately, the gas phase enthalpies of formation for amides $\mathbf{5 . 1 0 0}$ and 5.105 are not available, and were derived from liquid and solid phase enthalpies of formation and enthalpies of vaporization and sublimation, respectively. Thus, larger experimental errors are expected for $\Delta_{\mathrm{r}} H$ (gas) of reactions (a) and (d).

The DFT calculations with the SMD solvation model in toluene (1.0 M, 298 K) predicted very close reaction enthalpies compared to $\Delta_{r} H$ (gas) for reactions (b) and (c). Larger deviations from $\Delta_{\mathrm{r}} H$ (gas) were obtained for (a) and (d), which may be attributed to the greater experimental error as described above. Thus, the DFT predicted enthalpies of reactions ($\Delta_{\mathrm{r}} H($ calc $)$) are used to analyze the substituent effects. Phenyl substitution at the carbonyl and N position significantly favors the esterification (a vs. b and c vs. d), while the esterification of N -methylacetamide is much less favorable than that of N, N-dimethylacetamide. This further confirms the expectation that mostly the reverse reaction (i.e. amidation) should be favorable, but the judicious use of varied substrates can perturb the equilibrium.

5.7.4.7 Energies, Enthalpies, and Free Energy of the Calculated Structures

Table 5.7. Energies, enthalpies, and free energies of the structures calculated at the M06/SDD,

$$
6-311+\mathrm{G}(\mathrm{~d}, \mathrm{p})\left(\mathrm{SMD}^{\text {toluene }}\right) / / \mathrm{B} 3 \mathrm{LYP} / \text { LANL2DZ,6-31G(d) }
$$

Structures	ZPE	DE	DH	DG	E	H	G	Imaginary	DDG
MeOH	0.051473	0.054761	0.055705	0.028756	-115.691065	-115.63536	-115.662309	-	-
5.4a	0.130353	0.135268	0.136212	0.102291	-212.479801	-212.343589	-212.377510	-	-
5.4b	0.093028	0.097390	0.098334	0.067601	-135.098988	-135.000654	-135.031387	-	-
5.4c	0.135967	0.141254	0.142199	0.107525	-287.686445	-287.544246	-287.578920	-	-
5.4d	0.097148	0.102641	0.103585	0.069012	-210.253121	-210.149536	-210.184109	-	-
5.4 e	0.064450	0.067831	0.068775	0.041555	-95.816309	-95.747534	-95.774754	-	-
5.4 f	0.117436	0.123214	0.124158	0.088289	-287.465710	-287.341552	-287.377421	-	-
5.4 g	0.145946	0.153153	0.154097	0.114653	-326.747411	-326.593314	-326.632758	-	-
5.7a	0.221898	0.232888	0.233832	0.184277	-556.741196	-556.507364	-556.556919	-	-
5.7b	0.184539	0.195044	0.195988	0.148064	-479.354994	-479.159006	-479.206930	-	-
5.7c	0.227243	0.238874	0.239819	0.188374	-631.941051	-631.701232	-631.752677	-	-
5.7d	0.188279	0.199798	0.200742	0.150388	-554.500325	-554.299583	-554.349937	-	-
5.7 e	0.156359	0.165575	0.166519	0.121160	-440.076464	-439.909945	-439.955304	-	-
5.7f	0.209470	0.221355	0.222299	0.169869	-631.715959	-631.493660	-631.546090	-	-
5.7 g	0.237383	0.250756	0.2517	0.195805	-670.987803	-670.736103	-670.791998	-	-
5.7a_TS	0.817159	0.862147	0.863091	0.73669	-1888.379615	-1887.516524	-1887.642925	-221.285	36.8
5.7b_TS	0.779705	0.824113	0.825057	0.700324	-1810.994261	-1810.169204	-1810.293937	-243.236	36.2
5.7c_TS	0.822386	0.868066	0.869011	0.741075	-1963.584228	-1962.715217	-1962.843153	-192.983	34.0
5.7d_TS	0.78317	0.828976	0.82992	0.701265	-1886.145139	-1885.315219	-1885.443874	-144.322	31.9
5.7e_TS	0.751675	0.79476	0.795704	0.673483	-1771.711376	-1770.915672	-1771.037893	-265.940	39.0
5.7f_TS	0.805092	0.850906	0.85185	0.722942	-1963.364955	-1962.513105	-1962.642013	-234.989	30.6
5.7g_TS (5.11)	0.832519	0.880023	0.880968	0.749155	-2002.644449	-2001.763481	-2001.895294	-226.879	26.0
5.8a	0.144145	0.152933	0.153878	0.109776	-459.947621	-459.793743	-459.837845	-	-
5.9	1.194703	1.259623	1.260567	1.092339	-2492.357024	-2491.096457	-2491.264685	-	0.0
5.10	0.834665	0.882315	0.883259	0.750844	-2002.668552	-2001.785293	-2001.917708	-	12.0
5.11	0.832519	0.880023	0.880968	0.749155	-2002.644449	-2001.763481	-2001.895294	-226.879	26.0
5.12	0.833357	0.881423	0.882367	0.749078	-2002.661012	-2001.778645	-2001.911934	-	15.6
5.13	0.887528	0.939803	0.940747	0.797540	-2118.365280	-2117.424533	-2117.567740	-	19.6
5.14	0.884746	0.935623	0.936567	0.799931	-2118.359517	-2117.422950	-2117.559586	-880.974	24.8
5.15	0.890480	0.941197	0.942141	0.806427	-2118.370107	-2117.427966	-2117.563680	-	22.2
5.16	0.740176	0.783680	0.784625	0.661525	-1791.602890	-1790.818265	-1790.941365	-	15.7
5.17	0.740041	0.782667	0.783611	0.662388	-1791.591727	-1790.808116	-1790.929339	-178.698	23.2
5.18	0.741023	0.784452	0.785396	0.661905	-1791.625676	-1790.840280	-1790.963771	-	1.6
5.88	0.831324	0.878890	0.879834	0.749575	-2002.640735	-2001.760901	-2001.891160	24.100	28.6

$\mathbf{5 . 8 9}$	0.738576	0.781652	0.782596	0.660871	-1791.588769	-1790.806173	-1790.927898	-141.606	$\mathbf{2 4 . 1}$
$\mathbf{5 . 9 0}$	0.832584	0.880133	0.881077	0.747983	-2000.935468	-2000.934524	-2001.067618	-285.50	$\mathbf{3 5 . 3}$
$\mathbf{5 . 9 2}$	0.780187	0.824315	0.825259	0.702244	-1810.187123	-1810.186179	-1810.309194	-262.54	$\mathbf{3 1 . 8}$
$\mathbf{5 . 9 4}$	0.726324	0.767748	0.768692	0.651647	-1617.596856	-1617.595911	-1617.712957	-261.49	$\mathbf{3 6 . 7}$
$\mathbf{5 . 9 5}$	0.283512	0.300766	0.30171	0.237711	-785.774018	-785.472308	-785.536307	-	-
$\mathbf{5 . 9 6}$	0.192446	0.203738	0.204682	0.15551	-441.544868	-441.340186	-441.389358	-	-
$\mathbf{5 . 9 7}$	0.878983	0.930354	0.931298	0.791429	-2117.431420	-2116.500122	-2116.639991	-127.940	$\mathbf{2 9 . 0}$
$\mathbf{5 . 9 8}$	0.180461	0.191201	0.192146	0.144843	-461.411697	-461.219551	-461.266854	-	-
$\mathbf{5 . 9 9}$	0.879394	0.930259	0.931203	0.793358	-2117.420778	-2116.489575	-2116.627420	-181.425	$\mathbf{3 6 . 9}$

5.7.4.8 Cartesian Coordinates for the Optimized Structures.

Cartesian coordinates for the optimized structures have been previously reported. ${ }^{58}$

5.8 Spectra Relevant to Chapter Five:

Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C-N Bonds

Liana Hie, Noah F. Fine Nathel, Tejas K. Shah, Emma L. Baker, Xin Hong, Yun-Fang Yang, Peng Liu, K. N. Houk \& Neil K. Garg Nature 2015, 524, 79-83.

Figure A5.7. Infrared spectrum of compound 5.31

Figure A5.8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 1}$

Figure A5.10. Infrared spectrum of compound $\mathbf{5 . 3 3}$

Figure A5.11. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 3}$

Figure A5.13. Infrared spectrum of compound $\mathbf{5 . 3 5}$

Figure A5.14. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 5}$

Figure A5.16. Infrared spectrum of compound 5.37

Figure A5.17. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) of compound $\mathbf{5 . 3 7}$

Figure A5.18. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5.39

Figure A5.19. Infrared spectrum of compound 5.39

Figure A5.20. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 3 9}$

092'L
เEG'L
\&\&G'L
StG ${ }^{\circ}$
$\angle \nabla G^{\circ} \angle$
199'L
七9G'L
6LG ${ }^{\circ}$
289 ${ }^{\circ}$
969 ${ }^{\circ}$
869 ${ }^{\circ}$
$609^{\circ} \mathrm{L}$
219 ${ }^{\circ}$
8L8 ${ }^{\circ}$
$968{ }^{\circ}$
096 ${ }^{\circ}$
LG6.L
$996{ }^{\circ}$
L96 ${ }^{\circ}$
ャG0.8
890'8
2L0'8
GL0'8
819 8

Figure A5.28. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 5 1}$

Figure A5.30. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 5 4}$

6 6ドリ
6どレ
9カナート
とSもเ
6St••
99が・

$98 \mathrm{t}^{\circ}$－
$6 \angle 9^{\circ}$－
989°
$16 G^{\circ}$
E6G
E6G＇
$869^{\circ} 1$

G09． | CNArrent | |
| :--- | :---: |
| NAME | narameters |
| EXPNO | nfn－88a |
| PROCNO | 1 |
| 1 | |

$\begin{array}{ll} & \\ \text { F2－Acquisition Parameters } \\ \text { Date＿} \quad 20140918 \\ \text { Time } & 16.09 \\ \text { INSTRUM } & \text { drx500 } \\ \text { PROBHD } & 5 \mathrm{~mm} \text { bb－Z Z800 } \\ \text { PULPROG } & \text { zg30 } \\ \text { TD } & 65536\end{array}$

$1+9^{\circ}$
E8L
$68 L^{\circ}$ L
$68 \mathrm{~L}^{\circ} \cdot$
208．
$608 \cdot$
S18．
$986 \cdot 1$
$8+6.1$
ES6．1
$996 \cdot 1$
910.9
920
เモロ
ZSO－G
092＇L

七とがL
9カワ
6ロt
ESt
LZS＇

Figure A5.37. Infrared spectrum of compound $\mathbf{5 . 7 0}$

Figure A5.38. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5.70

681° 己
ع0でて
9トでて
8してこ
SE6
986 乙
ャ96．
996
マ8と
ロレー゙ OEO 0°
ટEO 2
$7 E 0^{\circ} \angle$
$\angle O 1^{\circ} \angle$
2012
$601^{\circ} \mathrm{L}$
して1． とてよし
七てじム
$98 L^{\circ} \mathrm{L}$
8\＆ド
ع81．L
$981^{\circ} \angle$
$861^{\circ} \angle$
00でL
て0でし
ャレでし
9しでし
$89 \varepsilon^{\circ} \angle$
$09 \varepsilon^{\circ} \angle$
198＇L
$\nabla \angle \varepsilon^{\circ} \angle$
$9 \angle \varepsilon^{\circ} \angle$
8しど
0とガレ
Sカガし
8Sガし
GカG．L
$8 ヵ G^{\circ} \angle$
8 B＇$^{\circ}$ L

OGG
Z9G＇L

LS＇\angle
$\angle 19^{\circ} \angle$
619°
عと9 9°
SE9＊
0ヤ0．8
OャO．8

GGO． 8
9 SO 8
LS0＇8
て

Figure A5.43. Infrared spectrum of compound $\mathbf{5 . 7 6}$

Figure A5.44. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 6}$

Figure A5.46. Infrared spectrum of compound $\mathbf{5 . 7 8}$

Figure A5.47. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 7 8}$

$061^{\circ} 0$
S98．0
$\downarrow \angle 6.0$
$\angle 86^{\circ} 0$
098．－
$\varepsilon \angle \varepsilon^{\prime} \downarrow$
乙8ะ＇
$96 \varepsilon^{\prime} \vdash$
LSD．1
09ガ L9t

Figure A5．48．${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound $\mathbf{5 . 8 0}$

Figure A5.49. Infrared spectrum of compound $\mathbf{5 . 8 0}$

Figure A5.50. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8 0}$

Figure A5.52. Infrared spectrum of compound 5.19

Figure A5.53. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 1 9}$

Figure A5.55. Infrared spectrum of compound 5.22

Figure A5.56. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound $\mathbf{5 . 2 2}$

Figure A5.59. Infrared spectrum of compound $\mathbf{5 . 8 5}$

Figure A5.60. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 8 5}$

OSガレ
9Sガเ
ZZ9．1
GE9．1
LD9．1－
GL9．1
992：
$99 \angle!$
$6 L L \cdot$
$6 L L^{\circ} 1$
$768 \cdot$
$906^{\circ} 1$
$816^{\circ} \downarrow$
6Z6．1
096．1

ャレて・を
てLて・と
$8 \angle Z \varepsilon$
$\varepsilon \varsigma \varepsilon^{\circ} \varepsilon$
عGE＇
$19 \varepsilon^{\circ} \varepsilon$
$99 \varepsilon^{\circ} \varepsilon$
$99 \varepsilon^{\circ}$ \＆
Oカカ・を
Sガと
EIG＇ε
$0 \varepsilon \mathcal{G}^{\circ} \varepsilon$
カヤG•غ

$8 G G^{\circ} \varepsilon$
G9G

G9G＇ε

とLL・カ
18ドカ
68 ドカ
$681^{\circ} \mathrm{t}$
$9 \angle 0 \%$
$960^{\circ} \mathrm{L}$
$201 \angle$
$61+\angle$
GIL
$\angle 91^{\circ} \angle$
ع81．
$8 \mathrm{H}^{\circ}$
てOZ＇
เてZ＇L
GEて＇L
Lとて＇\angle
0Gて＇L
ELZ＇L
98て＇し
L6て＇ 1
$00 E^{\circ} L$
OLE＇L

Figure A5.62. Infrared spectrum of compound 5.23

Figure A5.63. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 3}$

Figure A5.65. Infrared spectrum of compound $\mathbf{5 . 2 4}$

Figure A5.66. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 4}$

Figure A5.67. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 6}$

Figure A5.68. Infrared spectrum of compound 5.26

$\begin{array}{llllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ 10 & p p m\end{array}$

Figure A5.69. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 6}$

Figure A5.71. Infrared spectrum of compound 5.25

Figure A5.72. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 . 2 5}$

5.9 Notes and References

${ }^{1}$ Greenberg, A., Breneman, C. M., Liebman, J. F., Eds. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science; Wiley-Interscience, 2003.

2 Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl Acad. Sci. USA 1951, 37, 205-211.
${ }^{3}$ Brix, K., Stöcker, W., Eds. Proteases: Structure and Function; Springer, 2013.
4 Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley, 1995.
5 Hudlicky, T.; Reed, J. W. The Way of Synthesis: Evolution of Design and Methods for Natural Products; Wiley, 2007.
${ }^{6}$ Van Vranken, D.L.; Weiss, G. A. Introduction to Bioorganic Chemistry and Chemical Biology; Garland Science, 2013.

7 Spletstoser, J. T.; White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2007, 129, 3408-3419.

8 Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.
9 Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello, P. Molecules 2013, 18, 1188-1213.
${ }^{10}$ Tatamidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597-3599.
${ }^{11}$ Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc. 2006, 128, 16406-16409.
${ }^{12}$ Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 1000310008.
${ }^{13}$ Keck, G. E.; McLaws, M. D.; Wager, T. T. Tetrahedron 2000, 56, 9875-9883.
${ }^{14}$ Nishimoto, S.-i.; Izukawa, T.; Kagiya, T. Bull. Chem. Soc. Jpn 1982, 55, 1484-1488.
${ }^{15}$ White, E. H. J. Am. Chem. Soc. 1955, 77, 6011-6014.
${ }^{16}$ Guthrie, J. P.; Pike, D. C.; Lee, Y.-C. Can. J. Chem. 1992, 70, 1671-1683.
${ }^{17}$ Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299-309.
${ }^{18}$ Mesganaw, T.; Garg, N. K. Org. Process Res. Dev. 2013, 17, 29-39.
${ }^{19}$ Rosen, B. M. et al. Chem. Rev. 2011, 111, 1346-1416.
Blakey, S. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046-6047.
${ }^{21}$ Zhang, X.-Q.; Wang, Z.-X. Org. Biomol. Chem. 2014, 12, 1448-1453.
Tobisu, M.; Nakamura, K.; Chatani, N. J. Am. Chem. Soc. 2014, 136, 5587-5590.
Shiba, T., Kurahashi, T. \& Matsubara, S. J. Am. Chem. Soc. 2013, 135, 13636-13639.
Quasdorf, K. W. et al. J. Am. Chem. Soc. 2011, 133, 6352-6363.
Mesganaw, T. et al. Chem. Sci. 2011, 2, 1766-1771.
Hong, X.; Liang, Y.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 2017-2025.
Lu, Q.; Yu, H.; Fu, Y. J. Am. Chem. Soc. 2014, 136, 8252-8260.
Xu, H. et al. J. Am. Chem. Soc. 2014, 136, 14834-14844.
Yamamoto, T.; Ishizu, J.; Kohara, T.; Komiya, S.; Yamamoto, A. J. Am. Chem. Soc. 1980, 102, 3758-3764.

Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573-13576.
(a) Rao, Y.; Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131, 12924-12926. (b) Oldenhuis, N. J.; Dong, V. M.; Guan, Az. Tetrahedron 2014, 70, 4213-4218. (c) Friel, D. K.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 9942-9951. (d) Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272-4277. (e) Li, Y.; Jia, F.; Li, Z. Chem. Eur. J. 2013, 19, 82-86. (f) Wang, S.; Wang, J.; Guo, R.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Tetrahedron Lett. 2013, 54, 6233-6236. (h) Baroudi, A.; Alicea, J.; Flack, P.; Kirincich, J.;

Alabugin, I. V. J. Org. Chem. 2011, 76, 1521-1537. (h) Fang, W.; Deng, Q.; Xu, M.; Tu, T. Org. Lett. 2013, 15, 3678-3681. (i) Ganton, M. D.; Kerr. M. A. Org. Lett. 2005, 7, 47774779. (j) Yates, M. H.; Kallman, N. J.; Ley, C. P.; Wei, J. N. Org. Process. Rev. Dev. 2009, 13, 255-262. (k) Oishi, S.; Saito, S. Angew. Chem. Int. Ed. 2012, 51, 5395-5399. (1) Johnson

II, D. C.; Widlanski, T. S. Tetrahedron Lett. 2004, 45, 8483-8487.

Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034-9037.
${ }^{34}$ Tschaen, B. A.; Schmink, J. R.; Molander, G. A. Org. Lett. 2013, 15, 500-503.
${ }^{35}$ Powell, A. B.; Stahl, S. S. Org. Lett. 2013, 15, 5072-5075.
${ }^{36}$ Dohi, S.; Moriyama, K.; Togo, H. Eur. J. Org. Chem. 2013, 34, 7815-7822.
${ }^{37}$ Correa, A.; Leon, T.; Martin, R. J. Am. Chem. Soc. 2014, 136, 1062-1069.
${ }^{38}$ Hirashima, S.-I.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Org. Lett. 2010, 12, 3645-3647.
${ }^{39}$ Harrar, K.; Reiser, O. Chem. Commun. 2013, 48, 3457-3459.
${ }^{40}$ Heller, S. T.; Sarpong, R. Org. Lett. 2010, 12, 4572-4575.
${ }^{41}$ Dong, J.; Shi, X.-X.; Yan, J.-J.; Xing, J.; Xhang, Q.; Xiao, S. Eur. J. Org. Chem. 2010, 36, 6987-6992.
${ }^{42}$ Hanato, M.; Furuya, Y.; Shimmura, T.; Moriyama, K.; Kamiya, S.; Maki, T.; Ishihara, K. Org. Lett. 2011, 13, 426-429.
${ }^{44}$ Liu, Z.; Ma, Q.; Liu, Y.; Wang, Q. Org. Lett. 2014, 16, 236-239.
${ }^{46}$ Ueda, T.; Konishi, H.; Manabe, K. Org. Lett. 2013, 15, 5370-5373.
${ }^{47}$ Holan, M.; Jahn, U. Org. Lett. 2014, 16, 58-61.
${ }^{48}$ Wang, J.; Yin, X.; Wu, J.; Wu, D.; Pan, Y. Tetrahedron 2013, 69, 10463-10469.
${ }^{49}$ (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 1623-1627.

50
(a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310. (b) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029-1031. (c) Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111-114.
${ }^{51}$ (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1971, 54, 2257-2261. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213-222.
${ }^{52}$ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
3 (a) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866-872. (b) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chem. Acc. 1990, 77, 123-141.
${ }^{54}$ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.
${ }^{55}$ Legault, C. Y. CYLView, 1.0b; Université de Sherbrooke, Canada, 2009; http://www.cylview.org.
${ }^{56}$ W.E. Acree, Jr., J.S. Chickos, "Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards
and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved March 27, 2015).
${ }^{57}$ Guthrie, J. P.; Pike, D. C.; Lee, Y.-C. Can. J. Chem. 1992, 70, 1671-1683.
${ }^{58}$ See the Supporting Information in: Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Xin Hong, Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79-83.

[^0]: Scheme 3.1. Syntheses of Silyl Triflates $\mathbf{3 . 1 0}$ and $\mathbf{3 . 1 4}$121

[^1]: ${ }^{a}$ Reaction performed with p-cresol (1.5 equiv) and CsF (3 equiv) at $50{ }^{\circ} \mathrm{C}$.
 ${ }^{b}$ Reactions performed with trapping agent (3 equiv) and CsF (3 equiv) at $23^{\circ} \mathrm{C}$.
 ${ }^{c}$ Reaction performed with benzyl azide (5 equiv) and TBAF (2 equiv) at $23{ }^{\circ} \mathrm{C}$.

[^2]: ${ }^{a}$ Reaction performed with MeCN as the solvent. ${ }^{b}$ Reactions performed with THF as the solvent.

[^3]: $\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0 \mathrm{ppm}$

[^4]: ${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using hexamethylbenzene as an internal standard.

