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ORIGINAL ARTICLE

Which Sleep Health Characteristics Predict All-Cause Mortality in Older Men? 
An Application of Flexible Multivariable Approaches
Meredith L. Wallace, PhD1, Katie Stone, PhD2,3, Stephen F. Smagula, PhD1, Martica H. Hall, PhD1, Burcin Simsek, PhD1, Deborah M. Kado, MD, MS4, Susan 
Redline, MD, MPH5, Tien N. Vo, MS6,  
Daniel J. Buysse, MD1, for the Osteoporotic Fractures in Men (MrOS) Study Research Group

1Department of  Psychiatry, University of  Pittsburgh, Pittsburgh, PA; 2California Pacific Medical Center, Research Institute, San Francisco, CA; 3Department of  Epidemiology and 
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Medicine, Brigham and Women’s Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; 6Division of  Epidemiology and Community Health, 
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Study Objectives:  Sleep is multidimensional, with domains including duration, timing, continuity, regularity, rhythmicity, quality, and sleepiness/alertness. 
Individual sleep characteristics representing these domains are known to predict health outcomes. However, most studies consider sleep characteristics in 
isolation, resulting in an incomplete understanding of  which sleep characteristics are the strongest predictors of  health outcomes. We applied three multivariable 
approaches to robustly determine which sleep characteristics increase mortality risk in the osteoporotic fractures in men sleep study.
Methods:  In total, 2,887 men (mean 76.3 years) completed relevant assessments and were followed for up to 11 years. One actigraphy or self-reported sleep 
characteristic was selected to represent each of  seven sleep domains. Multivariable Cox models, survival trees, and random survival forests were applied to 
determine which sleep characteristics increase mortality risk.
Results:  Rhythmicity (actigraphy pseudo-F statistic) and continuity (actigraphy minutes awake after sleep onset) were the most robust sleep predictors across 
models. In a multivariable Cox model, lower rhythmicity (hazard ratio, HR [95%CI] =1.12 [1.04, 1.22]) and lower continuity (1.16 [1.08, 1.24]) were the strongest 
sleep predictors. In the random survival forest, rhythmicity and continuity were the most important individual sleep characteristics (ranked as the sixth and eighth 
most important among 43 possible sleep and non-sleep predictors); moreover, the predictive importance of  all sleep information considered simultaneously 
followed only age, cognition, and cardiovascular disease.
Conclusions:  Research within a multidimensional sleep health framework can jumpstart future research on causal pathways linking sleep and health, new 
interventions that target specific sleep health profiles, and improved sleep screening for adverse health outcomes.

Keywords:  sleep health, circadian rhythm, multivariable analyses, mortality, men, late-life, survival tree, random survival forest.

INTRODUCTION
Measures of sleep duration,1–11 quality,5,12,13 timing,14,15 continu-
ity,16–19 circadian rhythmicity,20,21 regularity,22–24 and daytime sleep-
iness25–27 have been shown to predict important health outcomes. 
Many of these findings are based on models that consider only one 
of these sleep characteristics at a time,7–9,12–14,16–18,21,22 or at most 
two or three of them simultaneously.3,4,20,23–27 The clinical reality, 
however, is that sleep is a multidimensional construct that can be 
characterized across several domains.28,29 Ignoring the multidi-
mensional nature of sleep makes it difficult to organize findings 
across the literature to determine which aspects of sleep are most 
important for predicting health outcomes. Moreover, a combin-
ation of characteristics is more likely to be associated with health 
and behavioral outcomes than any individual characteristic. Thus, 
studies that consider multidimensional sleep health are warranted.

We recently developed a working definition of “sleep health” 
as a “multidimensional pattern of sleep-wakefulness…that 
promotes physical well-being.”29 Although the exact number 
of relevant sleep health dimensions is open to debate, we here 
emphasize seven potential domains: (1) Duration: the total 

amount of sleep obtained per 24 hours; (2) Continuity: the ease of 
falling asleep and returning to sleep; (3) Timing: the placement 
of sleep within the 24-hour day; (4) Sleepiness/Alertness: the 
ability to maintain attentive wakefulness; (5) Quality: the sub-
jective assessment of “good” or “poor” sleep; (6) Regularity: the 
consistency of sleep timing; and (7) Rhythmicity: the strength 
of the overall sleep–wake pattern in a 24-hour cycle. Although 
other potential domains could be considered (e.g., sleep depth or 
adaptability), these seven were selected based on prior literature 
indicating their independence from one another as well as their 
potential roles in important health outcomes.29

Because sleep health is relevant for everyone, not just those 
with sleep disorders, research within a multidimensional sleep 
health framework has the potential to inform large-scale pub-
lic health initiatives by improving screening and clinical rec-
ommendations.29–31 It could also inform which specific sleep 
characteristics should be considered in mechanistic studies and 
ultimately lead to the development of targeted sleep treatments 
that may reduce mortality and morbidity. But despite its potential 
impact, few previous studies have utilized a multidimensional 

Statement of Significance
Most studies use individual sleep characteristics to predict health outcomes. However, sleep can be characterized along multiple dimensions such 
as duration, continuity, and rhythmicity. We applied three multivariable modeling approaches in a large sample of  older men to examine which sleep 
characteristics are most important for predicting mortality. Across approaches, lower sleep-wake rhythmicity and lower sleep continuity were the sleep 
characteristics that conferred the strongest risk for mortality among older men. These findings can help us to clarify how sleep affects health, how sleep 
problems should be evaluated, and how sleep treatments might improve health. Ultimately, studying multidimensional sleep could improve public health by 
promoting healthy sleep for the entire population, rather than only those with sleep disorders.
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sleep health framework. One possible reason is that complex, 
nonlinear relationships are likely to exist among sleep charac-
teristics, nonsleep risk factors, and health outcomes. Traditional 
multivariable regression has numerous advantages, including 
the ability to quantify the added risk of having a more extreme 
level of one sleep characteristic while adjusting for other sleep 
and nonsleep risk factors. However, a weakness of multivariable 
regression is that it is not conducive to modeling complex, non-
linear associations such as those that may be observed within a 
multidimensional sleep health framework.

Two flexible, nonlinear multivariable modeling approaches 
that could facilitate research within a multidimensional sleep 
health framework are conditional inference tree-structured anal-
yses32 and random forests.33,34 Conditional inference tree-struc-
tured analysis is a data-driven approach that recursively divides 
the sample into covariate-defined subsamples with similar out-
comes. Given a set of potential predictors, the algorithm first 
identifies the single predictor with the strongest association 
with the outcome and then identifies the binary split-point on 
the selected predictor that best divides the sample into two sub-
samples with different outcomes. This splitting procedure con-
tinues iteratively on each successive subsample until there are 
no remaining significant predictors or the subsample size is too 
small. A random forest is comprised of hundreds of trees fit to 
bootstrap samples. The trees in the “forest” are averaged to get 
predictions for new individuals. A variable importance (VIMP) 
index34 can be extracted from the random forest and used to 
rank each variable (or a set of variables) based on its relative 
predictive importance. Multivariable regression, tree-struc-
tured analysis, and random forests are three complementary 

approaches that can provide a comprehensive assessment of the 
associations between multivariable sleep and health outcomes.

The primary goal of this manuscript is to use data from the 
Outcome of Sleep Disorders in Older Men (MrOS) Sleep study,35 
a large multisite cohort study of older men, to robustly determine 
which sleep characteristics predict time to all-cause mortality in 
older men. Given the potentially complex associations among sleep 
risk factors, nonsleep risk factors, and health outcomes, we accom-
plish this goal by comparing findings from three complimentary 
multivariable modeling approaches for survival endpoints: Cox re-
gression, tree-structured survival analysis, and a random survival 
forest. Moreover, we expect that the demonstration of these three 
multivariable approaches will promote the study of multidimen-
sional sleep health with other samples and outcomes.

METHODS

Participants
The full MrOS cohort consists of 5,994 community dwelling, 
ambulatory men aged 65 years and older, recruited at six clin-
ical centers across the United States between March 2000 and 
April 2002. Inclusion criteria were as follows: (1) ability to 
walk unassisted, (2) absence of bilateral hip replacements, (3) 
ability to provide self-reported data, (4) absence of a medical 
condition resulting in imminent death, and (5) ability to under-
stand and provide informed consent. All participants provided 
written informed consent. The initial wave of the MrOS Sleep 
study was completed between December 2003 and March 2005. 
It recruited 3,125 participants from the full MrOS cohort for 
a comprehensive sleep assessment. Men were screened and 

Figure 1—Derivation of  analytic sample.
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generally excluded for nightly use of mechanical devices dur-
ing sleep, mouthpiece for snoring or sleep apnea, or oxygen 
therapy. Full details of the sample are published elsewhere.35–37

Our analytic sample consists of 2,887 men who took part in 
the sleep study and for whom all relevant sleep and covariate 
data were observed (Figure 1). The mean (SD) age of the ana-
lytic sample at the baseline sleep visit was 76.3 (5.5) years, rang-
ing from 67 to 96. The sample primarily consists of Caucasian 
men (89.9%, N = 2,595) and most have at least some college 
education (78.9%, N = 2,277).

MrOS Sleep Study
In the MrOS Sleep study, sleep characteristics were captured 
through retrospective self-report, actigraphy, daily sleep diary, 
and one night of in-home polysomnography. Our primary 
focus herein is on sleep as captured through retrospective self-
report and actigraphy. Briefly, the Sleepwatch-O (Ambulatory 
Monitoring, Inc., Ardsley, NY) was used to capture actigraphy 
data. Actigraphs are wristwatch-like devices that provide an 
estimate of the sleep-wake cycle via rest-activity patterns. They 
summarize the frequency of motions into epochs of specified 
time duration and store the summary in memory. These data 
are then downloaded and scored to generate various sleep 
characteristics. The actigraphy data used herein were analyzed 
using Action W-2 software with Proportional Integration Mode 
and the University of California, San Diego scoring algorithm.38 
Circadian rhythm variables (e.g., Pseudo-F statistic [PsF]) 
were scored using an extended cosine model.39 Full details of 
these actigraphy methods have been published previously.37,40 
Men wore the actigraphs for a minimum of four consecutive 
24-hour periods. In our analytic sample, each participant had a 
mean (SD) of 5.3 (0.8) nights of sleep data. Additional details 
regarding the inter- and intra-subject variability of the relevant 
actigraphy measures are provided in Supplementary Material.

Outcome
Although numerous health outcomes could be studied, we 
selected time to all-cause mortality (confirmed by centralized 
review of death certificates) as an unequivocal “hard” outcome 
of importance to patients and society. In our analytic sample, 
36.7% (N = 1,060) of participants died during follow-up, 3.9% 
(N = 112) terminated the study, and 59.4% (N = 1,715) were still 
alive and being followed. As fewer than 50% of individuals died 
during follow-up, the median (50th percentile) years to all-cause 
mortality was not observed. The 25th percentile (95% CI) years 
to all-cause mortality was 8.0 (7.7, 8.3), with a maximum of 
11.2 years of follow-up.

Sleep Characteristics and Domains
Our primary aim was to robustly determine which sleep health 
characteristics predict time to all-cause mortality by comparing 
findings across three complementary multivariable approaches: 
Cox regression, tree-structured survival analysis, and random 
survival forest. In Cox regression, inclusion of variables that 
are too highly correlated (i.e., multicollinearity) can lead to 
unstable estimates. Therefore, we used clinical and scientific 
justification to select one sleep characteristic to represent each 
of the seven proposed domains (duration, continuity, tim-
ing, sleepiness/alertness, quality, regularity, and rhythmicity) 

and then examined correlations to ensure that the selected 
characteristics were not too highly correlated. Although ran-
dom survival forests and tree-structured survival analysis can 
accommodate highly correlated variables, our strategy was to 
use the same clinically meaningful subset of variables across all 
three approaches. This strategy facilitates a direct comparison 
of findings across approaches and enhances our ability to obtain 
meaningful results. Finally, when making our selections, we 
prioritized measures that were objective, stable, representative 
of an individual’s usual sleep pattern, and clinically relevant. 
To this end, we gave preference to estimates from actigraphy 
(based on multiple nights of sleep in an individual’s usual envir-
onment) over polysomnography (based on a single night of 
sleep in a lab) or self-report measures when possible.

We selected actigraphy-assessed average total sleep time 
(TST; minutes of actual asleep at night) to represent duration, 
actigraphy-assessed wake after sleep onset (WASO; the num-
ber of minutes an individual is awake after falling asleep) to 
represent continuity, and actigraphy-assessed mean sleep mid-
point (midpoint of bed and wake time) to represent timing. We 
selected the Epworth Sleepiness Scale41 (ESS) to represent 
sleepiness/alertness. The ESS is a self-report scale including 
eight questions, with total scores ranging from 0 (no sleepi-
ness) to 24 (severe sleepiness). We selected the Pittsburgh Sleep 
Quality Index (PSQI) sleep quality item to represent the quality 
domain.42 The PSQI sleep quality item asks “During the past 
month, how would you rate your sleep quality overall?” with 
possible responses: “Very Good” (0), “Fairly Good” (1), “Fairly 
Bad” (2), and “Very Bad” (3). This single item was selected 
over the total PSQI score because the total PSQI score also 
incorporates information about other domains of sleep (e.g., 
sleep timing and continuity).

We selected the standard deviation of wake time (SD wake) 
to represent regularity. This measure was selected over other 
possible measures of regularity, such as the standard deviation 
of sleep midpoint, because it is less resistant to change and spe-
cifically relates to the time that people are exposed to morn-
ing light, which is a strong circadian zeitgeber. The PsF was 
selected to represent circadian rhythmicity. PsF captures the 
extent to which an individual’s sleep-wake activity conforms 
to an extended cosine model,39 with higher values indicating 
greater conformity to the cosine shape. An individual could 
have a strong rhythm that takes a different shape; however, a 
uniphasic circadian rhythm such as that captured by the PsF 
is the dominant rhythm in most adults. Furthermore, PsF has 
previously been shown to be related to important health out-
comes.21,43,44 Although SD wake and PsF are similar in some 
regards, they do address conceptually different entities. That 
is, SD wake reflects the regularity surrounding wake timing 
specifically, whereas PsF captures the strength of the overall 
rhythmicity of the rest–activity (or sleep–wake) cycle. The rel-
atively small correlation among these two measures (Spearman 
r = −0.21) further solidified our consideration of regularity and 
rhythmicity as separate domains.

Motivated by prior sleep health research,45 we were also inter-
ested in the predictive ability of a clinically meaningful composite 
measure defined as the number of “extreme” sleep characteris-
tics. To compute this composite measure, we used existing clin-
ical and scientific guidelines to identify values of “extreme” sleep 
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characteristics wherever possible. In the absence of such guide-
lines, we empirically identified the most extreme third of the dis-
tribution. We defined early sleep midpoint as ≤2:00 am, medium 
sleep midpoint as 2:01 am–4:00 am, and late sleep midpoint as 
>4:00 am. Extreme sleep midpoint was defined as either early or 
late sleep midpoint.46 Based on the published recommendations,41 
extreme ESS was defined as a total score of >10. Extreme sleep 
quality was indicated as “Very Bad” or “Fairly Bad” responses on 
the PSQI sleep quality item. Extreme WASO, PsF, and SD wake 
were defined as the most extreme third of the distribution (high 
WASO, low PsF, and high SD wake). Because both short and long 
durations may be related to poor health outcomes,47 extreme TST 
was defined as either the lowest sixth or highest sixth of the dis-
tribution, resulting in one-third of the distribution having extreme 
TST. Further details of selected sleep characteristics and specific 
cut points are provided in Table 1.

Hereafter, we refer to the selected characteristics by their 
respective domain names to enhance readability. We provide 
sleep characteristic names in parentheses when useful for clari-
fication or interpretation of model results.

Nonsleep Risk Factors
Numerous nonsleep risk factors for mortality were captured in 
the MrOS study and considered in our analyses. Demographic 
characteristics were age, clinic site, and years of education. 
Health characteristics were self-reported health status (good or 
poor), physical activity (Physical Activity Scale for the Elderly; 

PASE48), depressed mood (Geriatric Depression Scale49), smoking 
status (current, past, or never), caffeine intake (mg per day), alco-
hol use (>1 drink per week), cognitive function (Teng Modified 
Mini-Mental State (3MS) Exam50), and body mass index (BMI; 
kg/m2). Self-reported histories of the following medical condi-
tions were considered: arthritis (osteoarthritis or rheumatoid 
arthritis), cardiovascular disease (CVD), stroke, diabetes melli-
tus, chronic obstructive pulmonary disease (COPD), and hyper-
tension (HTN). Finally, use of the following medications in the 
past 30 days was considered: antidepressants, benzodiazepines, 
and other sedatives or hypnotics, nonsteroidal anti-inflammatory 
drugs (NSAIDs), and corticosteroids. All medications recorded 
by the clinics were entered into an electronic medications inven-
tory (San Francisco Coordinating Center, San Francisco, CA). 
Each medication was matched to its ingredient(s) based on the 
Iowa Drug Information Service (IDIS) Drug Vocabulary (College 
of Pharmacy, University of Iowa, Iowa City, IA) and coded based 
on the published recommendations.51 Further descriptions of 
these nonsleep predictors and their associations with all-cause 
mortality in MrOS are provided in Supplementary Material.

Data Analysis

Cox Proportional Hazards Regression
We fit Cox models with time to all-cause mortality as the 
outcome, utilizing univariable, multivariable, and composite 
approaches to modeling sleep characteristics. In univariable 
approaches (fit primarily for comparison purposes), we modeled 

Table 1—Descriptive Statistics for Continuous and Categorical Sleep Characteristics.

Sleep domain Representative sleep characteristic Median (1st quartile, 3rd 
quartile) for continuous  
sleep characteristic

Categorical sleep 
characteristic definition

% (N) for Categorical 
Sleep Characteristic

Duration Actigraphy average mean total sleep time 
(TST) in minutes

391.00 (345.20, 432.20) ≤ 319.6 (short)
319.6–450.3 (medium)
> 450.3a (long)

16.70 (482)
66.68 (1925)
16.63 (480)

Continuity Actigraphy average mean wake after sleep 
onset (WASO) in minutes

68.67 (45.60, 101.40) < 88
≥ 88a

66.47 (1919)
33.52 (968)

Timing Actigraphy average mean sleep midpoint 03:01 am (02:27 am, 03:38 am) ≤ 02:00a (early)
02:01–04:00 (middle)
>04:00a (late)

12.23 (353)
71.87 (2075)
15.90 (459)

Sleepiness/
alertness

Epworth Sleepiness Scale (ESS) 6 (3, 8) ≤10
>10a

87.18 (2517)
12.82 (370)

Quality Pittsburgh Sleep Quality Index (PQSI) 
 sleep quality itemb

1 (0, 1) ≤ 1
> 1a

84.21 (2431)
15.79 (456)

Rhythmicity Actigraphy pseudo-F statistics (PsF) 967.44 (700.45, 1319.43) ≤ 785.60a

> 785.60
66.68 (1925)
33.32 (962)

Regularity Standard deviation of  actigraphy wake time 
in hours (SD wake)

0.57 (0.37, 0.87) < 0.75
≥0.75a

65.74 (1898)
34.26 (989)

Composite Number of  extreme sleep characteristics 2 (1, 3) 0
1
2
3
≥4

15.48 (447)
28.65 (827)
25.46 (735)
16.56 (478)
13.86 (400)

a“Extreme” sleep category.
bPSQI Sleep quality Index sleep quality item coding: 0 = “Very Good,” 1 = “Somewhat Good,” 2 = “Somewhat Bad,” 3 = “Very Bad.”
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each sleep characteristic in a separate model. In multivariable 
approaches, we included all seven sleep characteristics simul-
taneously in the same model. In composite approaches, we 
included the number of extreme sleep characteristics, consid-
ered continuously in one model and categorically (0, 1, 2, 3, ≥4 
extreme characteristics) in another. For univariable, multivaria-
ble, and composite approaches, we first fit base models adjusted 
for only age and clinic site, and then fit full models that were 
adjusted for all nonsleep risk factors (demographics, clinical 
measures, lifestyle factors, medications, and medical history). 
Given previous reports of U-shaped or nonlinear associations 
for timing and duration, quadratic forms of these variables were 
considered; however, quadratic effects that were nonsignificant 
in a model were removed. To enhance interpretability of HRs, 
continuous sleep and nonsleep measures were standardized.52

Tree-Structured Survival Models
A conditional inference tree model empirically identifies the 
variable and cut-point that best divide the sample into two sub-
samples with different mortality risks. This splitting process 
continues iteratively on each successive subsample, resulting in 
a final set of covariate-defined subsamples with different risks 
for mortality. We first fit a base tree model that considered only 
the seven continuous sleep characteristics and the number of 
extreme sleep characteristics. We then fit a second tree model 
that considered the full set of sleep and nonsleep risk factors. To 
maximize stability and interpretability, we required a minimum 
of N = 289 (10% of the sample) in each subsample, allowed a 
maximum of three successive splits, and required a significance 
of p < .05 after a Bonferroni correction for multiple comparisons.

Random Survival Forest
A random survival forest is comprised of a series of survival trees 
models fit to bootstrap samples. VIMP statistics can be extracted 
and used to rank the variables (or sets of variables) from most to 
least predictive in context of one another. We fit a random sur-
vival forest including the seven continuous sleep characteristics, 
the number of extreme sleep characteristics, and all nonsleep 
risk factors. After fitting this model, we calculated the VIMP for 
each individual sleep and nonsleep predictor, the joint VIMP for 
the seven sleep characteristics considered simultaneously (“7 
Sleep”), and the joint VIMP for the seven sleep characteristics 
plus the number of extreme sleep characteristics considered 
simultaneously (“7 Sleep + # Extreme”). To provide a clinically 
meaningful frame of reference for the VIMP, we calculated the 
percentage of each predictor’s VIMP relative to that of the strong-
est and most clinically meaningful predictor, age [i.e., (VIMP of 
predictor)/(VIMP of age) × 100]. Finally, we assessed the dir-
ection and magnitude of the effects of the most highly ranked 
predictors in the forest (those with VIMPs that were at least 5% 
of the VIMP of age) by using them to predict time to all-cause 
mortality in a multivariable Cox regression model.

Sensitivity Analyses
To assess the importance of the sleep characteristics above and 
beyond sleep apnea, a prevalent sleep disorder with established 
health risks,53,54 we refit the fully adjusted models controlling 
for the apnea–hypopnea index (AHI) determined by overnight 

in-home polysomnography conducted at the same exam cycle 
as actigraphy.40 This measure was not included in the primary 
analyses because it was missing in 173 (6%) men in our sample. 
To rule out confounding by possible ongoing and unmeasured 
disease processes, we also refit the fully adjusted models after 
excluding 29 (1%) individuals who died during the year imme-
diately following the sleep assessment.

RESULTS
Table 1 describes the distributions of the seven selected sleep 
characteristics and the frequencies of individuals with 0, 1, 2, 
3, and ≥4 extreme sleep characteristics. The sleep characteris-
tics had a median Spearman correlation magnitude of 0.12 (1st 
quartile = 0.09, 3rd quartile = 0.18). The largest correlations 
were observed between continuity and duration (r = −0.45), 
rhythmicity and duration (r = 0.23), and rhythmicity and re-
gularity (r = −0.21). All other correlation magnitudes among 
the sleep characteristics were <0.20. The full set of sleep and 
nonsleep variables had a median Spearman correlation magni-
tude of only 0.04 (1st quartile < 0.001, 3rd quartile = 0.08). See 
Supplementary Material for additional descriptions, including 
(1) the full correlation matrix among sleep characteristics, (2) 
a detailed characterization of the sample based on nonsleep 
demographic, health, and behavioral risk factors, including 
their associations with time to mortality, and (3) types and com-
binations of extreme sleep characteristics in the sample.

Cox Proportional Hazards Regression
Table 2 provides results from Cox models with sleep character-
istics considered continuously. Across all models, lower sleep–
wake rhythmicity (lower PsF) and lower continuity (higher 
WASO) were significantly associated with increased mortality 
risk and had the largest HRs. In the full multivariable model 
(i.e., adjusting for all other sleep and nonsleep risk factors), we 
observed HRs (95% CIs) of 1.12 (1.04, 1.22) per one SD de-
crease in rhythmicity and 1.16 (1.08, 1.24) per one SD decrease 
in continuity. Quadratic effects for timing were also significant 
across all models, indicating that earlier and later timing were 
associated with greater mortality risk.

Linear or quadratic effects for duration were significant in the 
univariable models and the base multivariable model, but not in 
the full multivariable model. Lower regularity (higher SD wake) 
was significantly associated with increased mortality risk in the 
base univariable models but not in any full or multivariable 
model. Sleepiness/alertness was not associated with mortality 
in any of the models. Sleep quality results were unexpected. 
Quality was not significantly associated with mortality in the 
base models. However, in the multivariable models, having 
better sleep quality was significantly associated with increased 
mortality risk (1.08 [1.02, 1.16] in the full multivariable model).

In general, similar inferences were made when sleep character-
istics were considered categorically based on cutoffs in Table 1. 
In the full multivariable model, having extreme rhythmicity 
(1.27 [1.10, 1.46]), extreme continuity (1.33 [1.16, 1.53]), and 
(unexpectedly) nonextreme sleep quality (i.e., “Very Good” or 
“Somewhat Good”) (1.28 [1.08, 1.54]) were each significantly 
associated with increased risk for mortality. Full details of these 
categorical models are provided in Supplementary Material.
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Table 3 provides results from the Cox models for the number of 
extreme sleep characteristics. Treated continuously, having add-
itional extreme sleep characteristics was significantly associated 
with increased mortality (1.10 [1.05, 1.15] in the full model). 
This measure was also significantly associated with time to mor-
tality when treated categorically. Having 3 (1.40 [1.11, 1.77]) or 
≥4 (1.57 [1.23, 2.00]) versus zero extreme sleep characteristics 
were each associated with increased mortality risk.

Tree-Structured Model
The base survival tree model considering age, site, the seven 
sleep characteristics, and the number of extreme sleep charac-
teristics is shown in Figure 2. Only age, sleep continuity, and 
the number of extreme sleep characteristics were empirically 

selected to enter the model. For those aged ≤72, having >1 
extreme sleep characteristic was associated with increased mor-
tality risk (1.68 [1.21, 2.33]). For those aged >72 and ≤79, lower 
continuity (i.e., WASO > 98.6) was associated with increased 
mortality risk (1.74 [1.41, 2.14]). For those aged >79, age 
again splits the tree such that those aged >83 had an even fur-
ther increased risk of mortality (1.79 [1.51, 2.14]). In the full 
survival tree model considering all sleep and nonsleep predic-
tors, only age, physical activity, and cognition were empirically 
selected to enter the model (see Supplementary Material).

Random Survival Forest
Figure 3 shows the VIMP for each predictor as a percent of the 
VIMP for age (0.036) in the random survival forest. Cognition 

Table 2—Cox Proportional Hazards Regression Models for (Standardized) Continuous Sleep Domains Predicting Time to All-Cause Mortality.

Univariable models: each sleep characteristic in a 
separate model

Multivariable models: all sleep characteristics in 
the same model

HR (95% CI) X2 statistic (p-value) HR (95% CI) X2 statistic (p-value)

Base models: Sleep characteristic(s), age, and site

Quality (PSQI quality itema) 1.01 (0.95, 1.07) 0.11 (.738) 0.96 (0.90, 1.02) 1.91 (.167)

Sleepiness/alertness (ESS) 1.04 (0.98, 1.11) 1.79 (.181) 1.01 (0.95, 1.08) 0.14 (.705)

Timing (sleep midpoint) — 12.67 (.002) — 8.13 (.017)b

Linear term 1.04 (0.97, 1.11) 1.18 (.277) 0.99 (0.93, 1.05) 0.14 (.707)

Quadratic termc 1.02 (1.01, 1.04) 11.67 (<.001) 1.03 (1.01, 1.04) 11.75 (<.001)

Duration (TST) — 11.50 (.003) — NA

Linear term 0.95 (0.89, 1.01) 2.68 (.102) 1.10 (1.02, 1.18) 6.47 (.011)

Quadratic termc 1.03 (1.00, 1.07) 4.46 (.035) NA NA

Continuity (WASO) 1.23 (1.16, 1.30) 55.93 (<.001) 1.25 (1.17, 1.34) 44.83 (<.001)

Rhythmicity(PsFd) 0.80 (0.75, 0.86) 36.53 (<.001) 0.83 (0.77, 0.90) 22.21 (<.001)

Regularity (SD wake) 1.12 (1.06, 1.19) 14.12 (<.001) 1.04 (0.97, 1.11) 1.30 (.255)

Full models: Sleep characteristic(s) and all nonsleep characteristicse

Quality (PSQI quality itema) 0.94 (0.88, 1.00) 3.88 (.049) 0.92 (0.86, 0.98) 7.35 (.007)

Sleepiness/Alertness (ESS) 0.99 (0.93, 1.06) 0.08 (.775) 0.98 (0.91, 1.04) 0.60 (.440)

Timing (sleep midpoint) — 7.28 (.026) — 6.81 (.033)b

Linear term 0.99 (0.93, 1.06) 0.04 (.841) 0.97 (0.91, 1.03) 0.96 (.328)

Quadratic Termc 1.02 (1.01, 1.04) 9.90 (.002) 1.02 (1.01, 1.04) 9.86 (.002)

Duration (TST) 0.93 (0.87, 0.98) 6.37 (.012) 1.02 (0.94, 1.10) 0.177 (.674)

Continuity (WASO) 1.15 (1.08, 1.22) 22.42 (<.001) 1.16 (1.08, 1.24) 17.83 (<.001)

Rhythmicity(PsFd) 0.88 (0.82, 0.95) 11.29 (<.001) 0.89 (0.82, 0.96) 8.54 (.004)

Regularity (SD wake) 1.05 (0.99, 1.12) 2.63 (.105) 1.01 (0.95, 1.08) 0.13 (.719)

HR = hazard ratio; CI = confidence interval; PSQI = Pittsburgh Sleep Quality Index; ESS = Epworth Sleepiness Scale; WASO = minutes awake after sleep 
onset; PsF = pseudo-F statistic; SD wake = within-subject standard deviation of  wake time; ACT = actigraphy-assessed; TST = total sleep time.
aLower values indicate worse quality.
bLikelihood ratio test for inclusion of  both linear and quadratic terms.
cHRs associated with the quadratic term > 1 indicate a convex (i.e., “U”-shaped) associations, with larger values suggesting a steeper curve.
dLower values indicate more irregularity of  overall sleep–wake rhythm.
eAdjusted for age, site, race, education, self-reported health status, physical activity, depressed mood, smoking, caffeine intake, daily alcohol use, cognitive 
function, body mass index, self-reported histories of  medical conditions (arthritis, cardiovascular disease, stroke, diabetes, chronic obstructive pulmonary 
disease, and hypertension), and uses of  medications (antidepressants, benzodiazepines, and other sedatives/hyponotics, NSAIDS, corticosteroids).
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and CVD had VIMPs that were approximately 20% of the VIMP 
of age. The joint VIMP for all sleep information (“7 Sleep + # 
Extreme”) was 14.4% of the VIMP for age. VIMPs for physical 
activity (PASE), rhythmicity, and the seven sleep characteristics 
considered jointly (“7 Sleep”) were 11.5%, 9.2%, and 8.8% of 
the VIMP for age, respectively. Following these were depres-
sion at 8.0%, continuity at 7.7%, and the number of extreme 
sleep characteristics (“# Extreme”) at 5.5%. Timing, duration, 
quality, and sleepiness/alertness each had VIMPs < 1%.

Finally, the Cox model including age and the variables with a 
VIMP at least 5% of the VIMP of age (cognition CVD, physical 
activity, rhythmicity, depression, continuity, and the number of 
extreme sleep characteristics) is shown in Table 4. Older age 
(1.70 [1.60, 1.81]), CVD (1.49 [1.32, 1.69]), lower cognition 
(1.19 [1.14, 1.25]), and lower physical activity (1.14 [1.05, 
1.22]) conferred the strongest risk for mortality. Closely fol-
lowing was lower sleep continuity (1.13 [1.06, 1.20]), lower 
rhythmicity (1.09 [1.01, 1.18]), and higher depressive symp-
toms (1.08 [1.02, 1.15]). After adjusting for these risk factors, 
the number of extreme sleep characteristics was no longer sig-
nificantly associated with mortality (1.03 [0.98, 1.09]).

Sensitivity Analyses

Models Adjusted for AHI (N = 2,714)
We obtained very similar results across approaches when AHI 
was included among potential covariates. In the full multivar-
iable Cox model, rhythmicity (1.11 [1.03, 1.20]) and continu-
ity (1.15 [1.07, 1.23]) remained the strongest predictors of time 
to all-cause mortality, whereas no significant association was 

observed for AHI (1.00 [0.93, 1.07]). In a fully adjusted Cox 
model, the number of extreme sleep characteristics treated con-
tinuously was associated with mortality (1.09 [1.04, 1.15]), 
whereas AHI was not (1.01 [0.94, 1.08]). Similarly, the num-
ber of extreme sleep characteristics treated categorially was 
associated with mortality (X2 = 17.06, p = .0002; HR [95%CI] 
for 3 vs. 0 = 1.37 [1.08, 1.74]; HR [95%CI] for ≥4 versus  
0 = 1.56 [1.21, 2.00]), whereas AHI was not (1.00 [0.94, 1.07]). 
In the survival tree model considering AHI, the identical varia-
bles (age, cognition, and physical activity) and cut-points were 
empirically selected as in the tree model that did not consider 
AHI (see Supplementary Material). Finally, in the random sur-
vival forest including AHI, the top 10 predictors were identical 
to those in the random survival forest that did not include AHI, 
with only slight changes in order. AHI was ranked as the 21st 
most important predictor in the random survival forest, with 
a VIMP that was 1.03% of that of age. Additional details are 
provided in Supplementary Material.

Models Addressing Reverse Causality (N = 2,858)
We obtained very similar results excluding those who died in 
the year following the Sleep Visit (addressing “reverse caus-
ality”). In the full multivariable Cox model, rhythmicity (1.11 
[1.03, 1.20]) and continuity (1.16 [1.08, 1.24]) remained the 
strongest predictors of time to all-cause mortality. In a full Cox 
model, the number of extreme sleep characteristics treated con-
tinuously was associated with mortality (1.09 [1.04, 1.14]). 
Similarly, the number of extreme characteristics treated cat-
egorically was associated with mortality [X2 = 17.06, p = .0002] 

Table 3—Cox Proportional Hazards Regression Models for the Number of  Extreme Sleep Characteristics and All-Cause Mortality.

HR (95% CI) X2 statistic (p-value)

Base model: number of  extreme sleep characteristics, age, and site

Continuous 1.17 (1.12, 1.22) 56.89 (<.001)

Categorical — 59.84 (<.001)a

1 vs 0 1.23 (1.00, 1.53) 3.66 (.056)

2 vs 0 1.35 (1.09, 1.68) 7.45 (.006)

3 vs 0
4+ vs 0

1.76 (1.40, 2.20) 24.17 (<.001)

2.13 (1.70, 2.68) 42.94 (<.001)

Full model: number of  extreme sleep characteristics and all nonsleep characteristicsb

Continuous 1.10 (1.05, 1.15) 16.74 (<.001)

Categorical — 20.71 (<.001)a

1 vs 0 1.09 (0.88, 1.36) 0.60 (.438)

2 vs 0 1.17 (0.94, 1.46) 1.97 (.161)

3 vs 0 1.40 (1.11, 1.77) 8.17 (.004)

4+ vs 0 1.57 (1.23, 2.00) 13.31 (<.001)

HR = hazard ratio; CI = confidence interval.
aLikelihood ratio test for categorical variable with >2 categories.
bAdjusted for age, site, race, education, self-reported health status, physical activity, depressed mood, smoking, caffeine intake, daily alcohol use, cognitive 
function, body mass index, self-reported histories of  medical conditions (arthritis, cardiovascular disease, stroke, diabetes, chronic obstructive pulmonary 
disease, and hypertension), and uses of  medications (antidepressants, benzodiazepines, and other sedatives/hypnotics, NSAIDS, corticosteroids).
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Figure 3—Variable importance (VIMP) from a random survival forest, expressed as the percentage relative to age. The model included the 
seven individual sleep characteristics, the number of  extreme characteristics (# Extreme), and all nonsleep predictors. Joint VIMPs for the 
seven sleep characteristics (“7 Sleep”) and the seven sleep characteristics plus the number of  extreme sleep characteristics (“7 sleep + # 
Extreme”) were also calculated. CVD = cardiovascular disease; PASE = Physical Activity Scale for the elderly; HTN = hypertension; SR 
Health = Self-Reported Health Status; COPD = chronic obstructive pulmonary disease; BMI = body mass index; NSAIDS = nonsteroidal 
anti-inflammatory drugs.

Figure  2—Conditional inference tree model. Characteristics considered for inclusion were the seven individual sleep characteristics, the 
number of  extreme sleep characteristics, age, and site. Terminal nodes show time in years to 25% mortality (95% CI). NA indicates that the 
estimate cannot be obtained because either the 25% mortality rate or its upper or lower confidence limit was not observed. HR = hazard ratio; 
CI = confidence interval; #Extreme = number of  extreme sleep characteristics; PASE = Physical Activity Scale for the elderly.
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such that having 3 versus 0 (1.37 [1.08, 1.73]) or ≥4 versus 0 
(1.50 [1.17, 1.91]), extreme sleep characteristics were signifi-
cantly associated with mortality. In the survival tree model, only 
age and CVD were empirically selected (see Supplementary 
Material). This is different from the results based on the full 
sample, where age, cognition, and physical activity were empir-
ically selected to enter the tree model. Finally, in the random 
survival forest, the top 10 predictors were identical to those in 
the full sample, with only slight changes in order. Additional 
details are provided in Supplementary Material.

DISCUSSION
This study used a multivariable sleep health framework29 to 
simultaneously examine seven sleep characteristics as predic-
tors of time to all-cause mortality in older men. Across multi-
variable approaches, lower sleep-wake rhythmicity and lower 
sleep continuity increased risk for all-cause mortality even 
after considering other important sleep, demographic, health, 
and behavioral risk factors. Similar findings regarding the 
importance of measures of continuity (here, measured by actig-
raphy-assessed minutes awake after sleep onset) and rhythmic-
ity (here, measured by actigraphy-derived PsF) for predicting 
mortality in older adults have been observed previously by at 
least one other study.20 However, current sleep recommenda-
tions from the National Sleep Foundation55,56 and the American 
Academy of Sleep Medicine57 are primarily focused on sleep 
duration, which has been most widely studied. In our Cox mod-
els that focused on duration as the only sleep characteristic 
(with or without other nonsleep risk factors), duration was a 
significant predictor. However, in the full multivariable mod-
els including all sleep and nonsleep predictors, duration was no 
longer significant. This highlights the importance of studying 
sleep within a multidimensional sleep health framework and 
considering multiple sleep characteristics simultaneously.

Our findings also emphasize how the simultaneous consid-
eration of multiple sleep characteristics can enhance predic-
tive power. In the random survival forest, only age, cognition, 
and history of CVD were more important than all of the sleep 
variables considered simultaneously (i.e., the seven sleep 

characteristics and the number of extreme characteristics). This 
finding, combined with the fact that sleep is modifiable through 
behavioral techniques, suggests that multidimensional sleep 
measures could play an important role in future prognostic 
models, and that it may also be an important target for large-
scale population interventions.

The number of extreme sleep characteristics was a significant 
predictor of mortality even after adjusting for numerous non-
sleep risk factors in a Cox regression model. It was also empir-
ically selected as the best predictor of mortality among men 
aged <72 in the base tree-structured survival model. However, 
the random survival forest indicated that rhythmicity and con-
tinuity were more important for predicting mortality than the 
number of extreme sleep characteristics, and the number of 
extreme sleep characteristics was not significant in a multivar-
iable Cox model that also included rhythmicity and continuity. 
As such, it is probably that rhythmicity and continuity are the 
primary contributors to the “number of extreme sleep charac-
teristics” variable. To explore this further, we recalculated the 
number of extreme sleep characteristics variable in two ways: 
(1) counting only rhythmicity and continuity (ranging from 0 
to 2), and (2) counting only duration, continuity, rhythmicity, 
regularity, and quality (i.e., excluding rhythmicity and continu-
ity, ranging from 0 to 5). The continuous measure counting only 
rhythmicity and continuity was significantly associated with 
mortality (HR [95% CI] = 1.31 [1.19, 1.43]). However, the con-
tinuous measure excluding rhythmicity and continuity was not 
significantly associated with mortality (HR [95%CI]  =  1.05 
[0.99, 1.11]). These findings provide further support for the 
importance of both rhythmicity and continuity in predicting 
mortality among older men.

Our strategy of using both traditional Cox models and flex-
ible, nonlinear tree-modeling approaches allowed us to estab-
lish which findings are most robust amidst potentially complex 
associations. In general, our findings from the Cox model 
regarding rhythmicity, continuity, and the number of extreme 
sleep characteristics were replicated using flexible tree-struc-
tured analysis and/or the random forests. However, the finding 
from the fully adjusted Cox models showing that better quality 

Table 4.—Multivariable Cox Model Including Age and Variables With Variable Importance Statistics (VIMPs) at Least 5% as Large as Age (Identified From 
Random Forest).

Predictor HR (95% CI) X2 statistic (p-value)

Age 1.70 (1.60, 1.81) 292.37 (<.001)

Cognition (MMSE) 0.84 (0.80, 0.88) 45.25 (<.001)

History of  cardiovascular disease 1.49 (1.32, 1.69) 39.80 (<.001)

Physical activity (PASE) 0.88 (0.82, 0.95) 11.80 (<.001)

Rhythmicity (PsF) 0.92 (0.85, 0.99) 5.25 (.022)

Depression (GDS) 1.08 (1.02, 1.15) 7.12 (.008)

Continuity (WASO) 1.13 (1.06, 1.20) 14.47 (<.001)

Number of  extreme sleep characteristics 1.03 (0.98, 1.09) 1.58 (.209)

MMSE = Mini-Mental State Exam; CVD = History of  cardiovascular disease; PASE = Physical Activity Scale for the elderly; GDS = Geriatric Depression 
Scale; WASO = minutes awake after sleep onset.
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(captured by the PSQI sleep quality item) was significantly 
associated with increased mortality risk was not replicated in 
the tree-structured model or the random forest. This discrepancy 
suggests that it is unlikely that better sleep quality increases 
mortality risk. It also highlights the importance of considering 
flexible, nonlinear alternatives such as tree-structured models 
and random forests when studying multivariable sleep health.

Our variable selection strategy was to preselect one sleep char-
acteristic for each domain, prioritizing measures that are clin-
ically relevant, stable, representative of daily life, and based on 
prior scientific evidence. This strategy is likely to yield clinic-
ally meaningful model interpretations and reduces the risk of 
spurious findings because of the scientific evidence behind our 
selections. However, it does not necessarily result in the greatest 
predictive power, nor does it provide a comprehensive assess-
ment of exactly which characteristics within each sleep domain 
are most representative or predictive. In future research, it may be 
useful to apply factor analysis and develop representative domain 
scores (e.g., through item response theory) for use in subsequent 
models. Alternatively, the tree-structured models and random 
forests used herein, as well as regularized regression approaches 
(e.g., the elastic net58), allow for many potentially correlated var-
iables to be considered simultaneously. Using these multivariable 
approaches to explore which sleep characteristics (out of a much 
larger, exploratory pool of potential sleep characteristics) are the 
strongest predictors of health outcomes could yield important 
findings that differ from the results presented here.

Our findings should be interpreted in the context of some lim-
itations. First, we explored multiple models and analytic strat-
egies, and as such, our findings are hypothesis-generating and 
need to be validated in future studies. However, the fact that 
rhythmicity and continuity consistently emerged as important 
across a variety of modeling strategies and sensitivity analy-
ses suggests that these findings are robust within our sample. 
Second, although conditional inference tree-structured mod-
els and random forests have numerous strengths as discussed 
above, they also have weaknesses. Conditional inference tree 
models can be unstable in their structure, are less efficient than 
regression when associations between predictors and the out-
come are truly linear, and are not necessarily optimal predictors 
(i.e., each split is selected to optimally predict the outcome at 
each node; however, this does not necessarily result in an en-
tire tree that optimally predicts the outcome). Although random 
forests mitigate these limitations of the single tree model, a dis-
advantage is that they do not facilitate a nuanced interpretation 
of the direction and magnitude of the associations. Third, our 
results are specific to older men enrolled in the MrOS study and 
an all-cause mortality outcome. Similar analyses should be con-
ducted with other outcomes (e.g., cause-specific mortality or 
specific disease states) and populations (e.g., women) to assess 
generalizability.

A final limitation is that we did not investigate mechanisms 
through which sleep characteristics (namely, sleep-wake rhyth-
micity and sleep continuity) may relate to mortality. Thus, we 
cannot discern whether these sleep characteristics are directly 
related to mortality or whether they are indirectly related to mor-
tality through other factors. Prior studies investigating mecha-
nistic links between sleep and mortality have primarily (but not 
exclusively59,60) focused on long or short sleep duration.47,61–63 

Our study suggests that shifting the focus of these mechanistic 
studies from sleep duration to measures of sleep-wake rhyth-
micity and sleep continuity may be a promising direction of 
future research, especially given their associations with poten-
tial mortality-related mechanisms including immunity,60,64 
inflammation,22,59 depression,65 cognitive deficits,66,67 high blood 
pressure,68 and obesity.69 Notably, a previously published study59 
using a subset of our MrOS sample investigated inflammation 
and morbidity or lifestyle factors (measured concurrently with 
sleep) as mechanisms through which actigraphy-measured 
WASO (i.e., sleep continuity) predicted mortality. However, the 
WASO-mortality association was found to be independent of 
these potential mechanisms.

In conclusion, we found that the simultaneous consideration 
of multiple sleep characteristics can enhance predictive power 
for mortality among older men, and that rhythmicity and con-
tinuity in particular confer the strongest risk for mortality. 
Critical next steps in the study of multivariable sleep health will 
be to conduct studies to elucidate the physiological, psycho-
logical, and behavioral mechanisms through which rhythmicity 
and continuity (individually and in combination with one an-
other) relate to all-cause mortality; to develop new treatments 
that target the specific sleep profiles that cause morbidity and 
mortality; and to create enhanced health screening tools that 
incorporate multivariable sleep measures.
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