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Abstract

Background: Obesity is highly prevalent and disabling, especially in individuals with severe
mental illness including bipolar disorders (BD). The brain is a target organ for both obesity
and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.
Methods: We obtained body mass index (BMI) and MRI-derived regional cortical thickness,
surface area from 1231 BD and 1601 control individuals from 13 countries within the
ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on
brain structure using mixed effects and tested for interaction and mediation. We also investi-
gated the impact of medications on the BMI-related associations.
Results: BMI and BD additively impacted the structure of many of the same brain regions. Both
BMI and BD were negatively associated with cortical thickness, but not surface area. In most
regions the number of jointly used psychiatric medication classes remained associated with
lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a
third of the negative association between number of jointly used psychiatric medications and cor-
tical thickness was mediated by association between the number of medications and higher BMI.
Conclusions: We confirmed consistent associations between higher BMI and lower cortical
thickness, but not surface area, across the cerebral mantle, in regions which were also asso-
ciated with BD. Higher BMI in people with BD indicated more pronounced brain alterations.
BMI is important for understanding the neuroanatomical changes in BD and the effects of
psychiatric medications on the brain.
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Introduction

Obesity is the fifth leading cause of death globally and is one of
the leading causes of disability (Di Angelantonio et al., 2016;
GBD 2015 Obesity Collaborators et al., 2017; Nyberg et al.,
2018). It is an even greater problem among people with severe
mental illness (SMI) including bipolar disorders (BD). Based on
meta-analysis of 120 studies, the pooled point prevalence of over-
weight and obesity in SMI was 60% and people with SMI had on
average three times greater odds of obesity than the general popu-
lation (Afzal et al., 2021). Aside from the impact of obesity on
general health, obesity is commonly associated with structural
brain alterations (Dekkers, Jansen, & Lamb, 2019;
Fernández-Andújar, Morales-García, & García-Casares, 2021;
García-García et al., 2019; Janowitz et al., 2015; Willette &
Kapogiannis, 2015), and with an increased risk of cognitive
impairment and dementia (Beydoun, Beydoun, & Wang, 2008;
Pedditzi, Peters, & Beckett, 2016; Singh-Manoux et al., 2018;
Tang et al., 2021). These issues may be particularly relevant in
individuals who already have an increased risk of brain alterations
(Hibar et al., 2018), cognitive impairment (Bora, Yucel, &
Pantelis, 2009), and obesity (Vancampfort et al., 2015), such as
people with BD. Individuals with BD and comorbid obesity face
very specific challenges which require dedicated management
and research efforts. However, very few studies up to date have
investigated how the presence of obesity interacts with brain
and cognitive changes in major psychiatric disorders.

Studying people with SMI and obesity could help identify pre-
ventable/treatable risk factors for neurostructural alterations,
which may be associated with currently intractable psychiatric
outcomes, including cognitive impairment. Indeed, we and others
have shown that BD complicated by obesity-related metabolic
alterations, specifically diabetes, is associated with lower psycho-
social functioning (Hajek et al., 2005), higher rates of rapid
cycling (Hajek et al., 2008), poor treatment response (Calkin
et al., 2015), and worse psychiatric outcomes (Calkin et al.,
2009). It could also explain why people with the same psychiatric
diagnosis differ so markedly in their neurobiological/clinical
outcomes, thus moving toward individualized medicine.
Furthermore, weight gain is a common side effect of many psychi-
atric medications, which are also frequently associated with
changes in brain structure. Therefore, we need to better under-
stand the role obesity plays in the links between psychiatric disor-
ders or medications and brain structure.

Previous studies in relatively small (76–112 participants) and
highly selected groups [i.e. people with first episode of mania
(Bond et al., 2014, 2011, 2019), adolescent BD participants
(Islam, Metcalfe, MacIntosh, Korczak, & Goldstein, 2018), or off-
spring of people with BD (Mansur et al., 2018)] have suggested
that obesity may be associated with brain alterations in BD, pos-
sibly with a stronger effect size or with some regional specificity
compared to controls (Bond et al., 2014, 2011, 2019; Islam
et al., 2018; Mansur et al., 2018). In a study including 2735 indi-
viduals (McWhinney et al., 2021a), we demonstrated that some of
the most replicated subcortical brain alterations in BD, including
larger ventricles, were to a large extent (up to 47%) mediated by
obesity and that both BD and obesity were associated with similar
subcortical alterations.

We need larger studies in more generalizable samples to better
understand how the brain correlates of obesity map onto the cor-
tical alterations in BD. To this end, we investigated the association
between BD, medications, obesity, and neurostructural measures

in a large, highly generalizable, multicenter sample from the
ENIGMA-BD Working Group.

Methods

Participating sites

The ENIGMA-BD Working Group aims to improve replication
and generalizability of neuroimaging studies of BD by combining
existing, independently collected neuroimaging samples of BD
from around the world (Ching et al., 2022; Hibar et al., 2018,
2016; McWhinney et al., 2021a, 2022a; Nunes et al., 2020).
Seventeen independently collected ENIGMA-BD samples from
13 countries on six continents contributed individual-level struc-
tural MRI data, medication information, specifically medications
used at the time of scanning for the following medication categor-
ies (lithium, first-, second-generation antipsychotics, anticonvul-
sants, antidepressants), and body mass index (BMI) values from
a total of 1231 individuals with BD and 1601 healthy controls.
Table 1 shows all participant characteristics.

Online Supplementary Tables S1 and S2 list the demographic/
clinical details for each cohort. Online Supplementary Table S3 pro-
vides the diagnostic instruments used to obtain diagnosis and clin-
ical information. Online Supplementary Table S4 lists exclusion
criteria for study enrolment. Briefly, all studies used standard diag-
nostic instruments, including Structured Clinical Interview for DSM
Disorders (SCID; N = 12), Mini International Neuropsychiatric
Interview (MINI; N = 2) and Diagnostic Interview for Genetic
Studies (DIGS; N = 1). Most studies (N = 10) included both bipolar
I (BDI) and bipolar II (BDII) disorders, six studies included only
BDI and one study included only BDII participants. Substance
abuse was an exclusion criterion in nine studies. Most studies did
not exclude comorbidities, other than substance abuse.
Consequently, the sample is a broad, ecologically valid, and general-
izable representation of BD. All participating sites received approval
from local ethics committees, and all participants provided written
informed consent. The authors assert that all procedures contribut-
ing to this work comply with the ethical standards of the relevant
national and institutional committees on human experimentation
and with the Helsinki Declaration of 1975, as revised in 2008.

Data acquisition and parcellation

High-resolution T1-weighted brain anatomical MRI scans were
acquired at each site; see online Supplementary Table S5 for
details of scan acquisition. All groups used the same ENIGMA-
standardized analytical protocol, including visual and statistical
quality assessment, as documented at: http://enigma.ini.usc.edu/
protocols/imaging-protocols/. These protocols are standardized
across the consortium, are open-source, and freely available
online, in order to foster open science/replication/reproducibility.
They were applied in the previous publications by our group
(Hibar et al., 2018; Nunes et al., 2020) and more broadly in
large-scale ENIGMA studies of major depression, schizophrenia,
attention deficit hyperactivity disorder (ADHD), obsessive com-
pulsive disorder (OCD), post traumatic stress disorder (PTSD),
epilepsy, and autism (Thompson et al., 2020).

Briefly, using the freely available and extensively validated
FreeSurfer software, we performed parcellations of 34 cortical
regions, per hemisphere (left and right), based on the Desikan–
Killiany atlas. All segmented regions were used as target regions
of interest (ROIs) for analysis. We also computed total

6744 Sean R. McWhinney et al.

http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/


intracranial volume (ICV) to standardize surface area estimates.
Visual quality controls were performed on an ROI level aided
by the ENIGMA-standardized visual inspection guide including
pass/fail parcellation examples. In addition, we generated diagnos-
tic histogram plots for each site and outliers which deviated
from the site mean for each structure at >3 standard deviations
were flagged for further review. All ROIs failing quality inspection
were withheld from subsequent analyses, see online Supplementary
Table S6. Previous analyses from the ENIGMA-BD Working
Group showed that scanner field strength, voxel volume, and the
version of FreeSurfer used for parcellation did not significantly
influence the effect size estimates.

Statistical modeling

In this mega-analysis, we used linear mixed modeling (package
nlme version 3.1-152 in R version 4.1.1) with individual subject
cortical thickness or cortical surface area as dependent variables
and with both BMI and group (participants with BD or healthy
controls) as predictors. In each case, age, sex, and hemisphere
(left or right) were also included as fixed predictors. Total ICV
was included as a covariate in models of cortical surface area.
Models also included a random effect of hemisphere within par-
ticipants and a random effect of data collection site.

We created one model per region, with each model including
both hemispheres and all of the covariates described above. We
used BMI as a continuous variable, which captures more variabil-
ity between participants, increases sensitivity, and was the pre-
ferred approach in most previous studies (Dekkers et al., 2019).
BMI was normally distributed (online Supplementary Fig. S1).
We checked the normality of model residuals using QQ plots
and tested for multicollinearity using the variance inflation factor
(VIF, shown in online Supplementary Table S7) of all predictor
variables included in modeling. Variance in regional volumes
was comparable between groups.

In post hoc analyses among individuals with BD, we separ-
ately explored the statistical effects of commonly prescribed
medications. As the rates of monotherapy were low in this
sample (see Table 1), we studied the association between num-
ber of jointly used medication classes (zero through three,
including anticonvulsants, antipsychotics, and antidepres-
sants) and BMI or cortical thickness or surface area. In the
same model, we separately estimated the effects of current Li treat-
ment. We used the same covariates and random-effect structure as
described above. Interactions between BMI and either the number
of medication classes or Li prescription were included where signifi-
cant. The partial effect of the number of medication classes while
adjusting for BMI was also compared with its effect without adjust-
ing for BMI, but with all other covariates and random effects
remaining. The a priori decision to analyze the effects of Li separ-
ately was motivated by the fact that statistical effects of Li on brain
measures, which tend to be positive, may cancel the statistical effects
of other medications such as antipsychotics, anticonvulsants, which
tend to be negative (Hajek et al., 2012a; Hajek, Kopecek, Hoschl, &
Alda, 2012b).

We adjusted all p values for multiple comparisons using false dis-
covery rate (FDR), with adjusted p values reported, at α = 0.05. We
calculated effect sizes for between-group differences (partial d), and
associations between BMI and ROI volumes (partial r), together
with their 95% confidence intervals (CIs), using model coeffi-
cients and their standard error (S.E.) (Nakagawa & Cuthill, 2007).

Mediation analysis

We tested whether the variance in regional thickness that was
associated with the number of jointly used medication classes
(zero through three, including anticonvulsants, antipsychotics,
and antidepressants; direct path) remained significant after also
accounting for variance associated with BMI (indirect path) in
individuals with BD. The number of medication classes was mod-
eled as the associated variable, BMI as the mediating variable, and
cortical thickness was the dependent variable. We modeled the
direct effect of the number of jointly used medication classes on
thickness, in comparison with the indirect effect of this associ-
ation through BMI as a mediator, corrected for age, sex, prescrip-
tion of Li, and random effects. To test this, we built 5000
bootstrapped models using random selection with replacement.
This method non-parametrically identified the 95% CI for effect
sizes. The bootstrap CI, which did not include zero, indicated a
significant indirect effect. Simulation research indicates that the
bootstrap method is more robust to non-normality and has better
type I error control than the Sobel test (Hayes, 2009).
Nevertheless, for methodological consistency, we also applied
the Sobel test to investigate whether accounting for BMI signifi-
cantly mitigated group-related differences in thickness. All of
these analyses were performed in R version (4.1.1).

These analyses were applied only to regions which met the criteria
for mediation: (1) the number of medication classes was a significant
predictor of the ROI thickness, and (2) the number of medication
classes was a significant predictor of the mediator (BMI), and
when modelled jointly, (3) BMI was a significant predictor of the
thickness, and (4) the strength of the coefficient of the previously sig-
nificant independent variable (number of medication classes) was
reduced. These criteria applied to the fusiform gyrus.

Results

Regional morphometric differences by diagnosis and BMI

When modeled jointly, numerous regions showed significant par-
tial effects of either BMI, diagnosis, or both (Fig. 1, Table 2).
Participants with BD showed significantly thinner cortex relative
to controls in all regions except for the entorhinal cortex and tem-
poral pole. Higher BMI was associated with thinner cortex in nine
of the same regions as BD, and it was uniquely associated with
thinner entorhinal cortex. Surface area did not significantly differ
between groups in any region, while higher BMI was associated
with larger surface area in the isthmus of the cingulate gyrus
(online Supplementary Table S8).

BMI and group significantly interacted in lateral occipital cor-
tical thickness (online Supplementary Fig. S2), with control parti-
cipants showing a significant negative association between BMI
and cortical thickness [t(2391) = −3.03, p = 0.002], while no sig-
nificant association was seen in those with BD [t(2391) = 0.31,
p = 0.757]. There was no interaction between BMI and sex for
any of the regions or any of the measures. The full list of interac-
tions is shown in online Supplementary Table S9.

Medications, clinical variables, BMI, and brain structure

In individuals with BD, higher BMI was associated with greater
number of jointly used medication classes (i.e. anticonvulsant,
antipsychotic, and/or antidepressant medications) per participant
[t(1100) = 4.89, p < 0.001], but not with Li treatment [t(736) =
−0.42, p = 0.676].
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The number of medication classes was significantly asso-
ciated with smaller cortical thickness in 22 of 34 regions
(64.7%), and in nearly all instances, these associations remained
significant when controlling for the effects of BMI (online
Supplementary Table S10). Exceptions included the pars opercu-
laris, superior temporal gyrus, and supramarginal gyrus. There
was a significant interaction between BMI and the number of
medication classes in the isthmus cingulate [t(1858) = −4.34, p
= 0.001], with progressively steeper associations between BMI
and thickness in those with more medications (see online
Supplementary Fig. S3).

There was an interaction between current Li-use and BMI
in 13 of the ROIs (38.2%), including caudal and rostral anterior
cingulate, medial orbitofrontal gyrus, postcentral gyrus, pars oper-
cularis, pars triangularis, rostral and caudal middle frontal, super-
ior frontal, superior temporal, supramarginal, frontal pole, and
insula, such that people who were prescribed Li at the time of
scanning showed stronger negative association between BMI
and cortical thickness than individuals with BD who were not
treated with Li (online Supplementary Table S10 and Fig. S4).
Amongst the remaining regions, which did not show interaction
between BMI and Li, Li was positively associated with cortical
thickness even when controlling for the negative effect of BMI

in nine regions, including cuneus, precuneus, inferior parietal, lat-
eral occipital, lingual, paracentral, precentral, pericalcarine, and
superior parietal gyri.

BMI, Li treatment, and the number of medication classes
showed negligible multicollinearity (VIF < 1.004). BMI was not
significantly associated with illness duration, history of psychotic
symptoms, diagnostic subtype, or mood state (online Supplementary
Table S11).

Mediating effect of medications

Only the fusiform gyrus met the criteria for investigating whether
BMI mediates the relationship between the number of medication
classes and cortical thickness (online Supplementary Table S10).
Specifically, there was a significant indirect effect of the number
of medication classes on lower fusiform gyrus thickness through
BMI (Est = −0.015, 95% CI −0.022 to −0.008), with 34.6% medi-
ation (Z = 3.46, p < 0.001, see Fig. 2).

Discussion

In this study of 2832 individuals, we found substantial overlap
between regions associated with BMI and BD. Specifically, with

Table 1. Demographic, diagnostic, and treatment characteristics of sample

Controls Cases Significance

N 1601 1231

Age, mean (S.D.) 35.47 (12.63) 42.12 (12.71) t(2818) = 7.22, p < 0.001

BMI, mean (S.D.) 24.43 (4.12) 26.78 (5.23) t(2395)a = 11.48, p < 0.001

Normal weight/overweight/obese, N (%) 1014 (63.34)/437 (27.30)/150 (9.37) 509 (41.3)/436 (35.40)/286 (23.20) χ2 = 163.43, df = 2, p < 0.001

Sex, N (%) female 916 (57.21) 743 (60.4) χ2 = 2.71, p = 0.100

Diagnosis, N (%) N/A

BD-I – 904 (73.4)

BD-II – 318 (25.8)

BD-NOS – 9 (0.70)

Treatment at time of scanning, N (%) / monotherapy N (%) N/A

No treatment – 218 (17.7)

Lithium – 556 (48.5) / 182 (46.7)

Antiepileptic – 425 (39.2) / 80 (22.9)

First-generation antipsychotic – 83 (7.6) / 5 (1.4)

Second-generation antipsychotic – 371 (33.9) / 53 (14.9)

Antidepressant – 431 (39.3) / 71 (19.9)

Mood state, N (%) N/A

Euthymic – 598 (58.5)

Depressed – 365 (35.7)

Manic – 43 (4.2)

Hypomanic – 10 (1.0)

Mixed – 6 (0.6)

Age of onset, mean (S.D.) – 25.68 (10.94) N/A

History of psychosis, N (%) – 457 (52.5) N/A

aThere were no missing age or BMI values. We used the Welch two-sample t test (unequal variance assumed), which relies on a Welch–Satterthwaite degrees of freedom adjustment, resulting
in varying degrees of freedom.
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exception of a single ROI (entorhinal cortex), all of the regions
which were negatively associated with BMI were also negatively
associated with the diagnosis of BD. In contrast, only a single
ROI (isthmus of the cingulate gyrus) showed association between
BMI and surface area, which was positive. Importantly, about a
third of the negative association between number of psychiatric
medications and cortical thickness in the fusiform gyrus was par-
tially mediated by the association between number of medications
and higher BMI. Furthermore, the association between BMI and
cortical thickness in isthmus cingulate became steeper with higher
number of medication classes used jointly. In contrast, significant
negative associations between BMI and cortical thickness in
isthmus cingulate and rostral anterior cingulate became non-
significant when modelled jointly with a significant positive effect
of Li on cortical thickness. There was an interaction between Li

and BMI, such that the brain correlates of BMI were more pro-
nounced in individuals with v. without current Li treatment in
a number of frontal regions, as well as anterior cingulate. The stat-
istical effect of BMI on brain structure was linear in all regions,
thus it would be most pronounced in people with obesity, but
also manifest in overweight individuals.

The cortical correlates of obesity in this study closely replicated
findings from previous large-scale studies, which also reported
negative associations between obesity and cortical thickness or
volume, especially in caudal and rostral anterior cingulate, entorh-
inal cortex, and several frontal lobe regions (Janowitz et al., 2015;
McWhinney et al., 2022b; Opel et al., 2021), but with much fewer
correlates in surface area (McWhinney et al., 2022b; Opel et al.,
2021). These are some of the same regions which are consistently
associated with BD, but also with other major psychiatric

Fig. 1. Standardized coefficients for group differences
(blue) and BMI effects (red) in predicting the cortical
thickness of each region. Significant effects are
shown using a filled marker (FDR-adjusted p < 0.05).
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disorders (Hibar et al., 2018; van Erp et al., 2018). Interestingly, in
all of these regions both BMI and BD showed partial association
with cortical thickness, when controlling for the other factor. In
other words, brain changes in cingulate and frontal regions will
be greater in people with both obesity and BD than in those
with either condition alone.

It is unclear whether these regions are particularly susceptible
to obesity, or whether their changes predispose individuals to
obesity. The mechanisms through which brain structure could
predispose to obesity involve alterations in the reward system
(Opel et al., 2015), cue triggered learning and Pavlovian condi-
tioning to hedonic food (Meyer, Risbrough, Liang, & Boutelle,

Table 2. Results of multiple regression analysis in cortical thickness, including effect sizes for between-group differences (Cohen’s d ), 95% confidence interval, BMI
effect sizes (part r), and their FDR-adjusted p values

Diagnosis BMI

Region Controls Patients Effect (d ) 95% Low 95% High p Part r p

Bank SSTS 1452 809 0.191 0.105 0.277 <0.001* −0.042 0.100

Caudal anterior cingulate 1568 833 0.086 0.002 0.170 0.048* −0.063 0.014*

Caudal middle frontal 1586 834 0.248 0.163 0.332 <0.001* −0.051 0.039*

Cuneus 1519 820 0.196 0.111 0.281 <0.001* −0.014 0.596

Entorhinal 1393 811 0.075 −0.011 0.162 0.089 −0.085 0.001*

Fusiform 1587 830 0.335 0.251 0.420 <0.001* −0.094 0.000*

Inferior parietal 1565 832 0.256 0.172 0.340 <0.001* −0.041 0.100

Inferior temporal 1559 814 0.272 0.187 0.357 <0.001* −0.071 0.006*

Isthmus cingulate 1579 830 0.206 0.121 0.290 <0.001* −0.031 0.199

Lateral occipital 1585 825 0.258 0.174 0.343 <0.001* −0.040 0.103

Lateral orbitofrontal 1592 833 0.257 0.173 0.341 <0.001* −0.036 0.140

Lingual 1576 827 0.276 0.192 0.361 <0.001* −0.001 0.957

Medial orbitofrontal 1570 832 0.294 0.210 0.379 <0.001* −0.034 0.160

Middle temporal 1508 817 0.264 0.178 0.349 <0.001* −0.050 0.050

Parahippocampal 1592 833 0.107 0.023 0.191 0.014* −0.048 0.050

Paracentral 1591 834 0.214 0.130 0.298 <0.001* −0.053 0.037*

Pars opercularis 1571 834 0.290 0.206 0.375 <0.001* −0.039 0.107

Pars orbitalis 1588 833 0.228 0.144 0.312 <0.001* −0.006 0.808

Pars triangularis 1573 833 0.312 0.227 0.396 <0.001* −0.021 0.408

Pericalcarine 1546 807 0.091 0.006 0.176 0.041* 0.024 0.334

Postcentral 1554 832 0.134 0.050 0.219 0.002* −0.009 0.717

Posterior cingulate 1588 831 0.215 0.131 0.299 <0.001* −0.048 0.050

Precentral 1568 832 0.254 0.170 0.338 <0.001* −0.065 0.013*

Precuneus 1583 830 0.243 0.158 0.327 <0.001* −0.034 0.158

Rostral anterior cingulate 1536 830 0.185 0.100 0.269 <0.001* −0.056 0.034*

Rostral middle frontal 1582 834 0.321 0.237 0.405 <0.001* −0.041 0.100

Superior frontal 1577 834 0.287 0.203 0.371 <0.001* −0.053 0.038*

Superior parietal 1581 831 0.221 0.137 0.305 <0.001* −0.009 0.708

Superior temporal 1438 815 0.205 0.119 0.292 <0.001* −0.027 0.286

Supramarginal 1505 826 0.237 0.152 0.322 <0.001* −0.029 0.235

Frontal pole 1584 832 0.145 0.061 0.229 0.001* −0.017 0.495

Temporal pole 1581 835 0.076 −0.008 0.160 0.080 −0.012 0.617

Transverse temporal 1595 833 0.165 0.081 0.248 <0.001* −0.056 0.034*

Insula 1489 830 0.202 0.117 0.287 <0.001* −0.015 0.568

Significance is shown using asterisks (*p < 0.05)
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2015), and in appetitive behavior (Löscher, Brandt, & Ebert, 2003;
Malkova, Mishkin, Suomi, & Bachevalier, 2010). On the other
hand, obesity could affect brain structure through a range of
mechanisms, including among others systemic inflammation, oxi-
dative stress, insulin resistance/diabetes, hypertension or dyslipi-
demia (Cox et al., 2019; Goldstein et al., 2020; Hajek et al.,
2014; Parimisetty et al., 2016; Van Gaal, Mertens, & De Block,
2006; Willette & Kapogiannis, 2015; Wisse, 2004). Speculating
about how the regions described above could predispose to obes-
ity would be post-hoc and inconclusive. However, previous stud-
ies investigating associations between genetic risk for obesity and
brain structure reported involvement of a much smaller set of
regions, i.e. surface area of lateral occipital lobe (Opel et al.,
2021) or medial prefrontal volume (Opel et al., 2017) than
those reported here and in other previous studies of association
between obesity and brain structure (Janowitz et al., 2015;
McWhinney et al., 2022b; Opel et al., 2021). Therefore, brain cor-
relates of obesity most likely include both causes and conse-
quences of obesity. Considering the greater extent of
associations between obesity and brain structure relative to the
cih the much smaller extent of associations between genetic risk
for obesity and brain structure, most brain changes likely
represent consequences of obesity.

An especially interesting and relevant question is the role of
obesity in brain effects of psychiatric medications. In keeping
with other studies, we found that antipsychotics and anticonvul-
sants were negatively associated with brain structure (Andreasen,
Liu, Ziebell, Vora, & Ho, 2013; Fleisher et al., 2011; Fusar-Poli
et al., 2013; Hibar et al., 2016, 2018; Tariot et al., 2011; Van
Gestel et al., 2019) and positively with BMI (Mitchell et al.,
2013; Tek et al., 2016). Considering the negative association
between obesity and brain structure, perhaps the negative associa-
tions between medications and brain structure could be mediated
by obesity (Joober, Schmitz, Malla, Sengupta, & Karma, 2006;
McWhinney et al., 2021a, 2021b). Across most regions, the asso-
ciation between number of medications and cortical thickness
remained significant when we controlled for BMI, which is in
keeping with another study (Jorgensen et al., 2017). In a single
region, the fusiform gyrus, about a third of the association
between medications and cortical thickness was related to the
indirect association between medications and BMI and between

BMI and brain structure. In a single region, isthmus cingulate,
the association between BMI and cortical thickness became stee-
per with growing numbers of medications used jointly. So, while
the obesitogenic effects of medications may mediate or moderate
the negative association between medications and brain structure
in some regions, for the most part, the negative statistical effect of
medications on brain structure was independent from their obesi-
togenic effects.

A separate question is the interplay between the putative neu-
roprotective effects of Li and its impact on weight. Interestingly, in
this study, Li remained positively associated with cortical thick-
ness across numerous regions, even when we controlled for nega-
tive associations between BMI and regional thickness. Conversely,
a significant negative association between BMI and cortical thick-
ness became non-significant in the isthmus cingulate and rostral
anterior cingulate when modelled jointly with the significant posi-
tive effect of Li on cortical thickness. In other words, BMI did not
cancel the positive association between Li and cortical thickness,
while Li did cancel the negative association between BMI and cor-
tical thickness for some regions.

Interestingly, in some regions, people who were using Li at the
time of scanning showed stronger negative association between
BMI and cortical thickness than BD individuals not treated
with Li. These findings were quite robust and replicated across
approximately one-third of regions. It is possible that regions
which are negatively associated with BD will not show negative
effects of additional variables, such as BMI, unless the impact
of the illness is mitigated by, for example, Li. Indeed, we found
this interaction mostly in regions which were more strongly asso-
ciated with diagnosis than with BMI, including medial orbitofron-
tal gyrus as well as pars opercularis and triangularis of the inferior
frontal gyrus. In addition, this interaction among individuals with
BD could have decreased the apparent effect of BMI in these
regions. Indeed, in the whole group, BMI was not associated
with thickness of these regions. This is also in keeping with
greater negative association between BMI and cortical thickness
in controls than in people with BD.

Since we do not understand the origins of brain alterations in
BD, it is highly relevant to study variables which could be asso-
ciated with the structure of the brain, such as BMI. On the theor-
etical level, such studies could help explain the differences in brain

Fig. 2. The effect of medication classes and BMI on cortical thickness. Path (c) represents the direct effect, while (a) through (b) represent the indirect path through
BMI, and (c′) represents the adjusted direct effect after accounting for BMI. We show standardized coefficients along with their 95% CI derived from bootstrapping.
Significant effects (95% CI that excludes zero) are marked by asterisks. In all models, we controlled for the covariates age, sex, Li treatment, and data collection site,
while paths b, c, and c’ were additionally adjusted for a random effect of hemisphere.
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measures among people with the same diagnosis, as they may dif-
fer in BMI. They could also explain similarities in brain measures
across people with BD or schizophrenia, as they share a high risk
of obesity. On the clinical level, comorbid obesity in people with
major psychiatric disorders is associated with poor functioning,
greater risk of chronicity, disability and suicide, poor treatment
response, and functional deterioration (Bora, Akdede, &
Alptekin, 2017; Calkin et al., 2015, 2009; Hajek et al., 2008,
2005; McIntyre et al., 2010; Salvi et al., 2020). The associations
between obesity and brain structure might help explain these
links and provide new treatment options for some of these cur-
rently difficult to treat outcomes. Lastly, similar studies could
help identify risk factors for neuroimaging outcomes, which
may provide new opportunities for prevention or treatment of
brain alterations with dietary/lifestyle medication or surgical
interventions focused on weight management (Mansur et al.,
2017; Mueller et al., 2015; Shan et al., 2019; Tuulari et al., 2016).

This study benefits from several unique advantages. The large
sample size (2832 individuals) allowed us to test for interactions
among relevant factors, which could not be conclusively studied
in smaller, less powered studies. The multi-site nature of this
study, with data from 17 sites in 13 countries, ensured highly gen-
eralizable representation of BD from around the world. We
focused on overweight/obesity, which is a highly prevalent, but
understudied factor in relation to brain structure in BD and
which could also provide important insights into negative associa-
tions between obesitogenic medications and brain structure. In
addition to novel findings on the interplay between BMI, BD,
or medications and brain structure, we provide several replications
of previous findings of associations between obesity or BD and
specific regions of interest.

This study has the following limitations. The cross-sectional
nature of our study does not allow us to discern the direction
of the association, as brain alterations may predate or result
from obesity. More detailed markers beyond BMI were not
broadly available throughout the ENIGMA-BD Working Group.
At the same time, BMI is much easier to acquire and is by far
the most frequently used measure (García-García et al., 2019;
Willette & Kapogiannis, 2015), thus allowing for a more direct
comparison with previous studies. Due to confidentiality reasons
related to legacy datasets, we could not access raw, whole-brain
data and could not use methods, such as voxel-based morphom-
etry. Aside from using ENIGMA-standardized processing meth-
ods, we also addressed any differences between scanners
statistically by using mixed models and including site as a random
factor in all analyses. While there are other approaches, this is still
by far the most utilized and accepted method for dealing with site
effects (McWhinney et al., 2021a; Thompson et al., 2020).
Information about medications was limited to current usage at
the time of scan. The study was not designed to comprehensively
test the effects of medication, which would require a randomized
controlled design. Therefore, the medication findings should be
interpreted with caution, as medication prescriptions in clinical
practice are not random. Also, medication details were limited
to current prescription, without any measures of duration, dosage,
compliance, previous medication exposure, treatment response or
symptom levels at the time of prescription, so we cannot address
the effects of these factors. The basic ENIGMA covariates, which
are available across sites, did not contain any measures of cogni-
tive/psychosocial functioning. Therefore, we could not evaluate
the structure/function links. Fat content near the MRI coil may
lead to slight signal intensity changes, but the vast majority of

individuals in this study were normal weight to overweight.
Psychiatric and other medical comorbidities, which might not
be available for all the patients enrolled, may influence the inter-
play between BMI, BD, and neuroimaging findings. Finally, using
other neuroimaging modalities could provide further insights into
the mechanisms of the BMI effect. Last but not least, caution is
needed when interpreting mediation analyses in observational
studies.

To conclude, we confirmed consistent associations between
higher BMI and lower cortical thickness across the cerebral man-
tle, in regions which were also associated with BD. There were few
or no correlates of either condition with cortical surface area. In
most regions number of medications remained associated with
lower cortical thickness regardless of BMI, but there were also
instances of mediation and moderation of associations between
number of medication classes and cortical thickness by BMI. In
terms of Li treatment, either the positive association between Li
and cortical thickness was present regardless of BMI or people
treated with Li showed steeper association between BMI and cor-
tical thickness. All in all, BMI is important for understanding the
neuroanatomical alterations in BD and the neurostructural corre-
lates of psychiatric medications. We need prospective studies to
investigate whether obesity is a modifiable/preventable risk factor
for brain alterations in BD and whether the obesity-related nega-
tive psychiatric outcomes are related to obesity-related brain
alterations.
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