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Abstract

A subset of individuals with major depressive disorder (MDD) have impaired adaptive immunity 

characterized by a greater vulnerability to viral infection and a deficient response to vaccination 

along with a decrease in the number and/or activity of T cells and natural killer cells (NKC). 
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Nevertheless, it remains unclear which specific subsets of lymphocytes are altered in MDD, a 

shortcoming we address here by utilizing an advanced fluorescence-activated cell sorting (FACS) 

method that allows for the differentiation of important functionally-distinct lymphocyte sub-

populations. Furthermore, despite evidence that sleep disturbance, which is a core symptom of 

MDD, is itself associated with alterations in lymphocyte distributions, there is a paucity of studies 

examining the contribution of sleep disturbance on lymphocyte populations in MDD populations. 

Here, we measured differences in the percentages of 13 different lymphocytes and 6 different 

leukocytes in 54 unmedicated MDD patients (partially remitted to moderate) and 56 age and sex-

matched healthy controls (HC). The relationship between self-reported sleep disturbance and cell 

counts was evaluated in the MDD group using the Pittsburgh Sleep Quality Index (PSQI). The 

MDD group showed a significantly increased percentage of CD127low/CCR4+ Treg cells, and 

memory Treg cells, as well as a reduction in CD56+CD16− (putative immunoregulatory) NKC 

counts, the latter, prior to correction for body mass index. There also was a trend for higher 

effector memory CD8+ cell counts in the MDD group versus the HC group. Further, within the 

MDD group, self-reported sleep disturbance was associated with an increased percentage of 

effector memory CD8+ cells but with a lower percentage of CD56+CD16− NKC. These results 

provide important new insights into the immune pathways involved in MDD, and provide novel 

evidence that MDD and associated sleep disturbance increase effector memory CD8+ and Treg 

pathways. Targeting sleep disturbance may have implications as a therapeutic strategy to 

normalize NKC and memory CD8+ cells in MDD.
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1. Introduction

While most recent studies have focused on the link between inflammation and depression, 

major depressive disorder (MDD) also is considered to have an immunosuppressive 

component, especially involving the adaptive immune system. This perspective evolved from 

the stress literature which demonstrated that chronic psychological stressors were associated 

with declines in the total numbers of circulating B-cells and T-cells, reduced mitogen-

induced lymphocyte proliferation and natural killer cell (NKC) activity, and the mobilization 

of regulatory T-cells (Treg), along with greater susceptibility to viral infections, reduced 

immune responses to vaccines, reactivation of latent herpesviruses, and slowed wound 

healing (Dhabhar, 2014; Glaser and Kiecolt-Glaser, 2005; Irwin, 2008; Toben and Baune, 

2015). This impairment in the adaptive immune response is hypothesized to be mediated by 

the suppressive effects of cortisol on the expression of anti-viral genes as well as the effects 

of adrenergic signaling on the expression of type I interferons (Irwin and Cole, 2011). 

Chronic sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation 

additionally suppress the trafficking of immune cells from the blood to the tissue and 

draining lymph nodes (Dhabhar and McEwen, 1997).

A similar impairment of the adaptive immune response has been reported in depression, in 

particular, decreases in NKC cytotoxicity and reduced mitogen-stimulated T-lymphocyte 
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proliferation (Blume et al., 2011; Irwin and Miller, 2007; Miller, 2010; Toben and Baune, 

2015; Zorrilla et al., 2001). Consistent with these data, depressed individuals show a 

decreased response to viral vaccines (Irwin et al., 1998; Irwin et al., 2013), and reportedly, a 

worse prognosis in cases of infectious disease (Leserman, 2008) and cancer (Sephton et al., 

2009). Given the close link between stress and depression, glucocorticoid and adrenergic 

signaling also may underlie reduced NKC and T cell numbers and/or function in depression. 

However, Miller (2010) also raised the possibility that depression-associated decreases in T 

lymphocytes may result from apoptotic processes that are induced by inflammation-driven 

tryptophan depletion in the context of kynurenine pathway activation. One potential 

upstream cause of the depression-associated dysregulation of the hypothalamic-pituitary-

adrenal (HPA) axis, sympathetic nervous system (SNS), and the kynurenine pathway, is a 

disturbance in sleep.

Despite the fact that sleep disturbance is a significant risk factor for depression (Baglioni et 

al., 2011; Cho et al., 2008; Lee et al., 2013), the mechanisms underlying this association 

remain poorly understood. In addition to the direct effect of sleep on inflammatory 

mediators, one possibility is that sleep disturbance impairs the viral immune response by 

increasing adrenergic signaling of the SNS (Irwin, 2015; Irwin and Cole, 2011), thus 

rendering the individual more vulnerable to infection-induced inflammation (Mechawar and 

Savitz, 2016). Specifically, sleep disturbance appears to lead to a shift away from Type 1 T 

helper cell (Th1) immunity (Axelsson et al., 2013; Lange et al., 2010; Petrovsky and 

Harrison, 1997; Redwine et al., 2003; Sakami et al., 2002), potentially explaining why 

shortened or fragmented sleep is associated with increased vulnerability to viral infection 

(Cohen et al., 2009), and a reduction in the efficacy of viral vaccines (Miller et al., 2004; 

Prather et al., 2012; Spiegel et al., 2002). Arguably, however, the most robust finding in the 

literature is the association between sleep disturbance and reduced NKC counts and/or 

activity. Partial sleep deprivation was originally shown to reduce NKC activity in healthy 

volunteers (Irwin et al., 1994; Irwin et al., 1996) and more recently, a night of naturally short 

sleep (<7 hours) was reported to be associated with reduced NKC and T-cell function 

compared to a normal (7–9 hours) nights sleep (Fondell et al., 2011).

Nevertheless, few studies have examined the relationship between sleep disturbance and 

NKC and T cell immunity within depressed populations. Cover and Irwin (1994) reported 

that insomnia was associated with a reduction of NKC activity in depressed patients that was 

independent of the severity of other depressive symptoms, raising the possibility that sleep 

disturbance is a critical pathway by which depression leads to a reduction in NK activity. A 

subsequent study of MDD patients partially replicated these results by showing that about 

20% of the variance in NKC number in the MDD group was accounted for by sleep 

disturbance (Frank et al., 2002). Regarding T cells, in contrast, mitogen-induced lymphocyte 

stimulation was found to be reduced in depressed subjects compared with controls, but the 

differences were not attributable to sleep disturbance (Cosyns et al., 1989; Miller et al., 

1999).

Here we advance the literature in several respects. Firstly, sleep disturbance, a core symptom 

of MDD, has itself been associated with alterations in lymphocyte distributions similar to 

those observed in MDD. However, there is a paucity of studies examining the association 
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between sleep disturbance and lymphocyte populations within non-medically ill MDD 

populations. This is one of the few studies to examine the link between sleep disturbance 

and circulating lymphocyte distributions in depressed subjects with MDD who were 

otherwise medically healthy and unmedicated.

Second, most studies reporting abnormalities of lymphocytes in depressed subjects were 

conducted when fluorescence-activated cell sorting (FACS) methods were unable to 

differentiate between many functionally-distinct lymphocyte sub-populations. Here, we 

employed a novel FACS method based on the immunophenotyping protocol developed for 

the Human Immunology Project (Maecker et al., 2012). This technique allowed for a more 

fine-grained analysis of cell populations – for instance distinguishing between putative 

cytotoxic and regulatory NKC, nine different populations of CD4+ cells and four different 

populations of CD8+ cells (Table 2). Additionally, we obtained measures of less commonly 

studied cell populations such as myeloid dendritic cells and plasmacytoid dendritic cells.

Third, there has been debate in the literature concerning the two potentially discrepant 

findings in the psychoneuroimmunology literature, i.e. the counterintuitive presence of both 

“inflammation” and “immune suppression” in MDD (Blume et al., 2011). Few publications 

have explicitly addressed the relationship between these two phenomena. Here, we examine 

the relationship between “inflammation” (indexed by CRP) and “immune suppression” 

(indexed by changes in lymphocyte populations).

Although we measured multiple different cell types, our primary focus in this paper is on 

monocytes, T-cells, and NKC, not only because of the research discussed above, but also 

because in a previous pilot study we reported changes in monocytes, NKC and Treg cell 

frequencies in an independent sample of individuals with MDD (Savitz et al., 2013).

2. Method

2.1. Subjects

The current research was approved by the Western Institutional Review Board, and the study 

was conducted according to the principles expressed in Declaration of Helsinki. All 

participants gave written informed consent to participate and received financial 

compensation.

Volunteers between the ages of 18 and 55 years were recruited through a variety of sources 

including: the clinical services of the Laureate Psychiatric Clinic and Hospital (LPCH), 

newspaper, flyer, radio, Facebook or other media advertisements in the Tulsa metropolitan 

area. A total of N = 110 subjects (83 females) comprising 54 subjects who met DSM-IV-TR 

criteria for MDD (mean Montgomery-Åsberg Depression Rating Scale (MADRS) score = 

22.3±7.9, partial remission (n = 18), mild depression (n = 11), and moderate depression (n = 

25)) and 56 healthy control (HC) subjects, were included in the data analyses. The diagnosis 

of MDD was established using the Structural Clinical Interview for DSM-IV-TR Axis I 

Disorders (SCID-I/NP) (First, January, 2010) and confirmed by an unstructured interview 

with a psychiatrist. All MDD participants were free from psychotropic medications for at 

least 3 weeks prior to study entry. Exclusion criteria for both the MDD and HC samples 
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included major medical or neurological illness (including autoimmune and infectious 

diseases), psychosis, traumatic brain injury, and a history of drug/alcohol abuse within one 

year (for details please see Table S1). An additional exclusion criterion that applied to the 

control sample was a history of any major psychiatric disorder in a first-degree relative. 

Table 1 lists the clinical and demographic characteristics of the subjects.

2.2. Assessments

The severity of depressive symptoms was rated using the clinician-administered 

Montgomery-Åsberg Depression Rating Scale (MADRS) (Williams and Kobak, 2008), and 

self-reported sleep quality was measured using the Pittsburgh Sleep Quality Index (PSQI) 

(Buysse et al., 1989). The PSQI is a valid method of identifying sleep disturbance. It shows 

both a high sensitivity (98.7%) and specificity (84.4%) in identifying insomnia, as well as 

significant correlations with other sleep measures including sleep diaries and 

polysomnography (Backhaus et al., 2002). Further, a recent paper showed a robust 

association between remission of insomnia and a decrease in PSQI scores (Irwin et al., 

2017). PSQI score was treated both a continuous variable and as a binary variable, defined 

using the standard PSQI cutoff score to denote sleep disturbance (≤5 vs. >5). The Physical 

Activity Questionnaire (PAQ) was used to assesses the frequency of the participants’ 

physical exercise (ranging from light to vigorous), as well as home-related activities (e.g., 

cleaning, repairs, yard maintenance, child care, shopping). A higher score indicates more 

engagements in physical activities.

2.3. Blood processing and flow cytometry

Morning blood samples were obtained from the participants and peripheral blood 

mononuclear cells (PBMC) were isolated using cell preparation tubes (CPTs). The FACS 

analysis was based on the methods used in the Human Immunology Project (Maecker et al., 

2012) and the NKC subtyping was based on the methods of Michel et al. (2016) (Table 2, 

Figures S1–S3). Frozen PBMC were thawed using a 37°C water bath, and the cell 

suspension was transferred into 15mL centrifuge tubes containing 10mL of cRPMI buffer 

(RPMI1640 with 10% Fetal Bovine Serum (FBS)). Cells were pelleted by centrifugation at 

500g for 10 min at 4°C. The pellet was re-suspended in FACS buffer containing human 

immunoglobulin G (lgG) (Life Technologies, 1:20 dilution) and incubated at 4°C for 60 min 

to block FC receptors. Then, at a concentration of 5×106 cells/mL, PBMCs were stained with 

fluorescent antibody conjugates at 4°C for 60 min. The following fluorochrome human 

monoclonal antibodies (mAbs) were used in immunophenotyping stains: CD8-PE 

(Biolegend), CD3 PERCP (Biolegend), CxCR3 APC (BD Bioscience), CCR6 PE-CY7 

(Biolegend), CD38 APC-CY7 (Biolegend), CD4 Pacific Blue (Biolegend), CCR7 Brilliant 

Violet 711™ (BD Bioscience), HLA-DR PE-CY5.5 (Biolegend), CD45RA PE/Dazzle™ 

594 (Biolegend), CD127 PE (BD Bioscience), CCR4 APC (Biolegend), CD25 APC-CY7 

(Biolengend), CD45RO PE-CY7 (Biolegend), CD8 Brilliant Violet 711™ (Biolegend), 

CD56 PE (Biolegend), CD16 APC (Biolegend), CD14 APC-CY7 (Biolegend), CD123 PE-

CY7 (Biolegend), CD19 Pacific Blue (Biolegend), CD20 Brilliant Violet 711™ (Biolegend), 

and CD11c PE/Dazzle™ 594 (Biolegend). After two washes, the cells were resuspended in 

FACS buffer containing 1× SYTOX® dead cell stain and incubated for 15 min at 4°C. Cell 

population percentages were analyzed using a BD LSRII 4-laser flow cytometer and FACS 
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Diva software (BD Biosciences, San Jose, CA). The stained cells were passed through a 

laser beam to record the fluorescence emission from their bound antibody conjugates and to 

calculate cell percentages within PBMCs. The cell populations comprised: cluster of 

differentiation CD3+ T cells, CD4+ T cells (including central memory cells, naive cells, 

effector memory cells, and effector cells), CD8+ T cells (including central memory cells, 

naive cells, effector memory cells, and effector cells), T helper (Th) cells (including Th1 

cells, Th2 cells, and Th17 cells), regulatory T (Treg) cells (including CD25+ Treg cells, 

CD127low/CCR4+ Treg, and Memory Treg cells), CD3−/CD19− cells, CD14−/CD20− cells, 

human HLA-DR+, (including myeloid dendritic cells and plasmacytoid dendritic cells), 

CD56+CD16+ natural killer (NK) cells, CD56+CD16− NK cells, and monocytes (including 

non-classical monocytes and classical monocytes).

FACS was performed blind-to-diagnosis. For each subject, the cell counts were normalized 

to the total cell count for that subject and expressed as a percentage. In order to avoid batch 

effects, samples were run in groups of 12 subjects consisting of (6 MDDs and 6 HCs 

matched for age and sex). In addition, PBMCs from one individual (independent of the study 

participants) were used as controls to bridge each set of stains in order to adjust gating for 

laser drift or any staining inconsistencies across all of the assays. High-sensitivity C-reactive 

protein (hs-CRP) was measured immunoturbidimetrically with the Kamiya Biomedical K-

Assay in a CLIA-certified hospital laboratory.

2.4. Statistics

T-tests or χ2 tests were performed to test for group differences in age, sex, ethnicity, 

occupational status, educational status, nicotine use, body mass index (BMI), MADRS 

score, PSQI score, PAQ score, and hs-CRP. ANOVA and ANCOVAs (with BMI, age, sex, 

and batch effect as covariates) were performed to test for diagnostic group differences in the 

percentages of immune cells. On the basis of our previous pilot study implicating 

monocytes, NKC, and Treg cells in depression (Savitz et al., 2013) as well as the extensive 

literature reporting T-cell and NKC abnormalities in depression, our primary outcome 

variables were monocyte, Treg cell, and NKC counts, while differences in other cell 

populations (i.e. monocytes, myeloid dendritic cells and plasmacytoid dendritic cells) were 

assessed in secondary analyses. For the primary outcomes, a statistical threshold of p<0.05 

(two-tailed) was used for determining statistical significance, whereas for the secondary 

outcomes we employed a Bonferroni correction for multiple testing with a statistical 

threshold of p<0.004 (two-tailed).

Pearson correlations were subsequently performed in order to evaluate the relationship 

between sleep disturbance (PSQI total score as a continuous variable) or CRP and the counts 

of cell populations that differed significantly between the MDD and HC groups. A two-

tailed statistical threshold of p<0.05 was used for determining significance. In order to 

control for depression severity in the sleep analyses, the MADRS score was recalculated 

without the single sleep item. Partial correlations were then calculated by partialling out the 

revised MADRS score. In addition, differences in cell counts between MDD subjects with 

(PSQI score >5) and without (PSQI score ≤5) sleep disturbance were tested with Analysis of 

Variance.
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Intraclass correlation coefficient (ICC) estimates (with their 95% confidence intervals) were 

calculated to test the reliability of the flow cytometry measurements across 10 batches, using 

R (with a multiple-rating (k=10), consistency, two-way mixed-effects model). A higher ICC 

indicates that the batches resembled each other for each of the 19 cell types.

3. Results

Descriptive statistics are shown in Table 1. There were no significant group differences in 

age, sex, ethnicity, occupational status, educational status, tobacco use, and physical activity. 

As expected, the MDD group had significantly higher BMI, MADRS, and PSQI scores than 

the HC group.

The ICC value for the FACS analyses was 1.00 (F(19,171) = 6987, p<0.00001), indicating 

excellent reliability across batches.

Consistent with our a priori hypothesis, the MDD group had significantly higher percentages 

of CD127low/CCR4+ Treg cells (0.42% in MDD versus 0.35% in HC, η2 = 0.04) after 

controlling for BMI, age, sex, and batch effects (Table 2). The percentage of memory Treg 

cells also was higher in the MDD group (0.39%) than the HC group (0.33%), when the 

model controlled for BMI (η2 = 0.04). Within the MDD group both CD127low/CCR4+ Treg 

cells and memory Treg cells were inversely correlated with CRP concentrations: r = −0.32, p 
= 0.02 and r = −0.34, p = 0.01, respectively. However, sleep disturbance was not related to 

Treg cell counts.

Also consistent with our a priori hypothesis, the MDD group had a lower percentage of 

CD56+CD16− NKC than the HC group (0.57% versus 0.77%, η2 = 0.04) although this 

difference was not significant after age, sex, BMI, and batch were controlled. Further, 

CD56+CD16− NKC counts were inversely correlated with PSQI scores both with and 

without controlling for MADRS scores (Pearson: r = −0.35, p = 0.018; partial: r = −0.45, p = 

0.005). In addition, compared to the MDD group without self-reported sleep disturbance, the 

MDD participants with sleep disturbance showed a trend towards lower CD56+CD16− NKC 

counts both with (F1,43 = 3.30, p=0.076) and without (F1,43 = 3.51, p=0.068) controlling for 

depression severity. The percentage of CD56+CD16+ NKC did not differ significantly 

between the MDD and HC groups (p’s<0.1) and therefore the association between this cell 

type and sleep disturbance was not tested.

In contrast to the results obtained in our pilot study, there were no significant group 

differences in either classical or non-classical monocyte counts (all p’s > 0.3; table 2).

Regarding the secondary analyses, the MDD group showed a trend towards significantly 

higher percentages of effector memory CD8+ cells (5.73% in MDD versus 4.09% in HC, η2 

= 0.06) independent of BMI, age, sex, and batch effects (Table 2). Within the MDD group, 

PSQI score was positively associated with effector memory CD8+ cell counts (Pearson: r = 

0.30, p = 0.049; partial correlation: r = 0.29, p = 0.061). In addition, compared to the MDD 

group without self-reported sleep disturbance, the MDD participants with sleep disturbance 

showed a trend towards greater effector memory CD8+ cell counts both with (F1,43 = 3.35, 

p=0.074) and without (F1,43 = 3.43, p=0.071) controlling for depression severity.
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4. Discussion

There were four main findings: (1) Compared with HCs, the MDD group had a significantly 

greater percentage of CD127low/CCR4+ Treg cells as well as a trend towards a greater 

percentage of memory Treg cells. (2) The MDD group showed reduction in CD56+CD16− 

NKC count compared with the HC group although this group difference depended on BMI. 

Further, MDD subjects with greater reductions in CD56+CD16− NKC numbers reported 

more sleep disturbance. (3) Higher counts of effector memory CD8+ cells in the MDD 

group, as well as greater numbers of effector memory CD8+ in MDD subjects with more 

self-reported sleep disturbance. (4) Within the MDD group, CD127low/CCR4+ Treg cells and 

memory Treg cells were inversely correlated with CRP concentrations.

Firstly, MDD subjects had a greater percentage of CD127low/CCR4+ Treg cells as well as a 

trend towards a greater percentage of memory Treg cells. Our finding of increased Treg levels 

in MDD differs from a number of studies that have reported reduced Treg counts in 

depressed populations (Grosse et al., 2016b; Li et al., 2010). In contrast, our results are 

consistent with data from a study of elderly subjects that reported that an elevated 

percentage of Treg cells was associated with worse physical and mental health status, as well 

as higher levels of depressive symptomatology (Ronaldson et al., 2016). Our finding also is 

potentially consistent with several preclinical studies. For instance, stressed mice that 

developed UV-induced tumors had greater numbers of Treg cells in both the skin and blood 

(Saul et al., 2005). Second, T cells reactive to brain-associated self-proteins are important 

for brain tissue homeostasis and the ability to cope with a stressor (odor of a predator). This 

anti-stress effect was blocked by CD4+CD25+ Treg cells and further, depletion of the Treg 

cells from wild-type mice improved the ability of the mice to withstand the stressor (Cohen 

et al., 2006). This phenomenon which extends more broadly to various types of CNS insults, 

was discovered by Schwartz, Kipnis, and colleagues, and is known as protective 

autoimmunity. Protective autoimmunity is an adaptive response in which autoreactive T cells 

are harnessed to mitigate neuronal damage and is correlated with resistance to the 

development of autoimmune disease (Kipnis et al., 2004b; Schwartz and Kipnis, 2002, 

2005). Conceivably, excessive upregulation of Treg cells renders individuals incapable of 

mounting an effective protective autoimmune response, making them vulnerable to stressors 

and hence the subsequent development of depression. The binding of dopamine to D1 

receptors, which are only found on naive Treg cells, reduces the suppressive activity and the 

adhesive and migratory abilities of Treg cells (Kipnis et al., 2004a). Interestingly, positron 

emission tomography (PET) studies are indicative of decreases in D1 receptor binding 

(BPND) in depressed samples (Savitz and Drevets, 2013).

Another possibility is that the increased levels of Treg cells are indicative of an accelerated 

aging process in MDD. During aging, thymic T-cell output decreases resulting in a 

diminished capacity to produce new T-cells. There is however, a compensatory age-related 

increase in peripheral Treg cells (Vadasz et al., 2013), and there is emerging evidence that 

MDD is characterized by accelerated aging. For instance, several studies have reported a 

reduction in the length of telomeres, an index of cellular aging, in MDD cohorts (Darrow et 

al., 2016), a finding that is accentuated by increased severity and duration of symptoms 

suggesting a “dose” effect (Verhoeven et al., 2014).
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Secondly, consistent with the literature, MDD subjects showed a trend towards a significant 

decrease in NKC compared to HC. The reduction in NKC was observed for both the 

CD56+CD16+ and CD56+CD16− populations although the effect was only statistically 

significant for the CD56+CD16− population and depended on BMI (see ANOVA in Table 2). 

Thus, we noted that findings of NKC reductions in MDD need to be interpreted with a 

caution. CD56+CD16+ cells are the predominant population of NKC in the blood and 

possess significant cytotoxic capacity (Moretta et al., 2006). In contrast, CD56+CD16− NKC 

are the main NKC subset in lymphoid tissue and play an important immunoregulatory role, 

producing anti-inflammatory cytokines and the immunoregulatory purine molecule, 

adenosine, as well as playing an important role in T cell proliferation (Fu et al., 2013; Laroni 

et al., 2011; Morandi et al., 2015; Schepis et al., 2009). Since CD56+CD16− cells are a 

major producer of IFNγ (Cooper et al., 2001), the decrease in this cellular subset could 

partly explain the results of previous studies which have reported that sleep disturbance 

and/or sleep deprivation is associated with a shift away from Th1 immunity and an increased 

vulnerability to viral infection.

Thirdly, the MDD group exhibited a higher percentage of effector memory CD8+ cells than 

HCs. To our knowledge, the percentage of memory CD8+ cells has not previously been 

evaluated specifically in depression, although several studies reported higher levels of CD8+ 

cells per se, in depressed populations (Grosse et al., 2016a; Pavon et al., 2006). Potentially 

consistent with our finding, non-responders to treatment with either venlafaxine or 

imipramine showed higher levels of CD8+ cells compared to depressed subjects who 

responded to treatment (Grosse et al., 2016a). Additionally, a study of HIV positive women 

reported that depressive and anxiety symptoms were significantly associated with higher 

activated CD8+ counts and higher viral load levels suggesting a mechanism by which 

depression may have a negative effect on HIV disease progression (Evans et al., 2002). 

Similarly, compared with multiple sclerosis (MS) patients without comorbid MDD, 

depressed MS patients had greater numbers of pro-inflammatory cytokine-producing CD8+ 

cells after stimulation with phytohemagglutanin (PHA) (Gold et al., 2011).

One possible explanation for the fact that the increase in CD8+ cells in MDD was limited to 

the effector memory population is impaired viral immunity leading to reactivation of latent 

herpesviruses (Koch et al., 2007). Usually a small population of memory CD8+ cells is 

preserved after viral infection, however, periodic reactivation of herpesviruses such as 

cytomegalovirus causes the virus-specific CD8+ cell population to reach high frequencies 

(up to 20% of all CD8+ cells) and to specifically acquire the status of effector memory CD8+ 

cells (Kim et al., 2015; Lang et al., 2009; O’Hara et al., 2012; Snyder et al., 2008). This 

effect may explain why the MDD and HC groups did not differ significantly from each other 

in the percentage of central memory CD8+ cells. Effector memory CD8+ cells express 

chemokine receptors and adhesion molecules that give them the ability to migrate to 

inflamed peripheral tissues and rapidly activate to produce perforin granules and IFNγ 
(Sallusto et al., 2004). In contrast, the central memory CD8+ cells behave more like true 

memory cells, expressing the receptors CCR7 and CD62L which allow them to home to T 

cell areas of the secondary lymphoid organs. Here they display no effector function, but 

readily proliferate and differentiate into effector cells in response to antigenic stimulation 

(Sallusto et al., 2004).
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Effector memory CD8+ counts were positively correlated with sleep disturbance within the 

MDD group. Conceivably, sleep disturbance increases vulnerability to a range of infectious 

agents many of which elicit the formation of effector memory CD8+ cells. For instance, 

short (≤ 6 hours) sleepers were found to be at increased risk for developing a cold after a 

rhinovirus challenge (Prather et al., 2017; Prather et al., 2015).

Fourth, this is one of the few studies to address the relationship between inflammation and 

immune suppression in MDD, a question which has been the subject of debate (Blume et al., 

2011). In elderly stressed, but not necessarily depressed caregivers receiving the influenza 

vaccine, decreased stimulated IL-1β release from monocytes and IL-2 release from PBMCs 

co-occurred with decreased antibody titers (Kiecolt-Glaser et al., 1996), suggesting that in 

stressed individuals a reduced inflammatory response is associated with immune 

suppression. In contrast, Segerstrom et al. (2012), who reported a negative correlation 

between psychological stress and influenza vaccine titers, found that the inflammatory 

response to the vaccine (defined by IL-6 concentration), was independent of the antibody 

response.

Here, we found that within the MDD group, but not the HC group, both CD127low/CCR4+ 

Treg cells, and memory Treg cells were inversely correlated with CRP concentrations. 

However, there was no significant association between effector memory CD8+ cells and 

CRP, nor between NKC and CRP. Thus, our results do not support the hypothesis that 

depression-associated abnormalities in CD8+ and NKC populations are driven by current 

inflammation. The relationship between Treg cell numbers and CRP is deserving of further 

study. It is conceivable that an upregulation of Treg cell numbers occurs as a compensatory 

response to high levels of inflammation, leading to a subsequent decrease in CRP 

concentrations. Irrespective of the mechanism involved, the inverse association between 

CRP and Treg counts is consistent with a recent study reporting an inverse correlation 

between IL-6 responses to acute psychophysiological stress and Treg cell counts in the 

Whitehall II cohort (Ronaldson et al., 2016).

There are a number of limitations of the study that deserve mention. First, we defined Treg 

cells based on expression of the cell surface proteins, CD127 and CCR4, rather than the 

classical intracellular marker of Treg cells, FOXP3. It is theoretically possible that a 

proportion of the CD127low/CCR4+ Treg cells may be recently activated T cells. 

Nevertheless, this possibility is mitigated by the fact that there was no group difference in 

monocyte cells. Second, we performed multiple statistical tests when evaluating diagnostic 

group differences in cell populations, raising the possibility of false positive results. 

Nevertheless, this possibility is mitigated by the facts that: (a) we used an uncorrected p-

value for just three classes of immune cells, i.e. CD4+, CD8+, and NKC; (b) two subtypes of 

Treg cells, and two subtypes of NKC differed significantly (or trended toward significance) 

between groups, and false positive results would presumably be more randomly distributed; 

(c) we had a strong rationale for our a priori selection of cell populations based on the 

literature as well as our previous pilot study. Third, we measured the normalized percentages 

of immune cell populations rather than the functional activity of these cell types although in 

the case of NKC (Frank et al., 2002; Maes et al., 1994) there is a significant correlation 

between a reduction in numbers and a reduction in activity. Fourth, the assessment of sleep 
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disturbance relied on a self-report questionnaire. However, the PSQI shows a high sensitivity 

(99%) and specificity (84%) in identifying insomnia in addition to significant correlations 

with other sleep measures including sleep diaries and polysomnography (Backhaus et al., 

2002). Fifth, it is possible that sleep disturbance could affect waking time, such that 

differences in cellular distribution could reflect blood sampling at different points in the 

circadian cycle among those with sleep disturbance rather than an abnormality in adaptive 

immune function per se. Sixth, we measured the distribution of circulating immune cell 

populations and these results might not reflect the cellular changes taking place in the 

tissues, spleen, and lymph nodes. Seventh, the depressed participants were unmedicated and 

in relatively good health. Further, approximately half of the sample met DSM-IV criteria for 

partial remission or were mildly depressed. Thus, it is possible that the results are not 

generalizable to a severely ill population. Eighth, the association between sleep disturbance 

and immune cell populations reported here is derived from cross-sectional data and we 

cannot draw causal inferences regarding the effect of sleep on immune function.

In sum, our results not only replicate previous studies showing that sleep disturbance in the 

context of depression significantly reduces NKC numbers, but also provide important new 

leads in our understanding of the immunological pathways that are preferentially affected in 

MDD. Specifically, we have shown that there is a deficit in effector memory CD8+ cells in 

MDD and that effector memory CD8+ cells may be impacted by sleep disturbance. Finally, 

our results highlight the potential importance of Treg cell function in MDD. Further research 

employing experimental designs is needed to better understand the mechanisms underlying 

these abnormalities.

Supplementary Material
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Highlights

• Effector memory CD8+ cells and regulatory T cells were increased in 

depression.

• Increased memory CD8+ cells were related to sleep disturbance in depression.

• Natural killer cells (NKC) were decreased in depression.

• Reduced natural killer cells were related to sleep disturbance in depression.
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