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Imaging markers for Alzheimer disease
Which vs how

ABSTRACT

Revised diagnostic criteria for Alzheimer disease (AD) acknowledge a key role of imaging bio-
markers for early diagnosis. Diagnostic accuracy depends on whichmarker (i.e., amyloid imaging,
18F-fluorodeoxyglucose [FDG]-PET, SPECT, MRI) as well as how it is measured (“metric”: visual,
manual, semiautomated, or automated segmentation/computation). We evaluated diagnostic
accuracy of marker vs metric in separating AD from healthy and prognostic accuracy to predict
progression in mild cognitive impairment. The outcome measure was positive (negative) likelihood
ratio, LR1 (LR2), defined as the ratio between the probability of positive (negative) test outcome
in patients and the probability of positive (negative) test outcome in healthy controls. Diagnostic
LR1 of markers was between 4.4 and 9.4 and LR2 between 0.25 and 0.08, whereas prognostic
LR1 and LR2 were between 1.7 and 7.5, and 0.50 and 0.11, respectively. Within metrics, LRs
varied up to 100-fold: LR1 from approximately 1 to 100; LR2 from approximately 1.00 to 0.01.
Markers accounted for 11% and 18% of diagnostic and prognostic variance of LR1 and 16%
and 24% of LR2. Across all markers, metrics accounted for an equal or larger amount of variance
than markers: 13% and 62% of diagnostic and prognostic variance of LR1, and 29% and 18%
of LR2. Within markers, the largest proportion of diagnostic LR1 and LR2 variability was within
18F-FDG-PET and MRI metrics, respectively. Diagnostic and prognostic accuracy of imaging AD
biomarkers is at least as dependent on how the biomarker is measured as on the biomarker itself.
Standard operating procedures are key to biomarker use in the clinical routine and drug trials.
Neurology� 2013;81:487–500

GLOSSARY
AA 5 Alzheimer’s Association; AD 5 Alzheimer disease; ANOVA 5 analysis of variance; FDG 5 fluorodeoxyglucose;
ISTAART 5 International Society to Advance Alzheimer’s Research and Treatments; LR 5 likelihood ratio; MCI 5 mild
cognitive impairment;NIA5National Institute on Aging;NINCDS-ADRDA5 National Institute of Neurological and Communicative
Disorders andStroke–Alzheimer’sDisease andRelatedDisordersAssociation;npMCI5 nonprogressedmild cognitive impairment;
pMCI 5 progressed mild cognitive impairment; sc-SPM 5 single-case statistical parametric mapping; SOP 5 standard oper-
ating procedure.

Recent acquisitions on the pathophysiology and natural history of Alzheimer disease (AD) have
led researchers to propose alternatives to the traditional NINCDS-ADRDA diagnostic criteria.
The International Working Group1,2 and National Institute on Aging–Alzheimer’s Association
(NIA-AA) criteria3–5 assign a key pathogenetic role to cerebral b-amyloidosis and neurodegeneration,
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hallmarked by senile plaques and neuronal tan-
gles on microscopic examination. They further
stipulate that positivity on one or more disease
markers of brain amyloidosis (decreased levels of
Ab42 in the CSF and increased binding of amy-
loid imaging agents with PET) and neuronal
injury (cortical temporoparietal hypometabolism
on 18F-fluorodeoxyglucose [FDG]-PET, or hypo-
perfusion on SPECT, medial temporal atrophy
onMRI, and increased tau or phospho-tau in the
CSF) is associated with high likelihood that the
patient’s cognitive impairment is due to AD
pathology.

The view is largely shared that the criteria,
although potentially applicable, are not ready
to be widely used in routine clinical practice,6–9

although a fluorinated ligand10 is qualified by US
and European Union regulatory agencies,11,12

and amyloid PET and hippocampal volume
are qualified by the latter for enrichment in
clinical trials of AD modifiers.13,14 None of
these biomarkers, neither imaging nor fluid, is
reimbursed by health care providers or third
party payers. However, some specialized clinical
services with the appropriate knowledge and
facilities are using biomarkers as adjuncts in
the diagnostic process, supporting the practical
urgency of quick progression on the track of
criteria validation. In this context, the intrinsic
test characteristics of biomarkers will represent
a key factor for successful validation.

A number of reviews are available on the
diagnostic accuracy of imaging biomarkers. Re-
views have generally focused on single modality
markers (i.e., MRI, FDG-PET, amyloid PET,
or perfusion SPECT markers), and only a few
have addressed accuracy across different modal-
ities (e.g., MRI vs FDG-PET markers). Still
fewer have studied diagnostic accuracy across
different operating procedures, and none has
addressed diagnostic accuracy of imaging bio-
markers across different modalities and operat-
ing procedures. The latter effort is important to
appreciate the relevance of modality and oper-
ating procedure on diagnostic accuracy. This
information will help in designing clinical
research studies aimed at validating the new
diagnostic criteria for AD, and contribute to
the progression of imaging biomarkers from
informal diagnostic adjuncts to fully validated
biomarkers.

We aimed at estimating the diagnostic and
prognostic accuracy of different AD imaging
biomarkers (here called “markers”) and their
operating procedures (here called “metrics”),
and to investigate the amount and source of
variance among them. This review was con-
ceived by the Neuroimaging Professional Inter-
est Area, a group of clinical imaging scientists
borne of the Alzheimer’s Imaging Consortium
and the specialist branch of the International
Society to Advance Alzheimer’s Research and
Treatment (ISTAART) of the AA, in the con-
text of its mission to promote the appropriate
use of imaging in clinical and research contexts.
The views expressed herein are those of the
authors and do not represent a formal position
or endorsement by the AA.

METHODS Inclusion and exclusion criteria. We per-

formed a search on the PubMed database for literature published

between 1989 and April 2012, using combined specific terms of

AD, accuracy, and biomarkers: “condition AND marker AND

submarker AND (accuracy OR sensitivity OR specificity),”

where conditions were “Alzheimer’s disease” and “mild cognitive

impairment,” markers were “amyloid PET,” “SPECT or SPET,”

“18F-FDG PET,” “magnetic resonance,” whereas submarkers

were “18F” and “11C-PiB” for amyloid PET; “hippocampus,”

“amygdala,” “entorhinal cortex,” and “temporal horn” for MRI;

and “99mTc-HMPAO” and “99mTc-ECD or 123I-IMP” for

SPECT. The “related articles” feature in PubMed for the selected

research studies and references of retrieved articles were also

screened to maximize the probability of finding additional rele-

vant studies. We extracted single studies from reviews and meta-

analyses15–26 and addressed them individually. The search was

limited to articles involving human subjects and written in

English.

We included studies reporting sensitivity and specificity for

each single analytic method for each biomarker (“metric”), and

the number and the diagnosis of subjects for each comparison

group. The clinical diagnosis was the comparator between

different studies. For mild cognitive impairment (MCI), we

included only studies that considered sensitivity as the correct

classification of patients with MCI who subsequently progressed

to AD dementia (pMCI) vs patients with MCI who did not

progress (npMCI).

We excluded studies if they did not i) study patients with AD

or MCI; ii) report numerical data for sensitivity and specificity;

iii) explicitly state procedures for marker measurement; iv) assess

the diagnostic performance of individual imaging biomarkers

(e.g., accuracy of clinical diagnosis plus biomarkers, or a panel

of biomarkers); v) disaggregate pMCI from npMCI; or vi) pro-

vide information on group size. Studies of AD vs other types of

dementia were not considered because of i) the low number of

available studies, and ii) the fact that we should have further dis-

aggregated studies not only by markers by metrics but also by

non-AD conditions, thus resulting in an unacceptably small

group size per cell. We excluded studies comparing healthy

elderly people and patients with MCI because of the huge etio-

logic heterogeneity of the MCI group, and studies of patients

with MCI who progressed to non-AD dementias.
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Metrics. The selected studies were classified based on the specific
marker acquisition and analytic approach (metric) (figure 1).

Metrics are described below for each marker.

Amyloid imaging agents with PET. Metrics include: i)

visual read, the qualitative assessment of cortical ligand uptake

for each image; ii) standardized uptake value ratio, the quantitative

analysis of the ratio of cortical ligand uptake to a reference region

for each image; and iii) distribution volume ratio, the quantitative

analysis of the ratio of cortical ligand distribution volume to the cer-

ebellar uptake for each image.

Temporoparietal hypometabolism on 18F-FDG-PET. Met-

rics include: i) computer-aided visual read (Neurostat/3D-SSP,

http://www.rad.washington.edu/research/Research/groups/nbl/

neurostat-3d-ssp), which uses the 3-dimensional stereotactic

surface projection technique through the Neurostat automated

image analysis procedure, comparing each image on a pixel-by-pixel

basis with a normative reference database, and producing parametric

z score images; ii) t-sum/hypometabolic convergence index, the

automated summary measures of AD-related hypometabolism

based on the comparison of individual images with a normative

reference dataset in a predefined AD mask (t-sum score is

computed as voxel-by-voxel sum of t scores in a predefined

AD-pattern mask,27 whereas the hypometabolic convergence

index is calculated as the inner product of the individual

Z-map and a predefined AD Z-map28); iii) computer-aided

visual read using single-case statistical parametric mapping

(sc-SPM) (http://www.fil.ion.ucl.ac.uk/spm), computing a

score as the average metabolism on a set of meta-analytically

derived regions of interest reflecting the AD hypometabolism

pattern; and iv) visual read, the qualitative assessment of cortical

metabolism for each image.

Temporoparietal hypoperfusion on SPECT or SPET. Metrics

include: i) visual read, the qualitative assessment of cortical perfusion

for each individual image; and ii) quantitative/semiquantitative

assessment, the quantification of cortical perfusion for each image.

Medial temporal atrophy on structural MRI. Metrics

include: i) visual read, the qualitative assessment of structure

atrophy using Likert scales; ii) manual segmentation, the volu-

metric measurement through manual segmentation; iii) auto-

mated volumetry measurement computed through automated

segmentation algorithms (FreeSurfer, which implements the

subcortical segmentation by probabilistic segmentation based

on a prior anatomical model29,30; AdaBoost-ACM, a “machine

learning” method that learns features to guide segmentation31;

BrainVISA SASHA, the deformation constraint approach based

on prior knowledge of anatomical features automatically

retrieved from MRI data32); and iv) linear measure, the manual

measurement of the medial temporal lobe and the temporal horn

of the lateral ventricle.

Table 1 suggests that metrics are remarkably heterogeneous

for acquisition procedures, automation, stability, intensivity (in

terms of human or machine time), availability of a normative

population and threshold, and cost.

Outcome measure. To investigate the variability attributable to
markers, submarkers, and metrics, we chose the likelihood ratio

(LR). We preferred this to the more traditional sensitivity and

specificity because it combines information of both sensitivity

and specificity and is not affected by arbitrary thresholds that au-

thors may choose to maximize the specificity or sensitivity of a

test. Positive and negative LRs (LR1 and LR2) were computed

as follows: LR1 5 sensitivity/(100 2 specificity) and LR2 5

Figure 1 Markers, submarkers, and metrics reviewed in the current study

3D-SSP 5 3-dimensional stereotactic surface projection; 11C-PiB 5 11C-labeled Pittsburgh compound B; 99mTc-ECD 5

technetium-99m bicisate; 99mTc-HMPAO 5 technetium-99m hexamethylpropylene amine oxime; 123I-IMP 5 123I-N-isopropyl-
iodoamphetamine; FDG5 fluorodeoxyglucose; HCI5 hypometabolic convergence; sc-SPM 5 single-case statistical parametric
mapping; t-sum 5 PMOD Alzheimer discrimination analysis tool; TP 5 temporoparietal.
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Table 1 Technical features of imaging metrics

Acquisition Automation Stability Intensivity
Normative
population

Abnormality
threshold Cost Notes

Increased binding of amyloid imaging agents with PET

Visual read Any acquisition
compliant with
current
guidelines

Fully subjective
subject
classification, no
automation

IRR: 0.70–0.96 Software for
image
management
required

Not
required

Not required Very low

TRTR: 0.89–
0.99

20–30 s p/t per
scan

SUVR Any acquisition
compliant with
current
guidelines

Automated uptake
quantification and
subject
classification

Not available Software
required for
semiquantitative
uptake estimates

Not
required

1.3–1.5 Medium

DVR Any acquisition
compliant with
current
guidelines

Automated uptake
quantification and
subject
classification

Not available Software
required for
semiquantitative
uptake estimates

Not
required

.1.2 Medium

Temporoparietal hypometabolism on 18F-FDG-PET

Visual read Any acquisition
compliant with
ESNM/SNM
guidelines

Fully subjective,
no automation

IRR: 0.56–0.98 No apparel
required

Not
required

Not required Very low Poor stability

TRTR: 0.78–
0.97

20–30 s p/t per
scan

t-Sum Any acquisition
compliant with
current
guidelines

Fully automated Not available Commercial
software required
(PMOD software)

Healthy
elders

t-sum .11,090 Low

Digital images
usually in DICOM
format

3 min p/t per scan

HCI Any acquisition
compliant with
current
guidelines

Fully automated Not available Commercial
software required
(MATLAB for
SPM)

Healthy
elders

z Score of $1.5 Low Age-correction
still needs to be
implemented

Digital images
required in NIFTI
or DICOM format

3 min p/t per scan

Neurostat/3D-SSP Any acquisition
compliant with
current
guidelines

Fully automated Not available Freely available
software

Healthy
elders

z Score of $1.5 Low

Digital images
required in
Analyze format

2 min p/t per scan

sc-SPM Any acquisition
compliant with
current
guidelines

Fully automated Not available Digital images
required in NIFTI
or DICOM format

Healthy
elders

z Score of $1.5 Low

Temporoparietal hypoperfusion on SPECT

Visual read Any acquisition
compliant with
guidelines

Fully subjective,
no automation

TRTR: 0.50–
0.86

No apparel
required

Not
required

Not required Very low

IRR: 0.76–0.89 20–30 s p/t per
scan

Semiquantitative/
quantitative

Any acquisition
compliant with
current
guidelines

Automated Not available Software for
image
management
required

Healthy
elders

z Score of $1.5 Low

Continued
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(100 2 sensitivity)/specificity. LR1 $5 and LR2 #0.2 are

generally regarded as clinically meaningful, i.e., diagnostically

useful.33 We analyzed separately the accuracy for the discrimi-

nation of persons with AD from healthy elderly subjects (“diag-

nostic,” dementia stage) and for the discrimination of pMCI

from npMCI (“prognostic,” MCI stage).

To obtain pooled measures of sensitivity and specificity, we used a

classic Bayesian approach.34 (Details are provided in the supplemen-

tary material on theNeurology®Web site at www.neurology.org.) The

estimation was repeated for each set of studies that investigated the

same operating metrics on the same type of diagnostic groups.

Statistical analyses were performed with SPSS 12.0.1 (SPSS

Inc., Chicago, IL) using 1-way analysis of variance (ANOVA)

and nested ANOVA to test whether diagnostic and prognostic

LR1 and LR2 variability was attributable to differences among

markers, metrics, and submarkers or attributable to variability

among the metrics within markers, among the metrics within

submarkers, or among the submarkers within markers. Statistical

analyses and plots were restricted to metrics used by at least 3

studies. Through a linear regression analysis, we investigated the

effect of age, disease severity, group size, and follow-up duration

on sensitivity, specificity, and LR values.

RESULTS Table 2 shows sensitivity and specificity val-
ues pooled across markers, submarkers, and metrics.
Diagnostic accuracy was highest for amyloid imaging

Table 1 Continued

Acquisition Automation Stability Intensivity
Normative
population

Abnormality
threshold Cost Notes

Medial temporal atrophy on MRI

Visual read T1-weighted
acquisition

Fully subjective,
no automation

TRTR: 0.82–
0.97

No apparel
required

Not
required

0–1/2 1 best at
separating AD from
healthy elders

Very low Poorly sensitive
to the mildest
degrees of
atrophy

IRR: 0.82–0.86 20–30 s p/t per
scan

Manual
segmentation

ADNI T1-
weighted 3D

Fully manual TRTR 0.85–
0.99

Software for
image
management
required

ADNI
healthy
elders

Conventional, 95th
percentile of age-
specific normal
distribution

Low once the
segmentation
apparel and
procedure are set
up

Normalization
by head size
not
standardized

IRR: 0.80–0.95 Digital images
required in
Analyze or
DICOM format

1 h p/t per scan

FreeSurfer ADNI T1-
weighted 3D

Fully automated TRTR: 0.73–
0.75

Freely available
software required

ADNI
healthy
elders

Conventional, 95th
percentile of age-
specific normal
distribution

Low

Digital images
required in
Analyze or NIFTI
format

10 h p/t per scan

AdaBoost-ACM ADNI T1-
weighted 3D

Fully automated TRTR: 0.83–
0.85

Freely available
software required

ADNI
healthy
elders

Conventional, 95th
percentile of age-
specific normal
distribution

Low

Digital images
required in
Analyze or NIFTI
format

10 min p/t per
scan

BrainVISA/SACHA ADNI T1-
weighted 3D

Fully automated TRTR: 0.91–
0.98

Commercial
software required
(The Anatomist)

ADNI
healthy
elders

Conventional, 95th
percentile of age-
specific normal
distribution

Low

Digital images
required in NIFTI
format

Linear measure T1-weighted
acquisition

Fully manual TRTR and IRR:
0.90–0.99

No apparel
required

Not
required

Conventional, 95th
percentile of age-
specific normal
distribution

Very low

Abbreviations: AD5 Alzheimer disease; ADNI5 Alzheimer’s Disease Neuroimaging Initiative; DVR5 distribution volume ratio; ESNM/SNM5 European School
of Nuclear Medicine/Society of Nuclear Medicine; FDG 5 fluorodeoxyglucose; HCI 5 hypometabolic convergence index; IRR 5 interrater reliability; sc-SPM 5

single-case statistical parametric mapping; SSP5 stereotactic surface projection; SUVR5 standardized uptake value ratio; 3D5 3-dimensional; TRTR5 test-
retest reliability; t-sum 5 PMOD Alzheimer discrimination analysis tool.
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Table 2 Accuracy figures of imaging markers for AD at the dementia and MCI stagesa

Specificity Sensitivity

e-Ref.

Dementia stage MCI stage Dementia stage MCI stage

% (95% CI)

No. of healthy
elders (no.
of studies) % (95% CI)

No. with
npMCI (no.
of studies) % (95% CI)

No. with
AD (no. of
studies) % (95% CI)

No. with
pMCI (no.
of studies)

Increased binding of amyloid imaging agents with PET

All metrics 85 (81–88) 510 (19) 56 (49–64) 134 (8) 88 (84–91) 453 (19) 82 (74–88) 101 (8)

11C-PiB

Visual read 85 (64–95) 20b (1) NA 100 (84–100) 21b (1) NA e1

SUVR 83 (76–88) 136 (6) 53 (44–61) 106 (6) 91 (84–95) 104 (6) 82 (74–88) 87 (6) e2–e12

DVR 88 (77–95) 32 (3) 56 (34–75) 18b (1) 93 (85–98) 32 (3) 100 (52–100) 5b (1) e13, e14

18F ligands

SUVR 86 (81–90) 322 (9) 80 (48–94) 10b (1) 87 (83–91) 296 (9) 78 (46–93) 9b (1) e15–e23

Temporoparietal hypometabolism on 18F-FDG-PET

All metrics 84 (81–87) 1011 (21) 74 (68–78) 291 (10) 86 (84–89) 1897 (37) 76 (70–82) 241 (10)

Neurostat/3D-SSP 90 (85–94) 303 (9) 76 (60–89) 28b (2) 88 (84–91) 686 (12) 77 (60–90) 22b (2) e24–e36

t-sum/HCI 85 (79–90) 266 (4) 55 (47–64) 158 (3) 87 (84–90) 743 (4) 69 (57–78) 65 (3) e37–e42

sc-SPM 83 (77–88) 376 (5) 92 (81–97) 53 (3) 84 (78–90) 331 (6) 72 (61–84) 49 (3) e4, e13, e43–e49

Visual read 68 (57–78) 66 (3) 74 (60–84) 52b (2) 85 (78–90) 137 (5) 94 (88–97) 105b (2) e1, e13, e35, e50–e53

Temporoparietal hypoperfusion on SPECT

All metrics 84 (81–87) 773 (28) 64 (55–72) 137 (5) 76 (74–79) 1,268 (32) 78 (72–85) 166 (6)

99mTc-ECD and 123I-IMP

Visual read 100 (71–100) 9b (1) NA 70 (45–88) 14b (1) NA e28

Semiquantitative/
quantitative

92 (66–98) 13b (1) 58 (46–70) 54 (3) 89 (84–92) 231b (2) 79 (71–91) 121 (4) e30, e54–e57

99mTc-HMPAO

Visual read 84 (78–88) 344 (11) NA 68 (63–72) 422 (11) NA e58–e69

Semiquantitative/
quantitative

83 (79–87) 407 (15) 64 (51–75) 83b (2) 81 (78–84) 601 (18) 78 (65–88) 45b (2) e57, e60, e61, e70–
e85

Medial temporal atrophy on MRI

All metrics 81 (79–82) 2,687 (66) 73 (69–76) 1,196 (26) 75 (73–77) 2,304 (72) 62 (58–66) 592 (27)

Temporal horn

Linear measure 87 (82–91) 142 (7) 100 (63–100) 8b (1) 70 (63–76) 151 (7) 40 (17–69) 10b (1) e86–e90

Amygdala

Visual read 88 (75–95) 40b (1) NA 69 (58–78) 77b (1) NA e91

Manual
segmentation

77 (69–83) 79 (8) NA 79 (73–84) 155 (10) NA e92–e98

Hippocampus

Visual read 79 (75–83) 616 (10) 75 (67–82) 245 (6) 70 (65–74) 526 (12) 60 (51–68) 171 (7) e1, e30, e53, e87, e90,
e91, e99–e108

Manual
segmentation

82 (78–85) 565 (18) 81 (73–87) 264 (5) 79 (76–82) 528 (20) 58 (47–68) 85 (5) e86, e88, e90, e92,
e93, e95, e96, e100,
e109–e121

FreeSurfer/
AdaBoost-ACM/
BrainVISA

81 (77–85) 519 (7) 66 (61–71) 247 (5) 72 (67–77) 430 (7) 70 (63–76) 136 (5) e47, e122–e128

Continued
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and progressively lower for 18F-FDG-PET, SPECT,
and MRI. Prognostic accuracy had a similar pattern
across markers, but was generally lower than diag-
nostic accuracy.

LR analysis, dementia stage. The analysis of LR1
(figure 2A) mirrored the accuracy analysis pattern;
it was best for amyloid imaging (9.4) and poorest
for MRI (4.4). Considering amyloid imaging sub-
markers, LR1 values were best for 18F ligands,
whereas for MRI submarkers, the best were for
temporal horn and the poorest for entorhinal
cortex.

At the metrics level, the variability of LR1 was
often as high as between markers, in particular for
18F-FDG-PET (range: 13.3–2.4), and for MRI
(10.7–4.2). The variability among metrics was lower
for the other 2 markers.

In LR2 (figure 2B), for markers, the best values
were for amyloid imaging (0.08) and the poorest for
MRI (0.25). LR2 values across amyloid imaging sub-
markers were rather homogeneous and little variation
was also detected for MRI submarkers.

The variability of LR2 of metrics was much high-
er, especially for amyloid imaging (0.01–0.10), and
for 18F-FDG-PET (0.05–0.23). Variability among
metrics was lower for the other 2 markers: 0.21 to
0.32 (MRImetrics), and 0.13 to 0.17 (SPECTmetrics).
For detailed information, see table e-1.

The variability of LR1 within metrics was even
greater than across markers and metrics. Many met-
rics spanned 2 orders of magnitude, LR1 ranging

from the poorest values between 1 and 3 up to
between 70 and 100 (figure 2A). The variability of
LR2 within metrics was similar, spanning 2 orders of
magnitude from 0.01 to 1.00 (figure 2B).

LR analysis, MCI stage. Prognostic was generally poorer
than diagnostic LR1 figures, being more than 5 for
only 18F-FDG-PET (7.5). The pattern was also differ-
ent; the second best LR1 value was that of MRI (2.6),
followed by SPECT (2.2), and by amyloid imaging
(1.7). It should be noted, however, that the number
of studies contributing to prognostic LR1 estima-
tion was much lower than that of diagnostic LR1.
Considering MRI submarkers, prognostic LR1 was
2.9 for hippocampus and 2.2 for entorhinal cortex
(figure 3A).

In analogy with the pattern of diagnostic LR1,
the variability across metrics was in some cases at least
as large as that across markers. Prognostic LR1 of
18F-FDG-PET metrics ranged from 12.8 to 1.7.
The variability across MRI metrics was lower (3.2–1.8).

For markers, LR2 values (figure 3B) were best for
amyloid imaging (0.11) and poorest for MRI (0.49) and
18F-FDG-PET (0.50). For MRI submarkers, LR2 was
0.49 for hippocampus and 0.56 for entorhinal cortex.

Again, LR2 values of 18F-FDG-PET metrics were
quite heterogeneous (0.08–0.64), whereas the varia-
bility across MRI metrics was lower (0.46–0.50). For
details, see table e-1.

The variability of prognostic LR1 within metrics
spanned 1 order of magnitude, with few exceptions
spanning 2 orders of magnitude (from approximately

Table 2 Continued

Specificity Sensitivity

e-Ref.

Dementia stage MCI stage Dementia stage MCI stage

% (95% CI)

No. of healthy
elders (no.
of studies) % (95% CI)

No. with
npMCI (no.
of studies) % (95% CI)

No. with
AD (no. of
studies) % (95% CI)

No. with
pMCI (no.
of studies)

Entorhinal cortex

Visual read 86 (81–90) 379 (3) 78 (54–91) 18b (1) 58 (49–68) 132 (3) 86 (56–97) 11b (1) e87, e91, e106, e108

Manual
segmentation

76 (70–81) 216 (9) 72 (61–83) 234 (4) 83 (78–88) 194 (9) 66 (56–76) 80 (4) e96, e101, e109,
e110, e115, e116,
e119–e121, e129,
e130

FreeSurfer 85 (79–89) 101b (2) 66 (59–72) 180 (4) 71 (64–77) 81b (2) 57 (49–66) 99 (4) e122, e123, e126

Linear measure 80 (63–90) 30b (1) NA 67 (49–81) 30b (1) NA e120

Abbreviations: AD 5 Alzheimer disease; CI 5 confidence interval; DVR 5 distribution volume ratio; FDG 5 fluorodeoxyglucose; HCI 5 hypometabolic
convergence index; MCI 5 mild cognitive impairment; NA 5 not available; npMCI 5 nonprogressed MCI; pMCI 5 progressed MCI; sc-SPM 5 single-case
statistical parametric mapping; SUVR 5 standardized uptake value ratio; 99mTc-HMPAO 5 technetium-99m hexamethylpropylene amine oxime; t-sum 5

PMOD Alzheimer discrimination analysis tool; 3D-SSP 5 3-dimensional stereotactic surface projection; 11C-PiB 5 11C-labeled Pittsburgh compound B;
99mTc-ECD 5 technetium-99m bicisate; 123I-IMP 5 123I-N-isopropyl-iodoamphetamine.
aDementia stage denotes accuracy for the discrimination of patients with AD dementia from healthy elders (diagnostic accuracy). MCI stage denotes
accuracy for the discrimination of patients with MCI who subsequently progressed to AD from patients with MCI who did not progress (prognostic
accuracy). Figures denote pooled mean values and 95% CIs weighted for group size and computed through a Bayesian approach.34 NA: no published
studies on this specific metric. The e-references are listed in the supplementary material.
bDenotes metrics with ,3 studies.
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1 to 10). The variability of LR2 within metrics was
similar, with a few exceptions spanning 2 orders of
magnitude (18F-FDG-PET sc-SPM and amyloid
PET–standardized uptake value ratio) (figure 3B).

Proportion of explained variance of LR estimates, dementia

stage. Markers accounted for 11% of LR1 and 24% of

LR2 variance and metrics for 13% and 29%, respec-
tively (figure 4A). When markers were divided into
“functional” (18F-FDG-PET and SPECT) and “struc-
tural” (MRI), they accounted for 12% of LR1 variance.
Of all metrics, those with the largest variability were 18F-
FDG-PET metrics (39%) for LR1, and MRI metrics
(37%) for LR2. The variance of LR2 explained by

Figure 2 Diagnostic (A) positive and (B) negative likelihood ratio (LR1 and LR2) for correct classification between patients with Alzheimer
disease and healthy subjects broken down by markers by metrics and by markers by submarkers

Only metrics with at least 3 studies are shown. Boxplots denote median, first, and third quartiles, and whiskers denote minimum and maximum values
(excluding outliers). Dashed lines indicate the conventional thresholds of clinical relevance (5 for LR1 and 0.2 for LR2). DVR 5 distribution volume ratio;
FDG 5 fluorodeoxyglucose; sc-SPM 5 single-case statistical parametric mapping; SUVR 5 standardized uptake value ratio; 3D-SSP 5 3-dimensional
stereotactic surface projection.
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metrics remained significant even when tested with the
more stringent nested ANOVA within markers (17%)
and submarkers (15%). When restricted to MRI, nested
ANOVA analysis showed that metrics within MRI sub-
markers accounted for 41% of diagnostic LR2 variance.

Proportion of explained variance of LR estimates, MCI

stage. When compared with diagnostic LR1 variance,
both markers and metrics accounted for a larger pro-
portion of prognostic variance (18% and 62%, respec-
tively) (figure 4B). In contrast, compared with

Figure 3 Prognostic (A) positive and (B) negative likelihood ratio (LR1 and LR2) for correct classification of patients with progressed vs
nonprogressed mild cognitive impairment, broken down by markers by metrics and by markers by submarkers

Only metrics with at least 3 studies are shown. Boxplots denote median, first, and third quartiles, and whiskers denote minimum and maximum values
(excluding outliers). Dashed lines indicate the conventional thresholds of clinical relevance (5 for LR1 and 0.2 for LR2). FDG 5 fluorodeoxyglucose; HCI
5 hypometabolic convergence index; sc-SPM 5 single-case statistical parametric mapping; SUVR 5 standardized uptake value ratio.
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diagnostic LR2 variance, markers and metrics ac-
counted for a lower proportion of prognostic vari-
ance, 16% and 18%, respectively.

Similarly to diagnostic metrics, the prognostic met-
rics with the largest LR1 variability were 18F-FDG-
PET metrics (82%). Metrics accounted for 25% of
prognostic LR1 variance of the MRI marker. When
considered together, SPECT and 18F-FDG-PET met-
rics accounted for 78% of prognostic LR1 variance.

The prognostic variance of metrics remained sig-
nificant even when tested with nested ANOVA
within markers (68%). When restricted to SPECT
and 18F-FDG-PET metrics, nested ANOVA analysis
showed that these functional metrics accounted for
86% of prognostic variance.

Effect of confounders on LR estimates. Specific analyses
regarding the effect of study group size, follow-up
duration, age, and disease severity on accuracy figures
are reported in the supplementary material.

DISCUSSION We have estimated diagnostic and
prognostic accuracy of different AD markers as well
as pertinent metrics, and the amount and source of
variance among them. We have shown that the diagnos-
tic and prognostic accuracy of imaging AD biomarkers is
at least as dependent on how the biomarker is measured
as on the type of biomarker itself. While acknowledging
that imaging biomarkers capture different neurobiological
constructs (brain amyloidosis, neuronal injury at the
molecular level, and neuronal injury at the gross

Figure 4 Proportion of explained variance and significance of positive and negative likelihood ratio (LR1 and
LR2) for correct classification between (A) patients with Alzheimer disease and healthy subjects,
and (B) patients with progressed and nonprogressed mild cognitive impairment

Analysis included only values for metrics with at least 3 studies. Rectangles denote the markers or metrics whose LR var-
iance is computed. DVR 5 distribution volume ratio; FDG 5 fluorodeoxyglucose; sc-SPM 5 single-case statistical paramet-
ric mapping; SUVR 5 standardized uptake value ratio; 3D-SSP 5 3-dimensional stereotactic surface projection.
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structural level), this observation provides empirical sup-
port to current efforts aimed at developing standard oper-
ating procedures (SOPs) for AD biomarkers.7,35 Such
efforts are key to the use of imaging biomarkers in the
diagnostic routine and in clinical trials.

Diagnostic LRs were generally better than prog-
nostic LRs: diagnostic LRs1 were approximately
.5 for all markers and metrics (except 18F-FDG-
PET visual read), and diagnostic LRs2 were generally
,0.20, except for MRI metrics. This is expected in
that biological changes in patients with pMCI are
milder than in patients with AD dementia.36–41 The
increasing awareness of AD and options for early
diagnosis make biomarkers particularly useful in clin-
ical practice to distinguish pMCI from npMCI. Here,
LRs1 were ,3 for all metrics and markers, except
18F-FDG-PET; the pattern was similar for LR2,
where all markers and the majority of metrics yielded
LR2 .0.45, except amyloid imaging. Alternatively,
better LRs of diagnostic studies might be attributable
to cross-sectional case-control studies yielding opti-
mistic estimates of sensitivity and specificity.42

LR point estimates of amyloid imaging metrics
tended to be better than the other metrics. This is
in line with the current understanding of the AD
pathophysiology, positing that brain amyloidosis is a
necessary condition for AD-related neurodegeneration
to take place.4,43 On the contrary, LR1 and LR2
figures were the poorest for MRI metrics in almost
all conditions. This is expected in view of the little
specificity of medial temporal atrophy, which is fea-
tured in AD as well as in a proportion of cognitively
healthy older persons.44 It should be emphasized, how-
ever, that because of limitations of the current review,
we cannot conclude that a metric or a marker is better
than another for clinical use. For instance, the number
of studies with amyloid imaging is by far lower than
those with MRI and, in the prognostic condition, also
than those with 18F-FDG-PET. More amyloid imag-
ing studies, possibly focused on differential diagnosis,
are needed to consolidate the pertinent estimates on
LRs and to allow comparisons among different tracers.

The metrics with the largest variability were those
of 18F-FDG-PET. Interestingly, diagnostic LR1 for
t-sum was better than sc-SPM, and vice versa for
prognostic LR1. This attests to the benefits of stan-
dardizing 18F-FDG-PET metrics.

Importantly, if the variability of diagnostic LRs
across metrics varied by 1 order of magnitude (i.e.,
10-fold), the variability within a metric varied by
as many as 2 orders of magnitude (i.e., 100-fold).
The within-metric variability of prognostic LRs also
varied by 1 order of magnitude. This observation
militates in favor of standardization of metrics,
which should reduce this 100-fold variability to
close to zero.

Metrics vary for a number of features such as depen-
dency on i) a specific (sometimes nonroutine) image
acquisition protocol and ii) a human rater and automa-
tion; iii) stability over time (test-retest reliability) and
across raters (interrater reliability); iv) feasibility in routine
clinical settings, where human and technological resour-
ces are tailored to the use of routine tests; availability of
v) rigorously standardized operating procedures for mea-
surement vi) of a reference normative population and vii)
of reliable abnormality thresholds; and viii) cost of the
overall acquisition and measurement procedure. All of
the above issues should be addressed by standardization
efforts for metrics to be adopted in the clinical routine
and to be used as the reference for validation of auto-
mated algorithms. The practical message to clinical neu-
rologists is that using AD markers in the diagnostic
pathway of patients with cognitive impairment is not
a guarantee of greater accuracy per se. Because accuracy
largely depends on how a marker is analyzed, clini-
cians wishing to follow the International Working
Group or NIA-AA diagnostic criteria can i) use met-
rics for which SOPs are available and whose accur-
acy is known (e.g., FreeSurfer/NeuroQuant for
medial temporal atrophy or 18F-florbetapir for cortical
amyloid burden), ii) empirically measure in their own
setting the accuracy of the metric they wish to use, or
iii) wait for SOPs to be developed for other metrics.

This review has a number of limitations that should
be noted. Because of the small number of studies, we
did not address the accuracy of imaging biomarkers
for the differential diagnosis of dementia type (AD vs
Lewy body dementia, vs frontotemporal degeneration,
etc.). With the hopeful advent of drugs affecting specific
core pathophysiologic substrates of AD, this issue may
become of greater relevance and need to be properly ad-
dressed, also because differential diagnosis is crucial in
the clinical practice. However, we found that how a
marker is measured is as relevant as which marker is
considered even for a less “clinically relevant” and “eas-
ier” comparison (AD vs healthy), further reinforcing
the need of standardized measurement of biomarkers.

We accepted the definitions of AD and MCI
adopted by the reviewed studies, including exclusion
criteria (e.g., vascular disease, medications), thus
accepting the inherent clinical heterogeneity, which
may be enhanced by the fact that some patients were
from research cohorts. We did not consider neuro-
pathologic diagnosis of AD because few studies have
histopathologic confirmation of AD diagnosis and
we recognized that this is a limitation of our review.

Data regarding the “classification” of AD dementia
vs cognitively normal elders is only a necessary but not
sufficient indicator of a test’s value and does not reflect
its diagnostic accuracy in clinical settings. Further tests
of “diagnostic” value would be those that help in the
differential diagnosis (e.g., among different dementia
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cases) for predicting postmortem neuropathology and
a person’s clinical course (as in the MCI analysis), and
eventually, for predicting response to treatment. Another
limitation pertains to the use of imaging markers for
prognosis4 and differential diagnosis5 in the context of
the new criteria. Here, imaging needs to be used
together with biological (CSF) markers, and the con-
tribution of biological markers to LRs of imaging
markers will need to be investigated in future studies
with pathologic confirmation.

The definition we chose to classify metrics should
be taken with due caution: neurodegenerative changes
in the medial temporal lobe have largely been assessed
using volumetric MRI, but evidence showed that they
can also be accurately studied with FDG-PET.45 Con-
founders had little effect on diagnostic and prognostic
accuracy values, with the exception of the positive asso-
ciation of age with LR2 and its negative association
with specificity in AD, and negative association of age
with LR1 and specificity in MCI stage. We believe
that this observation is attributable to the relatively
higher frequency of abnormal markers in elderly per-
sons despite no disease.46 For the MCI stage, there was
a significant effect of study group size on LR2, indi-
cating a slight increase of false-negative rates for a given
true-positive rate with increasing size. This is under-
standable in light of observations that smaller studies
frequently show better accuracy values because of
stricter selection of cases. Lastly, it should be noted
that some sources of variability (e.g., ethnicity, appli-
cation of diagnostic criteria, inclusion and exclusion
criteria, case mix, socioeconomic status) might have
escaped our analyses because of the intrinsic limitations
of this type of meta-analysis.

AUTHOR CONTRIBUTIONS
Drafting/revising the manuscript for content: Frisoni, Bocchetta, Pasqua-

letti, Chételat, Rabinovici, Herholz, Kaye, Jack, Rowe, Jagust, Wahlund,

Brooks, Nordberg, Scheltens, Reiman, Weiner, de Leon. Study concept

or design: Frisoni, DeCarli, Barkhof, Herholz, Kaye, Jack, Rowe, Jagust,

Wahlund, Brooks, Nordberg, Scheltens, Reiman, Fox, Black, Sperling,

Johnson, Weiner, Carrillo, Thies. Analysis or interpretation of data:

Frisoni, Bocchetta, Pasqualetti. Statistical analysis: Bocchetta, Pasqualetti.

Study supervision or coordination: Frisoni.

ACKNOWLEDGMENT
The authors thank Marco Lorenzi, PhD, for his valuable help with data

analysis.

STUDY FUNDING
This study was partially funded by the Alzheimer’s Association grant

IIRG-10-174022, “A Harmonized Protocol for Hippocampal Volumetry:

An EADC-ADNI Effort.”

DISCLOSURE
G. Frisoni has served on advisory boards for Lilly, BMS, Bayer, Lund-

beck, Elan, AstraZeneca, Pfizer, TauRx, Wyeth, and GE; he is a member

of the editorial boards of Lancet Neurology, Aging Clinical and Experimen-

tal Research, Alzheimer Disease & Associated Disorders, Neurodegenerative

Diseases, and Imaging Section Editor of Neurobiology of Aging; he has

received grants from Wyeth International, Lilly International, Lundbeck

Italia, GE International, Avid/Lilly, and the Alzheimer’s Association. M.

Bocchetta, G. Chételat, and G. Rabinovici report no disclosures. M. de

Leon has served on the scientific advisory board for Roche; he is a holder

of image analysis patents through New York University. J. Kaye received

research support from the Department of Veterans Affairs and the NIH;

individuals that work in the research centers he directs received research

support from Johnson & Johnson, Roche, and Bristol-Myers Squibb. J.

Kaye was compensated for serving on a data monitoring committee for

Eli Lilly, and as a paid advisor for Janssen Pharmaceutical; he received

reimbursement through Medicare or commercial insurance plans for pro-

viding clinical assessment and care for patients; he has been salaried to see

patients at the Portland VA Medical Center; he served as an unpaid Vice-

Chair for the International Professional Interest Area Work Group of the

ISTAART and as an unpaid Commissioner for the Center for Aging

Services and Technologies; he serves on the editorial advisory board of

the journals Alzheimer’s & Dementia and Frontiers of Aging Neuroscience.

E. Reiman served as a scientific advisor to Sygnis, AstraZeneca, Bayer,

Eisai, Elan, Eli Lilly, GlaxoSmithKline, Intellect, Link Medicine, Novar-

tis, Siemens, and Takeda; he has had research contracts with AstraZeneca

and Avid/Eli Lilly; a patent pending for a biomarker strategy to evaluate

preclinical AD treatments (through Banner Health); and research grants

from the National Institute on Aging, Anonymous Foundation, Nomis

Foundation, Banner Alzheimer’s Foundation, and the State of Arizona. P.

Scheltens serves on the advisory boards of Genentech, Novartis, Pfizer,

Roche, Danone, Nutricia, Jansen AI, Baxter, and Lundbeck; he has been

a speaker at symposia organized by Lundbeck, Lilly, Merz, Pfizer, Jansen

AI, Danone, Novartis, Roche, and Genentech; he serves on the editorial

board of Alzheimer’s Research & Therapy and Alzheimer Disease & Associated

Disorders; he is a member of the scientific advisory board of the European

Union Joint Programming Initiative and the French National Plan Alz-

heimer. The Alzheimer Center receives unrestricted funding from various

sources through the VUmc Fonds; he receives no personal compensation

for the activities mentioned above. F. Barkhof reports no disclosures. S.

Black has received funding in the past 2 years for ad hoc consulting from

Pfizer, Novartis, Roche, Bristol-Myers Squibb, GlaxoSmithKline, and Elan.

She has received speaker’s honoraria for CME from Pfizer, Novartis, and

Eisai. Dr. Black’s unit has received contract research funds from GlaxoS-

mithKline, Roche, Pfizer, and Elan and research funds from the Canadian

Institutes of Health Research (MOP-13129, MOP-106485, MOP-82744),

NIH (ADNI), Heart and Stroke Foundation Centre for Stroke Recovery,

Heart and Stroke Foundation of Canada (T6075, T6383), Alzheimer’s

Drug Discovery Foundation, W. Garfield Weston Foundation, and Brain

Canada. She has received salary support from the Brill Chair in Neurology,

the Sunnybrook Research Institute, and the Department of Medicine, Uni-

versity of Toronto. D. Brooks and M. Carrillo report no disclosures. N. Fox

holds a patent for QA Box that may accrue revenue. In the last 2 years, his

research group has received payment for consultancy or for conducting

studies from AVID, Bristol-Myers Squibb, Elan Pharmaceuticals, Eisai,

Lilly Research Laboratories, GE Healthcare, IXICO, Janssen Alzheimer

Immunotherapy, Johnson & Johnson, Janssen-Cilag, Lundbeck, Neuro-

chem Inc., Pfizer Inc., Sanofi-Aventis, and Wyeth Pharmaceuticals. He

receives research support from MRC (G0801306 [PI], G0601846 [PI]),

NIH (U01 AG024904 (coinvestigator; subcontract), Alzheimer Research

Trust (ART/RF/2007/1 [PI]), and NIHR (senior investigator). K. Herholz

reports no disclosures. A. Nordberg has been the PI for clinical trials spon-

sored by TorreyPines Therapeutics, GSK, Wyeth, and Bayer Pharma; she

served on the advisory board for Elan, Pfizer, GSK, Novartis, Lundbeck

AB, Johnson & Johnson, GE Healthcare, and Avid; she received honorar-

ium for lectures from Novartis, Janssen-Cilag, Pfizer, and Merck, and

research grants from Novartis, Pfizer, GE Healthcare, Johnson & Johnson,

and Bayer Pharma; she owns no stocks and is a member of the editorial

advisory board for Current Alzheimer Research, Journal of Alzheimer’s Disease,

and Alzheimer’s Research & Therapy. C. Jack serves as a consultant for

Janssen, Bristol-Myers Squibb, General Electric, Siemens, and Johnson &

Johnson, and is involved in clinical trials sponsored by Allon and Baxter,

Inc.; he receives research funding from the NIH, and the Alexander Family

Alzheimer’s Disease Research Professorship of the Mayo Foundation.

W. Jagust has served as a consultant to Siemens, Genentech, TauRx, and

Janssen Alzheimer Immunotherapy; he receives research support from NIH

(AG034570, AG025303). K. Johnson and C. Rowe report no disclosures.

498 Neurology 81 July 30, 2013



R. Sperling has served as a paid consultant for Bayer, Biogen Idec, Bristol-

Myers Squibb, Eisai, Janssen Alzheimer Immunotherapy, Pfizer, Merck,

Roche, Satori, and as an unpaid consultant to Avid; she is a site coinves-

tigator for Avid, Bristol-Myers Squibb, Pfizer, and Janssen Alzheimer

Immunotherapy clinical trials. She has spoken at symposia sponsored by

Eli Lilly, Pfizer, and Janssen Alzheimer Immunotherapy. W. Thies and

L. Wahlund report no disclosures. M. Weiner served on the scientific

advisory board for Lilly, Araclon and Institut Catala de Neurociencies

Aplicades, Gulf War Veterans Illnesses Advisory Committee, VACO,

Biogen Idec, Pfizer, and BOLT International; he is a consultant for Astra-

Zeneca, Araclon, Medivation/Pfizer, Ipsen, TauRx Therapeutics Ltd., Bayer

Healthcare, Biogen Idec, ExonHit Therapeutics, SA, Servier, Synarc, Pfizer,

Janssen, Harvard University, and KLJ Associates; he received funds for

travel from NeuroVigil, Inc., CHRU-Hopital Roger Salengro, Siemens,

AstraZeneca, Geneva University Hospitals, Lilly, University of California,

San Diego–ADNI, Paris University, Institut Catala de Neurociencies

Aplicades, University of New Mexico School of Medicine, Ipsen, CTAD

(Clinical Trials on Alzheimer’s Disease), Pfizer, AD PD meeting, Paul

Sabatier University, Novartis, Tohoku University, Fundacio ACE, and

Travel eDreams, Inc.; he is a member of the editorial advisory board of

Alzheimer’s & Dementia and MRI; he received honoraria from NeuroVigil,

Inc., Insitut Catala de Neurociencies Aplicades, PMDA/Japanese Ministry

of Health, Labour, and Welfare, Tohoku University, and Alzheimer’s Drug

Discovery Foundation; he received research support from commercial

(Merck and Avid) and government (DOD and VA) entities; he holds stock

options from Synarc and Elan; he received funds from organizations con-

tributing to the Foundation for NIH and thus to the NIA-funded

Alzheimer’s Disease Neuroimaging Initiative: Abbott, Alzheimer’s Associa-

tion, Alzheimer’s Drug Discovery Foundation, Anonymous Foundation,

AstraZeneca, Bayer Healthcare, BioClinica, Inc. (ADNI 2), Bristol-Myers

Squibb, Cure Alzheimer’s Fund, Eisai, Elan, Gene Network Sciences,

Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson &

Johnson, Eli Lilly & Company, Medpace, Merck, Novartis, Pfizer Inc.,

Roche, Schering-Plough, Synarc, and Wyeth. P. Pasqualetti and C. DeCarli

report no disclosures. Go to Neurology.org for full disclosures.

Received November 20, 2012. Accepted in final form April 12, 2013.

REFERENCES
1. Dubois B, Feldman HH, Jacova C, et al. Research criteria

for the diagnosis of Alzheimer’s disease: revising the NINCDS-

ADRDA criteria. Lancet Neurol 2007;6:734–746.

2. Dubois B, Feldman HH, Jacova C, et al. Revising the

definition of Alzheimer’s disease: a new lexicon. Lancet

Neurol 2010;9:1118–1127.

3. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining

the preclinical stages of Alzheimer’s disease: recommenda-

tions from the National Institute on Aging–Alzheimer’s

Association Workgroups on Diagnostic Guidelines for

Alzheimer’s Disease. Alzheimers Dement 2011;7:280–292.

4. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis

of mild cognitive impairment due to Alzheimer’s disease:

recommendations from the National Institute on Aging–

Alzheimer’s Association Workgroups on Diagnostic

Guidelines for Alzheimer’s Disease. Alzheimers Dement

2011;7:270–279.

5. McKhann GM, Knopman DS, Chertkow H, et al. The

diagnosis of dementia due to Alzheimer’s disease: recom-

mendations from the National Institute on Aging–

Alzheimer’s Association Workgroups on Diagnostic

Guidelines for Alzheimer’s Disease. Alzheimers Dement

2011;7:263–269.

6. Khachaturian ZS. Revised criteria for diagnosis of Alz-

heimer’s disease: National Institute on Aging–Alzheimer’s

Association Diagnostic Guidelines for Alzheimer’s Disease.

Alzheimers Dement 2011;7:253–256.

7. Frisoni GB, Hampel H, O’Brien JT, Ritchie K, Winblad B.

Revised criteria for Alzheimer’s disease: what are the lessons

for clinicians? Lancet Neurol 2011;10:598–601.

8. Frisoni GB, Winblad B, O’Brien JT. Revised NIA-AA

criteria for the diagnosis of Alzheimer’s disease: a step for-

ward but not yet ready for widespread clinical use. Int

Psychogeriatr 2011;23:1191–1196.

9. Gauthier S, Patterson C, Gordon M, Soucy JP, Schubert F,

Leuzy A. Commentary on "Recommendations from the

National Institute on Aging–Alzheimer’s Association Work-

groups on Diagnostic Guidelines for Alzheimer’s Disease." A

Canadian perspective. Alzheimers Dement 2011;7:330–332.

10. Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral

PET with florbetapir compared with neuropathology at

autopsy for detection of neuritic amyloid-beta plaques:

a prospective cohort study. Lancet Neurol 2012;11:

669–678.

11. Yang L, Rieves D, Ganley C. Brain amyloid imaging: FDA

approval of florbetapir F18 injection. N Engl J Med 2012;

367:885–887.

12. European Medicines Agency. Amyvid (florbetapir 18F).

EMA/696925/2012, EMEA/H/C/0022422; January 2013.

13. Committee for Medicinal Products for Human Use

(CHMP). Qualification opinion of low hippocampal vol-

ume (atrophy) by MRI for use in clinical trials for regula-

tory purpose: in pre-dementia stage of Alzheimer’s disease.

EMA/CHMP/SAWP/809208/2011; November 17, 2011.

14. Committee for Medicinal Products for Human Use

(CHMP). Qualification opinion of Alzheimer’s disease

novel methodologies/biomarkers for PET amyloid imaging

(positive/negative) as a biomarker for enrichment, for use

in regulatory clinical trials in predementia Alzheimer’s disease.

EMA/CHMP/SAWP/892998/2011; February 16, 2012.

15. Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD.

Review and meta-analysis of biomarkers and diagnostic imag-

ing in Alzheimer’s disease. J Alzheimers Dis 2011;26:627–645.

16. Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S.

Effectiveness and safety of 18F-FDG PET in the evaluation

of dementia: a review of the recent literature. J Nucl Med

2012;53:59–71.

17. Chetelat G, Baron JC. Early diagnosis of Alzheimer’s dis-

ease: contribution of structural neuroimaging. Neuroimage

2003;18:525–541.

18. Devous MD Sr. Functional brain imaging in the dementias:

role in early detection, differential diagnosis, and longitudinal

studies. Eur J Nucl Med Mol Imaging 2002;29:1685–1696.

19. Dougall NJ, Bruggink S, Ebmeier KP. Systematic review

of the diagnostic accuracy of 99mTc-HMPAO-SPECT in

dementia. Am J Geriatr Psychiatry 2004;12:554–570.

20. Herholz K, Ebmeier K. Clinical amyloid imaging in

Alzheimer’s disease. Lancet Neurol 2011;10:667–670.

21. Jack CR Jr. Alliance for Aging Research AD Biomarkers

Work Group: structural MRI. Neurobiol Aging 2011;32

(suppl 1):S48–S57.

22. Laforce R Jr, Rabinovici GD. Amyloid imaging in the

differential diagnosis of dementia: review and potential

clinical applications. Alzheimers Res Ther 2011;3:31.

23. Mosconi L. Brain glucose metabolism in the early and

specific diagnosis of Alzheimer’s disease: FDG-PET

studies in MCI and AD. Eur J Nucl Med Mol Imaging

2005;32:486–510.

24. Patwardhan MB, McCrory DC, Matchar DB, Samsa GP,

Rutschmann OT. Alzheimer disease: operating characteris-

tics of PET—a meta-analysis. Radiology 2004;231:73–80.

Neurology 81 July 30, 2013 499

http://Neurology.org


25. Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-

emission tomography, single-photon emission tomography,

and structural MR imaging for prediction of rapid conversion

to Alzheimer disease in patients with mild cognitive impair-

ment: a meta-analysis. AJNR Am J Neuroradiol 2009;30:

404–410.

26. Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y. Diag-

nostic accuracy of (18) F-FDG and (11) C-PIB-PET for

prediction of short-term conversion to Alzheimer’s disease

in subjects with mild cognitive impairment. Int J Clin

Pract 2012;66:185–198.

27. Herholz K, Salmon E, Perani D, et al. Discrimination between

Alzheimer dementia and controls by automated analysis of

multicenter FDG PET. Neuroimage 2002;17:302–316.

28. Chen K, Ayutyanont N, Langbaum JB, et al. Character-

izing Alzheimer’s disease using a hypometabolic conver-

gence index. Neuroimage 2011;56:52–60.

29. Fischl B, Dale A. Measuring the thickness of the human

cerebral cortex from magnetic resonance images. Proc Natl

Acad Sci USA 2000;97:11050–11055.

30. Fischl B, Salat DH, Busa E, et al. Whole brain segmenta-

tion: automated labeling of neuroanatomical structures in

the human brain. Neuron 2002;33:341–355.

31. Morra JH, Tu Z, Apostolova LG, et al. Validation of a fully

automated 3D hippocampal segmentation method using

subjects with Alzheimer’s disease, mild cognitive impair-

ment, and elderly controls. Neuroimage 2008;43:59–68.

32. Chupin M, Mukuna-Bantumbakulu AR, Hasboun D,

et al. Anatomically constrained region deformation for

the automated segmentation of the hippocampus and the

amygdala: method and validation on controls and patients

with Alzheimer’s disease. Neuroimage 2007;34:996–1019.

33. Jaeschke R, Guyatt GH, Sackett DL. Users’ guides to the

medical literature. III. How to use an article about a diag-

nostic test. B. What are the results and will they help me in

caring for my patients? The Evidence-Based Medicine

Working Group. JAMA 1994;271:703–707.

34. Albert J. Bayesian Computation with R. New York: Springer;

2009.

35. Jack CR Jr, Barkhof F, Bernstein MA, et al. Steps to stan-

dardization and validation of hippocampal volumetry as a

biomarker in clinical trials and diagnostic criteria for Alz-

heimer’s disease. Alzheimers Dement 2011;7:474–485.e4.

36. Thurfjell L, Lotjonen J, Lundqvist R, et al. Combination

of biomarkers: PET [18F]flutemetamol imaging and struc-

tural MRI in dementia and mild cognitive impairment.

Neurodegener Dis 2012;10:246–249.

37. Morinaga A, Ono K, Ikeda T, et al. A comparison of the

diagnostic sensitivity of MRI, CBF-SPECT, FDG-PET and

cerebrospinal fluid biomarkers for detecting Alzheimer’s dis-

ease in a memory clinic. Dement Geriatr Cogn Disord 2010;

30:285–292.

38. Visser PJ, Scheltens P, Verhey FR, et al. Medial temporal

lobe atrophy and memory dysfunction as predictors for

dementia in subjects with mild cognitive impairment.

J Neurol 1999;246:477–485.

39. Fritzsche KH, Stieltjes B, Schlindwein S, van Bruggen T,

Essig M, Meinzer HP. Automated MR morphometry

to predict Alzheimer’s disease in mild cognitive

impairment. Int J Comput Assist Radiol Surg 2010;

5:623–632.

40. Cuingnet R, Gerardin E, Tessieras J, et al. Automatic clas-

sification of patients with Alzheimer’s disease from struc-

tural MRI: a comparison of ten methods using the ADNI

database. Neuroimage 2011;56:766–781.

41. Ewers M, Walsh C, Trojanowski JQ, et al. Prediction of

conversion from mild cognitive impairment to Alzheimer’s

disease dementia based upon biomarkers and neuropsycholog-

ical test performance. Neurobiol Aging 2012;33:1203–1214.

42. Bhadra D, Daniels MJ, Kim S, Ghosh M, Mukherjee B. A

bayesian semiparametric approach for incorporating longi-

tudinal information on exposure history for inference in

case-control studies. Biometrics 2012;68:361–370.

43. Roberson ED, Mucke L. 100 years and counting: pros-

pects for defeating Alzheimer’s disease. Science 2006;314:

781–784.

44. Frisoni GB, Redolfi A, Manset D, Rousseau ME, Toga A,

Evans AC. Virtual imaging laboratories for marker discov-

ery in neurodegenerative diseases. Nat Rev Neurol 2011;7:

429–438.

45. Mosconi L, Tsui WH, De Santi S, et al. Reduced hippo-

campal metabolism in MCI and AD: automated FDG-PET

image analysis. Neurology 2005;64:1860–1867.

46. Mattsson N, Rosen E, Hansson O, et al. Age and diag-

nostic performance of Alzheimer disease CSF biomarkers.

Neurology 2012;78:468–476.

500 Neurology 81 July 30, 2013




