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ABSTRACT OF THE THESIS 

 

A robophysical investigation of series-elastic flapping wings 

by 

James Lynch 

Master of Science in Engineering Sciences (Mechanical Engineering) 

University of California San Diego, 2019 

Professor Nicholas G. Gravish, Chair 

  

 Flying insects may achieve energy efficient flight by storing and releasing elastic energy 

in their thorax, tendons, and muscle. Similarly, flapping wing micro-aerial vehicles (FWMAVs) 

may benefit from the inclusion of elastic components in their actuation system. Despite 

significant investigation into the aerodynamics of flapping wings, the actuation of these 

movements through elastic structures in insects and robots is relatively unexplored. We have 

developed a dynamically-scaled robophysical experiment to study the dynamics of series-elastic 

flapping wings, with specific emphasis on discovering the role of linear and nonlinear elastic 

components in energy efficiency, perturbation resistance, and control. We vary system (inertia 
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and elasticity) and actuation (amplitude and frequency) parameters and find that energy storage 

and recovery by an elastic element is dependent on the stiffness of the element, the inertia of the 

system, and upon the driving amplitude and frequency. Experimental results are compared to the 

results of an analysis of a simplified model of the system. The comparison suggests that an 

effective model of elastic flapping wings must account for unsteady aerodynamic mechanisms 

that arise from the flow about the oscillating wing. The same experiments suggest that the 

inclusion of series-elastic elements may have a negative overall effect on control capabilities.  

The results of the project will inform the design of future FWMAVs, providing insight in elastic 

element selection, power requirements, and control design as well as addressing open questions 

in biology about actuation and control in flying insects.
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CHAPTER 1: INTRODUCTION & BACKGROUND 

 Flapping wing flight is characterized by large power requirements, as actuators must 

provide enough power to generate aerodynamic forces while overcoming inertial acceleration of 

the wing during flapping motion. Despite this, flying insects have been incredibly successful 

since first evolving wings over 300 million years ago, demonstrating unparalleled agility as well 

as impressive long-range flight capabilities [1], [2]. In the last two decades, roboticists have 

taken inspiration from the success of flying insects – and other agile fliers, like hummingbirds – 

to develop flapping wing micro-aerial vehicles (FWMAVs) at the centimeter scale and smaller. 

Several examples, including the Harvard Robobee [3], [4], the Delfly [5], the AeroVironment 

Nano Hummingbird [6], and the COLIBRI flying robot from Université Libre de Bruxelles [7], 

have demonstrated controlled flight using a variety of actuation and control schemes (Fig. 1.1).  

Figure 1.1: Examples of flapping wing robots (a) The Harvard Robobee [4] (b) The Delfly 

Nimble [5] (c) The AeroVironment Nano Hummingbird [6] (d) COLIBRI [7] 
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Still, a major challenge facing designers of FWMAVs is achieving efficient flight. The 

Robobee must be tethered to a ground-based power supply, and flight times for un-tethered 

MAVs is short (< 8 minutes). This problem will be especially pressing as designers seek to 

further miniaturize and add useful payloads like cameras and sensors. 

1.1: Resonance & Elasticity in Insects 

Insects demonstrate superior aerodynamic efficiency despite the high power requirements 

inherent to flapping wing flight at intermediate Reynolds numbers. The prevailing theory of the 

last half-century is that insects achieve efficient flight by operating at or near resonance; that is, 

they flap their wings at frequency that closely matches the natural frequency of a spring-mass 

system with the insect’s effective inertia and stiffness [8]–[10]. Resonance allows fliers to store 

some energy in compliant elements of the wing “transmission” during the forward stroke which 

can then be returned during the back stroke, reducing the cycle-averaged power expended by the  

Figure 1.2: Three examples of resilin structures from insect thoraxes. (A) the prealar arm from a 

locust (Schistocerca) strained by three different loads. (B) The main wing hinge of a locust forewing, 

unstrained (above) and strained (below). (C) The elastic tendon of a dragonfly (Aeschna) unstrained and 

extended. The parts shown in white consist mainly or entirely of resilin. From [11]. 
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insect muscle. This energy storage is made possible by the presence of resilin – a highly elastic, 

rubberlike protein – in the thorax, joints, and tendons of flying insects. 

The insect cuticle, which includes most of the material of the exoskeleton, is complex and 

varies significantly in structure and composition between species and even between individuals. 

Much of it is dominated by materials that may be characterized as rigid at the insect scale, but 

the exoskeletons of many insects also include patches of a rubber-like protein known as resilin. 

Resilin was first described in 1960 by Torkel Weis-Fogh [11], who pointed out its role in the 

elastic tendons of dragonflies and wing hinges of desert locusts (Fig. 1.2). He also noted that 

resilin structures had the ability to snap back after deformation, even after been strained over 

long periods of time. Later, Jensen and Weis-Fogh performed a suite of dynamic tests of the 

elastic structures of locusts and found that the energy loss due to damping was under 5% even at 

frequencies as high as 200 Hz [12]. The lack of energy loss even at such high frequencies 

suggests that resilin is near-perfectly elastic, ideal for energy storage at the high frequencies 

characteristic of insect flight. Others would go on to identify resilin structures in the springs that 

power the high-speed catapult used by jumping fleas, the folding mechanisms of earwig wings, 

and the high-frequency sound-producing mechanism of cicadas [13]. The importance of resilin in 

flapping wing flight arises from the ways that elastic elements of insect anatomy are arranged in 

series and in parallel with muscles.  

Flying insect morphology can be broadly divided into two categories: 1) direct flight 

morphology in which groups of muscles apply force directly to the wing joint, and 2) indirect 

flight morphology in which a pair of antagonistic muscles apply force to the thorax which 

consequently deforms and deflects the wing hinge (Fig. 1.3) [14]. In direct flight mechanisms, 
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resilin is found in elastic tendons and in the wing hinge itself. Indirect mechanisms also 

incorporate resilin wing hinges, but resilin patches are also found in the thorax, enabling energy 

storage via thorax deformation. Many advanced insects, like flies and bees, incorporate both 

direct and indirect flight morphologies, using indirect muscles to power flight and direct muscles 

to control wing orientation. 

Figure 1.3: Diagrams of the cross-section of insect thorax mechanisms used for flight. (a) and (b) 

depict the upstroke and downstroke, respectively, in thoraxes with direct flight morphologies. From a 

dynamical perspective, this mechanism is analogous to a series-elastic oscillator. (c) and (d) depict the 

upstroke and downstroke in those with indirect flight morphologies. This mechanism is analogous to a 

parallel elastic oscillator. Red muscles indicate muscles in tension, and the flexible portion of the thorax 

that transmits force to the wing is show in orange. Adapted from Zhang & Rossi [14] 

 

The integration of elastic components in direct and indirect insect flight morphologies 

suggests that the wing transmission may be modelled as a complex system of parallel and series 

springs which has a resonant frequency that depends on the compliance and inertia of the system. 

A representative diagram is provided in Figure 1.4. Muscle actuated at the resonant frequency 

will need to do only positive work to overcome drag while the springs take on the entirety of the 

inertial load [15], [16]. This suggests that aerodynamic efficiency is optimal at this resonant 
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frequency, which is further supported by the observation that many insects flap their wings 

within a narrow range of frequencies[17], [18].  

 
Figure 1.4: Model of insect thorax with series and parallel elasticity. 𝐾𝑝 and 𝐾𝑠 represent the stiffness 

of elastic elements in parallel and in series with muscles, respectively. Both the muscle and the parallel 

spring are subject to displacement 𝑥𝑝, while the series spring is deflected by the difference between 𝑥𝑠 

and 𝑥𝑝. 

 

1.2: Resonance & Elasticity in Flapping Wing Micro-Air Vehicles 

  Inspired by the elasticity of flying insect morphology and seeking to take advantage of 

the energy-saving properties of resonant systems, some designers have integrated elastic 

elements into flapping wing systems. Zhang & Rossi conducted a thorough review of such 

compliant flapping wing mechanisms [14] and discussed various methods of implementing 

elasticity in flapping wing systems.  

 Some examples, like a prototype flapping wing MAV from CMU [19] and a flapping 

wing mechanism from UC Berkeley [20], used DC motors in parallel with metal springs to drive 

their wings (Fig 1.5). Both studies found benefits to integrating compliance: the Berkeley team 



6 

reported a reduction of average power of up to 30%, and the CMU MAV demonstrated liftoff 

and a maximum lift-to-weight ratio at the resonant frequency. However, the addition of metal 

springs to the system added weight and did not reduce losses due to joint friction, suggesting that 

integrating compliance directly into the mechanism might be preferable. 

Figure 1.5: Flapping wing systems with DC motors and metal springs. (a) A 5.8 gram flapping 

mechanism with linear spring and DC motor-driven piston developed at UC Berkeley [20]. A photo (b) 

and simplified diagram (c) of a prototype flapping-wing micro-air vehicle [19]. 

 

 To that end, other groups developed flapping wing mechanisms that transmitted power 

from a DC motor to the wings via a compliant frame, much like the compliant thorax of an 

insect. Sahai et al [21] integrated rubber-based flexures into the joins of an otherwise rigid 

transmission and found that the mechanism saved up to 20% of input power and produced more 

thrust than a rigid transmission for the same input. Researchers at UMD developed two 

compliant frames for their Small Bird and Jumbo Bird MAVs [22]. The Small Bird used a frame 

manufactured in one, injection-molded piece that reduced the weight and improved the 

efficiency of the transmission. For the Jumbo Bird, the designers utilized a multi-material 
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fabrication method to create a frame with rigid links coupled to compliant hinges, which also 

demonstrated improved efficiency. 

At small scales, DC motors become inefficient, so the smallest FWMAVs must use 

another method of actuation. Perhaps the most successful sub-centimeter scale FWMAV, the 

Robobee (Fig. 1.6), uses piezoelectric bending actuators and a transmission constructed from 

lightweight polyamide film and carbon-fiber-reinforced polymer to achieve controlled flight [3]. 

The transmission was fabricated via a method of laser-micromachining and lamination of 

different materials in 2D that could then be folded into 3D geometries. The flight of the 

Robobee, whose compliance comes from both the use of polyamide hinges in a carbon fiber 

transmission as well as the inherent elasticity of the piezoelectric actuators, relies on resonance 

of the system to achieve maximum lift and aerodynamic efficiency. Flight control was achieved 

by varying wing amplitude, relative phase, and center of oscillation, but frequency was held at 

120 Hz because of the significant drop off in lift away from the resonant frequency. 

 
Figure 1.6: The Harvard Robobee. (left) Photo of the Robobee. (right) A diagram showing the 

composite frame, piezoelectric “flight muscles,” and folded compliant transmission of the Robobee [3] 

  

 As evidenced by the success of the designs detailed above, compliant transmissions 

improve performance and enable flight even at very small scales. However, they present only 

part of the picture when it comes to compliant flapping wing systems. Each example of a 
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compliant flapping wing mechanism above incorporates only parallel elasticity. Insect flight 

morphology is characterized by both parallel and series elasticity, and therefore there are 

elements of the dynamics of such systems that have not yet been studied. 

 In a parallel elastic configuration, the actuator and spring are constrained such that they 

always have an equivalent deflection. The spring exerts a correcting force that pushes the motor 

back to the neutral position, and, at resonance, the storage and release of energy leads to a 

minimization of the power required to move the wing. In the series-elastic case, the motor and 

spring are subject not to a kinematic constraint, but a dynamic one. The motor and spring are 

subject to the same force, but they do not share the same kinematics. The kinematics of the wing 

depend on a combination of actuation input, system stiffness and inertia, and aerodynamic 

loading. As such, analysis of a series-elastic system requires consideration not only of the 

mechanics of the wing, but also of the aerodynamic mechanisms that dictate the forces on the 

wing. 

1.3: Aerodynamics of Flapping Wing Flight 

 The aerodynamics of flapping wing systems in nature have been studied extensively. As 

better methods of observing and recording the wing kinematics of such fliers improved in the 

mid-20th century, researchers began to propose models for understanding the aerodynamic 

mechanisms at play. Early studies suggested that a relatively simple, quasi-steady model could 

account for the dynamics observed, but it is now believed that unsteady fluid behavior (induced 

vortices, added mass, and wing-wake interaction) play a major role. The following section will 

discuss the factors that contribute to flapping wing aerodynamics. 
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1.3.1: The Quasi-Steady Model 

 The quasi-steady assumption refers to the hypothesis that the instantaneous forces on a 

flapping wing are those corresponding to steady motion at the same instantaneous velocity and 

attitude. Therefore, if the kinematics and geometry of the wing and the properties of the 

surrounding fluid are known, one should be able to compute the forces experienced by the wing. 

Coupled with blade-element theory, it becomes possible to resolve the force, 𝐹′, on a wing 

element into lift, 𝐿′, and drag, 𝐷′, components: 

𝐹′ = √𝐿′2 + 𝐷′2 

𝐿′ =
1

2
𝜌𝑐𝑈𝑟

2𝐶𝐿(𝛼) = 𝐹′cos(𝛼) 

𝐷′ =  
1

2
𝜌𝑐𝑈𝑟

2𝐶𝐷(𝛼) = 𝐹′sin(𝛼) 

where 𝜌 is the mass density of the fluid, 𝑐 is the wing chord, 𝑈𝑟 is the relative velocity 

perpendicular to the wing axis, and 𝛼 is the wing pitch angle. Integrating along the span of the 

wing gives the total force on the wing, which is proportional to the square of the velocity of the 

wing. Applications of this model also assume that, while the coefficients of drag and lift likely 

vary over a stroke, the variation is small enough that the mean coefficients over a stroke are 

sufficiently reliable.  

 The only real way to validate the quasi-steady model of flapping wing flight is via proof-

by-contradiction. Once the kinematics of a certain insect (or robot) are collected, the mean forces 

generated by the wings may be calculated. If those forces do not satisfy the net force balance of a 

flier, then it can be argued that the assumption must be false. This is the approach applied by 

Weis-Fogh, who found that the quasi-steady assumption was valid for hovering in hummingbirds 

and flies [23], [24]. However, Ellington, in his six-part treatise on the aerodynamics of hovering 
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insect flight [25]–[30], came to the opposite conclusion. His observations suggested that during 

hovering, when the reduced frequency, given by 

𝜅 =
𝜔 × 𝑏

𝑉
 

where 𝜔 is the circular frequency, 𝑏 is the airfoil semi-chord, and 𝑉 is the flow velocity, 

approaches infinity, unsteady features of the flow contribute significantly to the net forces on the 

wings. He argued that the quasi-steady assumption is not sufficient to describe the aerodynamics 

of flapping wings and described unsteady effects that could contribute to the net forces. Since his 

seminal publication, many others have continued to examine those factors, some of which will be 

discussed in the following sections. 

1.3.2 Unsteady Aerodynamic Mechanisms in Flapping Wing Flight 

 Five primary mechanisms have been identified to explain how insects generate 

aerodynamic forces with their wings: added mass, delayed stall due to a strong leading-edge 

vortex (LEV), rotational circulation, wing-wing interactions (“clap-and-fling”), and wing-wake  

 interactions. Combined with the quasi-steady assumption provided above, these mechanisms 

provide a strong model for the aerodynamics of flapping wing insect flight [31]. 

1.3.2.1: Added Mass 

The insect wing stroke consists of an upstroke, downstroke, and two reversal periods (supination 

and pronation) that ensure that the leading edge of the wing always leads (i.e. it maintains a 

positive angle of attack). When the insect decelerates its wing in order to reverse direction, it 

must also decelerate the air closest to the wing. This results in an additional force on the wing 

that is experienced as an additional wing mass by the flapping wing structure (Fig. 1.7 A, E). The 

effect is therefore referred to as “added mass” and can be modeled as a time-varying inertia that 

spikes at reversal, resulting in augmented aerodynamic force generation. 
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Figure 1.7: Overview of Aerodynamic Mechanisms in Flapping Wing Flight. (A) When starting up, 

the insect must overcome the added mass effect caused by the surrounding air. (B) During the mid-stroke 

of the wing trajectory, a strong, stable leading edge vortex is formed, greatly enhancing lift and 

preventing stall. (C) At reversal, the timing and duration of wing rotation can have significant effects on 

lift, drag, and flight efficiency. (D) Interactions between wings, such as the “clap-and-fling” mechanism 

shown here, can augment lift by creating an area of low pressure between the wings, above the insect. (E) 

Added mass also has an influence during reversal, when the insect must decelerate and accelerate the 

fluid closest to the wing. (F) After reversal, the wing sweeps back through the flow induced by the last 

semi-stroke, increasing the relative velocity of the fluid with respect to the wing, augmenting the lift/drag 

experienced by the wing. In all figures, the wing is drawn in black with the leading edge designated by a 

circle. The diagram in the upper right indicates at which point during the wing stroke each mechanism is 

active. Figures adapted from [31]. 

 

1.3.2.2: Delayed Stall and LEV 

 During flapping at high angle of attack, the air flow separates at the leading edge, and the 

separated boundary layer rolls into a strong leading-edge vortex (LEV) that remains stably 

attached to the wing during the wing stroke (Fig. 1.7 B). In 2D translation, such a vortex would 

be expected to grow larger until it can no longer remain attached to the wing, causing the flow to 

separate and the vortex to shed and form a von Karman street. However, in 3D wing rotation, 

Coriolis accelerations cause momentum to be transferred in the spanwise directions, creating a 

helical vortex that enhances lift (and drag) on the wing and remains attached to the wing 
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throughout the wing stroke [32]. This mechanism is thought to be the primary source of lift 

augmentation in the mid-stroke.    

1.3.2.3: Rotational Circulation 

 During reversal, the wing rotates so that the insect always maintains a positive angle of 

attack. Sane and Dickinson studied the influence wing rotation has on lift and drag via a 

dynamically scaled model insect [1], [33], [34]. They found that due to the Kramer effect, a 

phenomenon in which a rotating wing induces rotation in the surrounding fluid, wing rotation 

has a significant effect on the lift and drag experienced by the wing during the wing stroke (Fig. 

1.7 C). In hovering flight, these effects contribute up to 35% of lift in a robotic model of a fruit 

fly and 50% of lift in a robotic model hoverfly [1]. Note, however, that these values may not be 

quantitatively accurate because of the limitations of using such a scaled robotic model. 

1.3.2.4: The Clap-and-Fling Mechanism 

 First proposed by Weis-Fogh [24] to explain high lift in tiny flying insects, clap-and-fling 

is a mechanism that some insects use to magnify the lift they generate (Fig. 1.7 D).. In clap-and-

fling, an insect’s wing amplitude is large enough that its wings meet (‘clap’) at the top of the 

upstroke, expelling a jet of fluid from the trailing edge. When the wing stroke reverses, the 

leading edges of the wings peel off while the trailing edge remains attached, creating a low-

pressure region between them and inducing opposite vortices on each wing as it translates 

(‘fling’). This mechanism leads to higher lift, but considering that it is relatively uncommon in 

flying insects, the effect may be fairly small [32]. It also may be explained as a result of a need to 

increase wing stroke amplitude to the mechanical limits of the insects, which is also desirable for 

maximum lift. 
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1.3.2.5: Wing-Wake Interactions  

Following stroke reversal, a flapping wing can recover some energy lost to the fluid by 

“capturing” vorticity from the wake induced by the previous semi-stroke (Fig. 1.7 E). Dickinson 

observed that this results in a peak in aerodynamic forces immediately following stroke reversal. 

This so called “wake capture” mechanism may contribute as much as 25% of total lift during 

hovering, an effect that increases with larger amplitudes [34]. The phenomenon is, however, 

difficult to measure directly. Dickinson used particle image velocimetry to create images that 

show significant wake induced by the previous stroke and estimated the magnitude by observing 

the differences between measured forces and wing acceleration effects [1], [34]. 

1.4: Summary & The Robophysical Approach 

 Evidence suggests that the elasticity of insect wing transmissions enables more efficient 

flight via dynamic energy storage and return during flight. This is further supported by findings 

by roboticists that suggest that compliant transmissions in flying robots result in energy savings 

and higher thrust. However, most implementations of compliance have been in parallel with the 

actuation method, not in series. Insects have examples of both series and parallel elasticity in 

their wing transmission, so a better understanding of the influence of series-compliance on the 

dynamics of flapping wing systems is necessary to understand the overall dynamics and control 

of compliant flapping wing systems.  

We have designed a dynamically scaled, robophysical model of a series-elastic flapping 

wing transmission in order to investigate the influence of aerodynamic forces, system parameters 

like inertia and stiffness, and actuation input on the dynamics of such systems. The robophysical 

approach to the study of flapping wings is not new; Dickinson used a scaled-up “RoboFly” 
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immersed in mineral oil to study forces on the wings of flying insects, and Ellington used a 10-

times scaled flapper in air for flow visualization (Figure 1.8) [1], [35].  

Figure 1.8: Other robophysical studies of flapping wings (top) C. van den Berg & C. P. Ellington used 

a 10x scaled flapping wing modeled after the hawkmoth (Manduca Sexta) for visualization of LEVs in 

air. [35] (bottom) Dickinson et al. performed dynamically-scaled experiments in mineral oil with a 

flapping wing model equipped with force sensors in an effort to characterize the aerodynamic 

mechanisms involved in insect flight [1]. 

 

However, both studies incorporated rigid transmissions so they could directly control the 

kinematics of the wing through the fluid. In our series-compliant transmission, the wing 

kinematics are a cumulative result of the interactions between the mechanical system and the 

fluid through which the wing moves. We seek to investigate how series-compliance influences 

the dynamics and control of flapping wing systems by characterizing the design parameter space. 

  This thesis will detail the design and implementation of a dynamically scaled, series-

elastic robophysical system. It will then discuss the results of a first project that seeks to test the 

hypothesis that unsteady aerodynamic mechanisms including wing-wake interactions and added 

mass have a significant effect on the dynamics of series-elastic flapping wing system. 
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Experimental results will be compared to those of a lower-order analysis of series-elastic systems 

and the differences between them will be discussed. 
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CHAPTER 2: METHODS & EXPERIMENT DESIGN 

 In order to study the dynamics of series-elastic flapping wings, we propose a simplified 

model of such systems and construct a dynamically-scaled robophysical analogue. We perform a 

range of experiments to evaluate the effects of varying motor input trajectory and physical 

system parameters on the wing trajectory and energetics of the wing transmission. Specifically, 

we track the trajectory of the wing induced by inputs with various amplitudes and frequencies to 

reveal features of the entire parameter space. 

2.1 Simplified Model of a Series-Elastic Wing 

   

Figure 2.1: Simplified system diagram 

As discussed in Chapter 1, evidence suggests that insects store energy in a compliant 

thorax, elastic tendons, and elastic wing hinges in order to achieve improved flight efficiency. 

Exactly how energy is distributed across elastic regions of an insect’s anatomy is not yet fully 
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understood, so attempting to precisely mimic an insect here is unrealistic. Instead, we choose to 

isolate the series-elastic dynamics of the wing transmission in order to study their contributions 

to overall wing dynamics. We model the behavior of muscle contractile elements as a prescribed 

displacement and the sum of the elastic proteins in tendons and joints as a single elastic element.  

 The diagram in Figure 2.1 represents the simplified model of the robophysical system.  It 

is a forced harmonic oscillator subject to nonlinear fluid damping forces and consists of a 

rotating mass with constant inertia I, a torsion spring with stiffness K, and an aerodynamic drag 

force 𝐹𝑎𝑒𝑟𝑜. Assuming the load on the wing is quasi-steady with a constant coefficient of drag, C, 

its equation of motion is 

𝐼𝜃̈𝑤  = 𝐾(𝜃𝑚 − 𝜃𝑤) − 𝐶𝜃̇𝑤
2

(2.1) 

The motor angle, 𝜃𝑚, is the input to the system, and will be a sinusoid with amplitude 𝐴𝑚 and 

frequency 𝜔: 

𝜃𝑚 = 𝐴𝑚 sin(𝜔𝑡) (2.2) 

By choosing an explicit input displacement over an explicit input force, we are able to decouple 

the dynamics of the series-elastic system from the dynamics of the motor. This simplifies the 

analysis of the system and allows us to focus on the effects of the stiffness and aerodynamic 

force terms in the governing equations. However, this choice requires that our robophysical 

system must use a motor that has a high enough continuous torque that its dynamics are 

significantly faster than those of the wing/spring assembly. Motor selection is addressed in detail 

in Section 2.3.  

2.2 Dynamic Scaling  

 In order to make this investigation relevant to micro-robotic and biomechanical interests, 

it is important that the system be properly scaled. The kinematics and geometry of a flapping 



18 

wing can significantly affect the formation of fluid structures (boundary layers, LEVs, etc.) about 

the wing and therefore affect the fluid forces on the wing. Thus, it is important that the 

robophysical system operate in the same Reynolds number regime as the biological and robotic 

systems [31], [36]. Insects typically fly in the range of 𝑅𝑒 = 102 − 104, so we seek to design a 

robophysical system that operates in a similar range but at a larger scale. Reynolds number for a 

flapping wing is a function of the mean velocity of the wing tip, 𝑈̅; the mean chord length, c; and 

the kinematic viscosity of the fluid, 𝜈:  

𝑅𝑒 =
𝑈̅𝑐

𝜈
(2.3) 

The mean velocity of the wingtip (assuming sinusoidal motion of the wing) is 

𝑈̅ =
𝐿𝜔

𝜋
∫ 𝐴𝑤𝜔 cos(𝜔𝑡) 𝑑𝑡

𝜋
𝜔

0

=
2𝐿𝐴𝑤𝜔

𝜋
(2.4) 

where L is the span length of the wing and 𝐴𝑤 is the amplitude of the wing stroke. 

 Table 2.1 gives the scaled parameters for the robophysical system. The resulting 

kinematics are roughly on the order of 𝑅𝑒 =  102  −  104, so the observations from our 

experiments should be transferable to microrobotic or insect applications. The lowest amplitude-

frequency combinations are on the order of small insects like flies and bees, and the highest are 

closer to larger insects like moths, as well as some small birds.  

It should be stated: part of the challenge of dynamic scaling for this device is that 

typically, individual species of insects fly using a much smaller range of amplitudes and 

frequencies than we are exploring in this study. As a result, it is impossible to maintain a 

constant Reynolds number, or even a narrow range of Reynolds numbers, as would be needed to 

study the dynamics of a single species of insect. Instead, this study seeks to reveal features of the 
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parameter space that may suggest why insects operate in those regimes, and to inform future 

design and control of series-elastic FWMAVs. 

Table 2.1: Scaling Parameters for the Robophysical System 

Parameter Value Units 

Wing Span Length 10 cm 

Mean Wing Chord Length 3.6 cm 

Kinematic Viscosity of Water 8.01 × 10−7 𝑚2

𝑠
 

Amplitude Range 10 - 64 deg 

Frequency Range 0.5 - 4.1 Hz 

Reynolds Number Range ~200 - 14000 - 

 

2.3 Robophysical System Design 

 

Fig 2.2: (left) Robophysical system diagram. (right) Photo of robophysical system 
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The series-elastic robophysical system has been designed to reflect the simplified model 

introduced in Section 2.1 as closely as possible. The primary frame is constructed from T-Slot 

aluminum and is supported above a 560 liter (147.9 gallon) plastic tank filled with water by a 

secondary frame of steel struts. To reduce undesirable vibrations in the secondary frame, it is 

constrained by nylon ratchet straps wrapped around the tank. 

The primary frame houses the components that constitute the series-elastic transmission. 

These components include: 

• A high-torque servo for direct position control 

• A silicone rubber torsion spring that acts as an elastic element  

• A rigid transmission consisting of aluminum pulleys, a fiberglass-reinforced neoprene L-

series timing belt, lubricated ball bearings, and air bushings 

• A fixed-pitch, rigid acrylic wing fixed to a rotating shaft 

• Optical encoders on both the motor and wing shafts to track angular position 

The following sections discuss the design and selection of these components. 

2.3.1 Servo Motor Selection 

We seek to use this robophysical device to better understand features of series-elastic 

wing dynamics that arise from changes in input trajectory, system stiffness, and system inertia. 

We would like to be able to decouple the motor dynamics from the system dynamics, which 

means that the dynamics of the motor and motor controller must be significantly faster than the 

desired input signal. In other words, we need a motor with position control capabilities and a 

high enough operating torque that the torques exerted on the system by the fluid are relatively 

small. 
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Figure 2.3: Image of Teknic ClearPath servo motor 

 The selected motor is a high-torque servo (Teknic ClearPath-SDSK Integrated Servo 

System) (Fig. 2.3). It is designed for similar applications to stepper motors, but it features higher 

continuous torque (3.4 Nm) and more customization options than a typical stepper motor.  

The predicted maximum torque on the motor due to fluid drag is 

𝑇𝑚𝑎𝑥 = 𝐶𝜃̇𝑤
2 (

𝐿

3
) . (2.5) 

Computing C based on [1] using the parameters defined in Table 2.1 and plugging into Equation 

2.5 gives a maximum torque of 

𝑇𝑚𝑎𝑥 = (0.0209 𝑁𝑠2)(4.5 𝐻𝑧)2 (
0.1 

3
 𝑚) ≈ 0.014 𝑁𝑚 

This maximum theoretical torque is two orders of magnitude smaller than the continuous torque 

of the motor, so we can safely assume that the dynamics of the motor and system are decoupled. 

The servo has two options for position/velocity control: step and direction or A/B 

quadrature. To achieve precise position control, we chose the step and direction option with a 

4096 CPR resolution. We use a Pololu TIC 834 USB Multi-Interface Stepper Motor Controller 
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to convert continuous analog voltage signals from a USB DAQ unit to high-frequency step and 

direction signals. More details on the electronics and control scheme can be found in Section 2.4. 

2.3.2 Series-Elastic Element 

 A key component of the series-elastic wing system is the elastic element itself. Early 

versions of the robophysical device used metal extension springs to achieve the desired effect. 

Aluminum timing belt pulleys were fixed to the motor and wing shafts, respectively, and an 

inextensible reinforced nylon timing belt was used to connect them. The springs were 

incorporated by cutting the timing belt and using 3D-printed adapter pieces to insert the metal 

springs, as shown in Figure 2.4.  

Figure 2.4: Robophysical system prototype with steel extension springs 

This solution was functional and produced preliminary data, but the metal springs 

introduced mechanical limits on the range of the device that limited the capabilities of the 

system. If the amplitude of the motion of either shaft exceeded a certain limit (as may happen at 

resonance), the spring-belt adapters would collide with the pulley and cause the belt to fall off 
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and invalidate that experiment. Further, it was difficult to maintain the repeatability of 

experiments, as the springs would inevitably extend over time as they were often forced beyond 

the elastic regime. Beyond issues with the mechanical limits of the system, the steel springs 

would occasionally be forced into higher modes of vibration, causing lateral bending that was 

unmodelled and, at high amplitudes, could also cause the belt to slip off the pulleys. These 

mechanical and modeling limitations necessitated that another elastic element be developed. 

To eliminate these limitations, a cast silicone torsion spring (Fig. 2.5) was designed to 

replace the steel springs. Silicone was chosen for its desirable material properties, including 

linear elasticity even at large strains and durability over time, and for its ability to be formed into 

various geometries. 

2.3.2.1: Specifying the Geometry of the Silicone Element 

 The silicone elastic element in this robophysical system is modeled as a linearly elastic, 

cylindrical torsion spring whose governing equations are 

𝑇 =
𝜋𝐺𝑟4

2𝐿
𝜙 (2.6)     

𝛾 =
𝑟

𝐿
𝜙 (2.7) 

Where T is the torque due to deflection 𝜙, G is the shear modulus of the silicone material, 𝛾 is 

the maximum shear strain in the element, r is the radius of the cylinder, and L is the length of the 

cylinder. From these equations, we may design a spring with a specified stiffness given a known 

shear modulus, G. Additionally, the strain rate, 
𝑟

𝐿
, is directly controllable by changing the 

geometry. By keeping the strain rate small, the spring remains in the linear elastic region even at 

larger deflections. In order to minimize the unmodeled effects of twisting at the end joints, the 

silicone element was designed in an “I” shape whose flanges are clamped to adapters that attach 

to the transmission shafts.  
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Figure 2.5: Design, fabrication, and testing of a silicone torsion spring. (Top) The geometry 

of the element is determined by the desired stiffness and strain rate and created in 3D CAD 

software. A mold with a negative geometry corresponding to the desired shape is 3D printed and 

Dragon Skin™ 20 platinum cure liquid silicone is prepared and poured into the mold. After 24 

hours, the silicone element is removed from the mold and fixed between acrylic plates affixed 

with steel flange collars that act as adapters to the motor and wing assemblies. (Bottom) Results 

of a torsion test to characterize the elasticity of a silicone torsion element. Raw test data are 

shown in blue, while the least squares fit is shown in rad. Given an element with known 

geometry, this method was also used to determine the shear modulus of the silicone, which was 

not available from the manufacturer. 
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2.3.2.2: Silicone Element Fabrication and Properties 

The process of fabricating a silicone torsion element begins by creating a mold in CAD 

software which is the negative of the desired geometry. The model is then 3D printed in two 

parts and assembled. Silicone release spray is used to prepare the surface that will come in 

contact with liquid silicone, and the seam between the halves of the mold is sealed using tape and 

a thin rubber gasket cut into the shape of the mold, if necessary, to prevent leaks. 

 The silicone comes in two parts, A and B, which are measured out in equal portions (by 

mass) so that the total volume of the mixture is the volume of the silicone element. The mixture 

has a pot life of 25 minutes, in which time it must be blended thoroughly and de-gassed in a 

vacuum chamber to minimize the occurrence of air bubbles in the final product. Finally, the two-

part mixture is poured into the 3D-printed mold and allowed to cure for 24 hours before being 

removed and prepared for use in experiments 

Several silicones – with hardnesses ranging from Shore 00-10 to Shore 30A – were tested 

in a custom torque measurement apparatus, and shear moduli were determined for the 10A, 20A 

and 30A silicones (Table 2.2). Testing confirmed that there is a linear relationship between 

deflection and torque for angles up to 0.8 radians (~46 degrees) and minimal hysteresis effects. 

The 20A silicone was selected as most able to provide the desired stiffnesses given the geometric 

constraints of the robophysical device, and elements of several different stiffnesses were 

produced (Table 2.3).  

Table 2.2: Shear Moduli of Select Silicones 

Name Shore Hardness Shear Modulus (kPa) 

Dragon Skin 10 (SmoothOn) 10A 72.26 

Dragon Skin 20 (SmoothOn) 20A 145.96 

Dragon Skin 30 (SmoothOn) 30A 261.97 
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Table 2.3: Fabricated Silicone Elements 

Silicone Element Radius (cm) Length (cm) Stiffness (Nm/rad) 

A 1.27 4.0 0.150 

B 1.48 4.0 0.275 

C 1.625 4.0 0.400 

D 1.74 4.0 0.525 

 

2.3.3: Rigid Transmission Components 

 The rigid components of the robophysical transmission were designed to transmit torque 

while minimizing energy loss to friction. The motor is coupled to the input end of the silicone 

spring by a steel flange coupler. On the output end, the same coupler is used to connect the 

spring to a ½” steel shaft constrained by lubricated ball bearings. An aluminum timing belt 

pulley (Diameter: 3.094”) is fixed to the shaft and transmits torque to the primary wing shaft via 

a ½” L-series timing belt (fiber-reinforced nylon). The ½” shaft is constrained by a pair of air 

bushings, which provide superior friction reduction. A step-down coupler is then used to connect 

the primary wing shaft to the secondary wing shaft, a ¼” steel shaft to which the acrylic wing is 

affixed. 

 Alignment and proper lubrication of these components is crucial to the function of the 

robophysical system. Unmodeled friction may invalidate testing results, so care must be taken to 

regularly inspect the primary frame assembly, correcting misalignments, tightening bolts, 

applying lubrication, and maintaining proper belt tension.  

2.3.4: Fixed-Pitch Acrylic Wing 

 Flying insects and most FWMAVs have flexible wings that rotate along the wing span 

due to aerodynamic loading and inertial acceleration during the wing stroke. The effect that this 

rotation and accompanying variation of angle of attack has on lift, drag, and power requirements 
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has been studied [34] and is further complicated by compliant properties of the wings 

themselves. In order to simplify our analysis and further focus on the dynamics of the wing 

transmission itself, a fixed-pitch, rigid acrylic wing (Fig. 2.5) was selected for this initial 

investigation. The wing is a 10 cm x 3.6 cm rectangle made of clear, ⅜” acrylic whose edges 

have been filed to a smooth curve. It is fixed to a ¼” steel shaft by an aluminum adapter and its 

pitch can be pre-set by adjusting the adapter.  

2.3.5: Optical Encoders 

 The functionality of the robophysical system depends on reliable measurement of the 

angular position of the motor (input) and wing shaft (output). This is achieved using two optical 

rotary encoders (US Digital) – one fixed to the input side of the elastic element, and the other to 

the wing shaft. Each encoder disk has a resolution of 1024 CPR, which results in a functional 

resolution of 4096 CPR via quadrature. Output from the encoders is collected continuously 

during operation and analyzed during post-processing in Matlab. 

2.4: Experiment Design & Data Collection 

 This robophysical model of a series-elastic wing enables us to investigate how the series-

compliance of a flapping wing transmission influences the dynamics and control of flapping 

wing systems. To do this, we ran a series of steady-state experiments varying 

• Motor input amplitude and frequency (Table 2.1), 

• Silicone spring stiffness (Table 2.3), and 

• Total system inertia (Table 2.4). 

The system inertia was varied by fixing a circular aluminum plate (Figure 2.6) to the 

wing shaft and adding mass in the form of steel nuts, and the spring stiffness was varied by 

swapping out different silicone springs for each suite of tests. The acrylic wing was fixed at a 90-
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degree angle of attack for all tests, maximizing drag and increasing the likelihood of significant 

wing-wake interactions [1]. 

 
Fig 2.6: Photo of inertia plate used to vary inertia for experiments 

 

 Table 2.4: System Inertia Values for Amplitude-Frequency Sweep Tests 

Name I1 I2 I3 

Inertia (kg m2) 0.00136 0.00259 0.00290 

 

Figure 2.7 provides a diagram of the experiment process. In Matlab, the user prescribes 

two vectors of amplitudes and frequencies at which to run tests. The code runs through each 

combination, generating a reference signal and queueing it for output to a NI USB DAQ. When 

the DAQ is triggered, it outputs an analog voltage between 0 and 5V to a TIC834 stepper driver 

that converts the signal into step and direction commands that allow the motor to follow the 

reference signal as a displacement target. For 30 seconds the motor drives the series-elastic wing 

while the motor and wing encoder channels are sampled at 1kHz and the instantaneous counts 
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and run time are saved in a text file. Once all of the combinations of parameters have been 

exhausted, the next spring and inertia are installed and experiments are repeated. 

Figure 2.7: System operation process diagram. For each combination of amplitude and frequency 

tested, the Matlab generates a stroke profile and queues it for the NI USB DAQ. It then triggers the NI 

DAQ output to send an analog voltage to a stepper motor controller, which translates the signal into an 

angular reference position relative to the starting point. It sends step and direction signals to the servo to 

follow the reference position, causing the servo to move based on the analog signal. During operation, 

motor and wing encoder positions are tracked in dedicated channels on a Sensoray 826 PCI board. The 

encoder channels are polled at 1kHz and stored in text files. 

 

2.5: Data Processing  

 Once a full suite of tests has been run, the data collected is processed in Matlab. The 

encoder readings are loaded from text files and trimmed to remove transient start-up and end 

effects. Since both signals are very nearly sinusoidal, we perform an FFT on each, obtaining the 

amplitude, frequency, and phase of the principal component of the signal, though we use only the 

amplitude. We define the amplitudes as shown in Figure 2.8, and define an amplitude gain: 

𝐺𝑎𝑖𝑛 =
𝐴𝑤𝑖𝑛𝑔

𝐴𝑚𝑜𝑡
 

Amplitude gain is the primary metric we use for our analysis. Its significance is discussed in 

detail in Chapter 3. 
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Figure 2.8: Representative example of raw data before processing. The encoder position of the wing 

and motor are tracked by the Matlab code. The amplitudes of oscillation, 𝐴𝑚𝑜𝑡 and 𝐴𝑤𝑖𝑛𝑔, respectively, 

are computed via FFT, along with frequencies and phase delays. 
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CHAPTER 3: RESULTS & DISCUSSION 

 A suite of tests was performed to investigate the resonance properties of a series-elastic 

flapping wing system. The actuation amplitude was varied across 19 values from 10 to 64 

degrees and the frequency across 19 values from 0.5 to 4.1 Hz. For each combination, the 

amplitude gain was computed as defined in Chapter 2.5. A plot showing the gains from a single 

input amplitude is shown in Figure 3.1B, and a heat map of gains over amplitude and frequency 

is presented in Figure 3.1C. 

3.1: Amplitude-Frequency Sweep Results 

Figure 3.1: Construction of amplitude gain maps. (A) For each input amplitude, 19 tests were run 

across frequencies between 0.5 and 4.1 Hz and stored. (B) The amplitudes of the wing and motor 

trajectory, respectively, were found using FFT in Matlab and divided to generate the amplitude gain for 

that trial. (C) The process was repeated over each motor input amplitude (19 tests between 10 and 64 

deg), and the gains were plotted as a heat map whose color corresponds to amplitude gain. The resonant 

peaks were computed for each input amplitude, and a line (shown in red) was fit to smoothly indicate the 

peaks. For comparison, the undamped natural frequency for the specified stiffness K and inertia I. 
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 In order to observe the effects on gain of changes in spring stiffness and total system 

inertia, further suites of tests were performed across 4 silicones with varying stiffnesses (See 

Table 2.3) and 3 values of system inertia. The system inertia was varied by the addition of an 

aluminum plate and steel nuts to the wing shaft. Added mass was calculated roughly as a 

cylinder of water with a height equal to the span length of the wing and a diameter equal to its 

chord length 

 Figure 3.2 shows the gain maps resulting from each combination of stiffness and inertia 

tested. Figure 3.3 represents the same data but rotated about the frequency axis and weighted by 

the input amplitudes to visualize the wing amplitude for various configurations. The following 

section will discuss some of the relevant features of this data. 

3.2: Features of Gain Plots 

The amplitude gain plots in Figures 3.2 and 3.3 represent a sample of the series-elastic 

flapping wing parameter space that enables us to describe some of the general behavior of these 

complex systems. 

3.2.1: Resonance Behavior 

 As expected, the series-elastic flapping wing system exhibits resonance. Gains are near 

unity at low frequencies where the influence of fluid drag forces are small relative to the stiffness 

of the spring. Gain reaches its peak at a resonant frequency, after which it drops off. At those 

higher frequencies where gain is less than unity, the spring actually limits the performance of the 

wing. Unlike the familiar harmonic oscillator, however, the resonant frequency is a function of 

amplitude 
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Figure 3.2: Amplitude gain heatmaps for varying stiffness and inertia. Each plot above represents a 

suite of experiments with varying motor amplitudes (vertical axis) and frequencies (horizontal axis). 

Silicone spring stiffness increases top-to-bottom, and inertia increases left-to-right. The color corresponds 

to the gain at each test configuration ranging from 0.1 (blue) to 2.9 (yellow). Amplitude gain is highest at 

low amplitudes for all configurations, but peak gains are generally higher for higher inertia. However, 

higher peaks come with steeper drop-off when the frequency is away from resonance; in contrast, gain is 

close to unity across a wide range of frequencies for lower inertia configurations. The peak gain for each 

input amplitude is fit to a line (red), and the undamped natural frequency computed from the stiffness and 

inertia is provided for reference (yellow dashed). In configurations where the inertia is smaller, the peak 

gain has a relatively strong dependence on motor amplitude, whereas the dependence is much smaller for 

high-inertia cases. 
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Figure 3.3: Wing amplitudes resulting from varying input parameters. These plots represent the 

same data as in Fig. 3.2 but rotated about the frequency axis and weighted by the motor amplitude. Each 

line in a plot represents the wing amplitudes resulting from a single motor amplitude across frequencies; 

the lowest motor amplitudes are at the bottom, and the highest are at the top. The peak output amplitude 

corresponding to maximum gain is marked by a red diamond. Note that the amplitude bandwidth (the 

difference between the highest and lowest wing amplitude over all motor amplitudes) is severely 

attenuated at high frequencies when the ratio of stiffness to inertia 
𝐾

𝐼
 is small. When 

𝐾

𝐼
 is larger, however, 

the bandwidth remains relatively consistent over frequencies. 

 

3.2.2 Resonance Frequency Dependence on Motor Amplitude 

 It is clear by looking at Figures 3.2 and 3.3 that the measured resonance frequency is a 

function of amplitude, especially for configurations where stiffness is high and inertia is low, i.e. 
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the quantity 
𝐾

𝐼
 is large. This effect appears to be due to the linear relationship between amplitude 

and maximum wing velocity (𝑢𝑚𝑎𝑥 = 𝐴𝑤𝜔) combined with the quadratic relationship between 

fluid damping and velocity. The higher the amplitude, the larger the influence of fluid drag, 

which shifts the resonant peak lower.  

However, this effect is diminished when I is large compared to K, i.e. 
𝐾

𝐼
 is small. When the 

inertia increases, the force required to accelerate the wing increases, and the relative influence of 

drag on the wing system is decreased. In the case of an oscillator with linear damping, the 

damped natural frequency can be found to be 

𝜔𝑑 = √
𝑘

𝐼
− (

𝑐

2𝐼
)

2
 

When I is large, 𝜔𝑑 approaches the undamped natural frequency: 𝜔𝑛 = √
𝑘

𝐼
 . Similarly, the 

systems with highest inertia and lowest spring coefficient behave as if they are subject to less 

damping than other configurations.  

3.2.3 Wing Amplitude Bandwidth Varies with System Parameters 

 Another feature of the series-elastic system can be observed from the wing amplitude 

plots in Figure 3.3; when the stiffness of the transmission is held constant, increases in inertia 

result in more severe attenuation of the wing amplitude bandwidth at high frequencies. At 

frequencies below resonance where gains are near unity, there is a broad range of wing 

amplitudes that are reachable by actuating the system at some amplitude. Above resonance, gains 

that are less than unity start to reduce the range of possible wing amplitudes. This effect is most 

severe for systems with high inertia. 
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 This bandwidth attenuation effect is important for designers of series-elastic flapping 

wing systems because it represents a kind of saturation that could limit the control authority they 

may exert on the system. A potential flying robot may choose to have a high wing and 

transmission inertia to take advantage of the large peak gains observed in Figure 3.2, but it would 

be forced to operate within a small range of frequencies to maintain controllability. This result 

could also suggest a reason why insects may remain within a small range of frequencies: not only 

is it favorable for efficiency, it may also be important for consistent flight control. 

3.3: Aerodynamic Power and Amplitude Gain 

 The amplitude gain displayed in the plots in Section 3.1 is a metric that is clearly 

important to the performance of such series-elastic systems; larger gain means larger output 

amplitude, which means that the actuator will do less work to achieve the same output dynamics. 

However, it is necessary to explicitly demonstrate this relationship.  

 As a first step, we derive expressions for the input and output power for the system. The 

equation of motion of the forced series-elastic wing is 

𝐼𝜃̈𝑤 = 𝑘(𝜃𝑚 − 𝜃𝑤) − 𝐹𝑎𝑒𝑟𝑜 (3.1) 

Using the simplified model presented in Chapter 2, Equation 3.1 becomes 

𝐼𝜃̈𝑤 = 𝑘(𝜃𝑚 − 𝜃𝑤) − 𝐶̅𝜃̇𝑤
2 (3.2) 

Where I is the inertia of the system, 𝑘 is the torsional stiffness of the silicone spring,  𝐶̅ is the 

mean coefficient of aerodynamic drag on the wing, and 𝜃𝑚 and 𝜃𝑤 are the angular position of the 

motor and wing, respectively. The instantaneous energy of the system can be given as the sum of 

two components: the inertial (kinetic) energy, 𝐸𝐼, and the spring (potential) energy, 𝐸𝑆. There is 

also energy lost to fluid drag, 𝐸𝐷, defined over a single cycle: 

𝐸𝐼 =
1

2
𝐼𝜃̇𝑤

2
(3.3) 
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𝐸𝑆 =
1

2
𝑘(𝜃𝑚 − 𝜃𝑤)2 (3.4) 

𝐸𝐷 = ∫ 𝐶𝐷𝜃̇𝑜
3𝑑𝑡

1
𝜔

0

(3.5) 

where 𝜔 is the driving frequency from the motor. By conservation of energy: 

𝑊𝑖𝑛 − 𝐸𝐼 − 𝐸𝑆 − 𝐸𝐷 = 0 (3.6) 

Taking the derivative of (3.6): 

𝑃𝑖𝑛 =  𝐸̇𝐼 + 𝐸̇𝑆 + 𝐸̇𝐷  

= 𝐼𝜃̇𝑤𝜃̈𝑤 + 𝑘(𝜃𝑚 − 𝜃𝑤)(𝜃̇𝑚 − 𝜃̇𝑤) + 𝐶̅𝜃̇𝑤
3 (3.7) 

Combining (3.2) and (3.7), we get an expression for the power input: 

𝑃𝑖𝑛 = 𝑚𝜃̇𝑤𝜃̈𝑤 + 𝑘(𝜃𝑚 − 𝜃𝑤)(𝜃̇𝑚 − 𝜃̇𝑤) + 𝐶̅𝜃̇𝑤
3  

= (𝑘(𝜃𝑚 − 𝜃𝑤) − 𝐶̅𝜃̇𝑤
2 )𝜃̇𝑤 +  𝑘(𝜃𝑚 − 𝜃𝑤)(𝜃̇𝑚 − 𝜃̇𝑤) + 𝐶̅𝜃̇𝑤

3  

= 𝑘(𝜃𝑚 − 𝜃𝑤)𝜃̇𝑤 +  𝑘(𝜃𝑚 − 𝜃𝑤)(𝜃̇𝑚 − 𝜃̇𝑤) 

= 𝑘(𝜃𝑚 − 𝜃𝑤)𝜃̇𝑚 = 𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝜃̇𝑚 

 Equation 3.8 allows us to compute the motor power input from only the kinematics of the 

actuator and wing given that we know the stiffness of the silicone element. The useful power 

output of the wing is given by 

𝑃𝑜𝑢𝑡 =  𝐸̇𝐼 + 𝐸̇𝐷 

= 𝐼𝜃̇𝑤𝜃̈𝑤 + 𝐶̅𝜃̇𝑤
3 (3.9) 

Substituting (3.2) into (3.9): 

 

𝑃𝑜𝑢𝑡 = (𝑘(𝜃𝑚 − 𝜃𝑤) − 𝐶̅𝜃̇𝑤
2 )𝜃̇𝑤 + 𝐶̅𝜃̇𝑤

3  

= 𝑘(𝜃𝑚 − 𝜃𝑤)𝜃̇𝑤 = 𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝜃̇𝑤 (3.10) 

(3.8) 
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We are interested in examining how series-elastic transmissions affect the power requirements of 

flapping wings, so we may propose a power ratio, 𝑅𝑃, defined as the ratio between the output 

and input power: 

𝑅𝑃 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

(3.11) 

Plugging (3.8) and (3.10) into (3.11) yields 

𝑅𝑃 =
𝑘(𝜃𝑚 − 𝜃𝑤)𝜃̇𝑤

𝑘(𝜃𝑚 − 𝜃𝑤)𝜃̇𝑚

=
𝜃̇𝑤

𝜃̇𝑚

, (3.11) 

revealing that the ratio of output and input power is equivalent to the ratio between the velocities 

of the motor and wing. The input 𝜃𝑚 is prescribed as sinusoidal and we assume that 𝜃𝑤 is close 

to sinusoidal with the same frequency and phase delay 𝜙, 

𝜃𝑚(𝑡) = 𝐴𝑚 sin(𝜔𝑡)         (3.12) 

𝜃𝑤(𝑡) = 𝐴𝑤 sin(𝜔𝑡 + 𝜙) (3.13) 

Taking derivatives of (3.12) and (3.13) and plugging into (3.11),  

𝑅𝑃 =
𝐴𝑤𝜔 cos(𝜔𝑡 + 𝜙)

𝐴𝑚𝜔 cos(𝜔𝑡)
(3.14) 

Taking the average over one cycle, 

𝑅𝑃 =
𝐴𝑤

𝐴𝑚
= 𝐺𝑎𝑖𝑛 (3.15) 

Which is equivalent to the amplitude gain computed from our experimental data. Therefore, the 

observed amplitude gain of the series-elastic system is a measure of the ratio of the cycle-

averaged output power to the cycle-averaged input power. 
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3.4: Maximum Gain and Optimal Stiffness 

 Now that we have an expression for gain that is informed by the dynamics of the system, 

we may describe the conditions at which the amplitude gain will be maximum. Combining the 

definition of amplitude gain with Equations (3.11), (3.7), and (3.9),      

𝐺𝑎𝑖𝑛 = 𝑅𝑃 =
𝑃̅𝑜𝑢𝑡

𝑃̅𝑖𝑛

=
𝐸̇𝐼 + 𝐸̇𝐷 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝐸̇𝐼 + 𝐸̇𝑆 + 𝐸̇𝐷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

=  
𝑘(𝜃𝑚 − 𝜃𝑤)𝜃̇𝑤

𝑘(𝜃𝑚 − 𝜃𝑤)𝜃̇𝑚

(3.16) 

with bars to indicate that the terms are averaged over a cycle. In the case when stiffness 𝑘 is very 

large (a rigid transmission), 𝐸̇𝑠 approaches zero, and the amplitude gain is unity. The wing 

trajectory tracks the actuator input exactly and the power input is equal to the power output. 

However, when 𝑘 is small relative to the inertial and aerodynamic loadings, 𝐸̇𝑠 becomes a 

function of the motor input and the inertia, stiffness, and aerodynamic parameters, and, by 

extension, so does the amplitude gain.  

 If we define a desired wing trajectory, 𝑃𝑜𝑢𝑡 is constant for a system with a certain inertia 

and aerodynamic drag coefficient, and gain is maximized by choosing a stiffness that minimizes 

𝑃𝑖𝑛. In order to identify this optimal stiffness, we follow a similar process to Bennett et al. [15], 

investigated a comparable problem in the flukes of cetaceans. They derive an expression for a 

dimensionless input power, 𝑃̂ =
𝑃𝑖𝑛

𝐼𝐴𝑤
2 𝜔3

: 

𝑃̂ = cos 𝜔𝑡 (𝐶̂ cos2 𝜔𝑡 − sin 𝜔𝑡)[1 − 𝐾̂−1(2𝐶̂ sin 𝜔𝑡 + 1)] (3.17) 

where  𝐶̂ =
𝐶̅𝐴𝑤

𝐼
 is a dimensionless number that represents the ratio of peak hydrodynamic force 

to peak inertial force and 𝐾̂ =
𝑘

𝐼𝜔2
 is the dimensionless ratio of the strain energy at the end of the 

stroke to the maximum kinetic energy. A graph of this parameter for different values of 𝐾̂ is 

shown in Figure 3.4. 
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 From this dimensionless power expression, it can be observed that in the case of a rigid 

transmission (𝐾̂ ≫ 0), the motor must do positive work to accelerate the system and overcome 

fluid forces and negative work to decelerate at the end of the stroke. As the stiffness decreases, 

some of the work of accelerating and decelerating the system may be taken up by the spring. 

Figure 3.4: Graph of 𝑷̂ for different values of 𝑲̂. 𝑃̂ is plotted over one period for three different values 

of the nondimensional parameter 𝐾̂ with 𝐶̂ = 1.4. In the case of a very large 𝐾̂ (dash-dot), the 

transmission is rigid and the motor must do negative work at the end of the stroke to begin reversal. In the 

case of a much smaller 𝐾̂ (solid line), the strain energy in the spring is stored and released too rapidly and 

requires the motor to do additional positive and negative work to maintain the trajectory. Finally, in the 

optimum case, 𝐾̂ = 𝐾̂𝑜𝑝𝑡 , (dashed line), the motor power is minimized over the stroke and always 

positive. From [14] 

 

 However, when the stiffness becomes small (𝐾̂ ≤ 𝐾̂𝑜𝑝𝑡), the strain energy in the spring is 

released too quickly and the motor must actually do additional work to maintain the desired wing 

trajectory. Therefore, there exists an optimal stiffness, which Bennett derives: 

𝐾̂𝑜𝑝𝑡 = √1 + 4𝐶̂2 (3.18) 
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When the dimensionless terms are expanded, the optimal stiffness for a specified wing 

amplitude, 𝐴𝑤; frequency, 𝜔; system inertia, 𝐼; and mean coefficient of drag, 𝐶̅ can be found via 

the expression: 

𝑘𝑜𝑝𝑡 = 𝐼𝜔2√1 + 4𝐴𝑤
2

𝐶̅2

𝐼2
(3.19) 

A system with this stiffness is optimal in the sense that when it is actuated at frequency 𝜔 and a 

motor amplitude that induces a wing trajectory with an amplitude of 𝐴𝑤, the power input will be 

minimized and the power ratio 𝑅𝑃 will be maximized. Therefore, since 𝑅𝑃 and amplitude gain 

are equivalent metrics, we should be able to use Equation 3.19 to predict the locations of the 

resonant peaks in the gain maps in Figures 3.2 and 3.3. 

3.5: Fitting the Optimal Stiffness Curve to Experiment Data 

 If the optimal stiffness analysis above is sufficient to describe the resonant behavior 

observed in the series-elastic flapping wing system, a curve defined by rearranging (3.19): 

𝜔𝑟𝑒𝑠 =
√

𝑘

𝐼 √1 + 4𝐴𝑤
2 𝐶̅2

𝐼2

(3.20)
 

should predict the resonant frequency at each output amplitude and closely follow the peak wing 

amplitude curves pictured in Fig 3.3. Using a method from Dickinson [1] to estimate the 

aerodynamic drag force coefficient for the rigid wing, we find 𝐶̅ ≈ 0.0209 𝑁𝑚𝑠2. We define a 

curve based on (3.20) in Figure 3.5, but it severely underestimates the resonant frequency. Since 

the underestimation is consistent across parameters, it seems likely that the estimate of 

coefficient of drag is incorrect. We seek to find another method of estimating the mean 

coefficient of drag. 
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 To that end, the optimal stiffness relationship may be rearranged to compute the 

coefficient of drag that results in resonance at a certain configuration: 

𝐶̅ =
√(

𝑘
𝜔2)

2

− 𝐼2

4𝐴𝑤
2

(3.21)
 

If (3.21) is rearranged as a cost function: 

√(
𝑘

𝜔2)
2

− 𝐼2

4𝐴𝑤
2

− 𝐶 = 𝛾

𝐶̅ = min
𝐶

‖𝛾‖ (3.22)

 

minimizing 𝛾 over 𝐶 will find an estimate of 𝐶̅ that minimizes the error in the resonant frequency 

estimate across all configurations and amplitudes. Performing this minimization results in an 

estimate of 𝐶̅ ≈  8.9x10−4 𝑁𝑚𝑠2. The curve corresponding to this estimate of drag coefficient is 

also shown in Figure 3.5. The magnitude of the estimation error over amplitudes is presented in 

Figure 3.6. 

3.6: Does the Optimal Stiffness Curve Describe the Locations of Resonant Peaks? 

 This project set out to determine if a low-order analytical model like that described in 

Section 2.1 would be sufficient to predict the resonant behavior of a series-elastic flapping wing. 

In order to answer that question, we compared experimental results to results of the analysis of a 

simple low-order model of the system. 

3.6.1: The Curve Fit to the Data Improves with Amplitude 

 After numerically finding an optimal coefficient of drag to fit across all test 

configurations and comparing the resulting curves to the experimentally determined peaks, we 

see that that there is still some significant error in the estimate of resonant frequency (Fig. 3.6). 

However, that error appears to be significantly smaller at higher amplitudes. With the exception 
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of the set of tests using the 0.275 𝑁𝑚 𝑟𝑎𝑑−1 silicone spring (which appears to be an outlier and 

may be due to experiment error), the percent error in frequency estimate less than 10% for all 

wing amplitudes greater than 60 degrees. On the other hand, configurations with peak amplitudes 

below 60 degrees see prediction errors that are much higher, reaching 50% at amplitudes of 20-

30 degrees. 

It appears that there are (at least) two regimes at work here: one where our simplified 

model seems to more closely predict resonant frequency, and one where the observed behavior  

Figure 3.5: Optimal stiffness curve fitting over wing amplitude data. Two curves generated based on 

Equation 3.20 with different values of 𝐶̅. The magenta curve was computed based on a geometrically 

determined estimate of the drag coefficient (0.0209 Nms2) and significantly underestimates the resonant 

frequency of the system. The blue curve uses a value of 𝐶̅ that was computed numerically by minimizing 

the error function defined in Equation 3.22. 
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diverges and some other unmodeled effects take precedence. To explain what might be the cause, 

we will first return to the optimal stiffness analysis. 

Figure 3.6: Resonant frequency prediction error across peak wing amplitude. The plot above shows 

the error in resonant frequency estimate (horizontal axis) for each peak output amplitude from the plot in 

Figure 3.5 (vertical axis). Tests with different stiffness are displayed with different colors, and different 

inertias are shown using different marker shapes. Estimation error appears generally lower at high 

amplitudes than at low, where the error increases from ~10% to >50%. 
  

3.6.2: Optimal Stiffness Analysis Assumptions 

 The analysis performed in [15] and described above depends on several important 

assumptions. First, it requires that the coefficient of drag force on the wing is either constant or 

has minimal variation from the mean over a wing stroke and thus the forces on the wing are 

dominated by fluid loading that has a quadratic relationship to wing velocity. It also assumes 

minimal variation in the inertia and spring stiffness of the system. Finally, the analysis requires 

that the wing trajectory is sinusoidal with the same frequency as the motor input but possibly 

with a different amplitude. 

 These assumptions may make the problem analytically tractable, but how reasonable they 

are is up for debate. As discussed in Chapter 1, there are several unsteady mechanisms that 
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contribute to the aerodynamic loading on a flapping wing in a fluid – added mass, delayed stall, 

wing-wake-interaction, etc. For our simplified model to be sufficient, the effects of the unsteady 

factors must be small compared to the quasi-steady fluid loading. Perhaps there are conditions at 

low amplitudes that cause the unsteady mechanisms to dominate and therefore invalidate some 

of the assumptions made in the optimal stiffness analysis 

3.6.3: A Tale of Two Flow Regimes 

 Consider a wing with a 90-degree angle-of-attack moving through a fluid. Figure 3.8 

depicts its trajectory and the forces it experiences during a full wing stroke, as measured by Sane 

and Dickinson [33]. The figure compares the drag force predicted by a quasi-steady model using 

a measured mean coefficient of drag to the actual force measured on their robophysical flapping 

wing system. The quasi steady model is proportional to the wing velocity squared, so the curve 

of the dotted line is smooth, nearly constant for most of the wing stroke, and always positive. 

The measured drag, on the other hand, features significant peaks in force at the beginning of each 

semi-stroke, as well as negative peaks near reversal. During those peaks, the added mass, vortex 

formation, and other unsteady mechanisms discussed in Chapter 1 are most significant and seem 

to dominate the loading on the wing. During the time that the wing is accelerating and wing 

vortices are forming, the simplified quasi-steady model underestimates the magnitude of forces 

on the wing. 

 The analysis performed by Bennet et al. considers only forces due to quasi-steady fluid 

loading. Based on the observation in Fig. 3.7, that means that it will typically underestimate the 

forces on the wing. However, the degree to which the quasi-steady assumption underestimates 

fluid forces depends on how long the wing remains in the intermediate “translation” regime 
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where the model fits the measured drag more closely. Consider two regimes whose durations 

sum to half of the wing stroke period: 

2𝑇𝑓𝑜𝑟𝑚 + 𝑇𝑡𝑟𝑎𝑛𝑠 =
1

2𝜔 
(3.23)  

 

Figure 3.7: Wing stroke with formation and translation regimes.  Measurement of drag forces on a 

rigid wing with a peak-to-peak amplitude of 180 degrees and angle-of-attack of 90 degrees (perpendicular 

to the flow) from [33]. The solid line depicts the drag force measured by load cells at the base of the 

wing, and the dotted line is the drag force predicted by a quasi-steady model. The quasi-steady model of 

drag underestimates the force, especially in the vortex formation regimes at startup and reversal. 

However, the quasi-steady estimate is much closer in the translation regime once the unsteady effects 

have dissipated. 

 

The first constant, 𝑇𝑓𝑜𝑟𝑚, represents the time the wing spends in the unsteady regime at 

the beginning and ending of the stroke. It depends on the rate of vortex formation on the wing as 

well as terms related to added mass and wing-wake interaction. The second, 𝑇𝑡𝑟𝑎𝑛𝑠, is the 

amount of time the wing spends in the “translation” regime. We define a wing stroke ratio: 

𝑊𝑆𝑅 =
𝑇𝑡𝑟𝑎𝑛𝑠

𝑇𝑓𝑜𝑟𝑚

(3.24) 

We can approximate 𝑇𝑓𝑜𝑟𝑚 by using an estimate for vortex formation time from Dabiri [37]: 
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𝑇𝑓𝑜𝑟𝑚 ∝
𝐷𝑇̂

𝑈
≈

𝐷𝑇̂

𝐴𝑤𝜔
(3.25) 

Where D is a characteristic length, 𝑇̂ is a dimensionless vortex formation constant, and 𝐴𝑤𝜔 is 

the maximum velocity of a wing with amplitude 𝐴𝑤 and frequency 𝜔. Combining (3.23), (3.24), 

and (3.25) gives an expression for wing stroke ratio in terms of wing stroke profile: 

𝑊𝑆𝑅 =
𝑇𝑡𝑟𝑎𝑛𝑠

𝑇𝑓𝑜𝑟𝑚
=

1
2𝜔 − 𝑇𝑓𝑜𝑟𝑚

𝑇𝑓𝑜𝑟𝑚
=

1

2𝜔𝑇𝑓𝑜𝑟𝑚
− 1 ∝

𝐴𝑤

2𝐷𝑇̂
− 1 (3.26) 

3.6.4: Wing Stroke Ratio  

 The definition of wing stroke ratio in Equation 3.26 suggests that the ratio of the amount 

of time that a wing spends in a translation regime increases with wing amplitude. This means 

that the quasi-steady approximation for the forces on the wing over a stroke improves with larger 

amplitudes, and a quasi-steady model may be better able to predict the resulting dynamics. On 

the other hand, as amplitude decreases, the translation regime shrinks relative to the unsteady  

Figure 3.8: Resonant frequency prediction error with wing stroke ratio 

𝑊𝑆𝑅 ≈ 10 
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vortex formation regime. As a result, the quasi steady estimate, which does not take into account 

unsteady force mechanisms, severely underestimates the transient forces. Figure 3.8 shows the 

resonant frequency prediction error along with a line at 𝑊𝑆𝑅 ≈ 10. Above that value, the error 

is small and independent of amplitude. Below the line, however, the error diverges as unsteady 

mechanisms become more significant over each cycle. 

 This result agrees with the findings of Altshuler et al., whose 2005 paper studying honey 

bee flight at low amplitudes and high frequencies also found a relationship between amplitude 

and prediction error from quasi-steady models [38]. Using a combination of observations of 

living honeybees and measurements from a dynamically-scaled robot, they found that the effects 

of added mass and wing-wake interactions were more significant compared to those of quasi-

steady fluid loading when the wing amplitude was smallest. At large amplitudes, forces created 

by large-amplitude strokes were reasonably well approximated by a quasi-steady model based 

upon empirically measured steady-state force coefficients.  

 For our purposes, this means that a quasi-steady model for a series-elastic flapping wing 

may be reasonable for situations where wing stroke amplitude is large (>120 degrees peak-to-

peak). However, if the wing amplitude is smaller or is modulated for flight control, unsteady 

mechanisms may become significant enough that they must be considered for the model to be 

reliable. 
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CHAPTER 4: CONCLUSIONS  

 We have detailed the development and implementation of a dynamically robophysical 

model of a series-elastic flapping wing subject to aerodynamic loading. The system features 

tunable system parameters, including spring stiffness and total inertia, and an actuation scheme 

that enables arbitrary motor input profiles.  

 We have performed a suite of tests across the system parameter space, varying amplitude, 

frequency, spring stiffness, and system inertia in order to characterize the dynamics of series-

elastic wings. The data show that the resonant properties of the system depend on a combination 

of all of the parameters, and some qualitative features have been characterized. We also show 

that a simplified model of the aerodynamics of flapping wings is reasonably sufficient to predict 

the resonance behavior of series-elastic wings when the wings flap at high amplitudes but 

performs less well at low amplitudes due to the increasing influence of unsteady factors. We 

propose a metric, the wing stroke ratio, based on non-dimensional vortex formation time that 

may be used to evaluate the degree to which unsteady aerodynamic mechanisms contribute to 

forces over a cycle. 

 The results of this study have applications to insect biomechanics as well as to the design 

of flapping wing MAVs. The observation that resonant behavior depends on unsteady 

aerodynamic mechanisms when wings flap at low amplitudes suggests that insects with different 

wing stroke amplitudes may be subject to significantly different aerodynamic loading. We also 

observed higher amplitude gain at lower amplitudes, suggesting that insects that fly with low 

wing amplitudes (honeybees, mosquitos, etc) may rely on resonance more that insects with larger 

wing amplitudes. For roboticists, our observations suggest that the design of an FWMAV with 

series-elastic wing requires consideration of the regime in which it flies. When system inertias 
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are low compared to the drag on the wing, the resonant frequency depends on the wing 

amplitude. Additionally, the amplitude gain will change as the amplitude and frequency of the 

actuator change, so control of such a vehicle will need to take into consideration the wing 

amplitude bandwidth for that particular system. 
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