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Lights, cytoskeleton, action: Optogenetic control of cell 
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Abstract

Cell biology is moving from observing molecules to controlling them in real time, a critical step 

towards a mechanistic understanding of how cells work. Initially developed from light-gated ion 

channels to control neuron activity, optogenetics now describes any genetically encoded protein 

system designed to accomplish specific light-mediated tasks. Recent photosensitive switches 

employ many ingenious designs that bring spatial and temporal control within reach for almost 

any protein or pathway of interest. This next generation optogenetics includes light-controlled 

protein-protein interactions and shapeshifting photosensors, which in combination with live 

microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We 

provide a brief overview of various types of optogenetic switches. We then discuss how diverse 

approaches have been employed to control cytoskeleton dynamics with light through Rho GTPase 

signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport 

and highlight advantages and limitations of different experimental strategies.

Introduction

The 21st century has seen remarkable advances in light microscopy. Combined with 

improving labeling techniques, such as fluorescent proteins that just celebrated their 25th 

birthday, live-cell imaging has repeatedly demonstrated just how dynamic cells are. Cells 

continuously reorganize their shape and internal structure. Both are essential to build and 

operate complex multicellular organisms in which each cell type has unique functions 

reflected in their intracellular organization and dynamics. Forces driven by the pulling and 

pushing of the cell’s cytoskeleton underlie cell movement, identity and many pathological 

processes [1,2]. Consequently, polarized and meaningful cell dynamics depend greatly on 
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the spatial and temporal control of protein activities and interactions downstream of 

extracellular signaling inputs as well as intracellular control circuits. Ideally, a cell biologist 

would be able to specifically, locally and acutely interfere with intracellular protein activities 

to perturb steady-state biochemistry and interrogate cell biological consequences, and the 

development of technologies to achieve this goal continues to be a driving force of cell 

biology discovery.

Cytoskeleton filament systems assemble, disassemble and reorganize within minutes, and 

molecular motors transport cargo at rates of tens of micrometers per minute. Thus, compared 

to these time scales, experimental approaches that rely solely on removing gene expression 

or inhibition of protein production by RNA or CRISPR interference are quite slow and not 

well suited to investigate rapid intracellular dynamics at a mechanistic level. By the time one 

observes a phenotype, cell and cytoskeleton dynamics have reached a new steady state, 

which complicates the interpretation of such experiments. Cells also frequently respond to 

genetic alterations with compensatory mechanisms and genetic approaches do not allow 

subcellular spatial control.

One experimental agent that, at least in non-plant cells, is orthogonal to most biological 

processes and that can be controlled with very high spatial and temporal accuracy is light. 

While high power lasers have been used to locally destroy and cut cellular structures, the 

first ‘optogenetics’ experiments involved expression of light-gated ion channels in neuronal 

cells to locally photostimulate nervous system circuits [3–5]. Nowadays, optogenetics more 

broadly describes any genetically encoded protein system designed to accomplish a specific 

light-mediated task. Many aspects of plant development and metabolism depend on the 

ability to sense light through photosensitive domains of phototropins, cryptochromes and 

phytochromes that contain different kinds of chromophores (Fig. 1) [6]. Photochemical 

reactions driven by photon absorption result in conformational changes that can be 

harnessed to accomplish optogenetic work (Fig. 1a). Optogenetic experimental strategies can 

be roughly categorized into techniques that alter the localization of a protein of interest 

resulting in activation or inactivation in a specific subcellular region or organelle, approaches 

that uncage a constitutively active protein, and maybe most relevant to understanding 

physiological function, techniques that locally inactivate a specific activity of a protein or 

protein complex. The light-oxygen-voltage (LOV2) domain of oat phototropin 1 may be the 

most versatile and has been used to build protein modules that either dimerize or dissociate 

upon blue light stimulation, or directly change protein conformation (Fig. 2). However, 

instead of reviewing the basic designs of optogenetic switches [7,8], we highlight examples 

of how optogenetic building blocks have been used to directly target cytoskeleton dynamics 

and function in living cells with high spatial and temporal accuracy (Table 1).

Light-controlled Rho GTPase signaling.

Many local cytoskeleton activities such as f-actin and microtubule dynamics during cell 

migration are controlled by low molecular weight Rho GTPases. It is thus no surprise that 

initial optogenetic approaches directed toward cytoskeleton dynamics in living cells targeted 

Rho GTPase activities either directly or indirectly. In one of the first demonstrations of 

direct optogenetic control of Rho GTPase signaling in cells, Wu et al linked a LOV2 domain 
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to the N-terminus of a dominant active GTPase-deficient mutant of Rac1(Q61L) with the 

hypothesis that in the dark LOV2 sterically blocks access of downstream effectors to the 

Rac1 binding site [9]. Indeed, local blue light exposure of photoactivatable PA-Rac1 

stimulates lamellipodia f-actin polymerization and can direct cell migration in vitro [9,10] 

and in vivo [11,12]. However, further analysis of the PA-Rac1 photoactivation mechanism 

showed that it also relies on a serendipitously introduced Ca2+ binding site between the 

LOV2 and Rac1 moieties [13], highlighting the difficulty of rational photoswitch design and 

explaining why this approach did not work for other Rho GTPases.

A possibly more adaptable method to locally control Rho GTPase activity is through 

optogenetic localization of their guanosine exchange factors (GEFs). Levskaya et al 

achieved this first through light-induced heterodimerization of the phytochrome PhyB 

photosensory domain with its downstream transcription factor effector PIF [14]. Localized 

membrane recruitment of the PIF-tagged Rac1 GEF Tiam results in local lamellipodia 

protrusion similar to PA-Rac1 photoactivation. Moving up one step in the signaling cascade 

that controls Rac1 activity, PhyB/PIF-mediated phosphoinositide 3-kinase (PI3K) 

recruitment by localized red light exposure locally produces phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) [15]. In contrast to PA-Rac1, this only generates a transient increase in 

Rac1 activity, which is still sufficient to direct cell migration.

Because the PhyB/PIF system can be difficult to implement (Fig. 1; Box 1), blue light 

activated dimerization modules [16–19] have more recently been employed to localize Rho 

GEFs (Fig. 2a). For example, using a LOV2-derived dimerization system in which a PDZ 

domain binding peptide is inaccessible at the C-terminus of the dark-state LOV2 Jα helix, 

local RhoA activation through light-induced recruitment of a RhoA GEF DH domain 

induces f-actin contractility and cleavage furrow formation anywhere on the anaphase cell 

cortex [20]. The Gardel lab then localized RhoA GEFs in interphase cells to generate local 

actomyosin contractility either on stress fibers [21] or epithelial cell-cell junctions [22]. 

Combined with quantitative physical models of the underlying cytoskeleton these studies 

highlight the strength of optogenetics to dissect cell dynamics, for example by showing how 

alternating RhoA-mediated contractility and membrane internalization shortens epithelial 

cell-cell junctions. Similarly, Valon et al use the cryptochrome Cry2/CIB1N dimerization 

module to locally recruit RhoA ArhGEF11 to the membrane and induce actomyosin 

contractility [23], which induces cell migration away from the site of optogenetic 

stimulation by generating rear contractility and retraction [24]. Extending optogenetic RhoA 

activation to morphogenetic processes at the multicellular level, Cry2/CIB1N-mediated 

photoactivated membrane-binding of RhoGEF2 can generate surprisingly geometrically 

precise epithelial folding patterns in early Drosophila embryos [25].

Optogenetic re-localization to modulate cytoskeleton dynamics

Photoactivated recruitment can also localize protein activities other than Rho GTPases. For 

example, the Kapitein group has used TULIPs, a LOV2-based heterodimerization module, to 

link organelle cargoes to kinesin, dynein and myosin motor domains and demonstrated light-

induced redistribution of peroxisomes, endosomes and mitochondria [26,27], and in vitro 
control of microtubule gliding [28]. However, all variations of localization-mediated 
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photoactivation require expression of engineered constructs that become dominant active 

under illumination conditions, but still compete with endogenous activities and may also 

have unintended consequences in the dark. For example, kinesin motor activity in the 

absence of cargo-binding can still affect microtubule network organization. To improve 

dynamic range and specificity of light-activated transport systems, the Kapitein group most 

recently introduced a two-step system in which both cargo binding and motor processivity 

are blue light-activated [29]. Blue light can also be combined with red light-sensitive 

PhyB/PIF dimerization to independently control trafficking and distribution of different sets 

of organelles [30] although crosstalk challenges between channels remain (Box 1). In vitro, 

blue light-activated multimerization of kinesin motors can drive complex self-organization 

of dynamic microtubule arrays to analyze and direct the non-equilibrium dynamic properties 

of such assemblies [31]. Utilizing a similar recruitment strategy, Adikes et al invented a 

system to localize proteins to growing microtubule ends through iLID/nano-mediated 

dimerization with the microtubule plus-end adaptor EB1 and show that light-induced 

microtubule plus end crosslinking with f-actin slows microtubule polymerization [32].

In the so far only example of spatial optogenetic control of a structural mitotic spindle 

protein, two independent research teams used different optimized LOV2-based dimerization 

modules to dissect the molecular mechanism of dynein-mediated spindle positioning in 

either mammalian cells or C. elegans embryos [33,34]. Both teams find that localized 

recruitment of NuMA to the cell cortex is sufficient to reconstitute a functional cortical 

dynein motor complex that can drive spindle positioning. Interestingly, in both systems 

light-mediated localization of the dynein motor itself does not work possibly because the 

long coiled-coil NuMA molecule is required for the correct cortical dynein anchoring 

geometry. It should be noted that spatially precise photoactivation is difficult in mitosis 

because of the small size of mammalian metaphase spindles. Immobilization at the cell 

cortex is important here, as slow dark recovery rates present challenges in achieving sharp 

photoactivation boundaries of a cytoplasmic freely diffusible protein.

In a variation of the pharmacological ‘knocksideways’ approach, optogenetic recruitment to 

the cell cortex or mitochondria can also acutely remove proteins from a site of action, for 

example from mitotic spindles [35,36]. However, efficient sequestration will greatly depend 

on relative affinities and binding kinetics of the physiological binding interaction. In 

addition, this or similar inactivation methods trapping proteins in the nucleus [37] or in 

Cry2/CIBN oligomer clusters [38,39] do not allow subcellular spatial control, and the effect 

of Cry2 oligomerization likely clustering many hundreds of molecules is difficult to predict. 

Nevertheless, replacing endogenous Delta with a Cry2-tagged variant that is inactivated by 

blue light-induced clustering in the cell membrane has recently been implemented to dissect 

temporal Notch signaling dynamics in Drosophila [40].

Direct photoswitching of protein activity

The above examples highlight a powerful and easily implemented optogenetic strategy that 

utilizes light-induced dimerization to recruit protein activities to ectopic sites where they 

were not before. Currently, only one optogenetic system exists that functions in the opposite 

direction. LOVTRAP relies on small engineered peptides, Zdks, that bind the LOV2 domain 
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dark-state with high affinity [41]. Thus, in contrast to light-induced dimerization modules, 

blue light results in reversible dissociation of the LOV2/Zdk heterodimer. While the 

LOVTRAP module was initially also used to release proteins of interest, such as the Rac1 

GEF Vav2 from mitochondria [41], the Hahn lab recently proposed that the LOV2/Zdk 

interaction could directly cage protein active sites (Fig. 2b) [42]. For example, blue light 

uncaging the f-actin binding and thus filament severing activity of Z-lock cofilin can 

enhance actin monomer recycling to promote leading edge polymerization. However, 

successful implementation of this Z-lock idea depends on fine-tuning of the relative binding 

affinities of the LOV2/Zdk module and the binding interaction to be disrupted, as well as on 

the overall active site geometry in relation to the linkers connecting LOV2 and Zdk [43]. A 

similar uncaging strategy employs light-sensitive oligomerization of the photoactivatable 

DRONPA fluorescent protein to locally activate membrane-bound Cdc42 [44].

While the vast majority of optogenetic approaches activate a protein of interest, in order to 

understand physiological intracellular protein functions in space and time, different methods 

are needed to acutely inactivate proteins. We recently utilized the LOV2/Zdk1 interaction to 

disrupt the function of EB1 by blue light [45]. EB1 is a dimer with an N-terminal calponin 

homology domain that recognizes growing microtubule plus ends and a C-terminal domain 

that recruits numerous other +TIP proteins to growing microtubule ends [46]. By inserting 

the LOV2/Zdk1 module in the disordered linker between these two domains, we 

demonstrated reversible light-induced dissociation of the +TIP complex and inhibition of 

microtubule polymerization with high spatial and temporal accuracy. In addition, migrating 

cells in which endogenous EB1 was replaced with this photo-inactivated π-EB1 turned away 

from local blue light exposure indicating that +TIP complex function is required for 

persistent directional cell movement. We posit that this strategy could be used to render 

many other multidomain proteins light sensitive (Fig. 2d). To adapt this idea to more 

complex cell systems, we are currently developing genome editing to directly insert light 

sensitive LOV2/Zdk1 modules into multi-domain proteins and have been able to replace 

endogenous EB1 with the light-sensitive version in one step in various human cell types 

(Fig. 3).

An even more direct way to render proteins light-sensitive is through direct insertion of a 

LOV2 domain into exposed surface loops predicted to propagate allosteric conformational 

changes (Fig. 2e). Dagliyan et al test this idea for several different signaling molecules 

including the Rac1 GEF Vav2 and show that in this case local Vav2 photoinactivation results 

in cell retraction from the site of blue light exposure [47,48]. A related approach is to design 

split proteins in which inactive but properly folded subdomains are brought back together 

through a light-induced dimerizer to reconstitute protein activity (Fig. 2c). New 

computational methods to predict split protein designs, which has traditionally been very 

difficult and may not always be possible, may open this strategy to optogenetics [49]. LOV2 

conformation changes have also been used to alter lever arm geometries in both kinesin and 

myosin motors that can alter speed and directionality as a function of blue light exposure 

[50]. However, these light-controlled motors have not yet been employed inside cells.
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Summary and outlook

Light control of specific intracellular protein activities has only been around for a relatively 

short time, but optogenetic approaches are already casting new light on many dynamic cell 

processes. Many basic optogenetic experiments can be easily and inexpensively 

implemented on standard fluorescent light microscopes, but spatial control requires 

additional equipment to achieve localized light exposure such as laser-scanning or digital 

micromirror device illumination systems [51] (Box 1). Still, current photoactivation 

technologies are relatively static, and to gain more precise dynamic control of fast 

intracellular processes in cells or organisms, it will be necessary to develop feedback 

between microscopy and on-the-fly image analysis to direct photoactivation light patterns. It 

will also be interesting to see how optogenetics can break the diffraction barrier. Stimulated 

emission depletion (STED) reduces the point spread function diameter with a surrounding 

donut beam of inactivation light and recent work suggests STED nanoscale control of 

channelrhodopsins [52]. Similarly, STED optogenetics may be possible with phytochrome 

photoconversion between stable states driven by different wavelengths, but this has not yet 

been tested [53]. Bioluminescence resonance energy transfer between luciferase and blue 

light sensors [54] may provide yet another opportunity for nanoscale control by restricting 

activation to where the luciferase (i.e. the light source) and the photosensor are sufficiently 

close. However, spatial resolution will still be limited by the photo-and biochemical 

characteristics of the optogenetic switch (Box 1). In any case, it seems a safe bet that as with 

fluorescent proteins there are unusual photosensors in the wild that we do not yet know 

about, with complementary or more desirable characteristics than what is available now, for 

example narrower action spectra or faster reversion kinetics. Such properties might also be 

gained through further photosensor engineering or development of synthetic cofactors. The 

emerging field of ‘photopharmacology’ that uses synthetic photoswitches further broadens 

possible experimental approaches [55]. In summary, light-controlled proteins are an 

important addition to the cell biologist’s toolkit. Being a relatively young field, however, 

many properties of optogenetic systems remain poorly characterized, and experimentalists 

need to be aware of the demands and limitations of their specific experiment design. 

Nevertheless, the future of optogenetics surely looks bright.
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Box 1:

Limitations of optogenetic experiments

The ‘dark side’ of photoactivation.

Diffraction sets a physical lower boundary to the spatial precision with which an area of 

interest can be exposed to light in a microscope, but photochemistry kinetics further limit 

the accuracy of intracellular photoactivation. Blue light sensitive domains revert to the 

dark state through thermal decay, and the rate at which this occurs is critical for how 

sharp of a photoactivation boundary can be generated. Slow dark state reversal allows 

photoactivated molecules to diffuse further, thus broadening the boundary between 

activated and not activated regions. The half-life of the LOV2 photoactivated state is 

around 5–10 seconds, sufficient to generate intracellular gradients of freely diffusible 

molecules (Fig. 3) [45]. Photoactivated Cry2 is substantially more stable, with a half-life 

of minutes, which can still be fast enough to generate gradients if diffusion is confined, 

for example at the cell membrane or an organelle. Interestingly, a recent comparison with 

iLID/nano and Cry2/CIBN finds that Magnets, a dimerization system based on the fungal 

blue light photoreceptor VVD [19], produced the best spatial confinement, and the 

authors speculate that this is because both parts of the Magnet dimerizer need to be 

photoactivated restricting interaction to the light-exposed region [73]. In contrast to these 

blue light sensitive systems, PhyB photoconverts between two relatively stable states 

either by red or infrared light. Thus, while longer wavelengths may be less damaging to 

cells and penetrate deeper into biological specimens, precise spatial control of the 

PhyB/PIF interaction requires complementary 650 nm and 750 nm illumination patterns. 

However, even then the PhyB/PIF dissociation rate is in the order of seconds. This is 

comparable to the dissociation rate of π-EB1 with a fast dark reversal LOV2(I427V) 

variant suggesting similar spatial accuracy [14,45]. An important trade-off for high 

spatial control, however, is that fast dark state reversal requires frequent (1 Hz or faster) 

exposure to photoactivation light, which even at low intensities can accumulate 

significant phototoxicity over longer time periods and may also contribute to temperature 

increases of the specimen. Another point to consider is that dark is never truly dark as the 

inactive and activated states of photosensors exist in a chemical equilibrium. Even in the 

dark, an estimated ~1.5% of LOV2 molecules are in the activated state with the Jα helix 

dissociated, which increases ~60-fold in response to blue light [59]. This limits the 

dynamic range of individual LOV2 molecules although this can likely be increased by 

dimerization or other multivalent interactions.

Lights, camera, and overlapping action spectra:

Due to overlapping excitation spectra, it can be challenging to avoid unintended 

photoactivation when combining optogenetics and fluorescence microscopy. Blue light 

sensitive domains such as LOV2 or Cry2 are only compatible with imaging of red or far 

red fluorescent proteins. Even 515 nm, a frequently used YFP excitation line will 

photoactivate LOV2 [51]. Thus, combining FRET-based protein activity sensors with 

LOV2 optogenetics requires FRET between new near-infrared fluorescent proteins [74]. 

Combining fluorescence microscopy with PhyB/PIF red light sensitive optogenetics is 
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possibly even more problematic, because the PhyB action spectrum spans almost the 

entire visible light range [75]. Both blue and green light cause PhyB photoconversion, 

and frequent 750 nm light exposure is required to avoid accumulation of the stable PhyB 

photoactivated state that has a half-life of hours [30]. It is noteworthy that both PhyB 

isomers have absorbance minima around 515 nm, making YFP perhaps the most suitable 

choice for fluorescence microscopy with PhyB/PIF. Lastly, one should not forget that 

animal cells also express cryptochromes. Although it remains unknown if vertebrate 

cryptochromes are light-sensitive in a physiological context (in insects they certainly are) 

[76], this highlights that appropriate blue light controls in the absence of the designed 

photoswitch should be incorporated in any optogenetic experiment. Unfortunately, this is 

not always current standard practice in the field.
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Figure 1. Comparison of plant-derived photosensitive domains.
(a) The LOV2 domain is the smallest of the three major plant photosensors, and 

photochemistry and resulting structural changes have been characterized extensively [56]. 

Absorption of a blue light photon by the flavin mononucleotide (FMN) co-factor drives 

formation of a metastable covalent adduct with a conserved cysteine, which results in the 

undocking of the helices flanking the LOV2 domain core and unfolding of the C-terminal Jα 
helix [57–59]. LOV2 photoactivation is very fast [60,61], although the light response of 

LOV2-based optogenetic switches will always be substantially slower. The fungal blue light 

sensor VVD has a very similar overall fold [62]. (b) The photolyase homology region (PHR) 

of cryptochromes bind a flavin adenine dinucleotide (FAD) chromophore as well as ATP. 

Blue light induces cryptochrome dimerization although the underlying photochemistry is 

incompletely understood [63]. Shown is the crystal structure of cryptochrome Cry1 as a 

Cry2 structure is not available [64]. (c) The phytochrome B photosensory module (PSM) 

binds a plant-specific phytochromobilin (or phycocyanobilin) chromophore that in animal 

cells must be added or supplied by co-expression of the biosynthetic enzyme system [65,66], 

although bacterial phytochromes utilize a biliverdin (BV) chromophore that may be less 

limiting in animal cells [67]. Although not fully understood, rotation of the 

phytochromobilin pyrrole rings likely underlies PhyB photoconversion [68]. (d) sfGFP is 

shown for size comparison [69].
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Figure 2. Overview of LOV2-domain based optogenetic strategies to modulate protein activities.
(a) Light-induced dimerization can recruit activating factors, for example Rho GEFs, to 

specific intracellular sites. As indicated in the main text this also works with other light-

induced dimerizers such as Cry2/CIBN or PhyB/PIF. The same approach can also be used to 

sequester and thus inactivate proteins away from their normal site of action. (b) The light 

sensitive LOV2/Zdk1 protein interaction module can sterically block access to an active or 

binding site in a target protein in the dark. (c) In principle, the activity of split proteins can 

be reconstituted by bringing half-domains back together by light-mediated dimerization. 

However, because of the difficulty in designing such proteins, this approach has not yet been 

used much in optogenetics. (d) The light sensitive LOV2/Zdk1 module can be used to 

dissociate and thus disrupt the function of multi-domain proteins. (e) Conformational 

changes in photosensors can propagate allosteric inhibition into split target proteins. It 

should be noted that swapping a light-induced dimerizer, i.e. iLID/nano, for a light-sensitive 
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interaction module, i.e. LOV2/Zdk1, would be expected to relatively easily reverse the 

directionality of many of these designs and convert photoactivation into photoinhibition or 

vice versa.
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Figure 3. Example of a spatiotemporal optogenetics experiment with subcellular resolution.
Shown is a human tissue culture cell in which a photosensitive LOV2/Zdk1 protein-protein 

interaction module was inserted into the endogenous EB1 gene by CRISPR/Cas9 genome 

editing, which replaces the wild-type EB1 protein with the light sensitive π-EB1 variant in 

one step. The images show an overlay of the mCherry-tagged π-EB1 C-terminal half on 

growing microtubule ends from short time-lapse sequences (8 images every 5 seconds) in 

alternating green and magenta before, during and after localized 470 nm blue light exposure. 

The light-exposed region is indicated by the blue overlay in the middle panel. Note the 

gradient of π-EB1 dissociation near the edge of the light-exposed region that results from 

diffusion of photoactivated molecules. Sharper boundaries can be achieved with LOV2 

domain variants with faster dark recovery rates [45].
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Table 1:

Overview of optogenetic switches to control cytoskeleton dynamics.

Photosensor 
(Chromophore)

Peak excitation 
wavelength Mechanism Description

Rho-GTPase signaling

PA-Rac1 LOV2 (FMN) On: 450 nm
Off: dark steric inhibition Release of LO2V-mediated inhibition 

of Rac1 (Q61L) GEF-binding [9]

Photoactivated Cdc42 
and Rac1 GEFs PhyB/PIF (PCB) On: 664 nm

Off: 725 nm recruitment
Activation of Rho-GTPase signaling 
through GEF membrane recruitment 
[14]

Photoactivated Cdc42 
GEF BphP1/PpsR2 (BV) On: 740 nm

Off: 650 nm recruitment
Activation of Rho-GTPase signaling 
through GEF membrane recruitment 
[67]

Photoactivated Cdc42 
and Rac1 GEFs iLID/nano (FMN) On: 450 nm

Off: dark recruitment
Activation of Rho-GTPase signaling 
through GEF membrane recruitment 
[18]

PR_GEF TULIPs (FMN) On: 450 nm
Off: dark recruitment RhoA activation through GEF 

membrane recruitment [20–22]

optoGEF-RhoA Cry2/CIBN (FAD) On: 450 nm (dark)
Off: dark (450 nm)

Recruitment 
(sequestration)

RhoA activation (inactivation) through 
GEF membrane (mitochondria) 
recruitment [23]

opto-PI3K PhyB/PIF (PCB) On: 664 nm
Off: 725 nm recruitment

Activation of Rho-GTPase signaling 
through PI3K membrane recruitment 
[15]

Photoactivated PI3K Magnets (FAD) On: 450 nm
Off: dark recruitment Membrane recruitment of PI3K activity 

[19]

LOVTRAP GEF (and 
Rho GTPases) LOV2/Zdks (FMN) On: 450 nm

Off: dark sequestration
Rac1 GEF (or dominant active RhoA, 
Rac1) release from outer mitochondria 
membrane [41]

PI-Rho GTPases 
(GEFs) LOV2 (FMN) On: dark

Off: 450 nm
Allosteric 
inhibition

LOV2 insertion in surface loops 
propagating allosteric conformational 
inactivation [47]

Cytoskeleton dynamics

SxIP-iLID iLID/nano (FMN) On: 450 nm
Off: dark association Recruitment to growing microtubule 

plus ends [32]

n-EB1 LOV2/Zdk1 (FMN) On: dark
Off: 450 nm domain splitting Dissociation of the EB1 microtubule-

binding and +TIP adaptor domains [45]

Z-lock cofilin (aTAT) LOV2/Zdks (FMN) On: 450 nm
Off: dark steric inhibition

Uncaging of f-actin severing 
(microtubule acetylation) through 
LOV2/Zdk dissociation [42]

NuMA localization iLID/nano (FMN) 
TULIPs (FMN)

On: 450 nm
Off: dark recruitment

Localization of the spindle positioning 
factor NUMA to specific cortical sites 
[33,34]

Optogenetic 
‘knocksideways’ iLID/nano (FMN) On: dark

Off: 450 nm sequestration
TACC3 or KIF18A removal from 
mitotic spindles by outer mitochondria 
membrane recruitment [35]

Clustering Cry2olig (FAD) On: dark (450 nm)
Off: 450 nm (dark) oligomerization

Inactivation (activation) of endocytosis 
(actin assembly) through crosslinking / 
clustering [39]

Integrin (receptor) 
clustering Cry2 CLICR (FAD) On: 450 nm

Off: dark oligomerization Receptor activation through cell 
membrane associated clustering [70]

OptoIntegrin PhyB/PIF (PCB) On: 664 nm
Off: 725 nm association Extracellular modulation of cell-matrix 

interaction [71]

Cargo transport
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Photosensor 
(Chromophore)

Peak excitation 
wavelength Mechanism Description

Motor recruitment TULIPs (FMN) On: 450 nm
Off: dark association

Recruitment of kinesin, dynein, and 
myosin motor domains to different 
organelles [26,27,29]

Motor recruitment PhyB/PIF (PCB) On: 664 nm
Off: 725 nm association

Recruitment of kinesin and dynein 
motor domains to different organelles 
[30]

Motor recruitment CRY2/CIBN (FAD) On: 450 nm
Off: dark association

Recruitment of kinesin and dynein 
motor domains to different organelles 
[72]

Motor processivity VVD (FAD) On: 450 nm
Off: dark dimerization Kinesin motor homodimerization [29]

Motor gear shifting LOV2 (FMN) On: 450 nm
Off: dark allosteric

Control of myosin and kinesin speed/
directionality through lever arm 
conformation changes [50]
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