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Zero Sets of Abelian Lie Algebras of Vector Fields

Morris W. Hirsch

Communicated by K.-H. Neeb

Abstract. Assume M is a 3-dimensional real manifold without boundary,
A is an abelian Lie algebra of analytic vector fields on M , and X ∈ A .

Theorem If K is a locally maximal compact set of zeroes of X ∈ A and the
Poincaré-Hopf index of X at K is nonzero, there is a point in K at which all
the elements of A vanish.
Mathematics Subject Classification 2010: 37C10, 37C35.
Key Words and Phrases: keywords Analytic vector field, real manifold, abelian
Lie algebra.

1. Introduction

Throughout this paper M denotes a real analytic, metrizable manifold that is
connected and has finite dimension n , fixed at n = 3 in the main results.

The space of (continuous) vector fields on M endowed with the compact open
topology is V(M), and VrM is the subspace of Cr vector fields. Here r denotes
a positive integer, ∞ , or ω (meaning analytic); this convention is abbreviated by
1 ≤ r ≤ ω .

The zero set of X ∈ V(M) is Z(X) := {p ∈ M : Xp = 0} . If Z(X) = ∅
(the empty set), X is nonsingular. The zero set of a subset S ⊂ V(M) is
Z(S) :=

⋂
X∈S Z(S).

A compact set K ⊂ Z(X) is a block of zeros for X— called an X -block for
short— if it lies in a precompact open set U ⊂ M whose closure U contains no
other zeros of X ; such an open set is isolating for X , and for (X,K).

When U is isolating for X there is a unique maximal open neighborhood
NU ⊂ V(M) of X with the following property (Hirsch [10]):

If Y ∈ NU has only finitely many zeros in U , the Poincaré-Hopf index
of Y |U depends only on X and K .

This index is an integer denoted by iK(X), and also by i(X,U), with the latter
notation implying that U is isolating for X .The index can be equivalently defined
as the intersection number of X(U) with the zero section of the tangent bundle
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of U ([2]); and as the the fixed-point index of the time-t map of the local flow of
X|U for sufficiently small t > 0. ([5, 9, 12].)

The celebrated Poincaré-Hopf Theorem [14, 23] connects the index to
the Euler characteristic χ(M). A modern formulation (see Milnor [19]) runs as
follows:

Theorem 1.1 (Poincaré-Hopf). Assume M is a compact n-manifold,X ∈
V(M), and Z(X) ∩ ∂M = ∅. If X is tangent to ∂M at all boundary points, or
points outward at all boundary points then i(X,M) = χ(M). If X points inward
at all boundary points, i(X,M) = (−1)n−1χ(M).

For calculations of the index in more general settings see Gottlieb [6], Jubin
[15], Morse [21], Pugh [24].

The X -block K is essential if iK(X) 6= 0. When this holds every Y ∈
NU(X) has an essential block of zeros in U (Theorem 2.3). If M is a closed
manifold (compact, no boundary) and χ(M) 6= 0, the Poincaré-Hopf Theorem
implies Z(X) is an essential X -block.

C. Bonatti’s proved a remarkable extension of the Poincaré-Hopf Theorem
to certain pairs of commuting analytic vector fields on manifolds that need not be
compact:

Theorem 1.2 (Bonatti [2]). Assume dimM ≤ 4 and ∂M = ∅. If X, Y ∈
Vω(M) and [X, Y ] = 0, then Z(Y ) meets every essential X -block.1

Related results are in the articles [3, 10, 11, 13, 16, 17, 22, 27].

Our main result is an extension of Bonatti’s Theorem:

Theorem 1.3. Let M be a connected 3-manifold and A ⊂ Vω(M) an abelian
Lie algebra of analytic vector fields on M . Assume X ∈ A is nontrivial and
Z(X) ∩ ∂M = ∅. If K is an essential X -block, then Z(A) ∩K 6= ∅.

The proof, in Section 3, relies heavily on Bonatti’s Theorem. An analog for surfaces
is proved in Hirsch [10, Thm. 1.3].

1.1. Application to attractors. The interior Int(L) of a subset L ⊂M is the
union of all open subsets of M contained in L .

Fix a metric on M . If Q ⊂M is closed, the minimum distance from z ∈M
to points of Q is denoted by dist(z,Q).

Let X ∈ V1(M) have local flow Φ. An attractor for X (see [1, 4, 7, 25])
is a nonempty compact set P ⊂ M that is invariant under Φ and has a compact
neighborhood N ⊂M such that

Φt(N) ⊂ (N)

and

1 “The demonstration of this result involves a beautiful and quite difficult local study of the
set of zeros of X , as an analytic Y -invariant set.” —P. Molino [20]
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lim
t→∞

dist(Φt(x, P ), P ) = 0 uniformly inx ∈ N. (1)

Such an N can be chosen so that

t > s ≥ 0 =⇒ Φt(N) ⊂ Int(Φs(N)). (2)

Henceforth (2) is assumed. By F. W. Wilson [28, Thm. 2.2], we choose N so
that:

N is a compact C1 submanifold and X is inwardly transverse to ∂N .2 (3)

Theorem 1.4. Let M , A and X be as in Theorem 1.3. If P ⊂M is a compact
attractor for X and χ(P ) 6= 0, then Z(A) ∩ P 6= ∅.

Proof. P is a proper subset of M , as otherwise M is a closed 3-manifold
having nonzero Euler characteristic, contradicting the classical result that odd-
dimensional closed manifolds have zero Euler characteristic (e.g., Hirsch [8, Thm.
5.2.5]); Spanier[26, Thm. 6.2.18]. Fix N as above and note that χ(N) 6= 0.

By (3) and the Poincaré-Hopf Theorem 1.1 there is an essential X -block
K ⊂ N \ ∂N , and K ⊂ P by (1). Standard homology theory and (2) imply that
the inclusion map P ↪→ N induces an isomorphisms on singular homology, hence
χ(N) = χ(P ) 6= 0.

The conclusion follows from Theorem 1.3 applied to the data M ′,A′, X ′ :

M ′ := N, A′ :=
{
Y |N : Y ∈ A

}
, X ′ := X|N.

Example 1.5. Denote the inner product of x, y ∈ R3 by 〈x, y〉 and the norm
of x by ‖x‖ . Let Br ⊂ R3 denote the open ball about the origin of radius r > 0.

• Assume A is an abelian Lie algebra of analytic vector fields on an open set
M ⊂ R3 that contains Br . Let X ∈ A and r > 0 be such that

‖x‖ = r =⇒ 〈Xp, p〉 < 0.

Then Z(A) ∩Br 6= ∅.

Proof. This is a consequence of Theorem 1.4: Br contains an attractor for X
because X inwardly transverse to ∂Br and χ(Br) = 1.

2. Background material

Lemma 2.1 (Invariance). If T, S ∈ A then Z(S) is invariant under T .

Proof. Let Φ := {Φt}t∈R and Ψ := {Ψs} denote the local flows of T and S ,
respectively. If t, s ∈ R are sufficiently close to 0, because [T, S] = 0 we have

Φt ◦Ψs = Ψs ◦ Φt,

2 This means Xp is not tangent to ∂N if p ∈ ∂N .
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and
Z(S) = Fix(Ψ) :=

⋂
s

Fix(Ψs),

where Fix denotes the fixed point set. Suppose p ∈ Z(S). Then p ∈ Fix(Ψ), and

Ψs ◦ Φt(p) = Φt ◦Ψs(p) = Φt(p).

Consequently Φt(p) ∈ Fix(Ψs) for sufficiently small |t|, |s| , implying the conclusion.

A closed set Q ⊂ M is an analytic subspace of M , or analytic in M ,
provided Q has a locally finite covering by zero sets of analytic maps defined
on open subsets of M . This is abbreviated to analytic space when the ambient
manifold M is clear from the context. The connected components of analytic
spaces are also analytic spaces.

Analytic spaces have very simple local topology, owing to the theorem of
 Lojasiewicz [18]:

Theorem 2.2 (Triangulation). If T is a locally finite collection of analytic
spaces in M , there is a triangulation of M such that each element of T is covered
by a subcomplex.

The proof of Theorem 1.3 uses the following folk theorem:

Theorem 2.3 (Stability). Assume X ∈ V(M) and U ⊂ M is isolating for
X .

(a) If i(X,U) 6= 0 then Z(X) ∩ U 6= ∅.

(b) If Y ∈ V(M) is sufficiently close to X , then U is isolating for Y and
i(Y, U) = i(X,U).

Proof. See Hirsch [10, Thm. 3.9].

Let Z(S) denote the set of common zeros of a subset S ⊂ Vω(M).

Proposition 2.4. The following conditions hold for every S ⊂ A:

(a) Z(S) is analytic in M .

(b) Every zero dimensional A-invariant set lies in Z(A).

Proof. Left to the reader.

3. Proof of Theorem 1.3

Recall the hypotheses of the Main Theorem:

• M is a 3-dimensional manifold,
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• A ⊂ Vω(M) is an abelian Lie algebra,

• X ∈ A is nontrivial, Z(X) ∩ ∂M = ∅, and K is an essential block of
zeroes for X .

The conclusion to be proved is: Z(A) ∩ K 6= ∅ . It suffices to show that Z(A)
meets every neighborhood of K , because Z(A) is closed and K is compact.

Case I: dimA = d < ∞ . The special case d ≤ 2 is covered by Bonatti’s
Theorem. We proceed by induction on d :

Induction Hypothesis

• dimA = d+ 1, d ≥ 2.

• The zero set of every d-dimensional subalgebra of A meets K .

Arguing by contradiction, we assume per contra:

(PC) Z(A) ∩K = ∅ .

An important consequence is:

(A) dimK ≤ 2.

For otherwise dimK = 3, which entails the contradiction that X is trivial: X is
analytic and vanishes on a 3-simplex in the connected 3-manifold M .

The Stability Theorem (2.3) implies X has a neighborood NU ⊂ Vω(X)
with the following property:

(B) Y ∈ NU =⇒ U is isolating for Y and i(Y, U) = i(X,U) 6= 0.

Let Gd(A) denote d-dimensional Grassmann manifold of d-dimensional
linear subspaces B of A ; these are abelian subalgebras.

The nonempty set

Gd(NU) := {B ∈ Gd(A) : B ∩ NU 6= ∅}

is open in Gd(A), hence it is a d-dimensional analytic manifold.

Bonatti’s Theorem and (B) imply:

(C) Z(B) ∩K 6= ∅ for all B ∈ Gd(NU).

A key topological consequence of (C) is:

(D) If B and B′ are distinct elements of Gd(NU), then Z(B) ∩K and Z(B′) ∩K
are disjoint.

This holds because B ∪ B′ spans A , hence (PC) implies(
Z(B) ∩K

)⋂ (
Z(B′) ∩K

)
= Z(A) ∩K = ∅.

Each set Z(B) ∩ K is invariant (Lemma 2.1) and therefore has positive
dimension by (PC). Moreover:
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(E) The set ΓU :=
{
B ∈ Gd(NU) : dim Z(B) ∩K = 2

}
is finite.

For otherwise (D) implies K contains an infinite sequence of pairwise disjoint
compact subsets that are 2-dimensional and analytic in M . But this is impossible
by (A) and the Triangulation Theorem 2.2.

(E) shows that ΓU = ∅ provided U is small enough. Therefore we can
assume:

(F) dim Z(B) ∩K = 1 for all B ∈ Gd(NU).

The set Q :=
{

(B, p) ∈ Gd(NU) × M : p ∈ Z(B) ∩ K
}

is analytic in
Gd(NU)×M (Proposition 2.4). The natural projections

π1 : Q→ Gd(NU), π2 : Q→ K

are analytic, π1 is surjective, π2 is injective by (D).

The sets Z(B)∩K are therefore pairwise disjoint, and each is a 1-dimensional
analytic subspaces of Q by (F). Therefore dimQ = dimGd(A) + dim (Z(B)∩K) ≤
dimK , whence dimQ = d + 1 ≤ 2. But this is impossible because d ≥ 2 by the
Induction Hypothesis. This completes the inductive proof of the Main Theorem
in Case I.

Case II: dimA is infinite. Consider the family F of compact subsets of K :
F :=

{
Z(A′) ∩K : A′ ⊂ A is a finite-dimensional subalgebra

}
.

Evidently
⋂

S∈F S = Z(A)∩K . Case I shows every finite subset of F has nonempty
intersection. As K is compact, all the elements of F have nonmpty intersection,
proving Z(A) ∩K 6= ∅ .
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