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Abstract

Variable and Model Selection for Propensity Score Estimators in Causal Inference

by

Cheng Ju

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

Robust inference of a low-dimensional parameter in a large semi-parametric model re-
lies on external estimators of infinite-dimensional features of the distribution of the data.
Typically, only one of the latter is optimized for the sake of constructing a well behaved
estimator of the low-dimensional parameter of interest. Optimizing more than one of them
for the sake of achieving a better bias-variance trade-off in the estimation of the parameter
of interest is the core idea driving the general template of the collaborative targeted mini-
mum loss-based estimation (C-TMLE) procedure. In this dissertation, we first resolves the
computational issue in the widely-used greedy variable selection C-TMLE. Then we further
investigate how to extend the discrete, variable selection C-TMLE for a more general model
selection purpose.

Chapter 1 begins by introducing the framework of causal inference in observational stud-
ies. We introduce the non-parametric structural equation model for modeling the data gener-
ating distribution. We briefly review the targeted minimum loss-based estimation (TMLE).
We also introduce the general template of C-TMLE and its greedy-search variable selection
version.

In chapter 2, we propose the template for scalable variable selection C-TMLEs to over-
come the computational burden in the greedy variable selection C-TMLE. The original in-
stantiation of the C-TMLE template can be presented as a greedy forward stepwise C-TMLE
algorithm. It does not scale well when the number p of covariates increases drastically. This
motivates the introduction of a novel instantiation of the C-TMLE template where the co-
variates are pre-ordered. Its time complexity is O(p) as opposed to the original O(p2), a
remarkable gain. We propose two pre-ordering strategies and suggest a rule of thumb to de-
velop other meaningful strategies. Because it is usually unclear a priori which pre-ordering
strategy to choose, we also introduce another instantiation called SL-C-TMLE algorithm
that enables the data-driven choice of the better pre-ordering strategy given the problem
at hand. Its time complexity is O(p) as well. The computational burden and relative per-
formance of these algorithms were compared in simulation studies involving fully synthetic
data or partially synthetic data based on a real world large electronic health database; and in
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analyses of three real, large electronic health databases. In all analyses involving electronic
health databases, the greedy C-TMLE algorithm is unacceptably slow. Simulation studies
seem to indicate that our scalable C-TMLE and SL-C-TMLE algorithms work well.

In chapter 3, we extend C-TMLE to a more general model selection problem: we apply
C-TMLE to select from a set of continuously-indexed nuisance parameter (the propensity
score, PS) estimators. The propensity score models have traditionally been selected based on
the goodness-of-fit for the treatment mechanism itself, without consideration of the causal
parameter of interest. In contrast, the C-TMLE takes into account information on the causal
parameter of interest when selecting a PS model. This “collaborative learning” considers
variable associations with both treatment and outcome when selecting a PS model in order
to minimize a bias-variance trade off in the estimated treatment effect. In this study, we
introduce a novel approach for collaborative model selection when using the LASSO estimator
for PS estimation in high-dimensional covariate settings. To demonstrate the importance
of selecting the PS model collaboratively, we designed quasi-experiments based on a real
electronic healthcare database, where only the potential outcomes were manually generated,
and the treatment and baseline covariates remained unchanged. Results showed that the
C-TMLE algorithm outperformed other competing estimators for both point estimation and
confidence interval coverage. In addition, the PS model selected by C-TMLE could be applied
to other PS-based estimators, which also resulted in substantive improvement for both point
estimation and confidence interval coverage. We illustrate the discussed concepts through
an empirical example comparing the effects of non-selective Nonsteroidal anti-inflammatory
drugs with selective COX-2 inhibitors on gastrointestinal complications in a population of
Medicare beneficiaries.

In chapter 4, we propose using C-TMLE to adaptively truncated the propensity score
when there exist practical positivity violations. The positivity assumption, or the experi-
mental treatment assignment (ETA) assumption, is important for identifiability in causal in-
ference. Even if the positivity assumption holds, practical violations of this assumption may
jeopardize the finite sample performance of the causal estimator. One of the consequences of
practical violations of the positivity assumption is extreme values in the estimated propen-
sity score. A common practice to address this issue is truncating the PS estimate when
constructing PS-based estimators. In this study, we propose a novel adaptive truncation
method, Positivity-C-TMLE, based on the C-TMLE methodology. We further show how to
construct a robust confidence interval by a targeted variance estimator. We demonstrate the
outstanding performance of our novel approach in a variety of simulations by comparing it
with other commonly studied estimators, for both point estimation and confidence interval
coverage. Results show that by adaptively truncating the estimated PS with a more targeted
objective function, the Positivity-C-TMLE estimator achieves the best performance for both
point estimation and confidence interval coverage among all estimators considered.

The code for all the variations of C-TMLE in this dissertation are publicly available in
the ctmle R package.
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Chapter 1

Background

1.1 Estimating the Average Treatment Effect in

Observational Studies

We mainly consider the problem of estimating the ATE in an observational study where
we observe on each experimental unit: a collection of p baseline covariates, W ; a binary
treatment indicator, A; a binary or continuous (0, 1)-valued outcome of interest, Y . We
use Oi = (Wi, Ai, Yi) to represent the i-th observation from the unknown observed data
distribution P0, and assume that O1, . . . , On are independent. The parameter of interest is
defined as

Ψ(P0) = E0[E0(Y |A = 1,W )− E0(Y |A = 0,W )].

The ATE enjoys a causal interpretation under the non-parametric structural equation
model (NPSEM) given by: 

W = fW (UW )
A = fA(W,UA)
Y = fY (A,W,UY )

,

where fW , fA and fY are deterministic functions and UW , UA, UY are background (exoge-
nous) variables. The potential outcome under exposure level a ∈ {0, 1} can be obtained by
substituting a for A in the third equality: Ya = fY (a,W,UY ). Note that Y = YA (this is
known as the “consistency” assumption). If we are willing to assume that (i) A is condi-
tionally independent of (Y1, Y0) given W (this is known as the “no unmeasured confounders”
assumption) and (ii) 0 < P (A = 1|W ) < 1 almost everywhere (this is known as the “posi-
tivity” assumption), then Ψ(P0) satisfies Ψ(P0) = E0(Y1 − Y0).

For future use, we introduce the propensity score (PS), defined as the conditional proba-
bility of receiving treatment, and define g0(a,W ) ≡ P0(A = a|W ) for both a = 0, 1. We also
introduce the conditional mean of the outcome: Q̄0(A,W ) = E0(Y |A,W ). In the remainder
of this article, gn(a,W ) and Q̄n(A,W ) denote estimators of g0(a,W ) and Q̄0(A,W ).
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1.2 Targeted Maximum Likelihood Estimation for the

ATE

We are primarily interested in double robust (DR, which also stands for double robustness)
estimators of Ψ(P0). An estimator of Ψ(P0) is said to be DR if it is consistent if either Q̄0

or g0 is consistently estimated. In addition, an estimator of Ψ(P0) is said to be efficient if it
satisfies a central limit theorem with a limit variance which equals the second moment under
P0 of the so called efficient influence curve (EIC) at P0. The EIC for the ATE parameter is
given by

D∗(Q̄0, g0)(O) = H0(A,W )(Y − Q̄0(A,W )) + Q̄0(1,W )− Q̄0(0,W )−Ψ(P0),

where H0(A,W ) = A/g0(1,W ) − (1 − A)/g0(0,W ). The notation D∗(Q̄0, g0) is slightly
misleading: it suggests that Q̄0 and g0 fully characterize D∗(Q̄0, g0) whereas the marginal
distribution P0,W of W under P0, which appears in Ψ(P0), is also needed. We nevertheless
keep the notation as is for brevity. We refer the reader to [3] for details about efficient
influence curves.

More generally, for every valid distribution P of O = (W,A, Y ) such that (i) the condi-
tional expectation of Y given (A,W ) equals Q̄(A,W ) and the conditional probability that
A = a given W equals g(a,W ), and (ii) 0 < g(1,W ) < 1 almost surely, we denote

D∗(Q̄, g)(O) = Hg(A,W )(Y − Q̄(A,W )) + Q̄(1,W )− Q̄(0,W )−Ψ(P )

where Hg(A,W ) = A/g(1,W ) − (1 − A)/g(0,W ). The augmented inverse probability of
treatment weighted estimator (A-IPTW, or so called “DR IPTW”; [60, 58, 37]) and TMLE
[39, 38] are two well studied DR estimators. Taking the estimation of the ATE as an example,
A-IPTW estimates Ψ(P0) by solving the EIC equation directly. Given two estimators Q̄n

and gn of Q̄0 and g0, setting

Hgn(A,W ) = A/gn(1,W )− (1− A)/gn(0,W ), (1.1)

and solving (in ψ)

0 =
n∑
i=1

(
Hgn(Ai,Wi)(Yi − Q̄n(Ai,Wi)) + Q̄n(1,Wi)− Q̄n(0,Wi)− ψ

)
yield the A-IPTW estimator

ψA-IPTW
n =

1

n

n∑
i=1

(
Hgn(Ai,Wi)(Yi − Q̄n(Ai,Wi)) + Q̄n(1,Wi)− Q̄n(0,Wi)

)
.

It is worth noting that the A-IPTW estimator is not a substitution estimator: it cannot be
written as the value of Ψ at a particular P . The A-IPTW may thus sometimes take values
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outside of the parameter space [0, 1] where Ψ(P0) is known to live. On the contrary, an
instantiation of the TMLE template yields a substitution estimator which, by construction,
belongs to [0, 1]. This is a desirable property. For instance, a TMLE estimator can be
constructed by applying the TMLE algorithm below (which incorporates the negative log-
likelihood loss function and logistic fluctuation; see comment below).

I Estimating Q̄0. Derive an initial estimator Q̄0
n of Q̄0.

II Estimating g0. Derive an estimator gn of g0.

III Building the so called “clever covariate”. Define Hn(A,W ) as in (1.1).

IV “Fluctuating” the initial estimator. Fit the logistic regression of Y on Hn(A,W )
with no intercept, using logit(Q̄0

n(Ai,Wi)) as i-specific offset/intercept. This yields
a minimum loss estimator εn. Update the initial estimator Q̄0

n into Q̄∗n given by
Q̄∗n(A,W ) =

expit(logit(Q̄0
n(A,W )) + εnHn(A,W )). (1.2)

V Constructing the TMLE. Evaluate

ψTMLE
n =

1

n

n∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi)). (1.3)

In steps I and II, it is highly recommended to avoid making parametric assumptions, as any
parametric model is likely mis-specified. Relying on SL [36] is a good option. Step IV aims
to reduce bias in the estimation of Ψ(P0) by enhancing the initial estimator derived from
Q̄0
n and the marginal empirical distribution of W as an estimator of its counterpart under

P0. It is dubbed a “fluctuation” step because it consists, here, in (i) building a parametric
model through Q̄0

n and (ii) finding the optimal fluctuation of Q̄0
n in it w.r.t. the chosen loss

function. In practice, bounded continuous outcomes and binary outcomes are fluctuated on
the logit scale (hence the expression “logistic fluctuation”) to ensure that bounds on the
model space are respected [15].

In the context of the above TMLE algorithm, step IV consists in minimizing ε 7→
Ln(Q̄0

n(ε)) over R, where

Ln(Q̄0
n(ε)) =

n∑
i=1

(
Yi log(Q̄0

n(ε)(Ai,Wi)) + (1− Yi) log(1− Q̄0
n(ε)(Ai,Wi))

)
(1.4)

is the empirical loss of Q̄0
n(ε) given by (1.2) with ε substituted for εn. Moreover, the fluctua-

tion in step IV is made in such a way that the EIC equation is solved:
∑

iD
∗(Q̄∗n, gn)(Oi) = 0,

which justifies why Q̄∗n is said to be “targeted” toward Ψ(P0). This is the key to the TMLE
estimator being DR and asymptotically efficient under regularity conditions [38].

Standard errors and confidence intervals (CIs) can be computed based on the variance
of the influence curve. Proofs and technical details are available in the literature [39, 38].
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1.3 Collaborative Targeted Maximum Likelihood

Estimation for the ATE

When implementing an instantiation of the TMLE template, one relies on a single external
estimate of the nuisance parameter, g0 in the ATE example (see step 2 in Section 1.2). In
contrast, an instantiation of the C-TMLE template involves constructing a series of nuisance
parameter estimates and corresponding TMLE estimators using these estimates in the tar-
geting step. Section 1.3 presents the C-TMLE general template and Section 1.3 its first
instantiation, called the greedy C-TMLE algorithm.

The C-TMLE Template

When the ATE is the parameter of interest, the C-TMLE template can be summarized
recursively like this (see Algorithm 1 for a high-level algorithmic presentation).

1. Initialization. Build an initial triplet (gn,0, Q̄n,0, Q̄
∗
n,0) where gn,0 estimates g0 and

Q̄n,0 = Q̄0
n and Q̄∗n,0 estimate Q̄0, the latter estimator being targeted toward Ψ(P0) for

instance as in step IV of the TMLE algorithm presented in Section 1.2.

Suppose that k triplets (gn,0, Q̄n,0, Q̄
∗
n,0), . . ., (gn,k−1, Q̄n,k−1, Q̄

∗
n,k−1) have been built.

2. Deriving the next triplet.

a) Tentatively set Q̄n,k = Q̄n,k−1.

b) Derive candidate estimators gjn,k of g0 (1 ≤ j ≤ Jn,k) so that the empirical fit

provided by each gjn,k is better than that of gn,k−1.

c) For each j, build Q̄j,∗
n,k by fluctuating Q̄n,k based on gjn,k as in step IV of the TMLE

algorithm presented in Section 1.2 for instance.

d) Find  such that the empirical loss (see (1.4) in Section 1.2 for an example) of
Q̄,∗
n,k equals the minimum among the empirical losses of Q̄j,∗

n,k (1 ≤ j ≤ Jn,k), then

tentatively set (gn,k, Q̄n,k, Q̄
∗
n,k) = (gn,k, Q̄n,k, Q̄

,∗
n,k).

e) If the empirical loss of the candidate Q̄∗n,k is smaller than that of Q̄∗n,k−1, then
accept the candidate triplet.

f) If the empirical loss of the candidate Q̄∗n,k is larger than that of Q̄∗n,k−1, then set
Q̄n,k = Q̄∗n,k−1, go back to step 2b and carry out steps 2b, 2c, 2d and 2e.

3. Selecting the best triplet. Once all the triplets have been built, identify the triplet
(gn,kn , Q̄n,kn , Q̄

∗
n,kn

) that minimizes a cross-validated, loss-based, penalized empirical
risk, with the same loss function as that used in step 2c to fluctuate Q̄n,k.
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4. Constructing the C-TMLE. Evaluate

ψC-TMLE
n =

1

n

n∑
i=1

(Q̄∗n,kn(1,Wi)− Q̄∗n,kn(0,Wi)).

As in step 1 of the TMLE instantiation presented in Section 1.2, we recommend relying on
SL in step 1 of the above general template of C-TMLE. Two comments are in order regarding
step 2. First, to achieve collaborative DR eventually, the sequence of estimators (gn,k : k)
derived in steps 2b and 2d should be arranged in such a way that the estimator becomes
increasingly nonparametric, with asymptotic bias and variance respectively decreasing and
increasing, and so that gn,k converges (in k) to a consistent estimator of g0 [38]. One could
for instance rely on a nested sequence of models, see Section 1.3. By doing so, the empirical
fit for g0 improves as k increases [38, 16]. Second, if step 2f is carried out, then it necessarily
holds that the empirical risk of Q̄∗n,k is smaller than that of Q̄∗n,k−1 the second time step 2e
is undertaken, so the candidate triplet is accepted. In step 3, kn is formally defined as

kn = arg min
k

{
cvRiskk + cvV ark + n× cvBias2

k

}
where cvRiskk, cvV ark, cvBiask are respectively given by

V∑
v=1

∑
i∈Val(v)

loss(Q̄∗n,k(P
0
nv))(Oi),

V∑
v=1

∑
i∈Val(v)

D∗(Q̄∗n,k(P
0
nv), gn,k(P

0
n,v))(Oi)

2,

1

V

V∑
v=1

[Ψ(Q̄∗n,k(P
0
nv))−Ψ(Q̄∗n,k(Pn))]

where Ψ(Q̄∗n,k(P
0
nv)) and Ψ(Q̄∗n,k(Pn)) are shorthand notation for (1.3) with Q̄∗n,k(P

0
nv) and

Q̄∗n,k(Pn) substituted for Q̄∗n, and where loss is the loss function used in step 2c to fluctuate
Q̄n,k. That could be for instance the least-square loss function, in which case cvRiskk would
equal

cvRSSk =
V∑
v=1

∑
i∈Val(v)

(Yi − Q̄∗n,k(P 0
nv)(Wi, Ai))

2.

In the two previous displays, Val(v) is the set of indices of observations used for validation in
the v-th fold, P 0

nv is the empirical distribution of the observations indexed by i 6∈ Val(v), Pn
is the empirical distribution of the whole data set, and Z(P 0

nv) (respectively, Z(Pn)) means
that Z is fitted using P 0

nv (respectively, Pn). The penalization terms cvV ark and cvBiask
robustify the finite sample performance when the positivity assumption is violated [40].
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The C-TMLE eventually defined in step 4 inherits all the properties of the plain TMLE
estimator defined in (1.3) [40]. It is DR and asymptotically efficient under appropriate
regularity conditions. [50] discusses and compares TMLE and C-TMLE with other DR
estimators, including A-IPTW.

Section 1.3 presents the first instantiation of the C-TMLE general template.

Algorithm 1 General Template of C-TMLE

1: Construct an initial estimator Q̄0
n for Q̄0.

2: Create candidate Q̄∗n,k, using different estimators gn,k of g0, such that the empirical risks
of Q̄∗n,k and gn,k are decreasing in k.

3: Select the best candidate Q̄∗n = Q̄∗n,kn using loss-based cross-validation, with the same
loss function as in the TMLE targeting step.

The Greedy C-TMLE Algorithm

We refer to the first instantiation of the C-TMLE template as the greedy C-TMLE algorithm.
It uses a forward selection algorithm to build the sequence of estimators of g0 based on a
nested sequence of models for g0 that we call PS models. Let us describe the algorithm in
the case that W consists of p covariates. The steps we refer to are those of the C-TMLE
template of Section 1.3.

The construction of gn,0 in step 1 relies on the PS model defined as the one-dimensional
logistic model with only an intercept (the “intercept model”). Therefore, if the PS model
is fitted based on Pn, then gn,0 is given by gn,0(1|W ) = 1 − gn,0(0|W ) = Pn(A = 1). The
derivation of Q̄∗n,0 from Q̄n,0 and gn,0 in step 1 is then carried out by fitting the logistic
regression of Y on Hgn,0(A,W ) with i-specific offset/intercept logit(Q̄n,0(Ai,Wi)), where

Hgn,k(A,W ) = A/gn,k(1|W )− (1− A)/gn,k(0|W ), (1.5)

leading to
logit(Q̄∗n,k(A,W )) = logit(Q̄n,k(A,W )) + εkHgn,k(A,W ) (1.6)

(with k = 0). We denote by L0 the empirical risk of Q̄∗n,0 w.r.t. the negative log-likelihood
function L.

Assume that gn,1, . . . , gn,k−1 have already been derived by fitting PS models for g0 where
the `th PS model is included (as a set) in the (`+ 1)th PS model because in the latter A is
regressed on an intercept, the same (`− 1) covariates as in the former and on an additional
covariate (for each 1 ≤ ` ≤ k). To construct the (k+1)th PS model in step 2b, each covariate
Wj (1 ≤ j ≤ p such that Wj has not been included yet) is considered in turn as a candidate
additional covariate added to the kth PS model to form the (k + 1)th PS model. By fitting
the corresponding candidate (k+1)th PS model, we obtain a candidate gjn,k. Step 2c consists

in defining the corresponding Hgjn,k
and Q̄j,∗

n,k as in (1.5) and (1.6). To carry out step 2d,

let the empirical risk of Q̄,∗
n,k w.r.t. L be the smallest of the empirical risks of Q̄j,∗

n,k (for all
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considered js), let the (k+1)th PS model be the one where W is added to the kth PS model,
and set (gn,k, Q̄n,k, Q̄

∗
n,k) = (gn,k, Q̄n,k−1, Q̄

,∗
n,k). Let Lk be the empirical risk of Q̄∗n,k w.r.t. L.

In step 2e, we assess whether Lk ≤ Lk−1 or not. If the inequality is met, then the candidate
triplet is accepted. Otherwise, we reset Q̄n,k = Q̄∗n,k−1 and repeat steps 2c and 2d. It is then
guaranteed that the empirical risk of Q̄∗n,k w.r.t. L is smaller than Lk−1, and the candidate
triplet is accepted.

This forward stepwise procedure is carried out recursively until all p covariates have been
incorporated into the PS model for g0. In the discussed setting, choosing the first covariate
requires p comparisons, choosing the second covariate requires (p − 1) comparisons and so
on.

Fitting a PS model to derive an estimator gn,k and fluctuating a current Q̄n,k based on
the resulting Hgn,k does not take much computational time. We consider this time as the
time unit, and can thus claim that the time complexity w.r.t. p of the greedy C-TMLE
algorithm is O(

∑p
k=1 k) = O(p2) time units (the O accounts for the cross-validation).
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Chapter 2

Scalable Collaborative Targeted
Learning for Variable Selection in
High-dimensional Data

2.1 Introduction

The general template of collaborative double robust targeted minimum loss-based estimation
(C-TMLE; “C-TMLE template” for short) builds upon the targeted minimum loss-based
estimation (TMLE) template [38, 40]. Both the TMLE and C-TMLE templates can be
viewed as meta-algorithms which map a set of user-supplied choices/hyper-parameters (e.g.,
parameter of interest, loss function, submodels) into a specific machine-learning algorithm
for estimation, that we call an instantiation of the template.

Constructing a TMLE or a C-TMLE involves the estimation of a nuisance parameter,
typically an infinite-dimensional feature of the distribution of the data. For a plain TMLE
estimator, the estimation of the nuisance parameter is addressed as an independent statistical
task. In the C-TMLE template, on the contrary, the estimation of the nuisance parameter
is optimized to provide a better bias-variance trade-off in the inference of the targeted pa-
rameter. The C-TMLE template has been successfully applied in a variety of areas, from
survival analysis [69], to the study of gene association [74] and longitudinal data structures
[68] to name just a few.

In the original instantiation of the C-TMLE template of [40], that we henceforth call “the
greedy C-TMLE algorithm”, the estimation of the nuisance parameter aiming for a better
bias-variance trade-off is conducted in two steps. First, a greedy forward stepwise selection
procedure is implemented to construct a sequence of candidate estimators of the nuisance
parameter derived by fitting a nested sequence of models. Second, cross-validation is used
to select the candidate from this sequence which minimizes a criterion that incorporates a
measure of bias and variance with respect to (w.r.t) the targeted parameter (the algorithm
is described in Section 1.3). The authors show that the greedy C-TMLE algorithm exhibits
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superior relative performance in analyses of sparse data, at the cost of an increase in time
complexity. For instance, in a problem with p baseline covariates, one would construct and
select from p candidate estimators of the nuisance parameter, yielding a time complexity
of order O(p2). Despite a criterion for early termination, the algorithm does not scale to
large-scale and high-dimensional data. The aim of this article is to develop novel C-TMLE
algorithms that overcome these serious practical limitations without compromising finite
sample or asymptotic performance.

We propose two such “scalable C-TMLE algorithms”. They replace the greedy search
at each step by an easily computed data adaptive pre-ordering of the candidate estimators
of the nuisance parameter. They include a data adaptive, early stopping rule that further
reduces computational time without sacrificing statistical performance. In the aforemen-
tioned problem with p baseline covariates where the time complexity of the greedy C-TMLE
algorithm was of order O(p2), those of the two novel scalable C-TMLE algorithms is of order
O(p).

Because one may be reluctant to specify a single a priori pre-ordering of the candidate
estimators of the nuisance parameter, we also introduce a SL-C-TMLE algorithm. It selects
the best pre-ordering from a set of ordering strategies by super learning (SL) [36]. SL is an
example of ensemble learning methodology which builds a meta-algorithm for estimation out
of a collection of individual, competing algorithms of estimation, relying on oracle properties
of cross-validation.

We focus on the estimation of the average (causal) treatment effect (ATE). It is not
difficult to generalize our scalable C-TMLE algorithms to other estimation problems, by
simply replacing the greedy search part in the corresponding greedy C-TMLE algorithm
with the scalable version when building the sequence of candidate estimates, while leaving
other building blocks unchanged.

The performance of the two scalable C-TMLE and SL-C-TMLE algorithms are com-
pared with those of competing, well established estimation methods: G-computation [56],
inverse probability of treatment weighting (IPTW) [22, 57], augmented inverse probability
of treatment weighted estimator (A-IPTW) [54, 55, 61]. Results from unadjusted regression
estimation of a point treatment effect are also provided to illustrate the level of bias due to
confounding.

This chapter is organized as follows. Section 2.2 introduces the two proposed pre-ordered
scalable C-TMLE algorithms, and SL-C-TMLE algorithm. Sections 2.3 and 2.3 present the
results of simulation studies (based on fully or partially synthetic data, respectively) compar-
ing the C-TMLE and SL-C-TMLE estimators with other common estimators. Section 2.4
presents and compares the empirical processing time of C-TMLE algorithms for different
sample sizes and numbers of candidate estimators of the nuisance parameter. Section 2.5
compares the performance of the new C-TMLEs with standard TMLE on three real data
sets. Section 2.6 is a closing discussion.
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2.2 Scalable C-TMLE Algorithms

Now that we have introduced the background on C-TMLE, we are in a position to present
our scalable C-TMLE algorithm. Section 2.2 summarizes the philosophy of the scalable C-
TMLE algorithm, which hinges on a data adaptively determined pre-ordering of the baseline
covariates. Sections 2.2 and 2.2 present two such pre-ordering strategies. Section 2.2 dis-
cusses what properties a pre-ordering strategy should satisfy. Section 2.2 proposes a discrete
Super Learner-based model selection procedure to select among a set of scalable C-TMLE
estimators, which is itself a scalable C-TMLE algorithm. Finally, Section 2.2 sketches how
to adapt scalable C-TMLEs to other estimation problems, with the example of the relative
risk (RR).

Outline

A O(p2) time complexity when there are p covariates is unsatisfactory for large scale and
high-dimensional data, a situation which is increasingly common in health care research. For
example, the high-dimensional propensity score (hdPS) is a method to extract information
from electronic medical claims data that produces hundreds or even thousands of candidate
covariates, increasing the dimension of the data dramatically [66].

In order to make it possible to apply C-TMLE algorithms to such data sets, we pro-
pose to add a new pre-ordering procedure after the initial estimation of Q̄0 and before the
stepwise construction of the candidate Q̄∗n,0, Q̄

∗
n,1, . . . , Q̄

∗
n,k, . . .. We present two pre-ordering

procedures in Sections 2.2 . By imposing an ordering over the covariates, only one covariate
is eligible for inclusion in the PS model at each step when constructing the next candidate
Q̄∗n,k. In other words, Jn,k equals 1 in steps 2b and 2c, and  = j = 1 in step 2d of the
C-TMLE general template presented in Section 1.3. Therefore, the computational time of
a scalable C-TMLE algorithm w.r.t. p is O(

∑p
i=1 1) = O(p) time units (the O accounts for

the cross-validation).

Logistic Pre-Ordering Strategy

The logistic pre-ordering procedure is similar to step 2 of the C-TMLE general template
specialized to the greedy C-TMLE algorithm of Section 1.3. However, instead of selecting one
single covariate before going on, we use the empirical losses w.r.t. L to order the covariates
by how much they can improve the predictive performance of Q̄0

n (or, heuristically, by their
ability to reduce bias). More specifically, for each covariate Wk (1 ≤ k ≤ p), we construct an
estimator gn,k of the conditional distribution of A given Wk only (one might also add Wk to
a fixed baseline model); we define a clever covariate as in (1.5) using gn,k and fluctuate Q̄0

n as
in (1.6); we compute the empirical loss of the resulting Q̄∗n,k w.r.t. L, yielding Lk. Finally,
the covariates are ranked by increasing values of the empirical loss. This is summarized in
Algorithm 2.
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Algorithm 2 Logistic Pre-Ordering Algorithm

1: for each covariate Wk in W do
2: Construct an estimator gn,k of g0 using a logistic model with Wk as predictor.
3: Define a clever covariate Hgn,k(A,Wk) as in (1.5).
4: Fit εk by regressing Y on Hgn,k(A,Wk) with i-specific offset/intercept

logit(Q̄0
n(Ai,Wk,i)).

5: Define Q̄∗n,k as in (1.6).
6: Compute the empirical loss Lk w.r.t. L.
7: end for
8: Rank the covariates by increasing Lk.

Partial Correlation Pre-Ordering Strategy

In the greedy C-TMLE algorithm described in Section 1.3, once k covariates have already
been selected, the (k+1)th is that remaining covariate which provides the largest reduction in
the empirical loss w.r.t. L. Heuristically, the (k+1)th covariate is the one that best explains
the residual between Y and Q̄∗n,k. Drawing on this idea, the partial correlation pre-ordering
procedure ranks the p covariates based on how each of them is correlated with the residual
between Y and the initial Q̄0

n within strata of A. This second strategy is less computationally
demanding than the previous one because there is no need to fit any regression models, all
one has to do is merely to estimate p partial correlation coefficients.

Let ρ(X1, X2) denote the Pearson correlation coefficient between X1 and X2. Recall that
the partial correlation ρ(X1, X2|X3) between X1 and X2 given X3 is defined as the correlation
coefficient between the residuals RX1 and RX2 resulting from the linear regression of X1 on
X3 and of X2 on X3, respectively [19]. For each 1 ≤ k ≤ p, we introduce R = Y − Q̄0

n(A,W ),

ρ(R,Wk|A) =
ρ(R,Wk)− ρ(R,A)× ρ(Wk, A)√

(1− ρ(R,A)2)(1− ρ(Wk, A)2)
.

The partial correlation pre-ordering strategy is summarized in Algorithm 3.

Algorithm 3 Partial Correlation Pre-Ordering Algorithm

1: for each covariate Wk in W do
2: Estimate the partial correlation coefficient ρ(R,Wk|A) between R = (Y − Q̄0

n(A,W ))
and Wk given A.

3: end for
4: Rank the covariates based on the absolute value of the estimates of the partial correlation

coefficients.
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Discussion of the Design of Pre-ordering

Sections 2.2 and 2.2 propose two pre-ordering strategies. In general, a rule of thumb for
designing a pre-ordering strategy is to rank the covariates based on the impact of each in
reducing the residual bias in the target parameter which results from the initial estimator Q̄0

n

of Q̄0. In this light, the logistic ordering of Section 2.2 uses TMLE to reflect the importance
of each variable w.r.t. its potential to reduce residual bias. The partial correlation ordering
of Section 2.2 ranks the covariates according to the partial correlation of residual of the
initial fit and the covariates, conditional on treatment.

Because the rule of thumb considers each covariate in turn separately, it is particularly
relevant when the covariates are not too dependent. For example, consider the extreme case
where two or more of the covariates are highly correlated and can greatly explain the residual
bias in the target parameter. In this scenario, these dependent covariates would all be ranked
towards the front of the ordering. However, after adjusting for one of them, the others would
typically be much less helpful for reducing the remaining bias. This redundancy may harm
the estimation. In cases where it is computationally feasible, this problem can be avoided
by using the greedy search strategy, but many other intermediate strategies can be pursued
as well.

Super Learner-Based C-TMLE Algorithm

Here, we explain how to combine several C-TMLE algorithms into one. The combination is
based on a Super Learner (SL). Super learning is an ensemble machine learning approach that
relies on cross-validation. It has been proven that a SL selector can perform asymptotically
as well as an oracle selector under mild assumptions [36, 35, 73].

As hinted at above, a SL-C-TMLE algorithm is an instantiation of an extension of the
C-TMLE template. It builds upon several competing C-TMLE algorithms, each relying on
a different strategy to construct a sequence of estimators of the nuisance parameter. A SL-
C-TMLE algorithm can be designed to select the single best strategy (discrete SL-C-TMLE
algorithm), or an optimal combination thereof (ensemble SL-C-TMLE algorithm). A SL-C-
TMLE algorithm can include both greedy search and pre-ordering methods. A SL-C-TMLE
algorithm is scalable if all of the candidate C-TMLE algorithms in the library are scalable
themselves.

We focus on a scalable discrete SL-C-TMLE algorithm that uses cross-validation to choose
among candidate scalable (pre-ordered) C-TMLE algorithms. Algorithm 4 describes its
steps. Note that a single cross-validation procedure is used to select both the ordering
procedure m and the number of covariates k included in the PS model. It is because compu-
tational time is an issue that we do not rely on a nested cross-validation procedure to select
k for each pre-ordering strategy m.
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Algorithm 4 Super Learner C-TMLE Algorithm

1: Define M covariates pre-ordering strategies yielding M C-TMLE algorithms
2: for each pre-ordering strategy m do
3: Follow step 2 of Algorithm 1 to create candidate Q̄∗n,m,k for the m-th strategy.
4: end for
5: The best candidate Q̄∗n is the minimizer of the cross-validated losses of Q̄∗n,m,k across all

the (m, k) combinations.

The time complexity of the SL-C-TMLE algorithm is of the same order as that of the
most complex C-TMLE algorithm considered. So, if only pre-ordering strategies of order
O(p) are considered, then the time complexity w.r.t. p of the SL-C-TMLE algorithm is O(p)
as well (the O accounts for the cross-validation). Given a constant number of user-supplied
strategies, the SL-C-TMLE algorithm remains scalable, with a processing time that is ap-
proximately equal to the sum of the times for each strategy.

We compare the pre-ordered C-TMLE algorithms and SL-C-TMLE algorithm with greedy
C-TMLE algorithm and other common methods in Sections 2.3 and 2.5.

Extend to Other Estimation Problems

We have claimed that the scalable C-TMLEs presented so far, which are tailored to the
estimation of the ATE, can be easily adapted to other estimation problems. Say for instance
that the RR is the target parameter: Ψ′(P0) = E0[E0(Y |A = 1,W )]/E0[E0(Y |A = 0,W )].
Then it suffices to adapt the targeting step (1.6). We now define two clever covariates

H0
gn,k

(A,W ) = −(1− A)/gn,k(0,W ),

H1
gn,k

(A,W ) = A/gn,k(1,W ),

and carry out the regression of Y on H0
gn,k

(A,W ) and H1
gn,k

(A,W ) with i-specific off-

set/intercept logit(Q̄n,k(Ai,Wi)), leading to

logit(Q̄∗n,k(A,W )) = logit(Q̄n,k(A,W )) + ε0kH
0
gn,k

(A,W ) + ε1kH
1
gn,k

(A,W ).

Finally, Q̄∗n,k yields the TMLE estimator of Ψ′(P0) given as the ratio

1

n

n∑
i=1

Q̄∗n(1,Wi)/
1

n

n∑
i=1

Q̄∗n(0,Wi),

see [63] for details.
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2.3 Simulation Studies

Simulation Studies on Fully Synthetic Data

We carried out four Monte-Carlo simulation studies to investigate and compare the perfor-
mance of G-computation (that we call MLE), IPTW, A-IPTW, greedy C-TMLE algorithm
and scalable C-TMLE algorithms to estimate the ATE parameter. For each study, we gen-
erated N = 1, 000 Monte-Carlo data sets of size n = 1, 000. Propensity score estimates were
truncated to fall within the range [0.025, 0.975] for all estimators.

Denoting Q̄0
n and gn two initial estimators of Q̄0 and g0, the unadjusted, G-computation/MLE,

and IPTW estimators of the ATE parameter are given by (2.1), (2.2) and (2.3):

ψunadj
n =

∑n
i=1AiYi∑n
i=1Ai

−
∑n

i=1(1− Ai)Yi∑n
i=1(1− Ai)

, (2.1)

ψMLE
n =

1

n

n∑
i=1

(Q0
n(1,Wi)−Q0

n(0,Wi)), (2.2)

ψIPTW
n =

1

n

n∑
i=1

(2Ai − 1)Yi
gn(Ai,Wi)

, (2.3)

ψA-IPTW
n =

1

n

n∑
i=1

(2Ai − 1)

gn(Ai|Wi)
(Yi −Q0

n(Wi, Ai))

+
1

n

n∑
i=1

(Q0
n(1,Wi)−Q0

n(0,Wi)). (2.4)

The A-IPTW and TMLE estimators were presented in Section 1.2. The estimators
yielded by the C-TMLE and scalable C-TMLE algorithms were presented in Section 1.3 .

In all simulation studies, the definitions of the TMLE (1.3), IPTW (2.3) and A-IPTW
(2.4) estimators involve an estimator gn of g0 obtained by fitting a correctly specified, main
terms logistic regression PS model. The definitions of the C-TMLEs also involve estimators
obtained by fitting main terms logistic regression PS model but with an additional layer of
variable selection.

The simulation studies of Section 2.3 illustrate the relative performance of the estima-
tors in scenarios with highly correlated covariates. These two scenarios are by far the most
challenging settings for the greedy C-TMLE and scalable C-TMLE algorithms. The simula-
tion studies of Section 2.3illustrate performance in situations where instrumental variables
(covariates predictive of the treatment but not of the outcome) are included in the true PS
model. In these two scenarios, greedy C-TMLE and our scalable C-TMLEs are expected to
perform better, if not much better, than other widely used doubly-robust methods.
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Table 2.1: Simulation study 1. Performance of the various estimators across 1000 simulated
data sets of sample size 1000.

well specified model for Q̄0 mis-specified model for Q̄0

bias (10−3) se (10−2) MSE (10−3) bias (10−3) se (10−2) MSE (10−3)
unadj 2766.8 22.6 7706.3 2766.8 22.61 7706.3
A-IPTW 0.7 9.54 9.1 10.8 13.52 18.4
IPTW 75.9 34.91 127.5 75.9 34.91 127.5
MLE 1.0 8.20 6.7 699.4 13.96 508.6
TMLE 0.6 9.55 9.1 1.3 11.05 12.2
greedy C-TMLE 0.8 8.91 7.9 0.4 10.41 10.8
logRank C-TMLE 0.1 8.94 8.0 0.4 10.41 10.8
partRank C-TMLE 0.3 8.94 8.0 0.4 10.41 10.8
SL-C-TMLE 0.1 9.07 8.2 0.4 10.41 10.8

Simulation Study 1: Low-dimensional, highly correlated covariates

In the first simulation study, data were simulated based on a data generating distribution
published by [12] and further analyzed by [47]. A pair of correlated, multivariate Gaussian
baseline covariates (W1,W2) is generated as (W1,W2) ∼ N(µ,Σ) where µ1 = 0.5, µ2 = 1 and

Σ =

[
2 1
1 1

]
. The PS g0 is given by

g0(1|W ) = expit(0.5 + 0.25×W1 + 0.75×W2)

(this is a slight modification of the mechanism in the original paper, which used a probit
model to generate treatment). The outcome is continuous, Y = Q̄0(A,W ) + ε, with ε ∼
N(0, 1) (independent of A,W ) and Q̄0(A,W ) = 1 +A+W1 + 2×W2. The true value of the
target parameter is ψ0 = 1.

Note that (i) the two baseline covariates are highly correlated and (ii) the choice of g0

yields practical (near) violation of the positivity assumption.
Each of the estimators involving the estimation of Q̄0 was implemented twice: by fitting

a model correctly specified for Q̄0, and by regressing Y on A and W1 only in a mis-specified
linear model.

Bias, variance, and mean squared error (MSE) for all estimators across 1000 simulated
data sets are shown in Table 2.1. Box plots of the estimated ATE are shown in Fig. 2.1.

When the model for Q̄0 was correctly specified, all estimators had very small bias. As
Freedman and Berk discussed, even when the correct PS model was used, near positivity
violations could lead to finite sample bias for IPTW estimators [see also 47]. Scalable C-
TMLEs had smaller bias than the other DR estimators, but the distinctions were small.

When the model for Q̄0 was not correctly specified, the G-computation/MLE estimator
was expected to be biased. Interestingly, A-IPTW was more biased than the other DR esti-
mators. All C-TMLE estimators had identical performance, because each approach produced
the same treatment model sequence.
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(b) Mis-specified model for Q̄0.

Figure 2.1: Simulation 1: Box plot of the ATE estimates with well/mis- specified models for
Q̄0. The green lines indicate the true parameter value.

Simulation Study 2: Highly correlated covariates

In the second simulation study, we tackle the case that multiple confounders are highly
correlated with each other. Here, we use the notation W1:k = (W1, . . . ,Wk). The data-
generating distribution is described as follows:

W1,W2,W3
iid∼Bernoulli(0.5),

W4|W1:3 ∼Bernoulli(0.2 + 0.5×W1),

W5|W1:4 ∼Bernoulli(0.05 + 0.3×W1 + 0.1×W2

+ 0.05×W3 + 0.4×W4),

W6|W1:5 ∼Bernoulli(0.2 + 0.6×W5),

W7|W1:6 ∼Bernoulli(0.5 + 0.2×W3),

W8|W1:7 ∼Bernoulli(0.1 + 0.2×W2 + 0.3×W6

+ 0.1×W7),

g0(1|W ) = expit(−0.05 + 0.1×W1 + 0.2×W2

+ 0.2×W3 − 0.02×W4

− 0.6×W5 − 0.2×W6 − 0.1×W7)

and, finally, for ε ∼ N(0, 1) (independent from A and W ),

Y = 10 + A+W1 +W2 +W4 + 2×W6 +W7 + ε.

The true ATE for this simulation study is ψ0 = 1.
In this case, the true confounders are W1,W2,W4,W6,W7. Covariate W5 is most closely

related toW6. CovariateW3 is mainly associated withW7. NeitherW3 norW5 is a confounder
(both of them are predictive of treatment A, but do not influence directly outcome Y ).
Including either one of them in the PS model should inflate the variance [4].
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Table 2.2: Simulation study 2. Performance of the various estimators across 1000 simulated
data sets of sample size 1000.

well specified model for Q̄0 mis-specified model for Q̄0

bias (10−3) se (10−2) MSE (10−3) bias (10−3) se (10−2) MSE (10−3)
unadj 392.9 12.65 170.3 392.9 12.65 170.3
A-IPTW 2.4 6.54 4.3 2.0 6.53 4.3
IPTW 2.1 7.78 6.0 2.1 7.78 6.0
MLE 2.6 6.52 4.3 391.2 12.39 168.4
TMLE 2.4 6.54 4.3 2.0 6.53 4.3
greedy C-TMLE 2.6 6.52 4.3 11.4 7.01 5.0
logRank C-TMLE 2.5 6.52 4.3 6.3 6.72 4.6
partRank C-TMLE 2.6 6.52 4.3 2.5 6.67 4.4
SL-C-TMLE 2.5 6.52 4.3 5.2 6.79 4.6
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(b) Mis-specified model for Q̄0.

Figure 2.2: Simulation 2: Box plot of the ATE estimates with well/mis- specified models for
Q̄0. The green line indicates the true parameter value.

As in Section 2.3, each of the estimators involving the estimation of Q̄0 was implemented
twice: by fitting a model correctly specified for Q̄0, and by regressing Y on A only in a
mis-specified linear model.

Table 2.2 demonstrates and compares performance across 1000 replications. Box plots
of the estimated ATE are shown in Fig. 2.2. When Q̄0 was estimated by fitting a correctly
specified model, all estimators except the unadjusted estimator had small bias. The DR
estimators had lower MSE than the inefficient IPTW estimator. When Q̄0 was estimated by
fitting a mis-specified model, the A-IPTW and IPTW estimators were less biased than the
C-TMLE estimators. The bias of the greedy C-TMLE was five times larger. However, all
DR estimators had lower MSE than the IPTW estimator, with the TMLE outperforming
the others.
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Table 2.3: Simulation study 3. Performance of the various estimators across 1000 simulated
data sets of sample size 10000.

well specified model for Q̄0 mis-specified model for Q̄0

bias (10−3) se (10−2) MSE (10−3) bias (10−3) se (10−2) MSE (10−3)
unadj 78.1 3.72 7.5 78.1 3.72 7.5
A-IPTW 1.7 5.62 3.2 13.9 5.64 3.4
IPTW 45.9 6.05 5.8 45.9 6.05 5.8
MLE 0.7 4.20 1.8 76.4 3.61 7.1
TMLE 1.5 6.28 3.9 1.3 6.44 4.1
greedy C-TMLE 0.4 5.39 2.9 12.2 5.79 3.5
logRank C-TMLE 0.9 5.39 2.9 11.2 5.59 3.3
partRank C-TMLE 1.2 5.65 3.2 6.9 5.37 2.9
SL-C-TMLE 0.3 5.73 3.3 7.7 5.46 3.0
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(b) Mis-specified model for Q̄0.

Figure 2.3: Simulation 3: Box plot of the ATE estimates with well/mis- specified models for
Q̄0. The green line indicates the true parameter value.

Simulation Study 3: Binary outcome with instrumental variable

In the third simulation, we assess the performance of C-TMLE in a data set with positivity
violations. We first generate W1,W2,W3,W4 independently from the uniform distribution
on [0, 1], then A|W ∼ Bernoulli(g0(1|W )) with

g0(1,W ) = expit(−2 + 5×W1 + 2×W2 +W3),

and, finally, Y |(A,W ) ∼ Bernoulli(Q̄0(A,W )) with

Q̄0(A,W ) = expit(−3 + 2×W2 + 2×W3 +W4 + A).

As in Section 2.3 , each of the estimators involving the estimation of Q̄0 was implemented
twice: by fitting a model correctly specified for Q̄0, and by regressing Y on A only in a mis-
specified linear model.

Table 2.3 demonstrates the performance of the estimators across 1000 replications. Fig. 2.3
shows box plots of the estimates for the different methods across 1000 simulation, with a
well specified or mis-specified model for Q̄0.
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When the model for Q̄0 was correctly specified, the DR estimators had similar bias/variance
trade-offs. Although IPTW is a consistent estimator when the model for the estimation of
g0 is correctly specified, truncation of the PS gn may have introduced bias. However, with-
out truncation it would have been extremely unstable due to violations of the positivity
assumption when instrumental variables are included in the propensity score model.

When the model for Q̄0 was mis-specified, the MLE was equivalent to the unadjusted
estimator. The DR methods performed well with an MSE close to the one observed when Q̄0

was estimated based on a correctly specified model. All C-TMLEs had similar performance.
They out-performed the other DR methods (namely, A-IPTW and TMLE) and the pre-
ordering strategies improved the computational time without loss of precision or accuracy
compared to the greedy C-TMLE algorithm.

Side note.

Because W1 is an instrumental variable that is highly predictive of the PS, but not helpful for
confounding control, we expect that including it in the PS model would increase the variance
of the estimator. One possible way to improve the performance of the IPTW estimator would
be to apply a C-TMLE algorithm to select covariates for fitting the PS model. In the mis-
specified model for Q̄0 scenario, we also simulated the following procedure:

1. Use a greedy C-TMLE algorithm to select the covariates.

2. Use main terms logistic regression with selected covariates for the PS model.

3. Compute IPTW using the estimated PS.

The simulated bias for this estimator was 0.0340, the SE was 0.0568, and the MSE was
0.0043. Excluding the instrumental variable from the PS model thus reduced bias, variance,
and MSE of the IPTW estimator.

Simulation Study 4: Continuous outcome

In the fourth simulation, we assess the performance of C-TMLEs in a simulation scheme
with a continuous outcome inspired by that of [17] (we merely increased the coefficient
in front of W1 to introduce a stronger positivity violation). We first independently draw
W1,W2,W3,W4,W5,W6 from the standard normal law, then A given W with

g0(1,W ) = expit(2×W1 + 0.2×W2 − 3×W3)

and, finally Y given (A,W ) from a Gaussian law with variance 1 and mean Q̄0(A,W ) =

0.5×W1 − 8×W2 + 9×W3 − 2×W5 + A.

The initial estimator Q̄0
n was built based on a linear regression model of Y on A, W1,

and W2, thus partially adjusting for confounding. There was residual confounding due to
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W3. There was also residual confounding due to W1 and W2 within at least one stratum of
A, despite their inclusion in the initial outcome regression model.

Table 2.4: Simulation study 4. Performance of the various estimators across 1000 simulated
data sets of sample size 1000. Omitted in the table, the performance of the unadjusted
estimator was an order of magnitude worse than the performance of the other estimators.

Mis-specified model for Q̄0

bias se MSE
A-IPTW 4.49 0.84 20.88
IPTW 2.97 0.87 9.60
MLE 12.68 0.47 161.20
TMLE 1.31 1.21 3.17
greedy C-TMLE 0.25 1.01 1.27
logRank C-TMLE 0.36 0.88 0.90
partRank C-TMLE 0.32 0.92 0.95
SL-C-TMLE 0.37 0.88 0.90
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Figure 2.4: Simulation 4: Box plot of the ATE estimates with mis-specified model for Q̄0.

Fig. 2.4 reveals that the C-TMLEs performed much better than TMLE and A-IPTW
estimators in terms of bias and standard error. This illustrates that choosing to adjust for
less than the full set of covariates can improve finite sample performance when there are
near positivity violations. In addition, Table 2.4 shows that the pre-ordered C-TMLEs out-
performed the greedy C-TMLE. Although the greedy C-TMLE estimator had smaller bias,
it had higher variance, perhaps due to its more data adaptive ordering procedure.

Simulation Study on Partially Synthetic Data

The aim of this section is to compare TMLE and all C-TMLEs using a large simulated
data set that mimics a real-world data set. Section 2.3 starts the description of the data-
generating scheme and resulting large data set. Section 2.3 presents the High-Dimensional
Propensity Score (hdPS) method used to reduce the dimension of the data set. Section 2.3
completes the description of the data-generating scheme and specifies how Q̄0 and g0 are
estimated. Section 2.3 summarizes the results of the simulation study.
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Data-generating scheme

The simulation scheme relies on the Nonsteroidal anti-inflammatory drugs (NSAID) data
set presented and studied in [66, 52]. Its n = 49, 653 observations were sampled from a
population of patients aged 65 years and older, and enrolled in both Medicare and the Penn-
sylvania Pharmaceutical Assistance Contract for the Elderly (PACE) programs between
1995 and 2002. Each observed data structure consists of a triplet (W,A, Y ) where W is
decomposed in two parts: a vector of 22 baseline covariates and a highly sparse vector of
C = 9, 470 unique claims codes. In the latter, each entry is a nonnegative integer indicating
how many times (mostly zero) a certain procedure (uniquely identified among C = 9, 470 by
its claims code) has been undergone by the corresponding patient. The claims codes were
manually grouped into eight categories: ambulatory diagnoses, ambulatory procedures, hos-
pital diagnoses, hospital procedures, nursing home diagnoses, physician diagnoses, physician
procedures and prescription drugs. The binary indicator A stands for exposure to a selective
COX-2 inhibitor or a comparison drug (a non-selective NSAID). Finally, the binary outcome
Y indicates whether or not either a hospitalization for severe gastrointestinal hemorrhage or
peptic ulcer disease complications including perforation in GI patients occurred.

The simulated data set was generated as in [14, 10]. It took the form of n = 49, 653 data
structures (Wi, Ai, Yi) where {(Wi, Ai) : 1 ≤ i ≤ n} was extracted from the above real data
set and where {Yi : 1 ≤ i ≤ n} was simulated by us in such a way that, for each 1 ≤ i ≤ n,
the random sampling of Yi depended only on the corresponding (Wi, Ai). As argued in the
aforementioned articles, this approach preserves the covariance structure of the covariates
and complexity of the true treatment assignment mechanism, while allowing the true value
of the ATE parameter to be known. In addition, we can control the bias in the unadjusted
estimator by tuning the coefficients of the parametric data generating conditional distribution
of Y given (A,W ), if there exist covariates associated with the treatment mechanism.

High-Dimensional Propensity Score Method For Dimension
Reduction

The simulated data set was large, both in number of observations and number of covariates.
In this framework, directly applying any version of C-TMLE algorithms would not be the best
course of action. First, the computational time would be unreasonably long due to the large
number of covariates. Second, the resulting estimators would be plagued by high variance
due to the low signal-to-noise ratio in the claims data. This motivated us to apply the hdPS
method for dimension reduction prior to applying the TMLE and C-TMLE algorithms.

Introduced in [66], the hdPS method was proposed to reduce the dimension in large elec-
tronic healthcare databases. It is increasingly used in studies involving such databases [52,
46, 11, 71, 33, 30].

The hdPS method essentially consists of two main steps: (i) generating so called hdPS
covariates from the claims data (which can increase the dimension) then (ii) screening the
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enlarged collection of covariates to select a small proportion of them (which dramatically
reduces the dimension). Specifically, the method unfolds as follows [66]:

A Group by resource. Group the data by resource in C groups

B Identify candidate claims codes. For each group separately, for each claims code c
within the group, compute the empirical proportion Pr(c) of positive entries, then sort
the claims codes by decreasing values of min(Pr(c), 1−Pr(c)). Finally, select only the
top J claims codes. We thus go from C claims codes to J × C claims codes.

C Assess recurrence of claims codes. For each selected claims code c and each patient
1 ≤ i ≤ n, replace the corresponding ci with three binary covariates called “hdPS
covariates”: c

(1)
i equal to one if and only if (iff) ci is positive; c

(2)
i equal to one iff ci

is larger than the median of {ci : 1 ≤ i ≤ n}; c(3)
i equal to one iff ci is larger than

the 75%-quantile of {ci : 1 ≤ i ≤ n}. This inflates the number of claims codes related
covariates by a factor 3.

D Select among the hdPS covariates. For each hdPS covariate, estimate a measure of its
“potential confounding impact” (a heuristic), then sort them by decreasing values of
the estimates of the measure. Finally, select only the top K hdPS covariates.

In the current example, we derived C = 8 groups in step A. The groups correspond to
the following categories: ambulatory diagnoses, ambulatory procedures, hospital diagnoses,
hospital procedures, nursing home diagnoses, physician diagnoses, physician procedures and
prescription drugs. See [66, 46] for other examples.

In step B, we chose J = 50. The dimension of the claims data thus went from 9, 470 to
400.

In step C, we relied on the following estimate of the measure of the potential confounding
impact introduced in [bross54]: for hdPS covariate c`

π`n(1)(r`n − 1) + 1

π`n(0)(r`n − 1) + 1
(2.5)

where

π`n(a) =

∑n
i=1 1{c`i = 1, ai = a}∑n

i=1 1{ai = a}
(a = 0, 1) and

r`n =
pn(1)

pn(0)
with

pn(c) =

∑n
i=1 1{yi = 1, c`i = c}∑n

i=1 1{c`i = c}
(c = 0, 1).

A rationale for this choice can be found in [66], where r`n in (2.5) is replaced by max(r`n, 1/r
`
n).

As explained below we chose K = 100. As a result, the dimension of the claims data was
thus reduced to 100 from 9, 470.
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Data-generating Scheme (cont.) and Estimating Procedures

Let us resume here the presentation of the simulation scheme initiated in Section 2.3. Recall
that the simulated data set writes as {(Wi, Ai, Yi) : 1 ≤ i ≤ n} where {Wi : 1 ≤ i ≤ n} is the
by-product of the hdPS method of Section 2.3 with J = 50 and K = 100 and {Ai : 1 ≤ i ≤ n}
is the original vector of exposures. It only remains to present how {Yi : 1 ≤ i ≤ n} was
generated.

First, we arbitrarily chose a subset W ′ of W , that consists of 10 baseline covariates
(congestive heart failure, previous use of warfarin, number of generic drugs in last year,
previous use of oral steroids, rheumatoid arthritis, age in years, osteoarthritis, number of
doctor visits in last year, calendar year) and 5 hdPS covariates. Second, we arbitrarily
defined a parameter

β = (1.280,−1.727, 1.690, 0.503, 2.528, 0.549, 0.238,−1.048, 1.294, 0.825,

− 0.055,−0.784,−0.733,−0.215,−0.334)>

(the entries of β were drawn independently from standard normal random variables). Fi-
nally, Y1, . . . , Yn were independently sampled given {(Wi, Ai) : 1 ≤ i ≤ n} from Bernoulli
distributions with parameters q1, . . . , qn where, for each 1 ≤ i ≤ n,

qi = expit
(
β>W ′

i + Ai
)
.

The resulting true value of the ATE is ψ0 = 0.21156.

The estimation of the conditional expectation Q̄0 was carried out based on two logistic
regression models. The first one was well specified whereas the second one was mis-specified,
due to the omission of the five hdPS covariates.

For the TMLE algorithm, the estimation of the PS g0 was carried out based on a single,
main terms logistic regression model including all of the 122 covariates. For the C-TMLE
algorithms, main terms logistic regression model were also fitted at each step. An early stop-
ping rule was implemented to save computational time. Specifically, if the cross-validated loss
of Q̄∗n,k is smaller than the cross-validated losses of Q̄∗n,k+1, . . . , Q̄

∗
n,k+10, then the procedure

is stopped and outputs the TMLE estimator corresponding to Q̄∗n,k.
The scalable SL-C-TMLE library included the two scalable pre-ordered C-TMLE algo-

rithms and excluded the greedy C-TMLE algorithm.

Results

Table 2.5 reports the point estimates for ψ0 as derived by all the considered methods. It also
reports the 95% CIs of the form [ψn ± 1.96σn/

√
n], where σ2

n = n−1
∑n

i=1D
∗(Q̄n, gn)(Oi)

2

estimates the variance of the efficient influence curve at the couple (Q̄n, gn) yielding ψn. We
refer the interested reader to [38, Appendix A] for details on influence curve based inference.
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Table 2.5: Point estimates and 95% CIs of TMLE and C-TMLE estimators for the partially
synthetic data simulation study.

model for Q̄0 estimate CI processing time
TMLE well specified 0.202 (0.193, 0.212) 0.6s

mis-specified 0.203 (0.193, 0.213) 0.6s
C-TMLE, well specified 0.205 (0.196, 0.213) 618.7s
greedy mis-specified 0.214 (0.205, 0.223) 1101.2s
C-TMLE, well specified 0.205 (0.196, 0.213) 57.4s
logistic ordering mis-specified 0.211 (0.202, 0.219) 125.6s
C-TMLE, well specified 0.205 (0.197, 0.213) 22.5s
partial correlation ordering mis-specified 0.211 (0.202, 0.219) 149.0s
SL-C-TMLE well specified 0.205 (0.197, 0.213) 69.8s

mis-specified 0.211 (0.202, 0.219) 264.3s

All the CIs contained the true value of ψ0. Table 2.5 also reports processing times (in
seconds).

The point estimates and CIs were similar across all C-TMLEs. When the model for Q̄0

was correctly specified, the SL-C-TMLE selected the partial correlation ordering. When the
model for Q̄0 was mis-specified, it selected the logistic ordering. In both cases, the estimator
with smaller bias was data adaptively selected. In addition, as all the candidates in its library
were scalable, the SL-C-TMLE algorithm was also scalable, and ran much faster than the
greedy C-TMLE algorithm. Computational time for the scalable C-TMLE algorithms was
approximately 1/10th of the computational time of the greedy C-TMLE algorithm.

2.4 Time Complexity

We study here the computational time of the pre-ordered C-TMLE algorithms. The com-
putational time of each algorithm depends on the sample size n and number of covariates p.
First, we set n = 1, 000 and varied p between 10 and 100 by steps of 10. Second, we varied
n from 1, 000 to 20, 000 by steps of 1, 000 and set p = 20. For each (n, p) pair, the analysis
was replicated ten times independently, and the median computational time was reported.
In every data set, all the random variables are mutually independent. The results are shown
in Figures 2.5a and 2.5b.

Figure 2.5a is in line with the theory: the computational time of the forward stepwise
C-TMLE is O(p2) whereas the computational times of the pre-ordered C-TMLE algorithms
are O(p). Note that the pre-ordered C-TMLEs are indeed scalable. When n = 1, 000 and
p = 100, all the scalable C-TMLE algorithms ran in less than 30 seconds.

Figure 2.5b reveals that the pre-ordered C-TMLE algorithms are much faster in prac-
tice than the greedy C-TMLE algorithm, even if all computational times are O(n) in that
framework with fixed p.
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Figure 2.5: Computational times of the C-TMLE algorithms with greedy search and pre-
ordering.

2.5 Applications in Electronic Healthcare Database

This section presents the application of variants of the TMLE and C-TMLE algorithms for
the analysis of three real data sets. Our objectives are to showcase their use and to illustrate
the consistency of the results provided by the scalable and greedy C-TMLE estimators.
We thus do not implement the competing unadjusted, G-computation/MLE, IPTW and
A-IPTW estimators (see the beginning of Section 2.3).

In Sections 2.3 and 2.3, we knew the true value of the ATE. This is not the case here.

Real Data Sets and Estimating Procedures

We compared the performance of variants of TMLE and C-TMLE algorithms across three
observational data sets. Here are brief descriptions, borrowed from [66, 30].

NSAID Data Set. Refer to Section 2.3 for its description.

Novel Oral Anticoagulant (NOAC) Data Set. The NOAC data were collected be-
tween October, 2009 and December, 2012 by United Healthcare. The data set tracked
a cohort of new users of oral anticoagulants for use in a study of the comparative safety
and effectiveness of these agents. The exposure is either “warfarin” or “dabigatran”. The
binary outcome indicates whether or not a patient had a stroke during the 180 days after
initiation of an anticoagulant.

The data set includes n = 18, 447 observations, p = 60 baseline covariates and C = 23, 531
unique claims codes. The claims codes are manually grouped in four categories: inpatient
diagnoses, outpatient diagnoses, inpatient procedures and outpatient procedures.
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Vytorin Data Set. The Vytorin data included all United Healthcare patients who initi-
ated either treatment between January 1, 2003 and December 31, 2012, with age over 65
on day of entry into cohort. The data set tracked a cohort of new users of Vytorin and
high-intensity statin therapies. The exposure is either “Vytorin” or “high-intensity statin”.
The outcomes indicates whether or not any of the events “myocardial infarction”, “stroke”
and “death” occurred.

The data set includes n = 148, 327 observations, p = 67 baseline covariates and C = 15, 010
unique claims codes. The claims codes are manually grouped in five categories: ambulatory
diagnoses, ambulatory procedures, hospital diagnoses, hospital procedures, and prescription
drugs.

Each data set is given by {(Wi, Ai, Yi) : 1 ≤ i ≤ n} where {Wi : 1 ≤ i ≤ n} is the
by-product of the hdPS method of Section 2.3 with J = 100 and K = 200 and {(Ai, Yi) :
1 ≤ i ≤ n} is the original collection of paired exposures and outcomes.

The estimations of the conditional expectation Q̄0 and of the PS g0 were carried out
based on logistic regression models. Both models used either the baseline covariates only or
the baseline covariates and the additional hdPS covariates.

To save computational time, the C-TMLE algorithms relied on the same early stopping
rule described in Section 2.3. The scalable SL-C-TMLE library included the two scalable
pre-ordered C-TMLE algorithms and excluded the greedy C-TMLE algorithm.

Results on the NSAID Data Set

Figure 2.6 shows the point estimates and 95% CIs yielded by the different TMLE and C-
TMLE estimators built from the NSAID data set.
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Figure 2.6: Point estimates and 95% CIs yielded by the different TMLE and C-TMLE
estimators built on the NSAID data set.

The various C-TMLE estimators exhibit similar results, with slightly larger point esti-
mates and narrower CIs compared to the TMLE estimators. All the CIs contain zero.
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Results on the NOAC Data Set

Figure 2.7 shows the point estimates and 95% CIs yielded by the different TMLE and C-
TMLE estimators built on the NOAC data set.

We observe more variability in the results than in those presented in section 2.5.
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Figure 2.7: Point estimates and 95% CIs yielded by the different TMLE and C-TMLEs built
on the NOAC data set.

The various TMLE and C-TMLEs exhibit similar results, with a non-significant shift to
the right for the latter. All the CIs contain zero.

Results on the Vytorin Data Set

Figure 2.8 shows the point estimates and 95% CIs yielded by the different TMLE and C-
TMLEs built on the Vytorin data set.
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Figure 2.8: Point estimates and 95% CIs yielded by the different TMLE and C-TMLEs built
on the Vytorin data set.
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The various TMLE and C-TMLEs exhibit similar results, with a non-significant shift to
the right for the latter. All the CIs contain zero.

2.6 Discussion

Robust inference of a low-dimensional parameter in a large semi-parametric model tradi-
tionally relies on external estimators of infinite-dimensional features of the distribution of
the data. Typically, only one of the latter is optimized for the sake of constructing a well
behaved estimator of the low-dimensional parameter of interest. For instance, the targeted
minimum loss (TMLE) estimator of the average treatment effect (ATE) (1.3) relies on an
external estimator Q̄0

n of the conditional mean Q̄0 of the outcome given binary treatment
and baseline covariates, and on an external estimator gn of the PS g0. Only Q̄0

n is opti-
mized/updated into Q̄∗n based on gn in such a way that the resulting substitution estimator
of the ATE can be used, under mild assumptions, to derive a narrow confidence interval with
a given asymptotic level.

There is room for optimization in the estimation of g0 for the sake of achieving a better
bias-variance trade-off in the estimation of the ATE. This is the core idea driving the general
C-TMLE template. It uses a targeted penalized loss function to make smart choices in
determining which variables to adjust for in the estimation of g0, only adjusting for variables
that have not been fully exploited in the construction of Q̄0

n, as revealed in the course of a
data-driven sequential procedure.

The original instantiation of the general C-TMLE template was presented as a greedy
forward stepwise algorithm. It does not scale well when the number p of covariates increases
drastically. This motivated the introduction of novel instantiations of the C-TMLE general
template where the covariates are pre-ordered. Their time complexity is O(p) as opposed to
the originalO(p2), a remarkable gain. We proposed two pre-ordering strategies and suggested
a rule of thumb to develop other meaningful strategies. Because it is usually unclear a priori
which pre-ordering strategy to choose, we also introduced a SL-C-TMLE algorithm that
enables the data-driven choice of the better pre-ordering given the problem at hand. Its
time complexity is O(p) as well.

The C-TMLE algorithms used in our data analyses have been implemented in Julia and
are publicly available at https://lendle.github.io/TargetedLearning.jl/. We have
also published the R version of the scalable C-TMLE in the official ctmle package [27] in
The Comprehensive R Archive Network. We undertook five simulation studies. Four of
them involved fully synthetic data. The last one involves partially synthetic data based on
a real electronic health database and the implementation of a hdPS method for dimension
reduction widely used for the statistical analysis of claims codes data. In Section 2.4, we
compare the computational times of variants of C-TMLE algorithms. We also showcase the
use of C-TMLE algorithms on three real electronic health database. In all analyses involving
electronic health databases, the greedy C-TMLE algorithm was unacceptably slow. Judging
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from the simulation studies, our scalable C-TMLE algorithms work well, and so does the
SL-C-TMLE algorithm.
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Chapter 3

Model Selection among
Continuously-indexed Nuisance
Parameter Estimators with
Collaborative TMLE

3.1 Introduction

Introduced in 1.1, the propensity score (PS) is defined as the conditional probability of
treatment assignment, given a set of observed pre-treatment covariates [64, 24]. The PS,
which we will denote as g0, is widely used to control for confounding bias in observational
studies. In practice, the PS is usually unknown and PS based estimators must rely on an
estimate of the PS, which we will denote as gn.

Accurately modeling and assessing the validity of fitted PS models is crucial for all PS-
based methods. It is generally recommended that PS models be validated through measures
of covariate balance across treatment groups after PS adjustment. In high-dimensional co-
variate settings, however, evaluating covariate balance on very large numbers of variables
can be difficult. Using covariate balance to validate PS models in high-dimensional covariate
settings is further complicated when applying machine learning (ML) algorithms and penal-
ized regression methods to reduce the dimension of the covariate set, as it is not always clear
on what variables balance should be evaluated. Cross-validated prediction diagnostics can
greatly simplify validation of the PS model when applying ML algorithms for PS estimation
in high-dimensional covariate settings.

[76] suggested that ML methods (e.g. support vector machines) could enhance the validity
of propensity score estimation, and that “external” cross-validation (CV) can be used for
model selection. [42] further investigated PS weighted estimators when the PS was estimated
by multiple ML algorithms, where the hyper-parameters of the ML algorithms were selected
by minimizing the CV loss for treatment prediction. Estimation procedures that are based
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on external CV will result in estimated models that optimize the bias-variance tradeoff for
treatment prediction (i.e., the true PS function), but they do not consider the ultimate goal
of optimizing the bias-variance tradeoff for the treatment effect estimate. We conjecture
that PS estimators that are selected by CV will tend to be under-fitted in order to reduce
variability in the prediction of treatment assignment, and that the optimal estimator in
reducing bias in the estimated treatment effect should be less smooth (or more flexible)
compared to the estimator selected by external CV.

To address this limitation of external CV, we studied two recently proposed variations of
the C-TMLE algorithm [26, 34, 28], and compared them to other widely used estimators using
multiple simulation studies. We focused on strategies that combined the C-TMLE algorithms
with LASSO regression, an l-1 regularized logistic regression [70], for PS estimation. Previous
studies have shown that LASSO regression can perform well for variable selection when
estimating high-dimensional PSs [11]. However, selecting the optimal tuning parameters to
optimize confounding control remains challenging. Combining variations of the C-TMLE
algorithm with LASSO regression provides a robust data adaptive approach to PS model
selection in high-dimensional covariate datasets, but remains untested. We used quasi-
experiments based on a real empirical dataset to evaluate the performance of combining
variations of the C-TMLE algorithm with LASSO regression and demonstrate that external
CV for model selection is insufficient.

This chapter is organized as follows. In section 3.2, we introduce how to use C-TMLE
to tune the PS estimator with one-dimensional hyper-parameter by taking LASSO as an
example. In section 3.3 we describe how the simulated data are generated from the empirical
dataset introduced in 2.5, and how results were analyzed from the simulation, including point
estimation, confidence interval, and pair-wise comparisons of estimators. In section 3.4 we
apply the vanilla TMLE and novel C-TMLE algorithms to analyze the empirical dataset.
Finally, in section 3.5, we discuss the results from the simulations and the scientific findings
from the empirical data analysis.

3.2 Shrinkage Parameter Selection for LASSO with

C-TMLE

C-TMLE was primarily proposed for variable selection [16]. However, it can easily be adapted
to more general model selection problems. In our recent work [26, 34], two instantiations
of the C-TMLE algorithm were proposed for a general model selection problem with a one-
dimensional hyper-parameter. In this study, we consider an example where the PS model is
estimated by LASSO:

βn,λ = min
β∈Rp

(
1

n

n∑
i=1

L(Ai, logit(βWi)) + λ‖β‖1

)
gn,λ(Wi) = logit(βn,λWi)
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where L is the negative log-likelihood for the Bernoulli distribution, as A is binary. We used
C-TMLE to select the PS estimator, gn,λ, with the best regularization parameter λ. We
applied two C-TMLE algorithms for model selection of LASSO. Here, we provide a brief
outline for each of the algorithms. Details are provided in the supplemental appendices.

• LASSO-C-TMLE: First, we briefly introduce the LASSO-C-TMLE (C-TMLE1) algo-
rithm. According to the C-TMLE template outlined above, C-TMLE1 first builds
an initial estimate for Q̄n and a sequence of propensity score estimators, gn,λk , for
k ∈ 0, . . . , K, each with a penalty λk, where λk is monotonically decreasing. We rec-
ommend to set λ1 = λCV because the cross-validation usually selects an “under-fitted”
(for example, a LASSO estimator with a regularization parameter, λ, that is too large)
PS estimator; thus, it is unnecessary to consider λ1 > λCV . Then, we just follow step
3 in the template described previously, and build a sequence of estimators, Q̄∗n,λ, each
corresponding to gn,λ. We then select the best Q̄∗n,λctmle by using cross-validation, with
its corresponding initial estimate Q̄n,λctmle . Finally we fluctuate the selected initial
estimate Q̄n,λctmle with each gn,λ for λK < λ < λctmle, yielding a new sequence Q̄∗n,λ.
We choose Q̄∗n = Q̄∗n,λ , which minimizes the empirical loss, as our final estimate. The
final step guarantees that a critical equation:

PnD
+(Q̄∗n,λ, gn,λ) =

∂

∂λ

n∑
i=1

Hgn,λ(Ai,Wi)(Yi − Q̄∗n,λ(Ai, Yi)) = 0 (3.1)

is solved [26, 34]. This guarantees that the resulting C-TMLE estimator is asymptoti-
cally linear under regularity conditions even when Q̄n is not consistent.

• LASSO-PSEUDO-C-TMLE: the LASSO-PSEUDO-C-TMLE (C-TMLE0) algorithm
does not select the PS estimator collaboratively. Instead, it is exactly the same as
the TMLE algorithm, except it updates the estimate by equation 3.2:

logit(Q̄∗n(A,W )) = logit(Q̄n(A,W )) + ε1Hgn,λk
(A,W ) + ε2H̃gn,λk

(A,W ) (3.2)

where

H̃gn,λk
(A,W ) =

∂Hgn,λ(A,W )

∂λ
|λ=λk

=
1− A

(1− gn,λk(W ))2

∂(1− gn,λ)
∂λ

|λ=λk

+
A

gn,λ(W )2

∂gn,λk
∂λ
|λ=λk .

Note we still call it C-TMLE as it solves the critical equation 3.2. Solving the addi-
tional clever covariate H̃gn,λk

(A,W ) could be considered as an approximation of the
collaborative selection in C-TMLE1 [26, 34].
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Same as the discrete C-TMLE estimator in [16], standard errors for both of the new
C-TMLEs are computed based on the variance of the influence curve (IC). With the point
estimate, ψ̂, and its estimated standard error, ŝe, we construct the Wald-type α-level con-
fidence interval: [ψ̂ − z1−α/2ŝe, ψ̂ + z1−α/2ŝe], where zα is the α-percentile of the standard
normal distribution. More details of IC and the IC based variance estimator can be found
in the literature [39, 16].

For simplicity, we denote LASSO-CTMLE as C-TMLE1, and LASSO-Pseudo-C-TMLE
as C-TMLE0.

3.3 Quasi-Experiment

Simulation Setting

In this simulation, we generated partially synthetic data based on the NSAID data set
introduced in Section 2.3. We designed our own conditional distribution of the outcome, Y ,
given treatment, A, and baseline covariates, W , while keeping the structure of the treatment
mechanism g0(A|W ) so that the relationships between covariates with treatment assignment
were preserved [10]. In our study, the conditional distribution of the outcome was defined
as:

Yi = 2 + βWi + Ai + εi (3.3)

where εi is drawn independently from the standard normal distribution. We then selected 40
covariates that had the highest Pearson correlation with treatment A. The coefficient of β in
equation 3.3 was set to zero for all the non-selected covariates. The coefficient for the selected
covariates was sampled from separate and independent standard normal distributions, and
were fixed across all simulations. We define the marginal distribution of W as the empirical
distribution of Wi for i ∈ 1 . . . n. The parameter of interest is the ATE, thus it is identifiable
if we know the distribution of the conditional response Y |A,W and marginal distribution of
W .

In our simulation, we considered two settings. In the first setting, only the first 10 out
of 40 confounders were used to estimate Q̄0. In the second setting, Q̄0 was estimated using
the first 20 out of 40 confounders.

By the description above, we have the following:

• There are only 40 confounders in total.

• The true value of the parameter of interest (ATE) is 1.

• The treatment mechanism g0(A|W ) comes from a real world data generating distri-
bution, which is usually non-linear. [30] showed that the PS in this example can be
estimated well by linear models. Therefore, in this example the PS model is only mildly
misspecified.
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• Both Q̄0 and g0 are estimated with a misspecified model: Q̄0 is estimated with an
incomplete predictor set; g0 is estimated with linear model, while there is no reason to
believe it is truly linear.

The results are computed across 500 independent replications, each with sample sizes of
1000.

Competing Estimators

In this study, we focused on PS based estimators, including inverse probability of treatment
weight (IPW) estimator, Hajek type IPW estimator, double robust (augmented) inverse
probability of treatment weight (DR-IPW, or A-IPW) estimator, Hajek type Bias-correction
(HBC) Estimator, weighted regression (WR) estimator, targeted maximum likelihood esti-
mator (TMLE), and the proposed two collaborative-TMLE estimators.

For all PS based estimators, we consider two variations. For the first variation, we first
used the cross-validated LASSO (CV-LASSO) algorithm to find the regularization parameter
λCV of LASSO for PS estimation, and then plugged it into the final estimators. In the second
variation, we first applied C-TMLE1, and used LASSO with the regularization parameter
λC−TMLE selected by C-TMLE1 to estimate the PS, and then plugged it into the estimator.
Taking IPW as example, we used “IPW” to denote the first variation, and “IPW*” for the
second variation.

It is important to note that in this case, “TMLE*” is actually a variation of collaborative
TMLE, as the PS model is selected collaboratively [16, 40]. However, it is different from the
proposed C-TMLE algorithms, as it does not solve the critical equation 3.1.

It is also important to note that both C-TMLE and CV-LASSO use cross-validation. For
simplicity, and to avoid ambiguity, we use term “CV” to denote the non-collaborative model
selection procedure which relies on the cross-validation w.r.t. the prediction performance for
the treatment mechanism itself (e.g. the model selection step in CV-LASSO).

In addition, we also compute an “oracle estimator” for comparison, which is given by a
TMLE estimator with the PS estimated by a logistic regression with only confounders.

Point Estimation

We first compared the variance, bias, and mean square error (MSE) for the point estimation
from all the competing estimators in two settings.

Table 3.1 and figure 3.1 show the point estimation performance of all the competing
estimators. It is not surprising that the oracle TMLE estimator has the best performance
for both bias and variance. However, it is not achievable in practice as it is usually unknown
which covariates are confounders. IPW has very large variance and bias, which might due to
the practical violations of the positivity assumption. We can see that TMLE*, C-TMLE1,
CTMLE0, and CTMLE0* outperformed other estimators, with each having similar perfor-
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Figure 3.1: Boxplot of the estimated ATE for each estimator across 500 replications, when
the initial estimate is fit on 10/20 out of 40 confounders.

Table 3.1: Performance of Point Estimation for Estimators when the initial estimate Q̄n of
Q̄0 is estimated on 10 and 20 out of 40 confounders. The results are computed based on
simulations across 500 replications, each with a sample size of 1000 based on the NSAID
study. All of the numeric values are on a scale of 10−2.

Initial Fit unadj G-comp WR WR* Hajek-BC Hajek-BC*
10/40 Bias -59.29 -9.69 -5.68 -3.11 -15.54 -12.29

SE 8.43 3.36 2.66 2.75 5.80 6.63
MSE 35.87 1.05 0.39 0.17 2.75 1.95

20/40 Bias -59.91 -4.72 -2.77 -2.12 -7.56 -5.47
SE 8.36 2.73 2.27 1.92 4.10 4.54

MSE 36.59 0.30 0.13 0.08 0.74 0.51
Initial Fit IPW IPW* Hajek-IPW Hajek-IPW* DR-IPW DR-IPW*

10/40 Bias 95.43 128.97 -25.86 -13.61 -6.07 -3.12
SE 36.55 91.38 4.85 8.21 2.63 3.02

MSE 104.40 249.69 6.92 2.53 0.44 0.19
20/40 Bias 97.11 125.85 -25.60 -13.70 -2.92 -1.95

SE 35.98 90.85 4.77 8.56 2.26 2.17
MSE 107.23 240.75 6.78 2.61 0.14 0.09

Initial Fit TMLE TMLE* CTMLE1 CTMLE0 CTMLE0* oracle
10/40 Bias -5.49 -1.23 -1.40 0.70 -0.64 0.36

SE 2.57 3.46 3.56 3.38 4.40 1.83
MSE 0.37 0.13 0.15 0.12 0.20 0.03

20/40 Bias -2.68 -1.28 -1.38 0.08 -0.95 0.04
SE 2.19 2.53 2.53 2.85 3.07 1.35

MSE 0.12 0.08 0.08 0.08 0.10 0.02

mance. In addition, C-TMLE0* did not show any improvement compared to C-TMLE0.
This is consistent with previous results [34].

We also evaluated the relative performance of other PS based estimators with gn selected
by C-TMLE, compared with gn selected by CV. For IPW, the performance was still poor.
However, for all of the other estimators that rely on the estimated PS, the performance
improved considerably. Taking the first setting as an example, the relative empirical effi-
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Table 3.2: Coverage of the 95% confidence intervals for semi-parametric efficient estimators
when the initial estimate Q̄n of Q̄0 is estimated on 10 and 20 out of 40 confounders. The
results are computed across 500 replications, each with sample sizes of 1000 based on the
NSAID study. All of the numerical values are multiplied by 100.

CTMLE1 CTMLE0 CTMLE0* DR-IPW DR-IPW* TMLE TMLE* oracle
10/40 Coverage 0.926 0.920 0.910 0.458 0.914 0.526 0.942 1.000

Average Length 0.142 0.115 0.142 0.120 0.159 0.119 0.144 0.153
20/40 Coverage 0.934 0.872 0.898 0.748 0.928 0.790 0.946 1.000

Average Length 0.105 0.087 0.103 0.088 0.112 0.087 0.106 0.111

ciency of DR-IPW* compared to DR-IPW was MSE(DR-IPW)
MSE(DR-IPW*)

= 1.52, while for TMLE it was
MSE(TMLE)
MSE(TMLE*)

= 1.66. The relative empirical efficiency for both of these estimators is improved
with a reduction in bias and slight increase in variance. These empirical results are consis-
tent with previous theory [26, 34] showing that the model selected by external CV is usually
under-fitted. These results illustrate the weakness of using “external” CV for PS model
selection.

Confidence Interval

In this section, we evaluate the coverage and the length of the confidence intervals (CIs) for
all the double robust estimators.

Table 3.2 shows that the CIs of the oracle TMLE estimator are too conservative, as they
achieved 100% coverage. In both settings, TMLE* and C-TMLE1 had the best coverage. We
can see that for other estimators, the length of the CIs were usually smaller/under-estimated.
This resulted in a less satisfactory coverage even though the point estimation had similar
performance (e.g. compare C-TMLE0 to C-TMLE1). With collaboratively selected gn, the
coverage of TMLE and DR-IPW improved significantly. These empirical results illustrate
that a more targeted propensity score model selection can improve both causal estimation
and inference.

Variable Selection from LASSO

Table 3.3: Average number of covariates selected from CV and C-TMLE. The number in
the parentheses is the average number of selected confounders among the selected covariates

Initial Fit CV C-TMLE1

10/40 36.6 (13.2) 149.1 (35.1)
20/40 36.6 (13.2) 148.9 (31.4)

Table 3.3 shows the average number of covariates selected by LASSO, with λ determined
by CV and C-TMLE1. Recall that there are 222 covariates in total, including 22 baseline
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covariates and 200 covariates generated by the hdPS algorithm (see the introduction of the
hdPS algorithm in subsection 2.3), including 40 confounders. CV was too conservative: on
average it only selected 36.6 covariates, and only included 13.2 confounders. C-TMLE1
selected much less regularization, which leads to a larger model: it successfully picked up
more confounders than CV in both experiments.

Pairwise Comparison of Efficient Estimators

In this subsection, we studied the pairwise comparisons for several pairs of the efficient
estimators, TMLE, C-TMLE, and DR-IPW, with different PS estimators. The purpose of
these pairwise comparisons is to help in understanding the contribution of the collaborative
estimation of the PS. We used the shape and color of the points to represent the coverage
information of the CIs for each estimates.

Impact of Collaborative Propensity Score Model Selection

We first compared the two pairs. Within the pair, both of the estimators were identical
except each had a different PS estimator. The first pair compared TMLE to TMLE*, and
the second pair compared C-TMLE0 to CTMLE0*.
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Figure 3.2: Comparison of TMLE wand TMLE*. The only difference within the pair the
how the estimator gn is selected

From figure 3.2a and 3.2b, we can see that a more targeted PS model contributes sub-
stantially to the estimation. The vanilla TMLE underestimated the ATE, while TMLE* is
close to unbiased. The variance of the two estimators are similar.

From figure 3.3a and 3.3b we can see that the improvement for the CTMLE0 pair is
not as significant as the improvement for the TMLE pair. Interestingly, most of the poor
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Figure 3.3: Comparison of CTMLE0 and CTMLE0*. The only difference within the pair
the how the estimator gn is selected

performance in the CIs for CTMLE0 is from the over-estimated point estimate, while for
CTMLE0* is mainly from under-estimation of the point estimate.

As discussed in [34], such ignorable improvement with collaboratively selecting gn for the
CTMLE0 pair might be due to the redundant collaborative estimation step. Thus, it is not
necessary to both select the PS model using C-TMLE and solve for the extra clever covariate
equation.

Contribution of Solving Extra Critical Equation

We compared TMLE with C-TMLE0. The only difference between these two estimators
is that C-TMLE0 solves for the extra clever covariate equation, which guarantees that the
critical equation is solved.

Figure 3.4 shows the improvement of solving an additional clever covariate. C-TMLE0
is less biased compared with TMLE. It is interesting to see that the performance of the
estimator can improve substantially with such small change. In addition, this additional
change almost requires no additional computation, which makes it more favorable among
proposed C-TMLEs when the computation resources are limited.

Comparison of Variations of C-TMLE

We compared the two pairs of variations of C-TMLEs. We used C-TMLE1 as the benchmark,
as it gave the best performance for both point estimation and confidence interval coverage.

Figure 3.5a and 3.5b show the pairwise performance of C-TMLE1 and C-TMLE0. Both
estimators performed well with respect to the MSE. Although the distribution of points
looks similar and have variances that appear similar, there were more CIs from C-TMLE0
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Figure 3.4: We compared TMLE with C-TMLE0, where the only difference between the
two estimators is that C-TMLE0 solves the extra critical equation with additional clever
covariates.
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Figure 3.5: We compared C-TMLE1 with C-TMLE0.

that failed to cover the truth. In addition, the failures from C-TMLE1 mainly resulted from
the under-estimation of the estimates. In comparison, the failures from C-TMLE0 primarily
came from both under/over-estimated estimates. This suggests that the relatively poor CI
coverage of C-TMLE0 might be due to its under-estimated standard error.
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3.4 Applications in Electronic Healthcare Database

In this section, we applied the methods described previously to the NSAID study. As dis-
cussed previously, the goal of this study is to compare the effectiveness of two treatments on
improving the risk (probability) of being diagnosed with severe gastrointestinal complications
during the follow-up period. The treatment group was prescribed a selective COX-2 inhibitor,
while the control group was prescribed a non-selective Nonsteroidal anti-inflammatory drug.
To compare the safety of the two treatments, we used the average treatment effect (ATE)
as our target parameter.

Method

We followed the hdPS procedure in subsection 2.3, where we generated the hdPS covariates
with k1 = 100 and k2 = 200.

We investigated three kinds of initial estimate Q̄0
n for TMLE and C-TMLE:

• The initial estimate was given by the group means of the treatment and control group.

• The initial estimate was estimated by Super Learner with only baseline covariates.

• The initial estimate was estimated by Super Learner with both baseline covariates and
hdPS covariates.

For Super Learners [36, 49], we used library with LASSO [13], Gradient Boosting Machine
[53], and Extreme Gradient Boosting [5].

Results

Figure 3.6 shows the point estimates and 95% CIs for all TMLE and C-TMLE estimators.
We use the blue line to denote the null hypothesis (H0 : Ψ0 = 0), the green line denotes the
initial estimate, and use red line to denote the results from the naive difference in means
estimator (Ψnaive

n = 0.0949%).
Figure 3.6c shows that, after adjusting for selection bias using the TMLE/C-TMLE algo-

rithms, all the estimators have similar results, with the estimated ATE being in the negative
direction. Similar to the results in simulation, the CIs for TMLE* and C-TMLE0* were
wider with PS estimator selected by C-TMLE1, than with PS estimator selected by CV.
The details of the point estimates and confidence intervals are reported in table 3.4. We
computed the analytic influence curve based confidence interval. None of these intervals,
except C-TMLE0*, covered the naive estimate. However, all of them covered the null hy-
pothesis.

In addition, we also compared the results from different initial estimator. Figure 3.6 shows
the results for all estimators, with group means (3.6a), Super Learner with baseline covariates
(3.6b), and Super Learner with both baseline and hdPS covariates (3.6c). The CV.LASSO
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Figure 3.6: Confidence intervals for TMLE based estimators for the NSAID study.

Table 3.4: The point estimates and confidence intervals for all TMLE/C-TMLE estimators.
All the values are on a scale of 10−2.

names TMLE TMLE* CTMLE1 CTMLE0 CTMLE0*
Point Estimate -0.2381 -0.2491 -0.2491 -0.2208 -0.2093

Analytic SE 0.1414 0.1487 0.1486 0.1417 0.1502

PS estimator selected 137 covariates, with regularization parameter λ = 0.001159. The C-
TMLE estimator with naive initial estimate selected 164 covariates, with λ = 0.000266. The
C-TMLE estimator uses the initial estimate provided by SL with only baseline covariate have
similar results: it selected 166 covariates with λ = 0.000238. For the C-TMLE with initial
estimate provided by SL with all covariates, it selected the same model as CV.LASSO. It
shows when the initial estimate is biased, C-TMLE selected model with less regularization,
thus adjusted more potential confounders. In addition, all the covariates that included by
LASSO selected by C-TMLE but not by CV.LASSO are hdPS covariates. This suggests
such additional hdPS covariates can be confounder. However, as they have relatively weaker
predictive performance for treatment mechanism, they would be mistakenly removed by
CV.LASSO.

Figure 3.7 shows the details of the CV loss for each selected PS estimator. The blue
line is the λ selected by C-TMLE1 with naive estimator. Its CV binomial deviance (twice
the binomial negative log-likelihood) is 1.199632. The purple line is the λ selected by C-
TMLE1 with initial estimator provided by SL with only baseline covariates. Its CV binomial
deviance is 1.199668. The red line is the λ selected by CV.LASSO, and C-TMLE1 with initial
estimator provided by SL with both baseline and hdPS covariates. Its CV binomial deviance
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Figure 3.7: Binomial deviance for λ selected by CV.LASSO and C-TMLE with different
initial estimators.

is 1.199288.
The estimates and confidence intervals were similar even with different initial estimators.

This may be due to the signals in all the initial estimates are too weak: all the initial
estimates of ATE are very close to 0. In addition, all the confidence intervals covered null
hypothesis. The additive treatment effect in this study is not statistically significant.

Conclusions from the Empirical Study

Patients who received selective COX-2 inhibitors were less likely to get severe gastrointesti-
nal complications during the follow-up period, compared to the patients who received a
non- selective nonsteroidal anti-inflammatory drug. The average additive treatment effect
was approximately −0.249%, which was estimated using TMLE* and C-TMLE1 (the two
estimators achieved the best performance in simulations). The point estimates for other
estimators were similar.

Based on the results, the additive treatment effect was not statistically significant. How-
ever, this does not necessary imply that there is no difference between the two treatments.
More observations or better designed studies are necessary for further comparison of these
treatments.

3.5 Discussion

In this study, we described two variations of C-TMLE, and assessed their performance on
quasi-experiments based on real empirical data. We assessed the performance of several well
studied PS-based estimators in settings where estimated models for both the conditional
response E(Y |A,W ) and the propensity score E(A|W ) were misspecified. In particular, we
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focused on using the LASSO estimator for the PS model. In comparison to our previous work,
this study provides a more detailed evaluation of all the estimators by not only assessing their
point estimation, but also the confidence intervals for each of the estimators. Results showed
that the C-TMLE1 and C-TMLE0 estimators had the best performance in terms of both
point estimation and CI. We also evaluated the impact of directly applying the model that
was collaboratively selected by C-TMLE1 to other PS non-collaborative estimators. Results
showed that all of the PS-based estimators, except the vanilla IPW estimator, improved
substantially, in terms of the point estimation, when the collaboratively selected model was
applied to these estimators. However, C-TMLE0* did not improve when compared to C-
TMLE0 for point estimation. Finally, pairwise comparisons of estimators were also evaluated
to help in understanding the contribution of the collaborative model selection.

In comparison to previous work, this study is the first to thoroughly investigate and
compare the confidence intervals coverage and length for the novel C-TMLE algorithms, as
well as some commonly used competitors. Further, it offers detailed pair-wise comparisons
with other competing estimators using different PS model selection procedures. Finally,
this study utilizes the quasi-experiments based on a real electronic healthcare dataset and
then makes inference on the same database. This makes the conclusions from the real data
analysis more convincing.

In conclusion, this study introduces a new direction for PS model selection. It shows
the insufficiency of using “external” cross-validation for the LASSO estimator. Thus, we
conclude that the ensemble PS estimators, which rely on “external” cross-validation, are
not optimal (w.r.t. the causal parameter) for maximizing confounding control. Ensemble
learning that is based on C-TMLE is a potential solution to address this issue. We leave this
for the future work.
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Chapter 4

Adaptive Propensity Score Truncation

The positivity assumption, or the experimental treatment assignment (ETA) assumption,
is important for the identifiability for estimating the average treatment effect (ATE). The
positivity assumption requires 0 < Ḡ0(W ) < 1 for W almost everywhere, where Ḡ0(W )
is the PS (the probability to be assigned in the treatment group conditional on the pre-
treatment baseline covariate vector W ). Intuitively, this assumption guarantees that there
exist samples in both treatment and control group for each sub-population, so the information
for the corresponding potential outcome is available. However, even if the assumption is valid
for the true data generating distribution, the randomness in data generating/sampling might
cause practical violation of the positivity assumption. For example, there might be few or
even no observations in a certain sub-population that are exposed to treatment. This usually
challenges the estimation of the treatment effect for this sub-population. For example, it
causes extreme values in the PS estimate, which jeopardizes the performance of the PS-based
estimators.

Many approaches have been proposed and studied to address practical positivity vio-
lations. [47] systematically reviewed several commonly used practices. One simple and
practical method is truncating extreme values in the PS estimate[51, 65, 6]. [1] proposed an
algorithm that selects the truncation level for the inverse propensity score weighted (IPW)
estimator by minimizing its estimated mean squared error (MSE).[43] further studied the
sensitivity of a particular PS weighting estimator of ATE, with the PS estimated by four
machine learning algorithms, and truncated at different cutpoints. Based on [1], [78] pro-
posed and compared several adaptive truncation methods for marginal structural Cox mod-
els. Exclusion of problematic W s which result in practical positivity violations (restricting
the adjustment set [47]) is another commonly used approach [1, 47]. While removing such
covariates might increase the bias of the causal estimator from confounding, it usually sub-
stantively reduces the variance. Sample trimming (restricting the sample [47]), which discard
classes of subjects with limited variability in the observed treatment assignment, is another
well-studied approach and has been widely used, especially in the econometrics and social
science literature [9, 21, 41, 7].

In this study, we focus on the truncation method to address practical positivity viola-
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tions. In practice, the PS score is truncated either by a fixed range (e.g. with absolute value
restricted in [0.025, 0.975]), or by a fixed percentile (e.g. with value restricted in [0.1, 0.9]
percentile): [32] studied the impact of arbitrary cutoffs of the PS at a fixed value for multi-
ple estimators, and [6, 43] investigated the bias-variance trade-off with different truncation
percentiles for propensity score weighting estimators. However, it is reasonable to believe
that such fixed truncation strategies may not be not efficient. As the optimal cutoff depends
on the choice of the PS estimator, the choice of the causal estimator, and the observed data,
it impossible to know the optimal cutpoint a priori. It is reasonable to believe data-adaptive
truncation methods would improve the finite sample performance of the causal estimator.
We extend the collaborative targeted maximum likelihood estimation (C-TMLE) method-
ology to data-adaptive PS truncation. Developed based on targeted maximum likelihood
estimation (TMLE) [39], C-TMLE inherits all the attractive properties of TMLE (e.g. dou-
bly robustness, plug-in estimator) [40]. TMLE has been widely studied and applied in a
wide range of topics, including causal inference and genomics [16], survival analysis [68],
and safety analysis [44]. [31] proposed scalable C-TMLE by replacing the greedy search in
[16] with a user-supplied ordering, and applied this to high-dimensional electronic healthcare
data. [50] shows C-TMLE is more robust than TMLE. Recently, [34] developed C-TMLE
algorithms for continuous tuning parameter, with the general theorem of the asymptotic
normality of the resulting C-TMLE estimators. Based on this work, [34, 29] further pro-
posed LASSO-C-TMLE, where the PS is estimated by LASSO controlled by C-TMLE, and
[29] demonstrated its performance on high-dimensional electronic health dataset. We simply
consider the truncation quantile γ as a tuning parameter, and extend the C-TMLE algorithm
to select the optimal γ for the estimation of the causal parameter.

4.1 Brief review of the framework for causal effect

estimation

For simplicity, we model the data generating distribution with a non-parametric structural
equation model (NPSEM). Consider each observation, Oi = (Yi, Ai,Wi), is independently
generated from the following data generating system:

W = fW (UW ),
A = fA(W,UA),
Y = fY (A,W,UY ),

,

where fW , fA and fY are deterministic functions and UW , UA, UY are background (exogenous)
variables. Each observation is drawn from a data generating distribution: first generate
(UW , UA, UY ), then compute W based on UW , then determine the treatment assignment A
based on (W,UA). Finally compute outcome Y based on (A,W,UY ). A is a binary indicator
for treatment. Then the potential outcome (Y1, Y0) could be obtained by intervening on the
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treatment A in fY with 1 or 0:

Y 1
i = fY (Ai = 0,Wi, UY,i),

Y 0
i = fY (Ai = 1,Wi, UY,i),

where UY,i is the UY for i-th observation, which implies the consistency assumption:

Assumption 1 (Consistency Assumption)

Yi = Y Ai
i = Y 0

i (1− Ai) + Y 1
i Ai.

We consider the target parameter of the average treatment effect (ATE):

Ψ0 = E(Y 1)− E(Y 0),

which could be interpreted as the difference between the expectations of the outcome if all
the units received treatment, E(Y1), versus if all the units did not receive the treatment,
E(Y0). We further assume background variables are independent UW |= UA |= UY , which is a
sufficient condition for the conditional randomization assumption:

Assumption 2 (Conditional Randomization)

(Y 0, Y 1) |= A|W.

We also need the positivity assumption, or the experimental treatment assignment (ETA)
assumption:

Assumption 3 (The Positivity Assumption)

0 < Ḡ0(W ) < 1

almost everywhere.

This assumption means that for each subject in the target population, the probability of
being assigned to the treatment/control group should be positive, given all the confounders
W . We will discuss assumption 3 in more detail in next subsection.

The Importance of the Positivity Assumption

The positivity assumption 3 requires the probability of treatment to be bounded away from 0
and 1, given the smallest subset of observed potential confounders W that makes assumption
2 valid. Notice the propensity score need only conditioning on the covariates required for the
conditional randomization assumption. For instance, conditioning on instrumental variables
that are predictive for A while not for (Y (1), Y (0)) would not help correcting the bias, and
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are would then be unnecessary. This is weaker than requiring that all subjects have had
practical access to both levels of treatment.

Intuitively, if all the units in a certain sub-population were only assigned to the treatment
(control) group, we would never get the information of the potential outcome corresponding
to the control (treatment) group for this sub-population. This leads to the non-identifiability
of the ATE of the whole population. [47] studied and discussed the estimator-specific be-
havior of several widely used estimators when the positivity assumption is violated.

Even if the positivity assumption holds in the (unknown) true data generating distribu-
tion, it is still possible that there are practical violations (or random violations [75]) of the
positivity assumption due to randomness in the data generation. For example, consider a
case where the probability that subjects in a subgroup receive the treatment is extremely
low. Then only very few, or even none of such subjects in a given study sample are observed
to receive the treatment, which makes it challenging to make inference for this subgroup
[6, 78]. [75] illustrated the practical positivity violation by a small observational study of
daily aspirin intake for prevention of myocardial infarction, where no one aged 31 to 35 years
was exposed by chance. In this case, the information of the potential outcome Y1 for such
subpopulation is totally missing.

Practical violations of the positivity assumption can cause poor finite sample performance
as it can result in highly influential observations. Consider the case where there is only 1 unit
with W = w and low PS of treatment. Then this single individual is now providing all of the
information about the potential outcome Y0 in the strata W = w. For estimators that rely
on the estimation of the conditional response E(Y |A,W ), one of the potential outcomes Ya
is never observed for some (a, w) and thus may require unreliable extrapolation to regions of
(a, w) that are not supported by the data 1. For weighting based estimators, this individual
usually gets a large weight, which leads to the high variance of the resulting causal estimator.
In this study, we propose a novel algorithm that provides a stable estimation of the causal
parameter when there exists extreme values in the estimated PS due to the practical violation
of the positivity assumption.

Notation

We first use Q(W ) to denote the marginal distribution of W ; Ḡ(W ) to denote the conditional
expectation of A given W , E(A|W ), and Q̄(A,W ) to denote conditional expectation of Y
given (A,W ), E(Y |A,W ). We use Q0, Ḡ0, and Q̄0 for the corresponding part in the true
data generating distribution P0 of Oi, and use Qn, Ḡn and Q̄n to denote the corresponding
estimate trained on the whole observed data.

For simplicity, we introduce two loss functions. The first one, L(1), is defined for the
conditional outcome Q̄0. One example of the loss function for the estimate Q̄ with outcome
Y ∈ [0, 1] is:

1If Q̄n is based on a correctly specified parametric model, this extrapolation will be accurate. However,
in general we do not have correctly specified parametric models.
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L(1)(Q̄)(Oi) = −
(
Yi log(Q̄(Ai,Wi)) + (1− Yi) log(1− Q̄(Ai,Wi))

)
(4.1)

The second one, L(2), is defined for the propensity score Ḡ0. One example of the loss
function for the estimate Ḡ with binary treatment indicator A is:

L(2)(Ḡ)(Oi) = −
(
Ai log(Ḡ(Wi)) + (1− Ai) log(1− Ḡ(Wi))

)
(4.2)

In addition, we use ˆ̄Gγ(P̃n) to denote the resulting PS estimate by fitting estimator
ˆ̄G (e.g. main term logistic regression) of Ḡ0 on the training data with a given empirical
distribution P̃n (e.g. the empirical distribution for the training subsamples), and truncated

at γ percentile. Notice we have Ḡn,γ = ˆ̄Gγ(Pn), where Pn is the empirical distribution of all
the observed units. We directly use empirical distribution Qn to estimate Q0.

4.2 Data-adaptive Truncation

A consequence of PS truncation is the introduction of bias in the estimated PS, which in turn
causes bias in PS-based causal estimators [78]. Thus, PS truncation requires a bias-variance
trade-off: too much truncation can make estimators more stable but also introduce more bias
[6, 1]. [6] studied the bias-variance trade-off of the PS truncation by progressively truncating
the PS weights at different quantiles. However, the optimal truncation varies for different
datasets, and is usually unknown. Thus, it is important to define an empirical metric to
select the cutpoints for truncation in a data-adaptive manner. Ideally, the optimal cutpoints
should be selected minimizing the loss function (e.g. MSE) of the resulting causal estimator.
However, the true MSE is not accessible in practice. [1] proposed a closed-form estimate for
the expected MSE of a truncated IPW estimator. However, it is difficult to generalize this
closed-form MSE estimator to TMLE.

In this study, we propose a data-adaptive method to select the quantile for truncating
the PS estimate specially designed for TMLE. In subsection 4.2, we first describe a straight-
forward cross-validation (CV) selector for cutpoint selection. In subsection 4.2, we discuss
the drawbacks of a model-free CV-selector, and present the Positivity-C-TMLE algorithm
for cutpoint selection.

For simplicity, we only consider the case where the practical violation of positivity is
one-sided. In other words, if we use inverse propensity score weighted (IPW) estimator,
almost all the extreme weights are from the units in the control group where the estimated
PSs are close to 1. In this case, we only consider the one-side truncation, which could be
defined as:

Ḡn,γ(Wi) = min(Ḡn(Wi), qγ(Ḡn))

where qγ(Ḡn) is the γ quantile for the empirical distribution of Ḡn.
Notice the framework for one-side truncation could be easily extended to two-side trun-

cation, by adaptively selecting two truncation points.
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Data-adaptive Truncation with Cross-validation for Ḡ0

One of the most straightforward methods to select the cutpoint is cross-validation. Consider
the V -fold cross validation:

• Randomly split all the observed data into V groups with similar group size.

• Let Bn ∈ {0, 1}n, a random binary vector with length n, be a cross-validation scheme.

• Define the distribution of Bn as a discrete uniform distribution over V potential val-
ues. For the v-th potential value of Bn, we set the coordinates corresponding to the
observations in the v-th fold to be 1, and all the others to be 0.

Let P 0
n,Bn

be the empirical probability distribution of the training subsample {Oi :
Bn(i) = 0, 1 ≤ i ≤ n} and P 1

n,Bn
be the empirical probability distribution of the valida-

tion subsample {Oi : Bn(i) = 1, 1 ≤ i ≤ n}. The cross-validation selector of γ is then
defined as

γn,CV ≡ arg min
γ∈Γ

EBnP
1
n,BnL

(2)( ˆ̄Gγ(P
0
n,Bn))

where Γ is the set of potential cutpoints γ. L(2) can be any binary loss function, and in this
study we used a commonly used one, the negative log-likelihood loss function in equation
(4.2).

Data-adaptive Truncation by the Stability of Ψn

The CV-selector for Ḡ0 has the following drawbacks:

• The objective function of CV merely focuses on the predictive performance of Ḡ. In
other words, it does not apply any knowledge of the target parameter.

• In addition, such CV procedure is “model-free”. It selects the cutpoint independently
(without regard to the causal parameter/estimator), and then plugs the resulting es-
timate of Ḡ0 into the estimator of the causal parameter. It is reasonable to believe
different estimators of different causal parameters might have different optimal cut-
points. For example, the vanilla IPW estimator [23] might need more truncation (lower
cutpoint in our setting), compared to the stabilized Hajek-type IPW estimator [20] 2.

To overcome this, it is important to consider a better empirical metric on the parameter
of interest (e.g. MSE for the causal parameter). However, this is hard to achieve, as the
value of the causal parameter is unknown. [1] proposed a closed-form estimate for the MSE
of the IPW estimator Ψ̂γ that uses the estimated PS truncated at γ:

MSE(Ψ̂γ) = Var(Ψ̂γ) + Bias2(Ψ̂γ).

2The definition of the vanilla and stabilized Hajek-type IPW estimator can be found in section 4.4
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It then selects the truncation level that minimizes the estimated MSE. However, this closed-
form estimate is hard to extend to more complicated estimators, like TMLE. [78] extended
this work by a repeated two-fold cross-validation approach: the first part of the MSE esti-
mate, Var(Ψ̂γ), is estimated by the variance estimate of the causal estimator. The second

part, Bias2(Ψ̂γ) = (Ψn,γ −Ψ0)2, is estimated by the following procedure:

1. Randomly split data into two disjoint halves.

2. Compute Ψn,γ on one of the halves with truncation level γ, and compute Ψ̃ on the
other data.

3. Use B̂ias
2
(Ψ̂γ) = (Ψn,γ − Ψ̃)2 to estimate Bias2(Ψ̂γ).

[78] suggested repeating the above procedure k times and taking the average of the bias
estimates to stabilize the result.

Note the authors called this procedure “cross-validation” . To distinguish it from the
conventional CV procedure mentioned in the previous subsection, we call it multi-view vali-
dation (MV) in our paper.

Data-adaptive Truncation with Collaborative Targeted Learning

In this subsection, we propose a new algorithm called Positivity-C-TMLE. It is specially de-
signed for the TMLE estimator. We first introduce targeted minimum loss-based estimation,
and then discuss this novel algorithm with details.

Brief review of Targeted Minimum Loss-based Estimation (TMLE)

Targeted minimum loss-based estimation (TMLE) is a general methodology to estimate a
user-specified parameter of interest [39]. TMLE estimator is double robust, which means it
is consistent as long as at least one of Ḡn and Q̄n is consistent. In addition, TMLE estimator
is efficient if both the input estimator Ḡn and Q̄n are consistent.

In this study, we consider the TMLE for estimation of ATE, with the negative likelihood
as the loss function, and logistic fluctuation. Then the TMLE algorithm can be written as:
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Algorithm 5 Vanilla TMLE Algorithm for ATE, with negative log-likelihood loss and lo-
gistic fluctuation

1: function TMLE(Q̄0
n, Ḡn, Pn)

2: Construct clever covariate HḠn(Ai,Wi) = Ai
Ḡn(Wi)

− 1−Ai
1−Ḡn(Wi)

3: Fit a logistic regression: the outcome is Yi, with logit(Q̄0
n) as intercept, and

HḠn(Ai,Wi) as the univariate predictor, with coefficient ε.
4: Fluctuate the initial estimate: Given the logistic model above with fitted coefficient
ε of HḠn , update the initial estimate by

logit(Q̄∗n(A,Wi)) = logit(Q̄0
n(A,Wi)) + εHḠn(A,Wi)

for A ∈ {0, 1} and i ∈ 1, · · · , n.
return Q̄∗n (an n by 2 matrix).

5: end function

Then the resulting TMLE estimator for the ATE can be written as:

ΨTMLE
n =

1

n

n∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi)). (4.3)

To construct a good input Q̄0
n and Ḡn for algorithm 5, we suggest using Super Learner, a

cross-validation based ensemble learning method. Super Learner could easily combine a set
of individual machine learning algorithms, and has demonstrated outstanding performance
in a wide range of tasks, including causal inference [48, 18, 62, 30, 77], spatial prediction
[8], online learning [2], and image classification [25]. We refer the interested reader to the
literature on Super Learner [36, 49].

In addition to the double robustness and asymptotic efficiency mentioned above, TMLE
has following advantages:

1. Equation 4.3 shows that TMLE is a plug-in estimator, which respects the global con-
straints of the model by mapping the targeted estimate P ∗ (defined by (Q̄∗n, Qn)) of
P0 into the target parameter Ψ. Note some other estimators (e.g. IPW) may produce
estimates out of such constraints.

2. The loss function defined in TMLE, L(1) (the negative log-likelihood loss in algorithm
5), offers a metric to evaluate the goodness-of-fit of (Ḡn, Q̄n), directly w.r.t. the pa-
rameter of interest Ψ0. In this example, the loss is the negative log-likelihood in the
logistic regression step of algorithm 5.

3. Previous study shows TMLE is more robust to (near) positivity violations compared
to IPW and A-IPW [50].
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Positivity-C-TMLE

In this section, we briefly introduce the Positivity-C-TMLE algorithm, which is based on
the general template of C-TMLE [40, 31]. The high-level description of of the C-TMLE
algorithm is:

1. Sequentially generate a sequence of TMLE candidates Q̄∗n,γ indexed by γ, each cor-
responding to a Ḡn,γ (here each Ḡn,γ is from the same PS estimate but truncated at
different quantile γ).

2. Applying V -fold cross-validation to find the best TMLE candidate Q̄∗n,γ, which mini-

mizes the CV risk for L(2) loss.

The input of the C-TMLE algorithm is a user-provided initial estimate Q̄0
n for Q̄0 =

E0(Y |A,W ) with the empirical distribution Pn of the observed data Oi, i = 1, . . . , n. Fol-
lowing this template, with a user provided sequence of cutoffs [γmin, · · · , γmax] and the corre-
sponding sequence of PS estimate Ḡn,γ, the Positivity C-TMLE searches among the cutoffs,
finds the γ∗ that maximizes the empirical fit of TMLE using γ-specific clever covariate,
updates the initial estimate to this TMLE, repeats this by maximizing over the remain-
ing [γ∗, · · · , γmax] range, and proceeds till having reach the cutoff γmax. This generates a
sequence of TMLEs, Q̄∗n,γ, for all γ.

We then select the Q̄∗n,γ with CV using the L(1) loss for Q̄0: the sequence Q̄∗n,γ for all γ
defines a sequence of estimators that map data Pn into Q̄∗n,γ, so that we can run this mapping
on a training sample P 0

n,Bn
and then evaluate its performance on the validation sample P 1

n,Bn
.

The C-TMLE uses V -fold CV to select the best Q̄∗n,γ among the generated TMLEs, with

respect to the cross-validated predictive performance for Q̄0 with L(1) loss.
Algorithm 7 in the appendix shows the details of C-TMLE algorithm for cutpoint selec-

tion. 3

For simplicity, C-TMLE in later sections also refers to the Positivity-C-TMLE described
here.

4.3 Inference after Truncation

Influence Curve based Variance Estimator

We briefly review the influence curve based confidence intervals for TMLE and C-TMLE.
The efficient influence curve (EIC) for the ATE parameter is given by

D∗(Q̄, Ḡ, ψ)(Oi) = H(A,W )[Y − Q̄(A,W )]

+Q̄(1,W )− Q̄(0,W )− ψ,
3The Positivity-C-TMLE algorithm is almost identical to the LASSO-C-TMLE algorithm in [29, 34].

The only difference is the one-dimensional tuning parameter here is the truncation quantile, instead of the
regularization parameter λ for LASSO.
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where H(A,W ) = A/Ḡ(1,W )−(1−A)/Ḡ(0,W ) (A = 0, 1) [59, 38]. Based on the estimated
ˆ̄Q, ˆ̄G, and Ψ̂, the variance of a TMLE/C-TMLE/A-IPW estimator is given by:

V̂ar(Ψ̂) =
n∑
i=1

D∗( ˆ̄Q, ˆ̄G, Ψ̂)(Oi). (4.4)

Robust Variance Estimator

In this section, we propose a robust CI based on the robust targeted variance estimator from
[67, 72] for Positivity-C-TMLE estimator. Different from the variance estimator in (4.4),
this variance estimator is a substitution estimator, and thus more stable when there are near
practical positivity violations [38].

Recall that the expectation of the second moment of the efficient influence curve can be
calculated as:

E[D∗(Q̄, Ḡ, ψ)(Oi)]
2 = E[H(A,W )[Y − Q̄(A,W )]]2 + E[Q̄(1,W )− Q̄(0,W )− ψ]2 (4.5)

Given Q̄n, the second part can be estimated with:

1

n

n∑
i=1

[Q̄n(1,Wi)− Q̄n(0,W1)−Ψn]2 (4.6)

where

Ψn =
1

n

n∑
i=1

[Q̄n(1,Wi)− Q̄n(0,W1)].

The first part can be decomposed as:

E[H(A,W )[Y − Q̄(A,W )]]2 = E(
[Y1(W )− Q̄(1,W )]2

Ḡ(W )
) + E(

[Y0(W )− Q̄(0,W )]2

(1− Ḡ(W ))
).

Given the estimate Q̄n and Ḡn (and the corresponding Hn), each of them can be represented
as the mean of a counterfactual

Sa(W ) = [Y a(W )− Q̄n(a,W )]2 ·Hn(a,W ), a ∈ {0, 1},

with i-th observed outcome:

Si(W ) = (Yi − Q̄n(Ai,Wi))
2 ·Hn(Ai,Wi).

Thus we proposed the following robust variance estimation procedure:

• Create transformed observations Õi = (Si, Ai,Wi), and feed it to a standard TMLE

algorithm. This step outputs ¯̃Q∗n(A,W ).
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• Compute
1

n

n∑
i=1

[ ¯̃Q∗n(1,Wi) + ¯̃Q∗n(0,Wi)]

as a robust estimate of E[H(A,W )[Y − Q̄(A,W )]]2, the first part in equation (4.5).

• Finally combine this with (4.6) to compute the robust variance estimate:

1

n

n∑
i=1

[ ¯̃Q∗n(1,Wi) + ¯̃Q∗n(0,Wi)] +
1

n

n∑
i=1

[Q̄n(1,Wi)− Q̄n(0,W1)−Ψn]2

More details of the robust variance estimation can be found in [72].

4.4 Experiment

In this section, we designed simulation studies to assess the performance (bias, variance, and
MSE) of several commonly used estimators. For each estimator, we studied different methods
to determine cutpoint. Subsection 4.4 presents how data was generated for experiments.
Subsection 4.4 reviews the estimators used in the experiments. Subsection 4.4 shows the
results from the simulation, and compares the estimators with different empirical metrics for
cutpoint selection. The R package ctmle [27] can be found on The Comprehensive R Archive
Network.

Data Generating Distribution

We consider the following data generating distribution for Oi = (Yi, Ai,Wi): Wi is the vector
of 20 baseline covariates, generated from weakly correlated multivariate normal distribution.
The treatment indicator variable Ai is independently generated from a Bernoulli distribution,
with:

P (Ai = 1|Wi) = logit[C − (Wi1 +Wi2 +
20∑
j=3

3

20
Wij)].

Thus, the PSs would be closer to 1 with a larger value of intercept C.
Figure 4.1 and 4.2 shows the histogram plots of true propensity score, and estimated

propensity score (by logistic regression) for C = 1, 2, with sample size N = 1000.
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Figure 4.1: Histogram for the true PS and estimated PS for C = 1, Sample size N = 1000
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Figure 4.2: Histogram for the true PS and estimated PS for C = 2, Sample size N = 1000

The potential outcomes pair (Yi0, Yi1) is independently generated from a Gaussian distri-
bution, with conditional expectations:

E(Yi0 | Wi) = 2 + 2(Wi1 +Wi2 +Wi5 +Wi6 +Wi8)

and
E(Yi1 | Wi) = 4 + 2(Wi1 +Wi2 +Wi5 +Wi6 +Wi8)

and the variance is 1 for both Yi0 and Yi1. In other words, the observed outcome Yi is from
a normal distribution with variance 1 and expectation:

E(Yi | Ai,Wi) = 2 + 2(Wi1 +Wi2 +Wi5 +Wi6 +Wi8) + 2Ai.

Thus the true average treatment effect is 2.
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Estimators

In the simulation, we compared several PS-based estimators. First, we consider the widely
used inverse propensity score (IPW) estimator, or so-called Horvitz-Thompson estimator
[23]:

ΨIPW
n =

1

n

n∑
i=1

[
AiYi

Ḡn(Wi)
− (1− Ai)Yi

1− Ḡn(Wi)

]
.

IPW is a consistent estimator when Ḡn consistently estimates Ḡ0. However, due to the
inverse weighting, the IPW estimator usually has overly large variance, when there exist
some weights AḠn + (1 − A)(1 − Ḡn) close to zero. To stabilize the IPW estimator, the
Hajek-type IPW (Hajek-IPW) [20] was proposed as:

ΨHajek−IPW
n =

n∑
i=1

[
AiYi/Ḡn(Wi)∑n
i=1Ai/Ḡn(Wi)

− (1− Ai)Yi/(1− Ḡn(Wi))∑n
i=1(1− Ai)/(1− Ḡn(Wi))

]
.

Hajek-type IPW is usually more stable compared to the plain IPW estimator. However,
this stabilized IPW estimator will still be highly variable and will have a positively skewed
distribution if there are very strong covariate-treatment associations [22, 78, 45].

Both of the above estimators only rely on estimation of the PS and will be inconsistent
if the PS is not estimated consistently. We further compared the following double robust
estimators. The Augmented-IPW (A-IPW, or DR-IPW) estimator [59] can be written as:

ΨDR−IPW
n =

1

n

n∑
i=1

HḠn(Ai,Wi)
[
Yi − Q̄n(Ai,Wi)

]
+ Q̄n(1,Wi)− Q̄n(0,Wi)

where

HḠn(A,W ) =
A

Ḡn(W )
− 1− A

1− Ḡn(W )
.

In this study, we also consider the vanilla TMLE estimator:

ΨTMLE
n =

1

n

n∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi)).

We consider the following estimators to estimate the causal parameter:

• Estimators with fixed truncation level: for all the estimators described above, we
provided them with estimated PS truncated at different fixed percentile, from γ = 60%
quantile, to γ = 100% quantile (no truncation), with step size 1%.

• Estimators with the truncation level selected by CV: for all the estimators described
above, the truncation level for the PS estimate is selected by CV with negative log-
likelihood loss on Ḡ.
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• TMLE estimator with truncation level selected by MV, or for short, MV-TMLE esti-
mator.

• Positivity-C-TMLE estimator.

For A-IPW, TMLE and C-TMLE estimators which rely on the estimation of Q̄0, we used
the estimate Q̄0

n from a main terms linear regression, with observed outcome, Y , as dependent
variable, and treatment, A, along with baseline covariates W3, . . . ,W10 as predictor. In other
word, the confounding in the initial estimate is partially controlled. For the estimation
of Ḡ0 for all PS-based estimators, we used a main terms logistic regression with all the
covariates as predictors. In other words, the PS is estimated consistently and efficiently.
Thus we guarantee the model is correctly specified, and the failure of the estimators in the
simulations are from the practical violation of the positivity assumption instead of model
misspecification.

For each of the following simulation settings, we generated the data from each correspond-
ing data generating system 200 times independently, and report the average bias, standard
error, and mean squared error of all the estimators.

Results

We use solid curves with different color to denote the estimators with different fixed quan-
tiles as cutpoint for truncation. For all estimators with data-adaptive truncation, we use
horizontal lines to present the performance.
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Figure 4.3: Comparison of the MSEs for each estimator with C = 0.

First we study the case C = 0. When the sample size is 200, small values of γ result in high
MSE due to bias and large values of γ result in high MSE due to variance. The optimal
cutpoint for different estimator varies. For IPW, IPW-Hajek, and A-IPW, the optimal was
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about γ = 0.9. It is not surprising to see the vanilla IPW estimator is the most unstable
around γ = 1. TMLE is the most stable estimator, and it achieved optimal around γ = 0.8.
Among all estimators with cutpoint selected by CV, TMLE performed best, and its MSE
was very close to the MSE of C-TMLE. CV-TMLE, MV-TMLE, and C-TMLE have similar
performance.

When the sample size is 1000, the optimal cutpoint for all estimators was close to γ =
1. Intuitively, the larger sample size make the variance of estimators smaller, thus less
truncation is necessary. When the sample size is large enough, it would be unnecessary
to truncate the PS estimate. All the estimators with cutpoint selected by CV had similar
performance. The C-TMLE estimator achieved the best MSE and the CV-TMLE estimator
achieved the second best MSE when N = 1000. For both N = 200 and 1000, the C-TMLE
estimator was even better than the oracles of all the competing estimators with fixed quantile:
the horizontal line for C-TMLE is below all the curves.
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Figure 4.4: Comparison of the MSEs for each estimator with C = 1.

We then set C = 1 to introduce stronger practical violations of the positivity assumption.
For N = 200, the IPW and A-IPW estimators became more unstable. The corresponding
MSEs increased sharply when γ increased from 0.85 to 1. This might be because of the
unstable inverse weighting in these two estimators. Hajek-type IPW was much more stable
for mild truncation, in comparison to IPW and A-IPW. TMLE was more stable and had
better performance compared to the previous estimators. For estimators with adaptive
cutpoint selection, TMLE achieved the best performance among all the estimators with
cutpoint selected by CV. MV-TMLE and C-TMLE had the best performance among all the
estimators.

When N = 1000, all the estimators have similar performance with the previous case
where C = 0, N = 1000. Due to the relatively large sample size, even the estimators with
untruncated PS had satisfactory performance. However, we observe that, different from the
case with N = 1000 and C = 0, the MSE for IPW starts increasing after γ = 0.95 when
N = 1000, C = 1, which indicates there are stronger violations of the positivity assumption in
this case. In this setting, C-TMLE still achieved the best performance among all estimators
and was better than the oracles for all estimators with fixed cutpoint.
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Figure 4.5: Comparison of the MSEs for each estimator C = 2.

Finally we studied the case where the positivity parameter C = 2. We could see from
figure 4.2 that there was strong practical violation of the positivity assumption, as the
distribution of the PS is highly concentrated around 1. For N = 200, MSEs for all estimators
increased compared to the previous cases where C = 0, 1. The MSEs for IPW was out of
the bound of the plot when the PS was truncated with large quantile. Hajek-type IPW
estimator was much more stable compared to IPW and A-IPW in this case. TMLE still had
satisfactory performance among all the non-adaptive estimators, and the optimal quantile
for truncation of TMLE is around γ = 0.6. For the estimators with cutpoint selected by
CV, Hajek-TMLE achieved the best performance. In this case, where there exist strong
practical positivity violations, the gap between C-TMLE estimator and other estimators
became larger.

Similar to the previous cases, larger sample size relieved issues from practical violations
of the positivity assumption. When N = 1000, the optimal quantile for TMLE truncation
increased to around γ = 0.84, while for all the other non-adaptive estimators the optimal
quantile was around γ = 0.9. The estimators with cutpoint selected by CV had similar per-
formance, with MSE around 0.4, and MV-TMLE estimator had slightly better performance.
C-TMLE estimator had the best performance among all the adaptive estimators. The oracle
for TMLE with fixed cutpoint is slightly better than C-TMLE when C = 2, N = 1000, but
such optimal cutpoint is unknown in practice.

The Bias-Variance Trade-off

We further studied the bias and variance trade-off for each estimator.
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Figure 4.6: Comparison of the MSEs for each estimator C = 2. For bias plot (left), a
horizontal line at 0 is added for better comparison.

Figure 4.6 shows the bias and the standard error (SE) for each estimator. The figure for
bias shows that when the cutpoint is increased, IPW, Hajek-type IPW and A-IPW became
less biased. The bias of TMLE decreased from positive to 0, and then became negative. This
shows practical violations of positivity would introduce bias for TMLE when no truncation
is applied to the PS estimate, even when using the true parametric-model for PS estimation.
For the SE, all the estimators with fixed cutpoint show the same pattern: all the SE increase
dramatically with truncation quantile increased from 0.8 to 1.0. For all estimators with
adaptive cutpoint selection, C-TMLE achieved both the smallest SE and a relatively small
bias. In comparison, MV-TMLE and CV-TMLE achieved small absolute bias, but had overly
large variance. Among all estimators using CV for cutpoint selection, TMLE has the best
MSE (see figure 4.5). More details can be found in table 4.1.

Table 4.1: Detailed results for the data-adaptive truncation methods.

N C = 0 C = 1 C = 2
Estimator Bias SE MSE Bias SE MSE Bias SE MSE

200 CV-TMLE 0.243 0.575 0.389 0.325 0.619 0.488 -0.067 1.471 2.163
MV-TMLE 0.064 0.369 0.140 0.117 0.409 0.181 -0.272 1.065 1.206

C-TMLE 0.042 0.459 0.212 0.193 0.423 0.216 0.062 0.962 0.927

1000 CV-TMLE -0.033 0.294 0.087 -0.147 0.304 0.114 -0.392 0.581 0.489
MV-TMLE 0.106 0.310 0.107 0.017 0.291 0.084 -0.167 0.467 0.245

C-TMLE 0.022 0.196 0.039 0.070 0.189 0.040 0.214 0.237 0.102

To further study the estimators with data-adaptive truncation selection, we also com-
pared MSE for each estimator with the positivity parameter C increasing from 0 to 2.
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Figure 4.7: Comparison of C-TMLE, MV-TMLE, and the other estimators with cutpoint
selected by CV. We varied C from 0 to 2. Left: sample size N = 200. Right: sample size
N = 1000.

Figure 4.7 shows the trend of MSE for each estimator with the positivity parameter
C increasing from 0 to 2. C-TMLE kept better performance compared to all the other
estimators with cutpoint determined by CV. In addition, the gap between the MSE for C-
TMLE and other estimators kept increasing. This suggests that CV is far from the optimal
for the cutpoint γ selection.

MV-TMLE has good performance when N = 200 and C is small. However, in the setting
of N = 200, when violations of positivity became stronger, its MSE increased dramatically
after C = 1.5. When the sample size N = 1000, it keeps satisfactory performance. However,
it is consistently weaker than C-TMLE across all C.

Comparison of Cutpoints for CV, MV-TMLE, and C-TMLE

To better understand the difference between the cutpoints γ selected by C-TMLE and CV,
we study the mean of the quantiles selected for C-TMLE, MV-TMLE and CV. To have a
better comparison, we used TMLE estimator with the cutpoint selected by CV (CV-TMLE)
to compare with Positivity-C-TMLE (C-TMLE), and the cutpoint selected by MV (MV-
TMLE).
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Figure 4.8: Fix positivity parameter C = 2, increase N = 200 to 3000
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Figure 4.8 shows the absolute mean bias, SE, and MSE for CV-TMLE and C-TMLE
with the positivity parameter C = 2, sample size N changing from 200 to 3000. MSE for
both algorithms decreases, which is mainly due to the decreasing SE. The absolute mean
bias for C-TMLE shows a decreasing trend, but not clear for CV-TMLE. This might be
because CV is too sensitive to the sample size, and selected too mild truncation (too large
cutpoint quantile γ). In addition, it is interesting to see that the bias curves of CV-TMLE
and MV-TMLE show very similar patterns.

To better understand why C-TMLE outperforms CV-TMLE, we plot the mean cutpoint
selected by CV and C-TMLE.
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Figure 4.9: Mean of selected quantiles by CV, MV-TMLE, and C-TMLE for fixed C = 1
(left) and 2 (right), with sample size N increasing from 200 to 3000.

Figure 4.9 shows the mean quantile selected by CV and C-TMLE. In this experiment,
we fixed C = 1 (left) and C = 2 (right), with sample size N increasing from 200 to 3000.
We observe that CV is more sensitive to N in comparison to MV-TMLE and C-TMLE.
The cutpoint increased dramatically from around 0.7 to 0.95, when N increased from 200
to 1000. However, C-TMLE tended to be more conservative. Even when the sample size is
very large, it still only truncated at around 90%. On the other hand, comparing the two
figures with C = 1 and C = 2, we could see C-TMLE is much more sensitive to the positivity
parameter C. In comparison, the lines for CV for C = 1, 2 are more similar than the lines
for C-TMLE. The cutpoint selected by MV-TMLE is not sensitive either to the sample size
or the positivity parameter.

To better understand their behavior from another perspective, we fixed the sample size
N and increased the positivity parameter C.
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Figure 4.10: Mean of selected quantile by CV, MV-TMLE, and C-TMLE, with sample size
N = 200 and n = 1000 and the positivity parameter C from 0 to 2.

Figure 4.10 shows that the cutpoint selected by C-TMLE is more sensitive to the positiv-
ity parameter C, as the curves for CV and MV-TMLE are flatter. This could be explained by
the objective function used for CV: the commonly used negative log likelihood loss penalized
the observations with:

L(2)(Ḡ)(Ai,Wi) = Ai[log(Ḡ(Wi))] + (1− Ai)[log(1− Ḡ(Wi))]

Consider the case where the untreated observations are rare. Then for the untreated ob-
servations Ai = 0, but with high value of the estimated PS, Ḡn(Wi), it would contribute
− log(1 − Ḡn(Wi)) to the loss function. However, the performance of the estimators with
inverse weighing would suffer more in comparison to the predictive performance of Ḡ, as the
inverse of a very small number, 1/Ḡ(Wi), can be much larger/influential. In this sense, the
C-TMLE estimator has an attractive property that it determines the cutpoint by minimizing
the CV loss for the parameter of interest, instead of the nuisance estimator.

It remains unknown why the cutpoint selected by MV-TMLE is not sensitive to either
sample size, or the positivity parameter. Unlike CV, which is model free, MV relies on the
choice of the causal estimator. Thus it is possible that the cutpoint would be more sensitive
if we switch to a less robust estimator (e.g. IPW estimator).

For C-TMLE, notice this cutpoint selection is different from the general model selection
problem. Unlike the general model selection (e.g. selection of the regularization parameter
λ for LASSO), the cutpoint γ selection is not closely relevant to the bias-variance trade-off,
or smoothness, of Ḡ, as it only affects the tail distribution of A | W . The negative log-
likelihood would always select little truncation (high cutpoint) as the increasing of bias is
faster than the decreasing of variance, as the Kullback-Leibler divergence is not sensitive to
predicted probabilities close to 0/1. Even Ḡn,γ selected by CV will yield an asymptotic linear
estimator, without suffering from under-smoothing. Thus it does not fit the general theorem
of C-TMLE in [34]. However, in the finite-sample cases, the Positivity-C-TMLE uses a more
targeted criterion in comparison to CV, which leads to a better practical performance.
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Confidence Intervals

In this section, we study the finite sample performance of confidence intervals for double
robust estimators.

Table 4.2: Coverage of CI across 200 experiments with sample size 1000 for efficient estima-
tors, with the average relative width of CI to CV-TMLE* in parentheses. Estimators with *
use the true SE (provided by a separate Monte Carlo simulation), while the others use the
estimated SE.

C = 0 C = 0.5 C = 1 C = 1.5 C = 2

CV-TMLE* 0.95 (1.00) 0.93 (1.00) 0.94 (1.00) 0.91 (1.00) 0.91 (1.00)
MV-TMLE* 0.95 (1.05) 0.94 (0.92) 0.96 (0.95) 0.94 (0.77) 0.94 (0.80)
C-TMLE* 0.95 (0.68) 0.94 (0.70) 0.94 (0.69) 0.92 (0.51) 0.92 (0.46)
CV-AIPW* 0.90 (0.97) 0.77 (0.87) 0.71 (0.76) 0.65 (0.65) 0.45 (0.51)

CV-TMLE 0.85 (0.82) 0.85 (0.79) 0.76 (0.69) 0.67 (0.57) 0.61 (0.51)
MV-TMLE 0.92 (0.83) 0.88 (0.71) 0.80 (0.62) 0.79 (0.49) 0.67 (0.40)
C-TMLE 0.95 (0.60) 0.88 (0.60) 0.84 (0.49) 0.82 (0.39) 0.70 (0.34)
CV-AIPW 0.96 (1.57) 0.96 (1.58) 0.92 (1.41) 0.86 (1.17) 0.82 (0.97)
C-TMLE (Robust CI) 0.95 (0.62) 0.97 (0.74) 0.93 (0.68) 0.90 (0.55) 0.87 (0.44)

Table 4.2 shows the average coverage and length of confidence intervals. The positivity
would also influence the estimation of the variance of the estimators. To better understand
the behaviors of the two estimators, we studied two settings. In the first setting, we used the
true SE, SE(Ψn), of the CV-TMLE, MV-TMLE, and C-TMLE (computed by a Monte Carlo
simulation), and applied it to construct the CIs: [Ψn − 1.96 · SE(Ψn),Ψn + 1.96 · SE(Ψn)].
In the second case, we applied the estimated SE, ŜE(Ψn), to construct CIs [Ψn − 1.96 ·
ŜE(Ψn),Ψn + 1.96 · ŜE(Ψn)] for all the estimators.

First, we observe the TMLE* had much larger variance but smaller bias compared to
C-TMLE in this experiment (C = 2, N = 1000). The large variance of TMLE helps the
coverage for its CI, if we know the true variance (which is not possible). C-TMLE selects
the cutpoint by optimizing the bias-variance trade-off to the MSE of the targeted parameter,
and thus introduces more bias to reduce the variance in order to achieve better MSE. This
is also shown in figure 4.10, where in sample size 1000, CV would on average truncate with
a larger quantile. The overly large variance causes a much wider CI, which leads to the
satisfactory coverage for TMLE*, though this makes the TMLE estimator less efficient.

However, as the true variance of the estimator is unknown in practice, CIs usually rely on
the estimation of the variance. We observe that the variance of CV-TMLE, MV-TMLE, and
C-TMLE estimator was underestimated in our experiments. It is also interesting to observe
that A-IPW had high coverage, which is due to the over-estimating of its variance: according
to table 4.2, the ratio for estimated SE and true SE when n = 1000 is 0.97/0.51 = 1.90. For
all the estimators, the estimated variances were smaller than the true variances. Extreme
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weights in the clever covariates H(A,W ) cause large variance of the influence curve, thus
makes it challenging to estimate the variance of the estimator. The variance estimator for
the Positivity-C-TMLE estimator is less biased than the variance estimators for the CV-
TMLE and MV-TMLE estimator. The ratio of the mean estimated SE to the corresponding
true SE is about 0.88, 0.86, 0.71, 0.76, 0.74 for C = 0, 0.5, 1, 1.5, 2, respectively. While for
CV-TMLE and MV-TMLE, the ratio is much smaller. The ratio of the mean estimated SE
to the corresponding true SE for the CV-TMLE estimator is about 0.82, 0.79, 0.69, 0.57, 0.51,
and for the MV-TMLE estimator is about 0.79, 0.77, 0.65, 0.64, 0.49, for C = 0, 0.5, 1, 1.5, 2
respectively. This explains why CV-TMLE and MV-TMLE had worse CI coverage than
C-TMLE.

We further applied the robust variance estimator for the positivity C-TMLE. The last
row in Table 4.2 shows the coverage and relative width of CIs across 200 experiments. The
results show the robust variance estimator provided better estimation of the variance, and
improved the performance of confidence intervals significantly.

4.5 Conclusion

In this study, we proposed the Positivity-C-TMLE algorithm for adaptive truncation of the
PS to address the issues from practical violations of the positivity assumption. We also
designed simulations to evaluate and to help understand this novel estimator. We have the
following conclusions:

• It is reasonable to believe that the optimal cutpoint varies significantly for different
estimators. The Positivity-C-TMLE algorithm was designed for selecting the optimal
cutpoint for TMLE, which might be the key point for its outstanding performance in
the simulation.

• As discussed in subsection 4.4, the negative log-likelihood function L(2) for Ḡ is not
a good objective function for selecting γ. Positivity-C-TMLE selects γ directly based
on the targeted parameter, which is another important factor in its success in the
simulation.

• The cutpoint selected by Positivity-C-TMLE is more sensitive to the positivity param-
eter C than the cutpoint selected by CV. The cutpoint selected by CV is sensitive to
the sample size N , but not for the positivity parameter C. The cutpoint selected by
MV-TMLE is not sensitive either to N , or to C.

• MV-TMLE has similar performance to C-TMLE when the sample size is large, or
when practical violations are mild. However, in small samples with strong positivity
violations (e.g. N = 200, C = 2), C-TMLE has much better performance than MV-
TMLE.
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• For Positivity-C-TMLE, the variance is under-estimated in the simulation, especially
when practical violation of the positivity assumption is strong. Though the variance
estimator for Positivity-C-TMLE is less biased than the one for CV-TMLE or MV-
TMLE, a more conservative variance estimator is necessary to build a more reliable
confidence interval for finite-sample study. We applied the robust variance estimator
[67, 72] and observed a significant improvement.

There are several potential future extensions of this study. First, we only studied the
case where the propensity score is estimated by a correctly specified parametric model. In
other words, the failure of the estimators in the simulations are only from the practical
violations of the positivity assumption, rather than model misspecification. It is important
to investigate the behavior of each adaptive truncation method when the estimator for Ḡ0

is misspecified. The C-TMLE algorithm, when combined with non-parametric estimation
of Ḡ, provides a potential solution to the problem of overfitting the propensity score model
while still allowing for flexible estimation [34]. In addition, this C-TMLE procedure could
be extended to other data structure, like longitudinal data. We leave this for future work.
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Appendix
For simplicity, we first introduce algorithm 6 for construction of a sequence of the C-

TMLE candidates. In short, algorithm 6 can be considered as a black-box function, which
outputs a sequence of TMLE candidates and a set of fluctuation points:

Algorithm 6 Positivity-C-TMLE Candidate Construction Algorithm

1: function Generate-Candidates(Q̄0
n, Pn, Γk, γmin = 0.6, γmax = 1, η = 0.01)

2: Train an estimator Ḡn of Ḡ0 on Pn.
3: Construct a sequence of propensity score model Ḡn,γ indexed by the corresponding

cutpoint γ, where γ is the γ-th empirical quantile of the estimated PS.
4: Initialize k = 1 (the loop index).
5: Initialize γ0 = γmin (the left bound of the remaining set of quantiles).
6: Initialize Γ, the set of quantiles under consideration, sampled from γmin to γmin, with

fixed step size η
7: if Γk (the set of fluctuation points) is not provided then
8: Initialize SearchFluctPoint = True.
9: Initialize Γk = []

10: else
11: Initialize SearchFluctPoint = False
12: end if
13: while Γ is not empty do
14: if SearchFluctPoint then
15: Apply targeting step for the same initial estimate Q̄k

n with each Ḡn,γ, γ ∈ Γ.
16: Select γk corresponding to the Q̄∗n,γk that achieves the smallest empirical risk

PnL
(1)(Q̄∗n,γk(A,W )).

17: Append γk to Γk (record the current fluctuation point).
18: else
19: γk = Γk[k] (make fluctuation based on the provided set Γk[k]).
20: end if
21: For γ ∈ [γk−1, γk], compute the corresponding TMLE using initial estimate Q̄k−1

n

and propensity score estimate Ḡn,γ.
22: We denote such estimate with Q̄∗n,γ and record them (γ ∈ [γk−1, γk] is no longer

under consideration).
23: Set a new initial estimate Q̄k

n = Q̄∗n,γk .
24: Update the remaining set of quantiles Γ = (γk, γmax] (only consider the quantiles

between γk and γmax).
25: Set k = k + 1.
26: end while

return [Q̄∗n,γ, γ ∈ Γ], Γk
27: end function
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Remark:

• If the fluctuation points set Γk is not provided (when trained on the whole observed
data), this function generates a sequence of TMLE candidates by fluctuating the esti-
mate when the empirical risk is not get improved.

• Otherwise, if the fluctuation points set Γk is provided (during cross-validation stage),
it generates a sequence of TMLE candidates with a given set of fluctuation points.

The empirical loss decreases at each fluctuation point. During the cross-validation step,
the set of fluctuation points is given (precomputed by whole training sample), so it would
only update Q̄n at each given fluctuation point. Then C-TMLE uses a targeted CV to select
the stopping point.

Algorithm 7 Positivity-C-TMLE Algorithm

1: function Positivity-C-TMLE(Q̄0
n, Pn, γmin = 0.6, γmax = 1, V = 5)

2: Build a sequence of candidates using the whole dataset:
[Q̄∗n,γ],Γk = GENERATE-CANDIDATE(Q̄0

n, Pn)
3: Given the set of the fluctuation points Γk from the previous step, compute the V-fold

CV risk for each candidate:
Build sequence of candidates Q̄∗γ(P

0
n,Bn

) on the empirical distribution of the training
set, P 0

n,Bn
, with given Γk and Bn (a CV scheme), by calling

[Q̄∗γ(P
0
n,Bn

)], = GENERATE-CANDIDATE(Q̄0
n, P

0
n,Bn

,Γk).
Repeat this for all the V folds, and compute the average validation loss:

EBnP
1
n,BnL

(1)(Q̄∗γ(P
0
n,Bn)).

4: Select the best candidate Q̄∗n,γctmle among Q̄∗n,γ, with the smallest cross-validated loss
in step (3), and its corresponding initial estimate Q̄n,γctmle .

5: Apply one additional targeting step to Q̄n,γc-tmle
, with each gn,γ, γ ∈ [γmin, γc-tmle),

yielding a new sequence of estimate Q̄∗n,γ.

6: Select Q̄∗n = arg minQ̄∗
n,γ
PnL

(1)(Q̄∗n,γ), γ ∈ [γmin, γc-tmle) with the smallest empirical
loss as the final estimate.

return Q̄∗n
7: end function

Remark:

• In step 2, Positivity-C-TMLE algorithm first computes the set of the fluctuation points
and a sequence of candidates using the entire observed dataset.

• In step 3 and 4, it uses the V-fold CV to compute the CV-loss for each candidate. It
picks the one with the smallest CV-risk, with corresponding initial estimate Q̄n,γc-tmle

.
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• Finally it fluctuates Q̄n,γc-tmle
with each γ > γc-tmle, and selects the Q̄∗n with the smallest

empirical loss, according to [34].

The final estimate for the causal parameter, ATE, is given by:

ψc-tmle
n =

1

n

n∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi))
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