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Abstract
Methane (CH4), an important greenhouse gas and pollutant, has been targeted for mitigation. Our
recent California airborne survey identified >500 CH4 point source super-emitters, which
accounted for 34%–46% of the statewide CH4 emissions inventory for 2016 (Duren et al 2019
Nature 575 180–184). Individual plumes were observed in close proximity to expected methane
emitting infrastructure, including gas storage facilities, hydrocarbon storage tanks, landfills, dairy
lagoons, and pipeline leaks. In order to systematically attribute these plumes to their sources, we
developed Vista-CA a geospatial database, that contains more than 900 000 validated CH4

infrastructure elements in the state of California. In parallel, we developed a complimentary
algorithm that attributes any individual CH4 plume observation to the most likely Vista-CA source
with 99% accuracy. The present study illustrates the capabilities of the Vista-CA CH4 database
along with the Airborne Visible/Infrared Imaging Spectrometer—Next Generation airborne CH4

retrievals to locate and attribute CH4 point sources to specific economic sectors to improve the
state CH4 budget and identify mitigation targets.

1. Introduction

Methane (CH4) is a powerful greenhouse gas (GHG)
responsible for ~20% of radiative forcing since the
Industrial Revolution [1]; however, uncertainty in the
source apportionment of CH4 emissions poses a chal-
lenge for implementing mitigation, globally and in
policy relevant domains. In the State of California,
reductions in CH4 emissions are explicitly required
by law (2016 SB 1383) as a way to achieve Califor-
nia’s climate goals for significantly reducing overall
GHG emissions by 2030 [2, 3]. To this end, it is neces-
sary that California has an appropriate and sufficient
CH4 observing system to evaluate progress towards its
emission reduction goals given large uncertainties in
current techniques [4].

Notable differences inCH4 source apportionment
have been observed between atmospheric observa-
tions and expected GHG emissions for urban areas
in the state [5–7]. These studies used measurements
of CH4 and its tracer species in well-mixed air to
infer the contributions of different source sectors to
regional CH4 emissions, and found that these estim-
ates differed from the source contributions detailed
in regionally downscaled versions of the California
Air Resources Board GHG Inventory (CARB GHG
Inventory). Given that the CARB GHG Inventory is
the primary tool used for tracking GHG emissions in
the state, this discrepancy poses a challenge for veri-
fying state-mandated CH4 mitigation efforts.

Another policy tool for tracking GHG emis-
sions is facility-level governmental reporting

© 2020 The Author(s). Published by IOP Publishing Ltd
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programs. The California Air Resources
Board Pollution Mapping Tool (CARB PMT:
https://ww3.arb.ca.gov/ei/tools/pollution_map/) and
the U.S. Environmental Protection Agency Facility
Level Information on GreenHouse gases Tool (EPA
FLIGHT: https://ghgdata.epa.gov/ghgp/main.do)
show maps of facilities that exceed annual emissions
of 10 000 or 25 000 metric tons CO2-e for CARB
and EPA, respectively, along with their annual repor-
ted GHG emissions, including CH4. Facility level
emissions tracking is useful because this is the scale
where mitigation actions are most often taken; how-
ever, these emissions are not verified by independent
methods. It is unclear how accurately CH4 emis-
sions are represented given that these thresholds
for emissions reporting are mostly driven by CO2

emissions, and CH4 is more difficult to inventory
given the importance of fugitive sources and fat-tailed
distributions.

Recent advances in airborne remote sensing of
CH4 have enabled meter-scale imaging of CH4 point
sources over areas from 1000 to 100 000 km [8–11]
Using this technique, Duren et al [11] surveyedmeth-
ane emission sources in California and found that a
few hundred CH4 point sources contributed 34%–
46% of the overall statewide emissions. The high spa-
tial resolution, 1–3 m per pixel, of airborne ima-
ging spectrometers is capable of visualizing CH4

plumes at the scale of their sources. Combining plume
imagery with detailed geospatial information from
high-resolution satellite imagery in a platform such
as Google Earth, enables one to attribute CH4 emis-
sions to specific facilities and infrastructure compon-
ents [12–14]. However, analysis of these CH4 point
sources requires an accurate, systematic method to
identify infrastructure components at policy relevant
(e.g. facility) levels. Such detailed information is not
provided in a state level, aggregated inventory such as
the CARB GHG Inventory or even in high resolution
(~10 km) disaggregated inventories [e.g. Maasakkers
et al 15 ].

A different approach for systematically under-
standing the distribution of CH4 sources was demon-
strated by Carranza et al [16] for the Los Angeles (LA)
Basin through the development of Vista-Los Angeles
(Vista-LA) [16]. Vista-LA is a geospatial dataset of
all anthropogenic CH4 infrastructure within the LA
Basin that attempts to represent all potential sources
of CH4 emissions regardless of the expected size of
emissions. Vista-LA is organized in the same way as
the CARB GHG Inventory for sectoral analyses, but
is spatially disaggregated with representations of CH4

emission sources at the facility scale and down to indi-
vidual components, such as gas pipelines. Combining
this detailed dataset with new, high resolution obser-
vational data of CH4 emissions from airborne remote
sensing enables a more thorough ‘inventory’ of CH4

based on actual observations that is likely to be more
robust than activity/emission factor methods that do

not capture fugitive or anomalously large sources that
are thought to be common for CH4.

In this study, we expand the Vista approach to
the whole state of California (Vista-CA) for ana-
lysis of CH4 plume data collected by the Airborne
Visible/InfraRed Imaging Spectrometer-Next Gener-
ation (AVIRIS-NG) in California in 2016–218. Previ-
ously, we showed that Vista-CA was used for survey
planning and manual source attribution for a sub-
set of these flights (Duren et al [11]). Here, we (1)
detail further updates to the Vista methodology to
enable automated source attribution, and (2) com-
pare its performance to attributions made from exist-
ing facility data fromgovernment reporting programs
[11, 17], and (3) demonstrate that source attribution
can be automated for fast-turnarounddata processing
for all 2016–2018 plume datasets using the Geospatial
Source Attribution Automated Model (GSAAM).

2. Methods

2.1. Vista-CA data development
Vista-CA is a geospatial database of 901 009 valid-
ated elements of potential CH4 emitting infrastruc-
ture developed from publicly available datasets that
have been validated and standardized for the entire
state of California (figure 1). Vista-CA includes 17
different CH4 source layers that have been system-
atically categorized into facilities and sub-facilities.
These include power plants, refineries, natural gas
fueling stations, natural gas stations, pipelines, dis-
tribution pipelines, natural gas processing plants,
natural gas storage fields, oil and gas facilities, oil
and gas field boundaries, oil and gas wells, dairies,
feedlots, digesters, composting sites, solid waste dis-
posal sites, and wastewater treatment plants (table 1).
New source layers were added to Vista-CA that were
not present in Vista-LA because they were (1) not
included as CH4 sources in the CARB inventory, but
were observed to emit by AVIRIS-NG [11] (compost-
ing sites), (2) not present in the LA domain (digesters,
feedlots), and (3) comprise datasets that were pub-
lished after Vista-LA (oil and gas facilities). Federal
and state data repositories were used as the primary
data sources [8, 18–21]. These datasets were valid-
ated by cross-comparing multiple datasets for spa-
tial consistency and accuracy. We used Google Earth
aerial imagery to either identify or confirm geoloca-
tions as well to denote geographic extents of indi-
vidual facilities and infrastructure. All feature datasets
were georeferenced and updated with standardized
metadata, and are freely available on the Oak Ridge
National Laboratory Distributed Active Archive Cen-
ter for Biogeochemical Dynamics [22]. Vista-LA lay-
ers that previously covered only the LA Basin were
expanded to include the full extent of California
[16, 17]. All datasets are formatted as vectors stored
as either lines, points, or polygons (Table S1 (available
online at stacks.iop.org/ERL/15/124001/mmedia)).
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Figure 1. Vista-CA Maps. The maps on the following pages are grouped by the IPCC Level 1 structure: (A) Energy, (B)
Agriculture, Forestry & Other Land Use, and (C) Waste. Each IPCC Level 1 map displays all the relevant infrastructure organized
within IPCC Level 3 (table 1). (A) IPCC Level 1. Energy. Inset map shows the Energy facilities and infrastructure located around
the Los Angeles metropolitan area. (B) IPCC Level 3. Agriculture, Forestry & Other Land Use. (C) IPCC Level 4. Waste.

Vista-CA is organized according to the CARB
GHG Inventory, which itself is based on the frame-
work established by the Intergovernmental Panel on
Climate Change (IPCC) [23]. However, both IPCC
and CARB are process-based inventories that use
state level activity data to estimate GHG emissions,
whereas Vista-CA is database of actual facilities that
may emit CH4 in California. Organizing Vista-CA
source types in this way is critical for comparisonwith
inventory and for categorizing contributions of dif-
ferent emission sectors.

2.2. Other emission datasets
CARB provides annual CH4 estimates for top-
emitting facilities across California [18]. Their pol-
lution mapping tool (PMT) is a geospatial database
that enables users to query, locate, and view repor-
ted GHG and criteria pollutant emissions at the facil-
ity scale [18]. CH4 data is only reported for facilities
emitting >10 000 metric tons CO2e annually. PMT
contains facility addresses that are sometimes inac-
curate, often giving the address of operator headquar-
ters instead of the emitting facility. True addresses
were obtained from publicly available records and
were used to validate locations in the CARB PMT
data. CARB PMT CH4 data for 2016 contained a

geospatial dataset of 597 CH4 reporting facilities in
California [18].

EPA FLIGHT is a geospatial database of the loc-
ations of approximately 8000 facilities that report
annually to the EPA Greenhouse Gas Reporting Pro-
gram (GHGRP). EPA FLIGHT tracks facilities that
emit more than 25 000 MTCO2eq/year, and accounts
for 85%–90% of emissions included in the official
EPA GHG Reporting Program [24]. EPA FLIGHT
CH4 data for 2017 contained geospatial data of 389
CH4 reporting facilities for California [20]. Both
CARB PMT and EPA FLIGHT differ from the offi-
cial GHG inventories from their respective agencies
in that they are based on reported emissions at the
facility scale, not activity data.

2.3. Airborne imaging spectrometer data
We used CH4 plume observations from a survey
of California conducted using the Airborne Vis-
ible/Infrared Imaging Spectrometer—Next Genera-
tion (AVIRIS-NG) instrument [11, 17]. AVIRIS-NG
is capable of detecting concentrated CH4 plumes
by measuring ground-reflected solar radiation across
427 contiguous spectral bands ranging from 350 to
2500 nm wavelengths with 5 nm spectral sampling at
3 m spatial resolution. The CH4 retrieval is based on
absorption spectroscopy between 2100 and 2500 nm

4
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and provides a mixing ratio length that repres-
ents CH4 enhancement integrated along the column
beneath the aircraft in parts permillion xmeter (ppm
m) [25]. AVIRIS-NG’s spectral resolution, high spa-
tial resolution, and high signal-to-noise ratio has per-
mitted high-resolution mapping of CH4 as well as
CO2 and H2O [12, 25–27]. AVIRIS-NG has consist-
ently detected and quantified CH4 point sources from
multiple emissions sectors for emissions as small as 2–
10 kg CH4/hr, depending on surface albedo and air-
craft/ground speed [11, 17]. For further information,
the specific plume localization and identification pro-
cess has been detailed by Duren et al [11].

We used AVIRIS-NG CH4 plume observa-
tions from 2016–2018 collected during the Califor-
nia Methane Campaign [11], in which 2424 CH4

plumes were identified manually with high con-
fidence. These plume observations are available to
the public at the Methane Source Finder web portal
(https://methane.jpl.nasa.gov). Emissions from 1181
of the 2016–2017 plume detections were quanti-
fied and published by Duren et al [11] along with
manual source attribution using Vista-CA. Here
we performed source attribution on the additional
748 unpublished plumes from 2016–2017 for which
emissions quantification was uncertain, and the 495
plumes from 2018.

2.4. Source attribution framework
The meter-scale resolution and geolocation accuracy
of AVIRIS-NG observations enabled us to determ-
ine the source location of nearly all CH4 plumes
within a radius of 5 meters or less. We then attrib-
uted each plume observation to an emission source
facility/sub-facility in the Vista-CA database based on
spatial proximity (figure 2). First, wemanually identi-
fied the emissions origin of each observed CH4 plume
using preliminary versions of Vista-CA. This process
entailed overlaying orthorectified grayscale images of
CH4 retrieved by a linearized matched filter (AVIRIS-
NGLevel 3 data) on high resolutionGoogle Earth aer-
ial imagery for broader context with Vista-CA infra-
structure maps simultaneously displayed. This pro-
cess was conducted for the 1181 plumes published
by Duren et al [11]. We treat this manual attribu-
tion as the true attribution for development of auto-
mated attribution algorithms. Next, we automated
the attribution of observed AVIRIS-NG CH4 plumes
based on proximity to Vista-CA features (Figure S2).
We developed a decision-tree framework to attrib-
ute AVIRIS-NG plumes to the nearest logical Vista-
CA feature while considering the effect of known
spatial biases that impact proximity attribution (fig-
ure 3). Specifically, there is a large degree of spa-
tial overlap amongst Vista-CA source layers (Table
S2). These overlaps often occur because Vista-CA lay-
ers are organized by source type, e.g. power plants,
without considering whether each individual feature
is part of a larger facility, such as a landfill or refinery

which often contain their own power plants. An over-
lap analysis was conducted among all 17 Vista-CA
source layers (Table S2) to distinguish facility vs. sub-
facility scale features (table 1). Finally, within each
branch and sub-branch of the framework, a spe-
cific radius was determined to maximize attribution
accuracy and reduce the number of false positives and
false negatives (table 1). Using the greatest distance
between a methane plume and its source feature in
Vista-CA, we determined a radius for each Vista-CA
layer using the near function in ArcGIS.

To develop the automated model, we first
employed an automated simple distance method to
attribute 1181 plumes from the published Duren
et al dataset to the nearest Vista-CA feature without
providing any spatial logic or hierarchal considera-
tions (figure 3). This baseline allowed us to see where
improvements would have to be initiated, how to
prioritize or develop the data hierarchy, and how to
logically assess spatial complexities within the data.
Consequently, a hierarchical structure was developed
within the decision-tree framework to account for
spatial biases in order to reduce the number of misat-
tributions (figure 3). Attributions are done at the
facility level, which also gives a sectoral attribution by
IPCC source category. Further, we attribute plumes
to sub-facilities if present to enable better under-
standing of the emitting process. For example, if the
workflow attributed a given plume to a refinery, it
would further assess whether it could also be attrib-
uted to relevant sub-facility components such as an
oil & gas well or a sub-facility power plant. If so,
they would be appropriately attributed; if not, they
would simply stay as being attributed to the refinery
facility-level. If a plume was unable to be identified
by any of these features, then the plume would pass
to the next sector for attribution according to the
decision tree structure. This process would continue
until all sectoral, facility, and sub-facility Vista-CA
data is parsed. The remaining un-attributed plumes
are labeled ‘Unknown’.

Manually attributing plumes required significant
time and effort; however, the decision-tree work-
flow was strategically designed for easy automation.
The resulting GSAAM is an efficient plume-to-source
attribution framework designed with 2 main inputs:
latitude/longitude (X, Y) coordinates as a comma-
separated values spreadsheet and Vista-CA geospatial
datasets. After all attributions have been completed
according to the decision tree, the model merges the
result together into a final product outputting a tab-
ular spreadsheet along with an ESRI point shapefile
(Table S1).

3. Results

We used Vista-CA to perform source attribution
of 2424 methane plumes observed by AVIRIS-NG
during the 2016–2018 California Methane Survey

5
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Figure 2. AVIRIS-NG Plumes—Vista-CA Unique Facilities Attribution. This map shows the locations of the 290 unique facilities
as identified by the automated attribution of the 1181 AVIRIS-NG plumes using Vista-CA GSAAM V4. The inset shows greater
detail for the southern San Joaquin Valley and the Los Angeles Basin, where 1043 plumes were observed.

(figure 2) [11]. First, we manually attributed plumes
to facilities in Vista-CA to determine the maximum
possible number of sources attributed using the
Vista-CA dataset. Of the total 2424 methane plumes
observed, 2407 (99.3%) were manually attributed to
a Vista-CA feature (table 2). Unattributed plumes,
hereafter called unknowns, were either found far
from any methane emitting infrastructure, such as in
an agricultural field, or were found associated with
methane emission sources not included in Vista-CA,
such as a beef processing plant [11].

We compared manual attribution with the Vista-
CA dataset to manual attribution with other CH4

facility databases: CARB PMT and EPA FLIGHT
for a subset of 1181 plumes with high confidence
emissions estimates from 2016–2017 (published in
Duren et al [11]). Manual attribution of airborne
CH4 plume detections with both CARB PMT and
EPAFLIGHTdata resulted in significantly lower attri-
bution accuracies across the 6 IPCC sectors (fig-
ure 4). Use of CARB PMT attributed 39.5% of
observed CH4 plumes (466/1181), and after com-
parison with the original manual attribution, only
30.6% of plume attributions using PMT were con-
sidered correct (361/1181 plumes) (figure 4). CH4

plume attribution with EPA FLIGHT had similar
results, with attribution of 38.8% of CH4 plumes
(458/1181), with 30.9% correct (366/1181 plumes)
(figure 4). Performance of PMT and FLIGHT varied
greatly across sectors, with much better source attri-
bution for Energy (IPCC 1A1) andWaste (IPCC 4A1)
compared to Oil and Natural Gas (IPCC 1B2) and
ManureManagement (IPCC 3A2) (figure 4). In total,

CARB PMT only had 18% (52) and EPA FLIGHT
only had 15% (44) of the 290 unique facilities in
Vista-CA that were observed to be emitting CH4 by
AVIRIS-NG in our dataset (table 3).

Next, we used Vista-CA to automate source
attribution based on spatial relationships between
observed CH4 plumes and Vista-CA infrastructure.
As discussed previously, a simple distance analysis
to attribute each CH4 plume to a Vista-CA feature
served as the validation baseline for measuringmodel
performance. Vista-CA GSAAM V4 improved attri-
bution accuracy over the simple distance method
from 51.3% to 99.6% at the facility level across all
seven IPCC Level 3 source categories. The total num-
ber of facilities broken down by Vista categories along
with the number of unique correctly attributed facil-
ities across all three datasets was also calculated for a
direct comparison of completeness (table 2).

For all plume observations, Vista-CA GSAAM
V4 correctly attributed 2384 of 2403 (99.2%) total
plume observations at the facility level, excluding the
21 plumes from unknown sources described above
(table 2). Only 8 plumes were attributed to incor-
rect Vista-CA facilities, yielding a false positive rate
(mis-attributions) of 0.45% (6 times forHarris Ranch
Meat Plant and 2 times for the Palos Verdes Land-
fill). The overall false negative rate, indicating missed
attributions when there was in fact a source from
manual attribution, was 0.18%. Moreover, GSAAM
attributed 19.5% of the plumes to sub-facility level
infrastructure with an attribution accuracy of 100%
(table 2). We achieved ideal 1:1 plume-to-source
attribution accuracies (100%) for three of the six

6
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Figure 3. Geospatial Source Attribution Automated Model (GSAAM) V4 Decision-Tree Logic. (A) and (B) illustrate the
framework used to for the model logic. The model uses a spatial function at each node (Vista-CA dataset) and to attribute a
methane plume observation to a source from amongst Vista-CA infrastructure elements based on a predetermined distance from
the feature. Each pathway (attribution) ends with one of three options: Facility (purple text); Sub-facility (red text); or Unknown
(black text). GSAAM is organized by IPCC categories: (1) Agriculture, Forestry & Other Land Use (green boxes); (2) Waste
(orange boxes); and (3) Energy (blue boxes).
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Figure 4. Overall Attribution Accuracy Results. Manual attribution performance as a percentage for CARB PMT, EPA FLIGHT,
and Vista-CA GSAAM attribution model performance for IPCC Level 3 source categories. (3A1 Enteric Fermentation: 0
Attributions detected for Feed Lots).

IPCC source categories: 1A1 Energy Industries, 4B
Biological Treatment of Solid Waste, and 4D1 &
4D2 Domestic Wastewater Treatment & Discharge,
with the other three categories averaging 99.19%
(figure 4).

4. Discussion

The identification, geolocation and attribution of
anthropogenic CH4 emissions remains a major chal-
lenge for emissions monitoring and mitigation. We
developed a method for high confidence attribution
of meter scale CH4 plume observations to their emis-
sion sources at the facility scale by spatially relat-
ing the locations of airborne CH4 plume detec-
tions to geographic datasets that represent locations
of potential CH4 emission sources. We demonstrate
this using Vista-CA and CH4 plumes observed by
AVIRIS-NG in both a manual and automated mode.
We found that the vast majority of CH4 plumes
in California were found in association with infra-
structure known to handle or produce CH4, con-
sistent with the expectation that these large point
sources are anthropogenic, and thus potential tar-
gets for CH4 mitigation. Vista-CA and AVIRIS-
NG results are visually depicted in NASA JPL’s
Methane Source Finder (https://methane.jpl.nasa.
gov/).

We compared the ability of our Vista-CA dataset
to attribute CH4 plume observations to facility-level

regulatory datasets, CARB PMT and EPA FLIGHT
(figure 4). Unlike GHG emission inventories that
encompass emissions at the level of a state, the CARB

PMT and EPA FLIGHT reporting program datasets
provide facility-level spatial information and repor-
ted estimates of CH4 emissions. However, they were
not as effective as Vista-CA for CH4 source attri-
bution. The threshold for inclusion in CARB PMT
and EPA FLIGHT, based on total expected facil-
ity GHG emissions, is ill suited for CH4 emissions
that are characterized by fugitive sources and skewed

emissions distributions that make inventories of CH4

challenging to construct. In contrast, Vista-CA was
designed to assume that CH4 emissions can poten-

tially come from any CH4 relevant infrastructure.
Vista-CA includes (1) sources previously omitted
from the regulatory inventories, such as compost-
ing sites and natural gas fueling stations, (2) sources
with emissions expected to be too small or zero, but
that might still be emitting, such as closed landfills
[5], and (3) sources for which there are not read-
ily available public maps, such as dairy farms [28].

In addition, Vista-CA has confirmed geolocations for
all sources, avoiding the problem of the address of
an emitter differing from the actual location of emis-
sions, as occurs in regulatory datasets. Finally, much
effort was put into delineating the geographic extents
of Vista-CA sources that have large spatial extents,
such as landfills. These spatial extents improve the
ability of an automated model to match a plume
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location with its source facility compared to point
locations

Proximity-based attribution methods are limited
by the availability of datasets that are used to inform
them. 1.6% (39/2424 plumes) of plumes that were
either unknown or misattributed, come from 16
sources that are not currently included in Vista-CA:
one meat processing plant; one liquified natural gas
terminal; two oil and gas tanks that were not asso-
ciated with an oil and gas field, facility, or refinery;
five landfills; two agricultural sites; one dairy; and
four related to oil and gas fields with no other spatial
details. False negatives—plumes that were not attrib-
uted to any feature—persisted mainly due to incon-
sistent spatial coverage in the oil and gas field bound-
ary dataset. Better accounting for the spatial extents
of various facilities in Vista-CA, such as dairies, could
reduce these problems, but manual digitizing of facil-
ity extents would require significant additional effort.
For these more complex or confounding cases, we
suggest a ‘human-in-the-loop’ method to reconcile
some of these discrepancies.

We also distinguished facility level sources from
sub-facility features in the Vista-CA dataset to
improve automated source attribution. Vista-CA was
originally designed with a focus on the facility level
because of its relevance for mitigation activities; how-
ever, linking CH4 plume observations to sub-facility
level infrastructure can give deeper insight into the
process producing emissions. This has been demon-
strated with AVIRIS-NG data for underground stor-
age fields and landfills [12, 14]. We recognize that
sub-facility level infrastructure included in Vista-CA
is very limited, given that we rely on public databases
for our data sources. This problem is most acute in oil
and gas fields, which account for 122 plume attribu-
tions without more detailed sub-facility attribution.
Oil fields such as Midway-Sunset can span hundreds
of kilometers, but we have limited information on the
oil and gas production infrastructure located therein,
such as gathering pipelines, storage tanks, and other
oil and gas facilities that are present but not currently
included in the Vista-CA oil and gas facilities source
layer. This can be further improved with more com-
plete accounting of oil and gas production structures
located within these CH4 source areas. Because of the
vast extent of oil and gas fields, we include oil and
gas fields at the end of the attribution tree to avoid
mis-attribution of CH4 plumes located there to the
oil and gas field when another possible CH4 emission
infrastructure is present (e.g. a dairy located on an oil
and gas field). In addition, we distinguish urban from
non-urban oil and gas fields, since urban oil and gas
fields are much more likely to include CH4 emission
sources that are not related to oil and gas production
activities.

One assumption of our approach is that the
apparent origin of the plume in hyperspectral
imagery is indeed its source; this may not be the

case under swirling or still wind conditions [29]. This
uncertainty is particularly relevant in areas densely
populated with potential sources where Vista-CA
facilities overlap one another or are in close spatial
proximity. In industrial urban areas, for example,
high spatial density of sources from multiple colloc-
ated sectors complicates source attribution.

By cataloguing all potential CH4 emission sources
in Vista-CA, we add to a growing body of evidence
that a small number of emitters contribute to a large
fraction of the total CH4 emissions [11], with 3.3%
(290/8878) of Vista-CA facilities responsible for all
CH4 plumes observed by AVIRIS-NG (figure 2, table
3). Given that the spatial extent of Vista-CA is only
3.46% of California’s area, both the Vista-CA spatial
model and the attributions of AVIRIS-NG observa-
tions to a subset of Vista-CA allows for amore focused
approach when it comes to developing mitigation
strategies.

Our source attribution methodology can attrib-
ute observed CH4 plumes down to individual sub-
facility infrastructure elements, enabling detailed
investigation of sectoral contributions of CH4 point
source emitters, comparison to reported emissions at
the facility level, reporting of anomalous activity to
facility operators, and investigation of emissions dis-
tributions within a source category, as demonstrated
in Duren et al [11]. Moreover, we demonstrated that
source attribution can be automated, enabling rapid
analysis of large surveys. This is a critical step toward
operationalizing airborne CH4 emissions monitor-
ing, and similar approaches may be needed for ana-
lyzing CH4 point sources detected globally by new
satellite missions [30]. A typical plume dataset from
an airborne campaign consists of 2000 plumes, and
requires roughly 15–20 h for manual attribution
analysis with a tool like Vista in hand, which is
reduced to approximately 5 min with automation,
and close to 99% attribution accuracy (figure 4).
While presently limited to the state of California,
Vista-CA and GSAAM are useful tools for any future
CH4 monitoring the state undertakes by allowing a
more focused mitigation approach. We suggest the
Vista approach may also be applied more broadly for
CH4 point source attribution with new imaging spec-
trometry from airborne and spaceborne platforms.
Expanding Vista globally will require additional auto-
mation andmethods to deal with the different degrees
of sectoral data and metadata available in different
regions.
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