UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Perceptual Chunks in Geometry Problem Solving: A Challenge to Theories of Skill
Acquisition

Permalink
@s://escholarship.orq/uc/item/6155k76i

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Authors

Koedinger, Kenneth R.
Anderson, John R.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/6155k76j
https://escholarship.org
http://www.cdlib.org/

Perceptual Chunks in Geometry Problem Solving
A Challenge to Theories of Skill Acquisition

Kenneth R. Koedinger & John R. Anderson
Psychology Department, Carnegie Mellon University

ABSTRACT
In current theories of skill acquisition it is quite common to assume that the input to learning mechanisms
is a problem representation based on direct translations of problem instructions or simple inductions
from problem solving examples. We call such a problem representation an execution space because it is
made up of operators corresponding to the external actions agents perform while executing problem
solutions. Learning proceeds by modifications and combinations of these execution space operators.
We have built a model of geometry expertise based on verbal report evidence which contains operators
which can be described as modifications (e.g., abstractions) and combinations (e.g., compositions) of
execution operators. However, a number of points of evidence lead us to conclude that these operators
were not derived from execution space operators. In contrast, it appears these operators derive from
discoveries about the structure and properties of domain objects, particularly, perceprua] properties. We
have yet to develop a detailed and integrated theory of this “perceptual chunking”, but we present the
expert model is a challenge to current theories of skill acquisition.

1. Introduction

The process of skill acquisition is generally described as involving two phases as shown in Figure 1. In
the knowledge acquisition phase, the system uses information about the problem domain, e.g., problem
descriptions, problem constraints, example solutions, etc., to build some kind of basic problem space!,
essentially, a set of simple condition-action operators that it can use to attempt to solve problems in the
domain. In the knowledge tuning phase, the basic problem space is elaborated through problem solving
practice so that the system becomes more effective and efficient. The elaborated problem space may
incorporate heuristics that control the system'’s search or may be an abstracted version of the basic
problem space in which operators make larger steps allowing for faster solutions.

Problem Basic Elaborated
w—’ Problem _w’ Probileti
1 ACQUISITION
Information Spa

Figure 1. A framework common to many theories of skill acquisition and learning.

The framework in Figure 1 is characteristic of a number of theories of skill acquisition. In ACT*
(Anderson, 1983), knowledge acquisition is modelled by a mechanism called proceduralization while
knowledge tuning is modelled by composition, generalization, and discrimination. In Soar (Newell, in
press), knowledge acquisition has been modelled by a program called TAQ while knowledge tuning is
modelled by Soar's chunking mechanism. Other research efforts have focussed on one or the other of
these phases. For example, knowledge acquisition has been modelled in the UNDERSTAND program
(Hayes and Simon, 1974) which built a problem space from a natural language description, and in a
program by Neves (1978) which built a problem space from example solutions. Knowledge tuning has
been modelled in terms of macro-operator learning (Korf, 1987) and in terms of problem space
abstraction (Sacerdoti, 1974; Unruh, Rosenbloom, and Laird, 1987).

While this framework has certainly proven useful, we argue that it is inadequate for a complete and
general theory of skill acquisition. We support this argument with empirical data and a model of expert
geometry problem solving which cannot plausibly be learned within this framework. The basic
argument is as follows. We have found that geometry experts skip steps in developing proof plans. By

I'We don't mean to suggest that a system can have only one problem space associated with a domain. Thus, when we refer
to a system's problem space for a domain, one can think of it as the collection of all problem spaces for that domain.

442

KOEDINGER & ANDERSON

itself this behavior is not contrary to the standard framework — it might be explained, for example, by
ACT*’s composition or Soar’s chunking mechamsm. However, a closer look at the details of this step-
skipping behavior brings such explanations into question. In particular, we identified a regularity in the
kinds of steps experts skip which cannot be easily explained in terms of compositions or chunks of
consecutive production or operator applications. We present a schema-based model, called DC, which
accounts for this regularity. While DC’s schemas could be represented in terms of production rules, it is
difficult to imagine how current production rule learning models could produce the organization inherent
in these schemas.

2. The Basic Phenomenon: Step-Skipping

We analyzed 12 protocols coming from the concurrent verbal reports (Ericsson and Simon, 1984) of
four subjects solving one problem and one subject solving eight problems. Two of the subjects were
mathematics graduate students, two were psychology researchers with extensive experience in geometry,
and one was a Pittsburgh area high school geometry teacher.

In analyzing these protocols we were surprised to find that the steps subjects took in the process of
planning a proof do not correspond with the rules of geometry: the definitions, postulates, and theorems.
In contrast, most previous models of geometry theorem proving have worked in a problem space based
on these rules (Gelernter, 1963; Goldstein, 1973; Anderson, Boyle, & Yost, 1985). We call this the
execution space because these rules correspond with the steps that are written down in the final execution
of a proof plan. While the the steps subjects wrote down or stated in explaining their final solution
correspond with the execution space, they skipped many of these steps in planning a solution.

TABLE 1
A Verbal Protocol for a Subject Solving the Problem in Figure 2.
o o ohe o e ke Planning phase e e e e e e

Bi: We're given a right angle — this is a right angle, Reading given: It Z40DE
B2: perpendicular on both sides [makes perpendicular markings Inference step 1: AC = BD
on diagram];
B3: BD bisects angle ABC [marks angles ABD and CBD) Reading given: BD bisects £A4BC
B4: and we're done. Inference step 2: A4B0 = ACED
*odokxkk Execution phase %k sk
BS: We know that this is a reflexive [marks line BD], In this phase, the subject refines and

B6: we know that we have congruent triangles; we can determine explains his solution to the experimenter.
anything from there in terms of corresponding parts

B7: and that’s what this [looking at the goal statement for the
first time] is going to mean ... that these are congruent
[marks segments AD and DC as equal on the diagram].

Figure 2 shows one of the problems we used and its solution in proof tree format. Table 1 contains
the protocol of a subject solving this problem. The subject’s verbalizations are shown in the left column
of Table 1. The right column contains a summary of the steps the subject mentions. The protocol is
divided up into 1) a planning phase in which the subject is searching for a solution and 2) an execution
phase in which he executes the previously outlined solution by reporting it to the experimenter.

This expert had a plan for solving tis problem in 13 seconds at the point where he said “we’re
done”. We can describe his planning as follows. In block B1 of the protocol he reads the first given.
Next at B2, he makes the inference that the lines AC and BD are perpendicular — “perpendicular on both
sides”, which follows from the first given. At B3, he reads the second given and then at B4 he says
“we're done" which appears to indicate that he has made an inference from the second given which
proves the goal. Further inspection of his explanation of the solution, particularly at block B6, makes it
clear that this inference was that the two triangles ABD and CBD are congruent.

443

KOEDINGER & ANDERSON

QOAL: D midpojnt of AC

A D C

QIVENS: vt LADD
BO biseots ZABC
QOAL: D midpoint of AT

GIVENS: rt ZADB BD bisects LABC

Figure 2. A problem (in the box) and its solution. The numbered steps are ones a subject
mentioned during planning (see Table 1), while the circled steps are ones he skipped.

Of the four verbalizations in the planning phase, two indicate his reading and encoding of the given
statements and two indicate inferences. In other words, he came up with a solution plan in two steps.
In contrast, the final solution to this problem requires seven steps as shown in Figure 2.

The problem solving protocols of all the skilled subjects had this flavor where there were phases of
planning where steps were skipped and phases of execution where these steps were filled in. It was
clear that subjects were not searching step-by-step in the execution space. Rather, subjects were
planning in some other more abstract problem space using knowledge that allows them to focus on the
key inferences and ignore the minor inferences. We have characterized the nature of this knowledge in a
computer simulation called the diagram configuration model (DC).

3. The Dlagram Configuration Model (DC)
The core idea of DC is that the knowledge of skilled geometry problem solvers is organized around
certain prototypical geometric figures we call diagram configurations. Clustered around each diagram
configuration are related geometry facts. We call such clusters of geometry information diagram
configuration schemas. Two examples are illustrated in Figure 3.

Diagram configuration schemas have four attributes: 1) the configuration, 2) the whole-statement, 3)
the part-statements, and 4) the ways-to-prove. The whole-starement and part-statements attributes of a
schema contain statements which refer to the geometric figure stored in the configurarion attribute. The
whole-statement refers to the configuration as a whole, while the part-statements are relationships among
segment and angle parts of the configuration. The main action of a diagram configuration schema comes
from the ways-to-prove attribute. This attribute contains different ways to “prove the schema”. Saying
a schema is “proven” is a brief way of saying that the whole-statement and all the part-statements of the
schema can be proven. Each of the ways-to-prove 1s a list of part-statements, indicated by their number,
which are sufficient to prove the schema. For example, one of the ways-to-prove of the TRIANGLE-
CONGRUENCE-SHARED-SIDE schema is {1 2} which indicates that if part-statements 1. X7=%Z and 2 VW
=ZW are proven, the schema can be proven.

The essential idea behind diagram configuration schemas is that skilled geometry problem solvers
can recognize certain configurat:ons in problem diagrams and they know that if certain statements about a
configuration have been proven, all the statements about the configuration can be proven. Instead of
planning proofs one statement at a time, diagram configuration schemas allow skilled problem solvers to
plan multiple proof steps in a single thought.

KOEDINGER & ANDERSON

CONGRUENT-TRWHGLES- SHARED-SIDE s hwina PEAPENDICULAR ADJACENT-ANGLES schoma
Conguration X Corfiguration N
Y
z L— M
w
Whok-statement. AXTW & AXZW Whok-statemert M L NP
Part-statements 1 X1 = Xg Part-statements 1.1t ZLPN
2YWeZW 2.t MPN
3422 3 £LPN = £/MPN
4 LYXW = LIXW
3 LXWT = LXWT ‘Ways-to-prove (1) 2) (3)
WaysLo-prove: (1 2) {14) {25}{4°5)
{34) {35)

Figure 3. Two diagram configuration schemas.

In Table 1, we saw a skilled subject plan a seven step proof in two steps. We can explain his
planning in terms of DC. DC visually parses a problem diagram into instances of the various
configurations it knows about. Inside the rounded boxes in Figure 4 are the configurations DC
recognizes in the problem diagram in Figure 2. Attached to each configuration are the part-statements
which refer to it. Notice that certain part-statements are associated with more than one configuration.
For example, «<ADB = £CDB is a part-statement for both the PERPENDICULAR-ADJACENT-ANGLES and
TRIANGLE-CONGRUENCE-SHARED-SIDE schemas.

rt LCDB LADB E LCDB /ZABD § ZCBCO ABEBC LAN LC

Figure 4. The configurations and associated part-statements that appear in the problem diagram in
Figure 2.

At block B1 in Table 1, the subject reads and encodes the first given rt £ADB which we have circled
in Figure 4. By “encodes’” we mean he determines what the statement means. In this case, by encoding
the given rt ZADB we believe the subject understands this to mean that the measure of 2ADB is 90
degrees. At block B2, he makes an inference corresponding with proving the PERPENDICULAR-
ADJACENT-ANGLES schema. The result of this inference is that he knows the other two part-statements
nt<CDB and £ADB= £CDB are true. At block B3, he reads and encodes the second given BD bisects
<ABC. This statement is the whole-statement for the BISECTED-ANGLE schema and he encodes it by
considering the part-statements of this schema as given. This schema has only one part-statement, ZABD
= £CBD, which is marked as given in Figure 4. When the subject reads the goal statement (B7), we
claim he encodes it in a similar way, thinking of the corresponding part-statement AD = DC.

Following B3, the subject knows that the four part-statements on the left in Figure 4. 1t _LDE
through £ABD = £CBD, are true — only the three on the right remain unknown. Two of the known
statements, <ADB = £CDB and £ABD & 2CBD, correspond with the one of the ways-to-prove of the
TRIANGLE-CONGRUENCE-SHARED-SIDE schema, namely {4 5}. At B4, the subject makes an inference
which we claim corresponds with proving this schema. His explanations at B6 and B7 support this
claim. If, in fact, he is proving the TRIANGLE-CONGRUENCE-SHARED-SIDE schema at B4, he should
know the three other part-statements AD 2 DC, AB= BC, and 24 = £C are true. It seems clear that he

445

KOEDINGER & ANDERSON

knows this from B6, “... we have congruent triangles; we can determine anything from there" The
fact that he first looked at the goal statement at B7 provides further evidence. It indicates that earlier in
the protocol, at B4, he had some other way of detecting that he was done with the proof. Assuming his
inference at B4 corresponds with proving the TRIANGLE-CONGRUENCE-SHARED-SIDE schema, he
knows, at this point, that all the part-statements in all the configurations that appear in the diagram are
true. Thus, the use of this schema explains how he knows he can prove any goal statement no matter
what it is.

We now turn to a general description of DC. DC has three processing stages: 1) diagram parsing,
2) statement encoding, and 3) schema search. In the computer simulation each stage is done to
completion before the next begins, however, we believe that human problem solvers integrate these
processes. Our simulation approach allows us to evaluate the contribution of the diagram parsing
process makes to limiting search independent of the schema search process. Note that DC is intended as
a model of the pannmuf J:shases of skilled subjects and not the execution %hascs A model of the
execution phases would involve finding solutions, either by retrieval or by search in the execution space,
to the series of trivial one to three step subproblems that result from planning.

3.1. Diagram Parsing and Schema Instantiation. Diagram parsing is the process of looking for
configurations in the problem diagram and instantiating the schemas associated with any of the
configurations identified. The diagram is input as ordered lists of the points that appear in each line and
xy-coordinates for each point. From this representation, DC's diagram parser can directly recognize any
occurrence of a basic configuration. Basic configurations are recognizable purely from their form, for
example, the ADJACENT-SUPPLEMENTARY-ANGLES configuration is recognized when the end of one
line meets another line somewhere in the middle. Other configurations are specializations of basic
configurations in which some relationships among the parts are constrained. For example, the
PERPENDICULAR-ADJACENT-ANGLES configuration is a specialization of the ADJACENT-
SUPPLEMENTARY-ANGLES configuration in which the component angles are equal. To recognize these
specialized configurations, DC uses appearances in the diagram to estimate the slopes of lines and sizes
of segments and angles. This is a heuristic procedure which, in the case of an overspecialized diagram,
can result in extra irrelevant, but harmless schemas.

DC’s diagram parser also recognizes and associates certain pairs of basic configurations. For
example, two basic TRIANGLE configurations can be paired if they appear to be congruent. DC
recognizes apparent congruence by checking if the sides of the triangles can be paired so that each pair of
sides are the same estimated size. The pairing of congruent triangles is treated explicitly in geometry
textbooks, however, other pairings of basic configurations that DC forms are not commonly discussed.
These pairings amount to visual ways of cueing certain inferences that are proven in the execution space
using algebra. The corresponding schemas allow problem solvers to skip over the details of algebra
sub-proofs which are a large source of combinatoric explosion in the execution space (see Koedinger &
Anderson, in press). These schemas are called whole-part congruence schemas and were also identified
and discussed by Greeno (1983).

The final result of diagram parsing is a network of instantiated schemas and part-statements as
illustrated in Figure 4. It is interesting to note that although no problem solving search is done in this
first stage, in effect, most of the problem solving work is done here. The resulting network is finite, in
fact, usually quite small, and is fully instantiated. Searching it is fairly trivial.

3.2. Statement Encoding. Before search is started, the given and goal statements of the problem must be
read into the system. Statement encoding corresponds to problem solvers’ comprehension of the
meaning of given/goal statements. We claim that problem solvers comprehend given/goal statements in
terms of part-statements. When a given/goal statement is already a part-statement, DC encodes it directly
by appropriately tagging the part-statement as either “known” or “‘desired”. However, there are two
other possibilities. First, if the given/goal statement is one of a number of alternative w:vs of expressing
the same part-statement, it is encuded in terms of a single canonical form. For example, measure
equality and congruence, as in mAB =mCD and 4B = CD, are encoded as the same part-statement.
Second, if the given/goal statement is the whole-statement of a schema, it is encoded by appropriately
tagging all of the part-statements of that schema as either “known” or “desired”. For example, recall
DC’s encoding of the goal and second given of the problem discussed above and shown in Figure 2.

KOEDINGER & ANDERSON

3.3. Schema Search. The network that results from diagram parsing contains a set of diagram
configuration schemas which are possible consequences of the problem givens. In schema search, DC
attempts to prove enough of these schemas so that the goal statement is proven in the process. This
search amounts to looking for a path through the network that connects the given part-statement(s) with
the goal part-statement(s) subject to the ways-to-prove of each schema in the path.

DC 1s performing a search through the space defined by its diagram cont{)guraﬁon schemas. We call
this the diagram configuration space. Previous models of geometry problem solving performed search
in the execution space and required heuristics to guide choices in this large search space (Gelernter,
1963; Goldstein, 1973; Anderson, Boyle, & Yost, 1985). In contrast, the diagram configuration space
is small enough that DC can effectively plan proofs without extra heuristics to aid search in this space.
DC can perform a brute force forward search of the diagram configuration space by arbitrarily choosing
any schema which can be proven at each step in problem solving. DC’s default control scheme is
slightly more elaborate — see Koedinger and Anderson (in press).

The feasibility of this simple control scheme is demonstrated by a task analysis we did of one of the
more difficult problems the subjects solved. The shortest solution to this problem in the execution space
is 7 steps and we estimated that a breadth-first search for this solution visits more than a million states.
The shortest solution to this problem in the diagram configuration space is 3 steps and a breadth-first
search for this solution visits at the most eight states.

4. Evidence for DC: Step-Skipping Regularity

In evaluating DC, it is worthwhile to consider whether the step-skipping behavior of skilled subjects
could be explained in terms of an alternative abstract problem space. We consider two possible
alternatives both based on modifications of the execution space. First, an abstract space can be created
from the execution space by an abstraction process where the conditions (if-part) of execution operators
are generalized, for example, by dropping a clause which, ideally, refers to some detail which can be
temporarily ignored (Sacerdoti, 1974). Such “minor” clauses in the execution operators of geometry are
rare — dropping clauses most often results in operators that can propose future states which cannot be
proven. Such incorrect plans can cause significant efficiency problems, however, this is not our major
criticism of the adequacy of this abstraction method for modelling skilled geometry problem solving.
Rather, this method 1s inconsistent with the observation that the abstract plans of our skilled subjects
were always correct. That is, the abstract inferences they made, like the ones in Table 1, never produced
unprovable statements. Thus, it appears unlikely that their abstract operators have been learned through
a “clause-dropping” type abstraction process.

A second approach to building an abstract problem space is by composition of consecutively
applicable execution operators. This general approach has received numerous instantiations, e.g.,
ACT*’s composition (Anderson, 1983), Soar’s chunking (Laird, et. al., 1987), Korf's macro-operator
learning (Korf, 1987). Although most of these approaches have some stipulations of the appropriate
context in which composition can occur, there is little in them that indicates whether or when some pairs
of consecutively applicable operators are more likely to be composed than other pairs. Thus, we would
not expect any regularity in the kinds of steps that would be skipped in an abstract problem space of
composed execution operators. However, such a regularity is exactly what we observed of subjects.

We analyzed the protocols of all our subjects as illustrated in Table 1 and Figure 2. In particular,
we divided each protocol into segments corresponding to planning and execution phases and we
annotated the protocol with the inference steps subjects verbalized. We made a proof graph of each
subject’s final solution and then identified each step in this solution the subject mentioned while
planning.

Our claim is that the steps taken in planning tend to correspond with diagram configuration
schemas. In other words, we predicted that subjects would tend to mention statements which are whole-
statements of diagram configuration schemas and tend to skip those statements which are not. For
certain schemas, like the algebra-related schemas, which do not have whole-statements, we predicted
subjects would only mention one part-statement of the schema, in particular, the one which concludes
the inference. As an example, these predictions exactly match the planning behavior of the subject in
Table 1. In the eleven other cases, the predictions were not as perfect, however, they tended to be
correct. Figure 5 shows the results from all twelve cases. Clearly, there is a regularity in the steps being

447

KOEDINGER & ANDERSON

skipped and DC captures a lot of this regularity. A Chi square test (X*(1) = 41.5) indicates it is unlikely
that the model’s fit to the data is a chance occurrence (p < .001).

DC MODEL predictions
mention skip

2
L0l 29 143
5
2l 3| 51[54
32 65 (97

Figure 5. DC's account of the step-skipping behavior.

In addition to the evidence of regularity in step-skipping, we found other evidence in the problem
solving protocols inconsistent with an abstract planning model based on compositions of execution
operators. In the process of executing an abstract plan, subjects could not always immediately fill in the
steps they had skipped during planning. However, if subjects leamed abstract planning operators from
previously compiled execution operators, the knowledge to fill in the skipped steps should be readily
available. Since these execution operators remain necessary to execute proof plans, there is no reason
why they would be forgotten.

Finally, there are computational reasons to question the composition-based explanation of step-
skipping. On one hand, diagram configuration schemas can be viewed merely as a more compact
notation for a set of macro-operators or composed production rules. On the other hand, these schemas
indicate a particular organization of macro-operators and this organization may be difficult to achieve in
typical composition mechanisms. To illustrate the point, consider the TRIANGLE-CONGRUENCE-
SHARED-SIDE schema in Figure 3. This schema can be represented as 6 macro-operators whose left-
hand sides correspond to the 6 ways-to-prove of the schema and whose right-hand sides contain §
actions which correspond with the 5 part-statements of the schema. The collection of such macro-
operators for each schema, call it S, is a restricted subset of the space of possible macro-operators. S is
restricted in two ways. First, S does not contain any of the possible macro-operators which could make
inferences between statements which are whole-statements of schemas, for example, it doesn't contain
an operator that could infer perpendicularity directly from triangle congruence in a problem like the one
in Figure 2. Second, S does not contain any of the 2, 3, or 4 action macro-operators that would be
learned on the way to a 5 action macro-operator like the ones corresponding with the TRIANGLE-
CONGRUENCE-SHARED-SIDE schema. To achieve DC's simplicity in search control and match to the
human data, a composition mechanism would need to prevent a proliferation of unnecessary macro-
operators. It is not clear how this restriction could be implemented in current mechanisms!.

5. Discussion and Conclusion
We have posed the DC model as a challenge to current theories of skill acquisition characterized by the
framework in Figure 1. The problem with this framework is not so much with the mechanisms of
knowledge acquisition and knowledge tuning, but rather in the assumed form of the basic problem space
which is the interface between them. It is commonly assumed that this basic problem space is made up
of operators which correspond to the external actions problem solvers take in solving problems (the
execution space) and that the bulk of learning is in terms of this problem space. In contrast, it seems that
the human knowledge acquisition system occasionally modifies its problem space for a domain — not by
modifying the operators as models of the knowledge tuning already do, but by changing the
representation of problem states, for example, by creating new perceptual chunks.

That such changes in the problem state representation occur is supported by other research. In their
work on the learning of the Tower of Hanoi puzzle, Anzai and Simon (1979) identified the perceptual
chunking of disks into “pyramids” as crucial to learning the advanced pyramid subgoal strategy.

10ne might consider whether this restriction could be achieved within the Soar architecture by having a hierarchy of
problem spaces corresponding with the desired organization. However, this approach begs the question — how would this
hierarchy be learned in the first place?

448

KOEDINGER & ANDERSON

Research on the nature of expertise has identified the possession of perceptual chunks as a special
characteristic of expertise in a number of domains (for example, see Chase and Simon, 1973). The role
of these perceptual chunks in problem solving has not been well established. The DC model serves as a
detailed demonstration of how perceptual chunks can be used in problem solving and, at the same time,
as a challenge to current thearies of skill acquisition.

A first order challenge is to specify a knowledge acquisition mechanism which is capable of
perceptual chunking and of changing the basic problem space representation af)propn'ately. Theories of
categorization or Soar’s data chunking (Rosenbloom, et. al., 1987) are possible candidate mechanisms.
A second order challenge is to specify a knowledge tuning mechanism which can deal with the shifting
nature of the basic problem space as it is changed by the acquisition of new chunks. Perhaps meeting
this challenge will require rethinking the two phase framework.

REFERENCES

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University Press.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The geometry tutor. In Proceedings of the
International Joint Conference on Artificial Intelligence-85. Los Angelos: International Joint
Conference on Artificial Intelligence.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86, 124-
140.

Chase, W. G., & Simon H. A. (1973). The mind’s eye in chess. In W. G. Chase (Ed.) Visual
Information Processing. New York: Academic Press.

Ericsson, K. A., & Simon, H. A. (1984). Protocol Analysis: Verbal Reports as Data. Cambridge, MA:
The MIT Press.

Gelemnter, H. (1963). Realization of a geometry theorem proving machine. In E. A. Feigenbaum & J.
Feldman (Eds.), Computers and Thought. New York: McGraw-Hill Book Company.

Goldstein, I. (1973). Elementary geometry theorem proving. MIT AI Memo 280.

Greeno, J. G. (1983). Forms of understanding in mathematical problem solving. In S. G. Paris, G.
M. Olson, & H. W. Stevenson (Eds.), Learning and Motivation in the Classroom. Hillsdale, NJ:
Esrlbaum.

Hayes, J. R., & Simon, H. A. (1974). Understanding written problem instructions. In L. W. Gregg
(ed.), Knowledge and Cognition. Potomac, Md.: Erlbaum.

Koedinger, K. R., & Anderson, J. R. (in press). Abstract planning and perceptual chunks: elements of
expertise in geometry. Cognitive Science.

Korf, R. E. (1987). Macro-operators: A weak method for learning. Arrificial Intelligence, 27, 35-77.

Neves, D. M. (1978). A computer program that learns algebraic procedures by examining examples and
by working test problem in a textbook. In Proceedings of the 2nd Conference on Computational
Studies of Intelligence. Toronto: Canadian Society for Computational Studies of Intelligence.

Newell, A. (in press). Unified Theories of Cognition. Harvard University Press, Cambridge, MA.
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1987). Knowledge level learning in Soar. In
Proceedings of the Sixth National Conference on Artificial Intelligence, 499-504.

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence, S, 115-
136.

Unruh, A., Rosenbloom, P. S., & Laird, J. E. (1987). Dynamic abstraction problem solving in Soar.
In Proceedings of the AOG/AAAIC Joint Conference, Dayton, OH.

449

	cogsci_1989_442-449

