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Abstract

Objective

To identify early changes in brain structure and function that are associated with cardiovas-

cular risk factors (CVRF).

Design

Cross-sectional brain Magnetic Resonance I (MRI) study.

Setting

Community based cohort in three U.S. sites.

Participants

A Caucasian and African-American sub-sample (n= 680; mean age 50.3 yrs) attending the

25 year follow-up exam of the Coronary Artery Risk Development in Young Adults Study.

Primary and Secondary Outcomes

3T brain MR images processed for quantitative estimates of: total brain (TBV) and abnormal

white matter (AWM) volume; white matter fractional anisotropy (WM-FA); and gray matter

cerebral blood flow (GM-CBF). Total intracranial volume is TBV plus cerebral spinal fluid

(TICV). A Global Cognitive Function (GCF) score was derived from tests of speed, memory

and executive function.
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Results

Adjusting for TICV and demographic factors, current smoking was significantly associated

with lower GM-CBF and TBV, and more AWM (all<0.05); SA with lower GM-CBF, WM-FA

and TBV (p=0.01); increasing BMI with decreasing GM-CBF (p<0003); hypertension with

lower GM-CBF, WM-FA, and TBV and higher AWM (all<0.05); and diabetes with lower

TBV (p=0.007). The GCS was lower as TBV decreased, AWM increased, and WM-FA

(all p<0.01).

Conclusion

In middle age adults, CVRF are associated with brain health, reflected in MRI measures of

structure and perfusion, and cognitive functioning. These findings suggest markers of mid-

life cardiovascular and brain health should be considered as indication for early intervention

and future risk of late-life cerebrovascular disease and dementia.

Introduction
Identifying early risk factors and early changes in the brain will have a major impact on future
clinical and public health priorities related to the looming epidemic of dementia. To reduce the
incidence of dementia, different approaches will be needed to identify risky predictive changes
in disease markers of the brain (outcome), as well as in putative risk factors (independent vari-
able). Recent studies suggest pathologic processes start 10 to 20 years before clinical onset of
dementia [1]. To better design prevention strategies, there is a call to study pre-clinical individ-
uals to identify cerebral biomarkers that detect early disease. However, also needed, are studies
of risk factor patterns and the concurrent cerebral characteristics that initiate pathologic pro-
cesses and may indicate pre-clinical risk for dementia [2]. This question can be addressed in
well described longitudinally followed community based cohorts with a wide range of health
characteristics Yet, as recently reviewed literature on the prevention of Alzheimer’s disease [3],
and on the associations of CVRF to a range of MRI sequences and modalities [4], such data are
lacking on middle age community dwelling individuals, and in minority populations. As re-
viewed, studies relating CVRF to multiple MRI characteristics, are based on small samples, pa-
tient populations with particular diseases, or community based cohorts who are older than 60
years. Further, investigations into the association of CVRF to MRI markers have focused on
volumetric outcomes, such as total brain volume (TBV) and burden of white matter disease
measured by lesion load, which are thought to be later manifestations of disease.

With the aim of establishing CVRF-MRI correlations at an earlier age then has previously
been studied, we examine the association of MRI brain outcomes to selected CVRF in a well de-
scribed middle age bi-racial cohort, whose brain has been characterized by multiple Magnetic
Resonance Imaging (MRI) sequences that reflect brain structure, physiology and function. Al-
though many candidate CVRF have been identified as associated with MRI brain outcomes [5],
here we focus on smoking, sedentary activity, hypertension, diabetes and obesity. These factors
have been a priori selected because their associated risks for dementia have been replicated in
several cohort studies with a wide range of demographic groups [5,6], and because they are im-
portant components of the public’s current CVD risk profile [7]. We examine the association
of these selected CVRF to TBV, and white matter disease, as well as measures of cerebral perfu-
sion and brain tissue microstructural integrity These latter two characteristics have been
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suggested to provide indicators of early changes in the brain that proceed to, or form the ana-
tomical basis of, dementia [8,9], [10], [11, 12].

Methods

Study population
Data are from a sub-sample of black and white men and women who participate in the
community- based Coronary Artery Risk Development in Young Adults (CARDIA) Study
(baseline 1985) and were examined (2010) at a mean age of 50 years. The CARDIA Study [13]
is a longitudinal study of the development and determinants of cardiovascular disease in 5,115
young adults aged 18–30 years at baseline in 1985–1986. The community based sample was re-
cruited from four US cities (Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota;
and Oakland, California) to be approximately balanced within center by sex, age (18–24 years
and 25–30 years), race (white, black), and education (�high school,>high school) [13]. In
2010― 2011, 72% of the surviving cohort attended the 25 year (Y25) follow-up exam. All par-
ticipants provided written informed consent at each exam, and institutional review boards
from each field center and the coordinating center (The University of Alabama Birmingham
Institutional Review Board, University of Minnesota Institutional Review Board, Kaiser Perma-
nente Northern California Institutional Review Board), annually approve this study.

As a part of the Y25 exam, a sub-sample of the cohort participated in the CARDIA Brain
MRI sub-study. This sub-study was designed to characterize the morphology, pathology, physi-
ology and function of the brain with magnetic resonance imaging (MRI) technology. The sam-
ple for the CARDIA Brain MRI sub-study was enrolled at the time Y25 appointments were
made, with the aim of achieving a balance within four strata of ethnicity/race (black, white)
and sex from three of the CARDIA field centers: Birmingham, AL, Minneapolis, MN, and Oak-
land, CA. Each center had a Brain MRI s target sample size and when reached enrollment was
ended. Exclusion criteria at the time of sample selection, or at the MRI site, were a contra-indi-
cation to MRI or a body size that was too large for the MRI tube bore.

Separate written consent for participation in the Brain MRI sub-study was obtained, and
separate approval was given by the IRBs governing participating sites (The University of Ala-
bama Birmingham Institutional Review Board, University of Minnesota Institutional Review
Board, Kaiser Permanente Northern California Institutional Review Board, University of Penn-
sylvania Institutional Review Board, and the NIH Office of Human Subjects Research Protec-
tion for the Intramural Research Program, National Institute on Aging).

MRI acquisition and processing
Brain MRI were acquired on 3-T MR scanners located proximal to each CARDIA clinic site
(UCB: Siemens 3T Tim Trio/VB 15 platform; UMN: Siemens 3T Tim Trio/VB 15 platform
and UAB: Philips 3T Achieva/2.6.3.6 platform). The MRI Reading Center (RC), located at the
University of Pennsylvania (Dr. RN Bryan), worked in collaboration with the MRI field centers
to train technologists to standardized protocols, and transfer MRI data to a central archive lo-
cated at the MRI RC. To evaluate scanner stability and image distortion prior to site acceptance
and quarterly thereafter, each MRI field center followed standard quality assurance protocols
developed for the Functional Bioinformatics Research Network (FBIRN), and the Alzheimer's
disease Neuroimaging Initiative (ADNI). The following established quality assurance accep-
tance thresholds were used: FBIRN—Siemens scanners SFNR>220, RDC>3.1, Philips scan-
ners SFNR>220, RDC>2.4; ADNI—SNR>300, Maximum Distortion>2.0. Performance
across the scanners was acceptable for all sequences except the pCASL acquired at UAB so per-
fusion data from this site is not reported.

Vascular Factors and Early Brain Health: CARDIA
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Parameters of interest were estimated as follows: From the sagittal 3D T1 sequence (Plane
Sagittal Coil 12channel File name 3D T1 MPRAGE: Tr 1900 Te 2.89 Fov 250mm, thickness
1mm slices 176 slices, Base Res 255, Phase res 100%, Matrix 256X256 NSA 1 TI 900 ms Pixel
BW 170hz. ETL = 1 Flip = 9), we estimated total intracranial volume (TICV), (a measure of
head size) as the sum of gray matter (GM),white matter (WM) and cerebral spinal fluid (CSF)
volumes, and total brain tissue volume (TBV) as the sum of GM andWM volumes). We esti-
mated abnormal white matter tissue from the sagittal 3D FLAIR (Plane Sagittal Coil 12channel
File name 3D FLAIR: Tr 6000 Te 160 Fov 250mm (fov phase = 85%), thickness 1 mm slices
160 slices, Base Res 202, Phase res 91%, Matrix 258 X 221 NSA 1 TI = 2200 ms Pixel BW 930,
ETL 203)), T1 and T2 (Plane Sagittal Coil 12 channel Psd File name 3D T2: Tr 3200 Te 409
Fov 250 (fov phase = 80%), thickness 1mm slices 176, Base Res = 246, Phase res = 80%, Matrix
258x256 NSA 1 Center Freq. water ETL 141 Flip 120 Pixel BW 750)[14] sequences. Brain mi-
crostructural tissue integrity and organization were estimated from axial Diffusion Tensor Im-
ages (DTI); Plane Axial Coil 12-channel Psd File name ep2d diff MDDW: TR 7300 TE 84 Fov
245 Thickness 2.2mm distance factor 0% Diff Directions- 33 Concatenations = 1 number
sl = 64 Flip 90 Matrix 128x128 NSA 1 Center Freq. water Phase FOV = 100 Pixel BW = 1860
diff mode = Free Phase part fourier = 7/8 Echo spacing = .59 diff weighting = 1 Accel factor = 3
EPI factor = 112 Base Res 112 Phase res 100%; 2 times). Here we report on the WM-DTI—de-
rived fractional anisotropy (FA) measure, which ranges from 0 to 1 and estimates the degree
(or uniformity) to which water diffuses along the direction of myelinated tracks in the white
matter [10, 14, 15]; Zero indicates equal probability of diffusion in all directions (i.e. there is no
structural restriction to the flow of molecules), and a ‘1’ indicates the diffusion occurs along
one axis (i.e., the WM tract). Cerebral brain perfusion (CBF; volume of flow per unit brain
mass per unit time (mL/100g/min)) was measured with an axial pseudo-Continuous Arterial
Spin Labeling (pCASL) technique (Plane Axial Coil 12 channel Psd File name pCASL: Tr 4000
Te 11 Fov 220 mm, Concatenations 1 number sl 20, Base Res 64, Phase res = 100%, thickness 5,
distance factor 20%, Center Freq. water, Matrix 64 x 64 NSA 1 Fat suppression = ON Flip = 90
Echo spacing = .47) [11, 12]. Here we present the estimate for the GM as it is more reliably ob-
tained than measures in WM. Per participant, completion rates for the sequences ranged from
95.9% (pCASL) to 100% (T1, PD/T2 and FLAIR sequences).

A graded alert system was established for patient safety. If the MR technician detected pa-
thology that needed immediate attention, the site PI and radiologist were immediately notified
and appropriate action taken. Otherwise, each site followed standard operating procedures
that involved a clinical reading of the scan by a local clinical and the MR RC within 48 hours.

Image processing was performed by the Section of Biomedical Image Analysis, Department
of Radiology, University of Pennsylvania (Dr. C. Davatzikos). Before starting the processing
pipeline, an initial QC protocol identified any motion artifacts or any other quality issues; im-
ages that failed this QC test were flagged for inspection. After this QC procedure, the scans
were processed through an automated pipeline. Quality checks were performed on intermedi-
ate and final processing steps by visual inspection and by identifying outliers of calculated vari-
able or parameter distributions.

Structural MR images, processed using previously described methods [16–18] [19], were
based on an automated multispectral computer algorithm that classifies all supratentorial brain
tissue into GM, WM, and CSF. GM andWMwere further characterized as normal and abnor-
mal and then into specific regions of interest (98 in the normal tissue and 94 in the abnormal
tissue). Abnormal WM includes tissue damage due to ischemia, demyelination and inflamma-
tion, as well as the damaged penumbra tissue surrounding focal infarcts. Since the amount
of abnormal gray matter, which includes infarcted cortical tissue, was very low (average:
0.17―0.35 cc., median: 0.1 cc.), we do not report these data separately. Standard methods for
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calculating FA from the raw DTI images were used to derive voxel-wise maps [20]. Average FA
was computed using the anatomical regions of interest in WM-FA. The mean perfusion vol-
ume from the pCASL was quantified into CBF units using the model and software described in
Wang et al. [21], resulting in a CBF map. The technical error of measurement, an accuracy
index that reflects measurement quality of both acquisition and processing of scans, was esti-
mated from scans of 3 persons measured 3 times in the 3 centers; results were 1.2% for TBV,
27.8% for Abnormal WM, 3.4% for FA-WM and 7.3% for GM-CBF.

Risk factors
The behavioral and clinical risk factor data reported here were collected in the Y25 exam, con-
currently with the MRI. Seated blood pressure (BP) levels were measured with an OmROn
Hem907XL sphygmomanometer on the right arm three times by a trained technician; measures
two and three were averaged and used for the blood pressure analysis. Readings were catego-
rized into normotensive (SBP<130/DBP<85 mmHg and no treatment), pre-hypertensive
(130–139/85 -<90 mmHg), and hypertensive (�140/�90 mmHg or treatment)[22]. Diabetes
was defined following ADA criteria [23] for levels of fasting, non-fasting or postprandial OGTT
results, HbA1c percent, or use of anti-diabetes medication; smoking (never, former, current)
was assessed by questionnaire. Participants were also questioned about weekly hours engaged in
sedentary activities, including listening to TV or music, doing deskwork, talking on the phone,
or driving [24]. To capture more extreme comparisons we categorized weekly hours into<25
percentile (i.e. least amount of sedentary time; (<4.3 hrs), 25–75 percentile, and� 75 percentile
(> 8.5 hrs). Body Mass Index (BMI) was calculated from measured height (to the nearest 0.5
cm) and weight (to the nearest 0.2 kg), and categorized according to WHO [25] criteria into
normal (<25 km/m2), overweight (25 -<30), obese (30 -<35) and very obese (� 35).

Cognition
To determine whether the variation in MRI characteristics had functional consequences we in-
vestigated the association between MRI values and a composite cognitive score composed of
three cognitive tests, described previously [26], administered in the exam concurrent with the
MRI: Digit Symbol Substitution Test (measure of psychomotor speed) scored as the number of
digits correctly substituted [27], Rey Auditory Verbal Learning Test (verbal memory), scored
as the total number of words recalled in the immediate and delayed recall [28], and the modi-
fied Stroop test (executive function), scored as the total seconds plus errors to complete the in-
terference test where the participant reads a color word that is printed in another color (higher
score is worse performance) [29]. The tests were administered by trained and certified CAR-
DIA technicians following the protocol of previous studies [30]. The composite score was cal-
culated by transforming raw test scores into Z-scores ((individual score—group mean score)/
SD) and adding them together.

Statistical Analyses
There were 719 participants who participated in the BRAIN study: 35% (n = 252) from Oak-
land, 41.3% (n = 297) from Minnesota, and 23.6% (n = 170) from Birmingham. Of these, 680
had successfully processed images and complete risk factor data, including 517 with brain per-
fusion data. All brain-related variables were transformed into Z scores (as above), so results
could be compared across sequences on a standardized one-SD increment.

Since many trials are designed to intervene on one risk factor, we show the results of a single
CVRF (smoking, sedentary activity, (pre) hypertension, diabetes, and obesity), adjusted for de-
mographic variables (age, sex, race and education). In a supplementary table we report the full
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model that includes all the variables together for each of the four MRI sequences. All models
for TBV, AWM, and WM-FA were adjusted for ICV, as a measure of head size; models for
CBF were adjusted for TBV, as a measure of total tissue perfused.

Results
The mean age of the sample was 50.3 (SD 3.5) years, 52.2% were female and 39.4% were Black.
Mean systolic and diastolic blood pressures were within the normal range, but overall, the sam-
ple had a relatively ‘risky’ cardiovascular risk factor profile: 35.9% had a BMI of 30 or higher,
32.2% had hypertension, and 39.4% had a history of smoking (Table 1). 37% had 3 or more
risk factors, most commonly hypertension, BMI over 30 and smoking After adjusting for age
and sex, correlation among the sequences themselves ranged from 0.001 to 0.36 (S1 Table).

Demographic factors
Even within the relatively narrow age (range 43 to 55 y) of the sample, there was already a de-
tectable negative association between age and TBV, WM-FA, and GM-CBF (Table 2). Adjust-
ing for sex, race and ICV, TBV was 1.058 cc (0.01 SD) lower for each year of age. Adjusting for
ICV, age and race, males had significantly lower GM-CBF per mL/g/min. Compared to Whites,
Blacks had more AWM, and higher GM-CBF. Education level was not associated with detect-
able differences in any of the MRI brain characteristics.

Behavioral factors
In age, sex and race adjusted models, smoking behavior was strongly associated with indicators
of brain pathology: Current smokers, compared to never smokers, had significantly smaller
TBV, more AWM and lower WM-FA indicating less tissue integrity. Former smokers had sim-
ilar brain characteristics to never smokers, except for GM-CBF, which was lower in former
compared to never smokers. There was a monotonic decrease in all of the MRI outcomes, with
TBV andWM-FA being significantly lower in persons in the 75th compared to lowest 25th per-
centile of time spent in sedentary activities (Table 2).

Clinical factors
Hypertension was clearly associated with indicators of diminished brain health. Expressed as
continuous measures, increasing systolic blood pressure was significantly associated with in-
creasing AWM and decreasing WM-FA; increasing diastolic blood pressure was associated
with significantly lower WM-FA and GM-CBF. These middle age participants with hyperten-
sion had significantly smaller TBV, more AWM tissue, lower WM-FA and lower GM-CBF
compared to normotensive persons. Persons with pre-hypertension levels of blood pressure
had significantly lower GM-CBF. Compared to those with no diabetes, persons with diabetes
had overall less healthy brains, but only their TBV was significantly smaller (Table 2). Results
of the multivariate analyses that included all the risk factor information were essentially the
same as the age, sex and race adjusted models (S2 Table).

Cognitive function
Variation in brain characteristics was significantly associated with cognitive function score.
Controlling for age, sex, race, education, and ICV, the composite cognitive score was signifi-
cantly (Table 2) associated with less pathology: higher TBV, less AWM, higher WM_FA and
moderately higher GM-CBF. Results of individual tests are shown in S3 Table.

Vascular Factors and Early Brain Health: CARDIA
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Table 1. Demographic, behavioral, clinical and brain characteristics in a bi-racial middle-age cohort:
CARDIA BRAIN Sub-study.

N % Mean (SD)

Age (y) 50.3 (3.5)

Sex

Male 325 47.8

Female 355 52.2

Race

White 412 60.6

Black 268 39.4

Education (y)

<12 22 3.2

12 119 17.5

13–16 400 58.8

>16 139 20.4

Smoking

Never 412 60.6

Former 161 23.7

Current 107 15.7

Sedentary time (hrs) 6.8 (4.1)

< = 25th p (< 4.3 hrs) 172 25.3

>25 - < = 75 p (4.3 - <8.5 hrs) 345 50.7

>75th p (>8.5 hrs) 163 24.0

Body Mass Index 28.7 (5.7)

<25 201 29.6

25-<30 235 34.6

30-<35 140 20.6

> = 35 104 15.3

Blood pressure

SBP, mmHG 680 118.1 (14.7)

DBP, mmHG 680 73.5 (10.7)

Normotensive 384 56.5

Pre-hypertension 77 11.3

Hypertension 219 32.2

Diabetes

No 611 89.9

Yes 69 10.2

Number behavioral and clinical risk factorsa

0 79 11.6

1 194 28.5

2 152 22.4

3+ 255 37.5

Brain characteristics

Total Brain Volume (cm3) 680 985.5 (105.8)

AWM (cm3) 680 0. 3 (0.1, 0.6)c

GM-CBF (mL/100g/min) 517 56.0 (11.3)

WM-FA 680 0.3 (0.02)

(Continued)
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Discussion
In this bi-racial middle age cohort, we found variations in brain characteristics that were asso-
ciated with age and key modifiable clinical and behavioral indicators of a healthy CV profile.
The trends in brain characteristic—risk factor associations may be suggestive of incipient or al-
ready established cerebral pathology, including smaller TBV, more AWM, lower WM-FA and
lower GM-CBF. In general, the mean values of the MRI measures are, of course, higher than in
older persons with clinical dementia, and possibly those with pre-clinical dementia. Never-the-
less there were significant associations of CVRF to MRI measures, and MRI measures to cogni-
tion [26], suggesting the MRI measures we investigated may be relevant markers for later risk
of cognitive decline. Since the sub-sample of participants in the Brain MRI sub-study mirrored
the total CARDIA cohort, and is similar to the US NHANES III nationally representative sam-
ple in smoking history, diabetes, and mean blood pressures [31], it is reasonable to suggest the
findings we report here are relevant to evaluating brain health in White and Black nationally
representative samples in NHANES.

This study has several strengths. It provides the first data on a large community-based bi-
racial cohort of this age (mean 50 years), of a range of MRI characteristics in relation to key
risk factors for cerebrovascular and coronary disease, as well as for late-life dementia. In partic-
ular there are very few studies that have described cross-sectional associations of these CVRF
to FA and GM-CBF. Such studies on this age cohort are important as they will provide clues of
early changes in the brain, that may eventually predict who is at risk for dementia. Indeed, its
cross-sectional study design is a limitation, and an additional follow-up is planned.

Values of TBV among 80 year olds with dementia range between 70%-75% [9] of total intra-
cranial volume, compared to the CARDIA mean of 81% in 50 year olds. Studies of older co-
horts have found no difference [32] or a higher TBV in Black compared to White participants;
for example in the multi-ethnic WHICAP cohort, the difference was 1.6%, compared to a
0.41% in CARDIA [33]. In WHICAP, compared to Whites, Blacks had a significantly higher
load of white matter vascular changes, whereas in CARDIA AWMwas higher, but not signifi-
cantly, in Blacks than Whites. Data on perfusion differences in community-dwelling Black and
White subjects are scant. We found higher perfusion rates in Blacks compared to Whites. Pos-
sibly, the higher perfusion rates in Blacks compared to Whites reflects compensatory flow in
the context of vascular disease, but this awaits follow-up data. Finally, the finding of no differ-
ences by education in these multiple brain characteristics is of interest because lower educa-
tional attainment has often been associated with poorer scores on cognitive tests and a higher
risk for dementia [34]. The different conclusions regarding education from these imaging

Table 1. (Continued)

N % Mean (SD)

Composite cognitive scoreb 663 0.1 (2.3)

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; DSST, Digit Symbol

Substitution Test; AWM, abnormal white matter; GM-CBF, gray matter cerebral blood flow; WM-FA, white

matter fractional anisotropy.
a Includes Smoking, Sedentary activity (upper 75th p); BMI >30; Diabetes, and Hypertension.
b Composite is the sum of Z-scores from the DSST, modified Stroop Test and Rey Auditory Verbal

Learning Test.
c median (25%, 75%).

doi:10.1371/journal.pone.0122138.t001
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Table 2. Brain characteristics by demographic, behavioral and clinical measures in a bi-racial middle-age cohort: CARDIA Brain Sub-study.

TBV AWM WM-FA GM-CBF
Effecta p Effecta p Effecta p Effecta P

Age

Slope (y) -0.01 (0.003) <.001 0.002 (0.011) 0.88 -0.03 (0.011) 0.008 -0.03 (0.012) 0.005

<50 y 0.05 (0.02) <.001 0.02 (0.06) 0.97 0.11 (0.06) 0.02 0.19 (0.07) 0.003

50+y -0.03 (0.01) 0.01 (0.05) -0.07 (0.05) -0.07 (0.05)

Sex

Male -0.02 (0.02) 0.06 -0.07 (0.06) 0.09 -0.07 (0.06) 0.15 -0.32 (0.06) <.001

Female 0.02 (0.02) 0.10 (0.06) 0.06 (0.06) 0.37 (0.06)

Race

Black 0.003 (0.017) 0.78 0.096 (0.064) 0.06 -0.013 (0.061) 0.84 0.206 (0.069) <.001

White -0.004 (0.014) -0.068 (0.051) 0.004 (0.049) -0.152 (0.052)

Education (y)b

< 12 0.05 (0.06) 0.32 -0.10 (0.21) 0.67 -0.19 (0.20) 0.33 0.04 (0.24) 0.65

12 0.01 (0.02) 0.41 -0.08 (0.09) 0.53 -0.01 (0.09) 0.72 0.03 (0.10) 0.36

13–16 -0.003 (0.01) 0.66 0.057 (0.05) 0.58 -0.001 (0.05) 0.74 -0.019 (0.05) 0.08

>16 -0.02 (0.02) ref 0.0007 (0.09) ref 0.03 (0.08) ref 0.16 (0.09) ref

Smoking b

Never 0.01 (0.01) ref -0.07 (0.05) ref 0.06 (0.05) ref 0.08 (0.05) ref

Former 0.01 (0.02) 0.83 0.07 (0.08) 0.14 -0.04 (0.08) 0.24 -0.16 (0.08) 0.01

Current -0.05 (0.03) 0.04 0.25 (0.10) 0.004 -0.18 (0.09) 0.02 0.11 (0.10) 0.79

Sedentary time b

Slope (hrs) -0.004 (0.003) 0.09 -0.009 (0.010) 0.37 -0.021 (0.009) 0.02 -0.017 (0.011) 0.13

>75th percentile -0.06 (0.02) 0.01 -0.04 (0.08) 0.13 -0.14 (0.07) 0.05 -0.09 (0.09) 0.08

25th- 75th 0.02 (0.01) 0.98 -0.02 (0.06) 0.10 0.03 (0.05) 0.55 0.04 (0.06) 0.37

Body mass index b

Slope (kg/m2) 0.001 (0.002) 0.42 -0.002 (0.007) 0.77 -0.006 (0.007) 0.36 -0.023 (0.007) 0.002

<25 -0.009 (0.020) 0.93 -0.012 (0.074) 0.42 0.068 (0.070) 0.28 0.226 (0.075) 0.09

25 - <30 -0.007 (0.017) ref 0.067 (0.066) Ref -0.032 (0.062) ref 0.058 (0.067) ref

30 - <35 0.02 (0.02) 0.42 -0.01 (0.08) 0.49 -0.01 (0.08) 0.80 -0.12 (0.09) 0.10

35+ 0.006 (0.03) 0.68 -0.031 (0.10) 0.41 -0.069 (0.09) 0.74 -0.226 (0.11) 0.03

Blood Pressure b

Systolic BP (mmHg) -0.0008 (0.001) 0.28 0.0084 (0.003) 0.002 -0.0076 (0.003) 0.004 -0.0045 (0.003) 0.13

Diastol BP mmHg) -0.0010 (0.001) 0.31 0.0066 (0.004) 0.08 -0.0080 (0.004) 0.03 -0.0098 (0.004) 0.01

Normal 0.02 (0.01) ref -0.06 (0.05) Ref 0.06 (0.05) ref 0.12 (0.06) ref

Pre-hypertension 0.01 (0.03) 0.67 -0.06 (0.11) 0.98 -0.01 (0.11) 0.52 -0.20 (0.12) 0.01

Hypertension -0.04 (0.02) 0.009 0.15 (0.07) 0.02 -0.11 (0.06) 0.04 -0.06 (0.07) 0.05

Diabetes b

No 0.01 (0.01) 0.007 -0.01 (0.04) 0.14 -0.002 (0.04) 0.86 0.03 (0.04) 0.82

Yes -0.08 (0.03) 0.18 (0.12) -0.02 (0.11) 0.00 (0.14)

Composite cognitive score c 0.016 (0.006) 0.005 -0.056 (0.021) 0.009 0.061 (0.020) 0.003 0.041 (0.017) 0.02

Abbreviations: TBV, total brain volume; AWM, abnormal white matter; GM-CBF, gray matter cerebral blood flow; WM-FA, white matter fractional

anisotropy; BP, blood pressure; DSST, Digit Symbol Substitution Test.
a Values are adjusted Mean Z-scores of brain characteristics or the slope (β) of the change in brain Z-score by unit of the independent variable.
b All models are adjusted for age, sex, and race.
c Also adjusted for education.

doi:10.1371/journal.pone.0122138.t002
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findings compared to studies of cognitive function suggest one or several variable(s) explaining
the gap are ‘missing ‘ and require further investigation.

We found current smoking is associated with multiple measures of the brain, ranging from
decreased WM-FA, increased AWM, and smaller TBV. We also found former smokers had the
lowest GM-CBF that was significantly different from never smokers. Former smokers are usu-
ally a mixed group of those who stopped smoking to prevent future disease, or stopped smok-
ing because of existing disease. More detailed investigations into smoking history and its effects
on the brain are warranted.

We show, for the first time, that sedentary behavior [35], may pose its own risks to brain
health. There is increasing evidence that sedentary behavior, separate from shorter bouts of
moderate physical activity, increases the risk for cardio-metabolic disturbances and disease.
Based on the emerging evidence, suggestions for CVD risk reduction have been made to inter-
vene to decrease sitting, rather than to increase moderate exercise, which may be difficult for
at-risk persons to adopt [19]. Such strategies may be beneficial for brain health, and should be
further explored.

We found a significant association of very high BMI, indicating very obese, to lower
GM-CBF and no other MRI outcomes. BMI related metabolic or vascular factors, generated pe-
ripherally or centrally, have been postulated to increase the risk for dementia [36]. Our data
suggest, if there is an association, the cerebral tissue changes may appear later secondary to re-
duced cerebral perfusion. It is also possible, our finding reflects the breathing and sleeping
problems that accompany very high BMI [37], which is a different pathway to cognitive prob-
lems than previously suggested for high BMI.

Mid-life high blood pressure has been associated with stroke, dementia, white matter le-
sions, and neuropathologic lesions consistent with neurodegeneration and vascular disease
[36]. We show that in this representative middle age community-cohort, age 50 years, persons
with hypertension have lower TBV, WM-FA, GM-CBF and more AWM, all suggesting poorer
brain health compared to normotensives. These findings strongly suggest control of blood
pressure in mid-life may be important to reducing unwanted early brain changes. The point at
which high blood pressure should be treated however, is still under consideration. The newest
guidelines recommend initiating treatment in persons 60 years and older with a systolic blood
pressure� 150 mmHg [38]. However, we found that, as a continuous variable, increasing
blood pressure is associated with relatively poorer brain health in mid-life, reinforcing the need
to evaluate guidelines for treatment specifically for cerebral outcomes.

The relationship of diabetes to metabolic and vascular changes leading to late age dementia,
while replicated in several studies [39], remains controversial. We found a significantly smaller
TBV in persons with, compared to those without diabetes. This is consistent with a finding of
reduced gray matter with an increasing duration of diabetes in persons with long standing dia-
betes, average 62 years [40]; as well as in older men and women participating in the AGES--
Reykjavik Study [30]. Also similar to both studies, there was no association with WML, which
was expected due to vascular changes in T2D. Possibly, diabetes leads directly to atrophic pat-
terns, which are followed at a later time, by secondary WM diffuse damage.

As differences per year of age is often used as a metric to evaluating clinical significance of
differences by risk factors, it is of interest to note that in this middle age cohort, differences in
TBV by some risk factors are similar or greater than the 0.08 difference in TBV between the
<50 yr old strata and�50 yr old strata. For example, there is a 0.04 SD difference between per-
sons with normal blood pressure and hypertension, a 0.05 SD difference between never and
current smokers, a 0.10 SD difference between persons with compared to without diabetes
and 0.09 SD difference between those spending a relatively high vs. low amount of time in
sedentary activities.
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Our findings on risk factors are generally consistent with mid-to-late life studies investigat-
ing risk factors for cognitive disorders. However the mid to late life studies are based on cohorts
of participants who were identified and examined (but not imaged) in mid-life and survived to
be evaluated in a late-life exam. That study design allows investigation into survivors but does
not allow the study of relationships going forward from baseline, as CARDIA does, so that
valid early markers of brain disease can be identified. In addition these previous studies have
not acquired DTI or perfusion data.

In middle age, compared to older age where comorbidity is an issue, contrasts by CVRF
may be sharper and we can better track how these factors may become risk factors for future
dementia. Longitudinal follow-up of these individuals, and others who participate in long term
studies, is needed to further characterize intermediary trajectories in both CVRF and
MRI outcomes.

We hypothesize that together, these measures reflect a ‘pathologic’ cyclic cascade whereby
the perfusion decreases, followed by decreased tissue integrity, and then macroscopic changes
due to neurodegeneration or vascular damage. Although this is a cross-sectional study we can-
not draw conclusions on the temporal relationships among levels or change in the MRI mea-
sures, there are several important clinical and public health messages that can be taken from
these findings now: 1) There is suggestive evidence that cognitive differences and brain pathol-
ogy are associated in this current cohort of middle-age individuals; 2) Modifiable mid-life risk
factors are associated with mid-life brain health; 3) Changes in life style factors, such as stop-
ping smoking and reducing time spent in sedentary activity, may directly or indirectly via
hypertension and diabetes, improve brain health; 4) Relatively simple and already known
methods to reduce hypertension, in particular, should be targeted. In conjunction with evi-
dence from late-life studies, we propose early intervention may reduce late-life cognitive disor-
ders that impair an individual’s quality of life and drive up health care costs.
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