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ARTICLE

Cell-type-specific resolution epigenetics without
the need for cell sorting or single-cell biology
Elior Rahmani 1, Regev Schweiger2,3, Brooke Rhead4, Lindsey A. Criswell5, Lisa F. Barcellos6, Eleazar Eskin1,7,8,

Saharon Rosset9, Sriram Sankararaman1,7,8 & Eran Halperin 1,7,8,10

High costs and technical limitations of cell sorting and single-cell techniques currently restrict

the collection of large-scale, cell-type-specific DNA methylation data. This, in turn, impedes

our ability to tackle key biological questions that pertain to variation within a population, such

as identification of disease-associated genes at a cell-type-specific resolution. Here, we show

mathematically and empirically that cell-type-specific methylation levels of an individual

can be learned from its tissue-level bulk data, conceptually emulating the case where the

individual has been profiled with a single-cell resolution and then signals were aggregated in

each cell population separately. Provided with this unprecedented way to perform powerful

large-scale epigenetic studies with cell-type-specific resolution, we revisit previous studies

with tissue-level bulk methylation and reveal novel associations with leukocyte composition

in blood and with rheumatoid arthritis. For the latter, we further show consistency with

validation data collected from sorted leukocyte sub-types.
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Each cell type in the body of an organism performs a unique
repertoire of required functions. Hence, disruption of cel-
lular processes in particular cell types may lead to pheno-

typic alterations or development of disease. This presumption in
conjunction with the complexity of tissue-level (“bulk”) data has
led to many cell-type-specific genomic studies, in which genomic
features, such as gene expression levels, are assayed from isolated
cell types in a group of individuals and studied in the context of a
phenotype or condition of interest (e.g., refs. 1–4).

In fact, in order to reveal cellular mechanisms affecting disease
it is critical to study cell-type-specific effects. For example, it has
been shown that cell-type-specific effects can contribute to our
understanding of the principles of regulatory variation5 and the
underlying transcriptional landscape of heterogeneous tissues
such as the human brain6, it can provide a finer characterization
of tumor heterogeneity7,8, and it may reveal disease-related
pathways and mechanisms of genes that were detected in genetic
association studies9,10. Moreover, these findings are typically not
revealed when a heterogeneous tissue is studied. For example, in
ref. 9 it has been shown that the FTO allele associated with obesity
represses mitochondrial thermogenesis in adipocyte precursor
cells. Particularly, in that study it is shown that the developmental
regulators IRX3 and IRX5 had genotype-associated expression in
primary preadipocytes, while genotype-associated expression was
not observed in whole-adipose tissue, indicating that the effect
was cell-type specific and restricted to preadipocytes.

In spite of the clear motivation to conduct studies with a cell-
type-specific resolution, while developments in genomic profiling
technologies have led to the availability of many large bulk data
sets with hundreds or thousands of individuals (e.g., refs. 11–13),
cell-type-specific data sets with a large number of individuals are
still relatively scarce. Particularly, cell-type-specific studies are
typically drastically restricted in their sample sizes owing to high
costs and technical limitations imposed by both cell sorting and
single-cell approaches. This restriction is especially profound for
epigenetic studies with single-cell DNA methylation—while pio-
neering works on single-cell methylation have demonstrated
significant advances (e.g., refs. 14–17), profiling methylation with
single-cell resolution is still limited in coverage and throughput
and currently cannot be practically used to routinely obtain large-
scale data for population studies (the most eminent recent studies
included data from only a few individuals). This, in turn, sub-
stantially limits our ability to tackle questions such as identifi-
cation of disease-related altered regulation of genes in specific cell
types and mapping of diseases to specific manifesting cell types.

Technologies for profiling single-cell methylation are currently
still under development, and some of these attempts will poten-
tially allow sometime in the future for the analysis of cell-type-
specific methylation across or within populations. However, even
if such technologies emerge in the near future, the large number
of existing bulk methylation samples that have been collected by
now are still an extremely valuable resource for genomic research
(e.g., more than 100,000 bulk profiles to date in the Gene
Expression Omnibus (GEO) alone18). These data reflect years of
substantial community-wide effort of data collection from mul-
tiple organisms, tissues, and under different conditions, and it is
therefore of great importance to develop new statistical approa-
ches that can provide cell-type-specific insights from bulk data.

Here, we introduce Tensor Composition Analysis (TCA), a
novel computational approach for learning cell-type-specific
DNA methylation signals (a tensor of samples by methylation
sites by cell-types) from a typical two-dimensional bulk data
(samples by methylation sites). Conceptually, TCA emulates the
scenario in which each individual in the bulk data has been
profiled with a single-cell resolution and then signals were
aggregated in each cell population of the individual separately.

We demonstrate the utility of TCA by applying it to data from
previously published epigenome-wide association studies
(EWAS). Particularly, we apply TCA to a previous large methy-
lation study with rheumatoid arthritis (RA), in which DNA
methylation profiles (CpG sites) were collected from cases and
controls and tested for association with RA status19. Our analysis
reveals novel cell-type-specific associations of methylation with
RA without the need to collect cost prohibitive cell-type-specific
data for a large number of individuals. Finally, we use indepen-
dent data sets of cell-sorted methylation data to test the replic-
ability of our results.

Results
Enhancing epigenetic studies with cell-type-specific resolution.
Different cell types are known to differ in their methylation
patterns. Therefore, a bulk methylation sample collected from a
heterogeneous tissue represents a combination of different signals
coming from the different cell types in the tissue. Since cell-type
composition varies across individuals, testing for correlation
between bulk methylation levels and a phenotype of interest may
lead to spurious associations in case the phenotype is correlated
with the cell-type composition20. A widely acceptable solution to
this problem is to incorporate the cell-type composition infor-
mation into the analysis of the phenotype by introducing it as
covariates in a regression analysis. Even though this procedure is
useful for eliminating spurious findings, it does not take into
account the fact that individuals are expected to vary in their
methylation levels within each cell type (i.e., not just in their cell-
type composition). Effectively, taking this approach results in an
analysis that is conceptually similar to a study in which the cases
and controls are matched on cell-type distribution, however, cell-
type-specific signals are not explicitly modeled and leveraged.

In order to illustrate the above, consider the simple scenario,
where the samples in the study are matched on cell-type
distribution. Given no statistical relation between the phenotype
and the cell-type composition, association studies typically
assume a model with the following structure:

yi ¼ xiβþ ϵi ð1Þ
Here, yi represents the phenotypic level of individual i, xi, and β
represent the bulk methylation level of individual i at a particular
site under test and its corresponding effect size, and ϵi represents
noise. This standard formulation assumes that a single parameter
(β) describes the statistical relation between the phenotype and
the bulk methylation level. We argue that this formulation is a
major oversimplification of the underlying biology. In general,
different cell types may have different statistical relations with the
phenotype. Thus, a more realistic formulation would be:

yi ¼
Xk
h¼1

xihβh þ ϵi ð2Þ

Here, xi1, …, xik are the methylation levels of individual i in each
of the k cell types composing the studied tissue and β1, …, βk are
their corresponding cell-type-specific effects.

Applying a standard analysis as in Eq. (1) to bulk data may fail
to detect even strong cell-type-specific associations with a
phenotype. For instance, consider the scenario of a case/control
study, where the methylation of one particular cell type is
associated with the disease. In this scenario, due to the signals
arising from other cell types, the observed bulk levels may obscure
the real association and not demonstrate a difference between the
cases and controls; importantly, in general, merely taking into
account the variation in cell-type composition between indivi-
duals does not allow the detection of the association (Fig. 1).
Thus, allowing analysis with a cell-type-specific resolution (i.e.,
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obtaining xi1, …, xik for each individual i)—beyond being
required for revealing disease-manifesting cell types—is also
important for the detection of true signals.

Notably, in the context of differential gene expression analysis,
it has been previously suggested that cell-type-specific effects can
be estimated by treating a phenotype of interest as a covariate
(i.e., of the expression level) with potentially different effects on
different cell types21,22. Practically, this approach suggests to
evaluate the effect of an interaction term (i.e., a multiplicative
term) of the cell-type composition and the phenotype under a
standard regression framework (i.e., by adding the interaction
term to Eq. (1))22; equivalently, one may achieve the same goal by
solving multiple decomposition problems (one for each possible
value of the phenotype)21. In fact, this concept was recently
applied and reported in the context of DNA methylation in an
attempt to detect cell-type-specific differences in methylation23.
However, as we demonstrate below, a more detailed model of the
variation in bulk methylation data, as described in this manu-
script, allows a substantial improvement in power.

We propose a new model for DNA methylation, where we
assume that the cell-type-specific methylation levels of an
individual are coming from a distribution that—up to methyla-
tion altering factors such as age24 and sex25—is shared across
individuals in the population. Based on this model, we developed
TCA, a method for learning the unique cell-type-specific
methylomes of each individual sample from its bulk data. We
highlight the conceptual difference between TCA and a

traditional decomposition approach in Fig. 2, and we provide a
more detailed illustration of the model in Supplementary Fig. 1.
Here, we focus on the application of TCA for association studies,
where we only implicitly consider the cell-type-specific methy-
lomes of each individual by integrating over their distributions
(see “Methods”).

Importantly, TCA requires knowledge of the cell-type propor-
tions of the individuals in the data. These can be computationally
estimated using either a reference-based supervised approach26 or
a reference-free semi-supervised approach27; current reference-
free unsupervised methods, however, are unable to provide
reasonable estimates of cell-type proportions but rather only
linear combinations of them27. Notably, in cases where only noisy
estimates of the cell-type proportions are available (i.e., owing to
inaccuracies of the computational method used for estimation),
they can be used for initializing the optimization procedure of the
TCA model, which can then provide improved estimates
(Supplementary Fig. 2). As a result, as we show next, TCA
performs well even in cases where only noisy estimates of the cell-
type proportions are available.

Detecting cell-type-specific associations using TCA. In order to
empirically verify that TCA can learn cell-type-specific methy-
lation levels, we first leveraged whole-blood methylation data
collected from sorted leukocytes28 to simulate heterogeneous
bulk methylation data. While the bulk data captured the

Hidden Observed

Cell type 1 Cell type 2 Cell type 3 Cell type comp. Not adjusted for
cell type comp.

Adjusted for
cell type comp.

Control 1

Control 2

Control 3

Control 4

Control 5

Average:

Average:

Case 1

Case 2

Case 3

Case 4

Case 5

Control 1

Control 2

Control 3

Control 4

Control 5

Average:

Average:

Case 1

Case 2

Case 3

Case 4

Case 5

Fig. 1 Observed bulk methylation levels may obscure cell-type-specific signals. Neither the observed methylation levels nor the observed levels after
adjusting for the variability in cell-type composition can demonstrate a clear difference between cases and controls, in spite of a clear (unobserved)
difference in cell type 3. Methylation levels are represented by a gradient of red color, and adjusted observed levels were calculated for each sample by
removing the cell-type-specific mean levels, weighted by its cell-type composition
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cell-type-specific signals to some extent, as expected, TCA per-
formed substantially better (Supplementary Figs. 3 and 4). We
further observed that TCA effectively captures the effects of
methylation altering covariates (Supplementary Figs. 5 and 6).

We next evaluated the performance of TCA in detecting cell-
type-specific associations by simulating whole-blood methyla-
tion and corresponding phenotypes with cell-type-specific
effects. We compared the performance of TCA with a standard
regression analysis of the bulk levels and with the method
CellDMC, an interaction-based test that was recently evaluated
in the context of detecting cell-type-specific associations with
methylation23. Notably, we provided CellDMC with the true
underlying cell-type proportions as an input. Beyond introdu-
cing interaction terms into a standard regression framework,
CellDMC also considers additive effects of the cell-type
composition. Given the true cell-type proportions, it therefore
achieves a perfect linear correction for cell-type composition.
Hence, CellDMC practically reflects in our experiments an
upper bound for the performance of any standard method that
merely accounts for linear differences in cell-type composition
across individuals.

Our experiments verify that TCA yields a substantial increase
in power over the alternatives under different scenarios
Particularly, in its worst performing scenario, TCA achieved a
median of 2.25-fold increase in power (across all tested effect
sizes) over the standard regression approach and a median of
11.15-fold increase in power in the best performing scenario
(Fig. 3); compared with CellDMC, TCA achieved a median of
between 1.46- and 12.25-fold increase in power across all
scenarios. Repeating these experiments while including cell-
type-specific affecting covariates and under a nonparametric

distribution of the cell-type proportions (i.e., rather than a
parametric one) demonstrated similar results (Supplementary
Fig. 7).

Remarkably, TCA demonstrated the highest improvement in a
scenario where all cell types had the exact same effect size,
although this is intuitively a favorable scenario for a standard
regression analysis, which does not model cell-type-specific
signals (Fig. 3). Interestingly, in spite of the high power achieved
by TCA, we found it to be conservative (i.e., less false positives
than expected; Supplementary Fig. 8); this can be explained by the
optimization procedure of the model (Supplementary Methods).

Finally, we performed an additional power analysis stratified by
cell types, which, once again, showed that TCA robustly
outperforms the alternative approaches (Supplementary Figs. 9
and 10). This analysis further revealed that under the scenario of
a single causal cell type, TCA achieved better power when the
causal cell type was highly abundant (as opposed to lowly
abundant); these results are expected, given that bulk signals are
mostly dominated by abundant cell types. For instance,
considering a moderate effect size corresponding to a signal-to-
noise ratio of 1, we found that TCA achieved a median power of 1
and 0.52 in granulocytes and CD4+ cells (the two most abundant
cell types; mean abundance of 0.67 and 0.11, respectively), yet
only a limited power in the less abundant cell types; for example,
in the two least abundant cell types considered, B cells and NK
cells (mean abundance 0.03 for both), TCA could only achieve a
median power of 0.08 and 0.03 under the same effect size
(Supplementary Fig. 9).

Cell-type-specific differential methylation in immune activity.
In general, the methylation levels in a particular cell type are not
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expected to be related to the tissue cell-type composition.
Therefore, in the analysis of sorted-cell or single-cell methylation,
there is no need to account for cell-type composition. In contrast,
it is now widely acknowledged that in analysis of bulk methyla-
tion one has to account for cell-type composition in cases where it
is correlated with the phenotype of interest20. For a phenotype
that is highly correlated with the cell-type composition, such a
correction of bulk methylation data is expected to reduce true
underlying signals, potentially resulting in no findings (i.e., false
negatives). As opposed to analysis of bulk data, cell-type specific
analysis would not reduce the signal in this case. To demonstrate
this, we consider an extreme case where the phenotype is the cell-
type composition. Specifically, we defined the level of immune
activity of an individual as its total lymphocyte proportion in
whole-blood, and aimed at finding methylation sites that are
associated with the regulation of immune activity.

Since bulk methylation data is a composition of signals that
depend on to the cell-type proportions, a standard regression
approach with whole-blood methylation is expected to fail to
distinguish between false and true associations with immune
activity. We verified this using whole-blood methylation data
from a previous study by Liu et al. (n= 658)19 (Supplementary
Fig. 11). Importantly, accounting for the cell-type composition in
this case would eliminate any true signal in the data, as the
immune response phenotype is perfectly defined by the cell-type
composition.

We next performed cell-type-specific analysis. Applying
CellDMC resulted in a massive inflation in test statistic, which

failed to distinguish between false and true associations (Fig. 4a).
Using TCA, in contrast, resulted in 8 experiment-wide significant
associations (p-value < 9.87e−07; Fig. 4b and Supplementary
Data 1). Importantly, 6 of the associated CpGs reside in 5 genes
that were either linked in GWAS to leukocyte composition in
blood or that are known to play a direct role in the regulation of
leukocytes: CD247, CLEC2D, PDCD1, PTPRCAP, and DOK2
(Supplementary Data 1). The remaining associated CpGs reside
in the genes SDF4 and SEMA6B, which were not previously
reported as related to leukocyte composition. Using a second
large whole-blood methylation data set (n= 650)29, we could
replicate the associations with 4 out of the 7 genes (PTPRCAP,
DOK2, SDF4, and SEMA6B; p-value < 0.0063; Supplementary
Data 1). Our results are therefore consistent with the possibility
that methylation modifications in these genes are involved in the
regulation of immune activity.

Cell-type-specific differential methylation in rheumatoid
arthritis. RA is an autoimmune chronic inflammatory disease
which has been previously related to changes in DNA
methylation30,31. In order to further demonstrate the utility of
TCA, we revisited the largest previous whole-blood methylation
study with RA by Liu et al. (n= 658)19.

As a first attempt to detect associations between methylation
and RA status, we applied a standard regression analysis, which
yielded 6 experiment-wide significant associations (p-value <
2.33e−7; Fig. 4c and Supplementary Data 2), overall in line with
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previous studies that analyzed this data set32,33. In order to allow
an intuitive comparison with a standard regression, we performed
a second analysis under the TCA model while assuming a single
effect size in all cell types, which is expected to be a favorable
scenario for a standard regression analysis. Remarkably, TCA
found 15 experiment-wide significant CpGs, 11 of which were not
reported by the standard regression analysis. Altogether, these 15
associations highlighted RA as an enriched pathway (p-value=
1.45e−07; Fig. 4d and Supplementary Data 2).

The presumption that only some particular immune cell-
types are related to the pathogenesis of RA, have led to studies

with methylation collected from sorted populations of leuko-
cytes (e.g., refs. 34–36). In a recent study by Rhead et al., some of
us investigated differences in methylation patterns between RA
cases and controls using data collected from sorted cells36.
Particularly, methylation levels were collected from two sub-
populations of CD4+ T cells (memory cells and naive cells; n=
90, n= 88), CD14+ monocytes (n= 90), and CD19+ B cells
(n= 87). Although this study involved a considerable data
collection effort in an attempt to provide insights into
the methylome of RA patients at a cell-type-specific resolution,
it does not allow the detection of experiment-wide significant
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associations (Supplementary Fig. 12), possibly owing to the
limited sample size.

In order to reconcile with the sample size limitation in the
sorted data by Rhead et al., we considered it for validation of the
results reported by TCA in the large whole-blood data rather than
for detecting novel associations. We found that 11 of the 15 CpGs
reported by TCA (and 4 of the 6 CpGs reported by a standard
regression) had a significant p-value at level 0.05 in at least one of
the cell types, reflecting a high consistency with the results
reported by TCA.

We next used TCA to test for associations in each of CD4+,
CD14+, and CD19+ cells separately (i.e., a marginal test for each
cell type, without the restriction of a single effect size). This
analysis reported 15 cell-type-specific associations with 11 CpGs:
6 associations in CD4+, 8 in CD14+, and one association in
CD19+ cells (p-value < 2.33e−07; Fig. 4f and Supplementary
Data 2). Considering a more stringent significance threshold in
order to account for the three separate experiments we conducted
for the three cell types resulted in 10 cell-type-specific associa-
tions with 7 CpGs (p-value < 7.78e−08; Fig. 4f and Supplemen-
tary Data 2). We further found these CpGs to be enriched for
involvement in the RA pathway (p-value= 9.47e−07); particu-
larly, 4 of these CpGs reside in HLA genes (or in an intergenic
HLA region) that were previously reported in GWAS as RA
genetic risk loci: HLA-DRA, DRB5, DQA1, and DQA2 (Supple-
mentary Data 2).

We further sought to evaluate the 15 associations found by the
TCA marginal test using sorted data. We found that in the Rhead
et al. data 4 of the 6 associations in CD4+ and 4 of the 8
associations in CD14+ had a significant p-value at level 0.05, with
all associations having overall low p-values (p-value ≤ 0.35 for all
15 associations; Supplementary Data 2). Following the enrich-
ment in small p-values, considering a false discovery rate (FDR)
criterion for the entire set of 15 associations revealed significant
q-values at level 0.05 for all 15 associations. We further
considered an additional data set with sorted CD4+ methylation
from an RA study by Guo et al. (n= 24) and found it to be
consistent (p-value < 0.05) with 3 of the 4 CD4+ associations that
were verified in the Rhead et al. data.

Notably, applying CellDMC as an alternative approach for
detecting cell-type-specific associations in CD4+, CD14+, and
CD19+ resulted in 6 genome-wide significant hits: one in CD14+
and five in CD19+ (and only three hits in CD19+ if accounting
for the three separate experiments; Fig. 4e). However, none of
these 6 hits were found to be significant in the sorted cells data by
Rhead et al. (p-value > 0.05), thus, echoing our conclusions from
the power simulation showing a substantial gap in power between
TCA and CellDMC.

Finally, we note that the lack of evidence (from the sorted cells
data) for some of the associated CpGs may be explained in part
by the fact that each data set was collected from a different
population; specifically, Liu et al. studied a Swedish population,
Rhead et al. studied a heterogeneous European population, and
Guo et al. studied a Han Chinese population. In the case of TCA,
another possibility is that it did not attribute the correct cell types
to some of the associations. A support for this possibility is given
by the fact that two associations (cg16411857 and cg22812614)
were attributed to CD4+, however were supported by the sorted
data to be CD14+ specific, and another association (cg11767757)
was attributed to all cell types, however, was only supported by
the sorted data to be CD14+ specific.

Discussion
We proposed a methodology that can reveal novel cell-type-
specific associations from bulk methylation data, i.e., without the

need to collect cost prohibitive cell-type-specific data. This
methodology is particularly useful in light of the large number of
bulk samples that have been collected by now, and due to the fact
that currently single-cell methylation technologies are not prac-
tically scalable to large population studies. Importantly, we found
that TCA is substantially superior to a standard regression ana-
lysis with interaction terms between the cell-type proportions and
the phenotype, while adequately controlling for false positive rate,
even in the case where all cell types share the same effect size. We
therefore suggest that TCA should always be preferred in analysis
of bulk methylation data.

Notably, a recent attempt to provide cell-type-specific context
in genetic studies aims at identifying trait-relevant tissues or cell
types by leveraging genetic data and known tissue or cell-type-
specific functional annotations37,38. This approach yielded some
promising results in relating trait-associated genetic loci to rele-
vant tissues and cell types. However, it is limited to only one
particular task and it is bounded by design to consider only
genetic signals, whereas non-genetic signals are often also of
interest in genomic studies. Moreover, this approach can only
suggest an implicit cell-type-specific context by binding known
annotations with heritability. In contrast, the approach taken in
TCA allows the extraction of explicit cell-type-specific signals,
which can potentially allow many opportunities and applications
in biological research. We further note that around the time of
submitting this manuscript, another model similar to TCA
appeared as a preprint by Luo et al.39. For completeness, we
verified that TCA performs substantially better than the method
by Luo et al. (Supplementary Figs. 13 and 14; see “Methods”);
given that the latter was not published by the time of submitting
this manuscript, we separate this evaluation from the main
benchmarking in our work.

A potential limitation of TCA is the need for rarely available
cell-type proportions as an input. We alleviate this issue by
allowing TCA to get estimates of the cell-type proportions using
standard methods26,27 and then re-estimating them following the
TCA model. As we showed, this allows TCA to provide good
results even when just noisy estimates of the cell-type proportions
are available. In practice, obtaining such estimates can be done
using either a reference-based approach26 or a semi-supervised
approach27, in case a methylation reference is not available for the
studied tissue.

Our experiments and mathematical results show that TCA can
extract cell-type-specific signals from abundant cell types better
compared with lowly abundant cell types. Another potential
limitation is expected to be in the case where the proportion of
one cell type strongly covaries with the proportion of a second
cell type. In case of a true association in just one of the two cell
types, performing a marginal association test on each cell type
separately might fail to effectively distinguish between the signals
of the two cell types and report an association in both cell types.
In light of these limitations, we suggest that future studies include
small replication data sets from sorted or single cells. Future work
might be able to alleviate this issue by modeling the covariance of
the cell-type proportions.

Finally, in this paper we focus on the application of TCA to
epigenetic association studies. However, TCA can be formulated
as a general statistical framework for obtaining underlying three-
dimensional information from two-dimensional convolved sig-
nals, a capability which can benefit various domains in biology
and beyond.

Methods
Modeling cell-type-specific variation in DNA methylation. Here, we summarize
the model and mathematical methods. Further details are provided in Supple-
mentary Methods. Since TCA can most naturally be described as a generalization
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of matrix factorization, we further provide a brief technical overview of matrix
factorization (Supplementary Methods).

Let Zi
hj denote the value coming from cell type h ∈ 1, …, k at methylation site

j∈ 1, … m in sample i∈ 1, … n, we assume:

Zi
hjjμhj; σhj � Nðμhj; σ2hjÞ ð3Þ

In theory, the methylation status of a given site within a particular cell is a
binary condition. However, unlike in the case of genotypes, methylation status may
be different between different cells (even within the same individual, site and, cell
type). We therefore consider a fraction of methylation rather than a fixed binary
value. In array methylation data, possibly owing to the large number of cells used to
construct each individual signal, we empirically observe that a normal assumption
is reasonable. Admittedly, normality may not hold for values near the boundaries
(i.e., sites with mean methylation levels approaching 0 or 1); this can be addressed
by applying variance stabilizing transformations such as a logit transformation
(commonly referred to as M-values in the context of methylation)40. However, in
practice, we ignore such consistently methylated or consistently unmethylated sites
(e.g., in our experiments we discarded sites with mean value higher than 0.9 or
lower than 0.1), which results in a set of sites that demonstrate an approximately
linear relation with their respective M-values40. This makes the normality
assumption reasonable and therefore widely accepted in the context of statistical
analysis of DNA methylation.

Let W∈R
k´n be a non-negative constant weights matrix of k cell types for each

of the n samples (i.e., cell-type proportions; each column sums up to 1), we assume
the following model for site j of sample i in the observed heterogeneous
methylation data matrix X:

Xij ¼
Xk
h¼1

whiZ
i
hj þ ϵij; ϵij � Nð0; τ2Þ ð4Þ

where whi is the proportion of the h-th cell type of sample i in W, and ϵij represents
an additional component of measurement noise which is independent across all
samples. We therefore get that Xij follows a normal distribution with parameters
that are unique for each individual i and site j. Put differently, we assume that the
entries of X are independent but also different in their means and variances.

Tensor Composition Analysis (TCA). Following the assumptions in (3) and (4),

the conditional probability of Zi
j ¼ Zi

1j; :::;Z
i
kj

� �T
given Xij can be shown (Sup-

plementary Methods) to satisfy

PrðZi
j ¼ zij jXij ¼ xij;wi; μj; σ j; τÞ

/ exp � 1
2 ðaij � zijÞTS�1

ij ðaij � zijÞ
� � ð5Þ

where

Σj ¼ diagðσ21j; :::; σ2kjÞ ð6Þ

Sij ¼
wiw

T
i

τ2
þ Σ�1

j

� ��1

ð7Þ

aij ¼ Sij
xij
τ2

wi þ Σ�1
j μj

� �
ð8Þ

Essentially, our suggested method, TCA, leverages the information given by the
observed values {xij} for learning a three-dimensional tensor consisted of estimates
of the underlying values fzihjg. This is done by setting the estimator ẑij to be the
mode of the conditional distribution in (5):

ẑij ¼ aij ¼
wiw

T
i

τ2
þ Σ�1

j

� ��1 xij
τ2

wi þ Σ�1
j μj

� �
ð9Þ

TCA requires the cell-type proportions W as an input. GivenW, the parameters
τ,{μj},{σj} can be estimated from the observed data under the assumption in (4). In
practice, the cell-type proportions are typically unknown. In such cases, W can be
estimated computationally using standard methods (e.g., refs. 26,27) and then re-
estimated under the TCA model in an alternating optimization procedure with the
rest of the parameters in the model. The TCA model can further account for
covariates, which may either directly affect Zi

j (e.g., age and sex) or affect the
mixture Xij (e.g., batch effects). For more details and a full derivation of the
conditional distribution of Zi

j , while accounting for covariates, and for information
about parameters inference see Supplementary Methods.

In order to see why TCA can learn non-trivial information about the fzihjg
values, consider a simplified case where τ= 0, μhj= 0, σhj= 1 for each h and a
specific given j. In this case, it can be shown (Supplementary Methods) that

Zi
hjjXij ¼ xij � N

whixijPk
l¼1 w

2
li

; 1� w2
hiPk

l¼1 w
2
li

 !
ð10Þ

That is, given the observed value xij, the conditional distribution of Zi
hj has a lower

variance compared with that of the marginal distribution of Zi
hj (σ

2
hj ¼ 1), thus

reducing the uncertainty and allowing us to provide non-trivial estimates of the
fzihjg values. This result further implies that in the context of DNA methylation,
where the weights matrix W corresponds to a matrix of cell-type proportions, we
should expect to gain better estimates for the {zihj} levels in more abundant cell
types compared with cell types with typically lower abundance. For more details
see Supplementary Methods.

Applying TCA to epigenetic association studies. We next consider the problem
of detecting statistical associations between DNA methylation levels and biological
phenotypes. Let X∈R

n ´m be an individuals by sites matrix of methylation levels,
and let Y denote an n-length vector of phenotypic levels measured from the same n
individuals, typical association studies usually consider the following model for
testing a particular site j for association with Y:

Yi ¼ Xijβj þ ei; ei � Nð0; σ2Þ ð11Þ

where Yi is the phenotypic level of individual i, βj is the effect size of the j-th site,
and ei is a component of i.i.d. noise. For the convenience of presentation, we omit
potential covariates which can be incorporated into the model. In a typical EWAS,
we fit the above model for each feature, and we look for all features j for which we
have sufficient statistical evidence of non-zero effect size (i.e., βj ≠ 0).

In principle, one can use TCA for estimating cell-type-specific levels, and then
look for cell-type-specific associations by fitting the model in (11) with the
estimated cell-type-specific levels (instead of directly using X). However, an
alternative one-step approach can be also used. This approach leverages the
information we gain about zihj given that Xij= xij for directly modeling the
phenotype as having cell-type-specific effects. Specifically, consider the following
model:

Yi ¼ Zi
ljβlj þ ei; ei � Nð0; ϕ2Þ ð12Þ

where βlj denotes the cell-type-specific effect size of some cell type of interest l.
Provided with the observed information xij, while keeping the assumptions in (3)
and (4), it can be shown (Supplementary Methods) that:

YijXij ¼ xij � N βlj μlj þ
wliσ

2
lj~xij

τ2 þPk
h¼1 w

2
hiσ

2
hj

 !
; ϕ2 þ β2lj σ2lj �

w2
liσ

4
lj

τ2 þPk
h¼1 w

2
hiσ

2
hj

 ! !

ð13Þ

~xij ¼ xij �
Xk
h¼1

whiμhj ð14Þ

This shows that directly modeling Yi|Xij effectively integrates the information over
all possible values of Zi

lj . Given W, μj, σj, τ (typically estimated from X;
Supplementary Methods), we can estimate φ and the effect size βlj using maximum
likelihood. The estimate β̂lj can be then tested for significance using a generalized
likelihood ratio test. Similarly, we can consider a joint test for the combined effects
of more than one cell type. A full derivation of the statistical test is described in
Supplementary Methods. In this paper, whenever association testing was
conducted, we used this direct modeling of the phenotype given the observed
methylation levels.

Finally, we note that in principle one can also use the model in Eq. (4) for
testing for cell-type-specific associations by treating the phenotype of interest as a
covariate and estimating its cell-type-specific effect size. However, TCA provides a
way to deconvolve the data into cell-type-specific levels, which is of independent
interest beyond the specific application for association studies. Moreover, model
directionality often matters, and the TCA framework allows us to directly model
the phenotype rather than merely treat it as another covariate. Particularly, in the
context of this paper, it is known that methylation levels are actively involved in
many cellular processes such as regulation of gene expression41, thus, making DNA
methylation a potential contributing determinant in disease (which further justifies
the modeling of the phenotype as an outcome).

Implementation of TCA. A Matlab implementation of TCA was used for deriving
all the results in this paper, and an additional implementation in R was deposited
as a CRAN package (“TCA”). The source code of both implementations is available
from GitHub at http://github.com/cozygene/TCA.

TCA requires for its execution a heterogeneous DNA methylation data matrix
and corresponding cell-type proportions for the samples in the data. In case where
cell counts are not available, TCA can take estimates of the cell-type proportions,
which are then optimized with the rest of the parameters in the model. For the real
data experiments, we used GLINT42 for generating initial estimates of the cell-type
proportions for the whole-blood data sets. GLINT provides estimates according to
the Houseman et al. model26, using a panel of 300 highly informative methylation
sites in blood43 and a reference data collected from sorted blood cells28. Given these
estimates, we used the TCA model to re-estimate the cell-type proportions using
the top 500 sites selected by the feature selection procedure of ReFACTor33.
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Data simulation. We first estimated cell-type-specific means and standard
deviations in each site using reference data of methylation levels collected from
sorted blood cells28. Since we expected cell-type-specific associations to be mostly
present in CpG sites that are highly differentially methylated across different cell
types, we considered cell-type-specific means and standard deviations from sites
which demonstrated the highest variability in cell-type-specific mean levels across
the different cell types. Using the estimated parameters of a given site, we generated
cell-type-specific DNA methylation levels using normal distributions, conditional
on the range [0, 1]. In cases where covariates were simulated to have an effect on
the cell-type-specific methylation levels, the means of the normal distributions were
tuned for each sample to account for its covariates and the corresponding effect
sizes (shared across samples; Supplementary Methods).

We generated cell-type proportions for each sample using a Dirichlet
distribution with parameters set according to previous estimates from cell counts of
6 blood cell types27: 15.0727, 1.8439, 2.5392, 1.7934, 0.7240, and 0.7404, which
correspond to Dirichlet parameters for granulocytes, monocytes, and 4 sub-types of
lymphocytes (CD4+, CD8+, B and NK cells). In the case of three constituting cell
types (granulocytes, monocytes, and lymphocytes), we set the Dirichlet parameter
of lymphocytes to be the sum of the parameters of all the lymphocyte sub-types.
For the experiments with a nonparametric distribution of the cell-type proportions
we sampled proportions of individuals from a pool of reference-based estimates
that were estimated using a reference-based method26 for samples in two data sets
(described below)19,29.

Eventually, for each sample, we composed its methylation level at each site by
taking a linear combination of the simulated cell-type-specific levels of that site,
weighted by the cell composition of that sample, and added an additional i.i.d.
normal noise conditional on the range [0, 1] to simulate technical noise (τ= 0.01).
In cases where covariates were simulated to have a global effect on the methylation
levels (i.e., non-cell-type-specific effect, such as batch effects), we further added an
additional component of variation for each sample according to its global
covariates and their corresponding effect sizes.

Data sets. We used a total of 5 methylation data sets, all of which were collected
using the Illumina 450K human DNA methylation array and are available from the
Gene Omnibus Database (GEO). In more details, we used 3 methylation data sets
that were previously collected in RA studies: a whole-blood data set by Liu et al. of
354 RA cases and 332 controls (GEO accession GSE42861)19, a CD4+ methylation
data set of 12 RA cases and 12 controls with matching age and sex (for each RA
patient, a control sample with matching age and sex was collected) by Guo et al.
(GEO accession GSE71841)35, and cell-sorted methylation data collected from
63 female RA patients and 31 female control subjects in CD4+ memory cells,
CD4+ naive cells, CD14+ monocytes, and CD19+ B cells (a total of
371 samples across four cell sub-types; GEO accession GSE131989); these cell-
sorted data were originally described by Rhead et al.36. In addition, for replicating
the association results with immune activity, we used another data set that was
previously studied by Hannum et al. in the context of aging rates (n= 656; GEO
accession GSE40279)29. Finally, for the simulation experiments we used methyla-
tion reference of sorted leukocyte cell types collected in 6 individuals from the
(GEO accession GSE35069)28.

We processed the data similarly to a recently suggested normalization
pipeline44. Specifically, we processed the raw IDAT files of the Liu et al. data set19

and the Rhead et al. data set36 (each cell sub-type separately) using the “minfi” R
package45 as follows. We removed 65 SNP markers and applied the Illumina
background correction to all intensity values, while analyzing probes coming from
autosomal and non-autosomal chromosomes separately. We considered a
threshold of 10e−16 for the detection p-value of intensity values; probes with p-
values higher than this threshold were treated as missing values, and samples with
call rate <95% and probes with call rate <90% were excluded. Since IDAT files were
not made available for the Hannum et al. data29 and the Guo et al. data35, we used
the methylation intensity levels published by the authors. For each data set, we then
performed a quantile normalization of the methylation intensity levels, subdivided
by probe type, probe sub-type, and color channel, and imputed missing values
using the “impute” R package (using the function impute.knn). Eventually, we
calculated beta-normalized methylation levels based on the normalized intensity
levels (according to the recommendation by Illumina).

We further excluded samples from the above data sets as follows. In the Liu
et al. data set, we excluded two samples that demonstrated extreme values in their
first two principal components (over four empirical standard deviations) and two
more of the remaining samples that were regarded as outliers in the original study
of Liu et al. In the Rhead et al. data set, we excluded a small batch that consisted of
only 4 individuals, and in the Hannum et al. data set we removed six samples that
demonstrated extreme values in their first two principal components (over four
empirical standard deviations). The final numbers of samples remained for analysis
in the Liu et al. data set, the Hannum data set and the Guo et al. data set were n=
658, n= 650, and n= 24, respectively. The numbers of samples remained for
analysis in the Rhead et al. data were n= 89, n= 88, n= 90, and n= 86 for the
CD4+ memory cells, CD4+ naive cells, monocytes, and B cells, respectively.

Finally, for the association experiments, we discarded consistently methylated
probes and consistently unmethylated probes from the data (mean value higher than
0.9 or lower than 0.1, respectively, according to the Liu et. al discovery data), and we

further used GLINT42 to exclude from the data CpGs coming from the non-
autosomal chromosomes, as well as polymorphic and cross-reactive sites, as was
previously suggested46.

Power simulations. We simulated data and sampled for each site under test a
normally distributed phenotype with additional effects of the cell-type-specific
methylation levels of the site. We set the variance of each phenotype to the variance
of the site under test, in order to eliminate the dependency of the power in the
variance of the tested site (and therefore allow a clear quantification of the true
positives rate under a given effect size). Particularly, when simulating an effect
coming from a single cell type, we randomly generated a phenotype from a normal
distribution with the variance set to the variance of the site under test in the specific
cell type under test. Similarly, when simulating effects coming from all cell types,
we randomly generated a phenotype from a normal distribution with the variance
set to the total variance of the site under test (i.e., across all cell types).

We performed the power evaluation using simulated data with 3 constituting
cell types (k= 3) and using simulated data with 6 constituting cell types (k= 6).
We considered three scenarios across a range of effect sizes as follows: different
effect sizes for different cell types (using a joint test), the same effect size for all cell
types (using a joint test, under the assumption of the same effect for all cell types),
and a scenario with only a single associated cell type (a marginal test). In the first
scenario, effect sizes for the different cell types were drawn from a normal
distribution with the particular effect size under test set to be the mean (with
standard deviation σ= 0.05), and in the third scenario we evaluated the aggregated
performance of all the marginal tests across all constituting cell types in the
simulation. We further repeated the marginal test while stratifying the evaluation
by cell type (i.e., the marginal test was performed under the third scenario for each
cell type separately). In each of these experiments, we calculated the true positives
rate of the associations that were reported as significant while adjusting for the
number of sites in the simulated data.

For each scenario and for each number of constituting cell types, we simulated
10 data sets, each included 500 samples and 100 sites. Importantly, throughout the
simulation study, we considered for each simulated data set the case where only
noisy estimates of the cell-type proportions are available (and therefore need to be
re-estimated together with the rest of the parameters in the TCA model).
Specifically, for each sample in the data we replaced its cell-type proportions with
randomly sampled proportions coming from a Dirichlet distribution with the
original cell-type proportions of the individuals as the parameters. For each level of
noise, these parameters were multiplied by a factor that controlled the level of
similarity of the sampled proportions to the original proportions. Finally, for
evaluating false positives rates, we followed the above procedure, however, without
adding additional effects coming from methylation levels. We evaluated the false
positives rate by considering the fraction of sites with p-value < 0.05.

Analysis of immune activity. We used the Liu et al. data19 as the discovery data
(n= 658) and the Hannum et al. data29 as the replication data (n= 650). Since we
expected to observe associations with the regulation of cell-type composition in
CpGs that demonstrate differential methylation between different cell types, we
considered for this analysis only CpGs that were reported as differentially
methylated between different whole-blood cell types20. Specifically, we considered
the sites in the intersection between the set of Bonferroni-significant CpGs that
were reported as differentially methylated in whole-blood and the available CpGs
in both the discovery and replication data sets; this resulted in a set of 50,123 CpGs
that were available for this analysis.

We performed a standard linear regression analysis using GLINT42 and a TCA
analysis under the assumption of the same effect size in all cell types. In the analysis
of the Liu et al. data we controlled for RA status, gender, age, smoking status, and
known batch information, and in the analysis of the Hannum et al. data we
controlled for gender, age, ethnicity, and the first two EPISTRUCTURE principal
components47 in order to account for the population structure in this data set. In
both data sets, in order to take into account potentially unknown technical
confounding effects, we further included the first 10 principal components
calculated from the intensity levels of a set of 220 control probes in the Illumina
methylation array, as suggested by Lehne et al.44 in an approach similar to the
remove unwanted variation method (RUV)48. These probes are expected to
demonstrate no true biological signal and therefore allow to capture global
technical variation in the data.

In the replication analysis, we applied a Bonferroni threshold in reporting
significance, controlling for the number of genome-wide significant associations
that were reported in the discovery data. The results are summarized in
Supplementary Data 1, where additional description for the associated genes is
provided from GeneCards49, the GWAS catalog50, and GeneHancer51.

Analysis of rheumatoid arthritis. We used the Liu et al. data19 as the discovery data
(n= 658, 214,096 CpGs). We applied a standard logistic regression analysis with
the RA status as an outcome using GLINT42 and TCA analysis: under the assumption
of a single effect for all cell types (joint test), and for each of CD4+, CD14+, and
CD19+, under the assumption of a single associated cell type (marginal test). In every
analysis, we accounted for the same variables described in the immune activity
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analysis with this data set. In the TCA analysis, we additionally accounted for the first
six ReFACTor components33, calculated according to the most recent updated
guidelines52. In order to test the associations reported by TCA for enrichment for the
RA pathway, we used missMethyl53, an R package that allows to run enrichment
analysis for disease directly on CpGs (while accounting for gene length bias).

In the validation analysis with the Rhead et al. data, we applied a standard
logistic regression analysis using GLINT42 on each of the CD14+ (n= 90) and
CD19+ (n= 86) data sets, while accounting for age, smoking status, and batch
information. Since the Rhead et al. data included sorted-cell methylation from two
sub-types of CD4+, for the replication analysis of CD4+ (n= 81) we performed
for each site a logistic regression analysis using both its CD4+ naive cells
methylation levels and CD4+ memory cells methylation.

Taking a standard regression approach in the analysis of the Guo et al. CD4+
sorted methylation data resulted in a severe inflation in test statistic. Since the cases
and controls in the sample were matched for age and sex, we suspected that
technical variation might have led to this inflation. In order to test that, we
calculated the first principal component of control probes, similarly to the
approach taken in the analysis of the Liu et al. data. However, since IDAT files were
not available for the Guo et al. data, and therefore the same set of 220 control
probes that were used in the Liu et al. data were not available, we used the
methylation intensity levels of the 220 sites with the least variation in the data as
control probes. Indeed, we found that the first PC of the control probes
corresponds to the case/control status in the data almost perfectly (r= 0.91, p-
value= 6.29e−10). As a result, p-values obtained using a standard analysis of the
Guo et al. data set are not reliable. We therefore considered the following
nonparametric procedure. We ranked the sites according to their absolute
difference in mean methylation levels between cases and controls, and considered a
simple enrichment test, wherein the p-value of a site was determined as its rank
divided by the total number of sites in the ranking.

The results are summarized in Supplementary Data 2, where additional
description for the associated genes is provided from GeneCards49, the GWAS
catalog50, and GeneHancer51.

Application of CellDMC and HIRE. We applied CellDMC using the corre-
sponding R package by Zheng et al.23, and provided it with the true cell-type
proportions as an input throughout our simulation study, and with the same
covariates we used for TCA in the real data analysis. We further applied HIRE
using the corresponding R package by Luo et al.39. Unlike CellDMC, HIRE treats
the cell-type proportions as parameters that are being estimated as part of the
optimization process. Therefore, in order to provide it with a similar advantage to
CellDMC, which was given access to the true cell-type proportions in the simu-
lation study, we assigned the initial cell-type proportion estimates in the HIRE code
to be the true cell-type proportions.

Since both CellDMC and HIRE provide only test statistics and p-values for the
effects of individual cell types (i.e., only for marginal tests and not for a joint, CpG-
level test), in the power simulations with effects in multiple cell types we considered
a CpG to be associated with the phenotype if it had a significant association with at
least one of the cell types. To make our benchmarking of TCA with these methods
conservative, we allowed a favorable procedure for CellDMC and HIRE in these
cases by not accounting for the number of cell types (i.e., just for the number of
CpGs) when calculating true positive rates.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The DNA methylation data sets used and analyzed in this study are available in the Gene
Expression Omnibus (GEO) repository under the following accession IDs: GSE4286119,
GSE7184135, GSE4027929, GSE3506928, and GSE13198936.

Code availability
An R package named “TCA” is available from CRAN. The source code of both the R
version and the Matlab version of TCA are available from GitHub under the GPL-3
license: https://github.com/cozygene/TCA.
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