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Abstract

Recent work in econometrics has provided large bandwidth asymptotic theory for taper-based

studentized estimates of the mean, in the context of nonparametric estimation for serially cor-

related time series data. These taper-based statistics can be viewed as estimates of the spectral

density at frequency zero, and hence it is quite natural to extend the asymptotic theory to

non-zero frequencies and thereby obtain a large bandwidth theory for spectral estimation. This

approach was developed by Hashimzade and Vogelsang (2008) for the case of a single frequency.

This paper extends their work in several ways: (i) we treat multiple frequencies jointly; (ii)

we allow for long-range dependence at differing frequencies; (iii) we allow for piecewise smooth

tapers, such as trapezoidal tapers; (iv) we develop a theory of higher order accuracy by a novel

expansion of the Laplace Transform of the limit distribution. The theoretical results are comple-

mented by simulations of the limit distributions, an application to confidence band construction,

and a discussion of the issue of optimal bandwidth selection.

Keywords. Cyclical Long Memory, Kernel Spectral Estimator, Long Range Dependence, Spec-

tral Confidence Bands.

Disclaimer This paper is released to inform interested parties of ongoing research and to encour-

age discussion of work in progress. The views expressed are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Suppose that we have a sample Y1, Y2, · · · , YN from a weakly stationary time series {Yt}, and

consider a kernel-based estimator of the spectral density f(θ) defined via

f̂(θ) =
∑
h

Λ(h/M) cos(θh)γ̂h (1)
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for any fixed θ ∈ [−π, π]. Here Λ is the kernel, or taper, and is a bounded even function of domain

[−1, 1]. The sequence γ̂h consists of sample autocovariances, where the centering can be taken

as either zero, the sample mean, or OLS estimates of a more complicated regression effect. The

bandwidth M is taken to grow at the same rate as the sample size N , rather than the usual o(N)

growth rate, such that M = bN for some b ∈ (0, 1); we say that the bandwidth-ratio b is fixed, and

use the terminology of fixed-b asymptotics. The following result is a consequence of Theorem 1 of

Hashimzade and Vogelsang (2008) under assumptions consistent with a short memory time series:

f̂(θ)
L

=⇒ f(θ) · Sθ(b)

as N →∞. The limiting random variable Sθ(b) is a quadratic functional of Brownian Motion that

depends on the bandwidth proportion b, but not on the short memory autocorrelation function of

the data process, and thus can be simulated without any knowledge of nuisance parameters. The

limit also depends on the taper Λ, and the distribution depends on θ as well, since results differ

depending on whether θ = 0, θ = π, or θ ∈ (0, π). Furthermore, the distribution at frequency θ = 0

also depends on the type of centering used to define γ̂h.

As noted in Hashimzade and Vogelsang (2008) – henceforth HV – the asymptotic coverage pro-

vided by the so-called large-bandwidth approach is superior when b is greater than zero, and also

has the advantage of guaranteeing a positive random limit (when the taper Λ is positive definite).

The potential application of a better inferential methodology for the spectral density function is

quite large, as demonstrated by the ubiquity of spectral methods in the physical sciences as well as

econometrics; see Grenander and Rosenblatt (1953), Parzen (1957), Blackman and Tukey (1959),

Bohman (1960), and the discussion in Priestley (1981). Understanding the joint distribution of

spectral estimates across multiple frequencies is useful for the identification of hidden periodicities

in the time series. One application is the identification of residual seasonality in seasonally ad-

justed economic time series via examination of spectral estimates in the program X-12-ARIMA,

as discussed in Findley, Monsell, Bell, Otto, and Chen (1998). Literally millions of time series are

seasonally adjusted each month by the program X-12-ARIMA at statistical agencies around the

world – with vast ramifications for public policy – and spectral peak estimation and assessment is

featured as a diagnostic tool in every application.

The paper at hand seeks to make several extensions of the fundamental results of HV. Firstly,

we extend their basic results to a joint theorem over a finite collection of frequencies. This is

important for assessing the uncertainty in taper-smoothed estimates of the spectral density, where

we may be interested in 30 to 60 ordinates at a time. As our results below demonstrate, Sθ1(b1)

is asymptotically independent of Sθ2(b2) for θ1 6= θ2 and any b1, b2 ∈ (0, 1]. This technical result

will allow us to construct simultaneous confidence intervals, allowing one to assess uncertainty in a

nonparametric spectral analysis.

Secondly, we study cyclical long-range dependence, where each frequency of the spectral den-
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sity may correspond to a long memory pole or a negative memory zero; see Boutahar (2008) for

related asymptotic results for the case of a single frequency. Cyclical long memory is useful for

capturing highly persistent seasonal or cyclical phenomena that evolve too rapidly to be considered

nonstationary; see Holan and McElroy (2012) for examples and applications of the concept to the

problem of seasonal adjustment. The presence of cyclical long memory implies that the rate of

convergence of the spectral estimates depends on the corresponding memory parameter, and the

limit distributions become quadratic functionals of Fractional Brownian Motion – this is an exten-

sion of the frequency zero results of McElroy and Politis (2012). The rate of growth of the spectral

estimates is non-standard in this case, so that the resulting confidence intervals are much wider

(for long memory) or shorter (for negative memory) than in the regular short memory scenario.

Thirdly, we extend the limit theorems to piecewise smooth tapers, such as flat-top tapers

(see Politis and Romano (1995) and Politis (2001)), and also to tapers with jump discontinuities,

such as the truncation taper. With the exception of the Bartlett taper, HV and other fixed-b

literature consider only smooth tapers (such as Parzen or Tukey-Hanning). For example, Phillips,

Sun, and Jin (2006) derives asymptotic results for spectral estimates (handling multivariate time

series) computed from smooth tapers, examining one frequency at a time. However, some popular

tapers (such as Daniell and Quadratic-Spectral) have kinks (i.e., where a continuous function is not

differentiable) at the boundary of their domain, which has an impact on the limit distribution –

this was established in McElroy and Politis (2012) for the frequency zero case. Flat-top tapers have

proven useful for variance estimation of short memory processes, so it seems important to develop

the spectral theory for such tapers.

Fourthly, we provide a discussion of higher-order accuracy of the limit theory arising from the

fixed-bandwidth ratio methodology. In the recent literature on Heteroskedasticity-Autocorrelation

Consistent (HAC) testing – see Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang

(2002) – this has meant an expansion of the fixed-bandwidth ratio limit distributions as b tends

to zero, such that the first term in the expansion is the conventional limit distribution of the

vanishing-bandwidth ratio theory (i.e., in the HAC case a standard normal). We’re not aware

that a higher-order accuracy limit theory has been published for fixed bandwidth ratio spectral

density estimates, though Velasco and Robinson (2001) study the vanishing bandwidth ratio case.

Actually, the HAC literature shows that S0(b) tends to a point mass at unity as b tends to zero;

correspondingly, the higher-order accuracy results in this paper demonstrate that the cumulative

distribution function of Sθ(b) can likewise be expanded as b → 0, with a leading term equal to an

indicator function, followed by other expressions involving cumulants. To achieve this, we introduce

a novel method of inverting the Laplace Transform of Gaussian quadratic forms.

It may be of some interest to provide a confidence band for the entire spectral density. This is not

possible if long-range dependence is present, because each frequency would potentially be growing

at different rates. Also, because the spectral density limit distributions across frequencies are
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independent in a fixed bandwidth ratio approach, the global behavior is better summarized through

the spectral distribution function (Woodroofe and Van Ness (1967) consider the spectral density

bands under a vanishing bandwidth fraction asymptotic approach). Although previous literature

explores the estimation of the spectral distribution function (again, see Grenander and Rosenblatt

(1953) and Parzen (1957), as well as Dahlhaus (1985)), here we provide a fixed-bandwidth ratio

treatment. We discuss the estimation of the limit distribution, and how this can be utilized to

construct spectral confidence bands.

The limit distributions Sθ(b) do not differ tremendously from the frequency zero case, but there

are a few alterations from the previous distribution theory (aside from the impact of kinks in the

taper) given in McElroy and Politis (2012). For all frequencies except 0 and π, the estimates

converge to the sum of two independent copies of the limit in the HAC case (frequency zero); in the

case of a short memory process, this result can also be found in HV, but our results also cover long

memory and negative memory processes. Moreover, we focus our treatment on spectral estimates

that are centered by the sample mean (so we do not consider more complicated mean regression

functions), which only affects the asymptotic distribution at frequency zero. Without the centering,

the limit random variable at frequency zero is a quadratic functional of Fraction Brownian Motion

(FBM), instead of Fractional Brownian Bridge (FBB) – see the discussion in HV and McElroy

and Politis (2012). For the numerical studies, we have simulated the limit distributions for the

internal frequencies (i.e., the interval (0, π)) and the boundary frequencies (i.e., 0 and π) using

FBM (because the FBB case is already addressed in McElroy and Politis (2012)), and tabulated

the results by taper, bandwidth fraction b, and memory parameter.

Previous work (McElroy and Politis (2011)) shows the impact of memory on critical values,

and that the effect is more pronounced with small b. We repeat some of this material for the

spectral case, discussing the critical values as a function of b for various memory parameters.

When memory is absent from all frequencies of interest, we can construct confidence intervals using

the short memory critical values, but otherwise some estimate of the memory parameter must

be supplied to the quantile function. In our applications we propose a simplistic nonparametric

estimate of the memory parameter, as a function of frequency, and utilize a plug-in approach to

inference. Our simulation studies illustrate how size is contingent on taper, bandwidth, and sample

size, presuming that the memory parameter is known.

In practice one must select a bandwidth fraction b, and its choice has a substantial impact on

the resulting appearance of spectral density estimates. Is there an optimal choice of b? In McElroy

and Politis (2011) the idea was presented to select b that produces the smallest confidence interval

possible, and that philosophy here will lead to b approximately zero in the case of short memory.

However, this will produce a very smooth estimate of the spectral density, and it may be desirable

to have a degree of resolution over the frequencies. Another approach is to use a full bandwidth

with b = 1, which leads to wider confidence intervals. We also present numerical results on the
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choice of b that yields the smallest confidence interval possible, as a function of memory parameter

and taper. In our opinion the choice of b ultimately depends upon the practitioner’s particular

goals of spectral analysis. For example, if the analyst is interested in spectral peak detection, then

the degree of smoothing implied by the choice of b corresponds to the broadness of the peak – large

values of b will allow for visualization of narrow peaks, some of which may be spurious, whereas

smaller values of b will smooth out the spectrum, allowing visualization of broader peaks. These

points and the general methodology are demonstrated on one construction and one retail series,

using the re-coloring approach (Grether and Nerlove, 1970) to handle evident non-stationarity.

The paper is organized as follows. In Section 2 we provide a discussion of cyclical long memory,

which sets the general framework for most of the paper. Then Section 3 provides the asymptotic

theory for fixed-bandwidth fraction estimation of the spectral density and the spectral distribution

function. In Section 4 is a treatment of higher-order accuracy, with an application of the method of

Laplace inversion. Section 5 contains a description of our methods of simulation for critical values,

the performance on finite samples from simulation, and a description of the bandwidth selection

procedure. The full methodology is demonstrated on two economic time series in Section 6, and

Section 7 concludes. All proofs are in the Appendix.

2 Cyclical Long Memory and Data Assumptions

From now on, let {Yt} be a constant mean stationary time series with finite variance, such that {γh}
is the autocovariance function (acf). We define cyclical long memory in analogy with conventional

long memory, such that the definition agrees with the implicit definition in seasonal fractionally

intergrated processes (Gray, Zhang, and Woodward (1989)) and Gegenbauer processes (Woodward,

Cheng, and Gray (1998)). When the acf is absolutely summable, the spectral density f(θ) =∑
h γh cos(θh) is well-defined, but here we consider the case where the spectral density has long

memory poles. On the other hand, if the spectral density has a zero, this corresponds to cyclical

negative memory (McElroy and Politis, 2011). We say that the time series has cyclical memory at

frequency θ ∈ [0, π] if ∑
|h|≤n

γh cos(θh) = Lθ(n)nβθ , (2)

where Lθ is a slowly-varying function at infinity (let L denote the set of such functions), with a

limit of Cθ ∈ [0,∞]. Also the memory parameter is βθ, a number in (−1, 1). The case that β0 = −1

was explored in McElroy and Politis (2011), and it produces somewhat non-standard asymptotic

results for the sample mean; we ignore this case in this paper.

Definition 1 A weakly stationary time series with spectral density f has cyclical memory at

frequency θ ∈ [0, π] if (2) holds. This property is denoted by CM(β, θ).
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Note that CM(0, θ) denotes short memory at frequency θ, i.e., 0 < f(θ) <∞. More generally, the

definition of cyclical memory indicates that f(θ) equals 0, ∞, or Cθ depending on whether βθ is

negative, positive, or equal to zero, and these cases correspond to negative cyclical memory, long

cyclical memory, and short cyclical memory respectively (for short cyclical memory, we also impose

that Cθ is a nonzero finite constant).

This is a time domain formulation of the basic concept. The following proposition relates it to

a frequency domain formulation, which some readers may find more intuitive. When a zero or pole

occurs at a nonzero frequency, it must be present at the negative of that frequency as well, because

the spectral density is an even function on [−π, π]. When the zero or pole occurs at frequency zero,

the spectral density might be written as f(λ) = |λ|α g(λ)L(|λ|−1) for α ∈ (−1, 1), g a positive,

even, and bounded function, and L ∈ L. But if the zero/pole occurs at a nonzero frequency θ, we

can generally write the spectral density as

f(λ) = |λ− θ|α|λ+ θ|α g(λ)L(|λ− θ|−1)L(|λ+ θ|−1). (3)

This form only treats one zero/pole frequency θ, but the following result can be easily generalized

to spectra with multiple distinct zeroes and/or poles.

Proposition 1 Suppose {Yt} is a stationary time series with spectral density with a zero/pole of

order α at frequency θ. If θ = 0 and f(λ) = |λ|α g(λ)L(|λ|−1), then the process is CM(−α, 0) and

CM(0, ω) for all ω 6= 0 (i.e., it has short memory at all nonzero frequencies). If θ > 0 and the

spectrum is given by (3), then the process is CM(−α, θ) and CM(0,ω) for ω 6= θ.

So the processes discussed in Proposition 1 have zeroes/poles of diverse orders at differing

frequencies, and this in turn is connected to rates of convergence of the partial sums of autoco-

variances weighted by cosines. Consider the following class of spectral densities, where there are J

zeroes/poles at nonzero frequencies θj (not including the conjugate zeroes/poles −θj) of order αj ,

and accompanying slowly varying functions Lj . A process with such a spectral density belongs to

the class
⋂J
j=1 CM(−αj , θj), noting that CM(−α, θ) = CM(−α,−θ).

In order to formulate the asymptotic results of this paper, we must make some additional

assumptions about the observed stochastic process. We will consider the same set of assumptions

discussed in McElroy and Politis (2011), namely that the data process is either linear, or can be

written as a function of a Gaussian process, or satisfies certain higher order cumulant conditions.

The kth order cumulant of {Yt} is defined by

ck(u1, u2, · · · , uk−1) = cum
(
Yt+u1 , Yt+u2 , · · · , Yt+uk−1

, Yt
)

for any t and integers u1, · · · , uk−1, where k ≥ 1 (cf. Taniguchi and Kakizawa (2000)). Letting u

denote the k−1 vector of indices, we will write ck(u) for short. Also let ‖ ·‖ denote the sup-norm of

a vector, so that
∑
‖u‖<n ck(u) is a short-hand for summing the cumulant over all indices such that
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|uj | < n for each j. We also require the concept of Hermite rank (Taqqu, 1975): if g ∈ L2(R, e−x2/2),
then it can be expanded in terms of the Hermite polynomials Hk, with coefficients 〈g,Hk〉 (the

bracket denotes the inner product of the Hilbert Space) for k ≥ 0. The Hermite rank is the index

of the first nonzero coefficient.

In addition to supposing that the process is CM(βθj ,θj) for a collection of frequencies θj ∈ [0, π],

j = 1, · · · , J , we also consider the following assumptions:

• Process P1. {Yt} is a linear process: Yt =
∑

j ψjεt−j with {ψj} square summable and {εt}
iid with finite variance.

• Process P2. Yt = g(Xt) for each t, where g is a function in L2(R, e−x2/2) of Hermite rank τ ,

and {Xt} is a Gaussian process with autocovariance function rk. If βθj > 0, also assume that

(1− βθj )τ < 1 for each j.

• Process P3. {Yt} is a strictly stationary process whose kth order cumulants exist and are

summable over its k indices, for all k ≥ 1. Moreover, when βθj < 0 we also assume that∑
‖u‖<n ck(u) = O(n

βθj ) for each j.

See the discussion in McElroy and Politis (2011) for why a moment-plus-mixing condition is

not viable. Each of the assumptions P1, P2, or P3 is sufficient to establish a limit theorem for the

Discrete Fourier Transforms of the data, as shown below. These process assumptions are typically

unverifiable from the observed data, and should be viewed as working assumptions.

3 Asymptotic Theory for Spectrum Estimation

The theory developed here is similar to that of HV, but is extended to processes with cyclical

memory, similarly to how McElroy and Politis (2012) extended the HAC theory to long-range

dependent processes. First we establish a joint convergence theorem for normalized Discrete Fourier

Transforms (DFTs), which is a result of independent interest. Secondly, we apply this result to the

analysis of taper-smoothed estimates of the spectral density. Thirdly, we address the estimation of

the spectral distribution function in the case of a bounded positive spectral density.

3.1 Theory for DFTs

Let {Yt} be a mean µ stationary time series with acf {γh}, as described in Section 2. We suppose

that a sample of size N is available: Y1, Y2, · · · , YN , and the sample autocovariances are computed

via

γ̂h =
1

N

N−h∑
t=1

(Yt − Y ) (Yt+h − Y )
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for h = 0, 1, 2, · · · , and Y = n−1
∑n

t=1 Yt. Results can be modified easily if we do not demean and

assume µ = 0 (as discussed in HV as well), but our main exposition assumes centering of estimates

by the sample mean for simplicity of presentation. The DFT of the sample is
∑N

t=1(Yt − Y )e−iθt,

which has real and imaginary parts given by cosine and sine summations, respectively. These

trigonometric partial sums are the key aspect in the asymptotic analysis of the spectral density

estimates of this paper. We introduce the weighted-sum notation as follows:

SN (g) =

N∑
t=1

Ytgt

for a sequence {gt}. Then the DFT equals SN (c(θ))+iSN (s(θ)) for c(θ) = cos(θ·) and s(θ) = sin(θ·).
The rate of growth of SN (c(θ)) and SN (s(θ)) will depend upon θ, because if there is a zero or pole

at frequency θ the growth rate is affected by long-range dependence. Ultimately, we wish to prove

joint functional limit theorems for the processes r 7→ {S[rN ](c(θ)), S[rN ](s(θ))}, jointly over a finite

collection of frequencies θ. Here the square bracket refers to the greatest integer function.

The key quantities that determine the growth rates of the real and imaginary parts of the DFT

are the respective variances:

V +
N (θ) = VarSN (c(θ)) V −N (θ) = VarSN (s(θ)).

When θ 6= 0, π, we let VN (θ) = (V +
N (θ) +V −N (θ))/2, but for θ = 0, π we set VN (θ) = V +

N (θ) instead.

Then with WN (θ) =
∑
|h|≤N γh cos(θh), we have the following identity:

VN (θ) =
1 + 1{θj=0,π}

2

N−1∑
k=0

Wk(θ). (4)

This follows by recognizing that

VN (θ) =
1 + 1{θj=0,π}

2

N∑
j,k=1

cos(θ(j − k))γj−k, (5)

and that the latter expression in (5) can be re-expressed, using summation by parts, into (4).

Noting that the definition of WN (θ) together with the CM(βθ,θ) assumption yields an asymptotic

growth rate of Lθ(N)Nβθ , we can apply (4) and Proposition 1 of McElroy and Politis (2011) to

the autocovariance sequence {γh cos(θh)} for any θ to obtain

VN (θ) ∼ Lθ(N)Nβθ+1

2(βθ + 1)
. (6)

In the case of short memory, where βθ = 0 and Lθ tends to a nonzero constant Cθ, (6) becomes

VN (θ) ∼ N C(θ) and C(θ) equals one half the spectral density. In all cases of cyclical memory, the

square root of VN (θ) will be the appropriate normalizing rate for the DFT sums, as shown below.
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Let us consider a finite collection of J distinct frequencies Θ = {θj}Jj=1 in [0, π], where the data

process is CM(βθj , θj) for each j. Define vector-valued stochastic processes as follows:

S[rN ](c(θ)) = {S[rN ](c(θj))}Jj=1
S[rN ](s(θ)) = {S[rN ](s(θj))}Jj=1

,

where r ∈ [0, 1]. Joint functional limit theorems for S[·N ](c(θ)) and S[·N ](s(θ)) normalized each by

V
1/2
N (θ) form the key foundation for the asymptotic theory for the tapered-estimates of the spectral

density, defined in the next subsection. The limit stochastic processes are B+,θ(·) = {B+,θj (·)}
J
j=1

and B−,θ(·) = {B−,θj (·)}
J
j=1

, all of which are independent of each other, and all of which are

Fractional Brownian Motions (FBMs) of parameter βθj , except B−,θ(·) at θ = 0, π, which is the

zero process.

As discussed in McElroy and Politis (2011), it is more convenient for us to formulate the results

in the space C[0, 1] of continuous functions, rather than the Skorohod space. Therefore we will

consider a linearly-interpolated version ξ[·N ](g) of S[·N ](g), defined via ξ[rN ](g) = S[rN ](g) + (rN −
[rN ])Y[rN ]+1. This affects the mean-centering slightly, though the asymptotic impact is negligible.

Define the functions cN (θ) =
∑N

t=1 cos(θt) and sN (θ) =
∑N

t=1 sin(θt), which mean center SN (c(θ))

and SN (s(θ)) respectively. The mean-centering functions for ξ[rN ](c(θj)) and ξ[rN ](s(θj)) are given

by

µ̃r(c(θj)) = µ c[rN ](θj) + µ (rN − [rN ]) cos(θj([·N ] + 1))

µ̃r(s(θj)) = µ s[rN ](θj) + µ (rN − [rN ]) sin(θj([·N ] + 1)),

respectively.

Theorem 1 Let {Yt} be covariance stationary with mean µ and acf {γh}, such that the process is

CM(βθj ,θj) for a collection of frequencies θj ∈ [0, π], j = 1, · · · , J . Letting κ = max1≤j≤J 2∧[2/(1+

βθj )], suppose that E[|Yt|κ+δ] <∞ for some δ > 0, and also assume that E[|Sn(c(θj))− cn(θj)|κ+δ] =

O(V
(κ+δ)/2
n (θj)) and E[|Sn(s(θj))− sn(θj)|κ+δ] = O(V

(κ+δ)/2
n (θj)) hold. Suppose condition P1, P2,

or P3 holds, and that in the case of a P2 process with at least one βθj > 0, the Hermite rank is

unity. Then the following weak convergence holds in the space C([0, 1],R2J):{
V
−1/2
N (θj)

(
ξ[·N ](c(θj))− µ̃·(c(θj))

)
, V
−1/2
N (θj)

(
ξ[·N ](s(θj))− µ̃·(s(θj))

)}J
j=1

L
=⇒ {B+,θj , B−,θj}

J
j=1

. (7)

Remark 1 By 1.342.2 of Gradshteyn and Rhyzik (1994), cN (θ) equals N if θ is an integer multiple

of 2π, and otherwise equals
1

2

[
sin((N + 1/2)θ)

sin(θ/2)
− 1

]
.

Also by 1.342.1 of Gradshteyn and Rhyzik, sN (θ) equals 0 if θ is an integer multiple of π, and

otherwise equals

sin[(N + 1)θ/2] sin[Nθ/2] csc[θ/2].
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Hence the centering for the sine partial sum is asymptotically irrelevant, as is the centering for the

cosine partial sum unless θ = 0.

Theorem 1 provides the assumed conditions (4), (5), (6), and (7) of HV, and also provides a

generalization of the short memory situation. We next discuss its application to spectral density

estimation.

3.2 Asymptotic Theory for Spectral Density Estimation

Now in order to apply (7) to spectral estimation, it is necessary to extend the FBMs discussed

above to Fractional Brownian Bridges (FBBs) as in HV, defined as follows:

B̃±,θ(r) = B±,θ(r)− 1{θ=0}

∫ r

0
x′(t) dt

[∫ 1

0
x(t)x′(t) dt

]−1 ∫ 1

0
x(t) dB±,θ(t).

Here x is a deterministic vector process with each component xj ∈ C[0, 1], and corresponds to

regression effects in the data process; see Phillips (1998) for a more detailed exposition. That is,

when the mean of the process {Yt} is non-constant, and perhaps is parametrized by regression

functions such that the demeaned {Yt} is mean zero and stationary, then our partial sums and

DFT statistics should be constructed from variables Yt centered by estimates of these mean effects.

In this paper, we focus on the simple case that x(t) ≡ 1, corresponding to centering by the sample

mean (the ordinary least squares estimate of a constant mean); see the Appendix for a partial

elaboration of the more general case. Note that this centering has no impact except at frequency

zero, which follows from Remark 1 above, which shows that only the real part of the DFT (i.e., the

cosine partial sum) at frequency zero needs to be mean-centered. In the case that the true mean

is zero and this assumption is utilized in our statistics, then x(t) ≡ 0 and B̃±,θ = B±,θ, the FBM.

But when we center by the sample mean, it follows that B̃±,0(r) = B±,0(r)− rB±,0(1), a FBB.

We now suppose that an estimate of the spectrum is computed via (1) using autocovariance

estimates centered by the sample mean (or without centering in the special case that the mean is

known to be zero), as described above. The taper (or kernel) Λ comes from a wide family that

encompasses flat-top tapers (Politis, 2001), the Bartlett taper, as well as other tapers considered

in Kiefer and Vogelsang (2005) and HV:

{Λ is even with support on [-1,1] such that Λ(x) is constant for |x| ≤ c, for some c ∈ [0, 1);

also, Λ is twice continuously differentiable on (c, 1).} (8)

A derivative of Λ from the left (with respect to x) is denoted Λ̇−, whereas from the right is Λ̇+; the

second derivative is Λ̈. Note that we allow for Λ to have a jump discontinuity at c; for example, our

results apply to the truncation taper given by the indicator on the interval [−c, c]. Our main result,

which is stated next, follows from Theorem 1 and an analysis of the spectral estimator, expanding

on the analysis of HV.
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Theorem 2 Let {Yt} be covariance stationary with mean µ and acf {γh}, such that the process is

CM(βθj ,θj) for a collection of frequencies θj ∈ [0, π], j = 1, · · · , J . Letting κ = max1≤j≤J 2∧[2/(1+

βθj )], suppose that E[|Yt|κ+δ] <∞ for some δ > 0, and also assume that E[|Sn(c(θj))− cn(θj)|κ+δ] =

O(V
(κ+δ)/2
n (θj)) and E[|Sn(s(θj))− sn(θj)|κ+δ] = O(V

(κ+δ)/2
n (θj)) hold. Suppose condition P1, P2,

or P3 holds, and that in the case of a P2 process with at least one βθj > 0, the Hermite rank is

unity. Also suppose that either the sample autocovariances are centered by the sample mean, or the

they are not centered and that µ = 0. For tapers defined via (8), as N →∞ we have

N f̂(θj)

VN (θj)

L
=⇒− 1

b2

∫ ∫
cb<|r−s|<b

Λ̈

(
r − s
b

)(
B̃+,θj (r)B̃+,θj (s) + B̃−,θj (r)B̃−,θj (s)

)
drds

+
2

b
Λ̇−(1)

∫ 1−b

0

(
B̃+,θj (r)B̃+,θj (r + b) + B̃−,θj (r)B̃−,θj (r + b)

)
dr

− 2

b
Λ̇+(c)

∫ 1−bc

0

(
B̃+,θj (r)B̃+,θj (r + bc) + B̃−,θj (r)B̃−,θj (r + bc)

)
dr

+
2

b

∫ 1−bc

1−b
Λ̇

(
1− r
b

)(
B̃+,θj (r)B̃+,θj (1) + B̃−,θj (r)B̃−,θj (1)

)
dr + Λ(0)

(
B̃2

+,θj
(1) + B̃2

−,θj (1)
)
,

jointly in θj for j = 1, 2, · · · , J . In the case that there is a jump discontinuity in Λ at c, we must

replace the third summand in the limit distribution by

2
(
Λ+(c)− Λ−(c)

) (
B̃+,θj (1− bc)B̃+,θj (1) + B̃−,θj (1)B̃−,θj (1− bc)

)
.

This result describes the limit behavior of the spectral density estimate in the case that cyclical

memory is present, considering a finite collection of frequencies. If these frequencies happen to

correspond to short memory dynamics, then the spectral density is finite and nonzero. Letting

τθ =
1+1{θ=0,π}

2 , from (4) we have

VN (θ) ∼ N τθ f(θ), (9)

so that the convergence of Theorem 2 in the case of short memory may be summarized as

f̂(θ)
L

=⇒ τθ f(θ)Sθ(b),

where we denote the limit random variable on the right hand side of the convergence in Theorem

2 via Sθ(b). A numerical description of this distribution is given in HV. A technical description

can be given through the moment generating function, or Laplace Transform (LT) of Sθ(b), as in

McElroy and Politis (2009); this is developed in Section 4 below. Tables of quantiles can be given

over a grid of b values, depending on the three frequency cases (i.e., θ = 0, θ = π, or θ ∈ (0, π))

and the taper; see Tables 1 through 18 below.

In the case of cyclical long memory or negative memory the true spectrum f(θ) is either equal

to ∞ or zero, and inference is problematic. For the purpose of constructing a confidence interval,

we propose the quantity fN (θ) = VN (θ)/(Nτθ) as the “parameter” of interest, although clearly this
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is a moving target; only in the case of short memory can we conceptually replace fN (θ) by f(θ),

via (9). However, whatever the degree of cyclical memory, we can conduct inference for fN (θ) as

follows. Denote the quantile function of Sθ(b) by Qθ(·). If we wish to consider a single frequency,

the confidence interval for fN (θ) with asymptotic coverage 1− α is[
f̂(θ)

τθQθ(1− α/2)
,

f̂(θ)

τθQθ(α/2)

]
, (10)

which follows from P
[
Qθ(α/2) ≤ f̂(θ)

τθ fN (θ) ≤ Qθ(1− α/2)
]
→ 1 − α. Alternatively, a simultaneous

confidence interval can be constructed by considering the maximum and minimum of Sθ(b) over the

pertinent frequencies. Let S(b) = max1≤j≤J Sθj (b)/τθj and S(b) = min1≤j≤J Sθj (b)/τθj , which have

distributions easily computable from the marginals due to independence (they are also identically

distributed for θj ∈ (0, π)). (Note that our notation assumes that the same bandwidth fraction b is

used for all frequencies, although this need not be the case in practice.) The corresponding quantile

functions will be denoted Q and Q for the maximum and minimum respectively. Let J denote a

finite index set, and consider a set of frequencies θj with 1 ≤ j ≤ J . For positive real numbers `, u,

we have

P

[
f̂(θj)

τθj u
≤ fN (θj) ≤

f̂(θj)

τθj `
∀j

]
= P

[
` ≤ f̂(θj)

τθj fN (θj)
≤ u ∀j

]
→ P

[
` ≤ S(b) ≤ S(b) ≤ u

]
= 1− P [S(b) ≤ `]− P

[
S(b) ≥ u

]
.

The last equality follows from the observation that – when ` < u – the event {S ≤ `} is mutually

exclusive with the event {S ≥ u}. This probability is approximately 1−α if `, u correspond to the

appropriate critical values; splitting the quantity α evenly amounts to

` = Q (α/2) u = Q (1− α/2). (11)

This provides the construction of a simultaneous confidence interval.

3.3 Asymptotic Theory for Spectral Distribution Estimation

The estimation of spectral content can be extended to the spectral distribution function F (θ) =

(2π)−1
∫ θ
−π f(λ) dλ, and because of the smoothing of the spectral density accomplished by integra-

tion, the behavior of statistical estimates is easier to describe. In this subsection we assume that

the spectral density has short memory, and hence 0 < f(λ) <∞ for all λ ∈ [−π, π]. We make this

assumption so that the rate of convergence of spectral estimates are the same at all frequencies.

Indeed, the classical limit result of Dahlhaus (1985) cannot hold for processes with long memory

poles such that β > 1/2, because the limiting variance (see below) depends on the integral of the

squared spectral density.
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Because the spectral density is even, it suffices to study G(θ) = (2π)−1
∫ θ
0 f(λ) dλ, and its

corresponding estimator Ĝ(θ) = (2π)−1
∫ θ
0 f̂(λ) dλ. Very general results for functionals of the

periodogram, under general data process conditions, were obtained by Dahlhaus (1985); also see

the literature cited in that paper for a history of efforts. Whereas Dahlhaus (1985) utilizes a data

taper, here we utilize a covariance taper – in keeping with the previous subsection on spectral density

estimation – as other literature has also done (e.g., Priestley (1981)). The novelty of this subsection

lies chiefly in adopting a fixed bandwidth ratio framework, and somewhat unsurprisingly the same

limit distribution and functional limit theorem is obtained as in Dahlhaus (1985); in particular,

neither bandwidth fraction b nor taper play any role in the asymptotic distribution.

Utilizing the definition of the spectral density estimator, we at once obtain

Ĝ(θ) = γ̂0
θ

2π
+ 2

N−1∑
h=1

Λ(h/bN) γ̂h
sin[θh]

2πh

=
1

2π

∫ π

−π
I(λ)

∑
|h|<N

Λ(h/bN)
sin[θh]

2πh
eiλh dλ,

where we interpret sin[θh]/h to be the value θ whenever h = 0. Here I(λ) is the periodogram,

defined to be N−1 times the magnitude squared of the DFT:

I(λ) = N−1

∣∣∣∣∣
N∑
t=1

(Yt − Y )e−iλt

∣∣∣∣∣
2

.

Let gθ(λ) = Λ(0)
∑

h∈Z
sin[θh]
2πh eiλh, which is the pointwise limit of

gN,θ(λ) =
∑
|h|<N

Λ(h/bN)
sin[θh]

2πh
eiλh.

Because of symmetry, gθ is always real, and so the complex exponential can be replaced by a cosine

in its definition. We claim that this pointwise limit can be taken in the definition of Ĝ(θ). Note

that gθ(λ) = 2−1 1[−θ,θ](λ), the sinc function. Let Ĝ(·) denote the spectral distribution function’s

estimate, and the limiting process Z(·) is defined as a mean zero Gaussian process with covariance

kernel

K(θ, ω) = Cov (Z(θ),Z(ω)) = π−1
∫ π

−π
gθ(λ)gω(λ)f2(λ) dλ =

1

2π

∫ θ∧ω

0
f2(λ) dλ. (12)

This kernel is simpler than the one found in Dahlhaus (1985), because we will assume that fourth

order cumulants are zero (this could be relaxed, but then a different approach to the estimation of

limit quantiles in Theorem 3 would be needed). The kernel actually corresponds to the covariance

kernel of a heteroscedastic Brownian Motion (see below).

We focus on G(θ) rather than F (θ), because if we are interested in F (θ) for θ < 0, this is

equal to G(π) − G(−θ) by symmetry. So the following functional limit theorem can be stated;
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like Theorem 4.1 of Dahlhaus (1985) we require eighth order moments. (Using the less restrictive

tightness criterion described in Karatzas and Shreve (1991), one could relax the requirement to

4 + δ moments, for some δ > 0, but then other conditions – that are harder to verify – would have

to be added to compensate.)

Theorem 3 Let {Yt} be covariance stationary with mean µ and acf {γh}, such that the process has

short memory, satisfies E[Yt
8] < ∞, and such that condition P1, P2, or P3 holds. Also suppose

that the fourth order cumulants are zero. If the taper satisfies (8), then as N →∞ we have

√
N
(
Ĝ(·)−G(·)

)
L

=⇒ Z(·)

in the space C([0, π],R), where the process Z is mean zero Gaussian with covariance kernel (12).

It is interesting that the taper is irrelevant to the asymptotic distribution – this is essentially

because the integration involved in the definition of the spectral distribution makes the tapering in

the spectral density estimation obsolete. However, the taper and the bandwidth have a substantial

impact on the qualitative features of the estimate (see Section 5). The degree of correlation between

differing values of the spectral distribution estimator depends chiefly on the smaller frequency, as

indicated by (12); variance is increasing in frequency, unto the maximum value G(π) = γ0/2.

As an application of Theorem 3, we can construct uniform confidence bands about the spectral

distribution function. This is in contrast to the application discussed in Section 3.2, where simul-

taneous confidence intervals were constructed for a finite number of frequencies. For real numbers

`, u we have the confidence band [Ĝ(θ)−u/
√
N, Ĝ(θ)−`/

√
N ] – as a function of θ ∈ [0, π] – yielding

coverage as follows:

P
[
Ĝ(θ)− u/

√
N ≤ G(θ) ≤ Ĝ(θ)− `/

√
N,∀θ ∈ [0, π]

]
= 1− P

[
sup
θ∈[0,π]

√
N (Ĝ(θ)−G(θ)) ≥ u

]
− P

[
inf

θ∈[0,π]

√
N (Ĝ(θ)−G(θ)) ≤ `

]

→ 1− P

[
sup
θ∈[0,π]

Z(θ) ≥ u

]
− P

[
inf

θ∈[0,π]
Z(θ) ≤ `

]
as N → ∞. The random variables Z = infθ∈[0,π] Z(θ) and Z = supθ∈[0,π] Z(θ) determine the

spread of the confidence band, and can be calculated via simulation when the covariance kernel is

known, or is estimable. Another possibility is to estimate the limit distribution via subsampling

(this might be preferable if the assumption on the fourth cumulant is not tenable), as in Politis,

Romano, and You (1993).

Let the corresponding quantile functions be denoted by R and R respectively. Then the confi-

dence band probability is approximately 1− α if `, u correspond to the appropriate critical values;

splitting α evenly yields

` = R(α/2) u = R(1− α/2). (13)
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This construction differs somewhat from (11), because in that case the limit theorem was formulated

as a ratio (for spectral density estimation), whereas here the limit theorem is formulated as a

difference (for spectral distribution estimation). Although the limit Z(θ) does not depend on the

taper, it does require a knowledge of f . In practice, one must construct an estimate of the covariance

kernel (12); we next describe our procedure.

Let M denote a mesh of frequencies, providing a discretization of the Riemann integral defining

K(θ, θ). Then

1

2π

∫ θ

0
f2(λ) dλ ≈ 1

2M

bMθ/πc∑
t=0

f2(tπ/M),

which is the variance of a heteroscedastic random walk. That is, suppose that {εt} is an independent

Gaussian sequence, with each random variable having variance f2(tπ/M)/(2M) for M fixed. Then

U` =
∑`

t=1 εt is a heteroscedastic random walk with variance approximately K(θ, θ), where ` =

bMθ/πc. We can easily simulate this Gaussian sequence by multiplying f(tπ/M)/
√

2M times iid

normals. Moreover, the covariance function of the process {U`} is approximately that of the kernel

K, because of the random walk structure.

If f is known (as in the case of hypothesis testing) then we can simulate the process {U`} and

obtain an approximation to {Z(θ)}, with the association ` = bMθ/πc. However, in many applica-

tions f is unknown and must be estimated. One could use the tapered spectral density estimates

discussed above, or the periodogram (integration over frequencies smooths it out sufficiently to

provide consistency). Thus, we construct ε̂t via multiplying f̂(tπ/M)/
√

2M by a standard normal,

independently for each t, and construct the corresponding heteroscedastic random walk {Û`}. Here

f̂ could be the periodogram or the same tapered spectral estimate upon which our original Ĝ is

based. Then with Z(θ) = ÛbMθ/πc, we approximate Z and Z by the minimum and maximum,

respectively, over the M values Û1, · · · , ÛM . Repeated samples for {ε̂t} then yield an estimate

for the distribution of Z and Z. Consistency of this implicit estimator K̂ follows from the same

assumptions as used in Theorem 3. The upper quantile of R and lower quantile of R yield estimates

of u and `. This procedure has been implemented and tested in simulation (see Section 5 below).

Alternatively, one may be interested in testing some null hypothesis that naturally supplies f

to us. For example, we may be studying the time series residuals arising from a fitted model, and

seek to test whether these residuals behave as white noise. Ignoring issues of parameter estimation

error, we wish to test whether f(λ) ≡ γ0, and hence we can estimate the covariance kernel via

K̂(θ, ω) = γ̂20
θ ∧ ω

2π
.

This is the kernel of a Brownian Motion process on [0, π], scaled by γ̂0. There exist published

quantile functions for the supremum and infimum of BMs, and so the construction of `, u is rel-

atively straightforward. In this problem, the null hypothesis also dictates the form of G, i.e.,

G(θ) = γ0 θ/(2π), so that if this particular function G fails to lie completely within the confidence
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bands, we have evidence to reject the null hypothesis. However, such an approach ultimately pre-

sumes a parametric specification for the original spectrum, and there are other techniques available

for testing model goodness-of-fit in such a scenario. In our applications below, we focus upon

nonparametric approaches to spectral estimation.

4 Higher Order Accuracy of the Fixed Bandwidth Fraction

In this paper we have adopted the asymptotic perspective that bandwidth in spectral estimates is

to be viewed as a fixed fraction b of the sample size. Conventional asymptotics stipulate that the

bandwidth is vanishing relative to sample size, and the spectral estimates become consistent. As

in the HAC literature – which examines the distribution of the self-normalized mean as b→ 0, and

makes comparison to the conventional asymptotic normality results – we intend to examine the

behavior of our limits Sθ(b) in Theorem 2 as b → 0. The point of this is to show that that Sθ(b)

can be viewed as the classical limit distribution Sθ(0) plus other stochastic terms that are order b,

b2, and so forth. This will demonstrate a higher-order accuracy for the fixed bandwidth fraction

asymptotics.

Unlike in the HAC case of a standardized sample mean statistic, where the b = 0 case corre-

sponds to a Gaussian random variable, for spectral estimation the b = 0 case corresponds to point

mass at the spectral density, i.e., Sθ(0) = f(θ) with probability one. Therefore, expansions of the

distribution of Sθ(b) as b → 0 will use slightly different techniques then those employed in Sun,

Phillips, and Jin (2008). We pursue an analysis of the Laplace Transform of Sθ(b), providing a small

b expansion, and relate this transform to the cumulative distribution function of Sθ(b). We utilize

an expansion of the Laplace Transform in terms of functions that have known Laplace inverses; we

believe this to be a novel method, potentially generalizable to other types of distribution problems.

This method will result in an expansion of the right tailed cumulative distribution function

(cdf) in terms of polynomials and exponential functions, with coefficients given by polynomial

functions of the cumulants. We show how to compute these cumulants directly from the tapers

– although similar types of cumulant calculations have previously appeared in the HAC literature

(Sun, Phillips, and Jin (2008)). However, we do not view this expansion as the most practical

method for calculating the cdf; in practice, one wants the quantiles of the limit distribution, and

these can be obtained via simulation (Section 5).

Fixing θ so that we can drop the subscript, the distribution of S(b) is characterized by its

Laplace Transform (LT). From Tziritas (1987), the LT of a Gaussian quadratic form 〈Z,Z〉T – for

a Gaussian process Z with covariance kernel K, and a quadratic form 〈·, ·〉T with operator T – is

given by

E exp{−s〈Z,Z〉T } = exp{
∞∑
j=1

(−1)j
κj
j!
sj},
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where κj is the jth cumulant of S(b), and has the formula

κj = 2j−1 (j − 1)! tr[(KT )j ]. (14)

Also see the discussion in McElroy and Politis (2012). Briefly, the Gaussian process Z is defined

on the space of real-valued function of domain [0, 1], such that the action of an operator A on any

element x of this space is given by (Ax)(s) =
∫ 1
0 A(s, t)x(t)dt. In equation (14), both K and T are

operators, and their composition has action on an element x given by

(KTx)(s) =

∫ 1

0

∫ 1

0
K(s, u)T (u, t)x(t)dtdu.

Also, tr denote the trace of an operator, i.e., tr(A) =
∫ 1
0 A(s, s) ds.

The limit distribution S(b) in Theorem 2 is the sum of two such independent and identically

distributed Gaussian quadratic forms (just one copy if θ = 0, π), because it can be written as the

sum of two random variables of the type∫ 1

0

∫ 1

0
T (r, s)B̃(r)B̃(s) drds,

where T (r, s) is equal to −b−2Λ̈((r− s)/b) plus secondary terms involving the Dirac delta function.

Because the Gaussian processes B̃ are FBBs, the covariance kernelK is that of FBB (Samorodnitsky

and Taqqu (1996)). Trivially, the LT of the sum of two iid random variables is the square of their

common LT, which amounts to a doubling of each cumulant. In the following treatment, we provide

an expansion for the cdf in terms of cumulants; these are given by doubling the formula for κj in

(14) when θ 6= 0, π, but at frequency zero or π we just take the formula (14) directly. Since the

trace of powers of KT is not convenient to calculate, we provide a feasible approximation to the

κj after our presentation of the expansion.

The right-tailed cdf of 〈Z,Z〉T will be denoted by F , and its pdf by p. The LT of a function φ

(of non-negative support) is denoted Lφ, where

Lφ(s) =

∫ ∞
0

φ(x)e−sx dx.

Then LF (s) = s−1(1 − Lp(s)) using integration by parts, and Lp(s) = E exp{−s〈Z,Z〉T }. Next,

letting
∑0

j=1 (an empty sum) be equal to zero for convenience, consider the infinite expansion

LF (s) =
∞∑
k=0

s−1

exp


k∑
j=1

(−1)j
κj
j
sj

− exp


k+1∑
j=1

(−1)j
κj
j
sj


 , (15)

and denote the kth term by the function Gk(s). Each such function is actually of order bk, and by

carefully expanding them in an appropriate fashion, is the infinite sum of functions with known LT

inverse. The initial term in the expansion is

G0(s) = s−1
(
1− e−κ1s

)
= L1[0,κ1](s),
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i.e., it is the LT of the indicator function on [0, κ1]. This makes sense, because the right-tailed cdf

should tend, as b → 0, to an indicator function with boundary marked by its point mass, namely

κ1 = Λ(0) (shown below). The higher order terms are more complicated, but contribute additional

perturbations to this indicator function.

The key to the following theorem are the following class of polynomials: let φn be supported

on [0,∞) such that

ψn+1(z, x) =

(
∂2

∂z∂x
[ψn(z, x) ezx]

)
e−zx/n

and φn(x) = ψn(−1, x). Thus φ1(x) = 1, φ2(x) = 1 − x, φ3(x) = 1 − 2x + x2/2, etc. These

polynomials have the remarkable property that

Lφn+1e−·(s) = sn(1 + s)−(n+1), (16)

as shown in Gradshteyn and Rhyzik (1994). Now we can state the main expansion result, which

applies more generally than to just the spectral density estimation problem.

Theorem 4 Suppose that a Gaussian quadratic form 〈Z,Z〉T with covariance kernel K has cumu-

lants given by (14). Then there exist coefficient sequences {α(k)
j } for each k ≥ 1 such that

Gk(s) =

∞∑
n=0

α
(k)
n+1

(n+ 1)!
sn(1 + s)−(n+1) =

∞∑
n=0

α
(k)
n+1

(n+ 1)!
Lφn+1e−·(s)

and G0(s) = s−1 (1− e−κ1s), where
∑

k≥0Gk is the Laplace Transform of the right-tailed cdf of

〈Z,Z〉T . The right-tailed cdf has the expansion

F (x) = 1[0,κ1](x) +

∞∑
n=0

α
(1)
n+1

(n+ 1)!
φn+1(x)e−x +

∞∑
n=0

α
(2)
n+1

(n+ 1)!
φn+1(x)e−x + · · · .

The coefficient sequences {α(k)
n } are derived in the proof, and are fairly complicated expressions

in terms of the cumulants. Next, we apply Theorem 4 to the case where b → 0, noting that each

subsequent term in the expansion is of higher order. As discussed in Sun, Phillips, and Jin (2008)

in the case of a regular taper and a short memory covariance kernel K, the cumulants satisfy

κj = O(bj−1); assuming this, we have the following corollary.

Corollary 1 Suppose that a Gaussian quadratic form 〈Z,Z〉T with covariance kernel K has cu-

mulants given by (14), and also suppose that κj = O(bj−1) as b→ 0. Then

∞∑
n=0

α
(k)
n+1

(n+ 1)!
φn+1(x)e−x = O(bk)

as b→ 0, for each k ≥ 1.
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We note that the cumulants need not have the behavior κj = O(bj−1) when long memory or

negative memory is present, as demonstrated in McElroy and Politis (2012) for the θ = 0 case. In

that paper it was shown that the small b behavior of S0(b) has a distribution that either explodes

to infinity (the case of long memory) or shrinks to zero (the case of negative memory).

Remark 2 As an example, consider the case that κj = 0 for j > 2, which corresponds to treating

all higher order terms in b as zero. Then the LT of the pdf is just

exp{−κ1s+ κ2s
2/2},

which corresponds to a (positive) random variable with mean κ1 and variance κ2, and all higher

order cumulants exactly zero. If the random variable were not enforced to be positive, it would

correspond to the Gaussian distribution by its cumulant characterization. However, the actual

limit is positive and non-Gaussian. Pretending – for the sake of making a comparison with the

vanishing bandwidth fraction scenario – that this distribution is really Gaussian would yield the

limit theorem
f̂(θ)

f(θ)

L
=⇒ N (κ1, κ2).

The classic small-b results (Anderson, 1971) state that

√
N/M

(
f̂(λ)

f(λ)
− 1

)
L

=⇒ N (0,

∫
Λ2(x) dx)

for λ ∈ (0, π) and taper Λ (satisfying Λ(0) = 1) of bandwidth M , such that M/N + 1/M → 0.

Taking M = bN in this result indicates that our results provide a higher order extension of the

classical results, so long as κ1 = Λ(0) and κ2/b ∼
∫

Λ2(x) dx; this is shown below.

This completes the higher order analysis. Now we discuss the cumulants κj further, focusing

on the case of short memory. Let us here assume that θ = 0, so that the limit random variable of

Theorem 2 is a Gaussian quadratic form. We know that this limit variable is the limit of a statistic

of the form N−1Y ′AY , where Y ′ = [Y1, Y2, · · · , YN ] is the sample written as a row vector, and A is

an N ×N dimensional matrix. We proceed to derive this matrix A; the same statistic is equal to∑
h Λ(h/[bN ])γ̂h, so that A = IΣI with I = 1N −N−1ιι′ and Σjk = Λ((j − k)/[bN ]). Here ι is the

column vector of N ones, 1N is the N ×N identity matrix, and I accomplishes mean-centering of

the data, i.e., IY is the column vector of sample-mean centered data; if we are not mean-centering,

then I can be omitted. Observe that I is idempotent.

We propose to examine the distribution of N−1Y ′AY for a Gaussian process {Yt} as an approx-

imation to the general limit 〈Z,Z〉T . Since our purpose is to gain insight into the cumulants, we

will take {Yt} to be white noise (this is appropriate for the short memory case – for cyclical long

memory, we must take fractional Gaussian noise). In any event, N−1Y ′AY is a Gaussian quadratic
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form, so that the same description in terms of LT and cumulants applies, and we know its LT

converges to that of 〈Z,Z〉T . The cumulants of N−1Y ′AY , applying (14), involve the trace of Aj

divided by N j . We here develop expressions for these cumulants, take the limit as N → ∞, and

obtain formulas for the cumulants of 〈Z,Z〉T .

The trace of Aj depends upon two important quantities, which are tr[Σj ] and N−1ι′Σjι, each of

which quantities grows at order N j . We introduce the abbreviation Λb = Λ(·/b). By the definition

of the Riemann integral and a change of variable, and letting x ∈ Rj−1, we obtain

N−j tr[Σj ]→
∫
[−1,1]j−1

C(x) Λb(x1) Λb(x2) · · ·Λb(xj−1) Λb([x1 + x2 + · · ·+ xj−1]) dx (17)

when j ≥ 2, where the cumulator function C takes the value 1− [|x1|+ · · ·+ |xj−1|] wherever the

domain produces a non-negative value. This means that x1 ∈ (−1, 1), x2 ∈ (−1 + |x1|, 1 − |x1|),
etc. When j = 1, we have N−1tr[Σ] = Λ(0).

Let the limit in (17) be denoted by µj(b), and note that the bounds on the integrals could also

be written as (−b, b) instead of (−1, 1), due to the support of the tapers. Then we can rewrite the

limit quantity (for j ≥ 2) as

µj(b) = bj−1
∫
[−1,1]j−1

C(bx) Λ(x1) Λ(x2) · · ·Λ(xj−1) Λ(x1 + x2 + · · ·+ xj−1) dx,

so that limb→0 µj(b)/b
j−1 =

∫
[−1,1]j−1 Λ(x1) Λ(x2) · · ·Λ(xj−1) Λ(x1 + x2 + · · · + xj−1) dx. Similarly

for j ≥ 1, letting x ∈ Rj ,

N−j ι′Σjι→
∫
[−1,1]j

C(x1, x2, · · · , xj) Λb(x1) Λb(x2) · · ·Λb(xj) dx, (18)

and we denote this limit by ηj(b). Again by change of variable, it can be rewritten as

ηj(b) = bj
∫
[−1,1]j

C(bx) Λ(x1) Λ(x2) · · ·Λ(xj) dx,

so that limb→0 ηj(b)/b
j−1 = [

∫ 1
−1 Λ(x) dx]

j
. Now by the idempotency of I, tr[Aj ] = tr[(Σ I)j ]. Then

the first four such trace quantities N−jtr[Aj ], for j = 1, 2, 3, 4, have limits given by

µ1(b)− η1(b)

µ2(b)− 2η2(b) + η21(b)

µ3(b)− 3η3(b) + 3η1(b)η2(b)− η31(b)

µ4(b)− 4η4(b) + 4η3(b)η1(b) + 2η22(b)− 4η2(b)η
2
1(b) + η41(b).

In the case that no centering is utilized, then I is replaced by the identity matrix, and all the

ηj terms are replaced by zeroes in the above formulas. Then trivially N−j [Aj ] → µj(b) for all

j ≥ 1. But when centering is utilized, the general limit for j ≥ 5 is somewhat complicated: one
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examines the number of partitions of the set {1, 2, · · · , j}. A m-fold partition consists of m disjoint

sets whose union is the full set {1, 2, · · · , j}; combinatorial formulas exist to count the number

of m-fold partitions of j, as they are called (Stanley, 1997). We must count the number of such

partitions that result in disjoint sets of the same cardinality, e.g., the 2-fold partitions of 4 are

[|1|234], [1|2|34], [12|3|4], and [123|4|] (which consist of sets with same cardinality, either one or

three) as well as [|12|34] and [1|23|4]. Note that we are shifting where the vertical bar is placed,

which actually represents the position of the matrix I in-between the matrices Σ, represented in

order by the various numbers. Because of the trace operator, these partitions are treated toroidally,

so that [|12|34] is counted the same as [12|34|].
If we have an m-fold partition, the resulting m sets have various cardinalities k1, k2, · · · , km,

and of course k1 +k2 + · · ·+km = j. Let λm,j(k1, k2, · · · , km) denote the number of such partitions,

so that we have λ1,j(k1) = j. A partition of j into sets of such cardinalities will be denoted

(k1, k2, · · · , km) ` j. Then the general formula for N−jtr[Aj ] is

µj(b) +

j∑
m=1

(−1)m
∑

(k1,k2,··· ,km)`j

λm,j(k1, k2, · · · , km) ηk1(b)ηk2(b) · · · ηkm(b).

In this manner we can compute asymptotic cumulants, where the leading terms correspond to the

case where no centering is used – terms that are zero unless θ = 0 and centering is used are prefaced

with a ∗:

κ1 = Λ(0)− ∗ b
∫ 1

−1
(1− b|x|)Λ(x) dx

κ2 = 2b

∫ 1

−1
(1− b|x|)Λ2(x) dx− ∗ 4b2

∫ 1

−1

∫ 1−b|x|

−1+b|x|
(1− b|x| − b|y|)Λ(x)Λ(y) dy dx

+ ∗ 2b2
(∫ 1

−1
(1− b|x|)Λ(x) dx

)2

.

Because ηj(b) = O(bj) and µj(b) = O(bj−1), the small b behavior of the cumulants makes mean

centering irrelevant, in the sense that as b → 0 the cumulants are the same whether or not mean

centering is utilized. The Bartlett case of these formulas is explored in HV, as well as Neave

(1970). To summarize, if θ = π then the above formulas apply to the cumulants of Sπ(b) regardless

of whether centering is utilized or not (all ∗’d terms are zero); if θ = 0 then the above formulas

apply to the cumulants of S0(b), with ∗’d terms set to zero unless centering is used; if θ 6= 0, π,

then the above formulas apply to the cumulants of Sθ(b) once they are doubled (and ∗’d terms are

zero), although the limit distribution is actually Sθ(b)/2 in this case.

5 Numerical Studies of Size and Bandwidth Selection

This section now discusses some more practical aspects of spectral density estimation. We first

discuss a method for calculating the limiting distribution, apart from direct simulation of the
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limit variable in Theorem 2. Then we provide quantiles for this distribution for three tapers, and

investigate coverage in finite sample simulations as a function of bandwidth fraction b. Finally, we

provide a discussion of optimal bandwidth selection.

5.1 Computing the Spectral Distribution

In the case that θ 6= 0, π, the distribution Sθ(b) has a particularly elegant representation in terms of

its Laplace Transform, by which its right-tailed cumulative distribution function can be computed

exactly from a knowledge of the taper. From Theorem 2, we know that the limit distribution is

the sum of two iid copies of 〈Z,Z〉T , whose LT can be written as det [id + 2sKT ]−1/2, cf., Tziritas

(1987). Here id denotes the identity operator. Therefore the LT for the sum of two such iid

variables – denoted by 〈Z,Z〉T ⊕ 〈Z,Z〉T as a shorthand – will be the square of each variable’s

LT, namely det [id + 2sKT ]−1, or the product of (1 + 2sλj(KT ))−1 for the eigenvalues λj (KT) of

the operator KT . As discussed in the previous section, the limit distribution in Theorem 2 can be

estimated by studying a finite-sample Gaussian quadratic form with matrix A = IΣI; in particular,

we can calculate the N eigenvalues of A using linear algebra (if N < 1000 this is not particularly

burdensome). Then these should be estimates of the limiting eigenvalues in an aggregate sense; but

the infinite product
∏
j≥1 (1 + 2sλj(KT ))−1 can be expanded using partial fractions. We provide

details below.

Since θ 6= 0, π, the spectral estimate has the form N−1Y ′AY with I as defined in Section 4, and

A = IΣI, but Σjk = Λ((j−k)/[bN ]) cos(θ(j−k)). Let λj(A) be the jth largest eigenvalue of A, with

1 ≤ j ≤ N , computed using linear algebra on a computer. The LT ofN−1Y ′AY , which converges for

all s pointwise to the function
∏
j≥1 (1 + 2sλj(KT ))−1, can be expressed as

∏N
j=1 (1 + 2sλj(A))−1/2.

While in finite sample the eigenvalues of A are distinct, asymptotically they have a paired structure,

such that each eigenvalue appears with multiplicity two, resulting in the squaring of the square root

symbol. First we show that a knowledge of the limiting eigenvalues λj(KT ) provide the cumulative

distribution function, and then we propose estimating these eigenvalues by the λj(A).

A partial fraction decomposition, assuming that λj(KT )→ 0 as j →∞, is∏
j≥1

(1 + 2sλj(KT ))−1 =
∑
j≥1

αj
1 + 2sλj(KT )

.

Here the coefficients αj can be obtained via linear algebra, described below, when the eigenvalues

are eventually zero, or if we approximate the infinite product by a truncation to j ≤ J for suitably

large J . Moreover,

s−1
∏
j≥1

(1 + 2sλj(KT ))−1 =
α0

s
+
∑
j≥1

αj
1 + 2sλj(KT )

(19)

is another partial fraction decomposition of interest, and the structure actually implies that α0 = 1

must hold. As discussed in Section 4, the LT of the right cdf for spectral limit is equal to s−1 times
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one minus the LT of pdf of the spectral limit distribution, and hence

s−1
(

1− L〈Z,Z〉T⊕〈Z,Z〉T
)

= −
∑
j≥1

αj
1 + 2sλj(KT )

= −
∑
j≥1

αj
2λj(KT )

L
e−·/[2λj(KT )](s)

by (19). Now using the linearity of the LT, we obtain by inversion

P[〈Z,Z〉T ⊕ 〈Z,Z〉T > x] = −
∑
j≥1

αj
2λj(KT )

e−x/[2λj(KT )]. (20)

This gives an exact formula for the right-tailed cdf of the limit distribution Sθ(b) in terms of the

eigenvalues of the operator KT . Unfortunately, this technique does not work for θ 6= 0, π. We

propose to estimate the limiting LT via

[N/2]∏
j=1

(1 + 2sλ2j−1(A))−1,

which essentially assumes that consecutive eigenvalues of A are so close as to be virtually identical.

Then in the partial fraction decomposition, we substitute the known eigenvalues λ2j−1(A), and

compute the corresponding αj .

Here we discuss how to calculate the partial fraction decomposition a bit more generally. Sup-

pose we seek the αj such that s−1
∏J
j=1 (1 + 2sλj)

−1 = s−1 +
∑J

j=1 αj/(1 + 2sλj) holds. Cross-

multiplying produces

1 =
J∏
j=1

(1 + 2sλj) +
J∑
j=1

αj s
∏
`6=j

(1− 2sλ`) = τ (0)(s) +
J∑
j=1

αj sτ
(j)(s), (21)

and τ (j)(s) for 0 ≤ j ≤ J is computed using polynomial multiplication (easily encoded on the

computer). Let the coefficients of each polynomial τ (j)(s) be denoted τ
(j)
k for 0 ≤ k ≤ J , and note

that τ
(j)
0 = 1 for each j by construction. Whereas τ (0) is degree J , the other polynomials have

degree J − 1, though they are multiplied by s in the expansion (21). Then taking the expansion

and gathering powers of s produces, after simplification,

0 = τ
(0)
` +

J∑
j=1

αjτ
(j)
`−1

for 1 ≤ ` ≤ J . This produces the matrix system
−τ (0)1

−τ (0)2
...

−τ (0)J

 =


τ
(1)
0 τ

(2)
0 · · · τ

(J)
0

τ
(1)
1 τ

(2)
1 · · · τ

(J)
1

...
...

. . .
...

τ
(1)
J−1 τ

(2)
J−1 · · · τ

(J)
J−1




α1

α2

...

αJ

 ,

which provided the matrix is invertible, can be solved for the αj coefficients. Although this technique

provides the right-tailed cdf of Sθ(b), we still need to compute quantiles, and it is unclear how do
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this using (20). As in McElroy and Politis (2012), we have simulated the distribution of Sθ(b) for

some tapers, when θ 6= 0, π (the case of θ = 0, π produces a distribution for Sθ(b) identical to

the HAC case, and its quantiles can be found in published literature such as Kiefer and Vogelsang

(2005)), and reported a summary in the following table. We focus on three tapers: the Bartlett

and two trapezoidal tapers.

First consider the limit distribution Sθ(b) of Theorem 2 in the case that θ 6= 0, π. In this case,

recall that mean centering is irrelevant, so that the limit is a quadratic functional of FBM rather

than FBB; moreover, there is a doubling effect, where Sθ(b) is really the sum of two iid random

variables. In the case that θ = 0 or θ = π, the limit Sθ(b) is given by just one of these random

variables. Furthermore, when θ = 0 and we construct our spectral estimates by mean-centering,

then the limit distribution S0(b) involves FBB instead of FBM. Alternatively, if no mean centering

is utilized in the estimates (and the true mean is zero) then the distribution of S0(b) involves FBM

rather than FBB. The case of S0(b) with mean-centering, utilized as a studentization of the sample

mean, was studied in McElroy and Politis (2012); tables of quantiles for S0(b) and Sπ(b) have not

been published, to our knowledge.

Both lower and upper quantiles are estimated for the limit distributions, for a variety of

long memory parameters β, summarized via regression against an appropriate function of band-

width fraction. Specifically, we consider β = −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, and the quantiles for

α = .01, .025, .05, .1, .9, .95, .975, .99. Having determined these quantiles over 50,000 simulations of

FBM (see McElroy and Politis (2009) for discussion of the simulation method), each one is then

regressed across 50 different values of b, ranging between .02 and 1.00. The regression function is

an exponential quintic, i.e.,

q(b) = exp{c0 + c1b+ c2b
2 + c3b

3 + c4b
4 + c5b

5},

where q is the quantile. In the case that some of the lower quantiles take on negative values

(there is no guarantee that spectral density estimates and limit distributions be strictly positive

unless a positive definite taper is utilized), the regression function is just a quintic. All regression

coefficients are reported in the Tables 1 through 18, along with the R2 for the regression, with an

asterisk marking those cases where regression is onto a quintic rather than an exponential quintic.

In some cases the coefficients exhibit a non-monotonic pattern in increasing α, which is attributable

to the regression error. For purposes of inference, the simulated quantiles arising from the tables are

adequate. Note that Tables 1 through 9 give the quantiles for the case that frequencies are between

0 and π, for β = −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, while Tables 10 through 18 provide the same for

the case of frequencies equal to 0 or π (assuming no mean-centering is used in the frequency 0 case).

Because the case of a frequency between 0 and π involves the sum of two iid variables (Theorem

2), versus just one such variable in the frequency 0 or π case, the quantiles are a bit larger and

have more positive mass. When using non-positive definite tapers, such as the Trapezoidal tapers,
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the limit distribution has some mass on the negative half-line, and there is more such mass in

the frequency 0 and π cases. No such negative mass occurs with the Bartlett taper, because it

is positive definite. Another feature that can be gleaned is the small b behavior of the quantiles

as a function of β, namely that the quantiles shrink towards zero as β increases, when b is small

(examine the first coefficient c0 in the tables). However, for negative memory (β < 0) the quantiles

tend to decrease as a function of b (examine the second coefficient c1 in the tables), whereas the

opposite is true for positive memory (β > 0). When β = 0, the sign of c1 is negative for the left

tail and positive for the right tail, indicating a mixture of effects. In comparison with the quantiles

for the self-normalized sample means in the HAC literature (McElroy and Politis (2009, 2011)),

the small b behavior as a function of memory is inverted, because in the self-normalized case the

variable Sb(0) is in the denominator of the limit distribution.

One implication of the small b behavior of Sb is that, while for short memory the distribution

becomes centered around unity, for β < 0 there is more probability mass on values greater than

one, whereas for β > 0 there is a greater probability of values less than one. When constructing

confidence intervals, it is therefore possible in the long memory case for both the lower and upper

quantile to be less than unity, so that the confidence interval does not encase the estimator – the

point estimate will lie below both the lower and upper limits of the interval. In contrast, for the

negative memory case, the point estimate can lie above both the lower and upper limits of the

interval. There is nothing incorrect mathematically about this feature, though it may look unusual

(see the Figures below for our applications); the effect diminishes as b is increased.

5.2 Simulation Study of Finite-Sample Coverage

The large bandwidth asymptotic theory provides a superior approximation to the finite-sample

distribution of spectral estimators, as discussed in HV and Sun, Phillips, and Jin (2008). Hence,

this should provide superior coverage for confidence intervals and confidence bands; the work of

HV illustrates this superior coverage, as compared to the classical normal approximation (utilizing

small b methods). We seek here to extend those numerical results to an investigation of long

memory, and also to spectral bands. Therefore, we first consider a seasonal long memory process

CM(β,π/6), adopting the pattern of study discussed in HV. Secondly, we consider an AR(2) process

that generates a spectral peak, and compute the spectral distribution estimators, generating the

corresponding confidence band. We are interested in determining the proportion of simulations for

which the estimated spectral bands contain the true spectral distribution.

The long memory study begins by simulating 5,000 Gaussian time series of lengthN = 50, 100, 200

from a process with spectral density

f(λ) = [2− 2 cos(λ− θ)] [2− 2 cos(λ+ θ)]−β,

which satisfies (3). Here we take θ = π/6, which is a frequency of interest in monthly economic time

25



series exhibiting seasonality (see Holan and McElroy (2012) for discussion of seasonal long memory

modeling, and McElroy and Holan (2012) for computational aspects). As mentioned in Section 3,

inference is conducted for the moving parameter fN (θ), and we consider various values of the long

memory parameter: β = −.8,−.6,−.4,−.2, 0, .2, .4, .6, .8. The case of β = 0 corresponds to white

noise, and fN (θ) = f(θ) exactly – cf. (9) – in this case. Other values of fN (π/6) are produced in

Table 19.

For each of 5,000 simulations, we compute the spectral estimate f̂(θ) at the frequency θ = π/6

of interest, construct the interval using (10), and record the proportion of simulations for which

fN (π/6) is contained therein. We construct the interval using the true β (which would be unknown

in practice) to determine quantiles. We consider three tapers (Bartlett and both Trapezoidal tapers)

and four choices of b = .04, .10, .20, .50. This study differs somewhat from the approach in HZ, which

compares the cumulative distribution function (determined by simulation) of Nf̂(θ)/VN (θ) against

the cumulative distribution function of Sb(θ); here we highlight the incidence of under- or over-

performance in finite sample. Of course, HZ focuses on β = 0 as well. Tables 19, 20, and 21 provide

empirical coverage based on α = .05, .10 confidence intervals, where the target quantity fN (π/6) is

displayed in the tables as well.

The first thing to observe is the pattern of fN (π/6) as a function of N and β – it decreases with

N if β < 0, is fixed at .5 when β = 0, and increases rapidly to infinity when β > 0. The actual

coverage results display improved accuracy (in general) for increasing sample size, and somewhat

inferior coverage for smaller values of b. Negative values of β lead to undercoverage (this can be

quite poor for β = −.8 and small values of b), while positive values of β tend not to have worse

performances, as compared to β = 0. In comparing tapers, it is quite noticeable that the Bartlett is

inferior to the Trapezoidal tapers; the latter are known to have superior bias properties in the short

memory case, and this may be carrying over to the long memory case as well. Trapezoidal tapers

tend to produce spectral estimates with slightly lower values than those constructed via a Bartlett

taper, and the corresponding asymptotic distributions are shifted to the left (having positive mass at

negative values). When a trapezoidal estimate produces a negative spectral estimate, the confidence

interval construction given in Section 3 fails (because dividing by a negative number invalidates

the inequality relations), and instead we replace such estimates with zero. (Another possibility is

to replace negative values with half of the Bartlett estimate.) Essentially, our spectral estimate is

computed using the maximum with zero, and the limit distribution should be modified accordingly.

In cases where a lower quantile, obtained from Tables 1 through 18, we replaced the lower boundary

of the interval by zero (a more rigorous approach is to simulate the distribution max{Sb(θ), 0});
even using such an approximate technique, we obtained quite favorable results for the Trapezoidal

tapers, across all values of β.

Now these coverage results are idealized, because we presume to know the true β when utilizing

limit quantiles. In practice, an estimate of β would be obtained, and then appropriate quantiles
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could be simulated. If we instead always utilize β = 0 quantiles, even when mis-specified, the cov-

erage deteriorates significantly (we have not systematically investigated this) because the quantile

functions are quite sensitive to β. From the standpoint of coverage, an argument for using larger

values of b when β < 0 can be made, although this in tension with statistical power; the next

subsection shows that when negative memory is present, small values of b decrease the width of the

interval, and hence increase the statistical power of detecting departures from a null hypothesis.

This discussion is continued further below.

For the second simulation study, we wish to investigate the coverage for the spectral distribution

band method described in Section 3. We consider a cyclical process {Yt} given by the AR(2)

equation (1 − 2ρ cos(θ)B + ρ2B2)Yt = εt, for {εt} a white noise process of unit variance. We

consider θ = π/6, and values ρ = .7, .8, .9 to generate several different cycles (values of θ closer

to zero make estimation more challenging in some ways). Then we take 1,000 Gaussian draws

from this process of sample size N = 50, 100, 200, and compute the spectral distribution estimate

Ĝ(·), and form the confidence band about it utilizing the quantiles ` and u from (13), determined

using both the true unknown f to compute the kernel K (as an unavailable baseline) as well as

the estimated K̂ utilizing an estimated spectral density (with mesh size M = 600), as described

in Section 3.3. The spectral distribution estimate is constructed with a particular choice of taper

(Bartlett, Trapezoidal .25, or Trapezoidal .50) and bandwidth fraction (b = .04, .1, .2, .5), and the

spectral density estimate used to estimate the kernel K uses the same specification. Once the bands

are determined, the true spectral distribution can be plotted, and coverage is determined by the

condition that the true function lies entirely within the bands. For α = .05, .10 we determine the

empirical coverage. Results are summarized in Tables 22, 23, and 24; in each cell, the first entry

corresponds to using the estimated K̂, whereas the second entry utilizes perfect knowledge of the

true f .

It is remarkable that results for spectral band coverage are much inferior to those of spectral

density coverage, in general. Under-coverage seems to be the general malaise, and small values

of b accentuate the affliction. However, some intuitive results can be gleaned from the tables.

First, coverage improves with sample size (albeit, sometimes moving from under-coverage to over-

coverage); second, coverage is better for lower values of ρ; third, the under-coverage problem

is less egregious when omniscience about f is utilized. Regarding the second point, recall that

higher values of ρ indicate a sharper spectral peak, causing the spectral distribution to depart

from a diagonal line (the case of white noise) and more closely resemble a step function – correctly

capturing the width of uncertainty is more challenging when serial correlation is present. The

third point has ramifications for hypothesis testing, where we might hypothesize a specific formula

for f (e.g., white noise or a cyclical AR(2)) and then test this hypothesis by seeing whether the

spectral distribution estimate is completely contained in bands computed from that particular f .

Finally, the impact of taper can be seen with reduced under-coverage of the flat-top tapers, which
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is especially prevalent in the small b case. However, we remind the reader that flat-top tapers are

not positive definite, so that spectral density estimates can have negative values, and therefore the

spectral distribution estimates need not be monotonically increasing in frequency (for examples,

see below in Section 6).

5.3 Optimal Bandwidth Selection

Although the LT can be used to compute some moments of Sθ, allowing one to study the mean and

variance as a function of b, it is difficult to deduce the overall impact of b on the width of confidence

intervals for f(θ). Given a choice of taper and coverage α, it is natural to seek a bandwidth that

yields the minimal possible interval width – such a bandwidth might be considered to be optimal.

Our asymptotic expansion results in Section 4 indicate that as b → 0, the distribution of Sθ(b)

tends to a point mass at unity in the case of short memory, so that optimality always corresponds

to b = 0. In McElroy and Politis (2012), it was proposed to examine optimal bandwidth b as a

function of underlying memory parameter βθ, seeking b such that the quantile of Sθ(b) was as small

as possible. Taking the same approach here, we numerically determine the optimal b for the Bartlett

and Trapezoidal tapers, now focusing on the frequencies θ 6= 0, π. By keeping the quantiles as small

as possible, we make the confidence interval as small as possible while maintaining its asymptotic

coverage.

When negative memory is present, both upper and lower tails of the asymptotic distribution

increase as b→ 0, with the overall effect that the confidence interval becomes more narrow; therefore

a small bandwidth fraction of b = .02 is always preferred. When long memory is present, this

behavior can be reversed, such that narrower intervals occur for mid to large values of b. This

is summarized in the Tables 25 and 26, which present optimal choice of bandwidth fraction as a

function of memory parameter β, α size, and taper. The first table considers the case of frequencies

in (0, π), while the second considers frequencies 0 or π. The key difference between these cases, is

that the former (Table 25) contains larger optimal b values, while the latter (Table 26) has smaller

optimal values of bandwidth fraction.

The choice of bandwidth fraction has been studied in the HAC literature by many authors,

including Sun, Phillips, and Jin (2008), and the tradeoff of Type I and II errors has been explicitly

considered. Size and power are in tension, because we can see from Tables 19, 20, and 21 that

smaller b generates under-coverage. This is true when β = 0, and the problem is exacerbated for

β < 0. On the other hand, the calculations of this subsection show that larger values of b can

produce better asymptotic power; the situation is more complicated by the introduction of β into

this story. To mathematically balance Type I and II errors then involves the β parameter, which

must be estimated to proceed.

Our own recommendation is less rigorous, but also somewhat easier to implement. Based on
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some rough estimate of the memory at the frequency of interest, if β ≥ 0 there is little loss of

size for small b, and so the optimal bandwidth fraction of Tables 25 and 26 could be used. When

β < 0, one should take the smallest bandwidth possible such that the empirical coverage – given

the taper and sample size, based on simulation – is tolerable to the practitioner. For example, if

for a nominal α = .10 one can tolerate empirical coverage as low as .80, and β̂ = −.6, then with

the Trapezoidal .50 taper and sample size N = 50 one should choose b = .10, because b = .04

would produce too much under-coverage (more simulations could improve the range of choices of b

between .10 and .04). For sample size N = 100 and the same taper, b = .04 would give adequate

coverage and improved power. The selection would be different for the Bartlett taper, requiring

b = .50 and b = .20 respectively for sample sizes N = 50 and N = 100. The key thing to remember

is that the best choice of b, in practice, is actually linked to sample size N (as well as taper choice),

because the asymptotic considerations do not fully characterize optimality in finite samples.

6 Empirical Applications

Spectral analysis has a diverse range of applications. Here we suggest only a few of a myriad of

applications.

6.1 Identifying Business Cycle in Retail Series

First, suppose one is analyzing a monthly or quarterly economic time series, such as total retail

sales, and is interested in identifying periodicities by estimating spectral peaks. However, such time

series are typically nonstationary, exhibiting strong trend growth and seasonal behavior. The re-

coloring approach of Grether and Nerlove (1970) is a well-respected technique for estimating spectra

in such a case: one differences the time series to remove nonstationarity, estimates the spectrum of

the result, and then divides again by the magnitude squared of the frequency response function of

the differencing operator. Such a spectral estimate is called a pseudo-spectral density estimator; we

are interested in both the pseudo-spectrum and the spectrum for the seasonally differenced series.

For example, suppose that we have monthly seasonal data, which exhibits strong trend and

seasonal effects, and are interested in estimating the spectral density in order to examine the

potential for a business cycle (identified as a spectral peak between frequencies 2π/24 and 2π/60

for monthly data). If the data requires one seasonal difference to produce a stationary series,

then re-coloring dictates that our spectral density estimate computed from the differenced series

be divided by |1− e−i12λ|2, which of course is not well-defined at frequencies that are multiples of

π/6. The result is the pseudo-spectral density estimator.

We apply the methods of this paper to the monthly series of total retail sales for the major

industry classifications 441 (Motor Vehicles and Parts Dealers), available from the U.S. Census
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Bureau1. We consider a variety of tapers and bandwidth fractions, using the re-coloring approach

with regression-adjusted data, covering the years 1992 through 2012. Our objective is to create a

graph of the spectral density estimate with sufficient resolution to examine business cycle effects,

and also provide measures of uncertainty at each frequency. Because the business cycle has a period

of two to ten years in general, the minimum number of frequencies needed is 60 (a ten year cycle

for monthly data corresponds to frequency π/60). Thus we will take ωj = πj/60 for 0 ≤ j ≤ 60;

note that ωj for 1 ≤ j ≤ 5 are the business cycle frequencies. Also ω0 = 0 corresponds to the

trend frequency, which will be an infinity due to re-coloring. Similarly, ω10k for k = 1, 2, 3, 4, 5, 6

corresponds to seasonal frequencies, which will also be poles in the pseudo-spectrum.

If we focus attention on the nonseasonal frequencies, we can apply the methods of Section 3 to

construct confidence intervals. First, we observe that the assumption of asymptotic independence

of spectral estimates seems reasonable here, because we are not considering Fourier frequencies

(the sample sizes are 252); moreover, if the sample sizes were increased, we would still consider the

same 61 frequencies, because they are ultimately determined by the sampling frequency (12 times

a year) and the business cycle periodicities. Therefore it makes sense to view these 61 frequencies

as being fixed as sample size increases, and thus Theorem 2 is applicable, producing independent

asymptotic distributions. In some other types of applications, the frequencies of interest might

depend upon sample size, and a different type of analysis would be required.

Once the spectral estimate for the differenced series has been determined, we divide by the

magnitude squared of the differencing operator, in order to provide an estimate of the pseudo-

spectrum. For better visibility, we plot in a log scale, restricting to the Bartlett taper for this

exercise only. Then the confidence interval for log[f(λ) |1− e−i12λ|−2] at the 54 non-trend and

non-seasonal frequencies is[
log

(
f̂(θ)

N τθQθ(1− α/2)|1− e−i12λ|2

)
, log

(
f̂(θ)

N τθQθ(α/2)|1− e−i12λ|−2

)]
,

which follows from (10). Such series typically have quickly decaying autocovariances, so we use the

β = 0 quantiles to form the intervals.

Construction of the confidence intervals focuses on α = .05 (the case that α = .10 was also

considered, but is not visually much different), using the Bartlett taper with b = .04, .1, .2, .5 for

bandwidth fractions, with sample size of n = 252. Recall that the quantiles, which come from our

simulations of the previous section, assume that centering by the sample mean has not been used

(this is only pertinent at the case of frequency zero), and the slightly wider coverage at frequencies

0 and π result from using Table 14 instead of Table 5; however, this has no relevancy due to the

re-coloring. The results are plotted in Figure 1. The structure of spectral peaks is salient, due to

re-coloring, but in-between the peaks the impact of bandwidth becomes evident in the smoothness

1Monthly Retail Trade and Food Services survey.
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of the function. It is difficult to discern any business cycle phenomena in these plots, which would

be flagged as a bump in between cycles 0 and 1 in the spectral density functions.

Another application is concerned with the detection of residual seasonality in seasonally adjusted

time series. Supposing that the above construction series has been processed by the program X-12-

ARIMA, we then compute their (trend-differenced) adjustments’ spectral distribution functions,

calculating the spectral bands to quantify uncertainty. Classic references on seasonal adjustment,

and the X-12-ARIMA program, include Bell and Hillmer (1984) and Findley, Bell, Monsell, Otto,

and Chen (1998). Any sudden jumps around the seasonal frequencies indicate residual seasonality,

while a straight diagonal line corresponds to perfect white noise. We compute the spectral dis-

tribution estimate and its confidence bands (with estimated kernel) utilizing the methodology of

Section 5, considering both the Bartlett taper and the two Trapezoidal tapers, each with band-

widths b = .04, .1, .2, .5. The bands are computed at the same range of frequencies discussed above,

with green lines corresponding to the .90 coverage and red lines for the .95 coverage.

Figure 2 show results for the Bartlett taper, while Figures 3 and 4 show results for the Trape-

zoidal .25 and Trapezoidal .50 tapers. The steady growth in the spectral plots between cycles 0

and 1 (i.e., for frequencies up to π/6) indicates near constant spectral mass, and behavior similar

to white noise; there is no sharp increase in the vicinity of any of the key seasonal cycles. One

overall conclusion, from each of the plots, is that no significant seasonality remains. The impact of

bandwidth fraction is much less apparent than in the spectral density estimates, which we expect

from our asymptotic theory. One interesting feature can be discerned when comparing tapers; the

trapezoidal tapers produce, in some cases, spectral distribution estimates that decrease at some

frequencies, violating the fact that spectral distribution functions are monotonically increasing.

This occurs because the trapezoidal tapers are not positive definite; in contrast the Bartlett taper,

being positive definite, does not have this problem – though we can expect the width of the spectral

bands about the estimator to be too small, especially for small b, as discussed in Section 5.

6.2 Long Memory Spectral Analysis of Housing Starts

Here we consider regional housing starts, for the South region, measured at a monthly frequency

from 1964 through 2012, available from the U.S. Census Bureau. We analyze the data here with

a nonparametric approach, attempting to plot the spectral estimates for a variety of bandwidths,

taking any seasonal long memory into account when quantifying uncertainty. We consider the same

grid of frequencies as in the retail series, but are principally interested in the seasonal frequencies.

The South starts has been cleaned of outliers and level shifts, and we utilize a log transformation

to stabilize variability. Analysis of sample autocorrelation plots for the first differences (to eliminate

trend growth) reveals the presence of highly persistent correlation at seasonal lags (multiples of

twelve), which indicates either nonstationarity or seasonal long memory. A common approach with
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such series is to utilize seasonal differencing – under the assumption of seasonal unit roots being

present – but here we proceed with a hypothesis of stationarity, instead proceeding to estimate the

seasonal long memory. This seems to be a plausible investigation, given the long sample size.

In order to obtain the right quantiles in each case, it is necessary to know the cyclical memory.

It is reasonable to suppose, based on the form of nonstationarities in such series and the discussion

above, that cyclical memory may be present at frequencies ω10k for 0 ≤ k ≤ 6, and at no others.

To estimate the cyclical memory βθ for these seven frequencies, one can adopt the crude estimation

method described in McElroy and Politis (2011), adapted to non-zero frequencies:

log
(
f̂(θ)

)
= β log(n) + εn.

This regression equation is to be viewed as depending on sample size n, taking subsamples of length

n for 100 ≤ n ≤ N , with N = 587. The error εn is equal to the logarithm of the spectral estimate

divided by nβ, and hence is approximately distributed as logSb(θ) when n is large. These regression

errors are highly cross-correlated across various values of n, but nevertheless we will utilize ordinary

least squares to get a rough estimate of β; see McElroy and Politis (2007) for a similar methodology.

We only need a rough estimate of β, because we only have quantiles for values of β belonging to

the grid {−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8} anyways; we adopt the quantiles for a value of β closest to

that derived from the regression. In this way we can obtain the quantiles for each spectral estimate

at each of the six spectral peaks, using β = 0 at the non-seasonal frequencies. The estimates for

the six spectral peaks are 0.42, 0.29, −0.02, 0.05, 0.09, and −0.01 respectively. Therefore we shall

use β = .4 quantiles for the first peak, β = .2 quantiles for the second peak, and β = 0 quantiles for

all other frequencies. We produce spectral density estimates using all three tapers, and with the

bandwidth fractions b = .04, .1, .2, .5. We focus on α = .05, the results for α = .10 looking quite

similar. Recall that the quantiles utilized at frequency 0 and π are different, and induce a slightly

wider interval. Results are displayed in original scale, and also in log scale for the Bartlett case, in

Figures 5, 6, 7, and 8.

The impact of bandwidth fraction is quite evident in the plots; smaller values of b enforce more

smoothing. As was noted in Section 5, when long memory is present the confidence interval can lie

completely above the point estimate, and this is evident in the figures with b = .04. Apart from

the two long memory seasonal peaks, the other frequencies don’t have this property, as they have

short memory dynamics. We also highlight that at frequencies 0 and π the confidence intervals

are slightly wider to reflect the heightened uncertainty. Figure 6 gives the Bartlett estimators in

log scale, which allows easier viewing of some of the features. This transform is not possible for

the trapezoidal tapers, because the spectral density estimates take on negative values. Visually

speaking, the impact of the trapezoidal taper, in contrast to the Bartlett, is to shift the estimate

downwards – this improves bias and coverage, but at the cost of losing positivity. Otherwise, there

is little to discriminate between the tapers, given the same choice of bandwidth.
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7 Conclusion

This paper provides a new study of taper-based spectral estimation from the perspective of fixed

bandwidth ratio asymptotics. Classical spectral estimation theory assumes that the bandwidth is

negligible with respect to sample size, asymptotically, while the so-called “fixed-b asymptotics”

allows for a constant ratio of bandwidth to sample size. Previous work on fixed-b asymptotics for

spectral density estimation (HZ) has focused on short memory dynamics and a single frequency, but

we make extensions in several directions: (i) we study joint convergence over a finite collection of

fixed frequencies; (ii) we allow for cyclical long memory at any of these frequencies; (iii) we provide

results for flat-top tapers and tapers with kinks, extending the cases studied by HZ (Bartlett and

smooth tapers); (iv) we provide a discussion of higher-order accuracy in the short memory case, by

an expansion of the cumulative distribution function of the spectral density estimate’s limit; (v)

we study spectral distribution estimation in the context of fixed-b asymptotics, and develop the

application of simultaneous confidence bands; (vi) we tabulate the spectral density estimate’s limit

quantiles, as a function of taper, memory parameter, and bandwidth fraction; (vii) we empirically

examine coverage of the spectral density and spectral distribution estimates.

Regarding the joint convergence result, this produces the unsurprising conclusion that density

estimates are asymptotically independent; however, this requires the assumption that frequencies

are treated as fixed, in the sense that they do not depend upon sample size. This precludes an

application with Fourier frequencies, which would require a separate analysis (and is the subject

of current work). In our applications to the topic of seasonal peak detection, we illustrate why

Fourier frequencies may not be the most suitable grid of frequencies for a given application. We also

emphasize that the limit distribution under fixed-b asymptotics depends chiefly on the bandwidth

fraction b, the underlying memory at the particular frequency, whether or not the data was centered

by some estimated mean function (such as the sample mean), and finally whether the frequency λ

is internal (i.e., λ ∈ (0, π)) or on the boundary, where λ = 0, π. In fact, the issue of mean centering

is only pertinent for the limit distribution when λ = 0.

Regarding the second point, we have developed new results for sample means and DFT statistics

for processes with long memory poles or zeroes in their spectrum, and our formulation of cyclical

memory can be connected with more familiar processes, such as Gegenbauer processes and seasonal

ARFIMA, etc. This is a growing topic in economic time series, to investigate models where each

frequency can have its own memory parameter associated; the limit distribution, as well as the rate

of convergence of the spectral estimator, depend upon this memory parameter. This treatment

represents a novel generalization of frequency zero results discussed in the application of HAC

estimation, as in McElroy and Politis (2011).

The third point has regard to the types of tapers that one is utilizing. Some popular tapers

have kinks (i.e., places of non-differentiability) or even jump discontinuities – the latter arises with
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the truncation taper. The flat-top tapers, including the trapezoid functions, are known to have

improved bias properties in the short memory case, but a point of concern is that they are not

positive definite. The trade-off is that the resulting spectral density estimates need not be positive,

precluding their estimation and viewing in log scale; ad hoc solutions, such as truncation at zero,

may of course be utilized. Our numerical results demonstrate that the improved size properties of

the flat-top tapers carries over to the long memory scenario as well in the case of spectral estimation,

the improvement over the Bartlett being more dramatic for small b. While results of this type for

long memory HAC estimation have also been shown, as in McElroy and Politis (2011), the case of

spectral density estimation is novel.

Higher-order accuracy for studentized statistics, such as in sample means normalized by HAC

estimates of variability, can generate an expansion about b = 0 in the limit distribution, using

the intuition that the small b case corresponds to a standard normal distribution. However, in

the case of spectral density estimation, the small b case essentially corresponds to point mass at

unity, because the limit theorem involves the ratio of estimator to estimand. We therefore have

developed some novel tools for the investigation of higher-order accuracy, proceeding via studying

the Laplace Transform of the cumulative distribution function of the limit random variable S(b).

Focusing on the short memory case, we demonstrate that the first term in the expansion is an

indicator function, which is the cumulative distribution function of the point mass, with location

that differs from unity by a term of order b. Higher order terms can be understood through a

convenient basis of functions, with coefficients that explicitly depend on the cumulants of S(b).

Then one can explicitly see that taking b > 0 essentially provides a more nuanced description than

is possible with a classical description.

Spectral distribution estimation also has an extensive history, and tapering is not necessary

to produce consistent estimation. However, if a practitioner utilizes a taper-based estimate of the

spectral density, and then also wishes to examine the spectral distribution, the latter should be

estimated in such a way that its derivative equals the density estimate. With this motivation, we

analyze taper-based estimates of the spectral distribution function, and obtain, unsurprisingly, the

same theorems as the classical case explored by Dahlhaus (1985). We then develop a technique for

constructing spectral bands, and discuss how the limiting covariance kernel – associated with the

functional limit theorem – can be estimated. We are not aware of literature treating the formation

of bands, apart from the simple case of white noise; we discuss the empirical coverage, and the

impact of taper and bandwidth in finite sample performance.

In order to compute the distribution of the limit S(b), we propose an exact method involving the

Laplace Transform of a Gaussian quadratic form, so long as the eigenvalues corresponding to a taper

can be calculated. We also provide the quantiles for several tapers by simulations, and illustrate

spectral density estimation with intervals constructed via cyclical long memory estimation, as well

as a re-coloring approach to spectral estimation for nonstationary time series. Finally, we show the
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construction of spectral distribution estimates and their confidence bands on a retail series.

Although this paper attempts to study several questions, many more are raised in the process.

What is the statistical behavior, from a fixed-b perspective, when frequencies are becoming asymp-

totically closer to one another? Can a higher-order expansion be developed when there is long

memory or negative memory present? What is a sensible criterion for optimal bandwidth selection,

that takes into account the smoothness across multiple frequencies? (Thus, optimality should be

discussed in different terms from the HAC literature, which only has a single frequency to consider.)

Some of these queries we plan to study in future research.

Appendix

A.1 Regressions and Bridges

For more background on this topic, see Phillips (1998). Suppose that our process {Yt} satisfies

Yt = Xt+µt with {Xt} mean zero and stationary, but µt is deterministic, and is fully described via

a collection of p regressors expressed in a column vector xt, whose components are written as xjt for

1 ≤ j ≤ p. Supposing a sample of size N is available, it is convenient to write in terms of column

vectors: Y = [Y1, Y2, · · · , YN ]′, and similarly for X and µ, so that Y = X+µ = X+Xβ, where the

regression design matrix X is N × p, the column vector β contains p regression parameters, and

the tjth entry of X is xjt . Then the ordinary least squares estimate of µ is

µ̂ = X[X′X]
−1

X′Y = µ+ X[X′X]
−1

X′X.

In order to find a convenient asymptotic representation of Y − µ̂, and the partial sums thereof, we

assume that there exist a collection of rates ajN for 1 ≤ j ≤ p such that xjk = ajN x
j(k/N), where

the functions xj ∈ C[0, 1]. For example, the regressor xjk = kj , which is used to express the mean

as a polynomial in time, satisfies this condition with the choice ajN = N j . However, the regressor

xjk = cos(2πjk) does not satisfy this condition, so care is needed in applying these results.

Collecting the rates into a diagonal matrixAN = diag[a1N , a
2
N , · · · , a

p
N ], we write xk = AN x(k/N).

Then

X′X = AN

N∑
k=1

x(k/n)x′(k/N)AN X′X = AN

N∑
k=1

x(k/N)Xk,

which provides a simplification in the formula for µ̂. Now suppose we are interested in the limit

behavior of
∑[rN ]

t=1 (Yt− µ̂t)gt, which looks like S[rN ](g) in Section 3.1, except that we have centered

by an estimate of the mean. Here r ∈ (0, 1]. Then linear algebra yields

[rN ]∑
t=1

(Yt − µ̂t)gt =

[rN ]∑
t=1

Xtgt −
[rN ]∑
t=1

gtx
′(t/N)

[
N∑
k=1

x(k/N)x′(k/N)

]−1 N∑
k=1

x(k/N)Xk.
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Now from Section 3.1, the functions of interest are gt given by cosines or sines at various frequencies.

But by Remark 1, mean centerings are irrelevant except when gt = cos(θt) and θ = 0, i.e., gt ≡ 1.

In this case, and utilizing the convergence of Riemann sums to the Riemann integral, we obtain

V
−1/2
N

[rN ]∑
t=1

(Yt − µ̂t) = oP (1) + V
−1/2
N

[rN ]∑
t=1

Xt −
∫ r

0
x′(t) dt

[∫ 1

0
x(t)x′(t)

]−1
V
−1/2
N

N∑
t=1

x(t/N)Xt,

where VN is the variance of
∑N

t=1Xt. Therefore, given a FCLT such as Theorem 1 for the partial

sums, such that V
−1/2
N

∑[·N ]
t=1 Xt

L
=⇒ B (either in the Donsker space, or in C[0, 1] by replacing the

estimates with linearly interpolated versions), then we obtain

V
−1/2
N

[rN ]∑
t=1

(Yt − µ̂t)
L

=⇒ B̃(r) = B(r)−
∫ r

0
x′(t) dt

[∫ 1

0
x(t)x′(t)

]−1 ∫ 1

0
x(t)dB(t).

The process on the right hand, denoted by B̃, is called a Brownian Bridge when B is a Brownian

Motion (or a Fractional Brownian Bridge when B is Fractional Brownian Motion). The nomen-

clature is extended from the x(t) ≡ 1 case, wherein B̃(1) = 0 – sometimes such a process is called

“pinned” Brownian Motion. Another example, discussed in HV, has x′(t) = [1, t], results in

B̃(r) = B(r)− (4r − 3r2)B(1) + (6r − 6r2)

∫ 1

0
t dB(t),

and B̃(1) = 0. More generally, a Bridge process satisfies

dB̃(r) = dB(r)− x′(r)
[∫ 1

0
x(t)x′(t)

]−1 ∫ 1

0
x(t)dB(t),

which implies that
∫ 1
0 x
′(r)dB̃(r) = 0; the property that B̃(1) = 0 when x(t) ≡ 1 is just a special

case now of the more general expression
∫ 1
0 x
′(r)dB̃(r) = 0.

The results of this paper can be extended to the more general class of Bridge processes under

the assumption that the mean functions are adequately described by fixed regressors and that the

scaling assumption is valid, and furthermore that we use ordinary least squares to provide a mean

estimate. This only has ramifications at frequency zero – all other DFT and spectral results involve

the FBM and not the generalized FBB. In practice, spectral analysis on a time series proceeds

only after certain transformations (Box-Cox transforms and/or differencing) have been applied to

the data to remove non-stationarity. Residual mean effects are likely to involve a constant mean

function, or at worst a linear function of time, plus other types of fixed effects corresponding to

interventions (e.g., additive outliers, level shifts, calendrical effects, and so forth). These latter

types of regressors are dummies of various types whose asymptotic impact are hopefully negligible.
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A.2 Proofs

Proof of Proposition 1. We provide the proof for the θ > 0 first. Observe that
∑
|h|≤n γh cos(ωh) =∑

|h|≤n γh e
−iωh by symmetry, and hence

n∑
h=1

γh e
−iωh =

1

2π

∫ π

−π

n−1∑
h=1

ei(λ−ω)h |λ− θ|α |λ+ θ|α g(λ)L(|λ− θ|−1)L(|λ+ θ|−1 dλ

=
1

2π

∫ π

−π

ei(λ−ω)n − 1

ei(λ−ω) − 1
ei(λ−ω) |λ− θ|α |λ+ θ|α g(λ)L(|λ− θ|−1)L(|λ+ θ|−1) dλ

=
1

2πn

∫ (π−ω)n

(−π−ω)n

eix − 1

eix/n − 1
eix/n |ω − θ + x/n|α |ω + θ + x/n|α g(ω + x/n)

· L(|ω − θ + x/n|−1)L(|ω + θ + x/n|−1) dx.

If ω = ±θ, this quantity is asymptotic to

n−α L(n) g(θ) |2θ|α L(|2θ|−1) 1

2π

∫ ∞
−∞

(
eix − 1

ix

)
|x|α dx.

If ω 6= θ the partial sum is asymptotic to

|ω − θ|α |ω + θ|α g(ω)L(|ω − θ|−1)L(|ω + θ|−1) 1

2π

∫ ∞
−∞

(
eix − 1

ix

)
dx.

The limiting behavior of
∑
|h|≤n γh e

−iωh is obtained by summing with the complex conjugate of

the above derivations, and adding γ0. Thus

∑
|h|≤n

γh cos(ωh) ∼

n−α L(n) g(θ) |2θ|α L(|2θ|−1) 1
2π

∫∞
−∞ 2 sin(x)

x |x|α dx if ω = ±θ

|ω − θ|α |ω + θ|α g(ω)L(|ω − θ|−1)L(|ω + θ|−1) 1
2π

∫∞
−∞ 2 sin(x)

x dx if ω 6= ±θ

as n→∞. By 3.761.4 of Gradshteyn and Rhyzik (1994),
∫∞
0 sin(x)xα−1 dx = π sec(πα/2)/(2Γ(1−

α)), which happens to equal π/2 when α = 0; hence the short memory spectral density is the limit,

as expected. But for nonzero α, the sum at ω = ±θ is asymptotic to n−αL(n)g(θ)|2θ|αL(|2θ|−1) sec(πα/2)/Γ(1−
α), which agrees with (2), where βθ = −α and Lθ is defined as the slowly-varying L times the con-

stant |2θ|αL(|2θ|−1) sec(πα/2)/Γ(1− α).

Finally, in the case of θ = 0 similar calculations yield

∑
|h|≤n

γh cos(ωh) ∼

n−α L(n) g(ω) sec(πα/2)/Γ(1− α) if ω = 0

|ω|α g(ω)L(|ω|−1) else,

which shows that the process is C(−α,0), as desired. 2

Lemma 1 Let cs(x) denote either cosx or sinx. If θi, θj ∈ [0, π] with i 6= j, then

n∑
k,`=1

γk−`cs(θik) cs(θj`)V
−1/2
n (θi)V

−1/2
n (θj)→ 0

as n→∞.

37



Proof of Lemma 1. First consider the case that cs = cos. By trigonometry

n∑
k,`=1

γk−` cos(θik) cos(θj`) =
∑
|h|<n

γh cos(θih)

n−|h|∑
m=1

cos(θim) cos(θjm)

−
∑
|h|<n

γh sin(θih)

n−|h|∑
m=1

sin(θim) sin(θjm).

Noting the following generic trigonometric identities

cos(ωk) cos(λk) =
1

2
(cos(ω + λ)k + cos(ω − λ)k)

sin(ωk) sin(λk) =
1

2
(cos(ω − λ)k − cos(ω + λ)k)

cos(ωk) sin(λk) =
1

2
(sin(ω + λ)k − sin(ω − λ)k) ,

the above expansion can be rewritten as

n∑
k,`=1

γk−` cos(θik) cos(θj`) =
1

2

∑
|h|<n

γh cos(θih)

n−|h|∑
m=1

(cos([θi + θj ]m) + cos([θi − θj ]m)) (A.1)

− 1

2

∑
|h|<n

γh sin(θih)

n−|h|∑
m=1

(sin([θi + θj ]m)− sin([θi − θj ]m)) .

Next, apply Remark 1 so that – because θi 6= θj – the summations over m above are bounded in n;

replacing these summations with one is then valid asymptotically in the statement of the lemma,

since V
1/2
n (θi)V

1/2
n (θj)→∞. Now

∑
|h|<n γh sin(θih) = 0 by symmetry, and hence by (2)

n∑
k,`=1

γk−` cos(θik) cos(θj`)V
−1/2
n (θi)V

−1/2
n (θj)

∼ 1

2
Lθi(n)nβθi L

−1/2
θi

(n)L
−1/2
θj

n
−[βθi/2+βθj /2+1]

2
√

(βθi + 1)(βθj + 1),

which tends to zero because βθi − βθj < 2. Now for the case that cs = sin, we have

n∑
k,`=1

γk−` sin(θik) sin(θj`) =
∑
|h|<n

γh sin(θih)

n−|h|∑
m=1

cos(θim) sin(θjm)

+
∑
|h|<n

γh cos(θih)

n−|h|∑
m=1

sin(θim) sin(θjm).

Applying the identities produces

n∑
k,`=1

γk−` sin(θik) sin(θj`) =
1

2

∑
|h|<n

γh sin(θih)

n−|h|∑
m=1

(sin([θi + θj ]m)− sin([θi − θj ]m))

− 1

2

∑
|h|<n

γh cos(θih)

n−|h|∑
m=1

(cos([θi + θj ]m)− cos([θi − θj ]m)) .
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Since the angles are distinct, Remark 1 shows that the inner summations can be asymptotically

ignored, and the rest of the argument follows the cosine case. Finally, suppose that the first cs = cos

and the second cs = sin. Then

n∑
k,`=1

γk−` cos(θik) sin(θj`) =
∑
|h|<n

γh cos(θih)

n−|h|∑
m=1

cos(θim) sin(θjm)

−
∑
|h|<n

γh sin(θih)

n−|h|∑
m=1

sin(θim) sin(θjm).

Applying the identities produces

n∑
k,`=1

γk−` cos(θik) sin(θj`) =
1

2

∑
|h|<n

γh cos(θih)

n−|h|∑
m=1

(sin([θi + θj ]m)− sin([θi − θj ]m))

+
1

2

∑
|h|<n

γh sin(θih)

n−|h|∑
m=1

(cos([θi + θj ]m)− cos([θi − θj ]m)) ,

and the same arguments handle this case as well. Also, even if θi = θj , the normalized sum will

still tend to zero, because the non-negligible inner sum in this case accompanies a sine summation,

which by symmetry will be zero. This completes the proof. 2

Proof of Theorem 1. The proof follows the techniques used to prove Theorem 3 in McElroy and

Politis (2011) for frequency zero, but extended to a multivariate framework. Because the DFTs are

mean-centered, we can let µ = 0 in the following analysis without loss of generality. The assertions

follow by proving tightness and convergence of finite-dimensional distributions. Firstly, ξn(g) and

Sn(g) are equivalent stochastic processes, for g = c(θj) or g = s(θj), which follows from (6) – the

argument is the same as the one provided in Theorem 3 of McElroy and Politis (2011). Now we

proceed to demonstrate convergence of finite-dimensional distributions for Sn(g), in each of the

three cases of P1, P2, and P3 in turn.

First, define Sn to be a length 2J vector with components

V
−1/2
N (θj) S̃n(c(θj)), V

−1/2
N (θj) S̃n(s(θj))

for j = 1, 2, · · · , J . Because of mean-centering and the equivalency to the linearly interpolated

version, it suffices to study the finite-dimensional distributions of Sn. Consider m times r1 < r2 <

· < rm ∈ [0, 1], and set r0 = 0. Take any real numbers ν1, ν2, · · · , νm, and any collection of real

numbers η1, η2, · · · , η2J , written as a 2J component column vector η. The convergence of the finite-

dimensional distributions of the vector-valued stochastic process is determined by the convergence

of η′
∑m

k=1 νkS[rkN ]. Letting the sequence ηt(θ) be denoted by

ηt(θ) =
J∑
j=1

(ηj cos(θjt) + ηj+J sin(θjt)) V
−1/2
N (θj),
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we have η′ S[rkN ] = S[rkN ](η(θ)), in the notation of Section 3.1. Then
∑m

k=1 νkS[rkN ](η(θ)) is

asymptotically standard normal – when normalized by the square root of its variance – under the

P1 assumption, using the argument of Theorem 5.2.3 in Taniguchi and Kakizawa (2000). In this

case, it then suffices to show that the variance of
∑m

k=1 νkS[rkN ](η(θ)) has as limit the variance of∑m
k=1 νk

∑J
j=1(ηjW+,θj (rk) + ηj+JW−,θj (rk)). Similarly, the cases of P2 or P3 can be handled as in

the proof of Theorem 3 of McElroy and Politis (2011); when P2 holds, we need the unit Hermite

rank assumption to ensure that the limit variables are Gaussian.

So we now study the variance of the partial sum, obtaining the expansion

m∑
k1,k2=1

νk1νk2

[rk1N ]∑
t1=1

[rk2N ]∑
t2=1

γt1−t2ηt1(θ)ηt2(θ) =
m∑

k1=1

ν2k1 A[rk1N ]+
∑
k1<k2

νk1νk2

(
A[rk1N ] +A[rk2N ] −A[(rk2−rk1 )N ]

)
,

where An =
∑n

t1,t2=1 γt1−t2ηt1(θ)ηt2(θ). The above identity generalizes (A.5) of McElroy and Politis

(2011), and

An =
J∑

j1,j2=1

n∑
t1,t2=1

γt1−t2 [ηj1 cos(θj1t1) ηj2 cos(θj2t2) + ηj1 cos(θj1t1) ηj2+J sin(θj2t2)

+ ηj1+J sin(θj1t1) ηj2 cos(θj2t2) + ηj1+J sin(θj1t1) ηj2+J sin(θj2t2)] V
−1/2
N (θj1)V

−1/2
N (θj2).

Now by Lemma 1 the only non-negligible terms asymptotically (here n → ∞ as N → ∞, in any

case being some fixed proportion of N) occur when j1 = j2 (and note that mixed terms involving

cosine and sine are always negligible). Thus the above variance simplifies asymptotically to

J∑
j=1

n∑
t1,t2=1

γt1−t2
(
η2j cos(θjt1) cos(θjt2) + η2j+J sin(θjt1) sin(θjt2)

)
V −1N (θj).

Utilizing (A.1) from the proof of Lemma 1, but applied to the case where the two angles are not

distinct, the above quantity is shown to be asymptotic to

1 + 1{θj=0,π}

2

J∑
j=1

[
η2j + η2j+J 1{θj 6=0,π}

] ∑
|h|<n

γh cos(θjh)(n− |h|)V −1N (θj)

∼
J∑
j=1

[
η2j + η2j+J 1{θj 6=0,π}

] Lθj (n)n
βθj+1

Lθj (N)N
βθj+1

,

because the double sine term is identically zero if θj is 0 or π (but the cosine term gets doubled in

this case). This calculation uses∑
|h|<n

γh cos(θjh)(n− |h|) =

n∑
t1,t2=1

γt1−t2 cos(θj(t1 − t2)) =
2

1 + 1{θj=0,π}
Vn(θj)

from (5). As a result, the variance of
∑m

k=1 νkS[rkN ](η(θ)) is asymptotic to

J∑
j=1

[
η2j + η2j+J 1{θj 6=0,π}

]  m∑
k1=1

ν2k1 r
βθj+1

k1
+
∑
k1<k2

νk1νk2

[
r
βθj+1

k1
+ r

βθj+1

k2
− (rk2 − rk1)

βθj+1
] .

(A.2)
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Now the variance of
∑m

k=1 νkB(rk), where B is a FBM of parameter βθj , is equal to the expression

in parentheses in (A.2). Because the processes W+,θj and W−,θj are independent, (A.2) is equal

to the variance of
∑m

k=1 νk
∑J

j=1(ηjW+,θj (rk) + ηj+JW−,θj (rk)). This completes the proof that the

finite dimensional distributions converge.

To prove tightness, let γ = (κ+ δ)/2; we will apply Theorem 2 of Gihman and Skorohod (1980,

p. 410) with the metric ρ(x, y) =
√∑2J

j=1 |xj − yj |
2γ so that we can focus on each component of S,

one at a time. However, working in the space C[0, 1] we instead consider the component interpo-

lated processes. The calculation is then the same as that in the proof of Theorem 3 of McElroy and

Politis (2011), only now the partial sums involve cosine or sine terms, and we utilize the conditions

E[|Sn(c(θj))− cn(θj)|κ+δ] = O(V
(κ+δ)/2
n (θj)) and E[|Sn(s(θj))− sn(θj)|κ+δ] = O(V

(κ+δ)/2
n (θj)) in-

stead. This completes the proof. 2

Proof of Theorem 2. The assumptions of the Theorem allow us to apply the results of Theorem

1. We begin by analyzing f̂(θ) – where θ represents a collection of J frequencies θj ∈ [0, π] –

proceeding as in the proof of Theorem 1 of HV, though we allow for flat-top tapers. Let Λb be the

taper defined via Λb(h/N) = Λ(h/bN); then

f̂(θ) = Λb(0) γ̂0 + 2
N−1∑
h=1

Λb(h/N)γ̂h cos[θh]

= N−1
N∑

i,k=1

Λb((i− k)/N)ŶiŶk cos[θi] cos[θk] +N−1
N∑

i,k=1

Λb((i− k)/N)ŶiŶk sin[θi] sin[θk],

where Ŷt = Yt−Y . Then with Ŝt(c(θ)) =
∑t

`=1 Ŷ` cos[θ`] and Ŝt(s(θ)) =
∑t

`=1 Ŷ` sin[θ`], we obtain

using summation by parts

N f̂(θ) = 2ŜN (c(θ))

N−1∑
k=1

Ŝk(c(θ))

(
Λb(

N − k
N

)− Λb(
N − k − 1

N
)

)
+ Λb(0) Ŝ2

N (c(θ))

+
N−1∑
j,k=1

Ŝj(c(θ))Ŝk(c(θ))

(
2Λb(

j − k
N

)− Λb(
j − k − 1

N
)− Λb(

j − k + 1

N
)

)

+ 2ŜN (s(θ))
N−1∑
k=1

Ŝk(s(θ))

(
Λb(

N − k
N

)− Λb(
N − k − 1

N
)

)
+ Λb(0) Ŝ2

N (s(θ))

+
N−1∑
j,k=1

Ŝj(s(θ))Ŝk(s(θ))

(
2Λb(

j − k
N

)− Λb(
j − k − 1

N
)− Λb(

j − k + 1

N
)

)
.

Next, define approximate first and second derivatives of the taper via

∂NΛb(r) = N (Λb(([rN ] + 1)/N)− Λb([rN ]/N))

∂2NΛb(r) = N2 (Λb(([rN ] + 1)/N)− 2Λb([rN ]/N) + Λb(([rN ]− 1)/N)) ,
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for any r ∈ [0, 1]. This allows the following integral representation:

N f̂(θ) = 2ŜN (c(θ))

∫ 1

0
Ŝ[rN ](c(θ))∂NΛb(1− r) dr + Λb(0) Ŝ2

N (c(θ))

−
∫ 1

0

∫ 1

0
Ŝ[rN ](c(θ))∂

2
NΛb(r − s)Ŝ[sN ](c(θ)) dr ds

+ 2ŜN (s(θ))

∫ 1

0
Ŝ[rN ](s(θ))∂NΛb(1− r) dr + Λb(0) Ŝ2

N (s(θ))

−
∫ 1

0

∫ 1

0
Ŝ[rN ](s(θ))∂

2
NΛb(r − s)Ŝ[sN ](s(θ)) dr ds.

Now Theorem 1 provides convergence results for the DFTs, once suitably normalized by VN (θj)

for each θj ; these results can be extended at once to Ŝ[rN ](c(θ)) and Ŝ[rN ](s(θ)), with limiting

Fractional Brownian Bridges B̃±,θ(r), as defined in Section 3.2. We also need to determine the

limit of the approximate derivatives of the taper. For values of r such that Λb is twice continuously

differentiable, i.e., for |r| ∈ (c, 1), we have ∂2NΛb(r) → Λ̈b(r) = b−2Λ̈(r/b) and ∂NΛb(r) → Λ̇b(r) =

b−1Λ̇(r/b). These results also holds for |r| ∈ [0, c), but here the limit of either derivatives is

identically zero, because of the flat-top structure. In considering the limit of the quadratic term,

we restrict to the region bc < |r − s| < b in the double integral, but also must account for the

boundary terms where |r − s| = bc and |r − s| = b, which result in terms asymptotic to

2b−1
N−[bN ]∑
`=1

Λ̇−(1)Ŝ`(c(θ))Ŝ`+[bN ](c(θ)) − 2b−1
N−[bcN ]∑
`=1

Λ̇+(c)Ŝ`(c(θ))Ŝ`+[bcN ](c(θ))

respectively, for the cosine terms, and similarly for sines. Now dividing f̂(θj) by VN (θj), we obtain

a joint convergence for 1 ≤ j ≤ J , and apply the functional limit theorem to each partial sum in

turn, and obtain the stated limit distribution. In the case that a jump discontinuity exists at c, we

instead obtain that the terms in the expansion of Nf̂(θ) involving a double summation cancel out

– for indices to either side of c – while

Λb(
N − k
N

)− Λb(
N − k − 1

N
) ≈ Λ+(c)− Λ−(c)

when k = N − [bcN ]− 1. This provides the stated limit in the case of a jump discontinuity. 2

Proof of Theorem 3. First note that the functions Ĝ,G ∈ C[0, π], which follows from the

assumptions on f and the Riemann integral. We first establish convergence of finite-dimensional

distributions. For any θ ∈ [0, π], we have the decomposition

Ĝ(θ)−G(θ) =
1

2π

∫ π

−π
I(λ) [gN,θ(λ)− gθ(λ)] dλ

+
1

2π

∫ π

−π
(I(λ)− f(λ)) gθ(λ) dλ.
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When θ = 0, both Ĝ(θ) and G(θ) are zero, so the result is trivial; hence assume θ > 0. Using a

Taylor series expansion of Λ about zero, the first term above is decomposed into

1

2π

∫ π

−π
I(λ)

∑
|h|<N

[Λ(h/bN)− Λ(0)]
sin[θh]

2πh
eiλh dλ− 1

2π

∫ π

−π
I(λ)

∑
|h|≥N

sin[θh]

2πh
eiλh dλ. (A.3)

The spectral density
∑

h (Λ(h/bN)− Λ(0)) sin(θh)/(2πh)eiλh exists for all λ, since the real part of

sin(θh)eiλh equals one half of sin((λ + θ)h) − sin((λ − θ)h), and the taper is bounded (note that

sin((λ±θ)h)/h is an alternating sequence). Thus supλ |
∑
|h|<N (Λ(h/bN)− Λ(0)) sin(θh)/(2πh)eiλh| <

∞ for all N , and supλ |
∑
|h|≥N sin(θh)/(2πh)eiλh| < ∞ for all N as well. Then by the Hölder in-

equality, and the fact that (2π)−1
∫ π
−π I(λ) dλ = γ̂0 is bounded in probability, both summands in

(A.3) are bounded in probability.

For the second summand, we apply the Dominated Convergence Theorem to take the limit as

N → ∞ inside the integral, and obtain zero. So long as θ > 0,
√
N
∑
|h|≥N sin[θh]/h tends to

zero using L’hopital’s rule and the alternating series test. Thus, the second summand of (A.3) is

oP (1/
√
N). For the first summand, we observe that there exists some xh ∈ [0, h/bN ] for each b

and h such that Λ(h/bN) − Λ(0) = Λ̇(xh)h/bN , so that the first summand is OP (N−1) (the sum∑
|h|<N sin(θh) is bounded). This establishes that for each θ > 0

√
N
(
Ĝ(θ)−G(θ)

)
= oP (1) +

√
N

1

2π

∫ π

−π
(I(λ)− f(λ)) gθ(λ) dλ

L
=⇒ Z(θ),

where the weak convergence follows from Lemma 3.1.1 of Taniguchi and Kakizawa (2000). Note

that this lemma is proved under either condition P3 or P1, but separate results in Taniguchi and

Kakizawa (2000) treat the P2 case in detail as well. The central limit theorem can also be stated

jointly over any finite collection of θ frequencies.

To prove tightness, let ω > θ and consider the criterion of Problem 4.11 of Karatzas and Shreve

(1991), which is appropriate for C[0, π]. Letting γ = (1 + δ/2) for some δ > 0,

E
[∣∣∣(Ĝ(ω)−G(ω))− (Ĝ(θ)−G(θ))

∣∣∣2γ Nγ

]

= oP (1) + E

∣∣∣∣∣N1/2

2π

∫ π

−π
(I(λ)− f(λ)) (gω(λ)− gθ(λ)) dλ

∣∣∣∣∣
2γ
 .

If the exponent 2γ is an integer, we can compute the moment in terms of the cumulants of the

process, along the lines shown in Dahlhaus (1983, 1985). In each case of P1, P2, or P3, the

fourth moments of
√
N/(2π)

∫ π
−π(I(λ)− f(λ))A(λ) dλ converge to the fourth moments of a normal

random variable of variance π−1
∫ π
−π f

2(λ)A2(λ) dλ, for any continuous function A. Therefore, for

all N sufficiently large, there exists a constant C > 0 such that we obtain a bound (with δ = 2) of

C
1

2π

∫ π

−π
f4(λ) dλ · 1

2π

∫ π

−π
|gω(λ)− gθ(λ)|4 dλ,
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using the Cauchy-Schwarz inequality. By definition of the function g, there exists a constant C ′ > 0

such that |gω(λ) − gθ(λ)| ≤ Λ(0)C ′|ω − θ| for all λ ∈ [−π, π]. So we obtain an overall bound that

is of order |ω − θ|4, which is sufficient to establish tightness. This concludes the proof. 2

Proof of Theorem 4. For k ≥ 1 define `k(x) =
∑k

j=1 (−1)j
κj
j x

j(1− x)−j for x ∈ [0, 1), so that

from (15) we have

Gk(s) = s−1
(

exp{`k(
s

s+ 1
)} − exp{`k+1(

s

s+ 1
)}
)
.

Letting βk(x) = exp `k(x), we proceed to the MacLaurin series expansion, which yields

βk(x) =
∑
n≥0

β
(n)
k (0)

n!
xn,

and hence

Gk(s) = s−1
(
βk(

s

s+ 1
)− βk+1(

s

s+ 1
)

)
= s−1

∑
n≥0

[
β
(n)
k (0)

n!
−
β
(n)
k+1(0)

n!

]
sn(1 + s)−n.

Noting that `k(0) = 0 for each k, we have βk(0) = 1 for each k, and hence the n = 0 coefficient in

the expansion for Gk(s) is zero. Removing this term, changing the index, and canceling s−1 yields

Gk(s) =
∑
n≥0

[
β
(n+1)
k (0)

(n+ 1)!
−
β
(n+1)
k+1 (0)

(n+ 1)!

]
sn(1 + s)−(n+1).

Hence the coefficients stated in Theorem 4 are

α
(k)
n+1 = β

(n+1)
k (0)− β(n+1)

k+1 (0).

By (16), the representation of Gk in terms of sums of Laplace Transforms of the φn+1 immediately

follows. Calculation of the β
(n)
k (0) coefficients proceeds as follows. Let `∞(x) =

∑∞
j=1 (−1)j

κj
j x

j(1− x)−j ,

and note that `k is obtained from `∞ where all the cumulants κj = 0 in the latter when j > k.

Then with β∞(x) = exp `∞(x) and calculation of derivatives, we obtain

β(0)∞ (0) = 1

β(1)∞ (0) = `(1)∞ (0)

β(2)∞ (0) = [`(1)∞ (0)]
2

+ `(2)∞ (0)

β(3)∞ (0) = [`(1)∞ (0)]
3

+ 2`(1)∞ (0) `(2)∞ (0) + `(3)∞ (0).

Additional calculations show that `
(r)
∞ (0) =

∑r
j=1 (−1)j κj

r!(r−1)!
j!(j−1)!(r−j)! , and therefore

β(0)∞ (0) = 1

β(1)∞ (0) = −κ1

β(2)∞ (0) = κ21 − 2κ1 + κ2

β(3)∞ (0) = −κ31 + 4κ21 − 6κ1 − 2κ1κ2 + 6κ2 − κ3.
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Higher order coefficients, in terms of cumulants, are calculated in a similar fashion. We obtain

β
(n)
k (0) from β

(n)
∞ (0) by setting all κj to zero for j > k; this produces the following sequences, for

n = 0, 1, 2, · · · :

α
(1)
n+1 = 0, −κ2, 2κ1κ2 − 6κ2 · · ·

α
(2)
n+1 = 0, 0, κ3, · · ·

It is hard to deduce a general pattern for the coefficients in terms of cumulants, but any particular

sequence can be calculated in this manner. 2

Proof of Corollary 1. It follows from the proof of Theorem 4 that the coefficients α
(k)
n+1 for fixed

k involve no cumulants κj with j > k + 1, and each coefficient is a product of κk+1 times other

cumulants. This is because any terms in β
(n+1)
∞ (0) that feature only κj for j ≤ k will be common to

both β
(n+1)
k (0) and β

(n+1)
k+1 (0), and hence cancel out in the formula for α

(k)
n+1 (for any n ≥ 0). Also,

no terms that only involve κj with j > k+ 1 exist, all these quantities being set to zero; thus, only

terms that involve κk+1 contribute to the α
(k)
n+1 sequences. Next, because |κj | ≤ Cj 2j(j − 1)!bj−1 for

constants Cj – by results in Sun, Phillips, and Jin (2008) – each κj = O(bj−1); thus α
(k)
n+1 = O(bk)

for all n ≥ 0. 2
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Quantile Coefficients, β = −.8, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 3.925 -21.326 73.731 -135.927 120.806 -40.901 .9971

.025 3.939 -21.056 72.959 -134.518 119.513 -40.440 .9969

.05 3.953 -20.844 72.462 -133.686 118.794 -40.196 .9968

.1 3.969 -20.585 71.857 -132.606 117.792 -39.837 .9967

.9 4.076 -18.412 67.998 -126.894 113.213 -38.373 .9933

.95 4.088 -18.029 67.300 -125.916 112.446 -38.132 .9923

.975 4.100 -17.671 66.451 -124.326 110.856 -37.523 .9912

.99 4.112 -17.235 65.516 -122.791 109.372 -36.940 .9896

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 2.642 -31.293 113.774 -241.905 241.037 -88.261 9902

.025 2.586 -25.809 86.255 -160.082 145.599 -50.587 .9977

.05 2.629 -23.938 81.421 -148.918 132.659 -45.216 .9971

.1 2.688 -22.36 77.98 -143.01 126.90 -43.00 .9963

.9 3.082 -15.356 60.601 -115.658 104.338 -35.615 .9850

.95 3.128 -14.55 58.14 -111.21 100.26 -34.17 .9812

.975 3.169 -13.904 56.343 -108.508 98.285 -33.617 .9777

.99 3.212 -13.091 53.598 -103.389 93.562 -31.937 .9721

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 4.207 -63.498 289.480 -590.062 552.443 -193.133 871.0

.025* 5.42 -72.07 325.08 -660.15 616.15 -214.80 890.7

.05 2.151 -25.884 67.779 -111.521 100.605 -35.747 .9905

.1 2.320 -24.156 82.225 -145.805 125.848 -41.659 .9958

.9 2.954 -14.405 57.345 -109.786 99.232 -33.934 .9817

.95 3.021 -13.649 55.080 -105.862 95.809 -32.772 .9779

.975 3.072 -13.003 53.278 -103.076 93.612 -32.076 .9723

.99 3.136 -12.365 51.514 -100.288 91.326 -31.325 .9670

Table 1: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = −.8. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = −.6, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 3.062 -17.851 60.467 -110.818 98.334 -33.290 .9976

.025 3.081 -17.356 58.920 -107.894 95.534 -32.250 .9975

.05 3.098 -16.93 57.60 -105.36 93.14 -31.40 .9974

.1 3.120 -16.519 56.830 -104.616 92.962 -31.479 .9972

.9 3.261 -13.072 48.301 -89.932 80.006 -27.035 .9927

.95 3.283 -12.613 47.340 -88.538 78.907 -26.681 .9915

.975 3.299 -12.141 45.998 -86.119 76.735 -25.931 .9898

.99 3.322 -11.702 45.171 -85.195 76.223 -25.819 .9874

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* 8.178 -92.287 399.027 -796.455 736.579 -255.353 .9428

.025 2.411 -21.517 68.682 -128.086 117.015 -40.688 .9986

.05 2.439 -20.049 65.062 -118.305 105.027 -35.585 .9985

.1 2.477 -18.575 61.727 -111.780 98.418 -33.108 .9979

.9 2.774 -11.501 44.338 -84.105 75.886 -25.971 .9885

.95 2.814 -10.696 41.901 -79.773 72.046 -24.649 .9850

.975 2.851 -10.060 39.847 -75.814 68.286 -23.288 .9818

.99 2.896 -9.442 38.322 -73.686 66.822 -22.903 .9757

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 5.621 -73.591 320.059 -638.961 591.694 -205.455 .9331

.025* 6.386 -77.276 335.543 -670.034 619.989 -215.021 .9361

.05 2.498 -31.39 127.18 -289.06 282.03 -94.42 .9757

.1 2.258 -20.38 64.94 -115.42 100.96 -33.72 .9979

.9 2.478 -10.680 41.379 -78.231 70.194 -23.878 .9858

.95 2.718 -9.824 38.724 -73.556 66.138 -22.514 .9814

.975 2.764 -9.180 36.779 -70.169 63.216 -21.531 .9766

.99 2.818 -8.539 35.232 -68.163 61.920 -21.178 .9673

Table 2: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = −.6. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = −.4, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 2.195 -13.891 44.874 -80.702 70.918 -23.875 .9983

.025 2.227 -13.309 43.509 -78.877 69.703 -23.564 .9982

.05 2.248 -12.78 42.12 -76.54 67.63 -22.83 .9981

.1 2.273 -12.186 40.689 -74.400 66.005 -22.348 .9979

.9 2.444 -7.923 29.925 -56.164 50.211 -17.036 .9907

.95 2.468 -7.317 28.242 -53.197 47.583 -16.129 .9863

.975 2.49 -6.859 27.195 -51.687 46.469 -15.804 .9805

.99 2.515 -6.292 25.663 -49.023 44.096 -14.981 .9699

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 1.939 -20.804 74.416 -163.437 167.128 -63.116 .9987

.025 1.884 -16.597 51.590 -97.672 90.286 -31.551 .9990

.05 1.902 -15.109 47.163 -86.516 77.735 -26.581 .9988

.1 1.937 -13.733 43.552 -78.595 69.381 -23.394 .9985

.9 2.209 -6.879 26.741 -50.578 45.354 -15.400 .9835

.95 2.246 -6.105 24.665 -47.282 42.750 -14.605 .9701

.975 2.277 -5.379 22.249 -42.678 38.482 -13.098 .9504

.99 2.317 -4.657 19.835 -37.814 33.712 -11.332 .9303

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 4.191 -47.563 194.456 -377.449 344.495 -118.554 .9672

.025* 4.576 -47.948 195.442 -378.647 344.554 -118.205 .9708

.05 1.757 -17.033 47.796 -89.740 77.738 -23.175 .9966

.1 1.797 -14.922 44.337 -77.681 67.210 -22.052 .9986

.9 2.146 -6.421 25.528 -48.757 43.941 -14.965 .9809

.95 2.194 -5.610 23.342 -45.273 41.149 -14.087 .9661

.975 2.232 -4.912 21.426 -42.396 39.124 -13.563 .9457

.99 2.278 -4.18 19.44 -39.56 37.39 -13.26 .9444

Table 3: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = −.4. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = −.2, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 1.354 -9.884 29.677 -52.459 46.045 -15.559 .9990

.025 1.376 -8.973 26.711 -46.804 40.709 -13.642 .9989

.05 1.400 -8.363 25.323 -44.884 39.335 -13.250 .9989

.1 1.429 -7.665 23.710 -42.450 37.362 -12.599 .9988

.9 1.620 -2.732 11.271 -21.368 18.964 -6.351 .9516

.95 1.648 -2.114 9.801 -19.227 17.468 -5.974 .9549

.975 1.674 -1.618 8.629 -17.380 15.924 -5.455 .9864

.99 1.705 -1.096 7.534 -15.874 14.824 -5.136 .9939

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 1.188 -12.86 36.15 -71.64 69.11 -25.12 .9990

.025 1.211 -11.046 29.991 -54.537 49.523 -17.132 .9994

.05 1.240 -9.880 27.181 -47.818 42.059 -14.193 .9993

.1 1.277 -8.721 24.984 -44.108 38.709 -13.015 .9991

.9 1.541 -2.089 9.306 -17.981 16.043 -5.370 .9260

.95 1.578 -1.333 7.350 -14.828 13.445 -4.527 .9845

.975 1.609 -0.6763 5.4889 -11.6627 10.8054 -3.6945 .9941

.99 1.649 -0.08316 4.50627 -11.31414 11.56094 -4.24999 .9969

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 2.603 -24.593 92.104 -171.742 153.541 -52.143 .9893

.025* 2.793 -23.966 89.293 -165.855 147.493 -49.838 .9902

.05 1.177 -11.615 29.507 -52.851 45.001 -13.503 .9984

.1 1.210 -9.835 26.803 -46.706 40.508 -13.259 .9992

.9 1.516 -1.612 7.647 -14.984 13.426 -4.503 .9352

.95 1.516 -0.7678 5.2631 -11.0329 10.2347 -3.5205 .9918

.975 1.596 -0.02990 3.06006 -7.24397 7.10454 -2.55121 .9962

.99 1.639 0.7476 0.6370 -2.6167 2.6783 -0.9284 .9975

Table 4: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = −.2. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = 0, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 .501 -5.651 13.777 -23.268 20.662 -7.181 .9995

.025 .531 -4.752 11.314 -18.979 16.739 -5.773 .9997

.05 .557 -4.005 9.502 -16.176 14.384 -4.963 .9997

.1 .584 -3.089 6.897 -11.383 9.890 -3.342 .9997

.9 .799 2.324 -6.246 10.142 -8.362 2.691 .9991

.95 .830 3.006 -7.901 12.762 -10.523 3.391 .9992

.975 .858 3.573 -9.283 14.943 -12.327 3.978 .9989

.99 .890 4.174 -10.504 16.202 -12.664 3.839 .9989

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 .487 -8.276 20.558 -41.504 41.065 -15.139 .9990

.025 .504 -6.441 14.304 -25.752 23.591 -8.124 .9996

.05 .531 -5.276 11.448 -19.695 17.434 -5.845 .9997

.1 .566 -4.056 8.494 -13.836 11.733 -3.813 .9997

.9 .820 2.814 -8.028 13.565 -11.556 3.827 .9991

.95 .856 3.654 -10.453 17.909 -15.402 5.117 .9992

.975 .887 4.363 -12.611 21.960 -19.169 6.442 .9992

.99 .924 5.041 -14.054 23.647 -20.077 6.604 .9989

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 1.457 -10.379 33.038 -57.152 49.356 -16.422 .9978

.025 .498 -7.964 11.557 -5.622 -25.707 23.727 .9945

.05 .505 -6.184 11.027 -18.512 15.402 -4.248 .9993

.1 .541 -4.662 8.540 -13.743 12.038 -3.961 .9996

.9 .837 3.200 -9.618 16.807 -14.633 4.898 .9991

.95 .878 4.098 -12.255 21.664 -19.128 6.494 .9993

.975 .916 4.789 -14.117 24.842 -21.934 7.457 .9992

.99 .962 5.447 -15.288 25.571 -21.579 7.060 .9989

Table 5: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = 0. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = .2, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -.365 -1.250 -3.486 10.220 -10.207 3.615 .9990

.025 -.329 -0.2544 -6.0275 14.4028 -13.8694 4.8792 .9992

.05 -.298 0.5152 -7.6727 16.7335 -15.6985 5.4675 .9986

.1 -.266 1.495 -10.180 20.949 -19.387 6.726 .9976

.9 -.018 7.482 -24.450 43.519 -37.846 12.617 .9979

.95 .017 8.331 -27.022 48.404 -42.483 14.291 .9982

.975 .049 9.012 -28.984 51.971 -45.793 15.472 .9982

.99 .086 9.730 -30.644 53.961 -46.736 15.530 .9982

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 -.311 -2.7689 -1.5155 4.3348 -2.8837 0.4463 .9988

.025 -.274 -1.394 -4.845 12.105 -11.715 4.156 .9994

.05 -.244 -0.3328 -6.8718 15.3602 -14.3728 4.9828 .9993

.1 -.206 0.7969 -8.8782 18.0957 -16.2994 5.4925 .9989

.9 .072 7.929 -26.617 48.509 -43.117 14.657 .9977

.95 .111 8.839 -29.363 53.563 -47.695 16.225 .9979

.975 .149 9.498 -30.924 55.638 -48.945 16.457 .9981

.99 .188 10.34 -33.33 59.67 -52.30 17.50 .9983

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* .7383 -3.0036 5.0460 -4.8908 2.6443 -.5582 .9995

.025 -.228 -3.319 1.409 -4.037 2.146 1.186 .9979

.05 -.209 -1.561 -3.847 8.560 -8.192 3.324 .9995

.1 -.178 0.1437 -8.2341 17.4929 -16.1356 5.6532 .9992

.9 .138 8.043 -26.681 47.762 -41.665 13.898 .9975

.95 .180 9.033 -29.714 53.417 -46.904 15.743 .9980

.975 .219 9.808 -31.773 56.527 -49.191 16.365 .9981

.99 .264 10.740 -34.921 62.788 -55.277 18.577 .9981

Table 6: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = .2. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].

54



Quantile Coefficients, β = .4, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -1.246 2.833 -18.697 38.521 -35.125 11.875 .9939

.025 -1.211 4.022 -21.914 44.242 -40.613 13.962 .9917

.05 -1.172 4.80 -23.03 44.68 -40.05 13.54 .9852

.1 -1.134 5.903 -26.077 50.376 -45.492 15.526 .9654

.9 -.812 12.65 -43.08 78.42 -69.29 23.38 .9970

.95 -.760 13.525 -45.419 81.909 -71.835 24.088 .9972

.975 -.717 14.321 -47.902 86.347 -75.780 25.435 .9975

.99 -.658 15.158 -50.508 90.751 -79.366 26.539 .9974

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 -1.139 1.761 -17.190 33.858 -29.798 9.836 .9977

.025 -1.097 3.131 -20.684 41.763 -38.593 13.456 .9970

.05 -1.064 4.277 -23.167 45.668 -41.526 14.248 .9953

.1 -1.017 5.408 -25.182 48.173 -42.955 14.480 .9878

.9 -.671 12.962 -44.647 81.754 -72.477 24.493 .9971

.95 -.618 13.946 -47.687 87.300 -77.530 26.261 .9973

.975 -.570 14.714 -49.948 91.191 -80.923 27.413 .9973

.99 -.513 15.706 -53.368 97.510 -86.547 29.297 .9974

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01 -1.126 2.630 -37.034 109.420 -153.012 74.773 .9811

.025 -1.017 1.694 -15.360 26.050 -21.268 7.311 .9980

.05 -.986 3.265 -20.222 37.883 -32.934 11.098 .9975

.1 -.942 4.757 -23.908 45.652 -40.548 13.700 .9944

.9 -.565 12.932 -44.146 80.066 -70.468 23.679 .9965

.95 -.509 14.015 -47.643 86.584 -76.502 25.816 .9969

.975 -.452 14.77 -49.70 89.74 -78.96 26.57 .9969

.99 -.392 15.71 -52.53 94.31 -82.55 27.64 .9969

Table 7: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = .4. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = .6, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -2.207 6.925 -33.099 64.853 -58.756 20.075 .9755

.025 -2.157 8.136 -36.368 70.725 -64.102 21.916 .9597

.05 -2.112 9.127 -38.690 74.151 -66.643 22.639 .9572

.1 -2.056 10.239 -41.428 78.890 -71.000 24.204 .9750

.9 -1.556 17.636 -61.316 112.577 -99.845 33.734 .9964

.95 -1.462 18.50 -64.02 117.11 -103.52 34.87 .9965

.975 -1.374 19.147 -66.127 120.948 -106.951 36.042 .9965

.99 -1.262 19.76 -68.22 125.18 -111.28 37.71 .9964

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 -2.043 5.836 -30.110 56.983 -50.465 17.035 .9927

.025 -2.000 7.385 -34.277 65.043 -57.908 19.591 .9872

.05 -1.955 8.584 -37.464 71.081 -63.342 21.385 .9721

.1 -1.896 9.821 -40.427 76.620 -68.738 23.396 .9636

.9 -1.379 17.828 -62.136 113.964 -100.956 34.087 .9964

.95 -1.282 18.80 -65.62 120.86 -107.55 36.46 .9966

.975 -1.186 19.349 -66.978 122.477 -108.300 36.503 .9966

.99 -1.066 19.807 -67.839 122.908 -107.858 36.130 .9962

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01 -1.938 4.717 -28.960 55.698 -53.396 20.350 .9939

.025 -1.895 6.521 -33.192 63.375 -57.262 19.925 .9927

.05 -1.847 7.830 -36.145 69.182 -62.429 21.471 .9853

.1 -1.786 9.160 -38.611 72.970 -65.360 22.271 .9620

.9 -1.244 17.903 -62.516 114.603 -101.476 34.229 .9962

.95 -1.139 18.809 -65.465 119.848 -106.046 35.755 .9962

.975 -1.049 19.641 -68.683 126.333 -112.249 37.981 .9964

.99 -.941 20.477 -71.873 132.637 -118.221 40.119 .9964

Table 8: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = .6. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].

56



Quantile Coefficients, β = .8, frequency in (0, π)

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -3.382 11.02 -46.66 88.60 -78.82 26.53 .9474

.025 -3.322 12.45 -50.97 97.22 -87.56 29.90 .9684

.05 -3.252 13.49 -53.36 101.06 -90.83 30.98 .9798

.1 -3.162 14.74 -56.64 106.85 -95.94 32.70 .9876

.9 -2.182 21.86 -76.59 140.85 -125.02 42.29 .9958

.95 -2.011 22.421 -78.505 144.108 -127.602 43.049 .9959

.975 -1.869 22.904 -80.458 148.043 -131.315 44.362 .9958

.99 -1.699 23.196 -81.469 149.940 -133.038 44.960 .9957

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 -3.212 10.78 -48.49 94.50 -86.90 30.35 .9752

.025 -3.132 12.10 -50.96 97.69 -88.61 30.50 .9623

.05 -3.061 13.109 -52.499 98.917 -88.339 29.925 .9712

.1 -2.974 14.476 -55.958 105.061 -93.827 31.796 .9855

.9 -1.970 21.879 -77.135 142.633 -127.197 43.183 .9960

.95 -1.792 22.40 -79.02 146.31 -130.71 44.46 .9959

.975 -1.644 22.763 -80.064 147.745 -131.534 44.595 .9958

.99 -1.494 23.389 -82.743 153.415 -137.189 46.707 .9957

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01 -3.080 9.704 -44.744 83.697 -74.283 25.304 .9876

.025 -3.008 11.345 -48.457 90.478 -79.570 26.539 .9739

.05 -2.943 12.858 -52.973 100.294 -89.684 30.353 .9711

.1 -2.845 14.176 -55.692 104.958 -94.003 31.923 .9812

.9 -1.81 21.96 -77.62 143.30 -127.50 43.17 .9957

.95 -1.630 22.547 -79.937 148.020 -132.064 44.834 .9958

.975 -1.484 22.956 -81.266 150.117 -133.559 45.207 .9958

.99 -1.324 23.472 -83.359 154.364 -137.594 46.626 .9955

Table 9: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0, π), based on Bartlett and Trapezoidal tapers, when β = .8. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].

57



Quantile Coefficients, β = −.8, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 3.186 -21.928 75.118 -137.728 121.931 -41.162 .9972

.025 3.210 -21.649 74.397 -136.808 121.432 -41.082 .9972

.05 3.230 -21.377 73.696 -135.771 120.661 -40.855 .9972

.1 3.252 -21.038 72.791 -134.205 119.286 -40.390 .9970

.9 3.402 -17.931 66.487 -124.061 110.635 -37.492 .9925

.95 3.421 -17.378 65.407 -122.410 109.164 -36.955 .9908

.975 3.436 -16.819 63.917 -119.471 106.127 -35.762 .9891

.99 3.457 -16.256 62.799 -117.898 104.828 -35.312 .9864

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* 3.127 -42.936 194.945 -397.055 371.082 -129.440 .8828

.025* 3.803 -48.895 220.169 -447.359 417.620 -145.574 .8969

.05* 4.369 -53.513 239.068 -484.544 451.843 -157.423 .9081

.1 1.920 -25.517 84.831 -156.751 141.346 -48.608 .9980

.9 2.458 -14.57 57.75 -110.49 99.82 -34.10 .9831

.95 2.525 -13.582 54.864 -105.372 95.181 -32.469 .9775

.975 2.580 -12.777 52.651 -101.975 92.562 -31.679 .9719

.99 2.638 -11.78 49.49 -96.53 87.99 -30.21 .9596

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* .3634 -18.3485 87.9686 -181.7929 171.9358 -60.6336 .8464

.025* 1.238 -24.622 114.792 -235.311 220.855 -77.307 .8467

.05* 2.044 -30.945 141.897 -289.630 270.928 -94.551 .8697

.1* 2.951 -37.760 169.814 -344.337 320.842 -111.668 .8984

.9 2.361 -13.671 54.387 -104.108 94.172 -32.248 .9804

.95 2.445 -12.721 51.824 -100.071 90.895 -31.191 .9725

.975 2.523 -12.103 50.701 -99.367 91.100 -31.447 .9651

.99 2.596 -11.164 47.828 -94.697 87.424 -30.336 .9519

Table 10: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quency 0 or π, based on Bartlett and Trapezoidal tapers, when β = −.8. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = −.6, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 2.308 -18.98 63.31 -114.94 101.40 -34.20 .9977

.025 2.340 -18.429 61.702 -112.439 99.493 -33.637 .9978

.05 2.365 -17.906 60.220 -110.126 97.714 -33.112 .9977

.1 2.397 -17.355 58.915 -108.239 96.226 -32.616 .9976

.9 2.594 -12.429 46.158 -86.080 76.643 -25.912 .9917

.95 2.623 -11.751 44.598 -83.746 74.868 -25.392 .9889

.975 2.651 -11.188 43.338 -81.883 73.366 -24.892 .9863

.99 2.680 -10.492 41.489 -78.802 70.778 -24.058 .9810

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* 3.302 -41.867 184.684 -371.542 345.164 -120.018 .9221

.025* 3.708 -44.363 193.733 -387.974 359.379 -124.699 .9324

.05* 4.064 -46.320 200.462 -400.120 370.016 -128.271 .9412

.1 1.715 -20.832 64.343 -117.367 105.357 -36.143 .9987

.9 2.141 -10.644 41.120 -77.868 70.064 -23.915 .9875

.95 2.201 -9.731 38.875 -74.684 67.853 -23.332 .9818

.975 2.249 -8.878 36.184 -69.807 63.495 -21.830 .9744

.99 2.300 -7.881 32.968 -64.103 58.543 -20.170 .9561

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 1.856 -32.655 144.321 -290.350 271.121 -94.881 .9133

.025* 2.346 -34.736 153.721 -309.592 288.413 -100.564 .9152

.05* 2.791 -36.903 162.518 -326.407 302.974 -105.262 .9239

.1* 3.313 -39.200 170.494 -340.413 314.503 -108.862 .9360

.9 2.048 -9.806 38.254 -72.757 65.627 -22.444 .9848

.95 2.120 -8.744 35.033 -67.184 60.879 -20.873 .9769

.975 2.186 -8.083 33.697 -65.815 60.308 -20.813 .9630

.99 2.257 -7.130 30.601 -60.330 55.478 -19.121 .9469

Table 11: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quency 0 or π, based on Bartlett and Trapezoidal tapers, when β = −.6. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = −.4, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 1.444 -15.723 50.232 -89.576 78.256 -26.230 .9985

.025 1.479 -14.925 48.098 -86.617 76.230 -25.680 .9985

.05 1.504 -14.041 44.988 -80.746 70.926 -23.869 .9984

.1 1.541 -13.215 42.788 -77.309 68.197 -23.020 .9983

.9 1.782 -7.178 27.276 -51.112 45.521 -15.382 .9879

.95 1.817 -6.386 25.286 -47.950 42.960 -14.563 .9779

.975 1.846 -5.665 23.187 -44.184 39.594 -13.406 .9599

.99 1.883 -4.868 20.648 -39.150 34.641 -11.553 .9329

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* 2.206 -25.329 106.866 -210.363 193.083 -66.641 .9604

.025* 2.433 -26.203 109.212 -213.783 195.526 -67.309 .9671

.05* 2.631 -26.767 110.430 -215.493 196.825 -67.706 .9708

.1 1.210 -16.491 50.516 -95.176 87.685 -30.635 .9993

.9 1.570 -6.045 23.868 -45.426 40.826 -13.873 .9785

.95 1.624 -5.002 20.735 -39.732 35.671 -12.077 .9487

.975 1.667 -4.169 18.380 -35.721 32.124 -10.818 .9492

.99 1.714 -3.128 15.027 -29.840 27.186 -9.246 .9493

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 1.616 -23.279 95.368 -185.050 169.389 -58.488 .9640

.025* 1.865 -23.818 98.895 -193.066 176.688 -60.859 .9619

.05* 2.085 -24.079 99.670 -194.042 176.875 -60.695 .9661

.1* 2.354 -24.395 100.009 -193.837 175.978 -60.190 .9721

.9 1.522 -5.538 22.254 -42.497 38.041 -12.832 .9788

.95 1.586 -4.452 19.194 -37.580 34.227 -11.705 .9408

.975 1.636 -3.532 16.454 -32.955 30.359 -10.434 .9346

.99 1.698 -2.548 13.384 -27.688 26.051 -9.099 .9679

Table 12: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quency 0 or π, based on Bartlett and Trapezoidal tapers, when β = −.4. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = −.2, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 .592 -12.149 35.606 -61.061 52.341 -17.381 .9992

.025 .627 -11.000 32.101 -55.381 47.717 -15.890 .9992

.05 .656 -9.985 28.895 -49.598 42.418 -13.987 .9991

.1 .695 -8.973 26.559 -46.844 41.114 -13.895 .9991

.9 .963 -1.960 8.615 -16.543 14.680 -4.906 .8658

.95 1.003 -1.094 6.353 -12.729 11.390 -3.793 .9816

.975 1.035 -0.2852 3.8544 -8.0196 7.0061 -2.2334 .9927

.99 1.075 0.5116 1.8708 -5.2034 5.1180 -1.7805 .9964

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* 1.266 -12.757 50.397 -95.980 86.529 -29.557 .9846

.025* 1.376 -12.686 49.018 -92.463 82.931 -28.236 .9879

.05 .515 -13.634 38.299 -78.634 77.205 -28.667 .9986

.1 .539 -10.993 29.037 -52.288 46.953 -16.085 .9994

.9 .899 -1.238 6.407 -12.887 11.693 -3.963 .9411

.95 .949 -0.201 3.544 -8.061 7.611 -2.618 .9941

.975 .995 0.6006 1.4807 -4.8767 5.0952 -1.8202 .9977

.99 1.051 1.48904 -1.19168 -0.05777 0.76069 -0.31762 .9984

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 1.059 -12.921 48.843 -91.813 83.034 -28.511 .9859

.025* 1.184 -12.875 49.529 -93.639 84.469 -28.861 .9870

.05* 1.297 -12.660 48.473 -91.052 81.451 -27.613 .9887

.1* 1.431 -12.221 45.928 -85.433 75.838 -25.566 .9910

.9 .887 -0.786 4.980 -10.655 9.879 -3.351 .9598

.95 .949 0.3058 1.8540 -5.2086 5.1938 -1.8014 .9959

.975 1.001 1.148 -0.360 -1.749 2.528 -1.017 .9976

.99 1.052 2.302 -4.232 5.361 -3.711 1.053 .9980

Table 13: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quency 0 or π, based on Bartlett and Trapezoidal tapers, when β = −.2. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = 0, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -.262 -8.488 21.309 -34.640 29.412 -9.822 .9996

.025 -.229 -6.976 16.155 -25.127 20.821 -6.863 .9997

.05 -.197 -5.789 12.763 -19.762 16.531 -5.514 .9996

.1 -.155 -4.535 9.479 -14.664 12.405 -4.184 .9995

.9 .151 3.078 -8.863 14.999 -12.842 4.283 .9986

.95 .194 4.019 -11.206 18.631 -15.682 5.140 .9989

.975 .229 4.920 -13.917 23.397 -19.741 6.446 .9990

.99 .274 5.725 -15.753 25.854 -21.379 6.863 .9986

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* .6618 -5.4437 19.1428 -34.3456 30.0210 -10.0853 .9966

.025* .7148 -5.1414 17.2510 -30.3019 26.2102 -8.7515 .9978

.05 -.216 -8.324 17.809 -35.419 34.820 -12.848 .9994

.1 -.183 -6.020 10.786 -17.392 15.013 -4.998 .9997

.9 .180 3.748 -11.656 20.767 -18.483 6.355 .9981

.95 .230 4.816 -14.632 26.067 -23.319 8.073 .9987

.975 .275 5.649 -16.662 28.982 -25.406 8.647 .9990

.99 .324 6.665 -19.688 34.284 -30.027 10.192 .9988

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* .607 -6.127 20.664 -37.288 33.370 -11.427 .9943

.025* .6697 -5.8781 19.9861 -35.7242 31.3683 -10.5329 .9965

.05* .7244 -5.4544 17.8535 -30.8394 26.2820 -8.6136 .9979

.1 -.218 -6.887 5.786 2.466 -19.189 14.077 .9983

.9 .209 3.989 -11.987 20.094 -16.756 5.409 .9986

.95 .269 5.105 -14.978 24.972 -20.737 6.676 .9990

.975 .320 6.048 -17.856 30.468 -25.988 8.579 .9992

.99 .378 7.094 -21.269 37.049 -32.187 10.781 .9989

Table 14: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or π, based on Bartlett and Trapezoidal tapers, when β = 0. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = .2, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -1.141 -4.4957 5.2246 -3.6245 1.3248 -0.2243 .9996

.025 -1.099 -2.8309 -0.0679 5.5309 -6.5520 2.4042 .9996

.05 -1.060 -1.555 -3.470 10.693 -10.631 3.707 .9995

.1 -1.013 -0.1659 -6.9750 16.1585 -15.1693 5.2087 .9993

.9 -.658 8.222 -27.089 48.305 -42.054 14.032 .9975

.95 -.607 9.277 -29.735 52.348 -45.204 14.990 .9979

.975 -.565 10.266 -32.928 58.472 -50.970 17.046 .9982

.99 -.515 11.370 -36.492 65.092 -57.046 19.174 .9980

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* .3216 -1.8748 4.8550 -6.9700 5.2523 -1.6043 .9996

.025* .3454 -1.5477 3.2334 -3.8211 2.4408 -.6510 .9997

.05 -.998 -3.388 0.104 -1.136 3.735 -2.291 .9995

.1 -.956 -1.272 -6.068 14.145 -13.276 4.582 .9995

.9 -.560 8.676 -29.032 52.235 -45.772 15.343 .9974

.95 -.504 9.848 -32.328 57.857 -50.577 16.928 .9978

.975 -.459 10.931 -35.884 64.630 -56.908 19.170 .9980

.99 -.399 11.995 -39.217 70.848 -62.745 21.271 .9980

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* .3172 -2.4539 6.6764 -10.9728 9.5063 -3.1875 .9985

.025* .3486 -2.2060 5.7551 -8.8206 7.0817 -2.2147 .9995

.05* .3713 -1.7498 3.5326 -3.9992 2.3455 -.5137 .9996

.1 -.926 -2.553 -4.827 13.038 -16.624 8.298 .9989

.9 -.491 8.891 -29.738 53.335 -46.726 15.694 .9971

.95 -.427 10.130 -33.442 60.088 -52.792 17.752 .9974

.975 -.381 11.373 -38.012 69.424 -61.843 21.019 .9979

.99 -.317 12.462 -41.299 75.182 -66.839 22.667 .9978

Table 15: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or π, based on Bartlett and Trapezoidal tapers, when β = .2. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = .4, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -2.064 -0.1239 -13.3873 34.0430 -34.0389 12.1685 .9984

.025 -1.999 1.269 -16.279 36.851 -35.065 12.189 .9980

.05 -1.949 2.566 -19.099 39.996 -36.661 12.448 .9971

.1 -1.893 4.040 -22.605 45.510 -41.498 14.170 .9942

.9 -1.450 13.509 -46.614 85.322 -75.546 25.503 .9970

.95 -1.371 14.597 -49.443 89.726 -79.082 26.627 .9972

.975 -1.305 15.586 -52.364 94.630 -83.231 27.994 .9971

.99 -1.221 16.619 -55.518 99.893 -87.542 29.347 .9969

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* .1434 -.4035 -.1148 1.5480 -1.9069 .7275 .9984

.025 -1.911 0.2257 -17.0635 33.6339 -30.0570 9.8628 .9983

.05 -1.844 1.535 -18.499 36.755 -32.834 11.003 .9991

.1 -1.779 3.200 -21.413 42.225 -38.238 13.105 .9980

.9 -1.294 13.593 -46.575 84.518 -74.282 24.917 .9968

.95 -1.213 14.840 -50.341 91.112 -79.998 26.814 .9971

.975 -1.146 16.012 -54.796 100.521 -89.493 30.386 .9973

.99 -1.062 17.29 -59.51 109.77 -98.26 33.54 .9974

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* .153 -.745 .891 -.475 .018 .101 .9984

.025* .165 -.455 -.509 2.748 -3.290 1.320 .9980

.05* .172 -.092 -2.077 5.731 -5.887 2.156 .9975

.1 -1.695 1.811 -18.036 34.480 -31.862 11.871 .9977

.9 -1.189 13.803 -47.901 87.896 -78.161 26.527 .9964

.95 -1.102 15.03 -51.13 92.83 -81.96 27.65 .9968

.975 -1.028 16.116 -54.569 98.807 -87.058 29.321 .9969

.99 -.929 17.118 -57.518 103.743 -91.322 30.771 .9967

Table 16: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or π, based on Bartlett and Trapezoidal tapers, when β = .4. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = .6, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -3.051 3.794 -28.196 61.775 -59.128 20.895 .9961

.025 -2.983 5.393 -31.856 66.473 -62.183 21.655 .9937

.05 -2.915 6.717 -34.732 70.273 -65.007 22.553 .9886

.1 -2.846 8.381 -38.936 77.059 -70.708 24.413 .9762

.9 -2.172 18.27 -63.97 118.18 -105.40 35.79 .9965

.95 -2.035 19.341 -67.111 123.154 -109.244 36.924 .9964

.975 -1.908 20.138 -69.522 126.831 -111.825 37.566 .9965

.99 -1.759 21.042 -73.334 135.054 -120.062 40.622 .9963

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01* .057 .078 -1.233 2.975 -2.888 1.011 .9959

.025 -2.839 4.544 -32.472 65.188 -60.413 21.013 .9982

.05 -2.772 6.025 -34.783 69.308 -63.970 22.273 .9969

.1 -2.690 7.637 -37.115 72.192 -65.871 22.823 .9922

.9 -1.993 18.431 -64.374 118.052 -104.481 35.233 .9964

.95 -1.852 19.60 -68.00 124.01 -109.19 36.64 .9964

.975 -1.718 20.348 -70.144 127.165 -111.415 37.240 .9963

.99 -1.558 21.145 -73.168 133.273 -117.332 39.389 .9963

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* .063 -.073 -.862 2.382 -2.487 .952 .9969

.025* .067 .141 -1.835 4.378 -4.320 1.565 .9953

.05 -2.613 3.378 -24.170 45.061 -46.284 19.678 .9954

.1 -2.553 5.756 -28.516 49.097 -40.143 12.913 .9937

.9 -1.852 18.48 -64.72 118.93 -105.62 35.75 .9961

.95 -1.714 19.822 -69.460 127.951 -113.946 38.676 .9964

.975 -1.576 20.642 -72.207 132.911 -118.305 40.126 .9963

.99 -1.416 21.369 -74.243 135.678 -119.985 40.460 .9960

Table 17: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or π, based on Bartlett and Trapezoidal tapers, when β = .6. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Quantile Coefficients, β = .8, frequency 0 or π

Tapers Regression Coefficients R2

Bartlett c0 c1 c2 c3 c4 c5

.01 -4.272 7.235 -38.995 78.844 -72.082 24.626 .9867

.025 -4.185 9.071 -43.313 84.531 -75.892 25.638 .9758

.05 -4.112 10.82 -48.46 94.22 -85.25 29.12 .9638

.1 -4.012 12.34 -51.12 96.91 -86.55 29.30 .9621

.9 -2.769 22.256 -78.185 143.751 -127.295 42.909 .9960

.95 -2.532 23.00 -80.83 148.78 -132.00 44.60 .9958

.975 -2.320 23.374 -82.398 152.171 -135.503 45.968 .9960

.99 -2.088 23.513 -82.400 151.527 -134.518 45.531 .9956

Trap, c = .25 c0 c1 c2 c3 c4 c5

.01 -4.053 5.127 -28.509 41.121 -23.909 3.457 .9965

.025 -3.990 7.961 -39.975 73.459 -62.931 20.417 .9949

.05 -3.911 9.752 -44.728 84.162 -74.597 25.172 .9879

.1 -3.812 11.59 -48.91 92.03 -82.11 27.90 .9652

.9 -2.553 22.139 -77.609 142.640 -126.522 42.763 .9959

.95 -2.300 22.762 -79.961 147.344 -131.018 44.381 .9958

.975 -2.097 23.235 -81.896 151.410 -135.039 45.867 .9960

.99 -1.867 23.318 -81.059 148.043 -130.742 44.059 .9956

Trap, c = .5 c0 c1 c2 c3 c4 c5

.01* 0.01928 0.09940 -0.87097 1.96920 -1.92179 0.69928 .9951

.025* 0.02014 0.20001 -1.24252 2.57132 -2.36157 0.81464 .9948

.05 -3.780 8.620 -41.834 77.210 -69.399 24.498 .9948

.1 -3.686 10.930 -47.419 87.952 -77.355 25.972 .9842

.9 -2.384 22.152 -78.016 143.646 -127.580 43.150 .9956

.95 -2.131 22.816 -80.499 148.416 -131.902 44.618 .9956

.975 -1.922 23.249 -82.365 152.575 -136.206 46.266 .9955

.99 -1.684 23.327 -82.051 151.160 -134.304 45.417 .9957

Table 18: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or π, based on Bartlett and Trapezoidal tapers, when β = .8. The quantiles for
α = .01, .025, .05, .1, .9, .95, .975, .99 are regressed on an exponentiated quintic in the bandwidth
fraction b ∈ (0, 1].
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Empirical Coverage for Bartlett Taper

β -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

N = 50, f50(π/6) .055 .084 .141 .256 .5 1.05 2.38 6.17 19.57

b = .04 .021, .017 .234, .187 .536, .445 .761, .670 .831, .744 .793, .706 .751, .661 .764, .658 .795, .706

b = .10 .233, .191 .614, .532 .809, .729 .885, .824 .915, .849 .916, .853 .925, .867 .932, .876 .939, .892

b = .20 .650, .569 .861, .788 .915, .858 .930, .877 .940, .890 .947, .896 .949, .901 .953, .904 .955, .908

b = .50 .786, .712 .904, .840 .930, .871 .943, .890 .946, .891 .948, .896 .948, .900 .947, .896 .947, .901

N = 100, f100(π/6) .033 .056 .108 .224 .5 1.20 3.14 9.30 33.36

b = .04 .022, .015 .333, .263 .687, .600 .852, .775 .884, .815 .880, .805 ..873, .797 .897, .826 .917, .856

b = .10 .304, .251 .744, .663 .884, .805 .925, .866 .936, .882 .940, .885 .938, .884 .945, .890 .950, .905

b = .20 .732, .654 .906, .840 .930, .877 .942, .889 .952, .899 .943, .899 .954, .907 .957, .907 .959, .917

b = .50 .822, .753 .913, .854 .935, .883 .942, .896 .951, .901 .941, .886 .951, .901 .954, .901 .949, .904

N = 200, f200(π/6) .020 .038 .082 .195 .5 1.38 4.14 14.02 56.75

b = .04 .037, .025 .494, .396 .823, .738 .918, .855 .942, .882 .932, .877 .932, .872 .941, .887 .949, .903

b = .10 .366, .293 .812, .726 .920, .856 .942, .889 .949, .899 .945, .889 .942, .886 .944, .895 .951, .909

b = .20 .790, .725 .921, .863 .941, .888 .950, .895 .954, .903 .952, .900 .948, .897 .952, .906 .960, .920

b = .50 .848, .785 .930, .875 .947, .897 .949, .896 .948, .898 .948, .900 .944, .897 .949, .901 .952, .909

Table 19: Empirical size for simulations of a cyclical long memory process of parameter β =
−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, with spectral density estimates (at frequency π/6) computed using
a Bartlett taper of bandwidth fraction b = .04, .10, .20, .50. Confidence intervals were constructed
for α = .05, .10, and empirical coverage is given in each cell for both nominal levels.

Empirical Coverage for Trapezoidal .25 Taper

β -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

N = 50, f50(π/6) .055 .084 .141 .256 .5 1.05 2.38 6.17 19.57

b = .04 .717, .611 .908, .837 .884, .818 .877, .799 .861, .786 .842, .760 .802, .756 .813, .712 .852, .777

b = .10 .880, .796 .913, .844 .914, .852 .925, .864 .926, .871 .933, .872 .934, .881 .941, .892 .954, .910

b = .20 .908, .839 .945, .891 .951, .900 .958, .910 .959, .911 .954, .905 .955, .907 .951, .901 .962, .914

b = .50 .927, .874 .937, .881 .946, .890 .950, .901 .949, .892 .943, .891 .946, .900 .946, .898 .951, .901

N = 100, f100(π/6) .033 .056 .108 .224 .5 1.20 3.13 9.30 33.36

b = .04 .859, .778 .839, .760 .865, .788 .898, .826 .901, .827 .892, .823 .896, .824 .910, .846 .926, .870

b = .10 .922, .859 .956, .905 .957, .909 .958, .912 .953, .906 .945, .898 .947, .897 .945, .895 .952, .901

b = .20 .909, .842 .939, .883 .944, .889 .946, .893 .954, .901 .949, .903 .952, .906 .948, .900 .954, .907

b = .50 .943, .890 .946, .894 .947, .898 .944, .896 .949, .906 .944, .894 .948, .899 .947, .889 .949, .902

N = 200, f200(π/6) .020 .038 .082 .195 .5 1.38 4.14 14.02 56.75

b = .04 .905, .832 .954, .907 .948, .894 .956, .910 .956, .910 .947, .896 .944, .893 .947, .900 .950, .908

b = .10 .929, .867 .945, .891 .950, .899 .945, .896 .950, .901 .945, .896 .943, .886 .947, .897 .947, .906

b = .20 .923, .855 .942, .886 .951, .899 .945, .892 .956, .900 .953, .906 .950, .893 .954, .903 .958, .915

b = .50 .941, .890 .947, .893 .957, .906 .945, .894 .952, .909 .950, .897 .947, .896 .949, .900 .950, .902

Table 20: Empirical size for simulations of a cyclical long memory process of parameter β =
−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, with spectral density estimates (at frequency π/6) computed using
a Trapezoidal .25 taper of bandwidth fraction b = .04, .10, .20, .50. Confidence intervals were
constructed for α = .05, .10, and empirical coverage is given in each cell for both nominal levels.



Empirical Coverage for Trapezoidal .50 Taper

β -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

N = 50, f50(π/6) .055 .084 .141 .256 .5 1.05 2.38 6.17 19.57

b = .04 .703, .652 .694, .631 .751, .697 .819, .750 .832, .758 .811, .731 .769, .676 .785, .687 .824, .740

b = .10 .870, .803 .933, .895 .952, .911 .952, .912 .950, .902 .957, .909 .955, .904 .958, .910 .965, .925

b = .20 .894, .797 .937, .867 .952, .895 .955, .904 .942, .892 .949, .898 .946, .892 .948, .893 .957, .906

b = .50 .904, .858 .925, .886 .942, .895 .941, .897 .950, .900 .947, .893 .945, .898 .941, .887 .951, .898

N = 100, f100(π/6) .033 .056 .108 .224 .5 1.20 3.13 9.30 33.36

b = .04 .918, .864 .944, .904 .938, .900 .938, .886 .927, .869 .928, .867 .933, .867 .942, .889 .954, .912

b = .10 .893, .834 .932, .903 .939, .899 .939, .890 .938, .884 .947, .892 .941, .887 .945, .887 .949, .901

b = .20 .917, .842 .956, .895 .954, .895 .951, .897 .955, .904 .952, .907 .984, .908 .954, .905 .960, .915

b = .50 .913, .866 .932, .891 .941, .900 .944, .895 .952, .899 .949, .896 .952, .900 .949, .896 .946, .900

N = 200, f200(π/6) .020 .038 .082 .195 .5 1.38 4.14 14.02 56.75

b = .04 .914, .853 .950, .908 .958, .923 .953, .913 .951, .906 .948, .898 .949, .895 .949, .896 .956, .914

b = .10 .920, .869 .937, .908 .944, .908 .947, .901 .949, .888 .945, .896 .951, .897 .946, .896 .953, .908

b = .20 .919, .844 .952, .886 .959, .898 .952, .905 .951, .897 .952, .907 .957, .908 .952, .903 .956, .912

b = .50 .927, .885 .943, .902 .943, .900 .948, .906 .948, .898 .948, .901 .950, .901 .945, .893 .950, .897

Table 21: Empirical size for simulations of a cyclical long memory process of parameter β =
−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8, with spectral density estimates (at frequency π/6) computed using
a Trapezoidal .50 taper of bandwidth fraction b = .04, .10, .20, .50. Confidence intervals were
constructed for α = .05, .10, and empirical coverage is given in each cell for both nominal levels.
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Empirical Coverage for Bartlett Taper

Bandwidth Coverage, α = .10 Coverage, α = .05

ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

N = 50

b = .04 .503, .917 .388, .886 .345, .942 .583, .974 .486, .956 .433, .972

b = .10 .768, .944 .703, .937 .647, .962 .811, .969 .761, .961 .707, .979

b = .20 .833, .952 .796, .942 .750, .966 .862, .969 .838, .961 .796, .979

b = .50 .856, .939 .851, .941 .818, .968 .889, .960 .887, .961 .848, .980

N = 100

b = .04 .703, .893 .642, .891 .428, .854 .765, .960 .716, .958 .516, .937

b = .10 .849, .946 .836, .948 .673, .942 .887, .977 .878, .980 .747, .963

b = .20 .884, .950 .877, .952 .785, .954 .913, .980 .913, .983 .832, .965

b = .50 .904, .946 .901, .954 .840, .956 .939, .976 .931, .982 .880, .967

N = 200

b = .04 .794, .896 .747, .886 .565, .806 .850, .935 .825, .942 .670, .903

b = .10 .883, .924 .882, .931 .803, .911 .919, .957 .918, .962 .850, .953

b = .20 .903, .927 .908, .937 .857, .925 .933, .958 .938, .965 .902, .962

b = .50 .924, .923 .932, .934 .897, .927 .943, .957 .956, .966 .926, .962

Table 22: Empirical coverage for spectral distribution bands based on the Bartlett taper with
bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size N = 50, 100, 200 from
a cyclical AR(2) process of frequency θ = π/6 and persistency ρ = .7, .8, .9. Coverage for both
a nominal α = .10, .05 are given in each cell, with the first entry based on an estimator of the
spectrum, and the second entry based on perfect knowledge of the true spectrum.
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Empirical Coverage for Trapezoidal .25 Taper

Bandwidth Coverage, α = .10 Coverage, α = .05

ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

N = 50

b = .04 .611, .926 .554, .948 .429, .950 .687, .958 .635, .973 .511, .967

b = .10 .849, .934 .851, .953 .747, .950 .883, .959 .878, .973 .795, .964

b = .20 .865, .942 .877, .958 .805, .952 .905, .961 .898, .974 .835, .970

b = .50 .883, .938 .890, .956 .839, .952 .918, .961 .919, .972 .880, .971

N = 100

b = .04 .848, .921 .800, .925 .680, .921 .886, .958 .847, .959 .744, .953

b = .10 .893, .945 .875, .946 .823, .949 .925, .972 .912, .970 .870, .972

b = .20 .902, .944 .895, .947 .872, .952 .928, .971 .923, .970 .903, .974

b = .50 .915, .938 .908, .942 .891, .950 .941, .967 .938, .967 .920, .970

N = 200

b = .04 .912, .926 .893, .928 .759, .913 .938, .970 .924, .964 .831, .956

b = .10 .922, .925 .919, .937 .883, .938 .944, .969 .942, .966 .913, .964

b = .20 .928, .914 .925, .930 .894, .941 .946, .968 .949, .963 .927, .965

b = .50 .938, .914 .938, .921 .914, .935 .959, .964 .951, .962 .937, .960

Table 23: Empirical coverage for spectral distribution bands based on the Trapezoidal .25 taper
with bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size N = 50, 100, 200
from a cyclical AR(2) process of frequency θ = π/6 and persistency ρ = .7, .8, .9. Coverage for
both a nominal α = .10, .05 are given in each cell, with the first entry based on an estimator of the
spectrum, and the second entry based on perfect knowledge of the true spectrum.
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Empirical Coverage for Trapezoidal .50 Taper

Bandwidth Coverage, α = .10 Coverage, α = .05

ρ = .7 ρ = .8 ρ = .9 ρ = .7 ρ = .8 ρ = .9

N = 50

b = .04 .773, .904 .686, .913 .584, .921 .831, .931 .770, .939 .674, .939

b = .10 .861, .948 .839, .947 .754, .947 .879, .971 .874, .958 .797, .965

b = .20 .866, .949 .859, .949 .802, .949 .892, .973 .889, .960 .824, .968

b = .50 .883, .943 .878, .946 .825, .950 .914, .972 .905, .961 .855, .972

N = 100

b = .04 .888, .930 .868, .938 .755, .933 .915, .973 .902, .971 .823, .962

b = .10 .903, .949 .898, .949 .859, .945 .922, .975 .925, .974 .886, .967

b = .20 .912, .946 .911, .948 .880, .945 .930, .976 .937, .976 .908, .970

b = .50 .924, .935 .927, .943 .896, .945 .938, .972 .948, .976 .920, .969

N = 200

b = .04 .912, .943 .880, .925 .798, .910 .943, .977 .923, .963 .866, .953

b = .10 .916, .943 .909, .928 .902, .936 .948, .975 .941, .964 .921, .963

b = .20 .923, .938 .918, .928 .908, .932 .952, .971 .946, .959 .923, .960

b = .50 .943, .931 .935, .915 .918, .925 .965, .969 .962, .958 .935, .959

Table 24: Empirical coverage for spectral distribution bands based on the Trapezoidal .50 taper
with bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size N = 50, 100, 200
from a cyclical AR(2) process of frequency θ = π/6 and persistency ρ = .7, .8, .9. Coverage for
both a nominal α = .10, .05 are given in each cell, with the first entry based on an estimator of the
spectrum, and the second entry based on perfect knowledge of the true spectrum.
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Optimal Bandwidth Fraction, frequency in (0, π)

Tapers Long Memory β

Bartlett -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

.20 .02 .02 .02 .02 .02 .02 .02 .24 .66

.10 .02 .02 .02 .02 .02 .02 .02 .18 .36

.05 .02 .02 .02 .02 .02 .02 .02 .12 .28

.005 .02 .02 .02 .02 .02 .02 .02 .10 .14

Trap, c = .25 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

.20 .02 .02 .02 .02 .02 .02 .02 .16 .58

.10 .02 .02 .02 .02 .02 .02 .02 .14 .38

.05 .02 .02 .02 .02 .02 .02 .02 .10 .26

.005 .02 .02 .02 .02 .02 .02 .02 .08 .18

Trap, c = .5 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

.20 .02 .02 .02 .02 .02 .02 .02 .14 .50

.10 .02 .02 .02 .02 .02 .02 .02 .10 .30

.05 .02 .02 .02 .02 .02 .02 .02 .10 .20

.005 .02 .02 .02 .02 .02 .02 .02 .08 .16

Table 25: Optimal bandwidth fraction, determined for each taper (Bartlett or Trapezoidal), long
memory parameter β, and α-level, for frequencies between 0 and π. Optimality means that the
confidence interval is the shortest possible among all bandwidth fractions b ∈ (0, 1]. The two-sided
intervals are based on α-levels .20, .10, .05, .005 (with half of this α assigned to the upper and to
the lower quantile in the confidence interval).
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Optimal Bandwidth Fraction, frequency is 0 or π

Tapers Long Memory β

Bartlett -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

.20 .02 .02 .02 .02 .02 .02 .02 .10 .28

.10 .02 .02 .02 .02 .02 .02 .02 .08 .20

.05 .02 .02 .02 .02 .02 .02 .02 .06 .12

.005 .02 .02 .02 .02 .02 .02 .02 .06 .10

Trap, c = .25 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

.20 .02 .02 .02 .02 .02 .02 .02 .08 .22

.10 .02 .02 .02 .02 .02 .02 .02 .06 .18

.05 .02 .02 .02 .02 .02 .02 .02 .06 .10

.005 .02 .02 .02 .02 .02 .02 .02 .02 .10

Trap, c = .5 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

.20 .02 .02 .02 .02 .02 .02 .02 .08 .16

.10 .02 .02 .02 .02 .02 .02 .02 .04 .12

.05 .02 .02 .02 .02 .02 .02 .02 .02 .02

.005 .02 .02 .02 .02 .02 .02 .02 .02 .02

Table 26: Optimal bandwidth fraction, determined for each taper (Bartlett or Trapezoidal), long
memory parameter β, and α-level, for frequencies 0 and π. Optimality means that the confidence
interval is the shortest possible among all bandwidth fractions b ∈ (0, 1]. The two-sided intervals
are based on α-levels .20, .10, .05, .005 (with half of this α assigned to the upper and to the lower
quantile in the confidence interval).
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Figure 1: Spectral density estimate using re-coloring approach for Retail 441 series, plotted in
logarithmic scale, utilizing a Bartlett taper and bandwidth fractions b = .04, .1, .2, .5 in upper left,
upper right, lower left, and lower right panels respectively. The confidence intervals are displayed
as dashed red lines, at a nominal level of .95.
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Figure 2: Spectral distribution estimate using estimated covariance kernel for Retail 441 series,
utilizing a Bartlett taper and bandwidth fractions b = .04, .1, .2, .5 in upper left, upper right, lower
left, and lower right panels respectively. The confidence bands are displayed in red (.95) and green
(.90).
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Figure 3: Spectral distribution estimate using estimated covariance kernel for Retail 441 series,
utilizing a Trapezoidal .25 taper and bandwidth fractions b = .04, .1, .2, .5 in upper left, upper
right, lower left, and lower right panels respectively. The confidence bands are displayed in red
(.95) and green (.90).
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Figure 4: Spectral distribution estimate using estimated covariance kernel for Retail 441 series,
utilizing a Trapezoidal .50 taper and bandwidth fractions b = .04, .1, .2, .5 in upper left, upper
right, lower left, and lower right panels respectively. The confidence bands are displayed in red
(.95) and green (.90).
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Figure 5: Spectral density estimate for South series, utilizing a Bartlett taper and bandwidth
fractions b = .04, .1, .2, .5 in upper left, upper right, lower left, and lower right panels respectively.
The confidence intervals (red dashed lines) are for .95 nominal coverage.
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Figure 6: Spectral density estimate in log scale for South series, utilizing a Bartlett taper and
bandwidth fractions b = .04, .1, .2, .5 in upper left, upper right, lower left, and lower right panels
respectively. The confidence intervals (red dashed lines) are for .95 nominal coverage.
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Figure 7: Spectral density estimate for South series, utilizing a Trapezoidal .25 taper and bandwidth
fractions b = .04, .1, .2, .5 in upper left, upper right, lower left, and lower right panels respectively.
The confidence intervals (red dashed lines) are for .95 nominal coverage.
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Figure 8: Spectral density estimate for South series, utilizing a Trapezoidal .50 taper and bandwidth
fractions b = .04, .1, .2, .5 in upper left, upper right, lower left, and lower right panels respectively.
The confidence intervals (red dashed lines) are for .95 nominal coverage.
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