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Abstract
Recent work in econometrics has provided large bandwidth asymptotic theory for taper-based

studentized estimates of the mean, in the context of nonparametric estimation for serially cor-
related time series data. These taper-based statistics can be viewed as estimates of the spectral
density at frequency zero, and hence it is quite natural to extend the asymptotic theory to
non-zero frequencies and thereby obtain a large bandwidth theory for spectral estimation. This
approach was developed by Hashimzade and Vogelsang (2008) for the case of a single frequency.
This paper extends their work in several ways: (i) we treat multiple frequencies jointly; (ii)
we allow for long-range dependence at differing frequencies; (iii) we allow for piecewise smooth
tapers, such as trapezoidal tapers; (iv) we develop a theory of higher order accuracy by a novel
expansion of the Laplace Transform of the limit distribution. The theoretical results are comple-
mented by simulations of the limit distributions, an application to confidence band construction,

and a discussion of the issue of optimal bandwidth selection.

Keywords. Cyclical Long Memory, Kernel Spectral Estimator, Long Range Dependence, Spec-
tral Confidence Bands.

Disclaimer This paper is released to inform interested parties of ongoing research and to encour-
age discussion of work in progress. The views expressed are those of the authors and not necessarily
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1 Introduction

Suppose that we have a sample Y7,Ys, -+, Yy from a weakly stationary time series {Y;}, and
consider a kernel-based estimator of the spectral density f(#) defined via

F(0) =D~ Alh/M) cos(6h)A (1)

h



for any fixed 6 € [—m, w|. Here A is the kernel, or taper, and is a bounded even function of domain
[—1,1]. The sequence 7, consists of sample autocovariances, where the centering can be taken
as either zero, the sample mean, or OLS estimates of a more complicated regression effect. The
bandwidth M is taken to grow at the same rate as the sample size N, rather than the usual o(NV)
growth rate, such that M = bN for some b € (0, 1); we say that the bandwidth-ratio b is fixed, and
use the terminology of fixed-b asymptotics. The following result is a consequence of Theorem 1 of

Hashimzade and Vogelsang (2008) under assumptions consistent with a short memory time series:

J(6) == 1(6) - So(®)

as N — oo. The limiting random variable Sp(b) is a quadratic functional of Brownian Motion that
depends on the bandwidth proportion b, but not on the short memory autocorrelation function of
the data process, and thus can be simulated without any knowledge of nuisance parameters. The
limit also depends on the taper A, and the distribution depends on 6 as well, since results differ
depending on whether § =0, 0 = 7, or 6 € (0, 7). Furthermore, the distribution at frequency § = 0
also depends on the type of centering used to define 7p,.

As noted in Hashimzade and Vogelsang (2008) — henceforth HV — the asymptotic coverage pro-
vided by the so-called large-bandwidth approach is superior when b is greater than zero, and also
has the advantage of guaranteeing a positive random limit (when the taper A is positive definite).
The potential application of a better inferential methodology for the spectral density function is
quite large, as demonstrated by the ubiquity of spectral methods in the physical sciences as well as
econometrics; see Grenander and Rosenblatt (1953), Parzen (1957), Blackman and Tukey (1959),
Bohman (1960), and the discussion in Priestley (1981). Understanding the joint distribution of
spectral estimates across multiple frequencies is useful for the identification of hidden periodicities
in the time series. One application is the identification of residual seasonality in seasonally ad-
justed economic time series via examination of spectral estimates in the program X-12-ARIMA,
as discussed in Findley, Monsell, Bell, Otto, and Chen (1998). Literally millions of time series are
seasonally adjusted each month by the program X-12-ARIMA at statistical agencies around the
world — with vast ramifications for public policy — and spectral peak estimation and assessment is
featured as a diagnostic tool in every application.

The paper at hand seeks to make several extensions of the fundamental results of HV. Firstly,
we extend their basic results to a joint theorem over a finite collection of frequencies. This is
important for assessing the uncertainty in taper-smoothed estimates of the spectral density, where
we may be interested in 30 to 60 ordinates at a time. As our results below demonstrate, Sy, (b1)
is asymptotically independent of Sg,(bs) for 61 # 62 and any by, b2 € (0,1]. This technical result
will allow us to construct simultaneous confidence intervals, allowing one to assess uncertainty in a
nonparametric spectral analysis.

Secondly, we study cyclical long-range dependence, where each frequency of the spectral den-



sity may correspond to a long memory pole or a negative memory zero; see Boutahar (2008) for
related asymptotic results for the case of a single frequency. Cyclical long memory is useful for
capturing highly persistent seasonal or cyclical phenomena that evolve too rapidly to be considered
nonstationary; see Holan and McElroy (2012) for examples and applications of the concept to the
problem of seasonal adjustment. The presence of cyclical long memory implies that the rate of
convergence of the spectral estimates depends on the corresponding memory parameter, and the
limit distributions become quadratic functionals of Fractional Brownian Motion — this is an exten-
sion of the frequency zero results of McElroy and Politis (2012). The rate of growth of the spectral
estimates is non-standard in this case, so that the resulting confidence intervals are much wider
(for long memory) or shorter (for negative memory) than in the regular short memory scenario.

Thirdly, we extend the limit theorems to piecewise smooth tapers, such as flat-top tapers
(see Politis and Romano (1995) and Politis (2001)), and also to tapers with jump discontinuities,
such as the truncation taper. With the exception of the Bartlett taper, HV and other fixed-b
literature consider only smooth tapers (such as Parzen or Tukey-Hanning). For example, Phillips,
Sun, and Jin (2006) derives asymptotic results for spectral estimates (handling multivariate time
series) computed from smooth tapers, examining one frequency at a time. However, some popular
tapers (such as Daniell and Quadratic-Spectral) have kinks (i.e., where a continuous function is not
differentiable) at the boundary of their domain, which has an impact on the limit distribution —
this was established in McElroy and Politis (2012) for the frequency zero case. Flat-top tapers have
proven useful for variance estimation of short memory processes, so it seems important to develop
the spectral theory for such tapers.

Fourthly, we provide a discussion of higher-order accuracy of the limit theory arising from the
fixed-bandwidth ratio methodology. In the recent literature on Heteroskedasticity-Autocorrelation
Consistent (HAC) testing — see Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang
(2002) — this has meant an expansion of the fixed-bandwidth ratio limit distributions as b tends
to zero, such that the first term in the expansion is the conventional limit distribution of the
vanishing-bandwidth ratio theory (i.e., in the HAC case a standard normal). We’re not aware
that a higher-order accuracy limit theory has been published for fixed bandwidth ratio spectral
density estimates, though Velasco and Robinson (2001) study the vanishing bandwidth ratio case.
Actually, the HAC literature shows that Sy(b) tends to a point mass at unity as b tends to zero;
correspondingly, the higher-order accuracy results in this paper demonstrate that the cumulative
distribution function of Sy(b) can likewise be expanded as b — 0, with a leading term equal to an
indicator function, followed by other expressions involving cumulants. To achieve this, we introduce
a novel method of inverting the Laplace Transform of Gaussian quadratic forms.

It may be of some interest to provide a confidence band for the entire spectral density. This is not
possible if long-range dependence is present, because each frequency would potentially be growing

at different rates. Also, because the spectral density limit distributions across frequencies are



independent in a fixed bandwidth ratio approach, the global behavior is better summarized through
the spectral distribution function (Woodroofe and Van Ness (1967) consider the spectral density
bands under a vanishing bandwidth fraction asymptotic approach). Although previous literature
explores the estimation of the spectral distribution function (again, see Grenander and Rosenblatt
(1953) and Parzen (1957), as well as Dahlhaus (1985)), here we provide a fixed-bandwidth ratio
treatment. We discuss the estimation of the limit distribution, and how this can be utilized to
construct spectral confidence bands.

The limit distributions Sp(b) do not differ tremendously from the frequency zero case, but there
are a few alterations from the previous distribution theory (aside from the impact of kinks in the
taper) given in McElroy and Politis (2012). For all frequencies except 0 and 7, the estimates
converge to the sum of two independent copies of the limit in the HAC case (frequency zero); in the
case of a short memory process, this result can also be found in HV, but our results also cover long
memory and negative memory processes. Moreover, we focus our treatment on spectral estimates
that are centered by the sample mean (so we do not consider more complicated mean regression
functions), which only affects the asymptotic distribution at frequency zero. Without the centering,
the limit random variable at frequency zero is a quadratic functional of Fraction Brownian Motion
(FBM), instead of Fractional Brownian Bridge (FBB) — see the discussion in HV and McElroy
and Politis (2012). For the numerical studies, we have simulated the limit distributions for the
internal frequencies (i.e., the interval (0,7)) and the boundary frequencies (i.e., 0 and 7) using
FBM (because the FBB case is already addressed in McElroy and Politis (2012)), and tabulated
the results by taper, bandwidth fraction b, and memory parameter.

Previous work (McElroy and Politis (2011)) shows the impact of memory on critical values,
and that the effect is more pronounced with small b. We repeat some of this material for the
spectral case, discussing the critical values as a function of b for various memory parameters.
When memory is absent from all frequencies of interest, we can construct confidence intervals using
the short memory critical values, but otherwise some estimate of the memory parameter must
be supplied to the quantile function. In our applications we propose a simplistic nonparametric
estimate of the memory parameter, as a function of frequency, and utilize a plug-in approach to
inference. Our simulation studies illustrate how size is contingent on taper, bandwidth, and sample
size, presuming that the memory parameter is known.

In practice one must select a bandwidth fraction b, and its choice has a substantial impact on
the resulting appearance of spectral density estimates. Is there an optimal choice of 6?7 In McElroy
and Politis (2011) the idea was presented to select b that produces the smallest confidence interval
possible, and that philosophy here will lead to b approximately zero in the case of short memory.
However, this will produce a very smooth estimate of the spectral density, and it may be desirable
to have a degree of resolution over the frequencies. Another approach is to use a full bandwidth

with b = 1, which leads to wider confidence intervals. We also present numerical results on the



choice of b that yields the smallest confidence interval possible, as a function of memory parameter
and taper. In our opinion the choice of b ultimately depends upon the practitioner’s particular
goals of spectral analysis. For example, if the analyst is interested in spectral peak detection, then
the degree of smoothing implied by the choice of b corresponds to the broadness of the peak — large
values of b will allow for visualization of narrow peaks, some of which may be spurious, whereas
smaller values of b will smooth out the spectrum, allowing visualization of broader peaks. These
points and the general methodology are demonstrated on one construction and one retail series,
using the re-coloring approach (Grether and Nerlove, 1970) to handle evident non-stationarity.
The paper is organized as follows. In Section 2 we provide a discussion of cyclical long memory,
which sets the general framework for most of the paper. Then Section 3 provides the asymptotic
theory for fixed-bandwidth fraction estimation of the spectral density and the spectral distribution
function. In Section 4 is a treatment of higher-order accuracy, with an application of the method of
Laplace inversion. Section 5 contains a description of our methods of simulation for critical values,
the performance on finite samples from simulation, and a description of the bandwidth selection
procedure. The full methodology is demonstrated on two economic time series in Section 6, and

Section 7 concludes. All proofs are in the Appendix.

2 Cyclical Long Memory and Data Assumptions

From now on, let {Y;} be a constant mean stationary time series with finite variance, such that {~,}
is the autocovariance function (acf). We define cyclical long memory in analogy with conventional
long memory, such that the definition agrees with the implicit definition in seasonal fractionally
intergrated processes (Gray, Zhang, and Woodward (1989)) and Gegenbauer processes (Woodward,
Cheng, and Gray (1998)). When the acf is absolutely summable, the spectral density f(6) =
> n Yh cos(0h) is well-defined, but here we consider the case where the spectral density has long
memory poles. On the other hand, if the spectral density has a zero, this corresponds to cyclical
negative memory (McElroy and Politis, 2011). We say that the time series has cyclical memory at
frequency 6 € [0, ] if

> An cos(6h) = Ly(n) n, (2)

|h|<n
where Ly is a slowly-varying function at infinity (let L denote the set of such functions), with a
limit of Cy € [0, o0]. Also the memory parameter is By, a number in (—1,1). The case that 5y = —1
was explored in McElroy and Politis (2011), and it produces somewhat non-standard asymptotic

results for the sample mean; we ignore this case in this paper.

Definition 1 A weakly stationary time series with spectral density f has cyclical memory at
frequency 0 € [0, x] if (2) holds. This property is denoted by CM(53, 0).



Note that CM(0, €) denotes short memory at frequency 6, i.e., 0 < f(f) < co. More generally, the
definition of cyclical memory indicates that f(#) equals 0, co, or Cy depending on whether [y is
negative, positive, or equal to zero, and these cases correspond to negative cyclical memory, long
cyclical memory, and short cyclical memory respectively (for short cyclical memory, we also impose
that Cy is a nonzero finite constant).

This is a time domain formulation of the basic concept. The following proposition relates it to
a frequency domain formulation, which some readers may find more intuitive. When a zero or pole
occurs at a nonzero frequency, it must be present at the negative of that frequency as well, because
the spectral density is an even function on [—7, 7]. When the zero or pole occurs at frequency zero,
the spectral density might be written as f(A) = |A|*g(A\) L(|A| ™) for a € (—=1,1), g a positive,
even, and bounded function, and L € L. But if the zero/pole occurs at a nonzero frequency 6, we

can generally write the spectral density as
FO) = A= 01N 401" g(A\) LA = 0] LUA +6]7). 3)

This form only treats one zero/pole frequency 6, but the following result can be easily generalized

to spectra with multiple distinct zeroes and/or poles.

Proposition 1 Suppose {Y;} is a stationary time series with spectral density with a zero/pole of
order o at frequency 0. If @ = 0 and f(A) = |N* g(\) L(I\| "), then the process is CM(—a, 0) and
CM(0, w) for all w # 0 (i.e., it has short memory at all nonzero frequencies). If 6 > 0 and the
spectrum is given by (3), then the process is CM(—a, 0) and CM(0,w) for w # 6.

So the processes discussed in Proposition 1 have zeroes/poles of diverse orders at differing
frequencies, and this in turn is connected to rates of convergence of the partial sums of autoco-
variances weighted by cosines. Consider the following class of spectral densities, where there are J
zeroes/poles at nonzero frequencies 6; (not including the conjugate zeroes/poles —6;) of order a;,
and accompanying slowly varying functions L;. A process with such a spectral density belongs to
the class ﬂ}]:1 CM(—ay, 0;), noting that CM(—«, 0) = CM(—a, —0).

In order to formulate the asymptotic results of this paper, we must make some additional
assumptions about the observed stochastic process. We will consider the same set of assumptions
discussed in McElroy and Politis (2011), namely that the data process is either linear, or can be
written as a function of a Gaussian process, or satisfies certain higher order cumulant conditions.
The kth order cumulant of {Y;} is defined by

Ck(Ul,UQ, e ,kal) = cum (}Q+u17n+u27 e 7}/;f+uk_17Yi)

for any ¢ and integers wuy,- - ,ug_1, where k > 1 (cf. Taniguchi and Kakizawa (2000)). Letting u
denote the k —1 vector of indices, we will write ¢ (u) for short. Also let || - || denote the sup-norm of

a vector, so that Z”u” <n Ck(u) is a short-hand for summing the cumulant over all indices such that
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|uj| < n for each j. We also require the concept of Hermite rank (Taqqu, 1975): if g € L(R, 6_932/2),
then it can be expanded in terms of the Hermite polynomials Hj, with coefficients (g, Hx) (the
bracket denotes the inner product of the Hilbert Space) for k& > 0. The Hermite rank is the index
of the first nonzero coefficient.

In addition to supposing that the process is CM(/3p;,0;) for a collection of frequencies 6; € [0, 7],

j=1,---,J, we also consider the following assumptions:

e Process P1. {V;} is a linear process: V; = 3, ¢;e,—; with {¢;} square summable and {e;}

71d with finite variance.

e Process P2. Y; = g(X;) for each ¢, where g is a function in L2(R, e~**/2) of Hermite rank 7,
and {X;} is a Gaussian process with autocovariance function ry. If 5, > 0, also assume that

(1 — Bp;)T < 1 for each j.

e Process P3. {Y;} is a strictly stationary process whose kth order cumulants exist and are

summable over its k indices, for all k > 1. Moreover, when [y, < 0 we also assume that
Z||u||<n cr(u) = O(Hﬁef) for each j.

See the discussion in McElroy and Politis (2011) for why a moment-plus-mixing condition is
not viable. Each of the assumptions P1, P2, or P3 is sufficient to establish a limit theorem for the
Discrete Fourier Transforms of the data, as shown below. These process assumptions are typically

unverifiable from the observed data, and should be viewed as working assumptions.

3 Asymptotic Theory for Spectrum Estimation

The theory developed here is similar to that of HV, but is extended to processes with cyclical
memory, similarly to how McElroy and Politis (2012) extended the HAC theory to long-range
dependent processes. First we establish a joint convergence theorem for normalized Discrete Fourier
Transforms (DFTs), which is a result of independent interest. Secondly, we apply this result to the
analysis of taper-smoothed estimates of the spectral density. Thirdly, we address the estimation of

the spectral distribution function in the case of a bounded positive spectral density.

3.1 Theory for DFTs

Let {Y;} be a mean u stationary time series with acf {~,}, as described in Section 2. We suppose

that a sample of size N is available: Y7, Yo, -, Yy, and the sample autocovariances are computed
via
1 N— h
= — (Yien - Y
=5 t—l tn —Y)



for h=0,1,2,---,and Y =n~! > i1 Y:. Results can be modified easily if we do not demean and
assume p = 0 (as discussed in HV as well), but our main exposition assumes centering of estimates
by the sample mean for simplicity of presentation. The DFT of the sample is Zi\i (Y — Y)e ",
which has real and imaginary parts given by cosine and sine summations, respectively. These
trigonometric partial sums are the key aspect in the asymptotic analysis of the spectral density

estimates of this paper. We introduce the weighted-sum notation as follows:

N
9) = Z Yig
t=1

for a sequence {g;}. Then the DFT equals Sy (c(0))+iSn(s(8)) for ¢(8) = cos(f-) and s(#) = sin(6-).
The rate of growth of Sy(c(6)) and Sy (s(6)) will depend upon 6, because if there is a zero or pole
at frequency 6 the growth rate is affected by long-range dependence. Ultimately, we wish to prove
joint functional limit theorems for the processes r — {S},.n)(c(8)), Sjn(s(0))}, jointly over a finite
collection of frequencies #. Here the square bracket refers to the greatest integer function.

The key quantities that determine the growth rates of the real and imaginary parts of the DFT

are the respective variances:
Vi (0) = VarSn(c(9)) Vi (0) = VarSn(s(9)).

When 0 # 0,7, we let Va(0) = (V¥ (0) + Vi (0))/2, but for § = 0,7 we set Viy(0) = Vf (6) instead.
Then with Wx(6) = >, j<n ¥r cos(6h), we have the following identity:

1+1{9

Vn(0) = = %=om} Z Wi(0 (4)

This follows by recognizing that

1+1{9

Vi (0) = — =01} Zcos (G — k) vj—hs (5)

Jik=1

and that the latter expression in (5) can be re-expressed, using summation by parts, into (4).
Noting that the definition of Wy () together with the CM(/y,0) assumption yields an asymptotic
growth rate of Lg(N) NP we can apply (4) and Proposition 1 of McElroy and Politis (2011) to

the autocovariance sequence {7, cos(6h)} for any 6 to obtain

Lg(N) NBo+1
2(Bs +1)

In the case of short memory, where 8y = 0 and Ly tends to a nonzero constant Cy, (6) becomes

Vn(0) ~ (6)

VN (0) ~ N C(0) and C(6) equals one half the spectral density. In all cases of cyclical memory, the

square root of Vi (6) will be the appropriate normalizing rate for the DFT sums, as shown below.



Let us consider a finite collection of J distinct frequencies © = {6; }jzl in [0, 7], where the data

process is CM(ng, 6;) for each j. Define vector-valued stochastic processes as follows:

Sprn(e(0)) = {S[TN](C(%'))};]:l S (s(0)) = {S[TN}(S(%))};LP

where 7 € [0,1]. Joint functional limit theorems for Si.xj(c(0)) and S|.x(s(0)) normalized each by
V]i/ 2 (0) form the key foundation for the asymptotic theory for the tapered-estimates of the spectral
density, defined in the next subsection. The limit stochastic processes are B, g(-) = {B+,9j(-)};]:1
and B_y(-) = {B_ﬂj(-)};}:l, all of which are independent of each other, and all of which are
Fractional Brownian Motions (FBMs) of parameter f,, except B_y(-) at 6 = 0,7, which is the
Z€ro process.

As discussed in McElroy and Politis (2011), it is more convenient for us to formulate the results
in the space C[0,1] of continuous functions, rather than the Skorohod space. Therefore we will
consider a linearly-interpolated version £.n1(g) of S|.nj(g), defined via &, n1(g) = Spnp(g) + (PN —
[rN ])Y[T N)+1- This affects the mean-centering slightly, though the asymptotic impact is negligible.
Define the functions ey (f) = 2N | cos(6t) and sy (6) = SN | sin(At), which mean center Sy (c(6))
and Sy (s(0)) respectively. The mean-centering functions for &, nj(c(0;)) and &, n(s(0;)) are given
by

pir(c(05)) = pe(05) + p (rN — [rN]) cos(6;([-N] + 1))
fir (s(07)) = pspny(05) + p (PN — [rN]) sin(0;([-N] + 1)),

respectively.

Theorem 1 Let {Y;} be covariance stationary with mean p and acf {7y}, such that the process is
CM By, ,0;) for a collection of frequencies 6; € [0, 7], j = 1,---,J. Letting k = maxi<j<y 2A[2/(1+
Bo,)], suppose that E[|Y;|"™] < oo for some § > 0, and also assume that E[|Sy,(c(0;)) — cn(Hj)\”M] =
OV 72(0.)) and E[|S,(s(6;)) — sn(0,)["°] = O(V,"/2(0,)) hold. Suppose condition P1, P2,
or P3 holds, and that in the case of a P2 process with at least one By, > 0, the Hermite rank is
unity. Then the following weak convergence holds in the space C(]0,1],R?”):

[V 20) (6n(e(0:)) = Tle0:))) Vi 05) (€ (o(6,)) ~ s0:))}
:£> {B+79j) B—,@j };']:1‘ (7)

Remark 1 By 1.342.2 of Gradshteyn and Rhyzik (1994), ¢y (0) equals N if 6 is an integer multiple

of 27, and otherwise equals

L [sin(N+1/2)0)
2 sin(0/2) |

Also by 1.342.1 of Gradshteyn and Rhyzik, sy (€) equals 0 if 6 is an integer multiple of 7, and

otherwise equals
sin[(N + 1)8/2] sin[N6/2] csc|f/2].



Hence the centering for the sine partial sum is asymptotically irrelevant, as is the centering for the

cosine partial sum unless § = 0.

Theorem 1 provides the assumed conditions (4), (5), (6), and (7) of HV, and also provides a
generalization of the short memory situation. We next discuss its application to spectral density

estimation.

3.2 Asymptotic Theory for Spectral Density Estimation

Now in order to apply (7) to spectral estimation, it is necessary to extend the FBMs discussed
above to Fractional Brownian Bridges (FBBs) as in HV, defined as follows:

-1

Bealr) = Biolr) = ooy | 10 dt[ / L)1) dt} / o) dBoo(t)

Here x is a deterministic vector process with each component 2/ € C[0,1], and corresponds to
regression effects in the data process; see Phillips (1998) for a more detailed exposition. That is,
when the mean of the process {Y;} is non-constant, and perhaps is parametrized by regression
functions such that the demeaned {Y;} is mean zero and stationary, then our partial sums and
DFT statistics should be constructed from variables Y; centered by estimates of these mean effects.
In this paper, we focus on the simple case that z(¢) = 1, corresponding to centering by the sample
mean (the ordinary least squares estimate of a constant mean); see the Appendix for a partial
elaboration of the more general case. Note that this centering has no impact except at frequency
zero, which follows from Remark 1 above, which shows that only the real part of the DFT (i.e., the
cosine partial sum) at frequency zero needs to be mean-centered. In the case that the true mean
is zero and this assumption is utilized in our statistics, then x(¢) = 0 and Etg = By g, the FBM.
But when we center by the sample mean, it follows that Eio(r) = Byt o(r) —rB+o(1), a FBB.

We now suppose that an estimate of the spectrum is computed via (1) using autocovariance
estimates centered by the sample mean (or without centering in the special case that the mean is
known to be zero), as described above. The taper (or kernel) A comes from a wide family that
encompasses flat-top tapers (Politis, 2001), the Bartlett taper, as well as other tapers considered
in Kiefer and Vogelsang (2005) and HV:

{A is even with support on [-1,1] such that A(x) is constant for |z| < ¢, for some ¢ € [0,1);

also, A is twice continuously differentiable on (¢, 1).} (8)

A derivative of A from the left (with respect to ) is denoted A=, whereas from the right is A*; the
second derivative is A. Note that we allow for A to have a jump discontinuity at ¢; for example, our
results apply to the truncation taper given by the indicator on the interval [—¢, ¢|]. Our main result,
which is stated next, follows from Theorem 1 and an analysis of the spectral estimator, expanding

on the analysis of HV.
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Theorem 2 Let {Y;} be covariance stationary with mean p and acf {yn}, such that the process is
CM(By, ,0;) for a collection of frequencies 6; € [0, 7], j = 1,--- ,J. Letting k = maxi<j<y 2A[2/(1+
Bo,)], suppose that E[|Y;|"™] < oo for some § > 0, and also assume that E[|S, (¢ (05)) — cn(Hj)\”M] =
OV, 72(0.)) and E[|S(s(6;)) — sn(0,)["7°] = O(Vi""/2(0,)) hold. Suppose condition P1, P2,
or P3 holds, and that in the case of a P2 process with at least one Bp; > 0, the Hermite rank is
unity. Also suppose that either the sample autocovariances are centered by the sample mean, or the

they are not centered and that u = 0. For tapers defined via (8), as N — oo we have

3] S Bt

+bA<”/O (B+0()B+9(T+b)+3 o (B 9(7“+b)) dr

9 . 1-bc , _ . " "
S e / (Bys, () B, (r +be) + B g, (r)Bg, (r +bc) ) dr
0

+ % /11-bc i <1 = 7’) <§+,aj (r)Bi9,(1) + B_,(r)B_, (1)) dr + A(0) (B’iaj (1)+ B2, (1)) ,

—b
jointly in 0; for j = 1,2,---,J. In the case that there is a jump discontinuity in A at c, we must

replace the third summand in the limit distribution by

2 (AT (c) — A (c)) (B+,9]. (1—be)Byg, (1) + B_g,(1)B_,(1— bc)) .

This result describes the limit behavior of the spectral density estimate in the case that cyclical
memory is present, considering a finite collection of frequencies. If these frequencies happen to
correspond to short memory dynamics, then the spectral density is finite and nonzero. Letting
Tp = Hl{(’%o’”}, from (4) we have

Vn(0) ~ N1 f(0), 9)

so that the convergence of Theorem 2 in the case of short memory may be summarized as

F(0) = 79 £(6) Sy (b),
where we denote the limit random variable on the right hand side of the convergence in Theorem
2 via Sp(b). A numerical description of this distribution is given in HV. A technical description
can be given through the moment generating function, or Laplace Transform (LT) of Sy(b), as in
McElroy and Politis (2009); this is developed in Section 4 below. Tables of quantiles can be given
over a grid of b values, depending on the three frequency cases (i.e., # = 0, § = m, or 6 € (0,7))
and the taper; see Tables 1 through 18 below.

In the case of cyclical long memory or negative memory the true spectrum f(6) is either equal
to oo or zero, and inference is problematic. For the purpose of constructing a confidence interval,

we propose the quantity fny(0) = Vn(0)/(N7p) as the “parameter” of interest, although clearly this
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is a moving target; only in the case of short memory can we conceptually replace fn(6) by f(6),
via (9). However, whatever the degree of cyclical memory, we can conduct inference for fy(6) as
follows. Denote the quantile function of Sy(b) by Qg(-). If we wish to consider a single frequency,

the confidence interval for fy () with asymptotic coverage 1 — « is

[ i) 7) ] | (10)

T Qo(1 — a/2) " 79 Qp(v/2)

which follows from P |:Q9 (a/2) < % < Qo(l—af 2)} — 1 — . Alternatively, a simultaneous
confidence interval can be constructed by considering the maximum and minimum of Sy(b) over the
pertinent frequencies. Let S(b) = maxi<j<y S, (b)/79, and S(b) = mini<;j<s Sp, (b)/79,, which have
distributions easily computable from the marginals due to independence (they are also identically
distributed for 6; € (0,7)). (Note that our notation assumes that the same bandwidth fraction b is
used for all frequencies, although this need not be the case in practice.) The corresponding quantile
functions will be denoted @ and Q for the maximum and minimum respectively. Let J denote a
finite index set, and consider a set of frequencies 6; with 1 < j < J. For positive real numbers /, u,

we have

~—

F(60;)
= 7o, fn(05)
—P[<Sb)<Sb)<u]l=1-P[S(b) < —P[S(b) >u.

~

< 0;
T, U < v (0 ngf :

p | f) )Sf(ej V']:IP < uvj

The last equality follows from the observation that — when ¢ < u — the event {S < ¢} is mutually
exclusive with the event {S > u}. This probability is approximately 1 — « if £, u correspond to the

appropriate critical values; splitting the quantity « evenly amounts to

{=Q(a/2) u=Q (1—«a/2). (11)

This provides the construction of a simultaneous confidence interval.

3.3 Asymptotic Theory for Spectral Distribution Estimation

The estimation of spectral content can be extended to the spectral distribution function F(6) =
(2#)71 fir f(A) dA, and because of the smoothing of the spectral density accomplished by integra-
tion, the behavior of statistical estimates is easier to describe. In this subsection we assume that
the spectral density has short memory, and hence 0 < f(X\) < oo for all A € [—m, 7]. We make this
assumption so that the rate of convergence of spectral estimates are the same at all frequencies.
Indeed, the classical limit result of Dahlhaus (1985) cannot hold for processes with long memory
poles such that 5 > 1/2, because the limiting variance (see below) depends on the integral of the

squared spectral density.
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Because the spectral density is even, it suffices to study G(0) = (2r)" foe f(A)dA, and its
corresponding estimator G(f) = (27) fog f()\) d\. Very general results for functionals of the
periodogram, under general data process conditions, were obtained by Dahlhaus (1985); also see
the literature cited in that paper for a history of efforts. Whereas Dahlhaus (1985) utilizes a data
taper, here we utilize a covariance taper — in keeping with the previous subsection on spectral density
estimation — as other literature has also done (e.g., Priestley (1981)). The novelty of this subsection
lies chiefly in adopting a fixed bandwidth ratio framework, and somewhat unsurprisingly the same
limit distribution and functional limit theorem is obtained as in Dahlhaus (1985); in particular,
neither bandwidth fraction b nor taper play any role in the asymptotic distribution.

Utilizing the definition of the spectral density estimator, we at once obtain

~ 0 = sin[0h]
G(0) = A0 5 +2 ;A h/bN) A=
1 sin[0h] ;xn
=5 Z A(h/bN) S €A,
|h|<N

where we interpret sin[fh]/h to be the value 6 whenever h = 0. Here I(\) is the periodogram,
defined to be N~! times the magnitude squared of the DFT:

N
~1 Z(Yt _Y)emiN
t=1

Let go(A) = A(0) ez bl;lT[Fth] Ak which is the pointwise limit of
Sm[eh] oiMh
gn,e(A Z A(h/bN) 5, )
|h|<N

Because of symmetry, gy is always real, and so the complex exponential can be replaced by a cosine
in its definition. We claim that this pointwise limit can be taken in the definition of G(6). Note
that go(A) = 271 1;_p g (A), the sinc function. Let é() denote the spectral distribution function’s
estimate, and the limiting process Z(-) is defined as a mean zero Gaussian process with covariance
kernel

T 1 ONw

K(6,w) = Cov (2(6), Z(w)) = 7" / WNeW PN = [ PNan (2)

. 27

This kernel is simpler than the one found in Dahlhaus (1985), because we will assume that fourth
order cumulants are zero (this could be relaxed, but then a different approach to the estimation of
limit quantiles in Theorem 3 would be needed). The kernel actually corresponds to the covariance
kernel of a heteroscedastic Brownian Motion (see below).

We focus on G(6) rather than F(), because if we are interested in F(f) for 6§ < 0, this is
equal to G(m) — G(—0) by symmetry. So the following functional limit theorem can be stated;
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like Theorem 4.1 of Dahlhaus (1985) we require eighth order moments. (Using the less restrictive
tightness criterion described in Karatzas and Shreve (1991), one could relax the requirement to
4 4+ 6 moments, for some § > 0, but then other conditions — that are harder to verify — would have

to be added to compensate.)

Theorem 3 Let {Y;} be covariance stationary with mean p and acf {yn}, such that the process has
short memory, satisfies E[Y;®] < oo, and such that condition P1, P2, or P3 holds. Also suppose

that the fourth order cumulants are zero. If the taper satisfies (8), then as N — oo we have
VN (G()-6()) = 2()
in the space C([0, 7], R), where the process Z is mean zero Gaussian with covariance kernel (12).

It is interesting that the taper is irrelevant to the asymptotic distribution — this is essentially
because the integration involved in the definition of the spectral distribution makes the tapering in
the spectral density estimation obsolete. However, the taper and the bandwidth have a substantial
impact on the qualitative features of the estimate (see Section 5). The degree of correlation between
differing values of the spectral distribution estimator depends chiefly on the smaller frequency, as
indicated by (12); variance is increasing in frequency, unto the maximum value G(7) = 7o/2.

As an application of Theorem 3, we can construct uniform confidence bands about the spectral
distribution function. This is in contrast to the application discussed in Section 3.2, where simul-
taneous confidence intervals were constructed for a finite number of frequencies. For real numbers
¢, u we have the confidence band [G(0) —u/v/N, G(8) —¢/v/N] — as a function of 6 € [0, 7] — yiclding

coverage as follows:
P [6;(9) —u/VN < G(0) < G(6) — £/v/N,V6 e [o,w]}

=1-P [ sup VN (G(0) — G(F)) > u
0€[0,n]

—IP’[ inf VN (G(8) — G(h)) < ¢

0€[0,n]

—1—-P| sup Z(0)>u
0€[0,n]

—-P [ inf Z(0) < 4
0€[0,7]

as N — oo. The random variables Z = infpepo ] Z(0) and Z = SUPgeo,«] Z(¢) determine the
spread of the confidence band, and can be calculated via simulation when the covariance kernel is
known, or is estimable. Another possibility is to estimate the limit distribution via subsampling
(this might be preferable if the assumption on the fourth cumulant is not tenable), as in Politis,
Romano, and You (1993).

Let the corresponding quantile functions be denoted by R and R respectively. Then the confi-
dence band probability is approximately 1 — « if £, u correspond to the appropriate critical values;
splitting « evenly yields

¢ = R(a/2) u=R(1—a/2). (13)
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This construction differs somewhat from (11), because in that case the limit theorem was formulated
as a ratio (for spectral density estimation), whereas here the limit theorem is formulated as a
difference (for spectral distribution estimation). Although the limit Z(f) does not depend on the
taper, it does require a knowledge of f. In practice, one must construct an estimate of the covariance
kernel (12); we next describe our procedure.

Let M denote a mesh of frequencies, providing a discretization of the Riemann integral defining

K(0,6). Then
| M6/

I 1
e ) PR gy 3 P

which is the variance of a heteroscedastic random walk. That is, suppose that {¢;} is an independent
Gaussian sequence, with each random variable having variance f2(tw/M)/(2M) for M fixed. Then
Uy = Zle €: is a heteroscedastic random walk with variance approximately K(6,6), where ¢ =
| M6/7|. We can easily simulate this Gaussian sequence by multiplying f(tw/M)/+/2M times iid
normals. Moreover, the covariance function of the process {Uy} is approximately that of the kernel
K, because of the random walk structure.

If f is known (as in the case of hypothesis testing) then we can simulate the process {U,} and
obtain an approximation to {Z(#)}, with the association ¢ = | M6/7|. However, in many applica-
tions f is unknown and must be estimated. One could use the tapered spectral density estimates
discussed above, or the periodogram (integration over frequencies smooths it out sufficiently to
provide consistency). Thus, we construct € via multiplying f(tﬁ/M )/vV/2M by a standard normal,
independently for each ¢, and construct the corresponding heteroscedastic random walk {ﬁg}. Here
fcould be the periodogram or the same tapered spectral estimate upon which our original G is
based. Then with Z(0) = ULM@ /x |, we approximate Z and Z by the minimum and maximum,
respectively, over the M values U1, U M. Repeated samples for {€} then yield an estimate
for the distribution of Z and Z. Consistency of this implicit estimator K follows from the same
assumptions as used in Theorem 3. The upper quantile of R and lower quantile of R yield estimates
of uw and ¢. This procedure has been implemented and tested in simulation (see Section 5 below).

Alternatively, one may be interested in testing some null hypothesis that naturally supplies f
to us. For example, we may be studying the time series residuals arising from a fitted model, and
seek to test whether these residuals behave as white noise. Ignoring issues of parameter estimation

error, we wish to test whether f(\) = 79, and hence we can estimate the covariance kernel via

~ =R 0/\w

This is the kernel of a Brownian Motion process on [0, 7], scaled by 7y. There exist published
quantile functions for the supremum and infimum of BMs, and so the construction of ¢, is rel-
atively straightforward. In this problem, the null hypothesis also dictates the form of G, i.e

G(0) = v00/(27), so that if this particular function G fails to lie completely within the confidence
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bands, we have evidence to reject the null hypothesis. However, such an approach ultimately pre-
sumes a parametric specification for the original spectrum, and there are other techniques available
for testing model goodness-of-fit in such a scenario. In our applications below, we focus upon

nonparametric approaches to spectral estimation.

4 Higher Order Accuracy of the Fixed Bandwidth Fraction

In this paper we have adopted the asymptotic perspective that bandwidth in spectral estimates is
to be viewed as a fixed fraction b of the sample size. Conventional asymptotics stipulate that the
bandwidth is vanishing relative to sample size, and the spectral estimates become consistent. As
in the HAC literature — which examines the distribution of the self-normalized mean as b — 0, and
makes comparison to the conventional asymptotic normality results — we intend to examine the
behavior of our limits Sp(b) in Theorem 2 as b — 0. The point of this is to show that that Sy(b)
can be viewed as the classical limit distribution Sp(0) plus other stochastic terms that are order b,
b2, and so forth. This will demonstrate a higher-order accuracy for the fixed bandwidth fraction
asymptotics.

Unlike in the HAC case of a standardized sample mean statistic, where the b = 0 case corre-
sponds to a Gaussian random variable, for spectral estimation the b = 0 case corresponds to point
mass at the spectral density, i.e., Sg(0) = f(#) with probability one. Therefore, expansions of the
distribution of Sp(b) as b — 0 will use slightly different techniques then those employed in Sun,
Phillips, and Jin (2008). We pursue an analysis of the Laplace Transform of Sy(b), providing a small
b expansion, and relate this transform to the cumulative distribution function of Sy(b). We utilize
an expansion of the Laplace Transform in terms of functions that have known Laplace inverses; we
believe this to be a novel method, potentially generalizable to other types of distribution problems.

This method will result in an expansion of the right tailed cumulative distribution function
(cdf) in terms of polynomials and exponential functions, with coefficients given by polynomial
functions of the cumulants. We show how to compute these cumulants directly from the tapers
— although similar types of cumulant calculations have previously appeared in the HAC literature
(Sun, Phillips, and Jin (2008)). However, we do not view this expansion as the most practical
method for calculating the cdf; in practice, one wants the quantiles of the limit distribution, and
these can be obtained via simulation (Section 5).

Fixing 6 so that we can drop the subscript, the distribution of S(b) is characterized by its
Laplace Transform (LT). From Tziritas (1987), the LT of a Gaussian quadratic form (Z, Z)7 — for
a Gaussian process Z with covariance kernel K, and a quadratic form (-, -)p with operator T — is

given by

Eexp{—s(Z,Z)r} = eXP{Z (—1)j %Sj}v
j=1
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where k; is the jth cumulant of S(b), and has the formula
Ky =271 (G — DIe[(KT)). (14)

Also see the discussion in McElroy and Politis (2012). Briefly, the Gaussian process Z is defined
on the space of real-valued function of domain [0, 1] such that the action of an operator A on any
element x of this space is given by (Ax)( fo t)dt. In equation (14), both K and T are

operators, and their composition has action on an element x given by

(KTz)( //Ksu (u, t)z(t)dtdu.

Also, tr denote the trace of an operator, i.e., tr(A fo (s,s)ds.
The limit distribution S(b) in Theorem 2 is the sum of two such independent and identically
distributed Gaussian quadratic forms (just one copy if § = 0, 7), because it can be written as the

sum of two random variables of the type

/ / (r, s)B(r)B(s) drds,

where T'(r, s) is equal to —b~2A((r — s5)/b) plus secondary terms involving the Dirac delta function.
Because the Gaussian processes B are FBBs, the covariance kernel K is that of FBB (Samorodnitsky
and Taqqu (1996)). Trivially, the LT of the sum of two iid random variables is the square of their
common LT, which amounts to a doubling of each cumulant. In the following treatment, we provide
an expansion for the cdf in terms of cumulants; these are given by doubling the formula for x; in
(14) when 0 # 0,7, but at frequency zero or m we just take the formula (14) directly. Since the
trace of powers of K'T' is not convenient to calculate, we provide a feasible approximation to the
kj after our presentation of the expansion.

The right-tailed cdf of (Z, Z)7 will be denoted by F, and its pdf by p. The LT of a function ¢

(of non-negative support) is denoted L, where

_ /0 o) da.

Then L#(s) = s~ (1 — L,(s)) using integration by parts, and L,(s) = Eexp{—s(Z, Z)r}. Next,

letting 2221 (an empty sum) be equal to zero for convenience, consider the infinite expansion

oo k k+1
Lg(s) = Z s71 | exp Z (—1) %sj — exp Z (-1 %sj , (15)
k=0 =1 =1

and denote the kth term by the function Gy(s). Each such function is actually of order b*, and by
carefully expanding them in an appropriate fashion, is the infinite sum of functions with known LT

inverse. The initial term in the expansion is

Go(s) = s (1 — e_’“s) = El[O,nl](S)7
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i.e., it is the LT of the indicator function on [0, x1]. This makes sense, because the right-tailed cdf
should tend, as b — 0, to an indicator function with boundary marked by its point mass, namely
k1 = A(0) (shown below). The higher order terms are more complicated, but contribute additional
perturbations to this indicator function.

The key to the following theorem are the following class of polynomials: let ¢, be supported
on [0, 00) such that )

(1) = (o Wn(a) 1)

and ¢,(x) = Yp(—1,2). Thus ¢1(z) = 1, ¢o(z) = 1 —z, ¢3(x) = 1 — 2z + 22/2, etc. These
polynomials have the remarkable property that

£¢n+137'(8) - Sn(l + S)—(n—i-l)’ (16)

as shown in Gradshteyn and Rhyzik (1994). Now we can state the main expansion result, which

applies more generally than to just the spectral density estimation problem.

Theorem 4 Suppose that a Gaussian quadratic form (Z, Z)r with covariance kernel K has cumu-

lants given by (14). Then there exist coefficient sequences {ag-k)} for each k > 1 such that

s (k) S
. S —(n+1) _ Qi1
Gr(s) = Z@ (n+ 1)!5 (1+5) (1) — Zo (n+ 1)_£¢n+1e—‘(3)

and Go(s) = s71 (1 — e "), where > k>0 Gk is the Laplace Transform of the right-tailed cdf of
(Z,Z)r. The right-tailed cdf has the expansion

Fz) = 1o, (= +Z s § Pnta(a)e” (@)e™ +---

n—|—1

The coefficient sequences {aﬁf)} are derived in the proof, and are fairly complicated expressions
in terms of the cumulants. Next, we apply Theorem 4 to the case where b — 0, noting that each
subsequent term in the expansion is of higher order. As discussed in Sun, Phillips, and Jin (2008)
in the case of a regular taper and a short memory covariance kernel K, the cumulants satisfy

k; = O(b’~1); assuming this, we have the following corollary.

Corollary 1 Suppose that a Gaussian quadratic form (Z,Z)p with covariance kernel K has cu-

mulants given by (14), and also suppose that k; = O(b/~1) as b — 0. Then

Zo (5 Ty nra(@)e T = 00

n=

as b — 0, for each k > 1.
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We note that the cumulants need not have the behavior x; = O(b¥~!) when long memory or
negative memory is present, as demonstrated in McElroy and Politis (2012) for the § = 0 case. In
that paper it was shown that the small b behavior of Sy(b) has a distribution that either explodes

to infinity (the case of long memory) or shrinks to zero (the case of negative memory).

Remark 2 As an example, consider the case that x; = 0 for j > 2, which corresponds to treating

all higher order terms in b as zero. Then the LT of the pdf is just
exp{—r15 + Kas?/2},

which corresponds to a (positive) random variable with mean x; and variance kg, and all higher
order cumulants exactly zero. If the random variable were not enforced to be positive, it would
correspond to the Gaussian distribution by its cumulant characterization. However, the actual
limit is positive and non-Gaussian. Pretending — for the sake of making a comparison with the
vanishing bandwidth fraction scenario — that this distribution is really Gaussian would yield the
limit theorem R
;Eg; LN (K1, K2).
The classic small-b results (Anderson, 1971) state that

ey

for A € (0,7) and taper A (satisfying A(0) = 1) of bandwidth M, such that M/N + 1/M — 0.

Taking M = bN in this result indicates that our results provide a higher order extension of the

VN/M <M - 1) £ N(0, / A2(z) dz)

classical results, so long as x1 = A(0) and k2/b ~ [ A*(x) dx; this is shown below.

This completes the higher order analysis. Now we discuss the cumulants «; further, focusing
on the case of short memory. Let us here assume that 6 = 0, so that the limit random variable of
Theorem 2 is a Gaussian quadratic form. We know that this limit variable is the limit of a statistic
of the form N~'Y'AY, where Y’ = [Y7, Y3, -+, Yy] is the sample written as a row vector, and A is
an N x N dimensional matrix. We proceed to derive this matrix A; the same statistic is equal to
> A(h/[DN])Fp, so that A = IST with I =1y — N~'w/ and X, = A((j — k)/[bN]). Here ¢ is the
column vector of NV ones, 15 is the N x N identity matrix, and I accomplishes mean-centering of
the data, i.e., I'Y is the column vector of sample-mean centered data; if we are not mean-centering,
then I can be omitted. Observe that [ is idempotent.

We propose to examine the distribution of N~'Y’AY for a Gaussian process {Y;} as an approx-
imation to the general limit (Z, Z)7. Since our purpose is to gain insight into the cumulants, we
will take {Y;} to be white noise (this is appropriate for the short memory case — for cyclical long

memory, we must take fractional Gaussian noise). In any event, N='Y’AY is a Gaussian quadratic
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form, so that the same description in terms of LT and cumulants applies, and we know its LT
converges to that of (Z, Z)r. The cumulants of N~'Y’'AY, applying (14), involve the trace of A7
divided by N7. We here develop expressions for these cumulants, take the limit as N — oo, and
obtain formulas for the cumulants of (Z, Z)p.

The trace of A7 depends upon two important quantities, which are tr[%’] and N~1//%7¢, each of
which quantities grows at order N7. We introduce the abbreviation A, = A(-/b). By the definition
of the Riemann integral and a change of variable, and letting z € R~!, we obtain

NI tr[Ej] — L C(g) Ab(l'l) Ab($2) cee Ab(:Ejfl) Ab([l‘l +xo+ -+ l‘jfl]) dx (17)

when j > 2, where the cumulator function C' takes the value 1 — [|z1| + --- + |zj_1|] wherever the
domain produces a non-negative value. This means that x; € (—1,1), 3 € (=1 + |21|,1 — |21]),
etc. When j = 1, we have N ~1tr[3] = A(0).

Let the limit in (17) be denoted by 1;(b), and note that the bounds on the integrals could also
be written as (—b, b) instead of (—1,1), due to the support of the tapers. Then we can rewrite the

limit quantity (for j > 2) as
pi(0) =¥~ / o C(bz) A(zr) Awz) - Aaj1) Mar + 22 + -+ + zj-1) da,
1,1

so that limp_,q ,uj(b)/b7'*1 = ‘f[_ljl}j—l A(z1) A(zg) - A(xj_1) Ay + 2 + - - - + xj—1) dz. Similarly
for 7 > 1, letting « € RY,

N7/%0, — / Clx1, 22, ,x5) Ap(x1) Ap(2) - - - Ap(zj) da, (18)
1,19

and we denote this limit by n;(b). Again by change of variable, it can be rewritten as

O =b [ ) M) M) Ale) d

so that lim,_,on;(b)/b/ ! = f A(z . Now by the idempotency of I, tr[A7] = tr[(£ I)’]. Then
the first four such trace quantities N Y tr[AJ |, for j =1,2,3,4, have limits given by

pa(b) — 1 (b)

p12(b) — 2n2(b) + i (b)

p13(b) — 3n3(b) + 3m1(b)m2(b) — 13 (b)

p1a(b) — 4na (b) + 4n3(b) 1 (b) + 205 (b) — 4 (b (b) + i (b).

In the case that no centering is utilized, then I is replaced by the identity matrix, and all the
n; terms are replaced by zeroes in the above formulas. Then trivially N=7[A7] — p;(b) for all

j > 1. But when centering is utilized, the general limit for j > 5 is somewhat complicated: one
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examines the number of partitions of the set {1,2,---,j}. A m-fold partition consists of m disjoint
sets whose union is the full set {1,2,---,j}; combinatorial formulas exist to count the number
of m-fold partitions of j, as they are called (Stanley, 1997). We must count the number of such
partitions that result in disjoint sets of the same cardinality, e.g., the 2-fold partitions of 4 are
[111234], [1]2]34], [12|3|4], and [123|4|] (which consist of sets with same cardinality, either one or
three) as well as [|12|34] and [1]|23]4]. Note that we are shifting where the vertical bar is placed,
which actually represents the position of the matrix I in-between the matrices X, represented in
order by the various numbers. Because of the trace operator, these partitions are treated toroidally,
so that [|12|34] is counted the same as [12|34]].

If we have an m-fold partition, the resulting m sets have various cardinalities ki, ko, -+, km,
and of course k1 +ka+---+ky, = j. Let Ay, (K1, k2, -+, ki) denote the number of such partitions,
so that we have Ai (k1) = j. A partition of j into sets of such cardinalities will be denoted
(k1,ko, -+ ,km) I j. Then the general formula for N=7tr[A7] is

J
Mj(b) + Z (_l)m Z Am1j<k17 ko, k) My (0)Nk5 (D) - - - 1, (D).
m=1 (kl,k‘z,---,k)m)kj

In this manner we can compute asymptotic cumulants, where the leading terms correspond to the
case where no centering is used — terms that are zero unless # = 0 and centering is used are prefaced

with a *:
1

Ky = A(0) — *b/_l(l ~ ba)A(z) da

1 1 1-b|x|
o :2b/ (1—b|x|)A2(x)dx—*4b2/ / (1 = bla| — blyDA(x)A(y) dy do
1 —1J—1+4b|z|
2

+ % 202 (/11(1 — blz|)A(x) dx) .

Because 7;(b) = O(b) and p;(b) = O(b~1), the small b behavior of the cumulants makes mean
centering irrelevant, in the sense that as b — 0 the cumulants are the same whether or not mean
centering is utilized. The Bartlett case of these formulas is explored in HV, as well as Neave
(1970). To summarize, if # = 7 then the above formulas apply to the cumulants of Sy (b) regardless
of whether centering is utilized or not (all ¥’d terms are zero); if # = 0 then the above formulas
apply to the cumulants of Sp(b), with *’d terms set to zero unless centering is used; if § # 0,
then the above formulas apply to the cumulants of Sp(b) once they are doubled (and *’d terms are

zero), although the limit distribution is actually Sp(b)/2 in this case.

5 Numerical Studies of Size and Bandwidth Selection

This section now discusses some more practical aspects of spectral density estimation. We first

discuss a method for calculating the limiting distribution, apart from direct simulation of the
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limit variable in Theorem 2. Then we provide quantiles for this distribution for three tapers, and
investigate coverage in finite sample simulations as a function of bandwidth fraction b. Finally, we

provide a discussion of optimal bandwidth selection.

5.1 Computing the Spectral Distribution

In the case that 6 # 0, 7, the distribution Sy (b) has a particularly elegant representation in terms of
its Laplace Transform, by which its right-tailed cumulative distribution function can be computed
exactly from a knowledge of the taper. From Theorem 2, we know that the limit distribution is
the sum of two iid copies of (Z, Z),, whose LT can be written as det [id + 23KT]_1/2, cf., Tziritas
(1987). Here id denotes the identity operator. Therefore the LT for the sum of two such iid
variables — denoted by (Z,Z), @ (Z,Z), as a shorthand — will be the square of each variable’s
LT, namely det [id + 2s KT] ™", or the product of (1 +2s\;(KT)) ™" for the eigenvalues \; (KT) of
the operator KT'. As discussed in the previous section, the limit distribution in Theorem 2 can be
estimated by studying a finite-sample Gaussian quadratic form with matrix A = I3[; in particular,
we can calculate the N eigenvalues of A using linear algebra (if N < 1000 this is not particularly
burdensome). Then these should be estimates of the limiting eigenvalues in an aggregate sense; but
the infinite product J[;~; (14 2sA;(K T))~" can be expanded using partial fractions. We provide
details below.

Since 6 # 0, 7, the spectral estimate has the form N~'Y’AY with I as defined in Section 4, and
A=1%1,but X, = A((j—Fk)/[bN]) cos(6(j—k)). Let A\j(A) be the jth largest eigenvalue of A, with
1 < j < N, computed using linear algebra on a computer. The LT of N~'Y’AY’, which converges for
all s pointwise to the function [[ 5, (1 + 2s); (KT))™"', can be expressed as vazl (14 2s); (A))_l/Q.
While in finite sample the eigenvalues of A are distinct, asymptotically they have a paired structure,
such that each eigenvalue appears with multiplicity two, resulting in the squaring of the square root
symbol. First we show that a knowledge of the limiting eigenvalues A\;(KT') provide the cumulative
distribution function, and then we propose estimating these eigenvalues by the \;(A).

A partial fraction decomposition, assuming that A\;(K7T) — 0 as j — oo, is

1 o
j];[l (14 28\ (KT)) ™" = ; T2 (K1)
Here the coefficients a; can be obtained via linear algebra, described below, when the eigenvalues
are eventually zero, or if we approximate the infinite product by a truncation to j < J for suitably
large J. Moreover,
_ 1 @ @

s ljl;ll(l—i-%)\j(KT)) 1:8+§w (19)

is another partial fraction decomposition of interest, and the structure actually implies that g = 1

must hold. As discussed in Section 4, the LT of the right cdf for spectral limit is equal to s~! times
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one minus the LT of pdf of the spectral limit distribution, and hence
-1 (1—522 7,7 )Z— S Lﬁf</[2A'<KT>J(S)
(L) &2 L)y ; 1+ 250 (KT) ; 20 (KT) e/
by (19). Now using the linearity of the LT, we obtain by inversion

i (KT)

This gives an exact formula for the right-tailed cdf of the limit distribution Sy(b) in terms of the

(o7 — ,
PUZ, Z)p ®(Z,Z)p > 2] == %73 o~ /120 (KT)] (20)
—

eigenvalues of the operator KT. Unfortunately, this technique does not work for § # 0,7. We
propose to estimate the limiting LT via

[N/2]

H (1 + 28A2j_1(A))_1,

j=1
which essentially assumes that consecutive eigenvalues of A are so close as to be virtually identical.
Then in the partial fraction decomposition, we substitute the known eigenvalues Ay;_1(A), and
compute the corresponding «;.
Here we discuss how to calculate the partial fraction decomposition a bit more generally. Sup-
pose we seek the «; such that s~ H‘jjzl (1+ 25/\j)_1 =51+ ijl a;/(1 + 2s\;) holds. Cross-
multiplying produces

:ﬁ 1+ 2s))) —|—Zo¢]sH 1—2s)\) = +ZaJST]) (21)
j=1

Jj=1 2

and T(j)(s) for 0 < j < J is computed using polynomial multiplication (easily encoded on the
computer). Let the coefficients of each polynomial 7()(s) be denoted T,Ej ) for 0 <k < J, and note
that Téj ) = 1 for each j by construction. Whereas 7(°) is degree J, the other polynomials have
degree J — 1, though they are multiplied by s in the expansion (21). Then taking the expansion

and gathering powers of s produces, after simplification,

O—T +ZOZJT£ 1

for 1 < ¢ < J. This produces the matrix system

_ —71(0) . T(gl) Téz) Té‘]) 1o ]
7'2(0) 71(1) 71(2) e Tl(J) 1e%)
0 1 2 J
) I R RN N

which provided the matrix is invertible, can be solved for the «; coefficients. Although this technique

provides the right-tailed cdf of Sp(b), we still need to compute quantiles, and it is unclear how do
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this using (20). As in McElroy and Politis (2012), we have simulated the distribution of Sy(b) for
some tapers, when 6 # 0,7 (the case of § = 0,7 produces a distribution for Sy(b) identical to
the HAC case, and its quantiles can be found in published literature such as Kiefer and Vogelsang
(2005)), and reported a summary in the following table. We focus on three tapers: the Bartlett
and two trapezoidal tapers.

First consider the limit distribution Sg(b) of Theorem 2 in the case that 6§ # 0, 7. In this case,
recall that mean centering is irrelevant, so that the limit is a quadratic functional of FBM rather
than FBB; moreover, there is a doubling effect, where Sy(b) is really the sum of two iid random
variables. In the case that § = 0 or §# = , the limit Syp(b) is given by just one of these random
variables. Furthermore, when 8 = 0 and we construct our spectral estimates by mean-centering,
then the limit distribution Sp(b) involves FBB instead of FBM. Alternatively, if no mean centering
is utilized in the estimates (and the true mean is zero) then the distribution of Sy(b) involves FBM
rather than FBB. The case of Sy(b) with mean-centering, utilized as a studentization of the sample
mean, was studied in McElroy and Politis (2012); tables of quantiles for Sy(b) and S;(b) have not
been published, to our knowledge.

Both lower and upper quantiles are estimated for the limit distributions, for a variety of
long memory parameters 3, summarized via regression against an appropriate function of band-
width fraction. Specifically, we consider § = —.8, —.6,—.4,—.2,0,.2, .4, .6, .8, and the quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99. Having determined these quantiles over 50,000 simulations of
FBM (see McElroy and Politis (2009) for discussion of the simulation method), each one is then
regressed across 50 different values of b, ranging between .02 and 1.00. The regression function is

an exponential quintic, i.e.,
q(b) = exp{co + c1b + c2b” + c3b” + cab* + ¢5b°},

where ¢ is the quantile. In the case that some of the lower quantiles take on negative values
(there is no guarantee that spectral density estimates and limit distributions be strictly positive
unless a positive definite taper is utilized), the regression function is just a quintic. All regression
coefficients are reported in the Tables 1 through 18, along with the R? for the regression, with an
asterisk marking those cases where regression is onto a quintic rather than an exponential quintic.
In some cases the coefficients exhibit a non-monotonic pattern in increasing «, which is attributable
to the regression error. For purposes of inference, the simulated quantiles arising from the tables are
adequate. Note that Tables 1 through 9 give the quantiles for the case that frequencies are between
0 and 7, for § = —.8,—.6,—.4,—.2,0,.2, .4, .6, .8, while Tables 10 through 18 provide the same for
the case of frequencies equal to 0 or 7 (assuming no mean-centering is used in the frequency 0 case).

Because the case of a frequency between 0 and 7 involves the sum of two iid variables (Theorem
2), versus just one such variable in the frequency 0 or 7 case, the quantiles are a bit larger and

have more positive mass. When using non-positive definite tapers, such as the Trapezoidal tapers,
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the limit distribution has some mass on the negative half-line, and there is more such mass in
the frequency 0 and 7 cases. No such negative mass occurs with the Bartlett taper, because it
is positive definite. Another feature that can be gleaned is the small b behavior of the quantiles
as a function of £, namely that the quantiles shrink towards zero as 8 increases, when b is small
(examine the first coefficient ¢g in the tables). However, for negative memory (/5 < 0) the quantiles
tend to decrease as a function of b (examine the second coefficient ¢; in the tables), whereas the
opposite is true for positive memory (8 > 0). When 8 = 0, the sign of ¢; is negative for the left
tail and positive for the right tail, indicating a mixture of effects. In comparison with the quantiles
for the self-normalized sample means in the HAC literature (McElroy and Politis (2009, 2011)),
the small b behavior as a function of memory is inverted, because in the self-normalized case the
variable S;(0) is in the denominator of the limit distribution.

One implication of the small b behavior of 5, is that, while for short memory the distribution
becomes centered around unity, for 8 < 0 there is more probability mass on values greater than
one, whereas for 8 > 0 there is a greater probability of values less than one. When constructing
confidence intervals, it is therefore possible in the long memory case for both the lower and upper
quantile to be less than unity, so that the confidence interval does not encase the estimator — the
point estimate will lie below both the lower and upper limits of the interval. In contrast, for the
negative memory case, the point estimate can lie above both the lower and upper limits of the
interval. There is nothing incorrect mathematically about this feature, though it may look unusual

(see the Figures below for our applications); the effect diminishes as b is increased.

5.2 Simulation Study of Finite-Sample Coverage

The large bandwidth asymptotic theory provides a superior approximation to the finite-sample
distribution of spectral estimators, as discussed in HV and Sun, Phillips, and Jin (2008). Hence,
this should provide superior coverage for confidence intervals and confidence bands; the work of
HYV illustrates this superior coverage, as compared to the classical normal approximation (utilizing
small b methods). We seek here to extend those numerical results to an investigation of long
memory, and also to spectral bands. Therefore, we first consider a seasonal long memory process
CM(B,7/6), adopting the pattern of study discussed in HV. Secondly, we consider an AR(2) process
that generates a spectral peak, and compute the spectral distribution estimators, generating the
corresponding confidence band. We are interested in determining the proportion of simulations for
which the estimated spectral bands contain the true spectral distribution.
The long memory study begins by simulating 5,000 Gaussian time series of length N = 50, 100, 200

from a process with spectral density
FA) =1[2—2cos(A—0)][2 = 2cos(\ + )] 77,

which satisfies (3). Here we take § = 7/6, which is a frequency of interest in monthly economic time
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series exhibiting seasonality (see Holan and McElroy (2012) for discussion of seasonal long memory
modeling, and McElroy and Holan (2012) for computational aspects). As mentioned in Section 3,
inference is conducted for the moving parameter fy(6), and we consider various values of the long
memory parameter: § = —.8,—.6,—.4,—.2,0,.2,.4,.6,.8. The case of 8 = 0 corresponds to white
noise, and fn(6) = f(0) exactly — cf. (9) — in this case. Other values of fy(7/6) are produced in
Table 19.

For each of 5,000 simulations, we compute the spectral estimate f(@) at the frequency 6 = 7/6
of interest, construct the interval using (10), and record the proportion of simulations for which
fn(m/6) is contained therein. We construct the interval using the true 5 (which would be unknown
in practice) to determine quantiles. We consider three tapers (Bartlett and both Trapezoidal tapers)
and four choices of b = .04, .10, .20, .50. This study differs somewhat from the approach in HZ, which
compares the cumulative distribution function (determined by simulation) of N f(@) /Vn(0) against
the cumulative distribution function of Sy(6); here we highlight the incidence of under- or over-
performance in finite sample. Of course, HZ focuses on 5 = 0 as well. Tables 19, 20, and 21 provide
empirical coverage based on a = .05, .10 confidence intervals, where the target quantity fy(m/6) is
displayed in the tables as well.

The first thing to observe is the pattern of fy(7/6) as a function of N and § — it decreases with
N if B <0, is fixed at .5 when 8 = 0, and increases rapidly to infinity when g > 0. The actual
coverage results display improved accuracy (in general) for increasing sample size, and somewhat
inferior coverage for smaller values of b. Negative values of § lead to undercoverage (this can be
quite poor for § = —.8 and small values of b), while positive values of § tend not to have worse
performances, as compared to § = 0. In comparing tapers, it is quite noticeable that the Bartlett is
inferior to the Trapezoidal tapers; the latter are known to have superior bias properties in the short
memory case, and this may be carrying over to the long memory case as well. Trapezoidal tapers
tend to produce spectral estimates with slightly lower values than those constructed via a Bartlett
taper, and the corresponding asymptotic distributions are shifted to the left (having positive mass at
negative values). When a trapezoidal estimate produces a negative spectral estimate, the confidence
interval construction given in Section 3 fails (because dividing by a negative number invalidates
the inequality relations), and instead we replace such estimates with zero. (Another possibility is
to replace negative values with half of the Bartlett estimate.) Essentially, our spectral estimate is
computed using the maximum with zero, and the limit distribution should be modified accordingly.
In cases where a lower quantile, obtained from Tables 1 through 18, we replaced the lower boundary
of the interval by zero (a more rigorous approach is to simulate the distribution max{Sy(6),0});
even using such an approximate technique, we obtained quite favorable results for the Trapezoidal
tapers, across all values of .

Now these coverage results are idealized, because we presume to know the true § when utilizing

limit quantiles. In practice, an estimate of 8 would be obtained, and then appropriate quantiles
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could be simulated. If we instead always utilize § = 0 quantiles, even when mis-specified, the cov-
erage deteriorates significantly (we have not systematically investigated this) because the quantile
functions are quite sensitive to §. From the standpoint of coverage, an argument for using larger
values of b when 8 < 0 can be made, although this in tension with statistical power; the next
subsection shows that when negative memory is present, small values of b decrease the width of the
interval, and hence increase the statistical power of detecting departures from a null hypothesis.
This discussion is continued further below.

For the second simulation study, we wish to investigate the coverage for the spectral distribution
band method described in Section 3. We consider a cyclical process {Y;} given by the AR(2)
equation (1 — 2pcos(0)B + p?>B?)Y; = ¢, for {¢} a white noise process of unit variance. We
consider § = 7/6, and values p = .7,.8,.9 to generate several different cycles (values of 6 closer
to zero make estimation more challenging in some ways). Then we take 1,000 Gaussian draws
from this process of sample size N = 50, 100, 200, and compute the spectral distribution estimate
G(-), and form the confidence band about it utilizing the quantiles ¢ and u from (13), determined
using both the true unknown f to compute the kernel K (as an unavailable baseline) as well as
the estimated K utilizing an estimated spectral density (with mesh size M = 600), as described
in Section 3.3. The spectral distribution estimate is constructed with a particular choice of taper
(Bartlett, Trapezoidal .25, or Trapezoidal .50) and bandwidth fraction (b = .04,.1,.2,.5), and the
spectral density estimate used to estimate the kernel K uses the same specification. Once the bands
are determined, the true spectral distribution can be plotted, and coverage is determined by the
condition that the true function lies entirely within the bands. For a = .05,.10 we determine the
empirical coverage. Results are summarized in Tables 22, 23, and 24; in each cell, the first entry
corresponds to using the estimated K , whereas the second entry utilizes perfect knowledge of the
true f.

It is remarkable that results for spectral band coverage are much inferior to those of spectral
density coverage, in general. Under-coverage seems to be the general malaise, and small values
of b accentuate the affliction. However, some intuitive results can be gleaned from the tables.
First, coverage improves with sample size (albeit, sometimes moving from under-coverage to over-
coverage); second, coverage is better for lower values of p; third, the under-coverage problem
is less egregious when omniscience about f is utilized. Regarding the second point, recall that
higher values of p indicate a sharper spectral peak, causing the spectral distribution to depart
from a diagonal line (the case of white noise) and more closely resemble a step function — correctly
capturing the width of uncertainty is more challenging when serial correlation is present. The
third point has ramifications for hypothesis testing, where we might hypothesize a specific formula
for f (e.g., white noise or a cyclical AR(2)) and then test this hypothesis by seeing whether the
spectral distribution estimate is completely contained in bands computed from that particular f.

Finally, the impact of taper can be seen with reduced under-coverage of the flat-top tapers, which
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is especially prevalent in the small b case. However, we remind the reader that flat-top tapers are
not positive definite, so that spectral density estimates can have negative values, and therefore the
spectral distribution estimates need not be monotonically increasing in frequency (for examples,

see below in Section 6).

5.3 Optimal Bandwidth Selection

Although the LT can be used to compute some moments of Sy, allowing one to study the mean and
variance as a function of b, it is difficult to deduce the overall impact of b on the width of confidence
intervals for f(#). Given a choice of taper and coverage «, it is natural to seek a bandwidth that
yields the minimal possible interval width — such a bandwidth might be considered to be optimal.
Our asymptotic expansion results in Section 4 indicate that as b — 0, the distribution of Sp(b)
tends to a point mass at unity in the case of short memory, so that optimality always corresponds
to b = 0. In McElroy and Politis (2012), it was proposed to examine optimal bandwidth b as a
function of underlying memory parameter fy, seeking b such that the quantile of Sy(b) was as small
as possible. Taking the same approach here, we numerically determine the optimal b for the Bartlett
and Trapezoidal tapers, now focusing on the frequencies 6 # 0, 7. By keeping the quantiles as small
as possible, we make the confidence interval as small as possible while maintaining its asymptotic
coverage.

When negative memory is present, both upper and lower tails of the asymptotic distribution
increase as b — 0, with the overall effect that the confidence interval becomes more narrow; therefore
a small bandwidth fraction of b = .02 is always preferred. When long memory is present, this
behavior can be reversed, such that narrower intervals occur for mid to large values of b. This
is summarized in the Tables 25 and 26, which present optimal choice of bandwidth fraction as a
function of memory parameter 5, « size, and taper. The first table considers the case of frequencies
in (0, 7), while the second considers frequencies 0 or w. The key difference between these cases, is
that the former (Table 25) contains larger optimal b values, while the latter (Table 26) has smaller
optimal values of bandwidth fraction.

The choice of bandwidth fraction has been studied in the HAC literature by many authors,
including Sun, Phillips, and Jin (2008), and the tradeoff of Type I and II errors has been explicitly
considered. Size and power are in tension, because we can see from Tables 19, 20, and 21 that
smaller b generates under-coverage. This is true when 5 = 0, and the problem is exacerbated for
B < 0. On the other hand, the calculations of this subsection show that larger values of b can
produce better asymptotic power; the situation is more complicated by the introduction of £ into
this story. To mathematically balance Type I and II errors then involves the 8 parameter, which
must be estimated to proceed.

Our own recommendation is less rigorous, but also somewhat easier to implement. Based on
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some rough estimate of the memory at the frequency of interest, if 5 > 0 there is little loss of
size for small b, and so the optimal bandwidth fraction of Tables 25 and 26 could be used. When
B < 0, one should take the smallest bandwidth possible such that the empirical coverage — given
the taper and sample size, based on simulation — is tolerable to the practitioner. For example, if
for a nominal o = .10 one can tolerate empirical coverage as low as .80, and 3 = —.6, then with
the Trapezoidal .50 taper and sample size N = 50 one should choose b = .10, because b = .04
would produce too much under-coverage (more simulations could improve the range of choices of b
between .10 and .04). For sample size N = 100 and the same taper, b = .04 would give adequate
coverage and improved power. The selection would be different for the Bartlett taper, requiring
b = .50 and b = .20 respectively for sample sizes N = 50 and N = 100. The key thing to remember
is that the best choice of b, in practice, is actually linked to sample size N (as well as taper choice),

because the asymptotic considerations do not fully characterize optimality in finite samples.

6 Empirical Applications

Spectral analysis has a diverse range of applications. Here we suggest only a few of a myriad of

applications.

6.1 Identifying Business Cycle in Retail Series

First, suppose one is analyzing a monthly or quarterly economic time series, such as total retail
sales, and is interested in identifying periodicities by estimating spectral peaks. However, such time
series are typically nonstationary, exhibiting strong trend growth and seasonal behavior. The re-
coloring approach of Grether and Nerlove (1970) is a well-respected technique for estimating spectra
in such a case: one differences the time series to remove nonstationarity, estimates the spectrum of
the result, and then divides again by the magnitude squared of the frequency response function of
the differencing operator. Such a spectral estimate is called a pseudo-spectral density estimator; we
are interested in both the pseudo-spectrum and the spectrum for the seasonally differenced series.

For example, suppose that we have monthly seasonal data, which exhibits strong trend and
seasonal effects, and are interested in estimating the spectral density in order to examine the
potential for a business cycle (identified as a spectral peak between frequencies 27/24 and 27/60
for monthly data). If the data requires one seasonal difference to produce a stationary series,
then re-coloring dictates that our spectral density estimate computed from the differenced series
be divided by |1 — e*i12/\]2, which of course is not well-defined at frequencies that are multiples of
/6. The result is the pseudo-spectral density estimator.

We apply the methods of this paper to the monthly series of total retail sales for the major
industry classifications 441 (Motor Vehicles and Parts Dealers), available from the U.S. Census
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Bureau'. We consider a variety of tapers and bandwidth fractions, using the re-coloring approach
with regression-adjusted data, covering the years 1992 through 2012. Our objective is to create a
graph of the spectral density estimate with sufficient resolution to examine business cycle effects,
and also provide measures of uncertainty at each frequency. Because the business cycle has a period
of two to ten years in general, the minimum number of frequencies needed is 60 (a ten year cycle
for monthly data corresponds to frequency 7/60). Thus we will take w; = 7 /60 for 0 < j < 60;
note that w; for 1 < j < 5 are the business cycle frequencies. Also wy = 0 corresponds to the
trend frequency, which will be an infinity due to re-coloring. Similarly, wygr for & = 1,2,3,4,5,6
corresponds to seasonal frequencies, which will also be poles in the pseudo-spectrum.

If we focus attention on the nonseasonal frequencies, we can apply the methods of Section 3 to
construct confidence intervals. First, we observe that the assumption of asymptotic independence
of spectral estimates seems reasonable here, because we are not considering Fourier frequencies
(the sample sizes are 252); moreover, if the sample sizes were increased, we would still consider the
same 61 frequencies, because they are ultimately determined by the sampling frequency (12 times
a year) and the business cycle periodicities. Therefore it makes sense to view these 61 frequencies
as being fixed as sample size increases, and thus Theorem 2 is applicable, producing independent
asymptotic distributions. In some other types of applications, the frequencies of interest might
depend upon sample size, and a different type of analysis would be required.

Once the spectral estimate for the differenced series has been determined, we divide by the
magnitude squared of the differencing operator, in order to provide an estimate of the pseudo-
spectrum. For better visibility, we plot in a log scale, restricting to the Bartlett taper for this
exercise only. Then the confidence interval for log[f(A) |1 — e‘“”‘\_z] at the 54 non-trend and

non-seasonal frequencies is

£(0) 7(0)
10 ,10 4 _ )
[ g(zvm@eu—aﬂ)u—e“W) g(Ner(a/zm—ew 2)]

which follows from (10). Such series typically have quickly decaying autocovariances, so we use the

6 = 0 quantiles to form the intervals.

Construction of the confidence intervals focuses on o = .05 (the case that o = .10 was also
considered, but is not visually much different), using the Bartlett taper with b = .04,.1,.2,.5 for
bandwidth fractions, with sample size of n = 252. Recall that the quantiles, which come from our
simulations of the previous section, assume that centering by the sample mean has not been used
(this is only pertinent at the case of frequency zero), and the slightly wider coverage at frequencies
0 and 7 result from using Table 14 instead of Table 5; however, this has no relevancy due to the
re-coloring. The results are plotted in Figure 1. The structure of spectral peaks is salient, due to

re-coloring, but in-between the peaks the impact of bandwidth becomes evident in the smoothness

!Monthly Retail Trade and Food Services survey.
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of the function. It is difficult to discern any business cycle phenomena in these plots, which would
be flagged as a bump in between cycles 0 and 1 in the spectral density functions.

Another application is concerned with the detection of residual seasonality in seasonally adjusted
time series. Supposing that the above construction series has been processed by the program X-12-
ARIMA, we then compute their (trend-differenced) adjustments’ spectral distribution functions,
calculating the spectral bands to quantify uncertainty. Classic references on seasonal adjustment,
and the X-12-ARIMA program, include Bell and Hillmer (1984) and Findley, Bell, Monsell, Otto,
and Chen (1998). Any sudden jumps around the seasonal frequencies indicate residual seasonality,
while a straight diagonal line corresponds to perfect white noise. We compute the spectral dis-
tribution estimate and its confidence bands (with estimated kernel) utilizing the methodology of
Section 5, considering both the Bartlett taper and the two Trapezoidal tapers, each with band-
widths b = .04, .1, .2,.5. The bands are computed at the same range of frequencies discussed above,
with green lines corresponding to the .90 coverage and red lines for the .95 coverage.

Figure 2 show results for the Bartlett taper, while Figures 3 and 4 show results for the Trape-
zoidal .25 and Trapezoidal .50 tapers. The steady growth in the spectral plots between cycles 0
and 1 (i.e., for frequencies up to 7/6) indicates near constant spectral mass, and behavior similar
to white noise; there is no sharp increase in the vicinity of any of the key seasonal cycles. One
overall conclusion, from each of the plots, is that no significant seasonality remains. The impact of
bandwidth fraction is much less apparent than in the spectral density estimates, which we expect
from our asymptotic theory. One interesting feature can be discerned when comparing tapers; the
trapezoidal tapers produce, in some cases, spectral distribution estimates that decrease at some
frequencies, violating the fact that spectral distribution functions are monotonically increasing.
This occurs because the trapezoidal tapers are not positive definite; in contrast the Bartlett taper,
being positive definite, does not have this problem — though we can expect the width of the spectral

bands about the estimator to be too small, especially for small b, as discussed in Section 5.

6.2 Long Memory Spectral Analysis of Housing Starts

Here we consider regional housing starts, for the South region, measured at a monthly frequency
from 1964 through 2012, available from the U.S. Census Bureau. We analyze the data here with
a nonparametric approach, attempting to plot the spectral estimates for a variety of bandwidths,
taking any seasonal long memory into account when quantifying uncertainty. We consider the same
grid of frequencies as in the retail series, but are principally interested in the seasonal frequencies.

The South starts has been cleaned of outliers and level shifts, and we utilize a log transformation
to stabilize variability. Analysis of sample autocorrelation plots for the first differences (to eliminate
trend growth) reveals the presence of highly persistent correlation at seasonal lags (multiples of

twelve), which indicates either nonstationarity or seasonal long memory. A common approach with
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such series is to utilize seasonal differencing — under the assumption of seasonal unit roots being
present — but here we proceed with a hypothesis of stationarity, instead proceeding to estimate the
seasonal long memory. This seems to be a plausible investigation, given the long sample size.

In order to obtain the right quantiles in each case, it is necessary to know the cyclical memory.
It is reasonable to suppose, based on the form of nonstationarities in such series and the discussion
above, that cyclical memory may be present at frequencies wygg for 0 < k < 6, and at no others.
To estimate the cyclical memory Sy for these seven frequencies, one can adopt the crude estimation

method described in McElroy and Politis (2011), adapted to non-zero frequencies:

log (f(&)) = [ log(n) + €.

This regression equation is to be viewed as depending on sample size n, taking subsamples of length
n for 100 < n < N, with N = 587. The error €, is equal to the logarithm of the spectral estimate
divided by n?, and hence is approximately distributed as log Sy(€) when n is large. These regression
errors are highly cross-correlated across various values of n, but nevertheless we will utilize ordinary
least squares to get a rough estimate of ; see McElroy and Politis (2007) for a similar methodology.

We only need a rough estimate of 3, because we only have quantiles for values of 8 belonging to
the grid {—.8, —.6, —.4,—.2,0, .2, 4, .6, .8} anyways; we adopt the quantiles for a value of /3 closest to
that derived from the regression. In this way we can obtain the quantiles for each spectral estimate
at each of the six spectral peaks, using § = 0 at the non-seasonal frequencies. The estimates for
the six spectral peaks are 0.42, 0.29, —0.02, 0.05, 0.09, and —0.01 respectively. Therefore we shall
use 3 = .4 quantiles for the first peak, 5 = .2 quantiles for the second peak, and § = 0 quantiles for
all other frequencies. We produce spectral density estimates using all three tapers, and with the
bandwidth fractions b = .04,.1,.2,.5. We focus on « = .05, the results for « = .10 looking quite
similar. Recall that the quantiles utilized at frequency 0 and 7 are different, and induce a slightly
wider interval. Results are displayed in original scale, and also in log scale for the Bartlett case, in
Figures 5, 6, 7, and 8.

The impact of bandwidth fraction is quite evident in the plots; smaller values of b enforce more
smoothing. As was noted in Section 5, when long memory is present the confidence interval can lie
completely above the point estimate, and this is evident in the figures with b = .04. Apart from
the two long memory seasonal peaks, the other frequencies don’t have this property, as they have
short memory dynamics. We also highlight that at frequencies 0 and 7 the confidence intervals
are slightly wider to reflect the heightened uncertainty. Figure 6 gives the Bartlett estimators in
log scale, which allows easier viewing of some of the features. This transform is not possible for
the trapezoidal tapers, because the spectral density estimates take on negative values. Visually
speaking, the impact of the trapezoidal taper, in contrast to the Bartlett, is to shift the estimate
downwards — this improves bias and coverage, but at the cost of losing positivity. Otherwise, there

is little to discriminate between the tapers, given the same choice of bandwidth.
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7 Conclusion

This paper provides a new study of taper-based spectral estimation from the perspective of fixed
bandwidth ratio asymptotics. Classical spectral estimation theory assumes that the bandwidth is
negligible with respect to sample size, asymptotically, while the so-called “fixed-b asymptotics”
allows for a constant ratio of bandwidth to sample size. Previous work on fixed-b asymptotics for
spectral density estimation (HZ) has focused on short memory dynamics and a single frequency, but
we make extensions in several directions: (i) we study joint convergence over a finite collection of
fixed frequencies; (ii) we allow for cyclical long memory at any of these frequencies; (iii) we provide
results for flat-top tapers and tapers with kinks, extending the cases studied by HZ (Bartlett and
smooth tapers); (iv) we provide a discussion of higher-order accuracy in the short memory case, by
an expansion of the cumulative distribution function of the spectral density estimate’s limit; (v)
we study spectral distribution estimation in the context of fixed-b asymptotics, and develop the
application of simultaneous confidence bands; (vi) we tabulate the spectral density estimate’s limit
quantiles, as a function of taper, memory parameter, and bandwidth fraction; (vii) we empirically
examine coverage of the spectral density and spectral distribution estimates.

Regarding the joint convergence result, this produces the unsurprising conclusion that density
estimates are asymptotically independent; however, this requires the assumption that frequencies
are treated as fixed, in the sense that they do not depend upon sample size. This precludes an
application with Fourier frequencies, which would require a separate analysis (and is the subject
of current work). In our applications to the topic of seasonal peak detection, we illustrate why
Fourier frequencies may not be the most suitable grid of frequencies for a given application. We also
emphasize that the limit distribution under fixed-b asymptotics depends chiefly on the bandwidth
fraction b, the underlying memory at the particular frequency, whether or not the data was centered
by some estimated mean function (such as the sample mean), and finally whether the frequency A
is internal (i.e., A € (0,7)) or on the boundary, where A = 0, 7. In fact, the issue of mean centering
is only pertinent for the limit distribution when \ = 0.

Regarding the second point, we have developed new results for sample means and DFT statistics
for processes with long memory poles or zeroes in their spectrum, and our formulation of cyclical
memory can be connected with more familiar processes, such as Gegenbauer processes and seasonal
ARFIMA, etc. This is a growing topic in economic time series, to investigate models where each
frequency can have its own memory parameter associated; the limit distribution, as well as the rate
of convergence of the spectral estimator, depend upon this memory parameter. This treatment
represents a novel generalization of frequency zero results discussed in the application of HAC
estimation, as in McElroy and Politis (2011).

The third point has regard to the types of tapers that one is utilizing. Some popular tapers

have kinks (i.e., places of non-differentiability) or even jump discontinuities — the latter arises with
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the truncation taper. The flat-top tapers, including the trapezoid functions, are known to have
improved bias properties in the short memory case, but a point of concern is that they are not
positive definite. The trade-off is that the resulting spectral density estimates need not be positive,
precluding their estimation and viewing in log scale; ad hoc solutions, such as truncation at zero,
may of course be utilized. Our numerical results demonstrate that the improved size properties of
the flat-top tapers carries over to the long memory scenario as well in the case of spectral estimation,
the improvement over the Bartlett being more dramatic for small b. While results of this type for
long memory HAC estimation have also been shown, as in McElroy and Politis (2011), the case of
spectral density estimation is novel.

Higher-order accuracy for studentized statistics, such as in sample means normalized by HAC
estimates of variability, can generate an expansion about b = 0 in the limit distribution, using
the intuition that the small b case corresponds to a standard normal distribution. However, in
the case of spectral density estimation, the small b case essentially corresponds to point mass at
unity, because the limit theorem involves the ratio of estimator to estimand. We therefore have
developed some novel tools for the investigation of higher-order accuracy, proceeding via studying
the Laplace Transform of the cumulative distribution function of the limit random variable S(b).
Focusing on the short memory case, we demonstrate that the first term in the expansion is an
indicator function, which is the cumulative distribution function of the point mass, with location
that differs from unity by a term of order b. Higher order terms can be understood through a
convenient basis of functions, with coefficients that explicitly depend on the cumulants of S(b).
Then one can explicitly see that taking b > 0 essentially provides a more nuanced description than
is possible with a classical description.

Spectral distribution estimation also has an extensive history, and tapering is not necessary
to produce consistent estimation. However, if a practitioner utilizes a taper-based estimate of the
spectral density, and then also wishes to examine the spectral distribution, the latter should be
estimated in such a way that its derivative equals the density estimate. With this motivation, we
analyze taper-based estimates of the spectral distribution function, and obtain, unsurprisingly, the
same theorems as the classical case explored by Dahlhaus (1985). We then develop a technique for
constructing spectral bands, and discuss how the limiting covariance kernel — associated with the
functional limit theorem — can be estimated. We are not aware of literature treating the formation
of bands, apart from the simple case of white noise; we discuss the empirical coverage, and the
impact of taper and bandwidth in finite sample performance.

In order to compute the distribution of the limit S(b), we propose an exact method involving the
Laplace Transform of a Gaussian quadratic form, so long as the eigenvalues corresponding to a taper
can be calculated. We also provide the quantiles for several tapers by simulations, and illustrate
spectral density estimation with intervals constructed via cyclical long memory estimation, as well

as a re-coloring approach to spectral estimation for nonstationary time series. Finally, we show the
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construction of spectral distribution estimates and their confidence bands on a retail series.
Although this paper attempts to study several questions, many more are raised in the process.
What is the statistical behavior, from a fixed-b perspective, when frequencies are becoming asymp-
totically closer to one another? Can a higher-order expansion be developed when there is long
memory or negative memory present? What is a sensible criterion for optimal bandwidth selection,
that takes into account the smoothness across multiple frequencies? (Thus, optimality should be
discussed in different terms from the HAC literature, which only has a single frequency to consider.)

Some of these queries we plan to study in future research.

Appendix

A.1 Regressions and Bridges

For more background on this topic, see Phillips (1998). Suppose that our process {Y;} satisfies
Y: = Xy + e with {X;} mean zero and stationary, but p; is deterministic, and is fully described via
a collection of p regressors expressed in a column vector xy, whose components are written as xi for
1 < j < p. Supposing a sample of size N is available, it is convenient to write in terms of column
vectors: Y = [Y1,Ys, -+, Yy|, and similarly for X and y, so that Y = X + p = X 4+ X3, where the
regression design matrix X is N X p, the column vector S contains p regression parameters, and

the tjth entry of X is :ci . Then the ordinary least squares estimate of y is

= X[X'X]"'X'Y = p+ X[X'X]'X'X.

In order to find a convenient asymptotic representation of Y — ji, and the partial sums thereof, we
assume that there exist a collection of rates agv for 1 < 7 < p such that xi = agv 27(k/N), where
the functions 2/ € C[0,1]. For example, the regressor mfc = k7, which is used to express the mean
as a polynomial in time, satisfies this condition with the choice a{v = NJ. However, the regressor

xi = cos(2mjk) does not satisfy this condition, so care is needed in applying these results.

Collecting the rates into a diagonal matrix Ay = diaglal,, a%, -, ak], we write x, = Ay x(k/N).
Then
N N
X'X =Ay Y a(k/n)a'(k/N)Ay XX =Ayx > a(k/N)Xy,
k=1 k=1

which provides a simplification in the formula for 1. Now suppose we are interested in the limit
behavior of Zl[f:]\l]] (Y2 — Fit) gt, which looks like S, vj(g) in Section 3.1, except that we have centered
by an estimate of the mean. Here r € (0, 1]. Then linear algebra yields

[rN] [rN] [»N] -1 N
Z( — H)g = Ztht thiﬂ (t/N) !Z (k/N) fl(k/N)] ZCC k/N)X
t=1 k=1 k=1
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Now from Section 3.1, the functions of interest are g; given by cosines or sines at various frequencies.
But by Remark 1, mean centerings are irrelevant except when gy = cos(6t) and 6 = 0, i.e., gt = 1.

In this case, and utilizing the convergence of Riemann sums to the Riemann integral, we obtain

[rN] [rN] r 1 -1 N
V' P S- i) = o) + VP Y X —/0 o/ (t) dt UO z(t) x’(t)} V'S a(t/N) X,
t=1 t=1 t=1

where Vi is the variance of th\il Xi. Therefore, given a FCLT such as Theorem 1 for the partial
sums, such that VJGI/Q ZLL\Q] X ~.B (either in the Donsker space, or in C10, 1] by replacing the

estimates with linearly interpolated versions), then we obtain

[rNN]

000 = B =B - [ awar | [ ewso]

t=1

-1

/ 2 (0B,
0

The process on the right hand, denoted by E, is called a Brownian Bridge when B is a Brownian
Motion (or a Fractional Brownian Bridge when B is Fractional Brownian Motion). The nomen-
clature is extended from the z(t) = 1 case, wherein B(1) = 0 — sometimes such a process is called

“pinned” Brownian Motion. Another example, discussed in HV, has 2/(t) = [1, ¢], results in

B(r) = B(r) — (4r — 3r2) B(1) + (6r — 612) /1 LAB(D),
0

and B (1) = 0. More generally, a Bridge process satisfies

dB(r) = dB(r) — 2/(r) { /0 L) x'(t)} B /O (0B,

which implies that fol 2/ (r)dB(r) = 0; the property that B(1) = 0 when z(t) = 1 is just a special
case now of the more general expression fol 2/ (r)dB(r) = 0.

The results of this paper can be extended to the more general class of Bridge processes under
the assumption that the mean functions are adequately described by fixed regressors and that the
scaling assumption is valid, and furthermore that we use ordinary least squares to provide a mean
estimate. This only has ramifications at frequency zero — all other DFT and spectral results involve
the FBM and not the generalized FBB. In practice, spectral analysis on a time series proceeds
only after certain transformations (Box-Cox transforms and/or differencing) have been applied to
the data to remove non-stationarity. Residual mean effects are likely to involve a constant mean
function, or at worst a linear function of time, plus other types of fixed effects corresponding to
interventions (e.g., additive outliers, level shifts, calendrical effects, and so forth). These latter

types of regressors are dummies of various types whose asymptotic impact are hopefully negligible.
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A.2 Proofs

Proof of Proposition 1. 'We provide the proof for the § > 0 first. Observe that Z‘h|<n Y cos(wh) =
Z| hi<n Th e~ by symmetry, and hence

n n—1

. 1 7" .

—iwh __ i(A—w)h _ plo « -1 —1
> e = /_ﬂE:e A — 8] A+ 0] g(\) LA — 67 L(Ix + 6]  dA
h=1 h=1

1 T ei()\—w)n_l

=5 | o @O IO A 61" g (N LA — 617 LA+ 6] ) dA
21 (—r—w)n etz/n _ 1 € w r/n||w r/np glwrx/n

L(lw—0+z/n| Y L(|w+ 0 +x/n| ) d.

If w = £6, this quantity is asymptotic to

n_O‘L(n)g(O)|29|O‘L(|29|_1)217T/00 <€ix,_1> 2| dx.

oo (3

If w # 0 the partial sum is asymptotic to

|w . 9’04 ‘w +0‘ag(w) L(|w N 9’_1)L(‘w+9|_1) 1/00 <el$‘_ 1> dzx.

2 J_ i

The limiting behavior of Z| hj<n Th e~ is obtained by summing with the complex conjugate of

the above derivations, and adding vg. Thus

n= L(n) g(0) 20| L(|260] 1) & [ 2920 1412 gy ifw = +6

Z ~p, cos(wh) ~ o ‘
e w = 0" o+ 07 g(w) L(lw — 017 Ll + 0] & X258 dy i # 46

oo
as n — co. By 3.761.4 of Gradshteyn and Rhyzik (1994), [;° sin(z) 2! dz = wsec(mra/2)/(20(1—

«)), which happens to equal /2 when « = 0; hence the short memory spectral density is the limit,

as expected. But for nonzero «, the sum at w = +6 is asymptotic to n=*L(n)g(0)|20|*L(|20] ") sec(ma/2) /T (1—
«), which agrees with (2), where fy = —« and Ly is defined as the slowly-varying L times the con-

stant |20|“L(|20]" ") sec(rar/2) /T (1 — ).

Finally, in the case of § = 0 similar calculations yield

n~* L(n) g(w) sec(ma/2)/T(1 — o) ifw=0
Z Y, cos(wh) ~ )
|h|<n w*g(w) L(lw|™")  else,

which shows that the process is C(—a,0), as desired. O

Lemma 1 Let cs(x) denote either cosz or sinz. If 0;,0; € [0, 7] with i # j, then

> Ar—ees(05k) es(0:0) V, 2 (0,) Vi 2 (0;) — 0
k=1

as n — o0.
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Proof of Lemma 1. First consider the case that c¢s = cos. By trigonometry

n—|h|

Z Yk—e cos(0;k) cos(0;L) Z ~p, cos(6;h) Z cos(f;m) cos(f;m)
k=1 |h|<n m=1
n—|h|

- Z Y, sin(0;h) sin(6;m) sin(6;m).
Ihl<n m=1

Noting the following generic trigonometric identities
cos(wk) cos(A\k) = % (cos(w + M)k + cos(w — A)k)
sin(wk) sin(Ak) = % (cos(w — A\)k — cos(w + A\)k)
cos(wk) sin(\k) = % (sin(w + A\)k — sin(w — A\)k) ,

the above expansion can be rewritten as

n—|h|
Z Yk—e cos(0;k) cos(6;L) Z Y, cos(6;h) Z (cos([0; + 05lm) + cos([0; — 6;lm)) (A.1)
k=1 \h\<n m=1
n—|h|
- é Z Yn sin(0;h) Z (sin([0; + 05]m) — sin([0; — 0;]m)) .
|h|<n m=1

Next, apply Remark 1 so that — because 0; # 6; — the summations over m above are bounded in n;
replacing these summations with one is then valid asymptotically in the statement of the lemma,

since Vj, /Q(Gi) 711/2(9j) — 00. Now }_ 1, Y sin(fih) = 0 by symmetry, and hence by (2)

Z Ve cos(Bik) cos(8;0)V, 1/2(0;) Vi 2 (6;)
k=1

1 _ _ _

which tends to zero because 8y, — Bp; < 2. Now for the case that c¢s = sin, we have

n—|h]
Z Yi—e¢ sin(0;k) sin(6;£) Z ~p, sin(6;h) Z cos(6;m) sin(6;m)
k=1 [h|<n m=1
n—|h|
+ Z ~p, cos(6;h) sin(g;m) sin(6;m).
|n|<n m=1
Applying the identities produces
n—|h|
Z Vi—e sin(0;k) sin(6;¢) Z Y, sin(6;h) Z (sin([0; + 6;]m) — sin([¢; — 0;]m))
k=1 |h\<n m=1
1 n—|h]|
—5 Z Y, cos(0;h) (cos([0; + 6]lm) — cos([6; — 6;]m)) .
[hl<n m=1
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Since the angles are distinct, Remark 1 shows that the inner summations can be asymptotically
ignored, and the rest of the argument follows the cosine case. Finally, suppose that the first cs = cos

and the second c¢s = sin. Then

n—|h|
nyk ¢ cos(0;k) sin(6;¢) Z’yhcosﬁh Zcos@m sin(6;m)
k=1 |h|<n m=1
n—|h|
- Z ~p, sin(6;h) sin(6;m) sin(6;m).
|h|<n m=1
Applying the identities produces
n—|h|
Z Y cos(6;k) sin(6,¢) Z v cos(B:h) > (sin([6; + 6;]m) — sin([6; — 6;]m))
ki f=1 |h\<n m=1
1 n—|h|
+3 |hz<: Yh sin(0;h) Z:l (cos([0; + 05]m) — cos([0; — 6;]m)),

and the same arguments handle this case as well. Also, even if §; = 6;, the normalized sum will
still tend to zero, because the non-negligible inner sum in this case accompanies a sine summation,

which by symmetry will be zero. This completes the proof. O

Proof of Theorem 1. The proof follows the techniques used to prove Theorem 3 in McElroy and
Politis (2011) for frequency zero, but extended to a multivariate framework. Because the DFTs are
mean-centered, we can let 4 = 0 in the following analysis without loss of generality. The assertions
follow by proving tightness and convergence of finite-dimensional distributions. Firstly, &,(g) and
Sy (g) are equivalent stochastic processes, for g = ¢(6;) or g = s(6;), which follows from (6) — the
argument is the same as the one provided in Theorem 3 of McElroy and Politis (2011). Now we
proceed to demonstrate convergence of finite-dimensional distributions for S, (g), in each of the
three cases of P1, P2, and P3 in turn.
First, define S,, to be a length 2J vector with components

Vi 72(65) Su(c(6)), Viy /2 (8;) Sa(s(6)))

for j = 1,2,---,J. Because of mean-centering and the equivalency to the linearly interpolated
version, it suffices to study the finite-dimensional distributions of S,,. Consider m times r; < ro <
- < 1y € [0,1], and set 19 = 0. Take any real numbers vy, v, -+ , Uy, and any collection of real
numbers 71,12, - - - ,M2.7, Written as a 2J component column vector 7. The convergence of the finite-
dimensional distributions of the vector-valued stochastic process is determined by the convergence

of ' Y 4L vkSp, Ny Letting the sequence 7;(6) be denoted by

J
Z n;j cos(0t) + nj4gsin(6;t)) V_l/Q(GJ),
7=1
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we have 7' Sy, Ny = Sp,n1(1(0)), in the notation of Section 3.1. Then Y7 1S}, nj(1n(0)) is
asymptotically standard normal — when normalized by the square root of its variance — under the
P1 assumption, using the argument of Theorem 5.2.3 in Taniguchi and Kakizawa (2000). In this
case, it then suffices to show that the variance of Y ;" | 1Sy, N1(1(#)) has as limit the variance of
Y orey Vk Z‘j]:l(anJ“gj (%) +mj+sW_6,(r%)). Similarly, the cases of P2 or P3 can be handled as in
the proof of Theorem 3 of McElroy and Politis (2011); when P2 holds, we need the unit Hermite
rank assumption to ensure that the limit variables are Gaussian.

So we now study the variance of the partial sum, obtaining the expansion

[rky N [r1y N m
Z Vi1 Vg Z Z Vi1 — thh 77t2 (0) = Z Vlzl A[rklN]+ Z Vi1 Vko (A[T‘klN] + A[TkQN} - A[(Tk2—rk1)N]) )
k1,ka=1 t1=1 to=1 k1=1 k1<kso
where A, = 371 1 Y1571 (0)11,(0). The above identity generalizes (A.5) of McElroy and Politis
(2011), and
J

Do > At [y cos(95,t1) mj, cos(Bjt) + mjy cos(0),t1) g sin(0,t2)
J1,j2=1t1,ta=1
+ 15,47 8in(0;, t1) 15, cos(0j,t2) + 05,47 sin(0;, 1) Njy+7 sin(fj,t2)] V];l/z(ﬁjl) V];l/z(ﬁh).
Now by Lemma 1 the only non-negligible terms asymptotically (here n — oo as N — oo, in any
case being some fixed proportion of N) occur when j; = jo (and note that mixed terms involving

cosine and sine are always negligible). Thus the above variance simplifies asymptotically to

Z Z Vey—to COS(9 it1) cos(b,t2) + 77J+J sin(6;t1) sin(6;t2)) Vi)
j=1t1,to=1

Utilizing (A.1) from the proof of Lemma 1, but applied to the case where the two angles are not

distinct, the above quantity is shown to be asymptotic to

1+19_0ﬂ.
%Z[mwm{e sor| D mcos(B;m)(n — k) Vi (60))

|h|<n
L 59-+
aj(n) n

J
2 2
~ 202 1, } A —
Z {77] Nj+J 1{6;#0,7} Lej(N) NP,

7j=1
because the double sine term is identically zero if 6; is 0 or 7 (but the cosine term gets doubled in

this case). This calculation uses

2
Z Yh COS 9 h n — |h| Z Yt1—to COS (tl — tQ)) m Vn(ej)
|h|<n t1,t2=1

from (5). As a result, the variance of Y )" | 1S, n1(1(0)) is asymptotic to

J m
9 9 B +1 Bo;+1 Bo;+1 Bo.+1
Z {77]' + M5y l{ej;éo,n}} Z Vk1 T, Z L e o — (Thy — Tk )"
j=1 k1=1 k1<k2

(A.2)

40



Now the variance of Y ;" | v B(ry,), where B is a FBM of parameter fy,, is equal to the expression
in parentheses in (A.2). Because the processes W, p. and W_ 4. are independent, (A.2) is equal
to the variance of >} | vy, ijl(an+’9j (7%) +nj+sW_ g, (1%)). This completes the proof that the
finite dimensional distributions converge.

To prove tightness, let v = (k +0)/2; we will apply Theorem 2 of Gihman and Skorohod (1980,

p. 410) with the metric p(z,y) = \/ZJQL |z; — y;/*7 so that we can focus on each component of S,
one at a time. However, working in the space C[0,1] we instead consider the component interpo-
lated processes. The calculation is then the same as that in the proof of Theorem 3 of McElroy and
Politis (2011), only now the partial sums involve cosine or sine terms, and we utilize the conditions

E[|Sn(c(0;)) — ea(0;)"7°) = O(Vi™*2(0;)) and E[|S,(5(6;)) — 5n(0;)"'] = O(V*%(8)) in-
stead. This completes the proof. O

Proof of Theorem 2. The assumptions of the Theorem allow us to apply the results of Theorem
1. We begin by analyzing f(@) — where 6 represents a collection of J frequencies 0; € [0, 7] —
proceeding as in the proof of Theorem 1 of HV, though we allow for flat-top tapers. Let Aj be the
taper defined via Ay(h/N) = A(h/bN); then

N-1

F(0) = Ap(0)F0 +2 D Ap(h/N YA, cos[Oh]
N h=1 N B
=N A k)/N)Y;Y cos[0i] cos[0k] + N1 >~ Ay((i — k)/N)Y;Y}, sin[0i] sin[0k],
i,k=1 ik=1

where Y; = Y; — Y. Then with S(c(d)) = Sy Yy cos[0f] and S (s(6)) = Sy Y sin[0/], we obtain
using summation by parts

N 1

V) = 28v1e0) 50 (8T - M ) + M0 o)
ZZ o) (20055 = M= )

T 28(s J:_: (s ( (N];’“)Ab(N_N]H)>+Ab(o)§?V(s(9>)
Nkz is0) (2055 = M= ).

Next, define approximate first and second derivatives of the taper via

OINAp(r) = N (Ap(([rN] + 1)/N) = Ap([rN]/N))
IR A(r) = N? (Ay(([rN] +1)/N) = 28([rN]/N) + Ap(([rN] = 1)/N)),
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for any r € [0,1]. This allows the following integral representation:
N 7(6) = 28w(c / Sy (€(0))On Ay(1 — 1) dr + 8(0) S (c(6)
/ / Sy (c(0) 03 Aol — 5)Spon (c(0)) dr dis
T 28 (s / S ((6)On Ao (1 — 1) dr + A4(0) S3(5(0))

//S[TN] ) 0% Ay (r — ) S5 (5(6)) dr ds.

Now Theorem 1 provides convergence results for the DFTs, once suitably normalized by Vi (6;)
for each 6;; these results can be extended at once to §[TN] (c(f)) and §[TN](3(9)), with limiting
Fractional Brownian Bridges Eiﬂ(r), as defined in Section 3.2. We also need to determine the
limit of the approximate derivatives of the taper. For values of r such that Ay is twice continuously
differentiable, i.e., for |r| € (c, 1), we have 83 Ay(r) — Ap(r) = b~2A(r/b) and OxAy(r) — Ay(r) =
b='A(r/b). These results also holds for |r| € [0,c), but here the limit of either derivatives is
identically zero, because of the flat-top structure. In considering the limit of the quadratic term,
we restrict to the region be < |r — s| < b in the double integral, but also must account for the

boundary terms where |r — s| = bc and |r — s| = b, which result in terms asymptotic to

N—[bN] N—[beN]

2b~! Z A- c(0))Spypn(c(8))  —2b7} Z AT (e)Se((6)) St e (<(6))

respectively, for the cosine terms, and similarly for sines. Now dividing f ( ;) by Vv (6;), we obtain
a joint convergence for 1 < j < J, and apply the functional limit theorem to each partial sum in
turn, and obtain the stated limit distribution. In the case that a jump discontinuity exists at c, we
instead obtain that the terms in the expansion of N f(@) involving a double summation cancel out

— for indices to either side of ¢ — while

N —k N—k—1
CA (-
N ) = A N )

Ap( ~ A (c) = A (c)

when k = N — [bcN] — 1. This provides the stated limit in the case of a jump discontinuity. O

Proof of Theorem 3. First note that the functions (A;,G € C[0, 7], which follows from the
assumptions on f and the Riemann integral. We first establish convergence of finite-dimensional

distributions. For any 6 € [0, 7], we have the decomposition

G(0)~Go) = 5 /_ " IO) [ows(3) — go(N)] dA
* % ) (I()‘) — f(N) go(A) dA.
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When 6 = 0, both @(9) and G(0) are zero, so the result is trivial; hence assume # > 0. Using a

Taylor series expansion of A about zero, the first term above is decomposed into

L1003 (AN - A(0)] Sl;[ﬁ] ¢iMh g — % / T Y SI;[TZL] My (A3)

prs
- |h|<N o |h|>N

The spectral density >, (A(h/bN) — A(0))sin(0h)/(2mh)e* exists for all A, since the real part of
sin(6h)e* equals one half of sin((A + 6)h) — sin((A — 6)h), and the taper is bounded (note that
sin((A+0)h)/h is an alternating sequence). Thus supy | 32, <n (A(R/BN) — A(0)) sin(0h)/(2mh)e?M| <
oo for all N, and supy |}, n sin(6h)/(2nh)eM| < oo for all N as well. Then by the Holder in-
equality, and the fact that (271)71 ffﬂ I(\)d\ = 7p is bounded in probability, both summands in
(A.3) are bounded in probability.

For the second summand, we apply the Dominated Convergence Theorem to take the limit as
N — oo inside the integral, and obtain zero. So long as 6 > 0, \/NZIhIZN sin[fh]/h tends to
zero using L’hopital’s rule and the alternating series test. Thus, the second summand of (A.3) is
op(1/v/N). For the first summand, we observe that there exists some 2, € [0,h/bN] for each b
and h such that A(h/bN) — A(0) = A(z;,)h/bN, so that the first summand is Op(N~') (the sum
>_jnj<n Sin(0h) is bounded). This establishes that for each 6 > 0

VN (@0~ CO) = op() + VN o [ (1)~ ) 900 A > 2(0),

where the weak convergence follows from Lemma 3.1.1 of Taniguchi and Kakizawa (2000). Note
that this lemma is proved under either condition P3 or P1, but separate results in Taniguchi and
Kakizawa (2000) treat the P2 case in detail as well. The central limit theorem can also be stated
jointly over any finite collection of  frequencies.

To prove tightness, let w > 0 and consider the criterion of Problem 4.11 of Karatzas and Shreve

(1991), which is appropriate for C[0, 7]. Letting v = (1 + 6/2) for some 6 > 0,

2y

1/2 pm
N / (TN = FOV) (9(2) — go(N)) dA

If the exponent 2v is an integer, we can compute the moment in terms of the cumulants of the
process, along the lines shown in Dahlhaus (1983, 1985). In each case of P1, P2, or P3, the
fourth moments of /N /(2n) ST (I(X) = f(X))A(X) dX converge to the fourth moments of a normal

random variable of variance 7=1 [ f2(X\)A?()\) d), for any continuous function A. Therefore, for

all N sufficiently large, there exists a constant C' > 0 such that we obtain a bound (with 6 = 2) of

Co [ rovax o [T la st ar

27 27 J_,
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using the Cauchy-Schwarz inequality. By definition of the function g, there exists a constant C’ > 0
such that |g,(A\) — gog(N)| < A(0)C’|w — 6| for all A € [—m, 7r|. So we obtain an overall bound that

is of order |w — 0|*, which is sufficient to establish tightness. This concludes the proof. O

Proof of Theorem 4. For k > 1 define {;(z) = Z§:1 (—1) KJJ 27 (1 —z)™7 for z € [0,1), so that

from (15) we have

_ s s
Gk(S) =S 1 <eXp{€k(3—|—1)}_exp{€k+1(5—{—1)}> .
Letting Sk (x) = exp £x(x), we proceed to the MacLaurin series expansion, which yields

(n)

n>0

and hence

Gk<s>=sl(5k<s ) - m(sﬂ)_slz[ﬁk (©) ﬁkj;!( >] (14 )"

n>0
Noting that £;(0) = 0 for each k, we have [;(0) = 1 for each k, and hence the n = 0 coefficient in

the expansion for G} (s) is zero. Removing this term, changing the index, and canceling s~ yields

(n+1) (n+1)
0) B (0)
Grls) = ;) (]2 + 1) (l;t 1)!

Sn(l + S)—(n-&-l).

Hence the coefficients stated in Theorem 4 are
k +1) +1)
aply = 80 - 8110 (0).
By (16), the representation of Gy, in terms of sums of Laplace Transforms of the ¢, immediately
follows. Calculation of the B,in) (0) coefficients proceeds as follows. Let £oo(z) = > 272, (—1) 'ZJ (1 —x)7,

and note that ¢, is obtained from /¢, where all the cumulants x; = 0 in the latter when j > k.

Then with S () = exp oo (x) and calculation of derivatives, we obtain

= (0] +£2(0)

B (0) = 1O +260(0) €2(0) + ¢2 0.
Additional calculations show that E(og)(O) =3 (= 1)7 K % and therefore
8L (0) =1
B0) = =1
BE(0) = ki — 261 + ra
ﬁg)(O) —K3 4 4K3 — 6K — 2K1Ko + 6k — K3
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Higher order coefficients, in terms of cumulants, are calculated in a similar fashion. We obtain
,gn)(O) from ng)(O) by setting all k; to zero for j > k; this produces the following sequences, for
n=0,1,2,---:

1
afl_il =0, —Ka, 2K1ko — bBKo - - -

04512_;,)_1 _ 07 07 K3, -

It is hard to deduce a general pattern for the coefficients in terms of cumulants, but any particular

sequence can be calculated in this manner. O

Proof of Corollary 1. It follows from the proof of Theorem 4 that the coefficients agil for fixed

k involve no cumulants x; with 7 > k + 1, and each coefficient is a product of k11 times other
cumulants. This is because any terms in B&Hl)(O) that feature only x; for j < k will be common to
both ﬁ,(fnﬂ)(()) and ﬁ,(cTil)(O), and hence cancel out in the formula for agﬁl (for any n > 0). Also,

no terms that only involve x; with j > k+ 1 exist, all these quantities being set to zero; thus, only

(k)

terms that involve kj,11 contribute to the «,,; sequences. Next, because |r;| < C;27(j — 1)!67~ for
constants C; — by results in Sun, Phillips, and Jin (2008) — each x; = O(¥~1); thus afﬁzl = O(bh)
foralln>0. O
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Quantile Coefficients, = —.8, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett Co cl Co c3 cy4 cs
.01 3.925 | -21.326 | 73.731 | -135.927 | 120.806 | -40.901 | .9971
.025 3.939 | -21.056 | 72.959 | -134.518 | 119.513 | -40.440 | .9969
.05 3.953 | -20.844 | 72.462 | -133.686 | 118.794 | -40.196 | .9968
3.969 | -20.585 | 71.857 | -132.606 | 117.792 | -39.837 | .9967
9 4.076 | -18.412 | 67.998 | -126.894 | 113.213 | -38.373 | .9933
.95 4.088 | -18.029 | 67.300 | -125.916 | 112.446 | -38.132 | .9923
975 4.100 | -17.671 | 66.451 | -124.326 | 110.856 | -37.523 | .9912
.99 4.112 | -17.235 | 65.516 | -122.791 | 109.372 | -36.940 | .9896
Trap, c = .25 co c1 co c3 C4 cs
.01 2.642 | -31.293 | 113.774 | -241.905 | 241.037 | -88.261 | 9902
.025 2.586 | -25.809 | 86.255 | -160.082 | 145.599 | -50.587 | .9977
.05 2.629 | -23.938 | 81.421 | -148.918 | 132.659 | -45.216 | .9971
1 2.688 | -22.36 77.98 -143.01 | 126.90 -43.00 | .9963
9 3.082 | -15.356 | 60.601 | -115.658 | 104.338 | -35.615 | .9850
.95 3.128 | -14.55 58.14 -111.21 | 100.26 -34.17 | 9812
975 3.169 | -13.904 | 56.343 | -108.508 | 98.285 | -33.617 | .9777
.99 3.212 | -13.091 | 53.598 | -103.389 | 93.562 | -31.937 | .9721
Trap, c = .5 co c1 Co cs C4 cs
01%* 4.207 | -63.498 | 289.480 | -590.062 | 552.443 | -193.133 | 871.0
.025%* 5.42 | -72.07 | 325.08 | -660.15 | 616.15 | -214.80 | 890.7
.05 2.151 | -25.884 | 67.779 | -111.521 | 100.605 | -35.747 | .9905
1 2.320 | -24.156 | 82.225 | -145.805 | 125.848 | -41.659 | .9958
9 2.954 | -14.405 | 57.345 | -109.786 | 99.232 | -33.934 | .9817
.95 3.021 | -13.649 | 55.080 | -105.862 | 95.809 | -32.772 | .9779
975 3.072 | -13.003 | 53.278 | -103.076 | 93.612 | -32.076 | .9723
.99 3.136 | -12.365 | 51.514 | -100.288 | 91.326 | -31.325 | .9670

Table 1: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when § = —.8. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, 5 = —.6, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett Co cl Co c3 c4 cs
.01 3.062 | -17.851 | 60.467 | -110.818 | 98.334 | -33.290 | .9976
.025 3.081 | -17.356 | 58.920 | -107.894 | 95.534 | -32.250 | .9975
.05 3.098 | -16.93 57.60 -105.36 93.14 -31.40 | .9974
3.120 | -16.519 | 56.830 | -104.616 | 92.962 | -31.479 | .9972
9 3.261 | -13.072 | 48.301 | -89.932 | 80.006 | -27.035 | .9927
.95 3.283 | -12.613 | 47.340 | -88.538 | 78.907 | -26.681 | .9915
975 3.299 | -12.141 | 45.998 | -86.119 | 76.735 | -25.931 | .9898
.99 3.322 | -11.702 | 45.171 | -85.195 | 76.223 | -25.819 | .9874
Trap, c = .25 co c1 co c3 C4 cs
01%* 8.178 | -92.287 | 399.027 | -796.455 | 736.579 | -255.353 | .9428
.025 2411 | -21.517 | 68.682 | -128.086 | 117.015 | -40.688 | .9986
.05 2.439 | -20.049 | 65.062 | -118.305 | 105.027 | -35.585 | .9985
1 2477 | -18.575 | 61.727 | -111.780 | 98.418 | -33.108 | .9979
.9 2.774 | -11.501 | 44.338 | -84.105 | 75.886 | -25.971 | .9885
.95 2.814 | -10.696 | 41.901 | -79.773 | 72.046 | -24.649 | .9850
975 2.851 | -10.060 | 39.847 | -75.814 | 68.286 | -23.288 | .9818
.99 2.896 | -9.442 | 38.322 | -73.686 | 66.822 | -22.903 | .9757
Trap, c = .5 co c1 Co cs C4 cs
01%* 5.621 | -73.591 | 320.059 | -638.961 | 591.694 | -205.455 | .9331
.025%* 6.386 | -77.276 | 335.543 | -670.034 | 619.989 | -215.021 | .9361
.05 2.498 | -31.39 | 127.18 | -289.06 | 282.03 -94.42 | 9757
1 2.258 | -20.38 64.94 -115.42 | 100.96 -33.72 | .9979
9 2.478 | -10.680 | 41.379 | -78.231 | 70.194 | -23.878 | .9858
.95 2.718 | -9.824 | 38.724 | -73.556 | 66.138 | -22.514 | .9814
975 2.764 | -9.180 | 36.779 | -70.169 | 63.216 | -21.531 | .9766
.99 2.818 | -8.539 | 35.232 | -68.163 | 61.920 | -21.178 | .9673

Table 2: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when § = —.6. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = —.4, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett Co cl co c3 c4 cs
.01 2.195 | -13.891 | 44.874 | -80.702 | 70.918 | -23.875 | .9983
.025 2.227 | -13.309 | 43.509 | -78.877 | 69.703 | -23.564 | .9982
.05 2.248 | -12.78 42.12 -76.54 67.63 -22.83 | .9981
2.273 | -12.186 | 40.689 | -74.400 | 66.005 | -22.348 | .9979
9 2.444 | -7.923 | 29.925 | -56.164 | 50.211 | -17.036 | .9907
.95 2468 | -7.317 | 28.242 | -53.197 | 47.583 | -16.129 | .9863
975 249 | -6.859 | 27.195 | -51.687 | 46.469 | -15.804 | .9805
.99 2,515 | -6.292 | 25.663 | -49.023 | 44.096 | -14.981 | .9699
Trap, c = .25 co c1 co c3 C4 cs
.01 1.939 | -20.804 | 74.416 | -163.437 | 167.128 | -63.116 | .9987
.025 1.884 | -16.597 | 51.590 | -97.672 | 90.286 | -31.551 | .9990
.05 1.902 | -15.109 | 47.163 | -86.516 | 77.735 | -26.581 | .9988
1 1.937 | -13.733 | 43.552 | -78.595 | 69.381 | -23.394 | .9985
.9 2.209 | -6.879 | 26.741 | -50.578 | 45.354 | -15.400 | .9835
.95 2.246 | -6.105 | 24.665 | -47.282 | 42.750 | -14.605 | .9701
975 2.277 | -5.379 | 22.249 | -42.678 | 38.482 | -13.098 | .9504
.99 2317 | -4.657 | 19.835 | -37.814 | 33.712 | -11.332 | .9303
Trap, c = .5 co c1 Co cs C4 cs
01%* 4.191 | -47.563 | 194.456 | -377.449 | 344.495 | -118.554 | .9672
.025%* 4.576 | -47.948 | 195.442 | -378.647 | 344.554 | -118.205 | .9708
.05 1.757 | -17.033 | 47.796 | -89.740 | 77.738 | -23.175 | .9966
1 1.797 | -14.922 | 44.337 | -77.681 | 67.210 | -22.052 | .9986
9 2.146 | -6.421 | 25.528 | -48.757 | 43.941 | -14.965 | .9809
.95 2.194 | -5.610 | 23.342 | -45.273 | 41.149 | -14.087 | .9661
975 2.232 | -4.912 | 21.426 | -42.396 | 39.124 | -13.563 | .9457
.99 2.278 | -4.18 19.44 -39.56 37.39 -13.26 | .9444

Table 3: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when § = —.4. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = —.2, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett co cl ) c3 C4 cs
.01 1.354 | -9.884 29.677 | -52.459 46.045 -15.559 | .9990
.025 1.376 | -8.973 26.711 -46.804 40.709 -13.642 | .9989
.05 1.400 | -8.363 25.323 -44.884 39.335 -13.250 | .9989
1.429 | -7.665 23.710 -42.450 37.362 -12.599 | .9988
.9 1.620 | -2.732 11.271 -21.368 18.964 -6.351 | .9516
.95 1.648 | -2.114 9.801 -19.227 17.468 -5.974 | .9549
975 1.674 | -1.618 8.629 -17.380 15.924 -5.455 | .9864
.99 1.705 | -1.096 7.534 -15.874 14.824 -5.136 | .9939
Trap, c = .25 co c1 Co c3 cq cs
.01 1.188 | -12.86 36.15 -71.64 69.11 -25.12 | .9990
.025 1.211 | -11.046 | 29.991 -54.537 49.523 -17.132 | .9994
.05 1.240 | -9.880 27.181 -47.818 42.059 -14.193 | .9993
1 1.277 | -8.721 24.984 -44.108 38.709 -13.015 | .9991
.9 1.541 | -2.089 9.306 -17.981 16.043 -5.370 | .9260
.95 1.578 | -1.333 7.350 -14.828 13.445 -4.527 | .9845
975 1.609 | -0.6763 | 5.4889 | -11.6627 | 10.8054 | -3.6945 | .9941
.99 1.649 | -0.08316 | 4.50627 | -11.31414 | 11.56094 | -4.24999 | .9969
Trap, c = .5 co c1 co cs cq cs
01%* 2.603 | -24.593 | 92.104 | -171.742 | 153.541 | -52.143 | .9893
.025%* 2.793 | -23.966 | 89.293 | -165.855 | 147.493 | -49.838 | .9902
.05 1.177 | -11.615 | 29.507 | -52.851 45.001 -13.503 | .9984
1 1.210 | -9.835 26.803 -46.706 40.508 -13.259 | .9992
9 1.516 | -1.612 7.647 -14.984 13.426 -4.503 | .9352
.95 1.516 | -0.7678 | 5.2631 | -11.0329 | 10.2347 | -3.5205 | .9918
975 1.596 | -0.02990 | 3.06006 | -7.24397 | 7.10454 | -2.55121 | .9962
.99 1.639 | 0.7476 | 0.6370 -2.6167 2.6783 -0.9284 | .9975

Table 4: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when § = —.2. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, 8 = 0, frequency in (0, 7)
Tapers Regression Coeflicients R?
Bartlett co cl Co c3 cy cs
.01 01 | -5.651 | 13.777 | -23.268 | 20.662 | -7.181 | .9995
.025 531 | -4.752 | 11.314 | -18.979 | 16.739 | -5.773 | .9997
.05 bB7 | -4.005 | 9.502 | -16.176 | 14.384 | -4.963 | .9997
584 | -3.089 | 6.897 | -11.383 | 9.890 | -3.342 | .9997
.9 799 | 2.324 | -6.246 | 10.142 | -8.362 | 2.691 | .9991
.95 830 | 3.006 | -7.901 | 12.762 | -10.523 | 3.391 | .9992
975 .858 | 3.573 | -9.283 | 14.943 | -12.327 | 3.978 | .9989
.99 .890 | 4.174 | -10.504 | 16.202 | -12.664 | 3.839 | .9989
Trap, ¢ = .25 co c1 co c3 c4 cs
.01 A87 | -8.276 | 20.558 | -41.504 | 41.065 | -15.139 | .9990
.025 504 | -6.441 | 14.304 | -25.752 | 23.591 | -8.124 | .9996
.05 b3l | -5.276 | 11.448 | -19.695 | 17.434 | -5.845 | .9997
1 .b66 | -4.056 | 8.494 | -13.836 | 11.733 | -3.813 | .9997
.9 .820 | 2.814 | -8.028 | 13.565 | -11.556 | 3.827 | .9991
.95 .856 | 3.654 | -10.453 | 17.909 | -15.402 | 5.117 | .9992
975 887 | 4.363 | -12.611 | 21.960 | -19.169 | 6.442 | .9992
.99 924 | 5.041 | -14.054 | 23.647 | -20.077 | 6.604 | .9989
Trap, c=.5 co c1 Co c3 c4 cs
01* 1.457 | -10.379 | 33.038 | -57.152 | 49.356 | -16.422 | .9978
.025 498 | -7.964 | 11.557 | -5.622 | -25.707 | 23.727 | .9945
.05 505 | -6.184 | 11.027 | -18.512 | 15.402 | -4.248 | .9993
1 b4l | -4.662 | 8.540 | -13.743 | 12.038 | -3.961 | .9996
9 837 | 3.200 | -9.618 | 16.807 | -14.633 | 4.898 | .9991
.95 878 | 4.098 | -12.255 | 21.664 | -19.128 | 6.494 | .9993
975 916 | 4.789 | -14.117 | 24.842 | -21.934 | 7.457 | .9992
.99 962 | 5.447 | -15.288 | 25.571 | -21.579 | 7.060 | .9989

Table 5: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when § = 0. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = .2, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett co cl Co c3 N cs
.01 -.365 | -1.250 | -3.486 | 10.220 | -10.207 | 3.615 | .9990
.025 -.329 | -0.2544 | -6.0275 | 14.4028 | -13.8694 | 4.8792 | .9992
.05 -.298 | 0.5152 | -7.6727 | 16.7335 | -15.6985 | 5.4675 | .9986
-.266 | 1.495 | -10.180 | 20.949 | -19.387 | 6.726 | .9976
9 -.018 | 7.482 | -24.450 | 43.519 | -37.846 | 12.617 | .9979
.95 017 | 8.331 | -27.022 | 48.404 | -42.483 | 14.291 | .9982
975 049 | 9.012 | -28.984 | 51.971 | -45.793 | 15.472 | .9982
.99 086 | 9.730 | -30.644 | 53.961 | -46.736 | 15.530 | .9982
Trap, ¢ = .25 co c1 co c3 cq cs
.01 -.311 | -2.7689 | -1.5155 | 4.3348 | -2.8837 | 0.4463 | .9988
.025 -274 | -1.394 | -4.845 | 12.105 | -11.715 | 4.156 | .9994
.05 -.244 | -0.3328 | -6.8718 | 15.3602 | -14.3728 | 4.9828 | .9993
1 -.206 | 0.7969 | -8.8782 | 18.0957 | -16.2994 | 5.4925 | .9989
9 072 | 7.929 | -26.617 | 48.509 | -43.117 | 14.657 | .9977
.95 111 8.839 | -29.363 | 53.563 | -47.695 | 16.225 | .9979
975 149 | 9.498 | -30.924 | 55.638 | -48.945 | 16.457 | .9981
.99 .188 10.34 | -33.33 59.67 -52.30 17.50 | .9983
Trap, c=.5 co c1 co c3 cq cs
.01%* 7383 | -3.0036 | 5.0460 | -4.8908 | 2.6443 | -.5582 | .9995
.025 -.228 | -3.319 1.409 -4.037 2.146 1.186 | .9979
.05 -.209 | -1.561 | -3.847 8.560 -8.192 3.324 | .9995
1 =178 | 0.1437 | -8.2341 | 17.4929 | -16.1356 | 5.6532 | .9992
9 138 | 8.043 | -26.681 | 47.762 | -41.665 | 13.898 | .9975
.95 180 | 9.033 | -29.714 | 53.417 | -46.904 | 15.743 | .9980
975 219 | 9.808 | -31.773 | 56.527 | -49.191 | 16.365 | .9981
.99 264 | 10.740 | -34.921 | 62.788 | -55.277 | 18.577 | .9981

Table 6: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when 8 = .2. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = .4, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett co cl Co c3 N cs
.01 -1.246 | 2.833 | -18.697 | 38.521 | -35.125 | 11.875 | .9939
.025 -1.211 | 4.022 | -21.914 | 44.242 | -40.613 | 13.962 | .9917
.05 -1.172 | 4.80 -23.03 44.68 -40.05 13.54 | .9852
-1.134 | 5.903 | -26.077 | 50.376 | -45.492 | 15.526 | .9654
9 -.812 | 12.65 | -43.08 78.42 -69.29 23.38 | .9970
.95 -760 | 13.525 | -45.419 | 81.909 | -71.835 | 24.088 | .9972
975 =717 | 14.321 | -47.902 | 86.347 | -75.780 | 25.435 | .9975
.99 -.658 | 15.158 | -50.508 | 90.751 | -79.366 | 26.539 | .9974
Trap, ¢ = .25 co c1 co c3 cq cs
.01 -1.139 | 1.761 | -17.190 | 33.858 | -29.798 | 9.836 | .9977
.025 -1.097 | 3.131 | -20.684 | 41.763 | -38.593 | 13.456 | .9970
.05 -1.064 | 4.277 | -23.167 | 45.668 | -41.526 | 14.248 | .9953
1 -1.017 | 5.408 | -25.182 | 48.173 | -42.955 | 14.480 | .9878
9 -.671 | 12.962 | -44.647 | 81.754 | -72.477 | 24.493 | .9971
.95 -.618 | 13.946 | -47.687 | 87.300 | -77.530 | 26.261 | .9973
975 =570 | 14.714 | -49.948 | 91.191 | -80.923 | 27.413 | .9973
.99 -.513 | 15.706 | -53.368 | 97.510 | -86.547 | 29.297 | .9974
Trap, c=.5 co c1 Co c3 cq cs
.01 -1.126 | 2.630 | -37.034 | 109.420 | -153.012 | 74.773 | .9811
.025 -1.017 | 1.694 | -15.360 | 26.050 | -21.268 | 7.311 | .9980
.05 -986 | 3.265 | -20.222 | 37.883 | -32.934 | 11.098 | .9975
1 -.942 | 4.757 | -23.908 | 45.652 | -40.548 | 13.700 | .9944
9 -.565 | 12.932 | -44.146 | 80.066 | -70.468 | 23.679 | .9965
.95 -.509 | 14.015 | -47.643 | 86.584 | -76.502 | 25.816 | .9969
975 -452 | 14.77 | -49.70 89.74 -78.96 26.57 | .9969
.99 -.392 | 15.71 | -52.53 94.31 -82.55 27.64 | .9969

Table 7: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when 8 = .4. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, 5 = .6, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett co c1 c2 c3 cy4 cs
.01 -2.207 | 6.925 | -33.099 | 64.853 | -58.756 | 20.075 | .9755
.025 -2.157 | 8.136 | -36.368 | 70.725 | -64.102 | 21.916 | .9597
.05 -2.112 | 9.127 | -38.690 | 74.151 | -66.643 | 22.639 | .9572
-2.056 | 10.239 | -41.428 | 78.890 | -71.000 | 24.204 | .9750
9 -1.556 | 17.636 | -61.316 | 112.577 | -99.845 | 33.734 | .9964
.95 -1.462 | 18.50 | -64.02 | 117.11 | -103.52 | 34.87 | .9965
975 -1.374 | 19.147 | -66.127 | 120.948 | -106.951 | 36.042 | .9965
.99 -1.262 | 19.76 | -68.22 | 125.18 | -111.28 | 37.71 | .9964
Trap, ¢ = .25 co c1 co c3 cq cs
.01 -2.043 | 5.836 | -30.110 | 56.983 | -50.465 | 17.035 | .9927
.025 -2.000 | 7.385 | -34.277 | 65.043 | -57.908 | 19.591 | .9872
.05 -1.955 | 8.584 | -37.464 | 71.081 | -63.342 | 21.385 | .9721
1 -1.896 | 9.821 | -40.427 | 76.620 | -68.738 | 23.396 | .9636
9 -1.379 | 17.828 | -62.136 | 113.964 | -100.956 | 34.087 | .9964
.95 -1.282 | 18.80 | -65.62 | 120.86 | -107.55 | 36.46 | .9966
975 -1.186 | 19.349 | -66.978 | 122.477 | -108.300 | 36.503 | .9966
.99 -1.066 | 19.807 | -67.839 | 122.908 | -107.858 | 36.130 | .9962
Trap, c=.5 co c1 Co c3 cq cs
.01 -1.938 | 4.717 | -28.960 | 55.698 | -53.396 | 20.350 | .9939
.025 -1.895 | 6.521 | -33.192 | 63.375 | -57.262 | 19.925 | .9927
.05 -1.847 | 7.830 | -36.145 | 69.182 | -62.429 | 21.471 | .9853
1 -1.786 | 9.160 | -38.611 | 72.970 | -65.360 | 22.271 | .9620
9 -1.244 | 17.903 | -62.516 | 114.603 | -101.476 | 34.229 | .9962
.95 -1.139 | 18.809 | -65.465 | 119.848 | -106.046 | 35.755 | .9962
975 -1.049 | 19.641 | -68.683 | 126.333 | -112.249 | 37.981 | .9964
.99 -.941 | 20477 | -71.873 | 132.637 | -118.221 | 40.119 | .9964

Table 8: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when 8 = .6. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, 5 = .8, frequency in (0, )
Tapers Regression Coeflicients R?
Bartlett co cl Co c3 N cs
.01 -3.382 | 11.02 | -46.66 88.60 -78.82 26.53 | .9474
.025 -3.322 | 12.45 | -50.97 97.22 -87.56 29.90 | .9684
.05 -3.252 | 13.49 | -53.36 | 101.06 -90.83 30.98 | .9798
-3.162 | 14.74 | -56.64 | 106.85 -95.94 32.70 | .9876
9 -2.182 | 21.86 | -76.59 | 140.85 | -125.02 | 42.29 | .9958
.95 -2.011 | 22.421 | -78.505 | 144.108 | -127.602 | 43.049 | .9959
975 -1.869 | 22.904 | -80.458 | 148.043 | -131.315 | 44.362 | .9958
.99 -1.699 | 23.196 | -81.469 | 149.940 | -133.038 | 44.960 | .9957
Trap, ¢ = .25 co c1 co c3 cq cs
.01 -3.212 | 10.78 | -48.49 94.50 -86.90 30.35 | .9752
.025 -3.132 | 12.10 | -50.96 97.69 -88.61 30.50 | .9623
.05 -3.061 | 13.109 | -52.499 | 98.917 | -88.339 | 29.925 | .9712
1 -2.974 | 14.476 | -55.958 | 105.061 | -93.827 | 31.796 | .9855
9 -1.970 | 21.879 | -77.135 | 142.633 | -127.197 | 43.183 | .9960
.95 -1.792 | 22.40 | -79.02 | 146.31 | -130.71 | 44.46 | .9959
975 -1.644 | 22.763 | -80.064 | 147.745 | -131.534 | 44.595 | .9958
.99 -1.494 | 23.389 | -82.743 | 153.415 | -137.189 | 46.707 | .9957
Trap, c=.5 co c1 Co c3 cq cs
.01 -3.080 | 9.704 | -44.744 | 83.697 | -74.283 | 25.304 | .9876
.025 -3.008 | 11.345 | -48.457 | 90.478 | -79.570 | 26.539 | .9739
.05 -2.943 | 12.858 | -52.973 | 100.294 | -89.684 | 30.353 | .9711
1 -2.845 | 14.176 | -55.692 | 104.958 | -94.003 | 31.923 | .9812
9 -1.81 | 21.96 | -77.62 | 143.30 | -127.50 | 43.17 | .9957
.95 -1.630 | 22.547 | -79.937 | 148.020 | -132.064 | 44.834 | .9958
975 -1.484 | 22.956 | -81.266 | 150.117 | -133.559 | 45.207 | .9958
.99 -1.324 | 23.472 | -83.359 | 154.364 | -137.594 | 46.626 | .9955

Table 9: Regression coefficients for the quantiles of limiting spectral density distribution at fre-
quencies in (0,7), based on Bartlett and Trapezoidal tapers, when 8 = .8. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = —.8, frequency 0 or m
Tapers Regression Coefficients R?

Bartlett Co a Co c3 c4 cs
.01 3.186 | -21.928 | 75.118 | -137.728 | 121.931 | -41.162 | .9972
.025 3.210 | -21.649 | 74.397 | -136.808 | 121.432 | -41.082 | .9972
.05 3.230 | -21.377 | 73.696 | -135.771 | 120.661 | -40.855 | .9972
3.252 | -21.038 | 72.791 | -134.205 | 119.286 | -40.390 | .9970
9 3.402 | -17.931 | 66.487 | -124.061 | 110.635 | -37.492 | .9925
.95 3.421 | -17.378 | 65.407 | -122.410 | 109.164 | -36.955 | .9908
975 3.436 | -16.819 | 63.917 | -119.471 | 106.127 | -35.762 | .9891
.99 3.457 | -16.256 | 62.799 | -117.898 | 104.828 | -35.312 | .9864

Trap, ¢ = .25 Co c1 co c3 cq cs
01%* 3.127 | -42.936 | 194.945 | -397.055 | 371.082 | -129.440 | .8828
.025%* 3.803 | -48.895 | 220.169 | -447.359 | 417.620 | -145.574 | .8969
05% 4.369 | -53.513 | 239.068 | -484.544 | 451.843 | -157.423 | .9081
1 1.920 | -25.517 | 84.831 | -156.751 | 141.346 | -48.608 | .9980
.9 2.458 | -14.57 57.75 -110.49 99.82 -34.10 | .9831
.95 2.525 | -13.582 | 54.864 | -105.372 95.181 -32.469 | 9775
975 2.580 | -12.777 | 52.651 | -101.975 92.562 -31.679 | .9719
.99 2.638 | -11.78 49.49 -96.53 87.99 -30.21 | .9596

Trap, c=.5 Co c Co c3 cq cs
01%* .3634 | -18.3485 | 87.9686 | -181.7929 | 171.9358 | -60.6336 | .8464
.025%* 1.238 | -24.622 | 114.792 | -235.311 | 220.855 | -77.307 | .8467
.05% 2.044 | -30.945 | 141.897 | -289.630 | 270.928 | -94.551 | .8697
q* 2.951 | -37.760 | 169.814 | -344.337 | 320.842 | -111.668 | .8984
.9 2.361 | -13.671 | 54.387 | -104.108 94.172 -32.248 | .9804
.95 2.445 | -12.721 | 51.824 | -100.071 90.895 -31.191 | .9725
975 2.523 | -12.103 | 50.701 -99.367 91.100 -31.447 | 9651
.99 2.596 | -11.164 | 47.828 -94.697 87.424 -30.336 | .9519

Table 10: Regression coeflicients for the quantiles of limiting spectral density distribution at fre-
quency 0 or 7, based on Bartlett and Trapezoidal tapers, when 3 = —.8. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = —.6, frequency 0 or w
Tapers Regression Coefficients R?

Bartlett Co cal Co c3 cy4 cs
.01 2.308 | -18.98 63.31 -114.94 | 101.40 -34.20 | 9977
.025 2.340 | -18.429 | 61.702 | -112.439 | 99.493 | -33.637 | .9978
.05 2.365 | -17.906 | 60.220 | -110.126 | 97.714 | -33.112 | .9977
2.397 | -17.355 | 58.915 | -108.239 | 96.226 | -32.616 | .9976
9 2.594 | -12.429 | 46.158 | -86.080 | 76.643 | -25.912 | .9917
.95 2.623 | -11.751 | 44.598 | -83.746 | 74.868 | -25.392 | .9889
975 2.651 | -11.188 | 43.338 | -81.883 | 73.366 | -24.892 | .9863
.99 2.680 | -10.492 | 41.489 | -78.802 | 70.778 | -24.058 | .9810

Trap, ¢ = .25 Co c1 co c3 c4 cs
01%* 3.302 | -41.867 | 184.684 | -371.542 | 345.164 | -120.018 | .9221
.025%* 3.708 | -44.363 | 193.733 | -387.974 | 359.379 | -124.699 | .9324
05% 4.064 | -46.320 | 200.462 | -400.120 | 370.016 | -128.271 | .9412
1 1.715 | -20.832 | 64.343 | -117.367 | 105.357 | -36.143 | .9987
9 2.141 | -10.644 | 41.120 | -77.868 | 70.064 | -23.915 | .9875
.95 2.201 | -9.731 | 38.875 | -74.684 | 67.853 | -23.332 | .9818
975 2.249 | -8.878 | 36.184 | -69.807 | 63.495 | -21.830 | .9744
.99 2.300 | -7.881 | 32.968 | -64.103 | 58.543 | -20.170 | .9561

Trap, c=.5 Co cl co c3 c4 cs
01* 1.856 | -32.655 | 144.321 | -290.350 | 271.121 | -94.881 | .9133
.025%* 2.346 | -34.736 | 153.721 | -309.592 | 288.413 | -100.564 | .9152
05% 2.791 | -36.903 | 162.518 | -326.407 | 302.974 | -105.262 | .9239
¥ 3.313 | -39.200 | 170.494 | -340.413 | 314.503 | -108.862 | .9360
9 2.048 | -9.806 | 38.254 | -72.757 | 65.627 | -22.444 | 9848
.95 2.120 | -8.744 | 35.033 | -67.184 | 60.879 | -20.873 | .9769
975 2.186 | -8.083 | 33.697 | -65.815 | 60.308 | -20.813 | .9630
.99 2.257 | -7.130 | 30.601 | -60.330 | 55.478 | -19.121 | .9469

Table 11: Regression coeflicients for the quantiles of limiting spectral density distribution at fre-
quency 0 or 7, based on Bartlett and Trapezoidal tapers, when 8 = —.6. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = —.4, frequency 0 or w
Tapers Regression Coefficients R?

Bartlett co a Co cs3 cy cs
.01 1.444 | -15.723 | 50.232 | -89.576 | 78.256 | -26.230 | .9985
.025 1.479 | -14.925 | 48.098 | -86.617 | 76.230 | -25.680 | .9985
.05 1.504 | -14.041 | 44.988 | -80.746 | 70.926 | -23.869 | .9984
1.541 | -13.215 | 42.788 | -77.309 | 68.197 | -23.020 | .9983
9 1.782 | -7.178 | 27.276 | -51.112 | 45.521 | -15.382 | .9879
.95 1.817 | -6.386 | 25.286 | -47.950 | 42.960 | -14.563 | .9779
975 1.846 | -5.665 | 23.187 | -44.184 | 39.594 | -13.406 | .9599
.99 1.883 | -4.868 | 20.648 | -39.150 | 34.641 | -11.553 | .9329

Trap, ¢ = .25 Co c1 co c3 cq cs
.01* 2.206 | -25.329 | 106.866 | -210.363 | 193.083 | -66.641 | .9604
.025%* 2.433 | -26.203 | 109.212 | -213.783 | 195.526 | -67.309 | .9671
.05* 2.631 | -26.767 | 110.430 | -215.493 | 196.825 | -67.706 | .9708
1 1.210 | -16.491 | 50.516 | -95.176 | 87.685 | -30.635 | .9993
9 1.570 | -6.045 | 23.868 | -45.426 | 40.826 | -13.873 | .9785
.95 1.624 | -5.002 | 20.735 | -39.732 | 35.671 | -12.077 | .9487
975 1.667 | -4.169 | 18.380 | -35.721 | 32.124 | -10.818 | .9492
.99 1.714 | -3.128 | 15.027 | -29.840 | 27.186 | -9.246 | .9493

Trap, c=.5 co cl co cs3 cy4 cs
.01* 1.616 | -23.279 | 95.368 | -185.050 | 169.389 | -58.488 | .9640
025%* 1.865 | -23.818 | 98.895 | -193.066 | 176.688 | -60.859 | .9619
.05% 2.085 | -24.079 | 99.670 | -194.042 | 176.875 | -60.695 | .9661
q* 2.354 | -24.395 | 100.009 | -193.837 | 175.978 | -60.190 | .9721
.9 1.522 | -5.538 | 22.254 | -42.497 | 38.041 | -12.832 | .9788
.95 1.586 | -4.452 | 19.194 | -37.580 | 34.227 | -11.705 | .9408
975 1.636 | -3.532 | 16.454 | -32.955 | 30.359 | -10.434 | .9346
.99 1.698 | -2.548 | 13.384 | -27.688 | 26.051 | -9.099 | .9679

Table 12: Regression coeflicients for the quantiles of limiting spectral density distribution at fre-
quency 0 or 7, based on Bartlett and Trapezoidal tapers, when 8 = —.4. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, § = —.2, frequency 0 or w
Tapers Regression Coefficients R?
Bartlett co a Co cs3 cy cs
.01 592 | -12.149 | 35.606 | -61.061 | 52.341 | -17.381 | .9992
.025 627 | -11.000 | 32.101 | -55.381 | 47.717 | -15.890 | .9992
.05 .656 | -9.985 28.895 | -49.598 | 42.418 | -13.987 | .9991
695 | -8.973 26.559 | -46.844 | 41.114 | -13.895 | .9991
9 963 | -1.960 8.615 -16.543 | 14.680 -4.906 | .8658
.95 1.003 | -1.094 6.353 -12.729 | 11.390 -3.793 | .9816
975 1.035 | -0.2852 | 3.8544 | -8.0196 | 7.0061 | -2.2334 | .9927
.99 1.075 | 0.5116 1.8708 | -5.2034 | 5.1180 | -1.7805 | .9964
Trap, ¢ = .25 co c1 co c3 cq cs
.01* 1.266 | -12.757 | 50.397 | -95.980 | 86.529 | -29.557 | .9846
.025%* 1.376 | -12.686 | 49.018 | -92.463 | 82.931 | -28.236 | .9879
.05 515 | -13.634 | 38.299 | -78.634 | 77.205 | -28.667 | .9986
1 539 | -10.993 | 29.037 | -52.288 | 46.953 | -16.085 | .9994
9 899 | -1.238 6.407 -12.887 | 11.693 -3.963 | .9411
.95 949 | -0.201 3.544 -8.061 7.611 -2.618 | .9941
975 995 | 0.6006 1.4807 | -4.8767 | 5.0952 | -1.8202 | .9977
.99 1.051 | 1.48904 | -1.19168 | -0.05777 | 0.76069 | -0.31762 | .9984
Trap, c=.5 Co 1 Co cs3 cq cs
.01* 1.059 | -12.921 | 48.843 | -91.813 | 83.034 | -28.511 | .9859
.025%* 1.184 | -12.875 | 49.529 | -93.639 | 84.469 | -28.861 | .9870
.05* 1.297 | -12.660 | 48.473 | -91.052 | 81.451 | -27.613 | .9887
¥ 1.431 | -12.221 | 45.928 | -85.433 | 75.838 | -25.566 | .9910
9 887 | -0.786 4.980 -10.655 9.879 -3.351 | .9598
.95 949 | 0.3058 1.8540 | -5.2086 | 5.1938 | -1.8014 | .9959
975 1.001 | 1.148 -0.360 -1.749 2.528 -1.017 | .9976
.99 1.052 | 2.302 -4.232 5.361 -3.711 1.053 .9980

Table 13: Regression coeflicients for the quantiles of limiting spectral density distribution at fre-
quency 0 or 7, based on Bartlett and Trapezoidal tapers, when 8 = —.2. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, 8 = 0, frequency 0 or 7
Tapers Regression Coefficients R?
Bartlett Co cal Co c3 cy4 cs
.01 -.262 | -8.488 | 21.309 | -34.640 | 29.412 -9.822 | .9996
.025 -.229 | -6.976 | 16.155 | -25.127 | 20.821 -6.863 | .9997
.05 -197 | -5.789 | 12.763 | -19.762 | 16.531 -5.514 | .9996
-.155 | -4.535 9.479 -14.664 | 12.405 -4.184 | .9995
9 151 3.078 -8.863 14.999 | -12.842 4.283 .9986
.95 194 | 4.019 | -11.206 | 18.631 | -15.682 5.140 .9989
975 229 | 4.920 | -13.917 | 23.397 | -19.741 6.446 9990
.99 274 | 5.725 | -15.753 | 25.854 | -21.379 6.863 .9986
Trap, ¢ = .25 Co c1 co c3 c4 cs
01* .6618 | -5.4437 | 19.1428 | -34.3456 | 30.0210 | -10.0853 | .9966
.025%* 7148 | -5.1414 | 17.2510 | -30.3019 | 26.2102 | -8.7515 | .9978
.05 -.216 | -8.324 | 17.809 | -35.419 | 34.820 | -12.848 | .9994
1 -.183 | -6.020 | 10.786 | -17.392 | 15.013 -4.998 | .9997
9 180 | 3.748 | -11.656 | 20.767 | -18.483 6.355 9981
.95 230 | 4.816 | -14.632 | 26.067 | -23.319 8.073 .9987
975 275 | 5.649 | -16.662 | 28.982 | -25.406 8.647 | .9990
.99 324 | 6.665 | -19.688 | 34.284 | -30.027 | 10.192 | .9988
Trap, c=.5 Co cl co c3 c4 cs
01%* 607 | -6.127 | 20.664 | -37.288 | 33.370 | -11.427 | .9943
.025%* 6697 | -5.8781 | 19.9861 | -35.7242 | 31.3683 | -10.5329 | .9965
.05% 7244 | -5.4544 | 17.8535 | -30.8394 | 26.2820 | -8.6136 | .9979
1 -.218 | -6.887 5.786 2.466 -19.189 | 14.077 | .9983
.9 209 | 3.989 | -11.987 | 20.094 | -16.756 5.409 .9986
.95 269 | 5.105 | -14.978 | 24.972 | -20.737 6.676 .9990
975 320 | 6.048 | -17.856 | 30.468 | -25.988 8.579 .9992
.99 378 | 7.094 | -21.269 | 37.049 | -32.187 | 10.781 | .9989

Table 14: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or m, based on Bartlett and Trapezoidal tapers, when 8 = 0. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].

62



Quantile Coefficients, 8 = .2, frequency 0 or =
Tapers Regression Coefficients R?
Bartlett co a Co c3 cy4 cs
.01 -1.141 | -4.4957 | 5.2246 | -3.6245 1.3248 | -0.2243 | .9996
.025 -1.099 | -2.8309 | -0.0679 | 5.5309 | -6.5520 | 2.4042 | .9996
.05 -1.060 | -1.555 | -3.470 10.693 | -10.631 | 3.707 | .9995
-1.013 | -0.1659 | -6.9750 | 16.1585 | -15.1693 | 5.2087 | .9993
9 -.658 | 8.222 | -27.089 | 48.305 | -42.054 | 14.032 | .9975
.95 -.607 | 9.277 | -29.735 | 52.348 | -45.204 | 14.990 | .9979
975 -.565 | 10.266 | -32.928 | 58.472 | -50.970 | 17.046 | .9982
.99 -.515 | 11.370 | -36.492 | 65.092 | -57.046 | 19.174 | .9980
Trap, ¢ = .25 co c1 co c3 C4 cs
01* .3216 | -1.8748 | 4.8550 | -6.9700 | 5.2523 | -1.6043 | .9996
.025%* 3454 | -1.5477 | 3.2334 | -3.8211 2.4408 | -.6510 | .9997
.05 -.998 | -3.388 | 0.104 -1.136 3.735 -2.291 | .9995
1 -956 | -1.272 | -6.068 14.145 | -13.276 | 4.582 | .9995
9 -.560 | 8.676 | -29.032 | 52.235 | -45.772 | 15.343 | .9974
.95 -.504 | 9.848 | -32.328 | 57.857 | -50.577 | 16.928 | .9978
975 -.459 | 10.931 | -35.884 | 64.630 | -56.908 | 19.170 | .9980
.99 -.399 | 11.995 | -39.217 | 70.848 | -62.745 | 21.271 | .9980
Trap, c=.5 co c Co c3 cq cs
01* 3172 | -2.4539 | 6.6764 | -10.9728 | 9.5063 | -3.1875 | .9985
.025%* 3486 | -2.2060 | 5.7551 | -8.8206 | 7.0817 | -2.2147 | .9995
05% 3713 | -1.7498 | 3.5326 | -3.9992 | 2.3455 | -.5137 | .9996
1 -.926 | -2.553 | -4.827 | 13.038 | -16.624 | 8.298 | .9989
9 -.491 8.891 | -29.738 | 53.335 | -46.726 | 15.694 | .9971
.95 -.427 | 10.130 | -33.442 | 60.088 | -52.792 | 17.752 | .9974
975 -.381 | 11.373 | -38.012 | 69.424 | -61.843 | 21.019 | .9979
.99 =317 | 12.462 | -41.299 | 75.182 | -66.839 | 22.667 | .9978

Table 15: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or 7, based on Bartlett and Trapezoidal tapers, when 8 = .2. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, 8 = .4, frequency 0 or =
Tapers Regression Coefficients R?
Bartlett Co a Co c3 cy4 cs
.01 -2.064 | -0.1239 | -13.3873 | 34.0430 | -34.0389 | 12.1685 | .9984
.025 -1.999 | 1.269 | -16.279 | 36.851 | -35.065 | 12.189 | .9980
.05 -1.949 | 2.566 | -19.099 | 39.996 | -36.661 | 12.448 | .9971
-1.893 | 4.040 | -22.605 | 45.510 | -41.498 | 14.170 | .9942
9 -1.450 | 13.509 | -46.614 | 85.322 | -75.546 | 25.503 | .9970
.95 -1.371 | 14.597 | -49.443 | 89.726 | -79.082 | 26.627 | .9972
975 -1.305 | 15.586 | -52.364 | 94.630 | -83.231 | 27.994 | .9971
.99 -1.221 | 16.619 | -55.518 | 99.893 | -87.542 | 29.347 | .9969
Trap, ¢ = .25 Co c1 co c3 C4 cs
.01* 1434 | -.4035 -.1148 1.5480 | -1.9069 7275 | 19984
.025 -1.911 | 0.2257 | -17.0635 | 33.6339 | -30.0570 | 9.8628 | .9983
.05 -1.844 | 1.535 | -18.499 | 36.755 | -32.834 | 11.003 | .9991
1 -1.779 | 3.200 | -21.413 | 42.225 | -38.238 | 13.105 | .9980
.9 -1.294 | 13.593 | -46.575 | 84.518 | -74.282 | 24.917 | .9968
.95 -1.213 | 14.840 | -50.341 | 91.112 | -79.998 | 26.814 | .9971
975 -1.146 | 16.012 | -54.796 | 100.521 | -89.493 | 30.386 | .9973
.99 -1.062 | 17.29 -59.51 109.77 | -98.26 33.54 | .9974
Trap, c=.5 Co 1 Co c3 cy4 cs
.01* 153 -.745 .891 -.475 .018 101 .9984
.025% .165 -.455 -.509 2.748 -3.290 1.320 | .9980
.05* 172 -.092 -2.077 5.731 -5.887 2.156 | .9975
1 -1.695 | 1.811 | -18.036 | 34.480 | -31.862 | 11.871 | .9977
9 -1.189 | 13.803 | -47.901 | 87.896 | -78.161 | 26.527 | .9964
.95 -1.102 | 15.03 -51.13 92.83 -81.96 27.65 | .9968
975 -1.028 | 16.116 | -54.569 | 98.807 | -87.058 | 29.321 | .9969
.99 -.929 | 17.118 | -57.518 | 103.743 | -91.322 | 30.771 | .9967

Table 16: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or 7, based on Bartlett and Trapezoidal tapers, when 8 = .4. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth

fraction b € (0, 1].
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Quantile Coefficients, 8 = .6, frequency 0 or =
Tapers Regression Coefficients R?
Bartlett co a Co c3 c4 cs
.01 -3.061 | 3.794 | -28.196 | 61.775 | -59.128 | 20.895 | .9961
.025 -2.983 | 5.393 | -31.856 | 66.473 | -62.183 | 21.655 | .9937
.05 -2.915 | 6.717 | -34.732 | 70.273 | -65.007 | 22.553 | .9886
-2.846 | 8.381 | -38.936 | 77.059 | -70.708 | 24.413 | .9762
9 -2.172 | 18.27 | -63.97 | 118.18 | -105.40 | 35.79 | .9965
.95 -2.035 | 19.341 | -67.111 | 123.154 | -109.244 | 36.924 | .9964
975 -1.908 | 20.138 | -69.522 | 126.831 | -111.825 | 37.566 | .9965
.99 -1.759 | 21.042 | -73.334 | 135.054 | -120.062 | 40.622 | .9963
Trap, ¢ = .25 Co c1 co c3 cq cs
01%* .057 .078 -1.233 2.975 -2.888 1.011 | .9959
.025 -2.839 | 4.544 | -32.472 | 65.188 | -60.413 | 21.013 | .9982
.05 -2.772 | 6.025 | -34.783 | 69.308 | -63.970 | 22.273 | .9969
1 -2.690 | 7.637 | -37.115 | 72.192 | -65.871 | 22.823 | .9922
9 -1.993 | 18.431 | -64.374 | 118.052 | -104.481 | 35.233 | .9964
.95 -1.852 | 19.60 | -68.00 | 124.01 | -109.19 | 36.64 | .9964
975 -1.718 | 20.348 | -70.144 | 127.165 | -111.415 | 37.240 | .9963
.99 -1.558 | 21.145 | -73.168 | 133.273 | -117.332 | 39.389 | .9963
Trap, c=.5 Co cl co c3 cq cs
01* .063 -.073 -.862 2.382 -2.487 952 | .9969
.025%* .067 141 -1.835 4.378 -4.320 1.565 | .9953
.05 -2.613 | 3.378 | -24.170 | 45.061 | -46.284 | 19.678 | .9954
1 -2.553 | 5.756 | -28.516 | 49.097 | -40.143 | 12.913 | .9937
9 -1.852 | 18.48 | -64.72 | 118.93 | -105.62 | 35.75 | .9961
.95 -1.714 | 19.822 | -69.460 | 127.951 | -113.946 | 38.676 | .9964
975 -1.576 | 20.642 | -72.207 | 132.911 | -118.305 | 40.126 | .9963
.99 -1.416 | 21.369 | -74.243 | 135.678 | -119.985 | 40.460 | .9960

Table 17: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or 7, based on Bartlett and Trapezoidal tapers, when 8 = .6. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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Quantile Coefficients, g = .8, frequency 0 or =
Tapers Regression Coefficients R?
Bartlett co a co c3 cy4 cs
.01 -4.272 7.235 -38.995 | 78.844 | -72.082 | 24.626 | .9867
.025 -4.185 9.071 -43.313 | 84.531 | -75.892 | 25.638 | .9758
.05 -4.112 10.82 -48.46 94.22 -85.25 29.12 | .9638
-4.012 12.34 -51.12 96.91 -86.55 29.30 | .9621
.9 -2.769 | 22.256 | -78.185 | 143.751 | -127.295 | 42.909 | .9960
.95 -2.532 23.00 -80.83 148.78 | -132.00 44.60 | .9958
975 -2.320 | 23.374 | -82.398 | 152.171 | -135.503 | 45.968 | .9960
.99 -2.088 | 23.513 | -82.400 | 151.527 | -134.518 | 45.531 | .9956
Trap, ¢ = .25 Co c1 co c3 (7 cs
.01 -4.053 5.127 | -28.509 | 41.121 | -23.909 3.457 | .9965
.025 -3.990 7.961 -39.975 | 73.459 | -62.931 | 20.417 | .9949
.05 -3.911 9.752 -44.728 | 84.162 | -74.597 | 25.172 | .9879
1 -3.812 11.59 -48.91 92.03 -82.11 27.90 | .9652
.9 -2.553 | 22.139 | -T7.609 | 142.640 | -126.522 | 42.763 | .9959
.95 -2.300 | 22.762 | -79.961 | 147.344 | -131.018 | 44.381 | .9958
975 -2.097 | 23.235 | -81.896 | 151.410 | -135.039 | 45.867 | .9960
.99 -1.867 | 23.318 | -81.059 | 148.043 | -130.742 | 44.059 | .9956
Trap, c=.5 Co cl Co c3 cy4 cs
01* 0.01928 | 0.09940 | -0.87097 | 1.96920 | -1.92179 | 0.69928 | .9951
.025% 0.02014 | 0.20001 | -1.24252 | 2.57132 | -2.36157 | 0.81464 | .9948
.05 -3.780 8.620 -41.834 | 77.210 | -69.399 | 24.498 | .9948
1 -3.686 | 10.930 | -47.419 | 87.952 | -77.355 | 25.972 | .9842
.9 -2.384 | 22.152 | -78.016 | 143.646 | -127.580 | 43.150 | .9956
.95 -2.131 | 22.816 | -80.499 | 148.416 | -131.902 | 44.618 | .9956
975 -1.922 | 23.249 | -82.365 | 152.575 | -136.206 | 46.266 | .9955
.99 -1.684 | 23.327 | -82.051 | 151.160 | -134.304 | 45.417 | .9957

Table 18: Regression coefficients for the quantiles of limiting spectral density distribution at
frequency 0 or 7, based on Bartlett and Trapezoidal tapers, when 8 = .8. The quantiles for
a = .01,.025,.05,.1,.9,.95,.975,.99 are regressed on an exponentiated quintic in the bandwidth
fraction b € (0, 1].
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’ Empirical Coverage for Bartlett Taper

] 8 [ -8 -6 -4 -2 0 2 4 6 8

N = 50, fso(r/6) .055 084 141 256 5 1.05 2.38 6.17 19.57
b=.04 021, .017 | .234, .187 | .536, .445 | .761, .670 | .831, .744 | .793, 706 | .751, .661 | .764, .658 | .795, .706
b=.10 233, .191 | .614, .532 | .809, .729 | .885, .824 | .915, .849 | .916, .853 | .925, .867 | .932, .876 | .939, .892
b=.20 650, .569 | .861,.788 | .915, .858 | .930, .877 | .940, .890 | .947, .896 | .949, .901 | .953,.904 | .955, .908
b= 50 786, 712 | .904, .840 | .930, .871 | .943, .890 | .946, .891 | .948, .896 | .948, .900 | .947, .896 | .947, .901

N = 100, fio0(/6) 033 056 108 224 5 1.20 3.14 9.30 33.36
b=.04 022, .015 | .333, .263 | .687, .600 | .852, .775 | .884, .815 | .880, .805 | ..873, .797 | .897, .826 | .917, .856
b=.10 304, .251 | 744, .663 | .884, .805 | .925, .866 | .936, .882 | .940, .885 | .938, .884 | .945, .890 | .950, .905
b=.20 732, .654 | .906, .840 | .930, .877 | .942, .889 | .952, .899 | .943,.899 | .954, .907 | .957,.907 | .959, .917
b= 50 822, .753 | 913, .854 | .935, .883 | .942, .896 | .951, .901 | .941, .886 | .951, .901 | .954,.901 | .949, .904

N = 200, fa00(r/6) 1020 038 082 195 5 1.38 4.14 14.02 56.75
b=.04 .037,.025 | 494, .396 | .823, .738 | .018, .855 | .042, .882 | .932, .877 | .932, .872 | .941, .887 | .949, .903
b=.10 366, .203 | .812, .726 | .920, .856 | .942, .889 | .949, .899 | .945, .880 | .042, .886 | .944, .895 | .951, .909
b=.20 790, 725 | 1921, .863 | .941, .888 | .950, .895 | .954,.903 | .952,.900 | .948, .897 | .952,.906 | .960, .920
b= 50 848, 785 | .930, .875 | .947, .897 | .949, .896 | .948, .898 | .948,.900 | .944, .897 | .949, .901 | .952, .909

Table 19: Empirical size for simulations of a cyclical long memory process of parameter 8 =
—.8,—.6,—.4,—.2,0,.2, 4, .6, .8, with spectral density estimates (at frequency 7/6) computed using
a Bartlett taper of bandwidth fraction b = .04, .10, .20, .50. Confidence intervals were constructed
for a = .05, .10, and empirical coverage is given in each cell for both nominal levels.

’ Empirical Coverage for Trapezoidal .25 Taper

] 8 [ -8 -6 -4 -2 0 2 4 6 8

N =50, fso(r/6) 055 084 141 256 5 1.05 2.38 6.17 19.57
b= .04 717, .611 | .908, .837 | .884, 818 | .877,.799 | .861, .786 | .842,.760 | .802, .756 | .813,.712 | .852, .777
b=.10 880, .796 | .913, .844 | .914, .852 | .925, .864 | .926, .871 | .933, .872 | .934, .881 | .941, .892 | .954, .910
b= .20 908, .839 | .945, .891 | .951,.900 | .958, .910 | .959, .911 | .954,.905 | .955, .907 | .951, .901 | .962, .914
b= .50 927, .874 | .937, .881 | .946, .890 | .950, .901 | .949, .892 | .943, .891 | .946, .900 | .946, .898 | .951, .901

N = 100, fi0(7/6) 033 056 108 224 5 1.20 3.13 9.30 33.36
b= .04 859, .778 | .839, .760 | .865, .788 | .898, .826 | .901, .827 | .892, .823 | .896, .824 | .910, .846 | .926, .870
b=.10 922, .859 | .956,.905 | .957,.909 | .958, .912 | .953, .906 | .945, .898 | .947, .897 | .945, .895 | .952, .901
b= .20 909, .842 | .939, .883 | .944, .889 | .946, .893 | .954, .901 | .949, .903 | .952, .906 | .948, .900 | .954, .907
b= .50 943, .890 | .946, .894 | .947, .898 | .944, .896 | .949, .906 | .944, .894 | .948, .899 | .947, .889 | .949, .902

N =200, f200(7/6) .020 038 082 195 5 1.38 4.14 14.02 56.75
b= .04 905, .832 | .954, .907 | .948, .894 | .956,.910 | .956, .910 | .947, .896 | .944, .893 | .947, .900 | .950, .908
b=.10 929, .867 | .945, .891 | .950, .899 | .945, .896 | .950, .901 | .945, .896 | .943, .886 | .947, .897 | .947, .906
b=.20 923, .855 | .942, .886 | .951, .899 | .945, .892 | .956, .900 | .953, .906 | .950, .893 | .954, .903 | .958, .915
b= .50 941, .890 | .947, .893 | .957, .906 | .945, .894 | .952, .909 | .950, .897 | .947, .896 | .949, .900 | .950, .902

Table 20: Empirical size for simulations of a cyclical long memory process of parameter 8 =
—.8,—.6,—.4,—.2,0,.2, .4, .6, .8, with spectral density estimates (at frequency 7/6) computed using
a Trapezoidal .25 taper of bandwidth fraction b = .04,.10,.20,.50. Confidence intervals were
constructed for a = .05, .10, and empirical coverage is given in each cell for both nominal levels.



Empirical Coverage for Trapezoidal .50 Taper

] 8 [ -8 -6 -4 -2 0 2 4 6 8

N =50, fs0(m/6) .055 .084 141 .256 5 1.05 2.38 6.17 19.57
b=.04 .703, .652 | .694, .631 | .751, .697 | .819, .750 | .832,.758 | .811,.731 | .769, .676 | .785, .687 | .824, .740
b=.10 .870, .803 | .933, .895 | .952, .911 | .952, .912 | .950, .902 | .957,.909 | .955,.904 | .958, .910 | .965, .925
b=.20 894, .797 | .937, .867 | .952, .895 | .955,.904 | .942, .892 | .949, .898 | .946, .892 | .948, .893 | .957, .906
b= .50 904, .858 | .925, .886 | .942, .895 | .941, .897 | .950, .900 | .947, .893 | .945, .898 | .941, .887 | .951, .898

N =100, fi00(7/6) .033 .056 .108 224 5 1.20 3.13 9.30 33.36
b=.04 918, .864 | .944, .904 | .938,.900 | .938, .886 | .927, .869 | .928, .867 | .933, .867 | .942, .889 | .954, .912
b=.10 .893, .834 | .932,.903 | .939, .899 | .939, .890 | .938, .884 | .947, .892 | .941, .887 | .945, .887 | .949, .901
b=.20 917, .842 | .956, .895 | .954, .895 | .951, .897 | .955,.904 | .952, .907 | .984, .908 | .954,.905 | .960, .915
b=.50 913, .866 | .932, .891 | .941, .900 | .944, .895 | .952, .899 | .949, .896 | .952,.900 | .949, .896 | .946, .900

N = 200, fa00(7/6) .020 .038 .082 195 5 1.38 4.14 14.02 56.75
b=.04 914, .853 | .950,.908 | .958,.923 | .953,.913 | .951, .906 | .948, .898 | .949, .895 | .949, .896 | .956, .914
b=.10 .920, .869 | .937,.908 | .944, .908 | .947,.901 | .949, .888 | .945, .896 | .951, .897 | .946, .896 | .953, .908
b=.20 919, .844 | .952, .886 | .959, .898 | .952, .905 | .951, .897 | .952, .907 | .957,.908 | .952,.903 | .956, .912
b=.50 .927, .885 | .943,.902 | .943, .900 | .948, .906 | .948, .898 | .948, .901 | .950, .901 | .945, .893 | .950, .897

Table 21: Empirical size for simulations of a cyclical long memory process of parameter 8 =
-.8,—.6,—.4,—.2,0,.2, 4, .6, .8, with spectral density estimates (at frequency m/6) computed using
a Trapezoidal .50 taper of bandwidth fraction b = .04,.10,.20,.50. Confidence intervals were

constructed for a = .05,.10, and empirical coverage is given in each cell for both nominal levels.
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Empirical Coverage for Bartlett Taper

Bandwidth Coverage, o = .10 Coverage, a = .05

p=.7 p=..8 p=2.9 p=.7 p=.8 p=.9

N =50
b=.04 | .503,.917 | .388, .886 | .345, .942 | .583, .974 | .486, .956 | .433, .972
b=.10 | .768,.944 | .703, .937 | .647, .962 | .811, .969 | .761, .961 | .707, .979
b= .20 | .833,.952 | .796, .942 | .750, .966 | .862, .969 | .838, .961 | .796, .979
b=.50 | .856,.939 | .851, .941 | .818, .968 | .889, .960 | .887, .961 | .848, .980
N =100
b=.04 | .703,.893 | .642, .891 | .428, .854 | .765, .960 | .716, .958 | .516, .937
b=.10 | .849,.946 | .836, .948 | .673, .942 | .887, .977 | .878, .980 | .747, .963
b=.20 | .884,.950 | .877, .952 | .785, .954 | .913, .980 | .913, .983 | .832, .965
b=.50 || .904,.946 | .901, .954 | .840, .956 | .939, .976 | .931, .982 | .880, .967
N = 200
b=.04 | .794, .896 | .747, .886 | .565, .806 | .850, .935 | .825, .942 | .670, .903
b=.10 | .883,.924 | .882, .931 | .803, .911 | .919, .957 | .918, .962 | .850, .953
b= .20 | .903,.927 | .908, .937 | .857, .925 | .933, .958 | .938, .965 | .902, .962
b=.50 | .924,.923 | .932, .934 | .897, .927 | .943, .957 | .956, .966 | .926, .962

Table 22: Empirical coverage for spectral distribution bands based on the Bartlett taper with
bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size N = 50, 100, 200 from

a cyclical AR(2) process of frequency 6 = 7/6 and persistency p = .7,.8,.9. Coverage for both

a nominal o = .10,.05 are given in each cell, with the first entry based on an estimator of the
spectrum, and the second entry based on perfect knowledge of the true spectrum.
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Empirical Coverage for Trapezoidal .25 Taper

Bandwidth Coverage, o = .10 Coverage, a = .05

p=.7 p=.8 p=.9 p=.7 p=.8 p=.9

N =50
b=.04 | .611,.926 | .554, .948 | .429, .950 | .687, .958 | .635, .973 | .511, .967
b=.10 | .849,.934 | .851, .953 | .747, .950 | .883, .959 | .878, .973 | .795, .964
b= .20 | .865,.942 | .877, .958 | .805, .952 | .905, .961 | .898, .974 | .835, .970
b=.50 | .883,.938 | .890, .956 | .839, .952 | .918, .961 | .919, .972 | .880, .971
N =100
b=.04 | .848,.921 | .800, .925 | .680, .921 | .886, .958 | .847, .959 | .744, .953
b=.10 | .893,.945 | .875, .946 | .823, .949 | .925, .972 | .912, .970 | .870, .972
b=.20 | .902,.944 | .895, .947 | .872, .952 | .928, .971 | .923, .970 | .903, .974
b=.50 | .915,.938 | .908, .942 | .891, .950 | .941, .967 | .938, .967 | .920, .970
N = 200
b=.04 | .912,.926 | .893, .928 | .759, .913 | .938, .970 | .924, .964 | .831, .956
b=.10 | .922,.925 | .919, .937 | .883, .938 | .944, .969 | .942, .966 | .913, .964
b=.20 | .928,.914 | .925, .930 | .894, .941 | .946, .968 | .949, .963 | .927, .965
b=.50 | .938,.914 | .938, .921 | .914, .935 | .959, .964 | .951, .962 | .937, .960

Table 23: Empirical coverage for spectral distribution bands based on the Trapezoidal .25 taper
with bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size N = 50, 100, 200

from a cyclical AR(2) process of frequency 6 = /6 and persistency p = .7,.8,.9. Coverage for

both a nominal a = .10, .05 are given in each cell, with the first entry based on an estimator of the
spectrum, and the second entry based on perfect knowledge of the true spectrum.
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FEmpirical Coverage for Trapezoidal .50 Taper

Bandwidth Coverage, o = .10 Coverage, a = .05

p=.7 p=.8 p=.9 p=.7 p=.8 p=.9

N =50
b=.04 | .773,.904 | .686, .913 | .584, .921 | .831,.931 | .770, .939 | .674, .939
b=.10 | .861,.948 | .839,.947 | .754, .947 | .879, .971 | .874, .958 | .797, .965
b= .20 | .866,.949 | .859, .949 | .802, .949 | .892, .973 | .889, .960 | .824, .968
b= .50 | .883,.943 | .878, .946 | .825, .950 | .914, .972 | .905, .961 | .855, .972
N =100
b=.04 | .888,.930 | .868, .938 | .755, .933 | .915, .973 | .902, .971 | .823, .962
b=.10 | .903,.949 | .898, .949 | .859, .945 | .922, .975 | .925, .974 | .886, .967
b=.20 | .912,.946 | .911, .948 | .880, .945 | .930, .976 | .937, .976 | .908, .970
b=.50 | .924,.935 | .927, .943 | .896, .945 | .938, .972 | .948, .976 | .920, .969
N = 200
b=.04 | .912,.943 | .880, .925 | .798, .910 | .943, .977 | .923, .963 | .866, .953
b=.10 | .916,.943 | .909, .928 | .902, .936 | .948, .975 | .941, .964 | .921, .963
b=.20 | .923,.938 | .918, .928 | .908, .932 | .952, .971 | .946, .959 | .923, .960
b=.50 | .943,.931 | .935, .915 | .918, .925 | .965, .969 | .962, .958 | .935, .959

Table 24: Empirical coverage for spectral distribution bands based on the Trapezoidal .50 taper
with bandwidth fraction b = .04, .10, .20, .50, based on simulations of sample size N = 50, 100, 200

from a cyclical AR(2) process of frequency 6 = /6 and persistency p = .7,.8,.9. Coverage for

both a nominal a = .10, .05 are given in each cell, with the first entry based on an estimator of the
spectrum, and the second entry based on perfect knowledge of the true spectrum.
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Optimal Bandwidth Fraction, frequency in (0, )

Tapers Long Memory f3

Bartlett -8|-61]-41]-21]0 21 4| 6 | .8

.20 02].02].02].02|.02].02].02].24| .66

.10 021].02].02].02|.02].02].02].18] .36

.05 02].02].02].02|.02].02].02].12 | .28

.005 02].02].02].02].02].02].02]|.10] .14

Trap,c=.251| -8 | -6 | -4]-2] 0 2 41 .6 | .8

.20 021].02].02|.02|.02|.02]|.02].16 | .58

.10 02].02].02].02|.02].02].02].14 | .38

.05 021].02].02|.02|.02].02].02].10] .26

.005 021].02].02].02|.02].02].02].08]|.18

Trap,c=.5 || -8 | -6 |-4|-2| 0 21 4] .6 | .8

.20 02].02].02].02|.02].02].02].14 ] .50

.10 021].02].02|.02|.02].02].02].10].30

.05 021].02].021].02|.021].02].02].10].20

.005 02].02].02].02|.02].02].02].08]|.16

Table 25: Optimal bandwidth fraction, determined for each taper (Bartlett or Trapezoidal), long
memory parameter 3, and a-level, for frequencies between 0 and 7. Optimality means that the
confidence interval is the shortest possible among all bandwidth fractions b € (0, 1]. The two-sided
intervals are based on a-levels .20, .10, .05, .005 (with half of this « assigned to the upper and to
the lower quantile in the confidence interval).
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Optimal Bandwidth Fraction, frequency is 0 or m

Tapers Long Memory f3

Bartlett -8|-61]-41]-21]0 21 4| 6 | .8

.20 021].02].02|.02|.02].02].02].10]| .28

.10 .021].02].02|.02|.02|.02].02].08]|.20

.05 021].02].02].02|.02].02].02].06]|.12

.005 021].02].02].02|.02].02].02].06]|.10

Trap,c=.251| -8 | -6 | -4]-2] 0 2 41 .6 | .8

.20 021].02].02].02|.02|.02].02].08]|.22

.10 021].02].02|.02|.02].02].02].06]|.18

.05 021].02].02].02|.02].02].02].06]|.10

.005 021].02].02].02|.02].02].02].02].10

Trap,c=.5 || -8 | -6 |-4|-2| 0 21 4] .6 | .8

.20 021].02].02].02|.02].02].02].08]|.16

.10 02].02].02].02|.02].02].02].04] .12

.05 021].02].021].02|.021.02].02].02]|.02

.005 021].02].02].02|.02].02].02].02].02

Table 26: Optimal bandwidth fraction, determined for each taper (Bartlett or Trapezoidal), long
memory parameter 3, and a-level, for frequencies 0 and 7. Optimality means that the confidence
interval is the shortest possible among all bandwidth fractions b € (0, 1]. The two-sided intervals
are based on a-levels .20, .10, .05, .005 (with half of this « assigned to the upper and to the lower
quantile in the confidence interval).
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Cycles Cycles

-10

Cycles Cycles

Figure 1: Spectral density estimate using re-coloring approach for Retail 441 series, plotted in
logarithmic scale, utilizing a Bartlett taper and bandwidth fractions b = .04, .1,.2,.5 in upper left,
upper right, lower left, and lower right panels respectively. The confidence intervals are displayed
as dashed red lines, at a nominal level of .95.



0.006
|

]
1

o
8 g
S (=3
o
o~
(=3
o~ S
S ®
S T T T T T T T T T T T T T T
' o 1 2 3 4 5 6 ) 1 2 3 4 5 6
Cycles Cycles
g - g
o S
g - g
o oS
o~ o~
o o
o o
: ﬁ/ : r/f/
(=3 o
S g |
o o
o~ o
g | s |
¢ ?
' T T T T T T T T T T T T T T
o 1 2 3 4 5 6 [0} 1 2 3 4 5 6
Cycles Cycles

Figure 2: Spectral distribution estimate using estimated covariance kernel for Retail 441 series,
utilizing a Bartlett taper and bandwidth fractions b = .04,.1,.2,.5 in upper left, upper right, lower
left, and lower right panels respectively. The confidence bands are displayed in red (.95) and green
(.90).
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Figure 3: Spectral distribution estimate using estimated covariance kernel for Retail 441 series,
utilizing a Trapezoidal .25 taper and bandwidth fractions b = .04,.1,.2,.5 in upper left, upper
right, lower left, and lower right panels respectively. The confidence bands are displayed in red
(.95) and green (.90).
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Figure 4: Spectral distribution estimate using estimated covariance kernel for Retail 441 series,
utilizing a Trapezoidal .50 taper and bandwidth fractions b = .04,.1,.2,.5 in upper left, upper
right, lower left, and lower right panels respectively. The confidence bands are displayed in red
(.95) and green (.90).
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Figure 5: Spectral density estimate for South series, utilizing a Bartlett taper and bandwidth
fractions b = .04,.1,.2,.5 in upper left, upper right, lower left, and lower right panels respectively.
The confidence intervals (red dashed lines) are for .95 nominal coverage.



Figure 6: Spectral density estimate in log scale for South series, utilizing a Bartlett taper and
bandwidth fractions b = .04,.1,.2,.5 in upper left, upper right, lower left, and lower right panels

respectively. The confidence intervals (red dashed lines) are for .95 nominal coverage.
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Figure 7: Spectral density estimate for South series, utilizing a Trapezoidal .25 taper and bandwidth
fractions b = .04, .1,.2,.5 in upper left, upper right, lower left, and lower right panels respectively.
The confidence intervals (red dashed lines) are for .95 nominal coverage.
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Figure 8: Spectral density estimate for South series, utilizing a Trapezoidal .50 taper and bandwidth
fractions b = .04, .1,.2,.5 in upper left, upper right, lower left, and lower right panels respectively.
The confidence intervals (red dashed lines) are for .95 nominal coverage.
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