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Switchgrass Plants
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Seth DeBolta
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ABSTRACT We report here the genome assembly and analysis of Microbacterium strain
sp. LKL04, a Gram-positive bacterial endophyte isolated from switchgrass plants (Pani-
cum virgatum) grown on a reclaimed coal-mining site. The 2.9-Mbp genome of this bac-
terium was assembled into a single contig encoding 2,806 protein coding genes.

Members of the genus Microbacterium have previously been isolated from a wide
range of environments, including soils, marine ecosystems, air, and sewage, and

from plants and insects (1–5). We report here information about the sequenced and
assembled genome of the bacterial endophyte Microbacterium sp. strain LKL04, a
Gram-positive actinobacterium, isolated from leaves of switchgrass plants grown on a
reclaimed coal-mining site in western Kentucky (6).

Switchgrass samples were collected from the coal-mining site in July 2010. Leaf
samples were cut into 1- to 1.5-cm-long segments, surface sterilized with a 20% bleach
solution, and rinsed 5 times with autoclaved tap water. The surface-sterilized segments
were incubated on tryptic soy agar (TSA) plates for 3 to 5 days at 26°C before the individual
colonies were isolated and restreaked at least three times on new TSA plates (6). Single
purified colonies were then isolated and grown at room temperature for 1 to 2 days in
tryptic soy broth (TSB). A modified cetyltrimethylammonium bromide (CTAB) bacterial
DNA isolation protocol (7; https://1ofdmq2n8tc36m6i46scovo2e-wpengine.netdna
-ssl.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012
.pdf) was followed to isolate the bacterial DNA for sequencing.

The genome of Microbacterium sp. strain LKL04 was sequenced at 212� coverage
using Pacific Biosciences (PacBio) sequencing technology (8). A PacBio SMRTbell library
was constructed and sequenced with the PacBio RS platform, generating 198,113
filtered subreads with an average read length of 3,930 bp � 2,621 bp, totaling 778.5
Mbp. Reads were trimmed and assembled using Hierarchical Genome Assembly Process
(HGAP) v.2.3.0 (9). The final genome assembly contains a single contig spanning the
complete 2.922-Mbp length of the bacterial genome, with a GC content of 69.7%, which
is characteristic of actinobacteria. The genome is precited to be circular.

Genes were identified using Prodigal v.2.5, followed by a round of manual curation
using GenePRIMP, resulting in a total of 2,862 predicted genes (10, 11). From these,
2,806 predicted protein coding genes were translated and used to search the National
Center for Biotechnology Information (NCBI) nonredundant, UniProt, TIGRFam, Pfam,
Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Genes
(COG), PANTHER, and InterPro databases (12–18). For the remaining 56 genes, the
tRNAScan-SE tool was used to further identify 45 tRNA genes, 6 rRNA genes, and 5

Citation Sahib MR, Yang P, Bokros N, Shapiro
N, Woyke T, Kyrpides NC, Xia Y, DeBolt S. 2019.
Improved draft genome sequence of
Microbacterium sp. strain LKL04, a bacterial
endophyte associated with switchgrass plants.
Microbiol Resour Announc 8:e00927-19.
https://doi.org/10.1128/MRA.00927-19.

Editor Julie C. Dunning Hotopp, University of
Maryland School of Medicine

Copyright © 2019 Sahib et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Ye Xia,
xia.374@osu.edu, or Seth DeBolt,
sdebo2@uky.edu.

Received 14 August 2019
Accepted 15 October 2019
Published 7 November 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 45 e00927-19 mra.asm.org 1

https://1ofdmq2n8tc36m6i46scovo2e-wpengine.netdna-ssl.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf
https://1ofdmq2n8tc36m6i46scovo2e-wpengine.netdna-ssl.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf
https://1ofdmq2n8tc36m6i46scovo2e-wpengine.netdna-ssl.com/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol-2012.pdf
https://doi.org/10.1128/MRA.00927-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:xia.374@osu.edu
mailto:sdebo2@uky.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00927-19&domain=pdf&date_stamp=2019-11-7
https://mra.asm.org


noncoding RNAs. For the noncoding RNAs, the RNA components of the protein
secretion complex and RNase P were identified by searching the genome for the
corresponding Rfam profiles using Infernal (19, 20). CheckM v.1.0.8, hosted on KBase,
was used to estimate the completeness of the LKL04 genome (21, 22). Overall, the
LKL04 genome returned a completeness score of 99.5% and a contamination level of
only 0.67%. Using the PANTHER hidden Markov model (HMM) scoring tool panther-
Score v.2.1, the protein sequences were further mapped against the PANTHER HMM
database v.14.1 to functionally annotate the LKL04 genes and query for significantly
overrepresented genes (23). Default parameters were used for each software program,
unless otherwise specified. Selected annotations and genome characteristics are shown
in Fig. 1. Additional gene prediction analysis and manual functional annotation were
performed within the Integrated Microbial Genomes (IMG) platform developed by the
Joint Genome Institute (Walnut Creek, CA) (24).

Data availability. The whole-genome sequence has been deposited in DDBJ/EMBL/
GenBank under the accession no. PRJNA322991. Original forward and reverse sequenc-
ing reads can be retrieved from NCBI under SRA accession no. SRR4232145 and
SRR4232146. The associated sequence data can also be found at the Joint Genome
Institute (JGI) portal with the IMG taxon identifier (ID) 2667527218 (https://genome.jgi
.doe.gov/portal/MicspLKL04/MicspLKL04.info.html) or at https://www.ncbi.nlm.nih.gov/
Taxonomy/Browser/wwwtax.cgi?id�912630. Scripts used to construct Fig. 1 can be
found at https://github.com/nbo245/LKL04/tree/master/circos_plot.
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FIG 1 Circular representation of the LKL04 genome using Circos (25). The circles, from outside to inside, denote protein coding genes colored by size (A), RNA
genes (B), transmembrane helix regions (C), GC content along a 1-kb window, with red lines indicating regions above the 69.7% genome average and black
lines indicating regions below the genome average (D) GC skew, with red lines indicating a skew greater than zero and black lines indicating a skew less than
zero (E), and genes annotated into distinct PANTHER protein classes (F). The repository for storage of scripts used to construct the figure can be found at
https://github.com/nbo245/LKL04/tree/master/circos_plot.
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